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Abstract 

Inspecting X-ray images of passenger baggage for prohibited items at security checkpoints is 

crucial to ensuring aviation security. To prevent performance declines during inspection, the EU 

allows screeners to perform this task for only 20 min, although little is known about how this 

performance actually evolves over time. For many airports, longer screening durations would be 

practical, and this raises the question of the ideal screening duration in terms of both performance and 

screener well-being. To measure screeners’ performance, airports typically implement threat image 

projection (TIP). TIP projects fictional threat items (FTIs) onto the X-ray images of passenger 

baggage; and by recording the screeners’ decisions, it allows measurement of their detection rate. To 

draw meaningful conclusions from these data, it is essential for them to be reliable and valid. 

However, their reliability and validity are still poorly researched and not confirmed. This thesis 

addresses the question of how time on task affects performance in X-ray image inspection of cabin 

baggage, and it asks whether TIP performance data collected at airports provide a reliable and valid 

measure of operational threat detection.  

Manuscript 1 investigated how performance evolves with time on task in two groups of 

screeners who performed a 1-hr X-ray image inspection task in the laboratory. One group took 10-

min breaks every 20 min; the other group screened continuously without breaks. To assess the validity 

of measurements of detection performance, we varied target prevalence. Results confirmed the typical 

target prevalence effect and showed that da is a valid measure of detection performance for X-ray 

images inspection. Manuscript 1 provides evidence that screeners were able to maintain performance 

for a full hour, and that breaks had no effect on performance. However, time on task caused a shift in 

response tendency and might cause more distress. In Manuscript 2, we investigated the effects of time 

on task on performance under real working conditions by analyzing performance data from a 4-month 

field study. A group of screeners at a European airport were asked to analyze X-ray images from a 

remote screening room for up to 60 min. Only when task load was high (number of images analyzed 

per min), did the screeners' hit rate decrease with time on task. The efficiency, in terms of the reject 

rate and processing time, increased with time on task. Screeners who conducted longer screening 

durations did not report more distress. Yet, there were marked individual differences in performance, 

in performed screening durations, and in preferred screening durations. In Manuscript 3, we examined 

the reliability and validity of TIP performance by analyzing a large data set from a European airport. 

We showed that TIP data can be a reliable and valid measure of operational threat detection, and that 

around 100 TIP events per screener should be considered to attain minimum reliability values of 0.7. 

The manuscript further provides recommendations on how to increase the reliability of TIP data. 
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Taken together, these findings show that TIP data, which are in frequent use, can provide a 

reliable and valid measure of operational threat detection and that screeners can maintain performance 

for more than 20 min. Manuscripts 1 and 2 provide evidence that time on task in X-ray image 

inspection leads to a shift in response tendency rather than a decline in sensitivity. Based on 

performance and survey results, screening sessions could be designed more flexibly and an extension 

to 30–40 min could be considered. The manuscripts provide meaningful theoretical insights into 

performance in X-ray image inspection, especially with regard to the effect of time on task. They 

further provide methodological and practical contributions on appropriate detection performance 

measures, on how to measure performance reliably and validly, and on the design of screening 

durations. 
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Introduction 

Airport security checkpoints are an essential component of ensuring aviation security. 

Security personnel (screeners) check passengers and their belongings to prevent them from bringing 

potential security threats onto the plane. This includes the inspection of X-ray images of cabin 

baggage in which screeners search for prohibited items among harmless daily objects. For each 

image, screeners decide whether it contains a prohibited item and whether it needs to be further 

examined at a second search station. This task entails visual search and decision making (Koller et 

al., 2009; McCarley et al., 2004; Wales et al., 2009) consistent with Spitz and Drury’s (1978) two-

component model. However, compared to traditional search or inspection tasks (Treisman & Gelade, 

1980), X-ray image inspection is more complex and cognitively demanding (see, for reviews, Biggs 

et al., 2014, 2018) and requires different visual cognitive abilities (Hättenschwiler et al., 2019). One 

difference lies in the complexity of the targets and distractors (Wolfe et al., 2013). The list of 

prohibited items screeners must search for is very long and can change as new threats emerge. 

Moreover, whereas the main categories of prohibited items are clear (guns, knives, improvised 

explosive devices [IEDs]), the shape, size, or even material of these threats can vary widely. 

Moreover, targets have to be found among a large variety of distractors that can superimpose the 

target (Schwaninger et al., 2005). Also, a baggage can contain multiple prohibited items that need to 

be identified (Menneer et al., 2009).  

Events such as the 9/11 attacks show how important the task is and what fatal consequences 

a mistake can have. Subsequently, there has been increasing research on X-ray image inspection and 

the factors that contribute to good detection performance (see Biggs et al. 2018 for a recent review). 

In addition, to minimize errors, the work of security officers is subject to strict regulations (Bassetti, 

2021; Walter et al., 2021). For instance, to prevent performance declines during inspection, the 

continuous screening of X-ray images is legally limited to 20 min at European checkpoints (European 

Commission, 2015). After this, screeners must take a 10-min break or rotate to another position at the 

checkpoint where they perform other tasks such as instructing passengers how to prepare their 

baggage, checking passengers at the walk-through metal detector or person scanner, or manually 

checking baggage at secondary search (Michel et al., 2014). However, the validity of this regulation 

needs to be examined for two main reasons: First, this restriction is probably based on evidence from 

traditional vigilance studies conducted in the laboratory (personal communication with airport 

security expert, 2019), and not on results from X-ray cabin baggage screening (CBS). Second, airports 

are interested in extending screening durations due to an emerging technology known as Remote 

Cabin Baggage Screening (RCBS; Buser & Merks, 2020; Kuhn, 2017; Wetter, 2013). With RCBS, 

screeners analyze X-ray images in remote rooms that are separate from the checkpoint. Although this 
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allows for a quieter work environment, time is lost through the rotation to and from the checkpoint. 

Extending screening durations could alleviate this issue. 

Fortunately, passengers rarely carry real threats such as bombs, guns, or knives with them. 

Yet, this makes it even more difficult for screeners to detect such threats. Research shows that the 

relative frequency with which targets appear, referred to as target prevalence, affects detection 

performance (Wolfe et al., 2005, 2007). The rarer targets are, the less likely people are to detect them 

and vice versa. Airports counteract this by implementing a technology called threat image projection 

(TIP) with which they project prerecorded images of fictional threat items (FTIs) onto about 1–4% 

of the X-ray images of real passenger baggage (Cutler & Paddock, 2009; Hofer & Schwaninger, 2005; 

Meuter & Lacherez, 2016; Skorupski & Uchroński, 2018). By increasing the number of threats to be 

detected (target prevalence), they raise the chances of their detection, while also increasing screener 

motivation and attention (Cutler & Paddock, 2009; Schwaninger, 2006). Moreover, TIP systems 

record screener responses to each TIP event, allowing calculation of on-the-job performance. TIP 

data are frequently used by airports and security companies for quality control purposes, but they are 

also used by researchers (Buser et al., 2023; Meuter & Lacherez, 2016; Skorupski & Uchroński, 

2016). Despite their frequent use, the reliability and validity of TIP data have hardly been 

investigated, and their predictive power correspondingly remains unclear.  

In line with the above, this thesis addresses two main topics: First, it evaluates the effects of 

time on task on performance in X-ray image inspection of cabin baggage. Second, it investigates the 

reliability and validity of TIP data. The following research questions are addressed: (a) How does 

time on task affect performance in X-ray image inspection in the laboratory? (b) Can the findings 

from the laboratory be found in the field? (c) Is TIP data a reliable and valid measure of operational 

threat detection? The thesis is structured as follows: It starts by providing a theoretical background 

addressing those concepts that are relevant to the three manuscripts. The theoretical background is 

followed by detailed summaries of the manuscripts. The framework closes with a general discussion 

of the publications and the conclusions that can be drawn from them by highlighting their relevance 

for X-ray image inspection. The three manuscripts are attached in the appendix. 
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Theoretical Background 

Measuring performance in X-ray image inspection 

In X-ray image inspection, commonly used measures are the hit rate, which refers to the 

percentage of detected prohibited items, and the false alarm rate, which refers to the percentage of 

harmless baggage falsely declared as containing a prohibited item. However, these measures depend 

on a person's response tendency, and this can be affected by factors such as the relative target 

frequency, costs associated with responses, or confidence in decision making (Macmillan & 

Creelman, 2005). Thus, when someone’s response tendency changes, they may, for example, become 

more inclined to respond that a target is present, so that both their hit and false alarm rate will increase. 

Therefore, people with the same detection abilities may have different hit and false alarm rates due 

to individual response tendencies. To assess detection performance, it is therefore recommended to 

use measures that are independent of response tendency (Macmillan & Creelman, 2005). Signal 

detection theory (SDT; Green & Swets, 1966) provides a framework that distinguishes between a 

person's ability to detect a signal, called sensitivity, and their response tendency also referred to as 

criterion c. It claims that this sensitivity is unaffected by response tendency. Commonly used 

measures of sensitivity are d' and A', which are derived from the hit rate and false alarm rate (Green 

& Swets, 1966; Pollack & Norman, 1964). However, for X-ray image inspection, several studies have 

cast doubt on the validity of these measures (Godwin, Menneer, Cave, & Donnelly, 2010; Hofer & 

Schwaninger, 2004; Sterchi et al., 2019; Van Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van 

Wert, 2010). To understand why this is the case, it is necessary to look at the fundamental assumptions 

of SDT (see, for more comprehensive discussions, Green & Swets, 1966; Macmillan & Creelman, 

2005; T. D. Wickens, 2001). 

SDT originated in psychophysics and decision psychology in which it was used to analyze 

decision making in uncertain situations, and it can be applied whenever two types of stimuli need to 

be distinguished (Stanislaw, 1999). In X-ray image inspection, screeners have to discriminate 

prohibited items (signal) from daily, harmless objects (noise). SDT assumes that our cognitive 

processes generate subjective evidence for or against a target’s presence, and this is called the decision 

variable (see x-axis in Figures 1A and 1C). SDT also posits that a decision is made by establishing a 

threshold to the decision variable, called the criterion. Depending on where the criterion is positioned 

on the decision variable, a person is more or less likely to indicate the presence of a target. A liberal 

criterion indicates that one is more likely to respond that a target is present, whereas a conservative 

criterion indicates that one is less likely to declare that a target is present. As shown in Figure 1, both 

target-absent (noise) and target-present (signal-plus-noise) trials result in distributions of the decision 

variable due to the inherent noise of the process. The commonly used SDT model (Pastore et al., 
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2003) assumes that these distributions follow a normal distribution with equal variance (Figure 1A), 

and this forms the basis for calculating detection performance measure d'. However, drawing on a 

series of studies, Wolfe et al. (2007) argue that visual search in X-ray images does not meet the 

assumptions underlying d'—namely, the requirement of equal-variance distributions for signal and 

signal-plus-noise (Macmillan & Creelman, 2005). For X-ray image inspection, da, as proposed by 

Simpson and Fitter (1973), seems to be a more valid measure of sensitivity, because it allows us to 

model unequal variance distribution of signal and signal-plus-noise (Figure 1B). For X-ray image 

inspection, recent studies have found a slope of 0.6 to be applicable for da  (Godwin, Menneer, Cave, 

& Donnelly, 2010; Van Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van Wert, 2010). Figure 1B 

shows the slope of 1 for d'; Figure 1D, the slope for da. The slope value of 0.6 for da indicates that 

the noise distribution has a smaller standard deviation than the signal-plus-noise distribution (Sterchi 

et al., 2019). Manuscript 1 examines the valid measure of detection performance in X-ray baggage 

inspection by varying the target prevalence and computing both d' and da.  

 

 

Figure 1: Illustration of signal-plus-noise and noise distribution of d' (A) and da (C) and corresponding 

slopes (B & D). FAR = False alarm rate, HR = hit rate. Graph adapted from Sterchi et al. (2019). 
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At airports, performance is often measured with TIP. TIP systems record screener responses 

to each TIP event so that the TIP hit rate can be calculated for each individual screener in a given 

time period (Hofer & Schwaninger, 2005). Hence, screener performance can be monitored, and action 

can be taken if a screener shows a low detection performance (Bassetti, 2021; Riz à Porta et al., 2022). 

To draw meaningful conclusions from TIP data, it is essential for them to be reliable and valid. To 

date, however, there are no conclusive results regarding the data’s reliability. Hofer and Schwaninger 

(2005) analyzed up to 7 months of TIP data and found that the reliability values for CBS data were 

insufficient (below .58) and depended on how the data were aggregated. Moreover, the validity of 

TIP data has not been investigated. Thus, it is not clear whether TIP truly measures threat detection 

or possibly other abilities. Riz à Porta et al. (2022) found that one-third of all TIP images look 

unrealistic, making it possible for screeners to recognize TIP images based on artifact detection. 

Because TIP aims to measure how well screeners detect prohibited items in passengers’ baggage, its 

validity can be examined by assessing how well screeners detect real, physical threat items at the 

checkpoint. To test and train screeners’ ability to detect real threats, many airports conduct covert 

tests in which instructed individuals attempt to smuggle real threats past the checkpoint (Walter et 

al., 2021; Wetter et al., 2008). The result of each covert test is recorded, and by relating these data to 

TIP performance, the validity of TIP can be evaluated. Analyzing a large TIP dataset from a European 

airport, Manuscript 3 investigates the reliability of TIP by calculating the split-half reliability and 

covert test data by testing whether TIP performance can predict covert test performance. 

Effects of time on task on detection performance 

As a precautionary measure to prevent performance declines, the EU limits the continuous 

inspection of X-ray images to 20 min (European Commission, 2015). Because evidence on the effects 

of time on task in X-ray image inspection is scarce, this 20-min limitation is probably based on 

findings from vigilance research (personal communication with airport security expert, 2019) in 

which the effect of time on task on performance has been investigated extensively. Vigilance refers 

to a state of heightened attention and alertness characterized by sustained observation of stimuli in 

order to identify specific targets (Davies & Parasuraman, 1982; Mackworth, 1948; Warm, 1984). It 

requires the ability to maintain a high level of concentration over an extended period of time in what 

are often monotonous situations while being prepared to respond promptly and accurately to 

infrequent but relevant cues. In vigilance tasks, a decline in performance is often found after 15 to 20 

min (Mackworth, 1948; Teichner, 1974; Warm, 1984), and typically manifests as a decrease in hits, 

an increase in false alarms, and increasing reaction times. This pattern of performance decline can 

therefore be attributed to a decline in the searchers’ perceptual ability—that is, the ability to 
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differentiate between targets and nontargets (e.g., sensitivity in SDT; See et al., 1995). In addition to 

performance declines, participants often report a decrease in engagement and an increase in distress 

and subjective workload after such a task (Claypoole et al., 2019; Teo & Szalma, 2011; Tiwari et al., 

2009; Warm, Parasuraman & Matthews, 2008). There are two main theories explaining why 

performance in vigilance tasks decreases with time on task (Helton & Warm, 2008; MacLean et al., 

2010; Neigel et al., 2020). Underload theory suggests that the monotony of vigilance tasks (searching 

for rare targets over an extended period of time) causes attention to fade, resulting in targets going 

undetected (Robertson et al., 1997). There is more support, in contrast, for resource theory in which 

it is assumed that our cognitive resources are limited, and that these are depleted with increasing time 

on task or task difficulty, with the result that performance declines (Helton & Warm, 2008; Matthews 

et al., 2010).  

As a vigilance task, X-ray image inspection of cabin baggage is characterized by long search 

periods in which the searcher is required to remain attentive although only few targets appear. 

Whereas there are similarities between the tasks, there are also significant differences (Drury & 

Watson, 2002; Wolfe et al., 2007). In traditional vigilance tasks, participants typically monitor a 

screen and must detect simple and single signals (Davies & Parasuraman, 1982). Hence, a short 

distraction can lead to missing a signal (Wolfe et al. 2007). X-ray image inspection involves searching 

for multiple, visually complex targets among many distractors (Schwaninger et al., 2005); and for 

each image, screeners have to actively declare whether or not a target is present (Koller et al., 2009). 

Additionally, whereas certain types of targets are very rare (e.g., bombs) in X-ray image inspection, 

other targets occur rather frequently in cabin baggage (e.g., liquids and gels). Because of these 

differences, it is unclear how well the results of time on task in vigilance tasks translate to X-ray 

image inspection of cabin baggage. Furthermore, most vigilance studies have been conducted in the 

laboratory, and it is unclear how well these results transfer to the real world in which tasks and 

environments tend to be more complex (Drury & Watson, 2002).  

Only a few studies have investigated how professional screeners’ performance evolves with 

time on task in X-ray image inspection. A study by Ghylin et al. (2007) examined different 

performance measures across four 1-hr time blocks in a laboratory study. The researchers observed a 

decrease in the hit rate, false alarm rate, and reaction times between the first and fourth hour. 

However, they did not observe a decline in the sensitivity measure A', suggesting that screeners 

shifted their response tendency. Unfortunately, this study does not indicate how performance changed 

within the 1-hr blocks. To date, only one study has investigated performance in professional screeners 

in the field. Meuter and Lacherez (2016) analyzed TIP data from an international airport taken from 

screening durations of up to 30 min. The researchers found a decrease in the TIP hit rate of 2 
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percentage points with time on task, but only when workload was high (operationalized as more than 

5.4 X-ray images analyzed per min). In their study, workload was calculated using a median split 

across all screening sessions that categorized workload as low or high. The TIP hit rate refers to the 

proportion of projected fictional threat items detected by screeners. Due to technical limitations, the 

researchers were unable to measure the false alarm rate. Therefore, they could not distinguish whether 

the decline in hit rate was due to decreasing sensitivity or to a shift in response tendency.  

Time on task appears to elicit a somewhat different vigilance pattern in X-ray image 

inspection compared to traditional vigilance tasks (Ghylin et al., 2007; Rubinstein, 2020). This cannot 

be explained by resource (Helton & Warm, 2008; Matthews et al., 2010) or underload theory 

(Robertson et al., 1997). In X-ray image inspection, the hit rate and false alarm rate both decline with 

time on task, while people also become faster at responding. This pattern is better explained by a 

change in the response tendency rather than a decline in sensitivity. To account for this alternative 

vigilance pattern in X-ray image inspection tasks, Rubinstein (2020) proposed dynamic-allocation 

resource theory (DART). This posits that vigilance decrements in X-ray image inspection are caused 

by active changes in response tendency rather than by a decline in sensitivity due to limited resources 

or under-stimulation. To better understand how performance evolves with time on task in X-ray 

baggage inspection, the studies in Manuscript 1 and 2 investigated different performance measures 

with professional screeners in screening durations up to one hour. Because vigilance studies have 

associated time on task with increased distress and less engagement (Claypoole et al., 2019; Teo & 

Szalma, 2011; Tiwari et al., 2009; Warm, Parasuraman & Matthews, 2008), we also assessed these 

constructs with the Short Stress State Questionnaire (SSSQ; Helton, 2004). 
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Summary of the Manuscripts 

Manuscript 1: Why stop after 20 minutes? Breaks and target prevalence in a 60-minute X-ray 

baggage screening task 

Motivation and aim of the study. Because there is an interest in extending the duration of X-

ray image inspection, which is currently limited to 20 min at security checkpoints, more evidence is 

needed on how performance on this task evolves over time. The few studies to date suggest that with 

time on task, a shift in response tendency occurs rather than a decrease in sensitivity (Basner et al., 

2008; Ghylin et al., 2007; Rubinstein, 2020). Analyzing TIP data, Meuter and Lacherez (2016) found 

a decrease in the hit rate over time for 30-min session durations, but only when workload (number of 

images analyzed per min) was high. It is, however, still unclear how long screeners can maintain 

performance in X-ray image inspection and how performance evolves over longer screening durations 

up to 1 hr. Several studies have reported positive effects of breaks on performance in a variety of 

detection tasks (Arrabito et al., 2015; Kopardekar & Mital, 1994). However, in an X-ray image 

inspection task with student participants, Chavaillaz et al. (2019) found no performance differences 

for different break regimens. To examine the effects of time on task and breaks on performance, we 

compared the performance of two groups of screeners during a 60-min X-ray image inspection task 

in Manuscript 1. Whereas one group screened continuously for 60 min, the other took 10-min breaks 

between 20-min screening blocks in line with the current EU regulation (European Commission, 

2015). Participants in vigilance tasks typically report increased distress and decreased engagement 

after task completion (Helton, 2004; Matthews et al., 2002). When it comes to the effects of time on 

task in X-ray image inspection, screener well-being has not yet been considered. We therefore asked 

screeners to complete the SSSQ (Helton, 2004) at the end of the screening task. Because there is no 

evidence yet on how screener performance changes after 30 min of screening, we first investigated 

this in the laboratory in a situation similar to remote screening. This enabled us to prevent negative 

consequences if performance were to decline, because this could result in missed threats. Only if we 

find that screeners can maintain performance in the laboratory for more than 30 min, can we then 

conduct similar studies in the field. 

Because time on task in X-ray image inspection is likely to influence the response tendency 

(Ghylin et al., 2007; Rubinstein, 2020), it is important to consider a valid performance measure that 

is independent of this. Previous research (Godwin, Menneer, Cave, & Donnelly, 2010; Hofer & 

Schwaninger, 2004; Sterchi et al., 2019; Van Wert et al., 2009; Wolfe et al., 2007; Wolfe & Van 

Wert, 2010), suggests that for X-ray image inspection, da, with a slope parameter of around 0.6 is a 

more valid measure of sensitivity compared to d' that might be affected by target prevalence. 

Accordingly, the same slope should be used to calculate the criterion ca. In Manuscript 1, we varied 
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target prevalence to validate the appropriate detection measure and to determine whether time on task 

causes a change in sensitivity and/or the response tendency. 

Method. A total of 71 professional screeners (33 female; age: M = 32.01 years, SD = 12.82; 

length of employment: M = 2.08 years, SD = 2.23) completed a 1-hr X-ray image inspection test 

twice. A 2 (breaks: with vs. without) × 2 (prevalence: high vs. low) × 3 (time on task: 0–20 min, 20–

40 min, 40–60 min) mixed factorial design was employed. As a between-subject variable, the break 

conditions with and without breaks were used. Both groups conducted two test sessions using 

different target prevalences that were separated by 3–5 weeks. The hit rate, false alarm rate, sensitivity 

(d', da), criterion (c, ca), and processing time served as dependent variables. The influence of the break 

and prevalence condition on the three SSSQ factors distress, worry, and engagement (Helton, 2004) 

was also analyzed. The test consisted of 864 X-ray images of passenger cabin baggage. In the low 

prevalence condition, one in eight images contained a threat (12.5%); in the high prevalence 

condition, one in two (50%). Guns, knives, and IEDs accounted for an equal number of threat items. 

To ensure that screener’s performance was based on the same images, the test was divided into 12 

blocks of 72 images. After 5 min, the test switched to the next block. Each participant had enough 

time to analyze the first 24 images of each block that were then used to measure detection 

performance. The order of blocks was counterbalanced.  

The group with breaks took 10-min breaks every 20 min, whereas the group without breaks 

analyzed X-ray images for 60 min continuously and took a break of 20 min at the end. The order of 

the prevalence conditions was counterbalanced across participants. The slope parameter was 

estimated by comparing individual differences in hit rate and false alarm rate between the two 

prevalence conditions. After the screening task, screeners filled in the SSSQ survey (Helton, 2004) 

to assess perceived stress and provided demographic information. 

Results. Both the hit rate and false alarm rate were higher in the high prevalence condition, 

F(1, 69) = 37.99, p < .001, ηp
2  = .36 and F(1,69) = 118.53, p < .001, ηp

2  = .63 respectively (see Figure 

2). The estimated slope resulted in a value of 0.65 (95% BCa-CI [0.41, 0.89]), which was lower than 

the slope of 1.0 assumed by d'. In line with Wolfe et al. (2007), this suggests using da as a sensitivity 

measure and ca as criterion (with the estimated slope of 0.65). The effect of time on task depended 

on the prevalence condition for the false alarm rate, F(1.97, 136.18) = 17.9, p < .001, ηp
2  = .21, 

criterion ca , F(1.95, 134.28) = 11.82, p < .001, ηp
2= .15), but not for the hit rate, F(1.96, 134.94) = 

3.06, p = .051, ηp
2  = .04, or da , F(1.95, 134.72) = 0.11, p = .895, ηp

2  = .00 (see Figure 3). To be more 

precise, the criterion decreased for high prevalence from the first 20-min block (0–20 min) to the 

second 20-min block (20–40 min), whereas the criterion increased for low prevalence. There was a 
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small main effect of time on task for da, F(1.97, 135.91) = 3.43, p = .036, ηp
2  = .05. Post hoc tests 

revealed an increase from the first 20-min block to the second 20-min block (p = .034). The hit rate 

and false alarm rate, da and ca were not affected by breaks F(1, 69) = 1.84, p = .180, ηp
2  = .03 and 

F(1, 69) = 0.00, p = .957, ηp
2  = .00 respectively. 

 

 

Figure 2. Hit rate (a) and false alarm rate (b) for the group with breaks and the group without breaks 

for both prevalence conditions as a function of time on task. Error bars represent standard errors.  

 

 

Figure 3. Sensitivity measure da (a) and criterion ca (b) for the group with breaks and the group 

without breaks for both prevalence conditions as a function of time on task. Error bars represent 

standard errors. 
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The three constructs distress, worry, and engagement were used as dependent variables in 2 

(with vs. without breaks) x 2 (high vs. low prevalence) ANOVA calculations for the subjective stress 

levels. A main effect of break, F(1, 66) = 9.17, p = .004, ηp
2  = .12, was found for distress. Because 

the data did not meet the assumptions of normality or homoscedasticity, a Wilcoxon rank-sum test 

was calculated. This revealed a significant difference between the two break conditions (W = 1616, p 

=.003). No effects were found for worry or engagement. 

Discussion and conclusion. To examine screeners' ability to maintain performance over an 

hour and the effects of breaks, two groups of screeners performed a 1-hr X-ray image inspection task. 

One group took breaks every 20 min in accordance with EU regulations, the other group screened for 

1 hr without breaks. To determine the valid detection measure target, prevalence was varied. 

Performance did not decrease over the course of 60 min of X-ray baggage inspection, but a shift in 

response tendency was evident. Moreover, breaks had no effect on performance. However, screeners 

without breaks reported more distress. 

Consistent with previous studies, we found the target prevalence to cause a shift in the 

response tendency resulting in a lower hit rate and a lower false alarm rate with screeners needing 

less time to inspect images in the low target prevalence condition (Godwin, Menneer, Cave, Helman, 

et al., 2010; Ishibashi et al., 2012; Ishibashi & Kita, 2014; Lau & Huang, 2010; Van Wert et al., 2009; 

Wolfe et al., 2007; Wolfe & Van Wert, 2010). In line with previous research on X-ray image 

inspection (Godwin, Menneer, Cave, & Donnelly, 2010; Wolfe et al., 2007; Wolfe & Van Wert, 

2010), we found higher d' values for the low target prevalence condition compared to the high target 

prevalence condition. In agreement with Kundel (2000) and Wolfe et al. (2007), we argue that it is 

implausible for screeners to become better and faster at detection when fewer threats occur. It is more 

likely that the equal variance assumption of d' (Green & Swets, 1966) is not met, and that the change 

in the hit rate and the false alarm rate reflect a change in response tendency (ca) as assumed in SDT 

(Macmillan & Creelman, 2005). We found an average slope parameter of 0.65, which is close to the 

slope found in previous studies for the task of X-ray image inspection (Godwin, Menneer, Cave, & 

Donnelly, 2010; Sterchi et al., 2019; Wolfe et al., 2007; Wolfe & Van Wert, 2010). 

For the false alarm rate, we found an interaction between target prevalence and time on task. 

The false alarm rate increased from the first (0–20 min) to the second (20–40 min) screening block 

at high prevalence and decreased at low prevalence. Previous research suggests that the target 

prevalence effect depends on implicit learning rather than explicit instruction, and that it takes some 

time for searchers to adapt to the current target prevalence by shifting their criterion accordingly 

(Ishibashi et al., 2012; Lau & Huang, 2010). According to Lau and Huang (2010), the instructed target 
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prevalence is insufficient to produce the target prevalence effect. Although our participants were 

instructed about the target prevalence, the target prevalence effect evolved over time, showing that 

participants first had to experience the target prevalence for the effect to fully develop (Ishibashi et 

al., 2012; Lau & Huang, 2010). Instructions alone were not sufficient to evoke this effect. In the high 

target prevalence condition, screeners shifted their response tendency to a more liberal location, 

increasing their likelihood of declaring the presence of a prohibited item. In the low prevalence 

condition, they shifted their response tendency to a more conservative location, therefore giving more 

no-target-present answers. After the first 20 min, the criterion remained stable in both conditions. The 

sensitivity da increased from the first 20-min block to the second 20-min block. As with other 

recognition tasks, there may be a warm-up phase in X-ray image inspection during which the 

cognitive processes required for this task are fully activated (Allport & Wylie, 1999; Monsell, 2003). 

However, the observed performance increase could also be due to adaptation to the task specifics in 

our experiment. Breaks have been shown to improve performance in previous studies (Arrabito et al., 

2015; Balci & Aghazadeh, 2003; Kopardekar & Mital, 1994; Steinborn & Huestegge, 2016), but they 

are primarily thought to provide rest, recuperation, and fatigue prevention (Tucker, 2003). Because 

participants who screened for 60 min continuously showed no performance decrease, there was no 

need for recovery during breaks. Even though breaks had no effect on detection performance, they 

did appear to influence perceived distress. In the SSSQ, screeners in the condition without breaks 

reported more distress. This may influence performance in the long run. It should be noted, however, 

that there were significant differences in distress perception between screeners in the condition 

without breaks. This study serves as an initial indication that longer screening sessions are feasible 

without compromising performance, and it provides a solid foundation for future research in the field.  
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Manuscript 2: Time on task and task load in X-ray image inspection: a four-month field study 

with X-ray baggage screeners 

Motivation and aim of the study. It is believed that the current 20-min limit in X-ray baggage 

screening is based on vigilance research (personal communication with airport security expert, March 

2019). However, differences can be found between typical vigilance tasks and X-ray image inspection 

and their vigilance decrement patterns (Drury & Watson, 2002; Rubinstein, 2020; Wolfe et al., 2007). 

In vigilance tasks, a performance decline is often observed in the form of an increase in misses, false 

alarms, and reaction times (Davies & Parasuraman, 1982; See et al., 1995). This indicates a decline 

in sensitivity, and is often accompanied by a decrease in task engagement and an increase in distress 

compared to pretask values (Claypoole et al., 2019; Teo & Szalma, 2011; Tiwari et al., 2009; Warm, 

Parasuraman,& Matthews, 2008). In X-ray image inspection, the vigilance pattern with time on task 

has been found to manifest in an increase in misses and a decrease in both false alarms and reaction 

times (Ghylin et al., 2007; Rubinstein, 2020). This pattern is more consistent with a shift in response 

tendency and was also found for the low target prevalence condition in Manuscript 1. The classical 

vigilance decrement is explained mostly through limited attentional resources (Helton & Warm, 2008; 

Matthews et al., 2010) or underload theories (Robertson et al., 1997). To explain the deviant pattern 

in inspection tasks, Rubinstein (2020) proposed a new theory: DART. To gather further evidence on 

how time on task affects performance in X-ray baggage inspection and whether the vigilance pattern 

corresponds to the one suggested by Rubinstein, we conducted a 4-month field study with 

professional screeners. 

Following Manuscript 1, Manuscript 2 investigated how screener performance evolves with 

time on task under real working conditions with remote screening. This study builds on Manuscript 

1 and can address some of its limitations. Whereas the consequences of missing a prohibited item are 

minor in an experiment (Manuscript 1), they can be catastrophic in real life. Consequently, working 

at the checkpoint entails a greater degree of responsibility. Further, target prevalence at the checkpoint 

is significantly lower, and it is unclear whether screeners can maintain performance under this 

condition. Also, in the field study, screeners repeatedly perform longer screening durations over a 

longer period of time. Airports are increasingly moving the screening of cabin baggage away from 

the checkpoint to remote screening rooms (Kuhn, 2017). This quieter working environment could 

have a positive impact on performance. Because longer screening durations are desired especially by 

airports implementing remote screening, the field study was conducted at such an airport. At an 

international airport, a group of professional screeners inspected X-ray images of cabin baggage for 

up to 60 min, while a control group screened for 20 min in line with the current regulation (European 
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Commission, 2015). We used TIP data to investigate changes in detection and the SSSQ (Helton, 

2004) to investigate distress and engagement after screening. 

Method. The study was conducted at an international airport with 50 professional screeners 

who worked regularly at the investigated checkpoint. Screeners were randomly divided into two 

groups. The study group (22 screeners, 11 females; age M = 30.77 years, SD = 8.38; length of 

employment: M = 3.66 years, SD = 1.41) was instructed to screen for up to 60 min. However, they 

were given the option to stop earlier if they felt tired or unconcentrated. If they ended a screening 

session before 60 min, they were asked to note down the reason. A control group (19 screeners, 9 

females; age M = 34.89 years, SD = 10.97; length of employment: M = 2.80 years, SD = 1.42) screened 

according to the EU rule, thereby rotating position after 20 min of screening. Both groups screened 

from a remote room located next to the checkpoint. The study was conducted during the screeners' 

regular working hours without affecting their compensation. To measure subjective stress, screeners 

were asked to fill in the SSSQ (Helton, 2004) after completing a screening session every 3 weeks. 

Upon completion of the study, screeners completed a short survey that included questions on the 

screening durations. For the analysis, we selected screeners who conducted a minimum of eight X-

ray baggage screening sessions during the study. Consequently, 41 screeners were selected. 

We used linear mixed models to assess the effects of time on task and task load on the 

dependent variables hit rate, reject rate, and processing time. Because Meuter and Lacherez (2016) 

found an interaction between the number of images screened per min and time on task, we also 

investigated this interaction. The hit rate was the percentage of correctly identified TIP images. The 

reject rate was the percentage of all bags sent to a manual bag search. Processing time was defined as 

the number of seconds screeners took to decide whether an image contained a prohibited item 

(rounded to full seconds by the TIP system). For these analyses, only sessions by the study group that 

lasted from 10 to 70 min were included, resulting in 1,170 screening sessions and approximately 

250,000 analyzed X-ray images and over 6,000 TIP images. The models included time on task, task 

load, Time on task x Task load, days since study start, and daytime as fixed effects; and the session 

nested in the screener as random effects. Time on task was calculated as the difference between the 

time the screeners logged into a screening session and the time the decision for that image was made. 

Task load was the mean number of images a screener analyzed per min from the start of the screening 

session. “Days since study start” was included to examine whether habituation or fatigue occurred 

with increasing study duration and to account for seasonal changes. Daytime was included to control 

for the variation of passenger types and their bags throughout the day. To assess the effect of task 

load on session duration we fitted a linear mixed model that included the mean session task load, days 

since study start, and daytime as fixed effects and screener as the random effect. All metric variables 
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(time on task, task load, log processing time, and duration) were z-transformed to ensure better model 

convergence. Data from the SSSQ were aggregated and averaged per screener and construct. Group 

means were computed by averaging these individual means for each group. A Wilcoxon–Mann–

Whitney test was used to compare the two groups' means for each construct. 

Results. An average screener in the study group conducted 53.2 screening sessions (SD = 

36.4) of 34.7 min (SD = 5.68) in duration and analyzed 287 TIP images (SD = 211). By examining 

longer screening sessions in the study group with a mixed model, we found no main effect of time on 

task for the hit rate (b = -0.068, SE = 0.041, p = .092), but a main effect for the reject rate and 

processing time (reject rate: b = -0.039, SE = 0.006, p < .001; processing time: b = -0.042, SE = 0.002, 

p < .001). For the three dependent variables hit rate, reject rate, and processing time, we found a 

significant main effect of the task load, a significant interaction of Time on task x Task load, and a 

main effect of days since study start (task load: hit rate, b = -0.137, SE = 0.046, p = .003; reject rate, 

b = -0.049, SE = 0.007, p < .001; processing time, b = - 0.123, SE = 0.005, p < .001; Time on task x 

Task load: hit rate, b = 0.140, SE = 0.041, p < .001; reject rate, b = -0.015, SE = 0.007, p = .022; 

processing time, b = 0.005, SE = 0.002, p = .029; days since study start: hit rate, b = 0.153, SE = 

0.046, p < .001; reject rate, b = 0.121, SE = 0.008, p < .001; processing time, b = 0.108, SE = 0.008, 

p < .001). Figure 4 shows the effects of time on task for the three levels of task load to illustrate how 

performance changed with time on task and task load. For the mixed-effect models of the hit rate as 

well as the screening duration, a substantial amount of variance was explained by the random effects 

and therefore by variance between screeners. For the hit rate, the fixed effects (time on task, task load, 

Time on task x Task load, days since study start, daytime) explained 1.8% of the variance, whereas 

random effects (session and screener) explained 13.2% of the variance: 9.9% by the screener and 

3.4% by the session. For the screening duration, the fixed effects (mean session task load, days since 

study start, daytime) explained 6.4% of the variance, whereas 24.7% of the variance was explained 

by the random effect, and therefore, by the screener. 

The SSSQ was filled in up to five times (M = 3.45, SD = 1.48) by 21 participants in the study 

group and 19 in the control group. Figure 5 shows the means of individual means of the constructs in 

the questionnaire for each group. Group comparisons found no difference for distress (W = 261.5, p 

= 0.095) or worry (W = 262, p = 0.093), but higher values in engagement for the study group (W = 

112, p = 0.018). Fifteen screeners in the study group completed the questionnaire on screening 

durations. Screeners reported that it became difficult for them to continue screening at around 30 to 

40 min (M = 39.29, SD = 9.17) and that the optimal screening duration was around 30 min (M = 

31.79, SD = 9.92). 
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Figure 4. Effects of time on task on hit rate (A), reject rate (B), and processing time (C) depending 

on task load (SD = standard deviation). 
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Figure 5. Mean of reported levels of distress, engagement, and worry for the study and control group. 

Error bars represent standard errors. 

Discussion and conclusion. This study examined the effects of time on task and task load on 

the performance and subjective stress levels of X-ray baggage screeners. A group of screeners (study 

group) from an international airport conducted screening sessions lasting up to 60 min, whereas a 

control group screened as usual for around 20 min. For the longer screening durations of the study 

group, we found an interaction between time on task and task load for the performance measures. 

When task load was high (number of images analyzed per min), the hit rate decreased with time on 

task, but it stayed stable when task load was low or average. For the reject rate and processing time, 

we found small decreases with time on task for all levels of task load; however, slightly stronger 

decreases were observed for the higher task load. Furthermore, increased time on task and task load 

resulted in a lower reject rate and faster processing times. Our findings are not in line with the 

assumptions of underload theory (Robertson et al., 1997), and cannot be explained fully by resource 

theory (Helton & Warm, 2008; Matthews et al., 2010), although both theories are widely used to 

account for the vigilance decrement in vigilance tasks (Helton & Warm, 2008; MacLean et al., 2010; 

Neigel et al., 2020). Conversely, our results are in line with DART as proposed by Rubinstein (2020). 

This can explain decreases in the hit rate, reject rate, and processing times as a coping strategy. Rather 

than getting worse at discriminating between targets and nontargets with time on task, DART 

proposes that screeners actively shift their response tendency to save resources. In other words, with 
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increasing task demands (time on task, or higher task load), screeners switch to a resource-efficient 

response pattern that has negative consequences for hit rates. This suggests that the effects of time on 

task manifest differently for X-ray baggage screening compared to other vigilance tasks. This 

observation is consistent with other studies that observe resource-conserving behavior such as 

increased reliance on automation when workloads are high (Dixon & Wickens, 2006; C. D. Wickens 

& Dixon, 2007). Our findings confirm that a different vigilance decrement pattern occurs for X-ray 

image inspection compared to the typical vigilance decrement for which a decrease in the hit rate, 

increase in false alarms, and increase in reaction times is found. 

The study group who screened for up to 60 min did not report more distress or worry compared 

to the control group. The study group even reported higher values in engagement. This may be 

because the screening position allows screeners to sit separated from the checkpoint and thus 

contributes to recovery. Another explanation could be that the study group showed more engagement 

because participants were more aware of contributing to research than participants in the control 

group. In addition, this group was able to determine when to end a screening session on their own, 

giving them additional autonomy that could increase engagement (Bakker & Demerouti, 2007; 

Hackman & Oldham, 1975). However, we did observe high individual differences in the study group 

not only in preferred and conducted screening durations but also in performance. The results from the 

questionnaire on screening duration suggest that screening durations around 30 to a maximum of 40 

min would be feasible, which is consistent with the actual performed screening duration of about 35 

min by the study group. If the results of our study can be replicated in remote screening conditions 

with different airports, trials can be extended to settings where screeners analyze X-ray images at the 

checkpoint. Hence, extended screening durations can provide operational benefits with no or only 

small decreases in the hit rate during periods of high task load. 
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Manuscript 3: Reliability and validity of threat image projection data on X-ray baggage 

screening 

Motivation and aim of the study. To measure how well screeners detect prohibited items, 

most airports use TIP. During baggage inspection, TIP projects prerecorded X-ray images of 

prohibited items (bombs, guns, knives, etc.) onto the X-ray images of 1–4% of all passenger baggage 

(Cutler & Paddock, 2009; Hofer & Schwaninger, 2005; Meuter & Lacherez, 2016; Skorupski & 

Uchroński, 2018). The responses to these TIP images are recorded and used for quality control by 

airports, governments, and security companies that typically determine the average TIP hit rate per 

screener on a half-yearly basis (Cutler & Paddock, 2009; Hofer & Schwaninger, 2005; Riz à Porta et 

al., 2022; Skorupski & Uchroński, 2016). TIP data are also used to answer research questions (Buser 

et al., 2023; Meuter & Lacherez, 2016; Skorupski & Uchroński, 2018). Although widely used, there 

are, however, no conclusive results on the reliability of TIP data (Hofer & Schwaninger, 2005) and 

their validity remains uninvestigated. Manuscript 3 therefore examines the reliability and validity of 

TIP by analyzing a large set of data from an international airport. The reliability of TIP performance 

measurement can be quantified by adopting a statistical model such as classical test theory (CTT). 

Due to differences between TIP and standardized tests, it is, however, unclear whether assumptions 

of CTT apply to TIP data. Therefore, Manuscript 3 also examines how well TIP meets the CTT 

assumptions, and whether estimates based on CTT such as the Spearman–Brown prediction (Brown, 

1910; Spearman, 1910) can be applied to TIP. To assess whether TIP is a valid measure of real 

prohibited items, we analyzed whether it can predict how well screeners detect prohibited items in 

covert tests in which instructed people attempt to smuggle prohibited items (e.g., knives, bombs, or 

guns) past the checkpoint in their baggage (Walter et al., 2021; Wetter et al., 2008). If TIP 

performance is a valid measure, it should be able to predict how probably a screener will detect real 

prohibited items in a baggage X-ray image. 

Method. We analyzed 4 years of CBS TIP and covert test data from an international airport. 

This was composed of 1,206,076 TIP events from 728 screeners and 1,194 from 474 screeners. On 

average, the TIP systems at this airport projected fictional threats (TIP events) onto 2.9% of all X-ray 

images of passengers’ baggage. Reliability was assessed by computing the split-half reliability. 

Therefore, for each screener, TIP events were sorted by date and time of occurrence, and every two 

consecutive TIP events were paired. To estimate the reliability for n number of TIP events, n pairs of 

TIP events were randomly selected (without replacement) and the TIP events of each pair were 

randomly split into two groups. For each screener and each of the two groups of TIP events, the 

percentage of detected TIP events (hit rate) was calculated, and the Pearson correlation between the 

hit rates of the two groups was computed. To estimate reliability, all random steps (i.e., sampling and 
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splitting of pairs) were repeated 10,000 times and the resulting correlation coefficients were averaged. 

To assess whether TIP meets the CTT assumptions and whether estimates based on CTT can be 

applied, we determined whether the Spearman–Brown prediction accurately described how the 

reliability varied as a function of the number of TIP events considered for the calculation of TIP 

performance. To estimate the reliability for the various numbers of TIP events using the same sample 

of screeners, we included only screeners with at least 100 TIP events per 6 months. We calculated 

the split-half reliabilities (as described above) considering 5–50 TIP events for performance 

evaluation in increments of five. The reliability of the corresponding number of TIP events was then 

estimated using the Spearman–Brown prediction. For this purpose, the reliability of 25 TIP events 

(per split) was used as the baseline. We then compared the reliability values of the two calculations. 

To determine how reliable TIP performance measurement is, because it is often calculated by airports 

and authorities, we calculated the reliability per screener for each half year. To retain as many 

screeners as possible for this analysis, 10 TIP events per screener and per split and half-year were 

used to calculate the split-half reliability. Consequently, screeners with less than 20 TIP events within 

the respective half-year period were excluded. To analyze the validity of the TIP data, we performed 

correlational analyses and thereby examined the effect of the TIP hit rate on covert test performance 

using binomial generalized estimation equations (GEE; Ballinger, 2004; Liang & Zeger, 1986) and 

the R-package GEE (R Core Team, 2020). The TIP hit rate was included by aggregating TIP events 

that occurred within half a year before or after the covert test. The model controlled for the prohibited 

item category (gun, knife, IED, and other), different checkpoints within the airport, X-ray machine 

type, and complexity of the covert test as factors, and the screener as a random variable. Per screener, 

an average of 2.52 covert tests were analyzed (SD = 1.79).  

Results. The Spearman–Brown prediction (Brown, 1910; Spearman, 1910) corresponded well 

with the empirically estimated reliabilities and, therefore, provided an accurate description of how 

the reliability increased with the number of TIP events. The calculation of the split-half reliability of 

the TIP performance for 20, 50, 100, or 345 TIP events per half year is shown in Figure 6. The latter 

number of TIP events (345) corresponds to the average number of TIP events inspected by a screener 

per half year. However, reliability decreased over time. This means that considering 92 TIP images 

for performance evaluation was sufficient to achieve a minimum reliability of 0.7 in the first half 

year, whereas 205 TIP images were necessary to obtain an equal reliability in the eighth half year. 
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Figure 6. Reliability values for 20, 50, 100, and 345 TIP events (mean number of TIP events per 

screener per half-year period) for eight half-year periods. 

Decomposing the reliability into standard error and true variance (Figure 7A and B) shows 

that the decrease in reliability was not attributable to an increasing standard error (which also 

decreased over time). It is more likely that the reliability declined due to an over-proportionate 

decrease in the true variance of the TIP performance between screeners. Figure 7C shows that the 

average TIP performance, in terms of the hit rate, increased over time, which might have led to a 

limited room for true variance (i.e., a ceiling effect). 
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Figure 7. Mean standard error (A), variance between screeners (B), and the hit rate (C) for eight 

half-year periods. 

The average covert test hit rate over all screeners was 79.50 % (SD = 0.40). The GEE revealed 

that screeners with a better TIP performance also showed higher covert test performance. In total, 

1,194 covert tests were considered; and, on average, 826 TIP events were considered per covert test 

per screener (SD = 323.58). Figure 8 depicts the estimated relationship between the TIP hit rate and 

covert test performance.  
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Figure 8. Relationship between covert test and TIP hit rate (blue line). 95% confidence band 

indicated by the blue area around the blue line. The histogram shows the distribution of the number 

of conducted covert tests. 

Discussion and conclusion. TIP data are widely used for quality control in airport security as 

well as in research. We investigated whether TIP data provide a reliable and valid measure of 

detection performance by analyzing 4 years of data from an international airport. We found that 

reliability increased with the number of TIP events following the Spearman–Brown prediction 

(Brown, 1910; Spearman, 1910). This finding is important, because it means that the reliability of a 

TIP system can be estimated for a specific number of TIP events per screener (e.g., 50 TIP events), 

and the data can be extrapolated to calculate the necessary number of TIP events to achieve a desired 

reliability. For the investigated TIP library, approximately 100 TIP events were sufficient to achieve 

a minimum reliability of 0.7. This reliability value is recommended if the measure is to be used as a 

first indication (e.g., dividing the screeners into two performance groups) or for group diagnostics 

(Kline, 2000; Murphy & Davidshofer, 2014). However, if performance measures have consequences 

for screeners (e.g., mandatory remedial training), it is highly recommended to achieve higher 

reliability values of at least 0.8 (Brough, 2019; Murphy & Davidshofer, 2014). To achieve high 

reliability values, the dependency on the difficulty of the TIP images should be considered. Our 

results showed a decrease in reliability over time for a constant number of TIP events. This was 

probably due to an increase in the average hit rate. To avoid this, a proportion of TIP images should 
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be exchanged regularly (e.g., 10% every year) to prevent overlearning of images. Moreover, TIP 

libraries should be large enough to ensure that screeners do not view the same prohibited items too 

often.  

Our analysis found that TIP performance was associated significantly with detection 

performance in covert tests. In other words, screeners who performed better in detecting TIP were 

more likely to detect prohibited items in covert tests. This study thereby provides the first validation 

of TIP performance. However, our results do not indicate that the TIP is perfectly realistic. For 

instance, we found that the hit rate was higher in the TIP test than in the covert test. Further, one 

should be aware that the TIP hit rate does not fully reflect the screeners’ detection ability. In detection 

tasks such as X-ray image inspection, the hit rate depends not only on searchers’ target-detection 

ability but also on their response tendency (Green & Swets, 1966; Macmillan & Creelman, 2005). A 

limitation of our study is that we could analyze the reliability and validity of TIP data from only one 

airport. It would be interesting to continue this research with TIP data from other airports using 

different TIP systems and screening technologies. 

 

 

. 
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General Discussion 

This thesis provides important theoretical, methodological, and practical contributions 

relevant to performance measurement and work design in X-ray image inspection at security 

checkpoints. Manuscript 1 confirmed that da with a slope parameter of around 0.6 is a more valid 

measure of detection performance compared to d'. Screeners maintained performance for one hour, 

without breaks affecting performance. However, a shift in response tendency with time on task was 

apparent. Evidence that longer screening durations may cause more distress highlights the importance 

of long-term studies in the field. Manuscript 2 provided additional evidence that screeners can 

maintain performance for longer than 20 min under real working conditions. When screeners could 

inspect X-ray images for up to 60 min, they screened an average of 35 min, which corresponds to the 

screening duration they reported as ideal. Those screeners did not report more distress. However, 

individual differences in performance, preferred screening durations, and conducted screening 

durations were observed. Manuscript 1 and, in part, Manuscript 2 provide evidence that time on task 

in X-ray image inspection results in a shift in response tendency and does not lead to a decline in 

sensitivity, thereby confirming Rubinstein's (2020) observation that time on task results in a different 

vigilance pattern compared to classical vigilance tasks. On this basis, an extension of the 20-min rule 

should be discussed. Manuscript 3 provided evidence that TIP performance data, which are frequently 

used for performance monitoring, can provide a reliable and valid measurement of operational threat 

detection. To obtain a reliable measurement of performance, at least 100 TIP events should be 

considered per screener. Manuscript 3 was the first to show that TIP performance and covert test 

performance are correlated. 

This thesis is based on studies with a high ecological validity. All were conducted with 

professional screeners and real X-ray baggage images. The study in Manuscript 1 contributes to 

ecological validity through the similarity to remote screening conditions. In Manuscript 2 and 

Manuscript 3, TIP data from airports were analyzed. Additionally, the laboratory setting in 

Manuscript 1 makes a high contribution to internal validity. The findings have significant theoretical 

and methodological implications. Specifically, this work provides insight into how performance 

changes with time on task in X-ray baggage inspection, and it distinguishes this performance pattern 

from the classical vigilance decrement. Likewise, it provides methods and measures that allow a 

reliable and valid measurement of screener performance, which is of high practical value for airports, 

security companies, regulators, and researchers. This is particularly because the duration of X-ray 

image inspection and the number of images used for performance measurement are set by regulations 

that could be affected by this work. In addition to presentations at several conferences, the results of 
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this work have been shared and discussed with various airports and the EU Commission, who found 

this research very interesting and valuable. 

Reliable and valid measurement of screener performance  

This work provided important insights that contribute to reliable performance measurement 

at security checkpoints. In practice, the TIP hit rate is often used as an indicator of how well screeners 

detect prohibited items. Until now, it has been unclear whether TIP provides a reliable measure of 

screener performance. With Manuscript 3, we were able to show that TIP provides a reliable and valid 

measure of threat detection. We found that the reliability of the performance measurement depends 

on the number of TIP events considered for performance calculation. This dependency followed the 

Spearman–Brown prediction based on the assumptions of CTT. This implies that CTT methods such 

as the Spearman–Brown prediction can be applied to TIP data. This is an important theoretical and 

methodological contribution relevant to future analyses of TIP data. The reliability of performance 

measurement can also be influenced by the difficulty of TIP events. In Manuscript 3, we observed a 

decrease in reliability over time, probably due to an increase in the average hit rate of screeners, 

which, in turn, might be attributed to the familiarity of prohibited items used in TIP. Several practical 

conclusions can be drawn from these results for ensuring adequate reliability of performance 

measurement. One should consider a minimum of 100 TIP events per screener to measure 

performance reliably. Ideally, more TIP events per screener should be used, especially if reliability 

values above 0.7 are to be achieved. To avoid image overlearning, a portion of the fictional threat 

items (FTIs) should be exchanged regularly, and TIP libraries should be large enough. Further, TIP 

images should be checked for artifacts to prevent them from being too easy (Riz à Porta et al., 2022). 

Also, if the average TIP hit rate reaches very high values, the TIP library should be exchanged. It 

should be noted that reliability depends not only on the amount of measurement error but also on the 

true differences between individuals (Brough, 2019; Murphy & Davidshofer, 2014). Therefore, if one 

is interested in the absolute TIP performance, rather than the comparison of individuals, confidence 

intervals and standard errors of the measurement should be considered. These measures can be 

derived from the estimated reliability. 

Manuscript 3 was the first to show that the TIP hit rate can predict performance in covert tests, 

indicating that it is a valid measure of operational threat detection. This means that screeners who 

were better at detecting TIP were more likely to detect real prohibited items in covert tests. Yet, our 

results do not suggest that TIP is fully realistic. It was still easier to recognize TIP images compared 

to covert tests, as evidenced by higher TIP hit rates. This aligns with previous findings indicating that 

TIP produces a share of unrealistic and easy images (Bassetti, 2018; Riz à Porta et al., 2022). 



 

35 

Nonetheless, TIP allows discrimination between screeners with high and low recognition 

performance and thus has predictive validity. Whereas the TIP hit rate can be very informative, one 

should keep in mind that it depends on a person’s response tendency (Green & Swets, 1966; 

Macmillan & Creelman, 2005) and therefore does not fully reflect a screener’s detection ability. 

Although it is not immediately relevant from a security perspective whether threats are found due to 

detection ability (sensitivity) or response tendency, this differentiation can be important when it 

comes to, for example, maintaining operational efficiency, optimizing training, or answering research 

questions. To this end, in addition to the hit rate, the false alarm rate of the screeners should be 

considered. Unfortunately, many FTI TIP systems do not allow measurement of the false alarm rate 

due to technical limitations (only the reject rate, as seen in Manuscript 2). However, with combined 

threat image (CTI) technology, images of fully prepared baggage, including the prohibited item, can 

be projected onto the screener's workstation (Schwaninger, 2006). Thus, images of an entire baggage 

without prohibited items can also be projected, which allows the false alarm rate to be calculated. 

Accordingly, the response tendency and measures independent of it, such as the sensitivity, can be 

calculated, thereby providing more valid measures of detection ability in the field. This technological 

advance provides practitioners with a more comprehensive understanding of screener performance, 

and this, in turn, allows for more targeted interventions. 

Manuscript 1 showed that for X-ray image inspection, da with a slope of around 0.6 is a more 

valid measure of threat detection than d'. In agreement with other studies, we found that the signal-

plus-noise and noise ratio do not follow a normal distribution with equal variances as assumed for the 

measure d' (Godwin, Menneer, Cave, & Donnelly, 2010; Van Wert et al., 2009; Wolfe et al., 2007; 

Wolfe & Van Wert, 2010). Future research might shed more light on the determinants of the slope 

parameter and the causes of the unequal noise and signal-plus-noise distributions. One assumption is 

that prohibited items vary greatly in how well they are recognized (Sterchi et al. 2019). What is clear 

is that using an invalid measure when there is a large difference in response tendency will lead to 

erroneous conclusions—that is, it will falsely indicate a significant difference in sensitivity or a lack 

thereof.  

Effects of time on task on screener performance in X-ray image inspection 

As opposed to many vigilance tasks, we did not find a decline in detection performance with 

time on task after 15 to 20 min (Davies & Parasuraman, 1982; Mackworth, 1948; See et al., 1995; 

Teichner, 1974; Warm, 1984). In our laboratory study in Manuscript 1, detection performance da did 

not decline over the entire 60-min test. It even increased at the beginning of the test. In Manuscript 

2, screeners maintained the TIP hit rate up to 60 min in the field when task load was low or average—
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which was the case for 85% of all inspected images. A decrease in the hit rate was apparent only 

when task load was high. Moreover, unlike other studies (Arrabito et al., 2015; Balci & Aghazadeh, 

2003; Galinsky et al., 2000; Kopardekar & Mital, 1994; Lim & Kwok, 2016; Steinborn & Huestegge, 

2016), we did not find that breaks had a positive effect on performance. In Manuscript 1, the group 

screening continuously for 60 min showed a comparable performance to the group taking 10-min 

breaks every 20 min of screening. Similarly, in the field, the performance of the group conducting 

longer screening sessions (on average 35 min) and the group screening for 20 min was comparable. 

Because no decline in performance was evident, there was also no possibility of recuperating 

performance losses by taking breaks. This is consistent with the results of Chavaillaz et al. (2019), 

who found no performance differences between different break regimes in a baggage inspection task. 

Not only did we find no decrease in performance over time, but screeners worked more efficiently 

with increasing task duration. This was revealed by a decline in the false alarm rate for the low target 

prevalence condition in Manuscript 1 and a decline in the reject rate in Manuscript 2, resulting in 

fewer manual bag searches as well as declining processing times in both studies. This has a positive 

impact on operation as it increases passenger throughput. 

These observed performance patterns with increasing time on task do not correspond to the 

classical vigilance decrement, and they cannot be explained through underload (Robertson et al., 

1997) or resource theory (Helton & Warm, 2008; Matthews et al., 2010). Rather than getting worse 

at discriminating between targets and nontargets with time on task, it seems that screeners shift their 

response tendency. Rubinstein’s DART suggests that when task demands are high (increasing time 

on task, high task load), screeners actively switch to a resource-efficient response pattern (Rubinstein, 

2020). In Manuscript 1, we were able to confirm a shift in response tendency that depended on the 

target prevalence. This shift was based largely on changes in the false alarm rate, which occurred at 

the beginning of the task. Interestingly, we saw a shift in the response tendency from the first to the 

second 20-min block, which suggests that participants needed some time to adjust to the prevailing 

prevalence. In addition to confirming the target prevalence effect (Wolfe et al., 2007), Manuscript 1 

therefore supports the notion that the target prevalence effect is caused by implicit learning as opposed 

to explicit instructions (Ishibashi & Kita, 2014; Lau & Huang, 2010). Whether the decrease in the 

reject rate and processing time observed in the field study are truly a shift in response tendency to 

save resources is something we cannot deduce conclusively. Yet, the fact that we observed a decrease 

in hit rate only when the task load was high supports the concept that resources are conserved when 

task demand is high. This resource-conserving behavior has also been found in other studies in which, 

for example, individuals rely more on automation when task load is high (Dixon & Wickens, 2006; 

C. D. Wickens & Dixon, 2007).  
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What can be deduced from our findings for practice, and can a relaxation of the 20-min 

regulation be recommended? Manuscript 2 showed that for a majority of the cases (low and average 

task load), longer screening durations did not affect detection negatively. Moreover, with increasing 

time on task, screeners worked more efficiently, and this provides operational benefits. In addition, 

Manuscript 2 illustrated that individual differences were much more crucial as a determining factor 

for high detection performance compared to time on task. This aligns with research that individuals 

differ in visual cognitive abilities and vigilance and working memory capacity—findings that are 

relevant for the recognition and detection of prohibited items in X-ray baggage images (Hardmeier 

& Schwaninger, 2008; Hättenschwiler et al., 2019; Mitroff et al., 2018; Peltier & Becker, 2020; 

Rusconi et al., 2015; Schwaninger et al., 2005). Looking only at the effects of time on task on 

performance, our studies suggest that a relaxation of the 20-min regulation can be discussed.  

In addition to performance, screeners’ well-being should be considered. Whereas Manuscript 

1 suggested that longer screening durations might lead to more distress, this could not be confirmed 

in the field study. There, higher engagement was observed for the group conducting longer screening 

durations of around 35 min. This could be due to greater autonomy, because they were allowed to 

end screening sessions after 20 min in a self-determined manner. However, we cannot rule out other 

factors that led to higher engagement. One should also consider that there was significant variation 

in conducted screening durations between screeners in Manuscript 2. Considering the average 

duration of screening sessions performed and the preferred screening duration reported by screeners, 

a duration of 30-40 min appears to be suitable for the majority of screeners. Ideally, screeners would 

be able to decide for themselves how long they continue screening after 20 min (with upper limit), 

because Manuscript 2 revealed large individual differences in performance and preference for 

screening duration. Moreover, this would be a way to grant screeners more autonomy in what is a 

highly regulated job. Autonomy is considered to be a crucial factor in theories of work design and 

has been linked to job satisfaction (Hackman & Oldham, 1980; Ryan & Deci, 2000). The 

generalizability of our conclusions to airports with fixed screening sessions might be limited, because 

the screeners in our field study could decide to end screening sessions in a self-determined way. To 

make definitive statements on the extension of screening durations, it is highly advisable to conduct 

further field studies, because airports differ in throughput, passenger types, screening technologies, 

and many other aspects. These studies should consider and monitor screeners’ well-being, because it 

may be an important component for the long-term acceptance and success of longer screening 

durations.  
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Conclusion 

The detection of prohibited items in cabin baggage is one of the key aspects ensuring safe air 

travel. To prevent mistakes, it is vital to establish regulations that support performance maintenance 

and to monitor performance of detection in X-ray baggage screening with methods and measures that 

are reliable and valid. The findings of this thesis contribute to a better understanding of how task 

duration affects performance in X-ray baggage inspection, and whether current means of monitoring 

screener performance at checkpoints provide reliable measurements. Finally, this thesis offers 

theoretical and practical contributions to work design at security checkpoints.  

The findings from Manuscripts 1 and 2 indicate that screeners can maintain performance even 

during extended screening durations up to 60 min. These results suggest that time on task primarily 

influences the response tendency in X-ray baggage inspection and should be distinguished from the 

classical vigilance decrement. Based on performance and survey results, the current 20-min 

regulation (European Commission, 2015) could be designed more flexibly and an extension to 30 to 

40 min can be considered. Manuscript 3 shows that TIP, which is used by airports around the world, 

allows reliable measurement of screener performance. It also demonstrated, for the first time, that 

there is a correlation between threat detection in TIP and covert tests, indicating that TIP is a valid 

measure of operational threat detection. From a practical standpoint, it was established that a 

minimum of 100 TIP images should be considered to reliably measure performance, and additional 

recommendations are provided to increase the reliability of TIP data.  

Future research may shed light on whether similar results regarding time on task can be found 

for screeners who do not work in remote screening rooms and for longer screening durations with a 

fixed duration. If regulators and airports contemplate implementing longer screening durations, 

especially those exceeding 30 min, it is crucial to investigate their effects on factors such as eyestrain 

(Kaur et al., 2022; Mehra & Galor, 2020) and perceived mental workload (Teo & Szalma, 2011; 

Warm, Matthews & Finomore, 2008). Some airports are discussing dedicated screening positions in 

which certain screeners would conduct solely X-ray image inspection for several hours a day. In such 

cases, the significance of task rotation at the checkpoint should be explored—not only for providing 

breaks from screening but also for enhancing task variety (Hackman & Oldham, 1980). Further 

research with CTI TIP would be of interest for both performance monitoring with time on task and 

TIP data reliability. The implementation of CTI TIP allows to measure false alarm rates at 

checkpoints, which, along with hit rates, permits the calculation of the sensitivity and response 

tendency. This contributes to a more accurate measurement and comprehensive understanding of 

screener performance under real working conditions. Moreover, CTI TIP promises to be a more 

reliable measure of TIP hit rate compared to FTI TIP, because images can be prescreened to remove 
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low-quality images. Investigating differences in reliability between FTI and CTI TIP could help to 

further improve performance measurement.  

As in other industries, Artificial Intelligence (AI)-based processes and automation are 

increasingly being developed and deployed at security checkpoints. However, screeners will retain 

an important role in X-ray image analysis for some time to come, although their role may shift to 

tasks involving oversight, system control, and resolution of complex alarm scenarios (Harris, 2002; 

Wetter, 2013). The results of this work remain relevant to the use of such newer technologies and 

may even help to guide their implementation. Finally, our findings and practical contributions extend 

to related domains and may shape the work design of other jobs that involve the inspection of baggage 

for prohibited items in, for example, prisons, stadiums, or hotels. 
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Why stop after 20 minutes? Breaks and target prevalence in a 60-minute 
X-ray baggage screening task 
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A B S T R A C T   

Current EU regulation restricts continuously reviewing X-ray images of passenger baggage to 20-min duration as 
a precautionary measure to prevent performance decrements in airport security officers (screeners). However, 
this 20-min limit is not based on clear empirical evidence on how well screeners can sustain their performance 
over time. Our study tested screeners in a 60-min simulated X-ray cabin baggage screening task. One group took 
10-min breaks after 20 min of screening; the other group worked without breaks. We found no decrease in 
performance over 60 min in either group. Breaks did not affect performance, but they did reduce the amount of 
subjective distress. By varying target prevalence, we found that da with a slope of about 0.6 is a more valid 
measure of detection performance than d’. Target prevalence caused a criterion shift. Our results provide a basis 
for conducting field studies of prolonged screening durations, and open the discussion on whether more flexible 
break policies and work schedules should be considered.   

1. Introduction 

Throughout the world, X-ray technology is used to scan passenger 
baggage at airports, and security officers (screeners) inspect the X-ray 
images. The current European regulation defines a maximum of 20 min 
of continuously reviewing X-ray images as a precautionary measure to 
prevent any decrease in detection performance of screeners (European 
Commission, 2015). Therefore, after 20 min of screening passenger 
baggage, screeners usually rotate to another position at the airport se-
curity checkpoint where they carry out other tasks such as assisting 
passengers with divesting, alarm resolution of the walk-through metal 
detector or person scanner, and secondary bag search (Michel et al., 
2014). A new technology called remote cabin baggage screening (RCBS), 
which is being employed increasingly by airports, creates operational 
challenges for this 20-min rule. With RCBS, security personnel visually 
inspect X-ray images in an office-like environment separated from the 
checkpoint. RCBS allows for a higher utilization of X-ray machines and 
screeners while also providing a quieter workplace for X-ray screeners 
without the distractors at the checkpoint (Kuhn, 2017). However, 
relocating image inspection away from the checkpoint into a remote 
room makes rotating between X-ray image inspection and other tasks at 

the checkpoint more costly and difficult to coordinate. One way to 
alleviate such concerns would be to introduce screening durations 
longer than 20 min. Our study investigated how performance changes 
over time (i.e., as a function of time on task) by instructing screeners to 
review X-ray images continuously for 60 min without breaks and 
comparing their performance with screeners in another condition who 
took 10-min breaks after each 20 min of screening. The following sec-
tions summarize previous research on X-ray screening, performance 
over time, breaks, and the measurement of screener performance. 

1.1. Research on X-ray screening 

To prevent passengers from carrying prohibited articles (guns, ex-
plosives, knives, etc.) onto an airplane, passenger bags are screened at 
airport security checkpoints using X-ray machines (Harris, 2002). By 
visually inspecting these X-ray images, screeners are engaging in visual 
search and decision making (Koller et al., 2009; McCarley et al., 2004; 
Wales et al., 2009). Visually searching for prohibited articles among 
distractors in X-ray images is a cognitively demanding task (for recent 
reviews, see Biggs et al., 2018; Biggs and Mitroff, 2014). Moreover, 
X-ray image inspection requires different visual cognitive abilities to 
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those in traditional visual search (H€attenschwiler et al., 2019). To pre-
vent a decrease in performance, European regulation limits continuously 
reviewing X-ray images to 20 min (European Commision, 2015). The 
introduction of this limitation more than two decades ago was probably 
based on research into vigilance that had been based on other tasks than 
X-ray image inspection (personal communication with airport security 
expert, March 2019). To our knowledge, only two published studies 
have investigated effects of time on task in X-ray baggage screening with 
professional screeners. Another study (Chavaillaz et al., 2019) investi-
gated time on task with a student sample and will be discussed in a later 
paragraph on breaks. 

Meuter and Lacherez (2016) examined screener performance in the 
field for durations up to 30 min. They analyzed 4 months of threat image 
projection (TIP) data from an Australian airport. TIP is a technology that 
projects prerecorded X-ray images of prohibited articles onto real X-ray 
images of passenger bags during baggage screening at airports (Cutler 
and Paddock, 2009; Hofer and Schwaninger, 2005; Skorupski and 
Uchro�nski, 2016). The TIP hit rate (or percent detected) refers to the 
proportion of projected fictional threat items that screeners detect. 
Meuter and Lacherez (2016) found a small decrease of approximately 2 
percentage points in the hit rate with time on task when workload was 
high (operationalized as more than 5.4 X-ray images screened per min). 
No decrease in performance was found when workload was low. A closer 
examination of high workload sessions revealed that performance star-
ted to decrease after 10 min. Although this is a very interesting and 
valuable study, there are some limitations regarding its practical im-
plications. First, the observed decrease in the hit rate was very small. 
Because only screening durations up to 30 min were examined, it is 
unclear how performance would evolve over longer screening durations. 
It should also be noted that Meuter and Lacherez (2016) analyzed data 
from conventional airport security checkpoints. It is therefore unclear 
whether the results would also apply to RCBS in which screeners work in 
an office-like environment with much less noise and distraction (Kuhn, 
2017). Another limitation of their study is that they were unable to 
analyze screeners’ false alarm rate with the TIP system and the screening 
process at the tested airport. When measuring only the hit rate, one 
cannot determine whether an observed change in hit rate is due to a 
change in response tendency and/or whether it reflects a change in 
detection performance in terms of sensitivity (Green and Swets, 1966; 
Macmillan and Creelman, 2005). 

Ghylin et al. (2007) examined effects of time on task on hit rates, 
false alarm rates, and sensitivity for longer screening durations. In their 
study, airport security screeners completed a simulated X-ray cabin 
baggage screening task over the course of 4 h. Results were aggregated 
for each of the 4 h. The authors found a decrease in the hit rate and false 
alarm rate over time, but no significant change in the sensitivity measure 
A’ (Pollack and Norman, 1964). This suggests a shift in response ten-
dency (i.e., a criterion shift as defined in signal detection theory, Green 
and Swets, 1966; Macmillan and Creelman, 2005). Also reaction times 
decreased over time. Ghylin et al. (2007) concluded that vigilance 
decrements occurred—a conclusion that we shall address in the next 
section. Whereas this study provides very interesting results, it 
compared only full hours and did not report on whether and how hit 
rate, false alarm rate, sensitivity, and response tendency change within 
1 h. This limits the derivation of conclusions regarding performance 
changes within the first hour of screening. 

1.2. Research on vigilance 

The effect of time on task has been investigated quite extensively for 
vigilance tasks that share some similarities with X-ray image inspection. 
Both are characterized by long search periods and require the searcher 
to stay alert to few targets appearing (Davies and Parasuraman, 1982). 
In both tasks, the infrequent appearance of targets causes more misses 
(Wolfe et al., 2007). For difficult vigilance tasks, performance decre-
ments can already be observed after as early as 5 min (Nuechterlein 

et al., 1983; Rose et al., 2002). Most studies have revealed decreases in 
vigilance within the first 15–30 min of the task (Mackworth, 1948; 
Teichner, 1974; Warm, 1984). Nonetheless, it is not clear whether the 
performance decrement within the first 15–30 min often found in vigi-
lance tasks can also be expected for X-ray image inspection in RCBS, 
because the tasks differ in certain aspects. In vigilance tasks, a short 
distraction can lead to missing a target, whereas in an X-ray image in-
spection in RCBS, screeners have to actively declare that no target is 
present in an image, as is the case in experiments on X-ray image in-
spection and visual search (e.g., Koller et al., 2009; McCarley et al., 
2004). Traditional vigilance tasks use a single target, whereas X-ray 
image inspection entails a visual search for multiple targets (Godwin 
et al., 2010; Mitroff et al., 2015). Moreover, in X-ray image inspection, 
certain types of targets are very rare (e.g., bombs), whereas other targets 
occur more frequently in carry-on baggage (e.g., liquids and gels). 

1.3. Breaks and performance 

Further insight into the effect that time on task has on performance in 
detection tasks can be gained from research on the effect of breaks. 
Several studies have reported mainly positive effects of breaks on per-
formance in a variety of different detection tasks (Arrabito et al., 2015; 
Colquhoun, 1959; Kopardekar and Mital, 1994). Breaks have been found 
to decrease perceived workload (Arrabito et al., 2015). In a different 
task, breaks reduced perceived fatigue and discomfort (Galinsky et al., 
2000). However, positive effects of the frequency and length of breaks 
depend on the type, difficulty, and duration of the task (Tucker, 2003). 
To our knowledge, only one study investigated different types of breaks 
in X-ray image inspection of passenger bags (Chavaillaz et al., 2019). 
Student participants were tested in a simulated X-ray baggage screening 
task during 1 h with and without adaptable automation as support 
system. They could either take spontaneous breaks, 5 min breaks every 
20 min, or 10 min breaks every 20 min of continuous X-ray image in-
spection. No performance differences between break regimes were 
found, which suggests that a more flexible regulation on breaks 
providing more autonomy could be considered. However, a limitation of 
this study is that it was conducted with student participants and a task 
adapted to students. It remains unclear whether professional screeners 
(airport security officers) can maintain their performance over 60 min of 
continuous X-ray image inspection without breaks. 

1.4. Measuring performance in X-ray image inspection 

Some challenges emerge when investigating screener performance. 
Common measures for X-ray image inspection are the hit rate (HR, the 
percentage of prohibited items detected) and the false alarm rate (FAR, 
percentage of harmless baggage falsely sent to secondary search). 
Because the hit rate and false alarm rate depend on the response ten-
dency, it is recommended to use detection measures that are considered 
to be independent of response tendency (Macmillan and Creelman, 
2005). Signal detection theory (Green and Swets, 1966) provides a 
general framework for defining detection performance, called sensitivity, 
that is independent from response tendency, called criterion. Research in 
X-ray image inspection often uses d’ as such a measure of sensitivity (for 
a recent discussion see Sterchi et al., 2019). This is calculated as follows: 

d’¼ zðHRÞ � zðFARÞ

whereby z is the inverse of the cumulative distribution function of the 
standard normal distribution (Green and Swets, 1966). The resulting 
measure of response tendency, the criterion c, is calculated as 

c¼ � 0:5 ½zðHRÞþ zðFARÞ�:

However, recent research has questioned the validity of d’ for X-ray 
image inspection. Several studies examining the effect that the hit rate 
decreases when targets are rare—the so-called target prevalence 
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effect—have found that d’ increases as targets become less frequent 
(Godwin et al., 2010; Wolfe et al., 2007; Wolfe and Van Wert, 2010). 
This is paradoxical, especially when it is considered that response times 
are usually faster when targets appear infrequently (low prevalence) 
compared to when they are frequent (high prevalence). Moreover, signal 
detection theory assumes that target prevalence affects only the crite-
rion and not the sensitivity (Green and Swets, 1966). Instead of 
assuming that sensitivity actually increases when target prevalence de-
creases, Wolfe et al. (2007) have argued that visual search in X-ray 
images does not fulfil the assumptions that underlie d’. Signal detection 
theory assumes a decision process in which target-present and 
target-absent trials result in Gaussian distributions of some measure of 
evidence for the presence of a target, and d’ assumes that these distri-
butions have equal variance (Macmillan and Creelman, 2005). If this 
assumption of equal variance is not met, one can use da, an index of 
detectability proposed by Simpson and Fitter (1973). This offers an 
extension of d’ with the slope s as an additional open parameter that is 
the ratio of the two standard deviations: 

da¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

1þ s2

r

½zðHRÞ � szðFARÞ�:

The corresponding measure of response tendency, the criterion ca, is 
calculated as 

ca ¼
�

ffiffiffi
2
p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ s2Þ

p
ð1þ sÞ

½zðHRÞ þ zðFARÞ �

whereby z is the inverse of the cumulative distribution function of the 
standard normal distribution. 

Wolfe et al. (2007) have argued that da is more appropriate (in line 
with Kundel, 2000, who found the same target prevalence effect for the 
inspection of medical X-ray images), and they estimated the slope 
parameter to be around 0.6 (again in line with Kundel, 2000). Following 
this approach, several other studies have found the slope parameter to 
be around 0.6 when investigating the effect of target prevalence in X-ray 
image inspection (Godwin et al., 2010; Van Wert, Horowitz and Wolfe, 
2009; Wolfe and Van Wert, 2010). Consistent with these findings, 
Sterchi et al. (2019) have found slope parameters around 0.6 based on 
an experiment manipulating the criterion through instruction and 
another experiment using confidence ratings. 

1.5. Present study 

This study investigated the effects of time on task and breaks on 
screener performance when X-ray images were analyzed for 60 min. 
Whereas one group screened for 60 min continuously, the other group 
took 10-min breaks between 20-min screening blocks. Based on current 
evidence, we cannot formulate clear hypotheses on performance dec-
rements or perceived stress depending on time on task over a period of 
60 min. Perceived stress was monitored by asking screeners to complete 
the Short Stress State Questionnaire (SSSQ; Helton, 2004). 

In order to measure screener performance independently from 
response tendency, we varied target prevalence in order to determine 
which detection measure is valid when analyzing the effect that time on 
task has on detection performance. In line with previous research 
(Godwin et al., 2010; Sterchi et al., 2019; Van Wert et al., 2009; Wolfe 
et al., 2007; Wolfe and Van Wert, 2010), we assumed that d’, which 
implies a slope parameter of 1, would be an invalid measure of detection 
performance for this task and might be affected by target prevalence. We 
expected the slope parameter to be around 0.6, and that da based on that 
slope would be more appropriate. 

2. Methods 

2.1. Participants 

A total of 71 screeners working at a European airport completed the 
study (four additional participants were unable to attend the second test 
date and were therefore excluded from analyses). All had been recruited 
by the airport’s security service provider and participated during their 
regular working hours. Screeners were aged between 20 and 67 years 
(M ¼ 32.01, SD ¼ 12.82), had 0.3–12 years of working experience (M ¼
2.08, SD ¼ 2.23), and 46% of them were female.2 The study complied 
with the American Psychological Association Code of Ethics and was 
approved by the Institutional Review Board of the School of Applied 
Psychology of the University of Applied Sciences and Arts Northwestern 
Switzerland. Informed consent was obtained from all screeners prior to 
their participation. 

2.2. Design 

A 3 (time on task: 0–20 min, 20–40 min, 40–60 min; within-subject 
factor) � 2 (breaks condition: with breaks, without breaks; between- 
subject factor) � 2 (prevalence condition: high prevalence, low preva-
lence; within-subject factor) mixed factorial design was employed. To 
analyze the effect of time on task, the 60-min X-ray baggage screening 
task was split into three 20-min screening blocks: 0–20 min, 20–40 min, 
and 40–60 min. Participants were divided into two groups: The group 
with breaks had a 10-min break after each 20-min screening block; the 
group without breaks screened for 60 min without breaks. All screeners 
completed the task twice, once in the low prevalence condition and once 
in the high prevalence condition. The order of the two prevalence con-
ditions was counterbalanced across subjects. 

The following performance measures served as dependent variables: 
hit rate, false alarm rate, sensitivity (d’, da), criterion (c, ca), and pro-
cessing time. We also investigated the influence of the breaks condition 
and prevalence condition on the three factors of the SSSQ (distress, 
worry, and engagement; Helton, 2004). 

2.3. Materials 

For the experiment, 864 single view X-ray images of passenger cabin 
(carry-on) baggage were used to create a simulated X-ray baggage 
screening task. For a subset of the images, prohibited items were merged 
into the bags using a validated X-ray image merging algorithm (Mendes 
et al., 2011). Prohibited items belonged to one of three categories: guns, 
knives, and improvised explosive devices (IEDs). Each image contained 
a maximum of one prohibited item. To create enough content for the 
task, each image of a passenger bag and each prohibited item was used 
twice. For the passenger baggage, one of the two images was presented 
in a mirrored version in order to reduce recognition. For prohibited 
items, both an easy and a difficult rotation (as defined by X-ray image 
inspection experts) of each prohibited item was projected into different 
bag images. Fig. 1 shows four X-ray images from two bags as examples. 
The complexity of the bag images and the superposition of the pro-
hibited items, which are both known to affect difficulty in detecting the 
prohibited item (Bolfing et al., 2008; Hardmeier et al., 2005), were held 
at a medium level and not varied systematically. 

In the high prevalence condition, one out of two bags (50%) con-
tained a prohibited item. A target prevalence of 50% is typically 
employed by studies investigating target prevalence effects (e.g., God-
win et al., 2010; Ishibashi et al., 2012; Wolfe and Van Wert, 2010). 
Furthermore, it matches the prevalence of the screeners’ training (Koller 
et al., 2008; Schwaninger, 2004). In the low prevalence condition, one 
out of eight bags (12.5%) contained a prohibited item. Although this was 

2 Two participants did not report their demographics. 
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higher than in practice, it was necessary in order to collect enough 
target-present trials within the experiment to calculate reliable hit rates. 

To allow all participants to be compared on the basis of the same 
images, regardless of their processing time and the total number of 
images analyzed during the task, the system automatically synchronized 
the progress between all participants every 5 min. Hence, the total of 
864 images was split into 12 sets of 72 images. Because the images of 
each set were in a fixed order and progress was synchronized, all par-
ticipants inspected at least the first 24 images of each set, and these first 
24 images were then used to calculate performance. The order of the 12 
image sets was counterbalanced across participants with a Latin square 
design ensuring that the difficulty did not vary systematically with time 
on task. 

We measured perceived stress levels with the SSSQ (Helton, 2004). 
This 24-item questionnaire is a valid measure of task-related stress. It 
taps three different factors of stress: distress, worry, and engagement. The 
three factors address the motivational, cognitive, and affective aspects of 
task-related stress: Engagement refers to the willingness to act; worry, to 
self-regulation; and distress, to negative emotions. Items were rated on 
5-point scales ranging from 1 (not at all) to 5 (extremely). 

2.4. Procedure 

Testing sessions took place in a normally lit room at the airport using 
single view X-ray machine simulators on HP ProOne 400 computer 
workstations with 20-inch (50 cm) TFT monitors and a screen resolution 
of 1600 � 900 pixels. Each screener sat approximately 50 cm away from 
the monitor. The X-ray images covered about two-thirds of the computer 
screen. Six to twelve participants performed the task in each session 
while working individually, quietly, and under supervision. This is a 
typical working condition in RCBS (Kuhn, 2017). Screeners were 
randomly assigned to either the group with breaks or the group without 
breaks. Each participant completed the task twice, once with low prev-
alence and once with high prevalence. The order of the prevalence con-
ditions was counterbalanced across participants. The two test sessions 

were separated by an interval of 3–5 weeks. 
Each test session lasted about 1.5 h. Screeners were informed about 

the test procedure and instructed to analyze images as quickly and 
accurately as possible as if they were working. Because screeners are 
used to a target prevalence of 50% in training and certification, in-
structions also informed them about the target prevalence to avoid 
confusion. Screeners had to press a button labeled OK if they perceived 
an image as harmless. If they thought the image contained a prohibited 
item, they had to locate the prohibited item by double clicking on it 
(marking); select whether it was a gun, knife, or IED (categorizing); and 
then press a button labeled NOT OK. Feedback was given in the same 
manner as that provided by the TIP system operational at their airport: 
immediate feedback for images containing a prohibited item informing 
about the correctness of the final decision between OK and NOT OK, the 
marking, and the categorizing. Screeners did not receive feedback if the 
image did not contain a prohibited item. 

After the instructions, screeners completed practice trials containing 
16 images to familiarize themselves with the simulator interface and the 
procedure. They first completed the 16 trials without time limit, and 
then repeated the same trials with the 12-s limit per image used in the 
actual task. This time limit was employed to match the time limit per 
image for X-ray screening at this airport. Screeners then completed 60 
min of X-ray image inspection. The group with breaks had a 10-min break 
after each 20 min of screening, whereas the group without breaks 
analyzed X-ray images for 60 min continuously and had a 20-min break 
thereafter. After completing the X-ray baggage screening task, screeners 
filled out the SSSQ and provided information on their shift schedule, 
work experience, age, and gender. 

2.5. Analyses 

To ensure that the same images were used to measure performance in 
all participants, only responses for the first 24 images of each of the 12 
image sets (as explained in section 2.3 Materials) and only for images 
that appeared in both the high- and low-prevalence conditions were 

Fig. 1. Examples of X-ray images of passenger bags. (a) Bag with a prohibited item (gun) in easy rotation, (b) mirror reversed bag without prohibited item, (c) 
different bag with the same gun in difficult rotation, (d) mirror reversed bag without prohibited item. 
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analyzed. For the calculation of the dependent variables, responses were 
aggregated for each of the three 20-min screening blocks and each 
participant separately. 

The hit rate was calculated as the share of images correctly declared 
as NOT OK and the false alarm rate as the share of images wrongly 
declared as NOT OK without taking marking and categorizing into ac-
count. This corresponds to operations at the checkpoint where all bags 
declared as NOT OK are sent to secondary search. The detection mea-
sures d’ and da as well as the slope parameter were based on the z- 
transformed hit rate and false alarm rate, whereby z refers to the inverse 
of the cumulative distribution function of the standard normal distri-
bution (Green and Swets, 1966). Because this function is undefined for 
extreme proportions (e.g., a hit rate of one or false alarm rate of zero), 
the hit rate and false alarm rate were corrected with the log-linear rule 
(Hautus, 1995) when calculating d’, da, and the slope parameter. The 
slope parameter was estimated by calculating the difference in z-trans-
formed hit rate and false alarm rate between the two target prevalence 
conditions for each participant. The average slope parameter then cor-
responded to the average difference in z-transformed hit rate divided by 
the difference in z-transformed false alarm rate. For the slope estima-
tion, we report bootstrapped BCa-CIs (Efron, 1987) based on 20,000 
resamples. The processing time refers to the time from image appear-
ance until the OK or NOT OK button was pressed. For images with a 
prohibited item, this included the marking and categorizing of the 
prohibited item. This processing time is therefore not directly compa-
rable to conventional reaction times. 

All ANOVAs were carried out in R version 3.5.1 (R Core Team, 2018). 
The Greenhouse–Geisser correction (Greenhouse and Geisser, 1959) was 
used where applicable and effect sizes are reported with ηp

2 (partial eta 
squared). In case of significant effects of time on task, post hoc analyses 
were calculated comparing the first screening block (0–20 min) with the 
second screening block (20–40 min) and the second screening block with 
the third screening block (40–60 min). In case of no significant in-
teractions with target prevalence, both prevalence conditions were 
averaged for each participant. In case of significant interactions with 
target prevalence, these comparisons were calculated for both levels of 
target prevalence separately. Post hoc tests were Holm–Bonferroni 
corrected (Holm, 1979). 

3. Results 

We report results on the hit rate and false alarm rate, the sensitivity 
(d’ and da) and the criterion (c and ca), the processing time, and the three 
factors of the SSSQ. We computed 2 (with breaks and without breaks) � 2 
(high prevalence and low prevalence) � 3 (0–20 min, 20–40 min, 40–60 
min) ANOVAs with hit rate, false alarm rate, d’, da, c, ca, and processing 
time as dependent variables. 

3.1. Hit rate and false alarm rate 

Fig. 2 shows the hit rate and false alarm rate for the two groups with 
breaks and without breaks in both prevalence conditions as a function of 
time on task. The ANOVA for the hit rate revealed a significant main 
effect of prevalence, F(1, 69) ¼ 37.99, p < .001, ηp

2 ¼ .36; no effect of 
time on task, F(1.93, 133.17) ¼ 1.78, p ¼ .174, ηp

2 ¼ .03; and no effect of 
breaks, F(1, 69) ¼ 1.84, p ¼ .180, ηp

2 ¼ .03. None of the two-way in-
teractions were significant: Breaks � Prevalence, F(1, 69) ¼ 0.25, p ¼
.621, ηp

2 ¼ .00; Breaks � Time on task, F(1.93, 133.17) ¼ 1.75, p ¼ .179, 
ηp

2 ¼ .02; and Prevalence � Time on task, F(1.96, 134.94) ¼ 3.06, p ¼
.051, ηp

2 ¼ .04. The three-way interaction was also not significant, F 
(1.96, 134.94) ¼ 0.31, p ¼ .731, ηp

2 ¼ .00. 
The ANOVA with false alarm rate as dependent variable revealed a 

significant main effect of prevalence, F(1, 69) ¼ 118.53, p < .001, ηp
2 ¼

.63; no effect of time on task, F(1.87, 129.37) ¼ 0.24, p ¼ .776, ηp
2 ¼ .00; 

and no effect of breaks, F(1, 69) ¼ 0.00, p ¼ .957, ηp
2 ¼ .00. The two-way 

interaction between Prevalence � Time on task was significant, F(1.97, 

136.18) ¼ 17.9, p < .001, ηp
2 ¼ .21. No other interactions attained sig-

nificance: Breaks � Prevalence, F(1, 69) ¼ 0.01, p ¼ .917, ηp
2 ¼ .00; 

Breaks � Time on task, F(1.87, 129.37) ¼ 1.23, p ¼ .294, ηp
2 ¼ .02; 

Breaks � Prevalence � Time on task F(1.97, 136.18) ¼ 0.30, p ¼ .737, ηp
2 

¼ .00. Post hoc analyses for the significant interaction of Prevalence �
Time on task revealed a significant increase in the false alarm rate from 
0–20 min to 20–40 min in the high-prevalence condition (p ¼ .004) and 
a significant decrease from 0–20 min to 20–40 min in the low-prevalence 
condition (p ¼ .004). No significant difference was found between 
20–40 min and 40–60 min in either the high-prevalence (p ¼ .811) or 
low-prevalence condition (p ¼ .649). 

3.2. Sensitivity and criterion 

Fig. 3 shows detection performance in terms of sensitivity d’ and da 
for both break and prevalence conditions as a function of time on task. 
The ANOVA with d’ as a dependent variable revealed a significant main 
effect of prevalence, F(1, 69) ¼ 12.83, p < .001, ηp

2 ¼ .16; a significant 
main effect of time on task F(1.99, 136.97) ¼ 3.62, p ¼ .030, ηp

2 ¼ .05; 
and no effect of breaks, F(1, 69) ¼ .80, p ¼ .375, ηp

2 ¼ .01. All interactions 
were nonsignificant: Prevalence � Time on task, F(1.93, 133.34) ¼ 1.08, 
p ¼ .340, ηp

2 ¼ .02; Breaks � Prevalence, F(1, 69) ¼ 0.15, p ¼ .697, ηp
2 ¼

.00; Breaks � Time on task, F(1.99, 136.97) ¼ 2.77, p ¼ .067, ηp
2 ¼ .04; 

and Breaks � Prevalence � Time on task, F(1.93, 133.34) ¼ 1.83, p ¼
.166, ηp

2 ¼ .03. Post hoc analyses for the main effect of time on task in d’ 
revealed a significant increase from 0–20 min to 20–40 min (p ¼ .039), 
but no significant difference between 20–40 min and 40–60 min (p ¼
.856). 

The estimated slope parameter was 0.65 (95% BCa-CI [0.41, 0.89]) 
and thereby lower than the slope of 1.0 assumed by d’. Fig. 3b shows the 
sensitivity measure da based on this slope estimation as a function of 
time on task. The ANOVA for da revealed a main effect of time on task, F 
(1.97, 135.91) ¼ 3.43, p ¼ .036, ηp

2 ¼ .05; no significant main effects of 
prevalence, F(1, 69) ¼ 0.65, p ¼ .423, ηp

2 ¼ .01 (whereby the main effect 
of prevalence has no informative value, because this main effect was 
used to estimate the slope parameter); or breaks, F(1, 69) ¼ 1.03, p ¼
.314, ηp

2 ¼ .01. No interaction attained significance: Breaks � Preva-
lence, F(1, 69) ¼ 0.22, p ¼ .638, ηp

2 ¼ .00; Breaks � Time on task, F(1.97, 
135.91) ¼ 2.49, p ¼ .088, ηp

2 ¼ .03; Prevalence � Time on task, F(1.95, 
134.72) ¼ 0.11, p ¼ .895, ηp

2 ¼ .00; and Breaks � Prevalence � Time on 
task, F(1.95, 134.72) ¼ 1.53, p ¼ .221, ηp

2 ¼ .02. Post hoc analyses for the 
main effect of time on task in da revealed a significant increase from 
0–20 min to 20–40 min (p ¼ .034), but no significant difference between 
20–40 min and 40–60 min (p ¼ .754). 

Fig. 4 displays the criterion measures c and ca for both break and 
prevalence conditions as a function of time on task. In accordance with 
calculating da, a slope of 0.65 was used to determine the criterion ca. 
Because ca is a linear transformation of c that does not affect significance 
testing, ANOVA and post hoc results were identical for both c and ca and 
are therefore reported only once. The ANOVA with c and ca as a 
dependent variable revealed a significant main effect of prevalence, F(1, 
69) ¼ 141.58, p < .001, ηp

2 ¼ .67; but no effect of time on task, F(1.93, 
133.02) ¼ 0.40, p ¼ .665, ηp

2 ¼ .01; or breaks, F(1, 69) ¼ 0.96, p ¼ .329, 
ηp

2 ¼ .01. The interaction Prevalence � Time on task, F(1.95, 134.28) ¼
11.82, p < .001, ηp

2 ¼ .15, was significant. No significant effects were 
found for Breaks � Prevalence, F(1, 69) ¼ .25, p ¼ .619, ηp

2 ¼ .00; Breaks 
� Time on task, F(1.93, 133.02) ¼ .24, p ¼ .782, ηp

2 ¼ .00; or Breaks �
Prevalence � Time on task, F(1.95, 134.28) ¼ 0.02, p ¼ .977, ηp

2 ¼ .00. 
Post hoc analyses for the significant interaction of Prevalence � Time on 
task revealed a significant increase in c and ca from 0–20 min to 20–40 
min for high prevalence (p ¼ .002) and a significant decrease in c and ca 
for low prevalence (p ¼ .038). The criterion (c and ca) did not change 
significantly from 20–40 min to 40–60 min for either high prevalence (p 
¼ .995) or low prevalence (p ¼ .995). 
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3.3. Processing time 

Fig. 5 shows screeners’ processing time for target-absent and target- 
present trials for both break and prevalence conditions as a function of 
time on task. The ANOVA for target-absent trials revealed a significant 
main effect of prevalence, F(1, 69) ¼ 89.01, p < .001, ηp

2 ¼.56; and time 
on task, F(1.69, 116.40) ¼ 127.51, p < .001, ηp

2 ¼ .65. The main effect of 
breaks was not significant, F(1, 69) ¼ 1.27, p ¼ .264, ηp

2 ¼ .02. The 
interaction Prevalence � Time on task was significant, F(1.54, 105.92) 

¼ 37.07, p < .001, ηp
2 ¼ .35. The other interactions did not attain sig-

nificance, Breaks � Prevalence, F(1, 69) ¼ 0.34, p ¼ .560, ηp
2 ¼ .00; 

Breaks � Time on task, F(1.69, 116.40) ¼ 2.93, p ¼ .066, ηp
2 ¼ .04; 

Breaks � Prevalence � Time on task, F(1.54, 105.92) ¼ .53, p ¼ .543, ηp
2 

¼ .01. Post hoc tests for the interaction of Prevalence x Time on task 
revealed a significant decrease from 0–20 min to 20–40 min for the high 
prevalence (p ¼ .010) and low prevalence condition (p < .001). The 
decrease was also significant from 20–40 min to 40–60 min for the high 
prevalence (p ¼ .001) and the low prevalence condition (p < .001). 

Fig. 2. Mean hit rate (a) and false alarm rate (b) for both break and prevalence conditions as a function of time on task. Error bars represent standard errors.  

Fig. 3. Mean sensitivity measure d’ (a) and sensitivity measure da (b) for both break and prevalence conditions as a function of time on task. Error bars represent 
standard errors. 

Fig. 4. Mean criterion measures c (a) and ca (b) for both break and prevalence conditions as a function of time on task. Error bars represent standard errors.  
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For target-present trials, the ANOVA revealed significant main ef-
fects of prevalence, F(1, 69) ¼ 6.67, p ¼ .012, ηp

2 ¼ .09; time on task, F 
(1.97, 136.22) ¼ 26.98, p < .001, ηp

2 ¼ .28; and breaks, F(1, 69) ¼ 5.28, 
p ¼ .025, ηp

2 ¼ .07. The interaction Prevalence � Time on task also 
attained significance, F(1.97, 135.76) ¼ 4.61, p ¼ .012, ηp

2 ¼ .06. All 
other interactions were not significant, Breaks � Prevalence, F(1, 69) ¼
0.04, p ¼ .851, ηp

2 ¼ .00; Breaks � Time on task, F(1.97, 136.22) ¼ .43, p 
¼ .649, ηp

2 ¼ .01; and Breaks � Prevalence � Time on task, F(1.97, 
135.76) ¼ 0.29, p ¼ .745, ηp

2 ¼ .00. Post hoc tests for the significant 
interaction of Prevalence � Time on task revealed no significant dif-
ference in reaction time between 0–20 min and 20–40 min for high 
prevalence (p ¼ .161) but a significant decrease from 0–20 min to 20–40 
min for the low prevalence condition (p < .001). Again, between 20–40 
min and 40–60 min, there was no significant decrease for the high 
prevalence condition (p ¼ .071) but a significant decrease from 0–20 
min to 20–40 min for the low prevalence condition (p ¼ .016). 

3.4. Subjective measures of distress, worry, and engagement 

Fig. 6 shows the reported levels of distress, worry, and engagement for 
both break and prevalence conditions.3 We calculated separate 2 (with 
vs. without breaks) � 2 (high vs. low prevalence) ANOVAs for each of 
the three measures of subjective stress. For distress, the ANOVA revealed 
a significant main effect of breaks, F(1, 66) ¼ 9.17, p ¼ .004, ηp

2 ¼ .12.4 

The main effect of prevalence, F(1, 66) ¼ 1.44, p ¼ .234, ηp
2 ¼ .02, and 

the interaction Breaks � Prevalence, F(1, 66) ¼ 1.59, p ¼ .212, ηp
2 ¼ .02, 

were not significant. For worry, the ANOVA revealed no significant ef-
fects: breaks, F(1, 66) ¼ 2.35, p ¼ .13, ηp

2 ¼ .03; prevalence, F(1, 66) ¼
.58, p ¼ .449, ηp

2 ¼ .01; or Breaks � Prevalence, F(1, 66) ¼ .04, p ¼ .847, 
ηp

2 ¼ .00. For engagement, the ANOVA also revealed no significant effects 
for either breaks, F(1, 66) ¼ 0.70, p ¼ .406, ηp

2 ¼ .01; prevalence, F(1, 66) 
¼ 0.56, p ¼ .455, ηp

2 ¼ .01; or for the interaction Breaks � Prevalence, F 
(1, 66) ¼ 0.04, p ¼ .847, ηp

2 ¼ .00. 

4. Discussion 

To examine the effects of time on task and breaks on screener per-
formance, two groups of airport security officers (screeners) performed 
an X-ray baggage screening task for 60 min. Whereas one group took 
breaks in line with the 20-min rule in the EU regulation, the other group 

worked for 60 min without breaks. Performance did not decrease over 
the course of 60 min of X-ray baggage screening. Moreover, breaks had 
no effect on performance. However, screeners without breaks reported 
more distress. Target prevalence was varied to determine the valid 
detection measure for this task. For X-ray image inspection, the detec-
tion measure da with a slope of approximately 0.6 seems to be a more 
valid measure of detection than d’. We confirmed the typical prevalence 
effect to be a criterion shift, and found that it developed at the beginning 
of the task. 

Because our findings on the effects of time on task and breaks depend 
on selecting an appropriate detection measure, we first discuss the main 
effects of target prevalence and the change of hit rate, false alarm rate, 
sensitivity, criterion, and processing time in relation to the target 
prevalence effect. Then, we discuss the screeners’ ability to maintain 
performance over time and the effect of breaks. 

4.1. Detection measures for X-ray image inspection 

Screeners showed a lower hit rate and a lower false alarm rate in the 
low target prevalence condition compared to the high target prevalence 
condition. This is the typical effect of target prevalence: People adjust 
their response tendency (criterion in signal detection theory) depending 
on the base rate with which targets occur (Godwin et al., 2010; Ishibashi 
and Kita, 2014; Ishibashi et al., 2012; Lau and Huang, 2010; Van Wert 
et al., 2009; Wolfe et al., 2007; Wolfe and Van Wert, 2010). When 
comparing d’ between the two target prevalence conditions over the full 
length of the task (i.e., the main effect of target prevalence), we found 
higher d’ values for the low target prevalence condition in line with 
previous research on X-ray image inspection (Godwin et al., 2010; Wolfe 
et al., 2007; Wolfe and Van Wert, 2010). Consistent with these studies, 
we also found that screeners needed less time to inspect an image in this 
condition. In line with Kundel (2000) and Wolfe et al. (2007), we would 
argue that it is implausible for screeners to become faster and better at 
detection when fewer targets occur. It is more plausible that the equal 
variance assumption of d’ (Green and Swets, 1966) is not met, and that 
the observed change in hit rate and false alarm rate is a mere change in 
response tendency (criterion c and ca) as assumed in signal detection 
theory (Macmillan and Creelman, 2005). Comparing the z-transformed 
hit rate and false alarm rate between the two target prevalence condi-
tions resulted in an average slope parameter of 0.65. This is close to the 
slope of around 0.6 that previous studies have found for the task of X-ray 
image inspection of passenger baggage (Godwin et al., 2010; Sterchi 
et al., 2019; Van Wert et al., 2009; Wolfe et al., 2007; Wolfe and Van 
Wert, 2010). Therefore, in line with these previous studies, da seems to 
be the appropriate detection measure here. A comparison of the crite-
rion across the two target prevalence conditions again showed a clear 
prevalence effect. As mentioned, screeners needed less time to inspect an 

Fig. 5. Mean processing time for target-absent and target-present trials for both break and prevalence conditions as a function of time on task. Error bars represent 
standard errors. 

3 Values are missing for two participants who did not fill out the SSSQ. 
4 Because the data did not always meet the assumptions of normal distribu-

tion or homoscedasticity, a Wilcoxon rank sum test was computed that also 
revealed a significant difference between the break conditions (W ¼ 1616, p ¼
.003). 
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X-ray image in the low target prevalence condition. This was especially 
the case for target-absent trials. Also previous research found shorter 
reaction times for target-absent trials when target prevalence was lower 
(Godwin et al., 2010; Wolfe et al., 2007; Wolfe and Van Wert, 2010). 

In summary, consistent with previous studies, we found that a lower 
target prevalence leads to a criterion shift resulting in a lower hit rate 
and a lower false alarm rate. Moreover, for X-ray image inspection, our 
results confirm that da with a slope of about 0.6 is a more valid measure 
of detection performance than d’. 

4.2. Interaction between target prevalence and time on task 

Previous studies have found that the target prevalence effect depends 
on implicit learning and experienced prevalence rather than on explicit 
instruction, and that it therefore takes some time until searchers adapt to 
the prevailing target prevalence by shifting their criterion (Ishibashi 
et al., 2012; Lau and Huang, 2010). For the false alarm rate, we found a 
significant interaction between target prevalence and time on task. More 
specifically, the false alarm rate increased from the first (0–20 min) to 
the second (20–40 min) screening block in the high target prevalence 
condition and decreased in the low target prevalence condition. This is 
consistent with the criterion shift (ca) that we found. However, for the 
hit rate, the interaction between target prevalence and time on task did 
not attain significance. Considering the p value was close to significance, 
this could have been due to insufficient statistical power. The hit rate 
was calculated from fewer images than the false alarm rate, and this led 
to higher standard errors. Our analysis of the criterion, which takes the 
hit and the false alarm rate into account, clearly confirms that the effect 
of target prevalence increased from the first (0–20 min) to the second 
(20–40 min) screening block of the task. In the high target prevalence 
condition, participants increased their tendency to declare that an X-ray 
image contained a prohibited item. In the low target prevalence condi-
tion, they increasingly reported images to be harmless (target absent). In 
general, our results are consistent with previous studies showing that 
participants first have to experience the prevalence of the targets for the 
target prevalence effect to fully develop (Ishibashi et al., 2012; Lau and 
Huang, 2010). In addition, consistent with findings reported by Lau and 
Huang (2010), we found that instructions alone were not sufficient to 
evoke the target prevalence effect. 

4.3. Effect of time on task on screener performance 

As mentioned in the previous section, we found a criterion shift at the 
beginning of the task that depended on the target prevalence condition. 
To discuss the effect of time on task on detection performance, it 
therefore makes sense to focus on the sensitivity measure da (with a 
slope of 0.65 in our study) that is not affected by this criterion shift. We 
found a small increase in da from the first screening block (0–20 min) to 
the second screening block (20–40 min) of the task and no change 
thereafter. This is consistent with the results of Chavaillaz et al. (2019), 

who also found a small increase in detection performance in the first 20 
min of X-ray image inspection. It is possible that there is a warm-up 
phase in X-ray image inspection during which the cognitive processes 
necessary for this task become fully activated—as can be observed in 
other recognition tasks (Allport and Wylie, 1999; Monsell, 2003). 
Nonetheless, it is also possible that the observed ramp-up in perfor-
mance was an accustomization to the specifics of the task employed in 
our experiment. 

Whereas our study found no decline in performance over the course 
of 60 min, Meuter and Lacherez (2016) found a small decrease of two 
percentage points in hit rate after 10 min of screening under high 
workload (i.e., when screeners analyzed more than 5.4 baggage images 
per min). There are several possible explanations for this difference. The 
decrease Meuter and Lacherez found was quite small but based on a 
large amount of data. Our statistical power would not allow us to 
confirm a decrease in the hit rate of two percentage points. We further 
found that screeners adapted to the target prevalence by shifting their 
criterion at the beginning of the task. The change found by Meuter and 
Lacherez might also have been a criterion shift. However, this cannot be 
determined, because it was not possible to measure false alarm rate in 
their study. Finally, whereas their study analyzed data from a conven-
tional checkpoint at which screening was performed in the lane, our 
study investigated RCBS. It may well be more difficult to maintain 
performance in an environment with more noise and distractors (Michel 
et al., 2014; Mocci et al., 2001; Yu et al., 2015). 

As already argued in the introduction, X-ray image inspection shares 
certain similarities with vigilance tasks, but it also reveals clear differ-
ences. Whereas performance decreases within the first 15–30 min 
(Mackworth, 1948; Teichner, 1974; Warm, 1984) on most vigilance 
tasks, our participants were able to maintain their performance over the 
course of 60 min. This also argues against classifying X-ray baggage 
screening as a typical vigilance task. One could argue that our study 
contrasts more strongly with vigilance tasks than the conventional X-ray 
baggage screening task, because we used higher target prevalence levels. 
However, whereas certain threats such as IEDs are rare in practice, other 
prohibited articles such as liquids and gels left in baggage still provide 
quite common targets. 

Regarding processing times as well, screeners were able to maintain 
their performance throughout the full duration of the task. Processing 
times even decreased throughout the task with the exception of target- 
present trials in the high prevalence condition, where no change was 
found (for a similar effect, see Chavaillaz et al., 2019). For target-absent 
trials, processing times decreased throughout the task in the low and the 
high prevalence condition, but more strongly in the low prevalence 
condition. These decreases in processing times cannot be associated with 
a speed–accuracy tradeoff because there was no decrease in the per-
formance measure da. It is more likely that screeners adapted to the task, 
its conditions, or the interface settings. We cannot be sure whether this 
effect would also occur in practice after screeners become familiar with 
the X-ray machine interface. Beyond the general speed–accuracy 

Fig. 6. Mean of reported levels of distress, worry, and engagement broken up by break and target prevalence conditions. Error bars represent standard errors.  
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tradeoff, the nature of the investigated task, which included the marking 
and categorizing of targets, is not well suited for a detailed discussion of 
processing times. 

4.4. The effects of breaks on performance 

Closely linked to how performance changes over time is the question 
regarding what effect breaks have on performance. We did not find ef-
fects of breaks on the hit rate, false alarm rate, sensitivity, or response 
tendency (criterion). Likewise, Chavaillaz et al. (2019) found no per-
formance differences between different break regimes (spontaneous 
breaks and 5 or 10 min breaks every 20 min) in a 60-min simulated X-ray 
baggage screening task with student participants. Whereas breaks have 
often had a positive effect on performance in previous studies conducted 
in other detection tasks (Arrabito et al., 2015; Colquhoun, 1959; 
Kopardekar and Mital, 1994), they are mainly thought to offer rest, 
recuperation, and prevention of fatigue (Tucker, 2003). Although our 
participants who performed 60 min of continuous X-ray screening had 
no possibility of recuperation during breaks, they still did not show a 
decrease in performance. We found a main effect of breaks on processing 
times for target-present trials, but not for target-absent trials. However, 
the effect was already present in the first 20 min screening block and did 
not increase thereafter, indicating that it was not the result of the breaks 
themselves. Maybe knowing that there will be no breaks induced some 
stress, and the associated arousal, in turn, led to faster processing times. 
This is related to the effects we found in terms of well-being or distress. 
The screeners in the condition without breaks reported more distress in 
the SSSQ. Hence, whereas screeners were able to maintain detection 
performance over 60 min without breaks, this led to increased distress. 
In the long term, this could have an effect on performance. 

4.5. Limitations and future research 

Whereas our study has shown that screeners can maintain detection 
performance over 60 min without breaks, we also found that this caused 
more distress. Considering that participants only did 60 min of X-ray 
screening twice with 3–5 weeks in between, it is unclear how prolonged 
screening would affect performance and well-being if it were to be 
repeated multiple times a day and over months. On the one hand, 
distress levels might decrease due to increased practice. On the other 
hand, distress levels might increase further over time. This, in turn, 
could have a negative impact on well-being and on performance in the 
long term. Therefore, field studies are needed to determine the long- 
term effect of longer screening durations on performance and well- 
being. Such field studies would also tackle other limitations of our 
study. In our laboratory experiment, poor performance did not have any 
consequences, whereas a miss can be disastrous in practice. This might 
make prolonged screening time more stressful. Furthermore, target 
prevalence is lower in practice, and this could make it more difficult to 
sustain attention and performance. It is quite possible that people react 
differently to prolonged working sessions. Future studies could investi-
gate interindividual differences and test whether flexible break sched-
ules would provide a solution, although this might be difficult in 
practice. 

5. Conclusions 

Our study showed that screener performance did not decrease in 
continuous X-ray inspection over the course of 60 min. Moreover, breaks 
did not influence performance. However, breaks did seem to have an 
effect on well-being, in the sense that screeners without breaks reported 
more distress. Our results open the discussion on whether more flexible 
break policies and work schedules should be considered. They provide a 
basis for conducting field studies of prolonged screening durations. This 
should include a careful monitoring of screeners’ performance and well- 
being. If field trials succeed, relaxing the 20-min rule would provide 

additional flexibility that could be helpful when implementing new 
technologies such as remote cabin baggage screening. In addition, this 
study provides further evidence that da with a slope of approx. 0.6 is a 
more valid measure of detection performance than d’ for the X-ray 
image inspection of cabin baggage and should be considered in future 
studies on this task. 
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Time on task and task load in visual inspection: A four-month field study 
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A B S T R A C T   

Previous studies suggest that performance in visual inspection and typical vigilance tasks depend on time on task 
and task load. European regulation mandates that security officers (screeners) take a break or change tasks after 
20 min of X-ray baggage screening. However, longer screening durations could reduce staffing challenges. We 
investigated the effects of time on task and task load on visual inspection performance in a four-month field study 
with screeners. At an international airport, 22 screeners inspected X-ray images of cabin baggage for up to 60 
min, while a control group (N = 19) screened for 20 min. Hit rate remained stable for low and average task loads. 
However, when the task load was high, the screeners compensated by speeding up X-ray image inspection at the 
expense of the hit rate over time on task. Our results support the dynamic-allocation resource theory. Moreover, 
extending the permitted screening duration to 30 or 40 min should be considered.   

1. Introduction 

The continuous visual inspection of X-ray images of passenger 
baggage is legally limited to 20 min at European airport security 
checkpoints (European Commission, 2015). Thereafter, security officers 
(screeners) take a break of 10 min or rotate positions to perform a 
different task. While this regulatory limit might prevent a decrease in 
performance, it restricts options for staffing and can lead to operational 
challenges. The current time limit does not originate from research in 
X-ray image inspection, but it is believed to be based on findings from 
vigilance research (personal communication with an airport security 
expert, March 2019). There, a decrease in performance was often 
observed after about 15 min (Davies and Parasuraman, 1982; Mack-
worth, 1948; See, 2012; Teichner, 1974) or even earlier in difficult tasks 
(Jerison, 1963; Nuechterlein et al., 1983). The decrease in vigilance, 
called vigilance decrement, typically manifests as fewer detections and 
slower response times (Davies and Parasuraman, 1982; See et al., 1995). 
Additionally, it is frequently accompanied by a decrease in task 
engagement and an increase in distress, compared to pre-task values 
(Claypoole et al., 2019; Teo and Szalma, 2011; Tiwari et al., 2009; Warm 
et al., 2008a). 

The underlying causes of the vigilance decrement have been 

predominantly explained by two different theories (Helton and Warm, 
2008; MacLean et al., 2010; Neigel et al., 2020). Resource theory as-
sumes that maintaining attention depletes limited attentional resources, 
which causes a decline in performance (Helton and Warm, 2008; Mat-
thews et al., 2010). This is supported by the observation that vigilance 
declines more strongly when the event rate (number of stimuli to be 
processed per time unit) is higher (Claypoole et al., 2019; Davies and 
Parasuraman, 1982; See et al., 1995). Underload theory assumes that 
vigilance tasks’ monotony induces under-stimulation that causes lapses 
in attention, whereby targets go undetected (Robertson et al., 1997). 

However, visual inspection differs from typical vigilance tasks 
(Drury and Watson, 2002). X-ray image inspection involves visual 
search and decision making (Koller et al., 2009) regarding visually 
complex stimuli (Schwaninger et al., 2005) and it requires multiple 
target search (Biggs et al., 2018; Biggs and Mitroff, 2015; Donnelly et al., 
2019; Godwin et al., 2010a). In traditional vigilance tasks, simple and 
single signals must be distinguished from background noise (Davies and 
Parasuraman, 1982). Moreover, visual inspection tasks, such as in X-ray 
baggage screening or industrial inspection, elicit a different vigilance 
decrement pattern compared to traditional vigilance tasks: The decrease 
in detected targets is often accompanied by a decrease in reaction times 
and false alarms (Basner et al., 2008; Ghylin et al., 2007). To account for 
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this alternative pattern, Rubinstein (2020) proposed the 
dynamic-allocation resource theory (DART), which suggests that vigi-
lance decrements in inspection tasks are caused by changes in behavior 
to preserve resources as opposed to limited resources or 
under-stimulation. More specifically, searchers try to save resources by 
speeding up and changing their response tendency. A few studies have 
investigated how time on task affects performance in X-ray baggage 
screening and reported results consistent with this pattern. Ghylin et al. 
(2007) investigated screener performance by comparing the perfor-
mance of professional screeners between four 1-h blocks in a laboratory 
study. They observed a decrease in the hit rate, false alarm rate, and 
reaction times when comparing the first hour to the later hours indi-
cating a shift in response tendency rather than a decrease in sensitivity. 
Buser et al. (2020) investigated how performance changed during 60 
min of baggage screening among professional screeners. One group took 
a 10-min break after every 20-min of screening, the other group 
analyzed X-ray images for 60 min continuously. Performance was 
compared for three consecutive 20-min blocks. At a target prevalence of 
12.5%, the false alarm rate decreased from the first to the second 20-min 
block, whereas processing times decreased continuously across blocks. 
Consistent with the results of Ghylin et al. (2007), a change in response 
tendency was found from the first to the second 20-min block. Addi-
tionally, screeners who worked continuously reported more distress 
than those who took breaks. To understand the study from Meuter and 
Lacherez (2016), threat image projection (TIP) first has to be intro-
duced. During X-ray baggage screening at airports, the frequency of real 
threat articles (target prevalence) is very low, and a low frequency of 
targets reduces their detection (Godwin et al., 2010b; Wolfe et al., 2005, 
2007). Airports counteract this by projecting prerecorded images of 
threat items (fictional threat items, FTIs) onto randomly selected X-ray 
images of passenger baggage using a technology called threat image 
projection (TIP) (Cutler and Paddock, 2009; Hofer and Schwaninger, 
2005). Therefore, screeners are exposed to more threats. Because it is 
recorded whether a TIP was detected by the screener or not, TIP data can 
be used to calculate the screeners’ hit rates as an indicator of their 
detection performance (Meuter and Lacherez, 2016; Skorupski and 
Uchroński, 2016). Meuter and Lacherez (2016) used TIP data from an 
airport to investigate the effects of time on task and event rate (number 
of analyzed images per minute; task load) on detection performance for 
screening durations of up to 30 min. They found no main effect of time 
on task; however, they observed an interaction effect of time on task and 
event rate. Screeners showed a stable hit rate over time when the event 
rate was low. However, when the event rate was high (more than 5.4 
analyzed images per min), the hit rate dropped from 94% to 92% after 
20 min and to 87% after 30 min of screening. Chavaillaz et al. (2019) 
investigated how different break regimes affect detection performance 
for 60 min of X-ray image inspection in novices. The participants took 
10-min breaks every 20 min, 5-min breaks every 20 min, or spontaneous 
breaks during a 1 h simulated baggage screening task. The study found 
no performance differences among the break regimes. Therefore, the 
researchers concluded that more flexible breaks could be implemented, 
granting the screeners autonomy to take spontaneous breaks when 
necessary. 

Although previous studies indicate how screener performance 
evolves over time, no conclusions can be drawn about how professional 
screeners’ performance changes over 1 h under real working conditions. 
Furthermore, airports increasingly move the screening of cabin baggage 
away from the checkpoint to remote screening rooms. This quieter 
working environment could have a positive impact on performance 
(Kuhn, 2017) and reduce performance decline over time on task. 
Therefore, this study investigated how screener performance evolves 
with time on task under remote screening conditions. We conducted a 
four-month study at an international airport using TIP data to investi-
gate whether performance changes with time on task of up to 60 min 
under real working conditions and whether the effect of time on task is 
moderated by task load. Based on the DART (Rubinstein, 2020), we 

hypothesized that the hit rate, reject rate, and processing time decrease 
with increase in time on task and task load. Moreover, we evaluated 
whether there is an interaction between time on task and task load. 

2. Methods 

2.1. Participants 

The study was conducted at an international airport with a workforce 
of about 100 screeners and with several checkpoints. About 50 screeners 
worked regularly at the checkpoint where the study was conducted. We 
created two groups by random assignment and, after the study, selected 
screeners who completed a minimum of eight X-ray baggage screening 
sessions. Consequently, 41 screeners who met the criteria were selected; 
the study group engaged in screening for up to 60 min (22 screeners, 11 
females; mean age: 30.77 years, SD = 8.38; mean tenure: 3.66, SD =
1.41), and the control group (19 screeners, 9 females; mean age: 34.89 
years, SD = 10.97; mean tenure 2.80, SD = 1.42) continued screening as 
before, which suggests that screeners should rotate their position after 
20 min of continuous X-ray image inspection. Our study is based on 
2′376 baggage screening sessions (study group: 1′170, control group: 
1′206), where 436′512 X-ray images were analyzed. The study was 
conducted during the screeners’ regular working hours without 
affecting their compensation. The study complied with the American 
Psychological Association’s Code of Ethics and was approved by the 
Institutional Review Board of the School of Applied Psychology, Uni-
versity of Applied Sciences and Arts Northwestern Switzerland. 
Informed consent was obtained from all screeners prior to the study. The 
national civil aviation authorities permitted this study under the con-
dition that we monitor detection performance regularly and stop the 
study immediately if the airport’s security is threatened. 

2.2. Materials 

In addition to analyzing TIP data, subjective stress was measured 
using the Short Stress State Questionnaire (SSSQ; Helton, 2004). 
Screeners were asked to fill in the questionnaire every three weeks after 
completing a screening session. Upon completion of the study, screeners 
completed a short survey, which included questions regarding the 
screening durations. The survey also included airport specific questions 
comparing different technologies, which are not reported here. 

2.3. Procedure 

The screeners were informed about the study verbally and in writing 
by their employer and a member of our team. Their supervisors 
informed them whether they had been assigned to the study or control 
group. The study group was instructed to screen for up to 60 min; 
however, they were given the option to stop earlier if they felt tired or 
unconcentrated. They were asked to note down the reason for ending a 
screening session before completing 60 min on a sheet next to their 
workstation. The control group continued to work by following the 
current EU regulation. Both groups screened X-ray images of cabin 
baggage from a remote room, which was located close to the checkpoint 
and typically staffed by one or two screeners. Screeners were limited to 
20 s to decide whether a baggage contained a prohibited article. This 
included marking the identified article and assigning it to a threat 
category. They received direct feedback on TIP images with the TIP 
system indicating FTIs in the X-ray image. For security reasons, all bags 
containing an FTI were rescreened. After X-ray screening, screeners from 
both groups switched to a different position at the checkpoint or took a 
break. The study lasted 18 weeks between January and May. Because 
adapting the daily operation to longer screening sessions required some 
time, the first two weeks were excluded from the data analysis. 
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2.4. Dependent measures 

We considered the following dependent variables in the mixed 
models to assess how performance evolved with time on task: Detection 
performance (hit rate), reject rate, and processing time. Hit rate was the 
percentage of correctly identified TIP images. Reject rate was the per-
centage of all bags sent to a manual bag search. Because the available 
data only indicated whether a bag was rejected but not whether a real 
prohibited article (e.g., a bottle of water, knife, etc.) was present, the 
reject rate is not equivalent to the false alarm rate, which is the per-
centage of bags that are harmless but wrongly classified as containing a 
prohibited article. Processing time was the number of seconds screeners 
took to decide whether an image contained a prohibited article (rounded 
to full seconds by the TIP system). The session duration was the time 
difference between the screeners’ login and logout for each screening 
session. For comparing the performance between the study and the 
control group, the hit rate, reject rate, and mean processing time were 
calculated for each screener. 

2.5. Data analysis 

All statistical analyses were performed using R (R Core Team, 2020). 
Because we were interested in the effects of time on task, we excluded 
short screening sessions under 10 min. Despite the instruction to screen 
for up to 60 min, 16 screening sessions exceeded 70 min and were also 
excluded. This resulted in the exclusion of 3.08% of all images and 
3.09% of TIP images. The analyzed sessions were conducted between 
04:00 and 20:00. Sessions after 20:00 occurred rarely (0.25% of all 
images and 0.30% of TIP images) and were therefore excluded. Because 
we calculated task load as the mean number of images analyzed per 
minute from the beginning of the session, the first screening minute of 
each session was omitted, which led to the exclusion of 4.09% of all 
images and 3.80% of TIP images. 

We used mixed-effects models to assess the effects of time on task and 
task load on hit rate, reject rate, and processing time. The three models 
included time on task, task load, Time on task × Task load, days since 
study start, and daytime as fixed effects, and the session nested in the 
screener as random effects (see Equation (1)). The interaction Time on 
task × Task load was included because it was found in the only previous 
study on time on task and task load in X-ray baggage screening by 
Meuter and Lacherez (2016). Time on task was the number of minutes 
spent logged into a screening session by the screeners when they 
analyzed an image and was therefore calculated as the difference be-
tween the login time and the time when the decision for that image was 
made. Sessions conducted by the same screener that were less than 2 min 
apart were combined and treated as one screening session. Task load was 
the mean number of images a screener analyzed per minute from the 
start of the screening session. Days since the beginning of the study was 
included to examine whether habituation or fatigue occurred with 
increasing study duration and to account for seasonal changes in bag 
characteristics. It was defined as the number of days elapsed since the 
first day of the study (excluding the first two weeks that were excluded 
from analysis). Daytime was included to control for the variation of 
passenger types and their baggage throughout the day. Time was 
therefore split into 2-h blocks and included as dummy variables, with 
the time block from 12:00 to 14:00 as the reference category.  

performance = time on task + task load + time on task × task load + days 
since study start + daytime + (1|screener/session)                                (1)  

session duration = mean session task load + days since study start + daytime 
+ (1|screener)                                                                                 (2) 

We fitted logistic mixed models (estimated using ML with Laplace 
Approximation and Nelder-Mead optimizer) using the glmer function 
from the lme4 package (Bates et al., 2015) to analyze the binary 
dependent variables hit rate and reject rate. For the processing time and 

screening duration, a linear mixed model (estimated using REML and 
nloptwrap optimizer) was fitted using the lmer function of the same 
package. The processing time was log-transformed to normalize re-
siduals. To assess the effect of task load on session duration, we fitted a 
linear mixed model that included the mean task load of the session, days 
since study start, and daytime as fixed effects and screener as the 
random effect (see Equation (2)). All metric variables (time on task, task 
load, log processing time, and duration) were z-transformed to ensure 
better model convergence. Visual inspection of residual plots using the 
DHARMa package (Hartig, 2022) did not reveal any obvious deviations 
from homoscedasticity or normality. For the logistic models, confidence 
intervals (95%) and p-values were computed using the Wald approxi-
mation. The aforementioned analyses focus on how performance was 
affected by time on task and task load considering longer screening 
sessions. We further compared the performance of the study and control 
group to test whether the prolonged screening sessions had a direct 
impact on performance, for example, knowing that the session will likely 
be longer might have preemptively affected performance at the begin-
ning of the session. Since the data were not normally distributed, 
average hit rates, reject rates, and processing times were compared using 
the Mann–Whitney–Wilcoxon test. SSSQ data was aggregated per 
screener and construct (Distress, Engagement, Worry). The 
Mann-Whitney-Wilcoxon test was used to compare the central ten-
dencies of each construct between the two groups. 

3. Results 

3.1. Descriptive data 

Table 1 shows the average session duration, average number of 
screening sessions conducted per screener, and the average number of 
images and TIP images inspected per screener for both groups. 

3.2. Effects on performance 

The mixed model analyzing the detection performance (hit rate) of 
the study group showed no main effect of time on task (b = − 0.068, SE 
= 0.041, p = .092); however, a significant main effect of task load (b =
− 0.137, SE = 0.046, p = .003) and a significant interaction of Time on 
task × Task load (b = 0.140, SE = 0.041, p < .001) were observed. The 
days since the start of the study (b = 0.153, SE = 0.046, p < .001) also 
had a significant main effect. The odds ratios and confidence intervals of 
the mixed models are listed in Table 2. Model statistics on random ef-
fects and variance decomposition are provided in Table 3. While the 
fixed effects explained 1.8% of the variance for the hit rate, 13.2% of the 
variance was explained by random effects; 9.9% by the screener and 
3.4% by the session. For the reject rate, there was a significant main 
effect of time on task (b = − 0.039, SE = 0.006, p < .001), a main effect of 
task load (b = − 0.049, SE = 0.007, p < .001), and a significant inter-
action of Time on task × Task load (b = − 0.015, SE = 0.007, p = .022). 
Furthermore, a main effect of days since study start was found (b =
0.121, SE = 0.008, p < .001). For processing time, there was a significant 
main effect of time on task (b = − 0.042, SE = 0.002, p < .001) and a 
main effect of task load (b = − 0.123, SE = 0.005, p < .001). The 

Table 1 
Descriptive statistics for the study and control group.  

Group n Mean session 
duration per 
screener in min 

Number of 
sessions per 
screener 

Number of 
images per 
screener 

Number of 
TIP images 
per screener 

M (SD) M (SD) M (SD) M (SD) 

SG 22 34.7 (5.68) 53.2 (36.4) 13′073 
(9′621) 

287 (211) 

CG 19 20.8 (3.04) 63.5 (49.0) 7′836 (641) 175 (125) 

Note. SG = study group, CG = control group. 
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interaction term of Time on task × Task load was also significant (b =
0.005, SE = 0.002, p = .029). Additionally, days since study start 
demonstrated a main effect (b = 0.108, SE = 0.008, p < .001). For all 
three dependent variables, likelihood-ratio tests confirmed the presence 
of the interaction between time on task and task load (Table 4). Fig. 1 
demonstrates the marginal effects of time on task for three levels of task 
load (mean, one standard deviation below and above the mean) to 
illustrate how performance changed with time on task and task load (for 
readability, estimates and confidence intervals have been back- 
transformed to absolute rates and processing times without any bias 
correction). The hit rate only decreased when the task load was high; 
however, we found a general decrease of the reject rate and processing 
time with time on task. 

We observed a main effect of days since study start, showing an in-
crease in the hit rate, reject rate, and processing time over the course of 
the study. We calculated the same mixed models as described in Equa-
tion (1) for the control group to investigate whether this was caused by 
the study group adapting to longer screening durations or because of 
other factors (seasonal, operational). We found an increase for reject 
rate (b = 0.137, SE = 0.010, p < .001) and processing time (b = 0.086, 
SE = 0.008, p < .001) for the control group during the study. For the hit 
rate, no increase was found for the control group (b = − 0.017, SE =
0.072, p = .816). Owing to large confidence intervals as shown in Fig. 2, 
it is unclear whether there was a substantial difference between the 
study and control group. 

Group comparisons between the study and control groups found no 
difference in the average hit rate (study group: M = .855, SD = .070; 

control group: M = .857, SD = .070; W = 237, p = .472), reject rate 
(study group: M = .113, SD = .019; control group: M = .120, SD = .027; 
W = 250, p = .293), or processing time (study group: M = 3.6s, SD =
0.77; control group M = 3.8s, SD = 0.84; W = 254, p = .248). 

3.3. Effects on session duration 

To determine whether screening durations changed over the course 
of the study or depended on task load, we further examined the 
screening sessions that screeners of the study group terminated them-
selves. In total, the study group conducted 1′170 sessions. Among these, 
the screeners provided a reason for terminating the session prematurely 
for 436 sessions; only 129 of these were terminated by the screeners 
themselves for non-external reasons. Thus, the analyzed data set con-
sisted of 129 sessions conducted by 15 different screeners. Fig. 3 depicts 
the distribution of the mean duration of these sessions per screener. 

The mixed model analyzing the duration of self-terminated sessions 
showed no significant effects for task load (b = 0.174, SE = 0.091, p =
.059) or days since the start of the study (b = 0.058, SE = 0.098, p =
.553). Meanwhile, the fixed effects explained 6.4% of the variance for 
the screening duration, 24.7% of the variance was explained by random 
effects, and therefore, by the screener (σ2 = 0.77, τ00 Screener = 0.28, 
marginal R2 = 0.064, conditional R2 = 0.311).1 

3.4. Subjective data 

A total of 40 participants (study group: 21, control group: 19) filled 
in the SSSQ up to five times (M = 3.45, SD = 1.48). Fig. 4 shows the 
means of the constructs in the questionnaire for each group. Group 
comparisons found no difference for Distress (W = 261.5, p = .095) or 
Worry (W = 262, p = .093). However, the study group reported higher 
values of Engagement (W = 112, p = .018). 

Fig. 5 depicts the results of the questionnaire on screening duration 
(completed by 15 participants of the study group). The distribution in 
Fig. 5A shows that it became difficult for screeners to continue with 
screening at around 30–40 min (M = 39.29, SD = 9.17). Further, the 
screeners stated that a screening duration of around 30 min (M = 31.79, 
SD = 9.92) was optimal (Fig. 5B). 

4. Discussion 

This study investigated the effects of time on task and task load on 
performance and subjective stress among X-ray baggage screeners. A 

Table 2 
Fixed effects of the mixed models for the hit rate, reject rate, and processing time of the study group. Confidence intervals and p-values are based on the Wald 
approximation.  

Coefficient Hit rate Reject rate Processing time 

Odds ratio 95% CI p Odds ratio 95% CI p Estimate 95% CI p 

Intercept 6.173 [4.454, 8.556] <.001 0.128 [0.119, 0.138] <.001 .000 [-0.125, 0.126] .994 
Time on task 0.934 [0.862, 1.011] .092 0.962 [0.950, 0.974] <.001 − .042 [-0.046, − 0.037] <.001 
Task load [images/min] 0.872 [0.796, 0.955] .003 0.952 [0.937, 0.966] <.001 − .123 [-0.132, − 0.113] <.001 
Days since study start 1.165 [1.065, 1.275] <.001 1.129 [1.112, 1.146] <.001 .108 [0.092, 0.124] <.001 
Time on task × Task load 0.869 [0.802, 0.942] <.001 0.985 [0.972, 0.998] .022 .005 [0.001, 0.010] .029 
Day time [04:00–06:00] 1.180 [0.910, 1.530] .212 0.894 [0.855, 0.936] <.001 − .101 [-0.150, − 0.052] <.001 
Day time [6:00–08:00] 1.261 [0.958, 1.659] .098 0.936 [0.893, 0.980] .005 − .037 [-0.086, 0.013] .145 
Day time [8:00–10:00] 1.125 [0.790, 1.601] .513 1.026 [0.968, 1.088] .382 .001 [-0.055, 0.056] .977 
Day time [10:00–12:00] 1.142 [0.876, 1.491] .326 0.997 [0.954, 1.043] .908 .013 [-0.036, 0.062] .592 
Day time [14:00–16:00] 1.156 [0.873, 1.530] .312 0.908 [0.865, 0.952] <.001 − .085 [-0.136, − 0.034] .001 
Day time [16:00–18:00] 1.504 [0.872, 2.593] .142 0.906 [0.836, 0.983] .017 − .106 [-0.171, − 0.040] .002 
Day time [18:00–20:00] 0.741 [0.375, 1.466] .390 0.806 [0.720, 0.902] <.001 − .233 [-0.325, − 0.142] <.001  

Table 3 
Random effects and variance explanation of the mixed models for the hit rate, 
reject rate, and processing time of the study group.   

Hit rate Reject rate Processing time 

σ2 3.29 3.29 0.89 
τ00 0.13 Screener/ 

Session
a 

0.01 Screener/ 

Session
a 

0.05 Screener/ 

Session
a 

0.38 Screener
b 0.03 Screener

b 0.08 Screener
b 

ICC 0.13 0.01 0.13 
N 132 Screener/ 

Session
a 

134 Screener/ 

Session
a 

134 Screener/ 

Session
a 

22 Screener 22 Screener 22 Screener 

Observations 6′332 281′289 253′770 
Marginal R2/ 

conditional R2 
0.018/0.150 0.006/0.016 0.026/0.152 

Note. σ2 = residual variance or within-subject variance; τ00 = random intercept 
variance; ICC = intra-class correlation; marginal R2 = variance explanation 
through the fixed effects; conditional R2 = variance explanation through the 
fixed and random effects. 

a Random intercept variance between sessions nested in screener. 
b Random intercept variance between screeners. 

1 σ2 = residual variance or within-subject variance; τ00 = random intercept 
variance or between-subject variance; marginal R2 

= variance explanation 
through the fixed effects; conditional R2 = variance explanation through the 
fixed and random effects. 
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group of screeners (study group) from an international airport partici-
pated in a four-month field study during which they conducted 
screening sessions for up to 60 min, while a control group engaged in 
screening for around 20 min. Examining longer screening sessions in the 
study group revealed an interaction between time on task and task load 
(number of images inspected per min) for detection performance (hit 
rate). The hit rate did not decrease with time on task at low or average 
task load. However, when the task load was high, a decline in the hit rate 
was observed with time on task. A stable hit rate at low and average task 

load confirmed the results of X-ray baggage screening studies that found 
an unchanged hit rate over time (Buser et al., 2020; Wolfe et al., 2007), 
or did not find performance differences between different break regimes 
(Chavaillaz et al., 2019). Meuter and Lacherez (2016) also found an 
interaction between time on task and task load and a decrease in the hit 
rate at high task load (defined as more than the median of 5.4 images per 
minute in their case). For the reject rate and processing time, we found 
small decreases with time on task for all levels of task load; however, 
slightly stronger decreases were observed for the higher task load. The 

Table 4 
Model comparison between the models with and without the interaction Time on task × Task load for the hit rate, reject rate, and processing time of the study group.  

Model Hit rate Reject rate Processing time 

AIC R2 c. df p AIC R2 c. df p AIC R2 c. df p 

M0 = Time on task þ task load + days since study start + daytime + (1| 
Screener/Session) 

4′605 .146 13  193′200 .016 13  692′200 .153 14  

M1 = Time on task £ task load + days since study start + daytime + (1| 
Screener/Session) 

4′595 .150 14 .001 193′200 .016 14 .023 692′200 .152 15 .020 

Note. R2 c. = R2 conditional: variance explanation through the fixed and random effects. 

Fig. 1. Effects of time on task on hit rate (A), reject rate (B), and processing time (C) for three levels of task load: M - 1 SD, M, and M + 1 SD.  
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efficiency of X-ray baggage screening therefore increased, with 
screeners providing faster responses and producing fewer manual bag 
searches. 

Our finding of a declining hit rate at high but not at low or average 
task loads does not seem compatible with the underload theory (Rob-
ertson et al., 1997). If under-stimulation were the cause of the decline in 
the hit rate, a stronger decline in performance would be expected when 
screeners only have few images to inspect (low task load). In other 
words, the interaction between task load and time on task would be 
expected in the opposite direction. The resource theory, however, 

assumes that performance decreases due to the depletion of cognitive 
resources (Helton and Warm, 2008; Matthews et al., 2010) and one 
would therefore expect a stronger decline when task load is high. While 
we did observe a decline in the hit rate at high task load, we also found a 
decline in processing time and reject rate with increasing time on task 
and task load. The fact that screeners become faster under these con-
ditions cannot be justified with the resource theory. Similarly, a 
decrease in the reject rate suggests that the false alarm rate does not 
increase, which cannot be explained by the resource theory. Conversely, 
our results are in line with Rubinstein’s (2020) observation that per-
formance decrements in visual search tasks, such as X-ray baggage 
screening or industrial inspection, often manifest themselves in a 
decrease of hit rate, false alarm rate, and response time. His proposed 
DART theory assumes that this change in performance is due to implicit 
strategic changes in the behavior to protect cognitive resources. 
Screeners therefore increase their speed of performing the task when 
spending long periods of time on the task to save resources, which leads 
to fewer “target present” responses (Rubinstein, 2020). In this context, 
one might expect the behavior change to occur more strongly when the 
task load is high, as we observed in our study: saving resources becomes 
more important as the number of images to be analyzed increases. 
Additionally, other studies have also found resource-saving behavior at 
high task loads. People tend to rely more on automation when faced with 
high task load (Dixon and Wickens, 2006; Wickens and Dixon, 2007), or 
choose heuristic search strategies when forced to prioritize speed over 
accuracy (McCarley, 2009). 

The subjective stress measures of the study group were compared to 
the control group, who undertook screening for around 20 min ac-
cording to the European Regulation. Unlike in other typical vigilance 
tasks (Warm et al., 2008b), we did not find increased levels of distress or 

Fig. 2. Change in hit rate, reject rate, and processing time over the course of the study for the study group (left), and the control group (right).  

Fig. 3. Distribution of the mean screening duration per screener of the study 
group for sessions that were ended on the screeners’ own terms. 
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decreased levels of engagement due to longer screening. The study 
group, who undertook screening for up to 60 min, did not report more 
distress or worry compared to the control group. The study group even 
reported higher values in engagement; this may be because the 
screening position allows screeners to sit separated from the checkpoint, 
thus contributing to recovery. Furthermore, this group was able to 
decide for themselves when to end a screening session. This additional 
autonomy could be another reason for the higher engagement as defined 
in the established work design theories (Bakker and Demerouti, 2007; 
Hackman and Oldham, 1980). Another explanation could be that the 
study group showed more engagement because participants were more 
aware about contributing to research than participants in the control 
group. Regarding the small changes in the analyzed performance mea-
sures that were observed over the four months of the study, it is 
reasonable to infer that they were due to seasonal changes in passengers 
and their baggage as they were also found for the control group. The 
session duration did not change across the study. Therefore, the results 
do not indicate that screeners either became accustomed to screening for 
longer or showed any negative impact of long-term stress from engaging 
in screening for longer. 

Overall, the effects of time on task and task load on hit rate were 
relatively small compared to differences between study participants. The 
estimated random effects suggest that screeners contributed 5.5 times 
more to the variance in hit rate explained by the model than all fixed 
effects combined, i.e., time on task, task load, days since study start, and 
daytime. Previous studies showed that people differ significantly in vi-
sual cognitive abilities that are relevant for recognizing objects in X-ray 
images and that vigilance or working memory capacity of individuals 

predict visual search performance (Hardmeier and Schwaninger, 2008; 
Hättenschwiler et al., 2019; Mitroff et al., 2018; Peltier and Becker, 
2020; Rusconi et al., 2015; Schwaninger et al., 2005). Along with per-
formance, performed and preferred screening durations also varied 
considerably between the screeners. Based on the participants’ average 
session duration and their reported preferred duration, 30–40 min of 
screening would be feasible for most screeners. Whereas we observed a 
decrease in the hit rate with time on task at high task load, preventing 
high task load would only have a minor impact on the overall hit rate at 
the studied airport, as task load was only high for a minority of the 
inspected images (only for 15% of the images task load was at or above 
the threshold defined as high in our results). This indicates that focusing 
on interindividual differences might be more effective than controlling 
the task load. 

A limitation of our study is that we only investigated remote 
screening. Further research is needed to examine whether different re-
sults are obtained when screeners work at the more busy and noisy 
checkpoint (Kuhn, 2017). Moreover, it remains to be investigated 
whether the same or similar results are found at other airports, as they 
can vary regarding their size, implemented technology, task load, and 
other variables. Because we were only able to assess the reject rate and 
not the false alarm rate, we could not fully conclude whether the 
observed decreases in hit rate and reject rate are due to a sensitivity 
decrement or a change in response bias. Further, it is important to 
consider that screeners in our study could decide to end screening ses-
sions. Therefore, the generalizability of the conclusions for airports with 
fixed screening sessions might be limited. Another limitation is that we 
did not address eye strain, which has been associated with prolonged 

Fig. 4. Mean of Distress, Engagement, and Worry for the study and control group. Error bars represent standard errors.  

Fig. 5. Distribution of the study group’s responses to the survey questions (A) “After what time did it get difficult to continue screening?“, and (B) “What do you 
consider to be an optimal screening duration?” 
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and continuous daily use of digital screens (for recent reviews, see Kaur 
et al., 2022; Mehra and Galor, 2020). When allowing 30–40 min of 
continuous screening, the recommendations of the American Opto-
metric Association may be considered, that is, taking a 15-min break 
after 2 h of computer use or focusing on an object 20 feet away for 20 s 
after 20 min of screen use (American Optometric Association, n.d.). 

5. Conclusion 

This study investigated how longer screening durations affect 
screener performance at an international airport. For the detection of 
prohibited articles (hit rate), there was an interaction between time on 
task and task load: while detection (hit rate) decreased with an increase 
in the time on task when task load was high, we found no significant 
decrement of the hit rate when task load was low or average. Further-
more, time on task and a higher task load resulted in a lower reject rate 
and faster processing times. While screeners conducting longer 
screening durations did not report more stress, we observed individual 
differences in performance and in performed and preferred screening 
duration. Our results are in line with the DART proposed by Rubinstein 
(2020), which can explain decreases in the hit rate, reject rate, and 
processing times as a coping strategy. Accordingly, screeners switch to a 
resource-efficient response pattern when the task load is high, with 
negative consequences for hit rates. If the results of our study can be 
replicated in remote screening conditions with different airports, trials 
can be extended to the checkpoint. With similar outcomes at check-
points, screening durations of 30–40 min could be implemented, which 
can provide operational benefits without, or only, small decreases in the 
hit rate during periods of high task load. 
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Abstract 1 

Many airports use threat image projection (TIP) to measure how well security officers 2 

(screeners) detect prohibited items during passengers’ baggage screening. However, research on 3 

the reliability and validity of TIP data is scarce. To address this research gap, we analyzed a 4 

large dataset of cabin baggage TIP data (1,206,076 TIP events from 728 screeners over four 5 

years). We found reliability to increase with the number of TIP events in accordance with the 6 

Spearman–Brown prediction and that approximately 100 TIP events were sufficient to achieve a 7 

minimum reliability value of 0.7 during periods when TIP was difficult. TIP data predicted the 8 

outcome of covert tests (wherein instructed people tried to smuggle real prohibited articles 9 

through the checkpoint; 1,194 covert tests from 474 screeners), indicating that TIP is a valid 10 

measure of operational threat detection. The results imply that TIP provides a reliable and valid 11 

measure of threat detection if it is difficult enough and 100 or more TIP events are considered 12 

per screener.   13 

 14 

Keywords: airport security, cabin baggage screening, detection performance, threat image 15 

projection, covert tests 16 

 17 

 18 

  19 
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1. Introduction 1 

Most airports worldwide use threat image projection (TIP) technology to measure how well 2 

security officers (screeners) detect threats during passengers’ baggage screening. With TIP, pre-3 

recorded X-ray images of prohibited items (bombs, guns, knives, etc.) are projected onto the X-4 

ray images of passengers’ baggage (Cutler and Paddock, 2009; Hofer and Schwaninger, 2005; 5 

Skorupski and Uchroński, 2016). The TIP system records whether the screeners detect them. These 6 

data are used for quality control by airports, governments, and security companies (Cutler and 7 

Paddock, 2009; Hofer and Schwaninger, 2005; Riz à Porta et al., 2022; Skorupski and Uchroński, 8 

2016). Although widely used, only one study has investigated the reliability of TIP data (Hofer and 9 

Schwaninger, 2005). Furthermore, to our knowledge, no study has examined whether TIP data 10 

provide a valid measure of real prohibited item detection. Therefore, we aimed to examine the 11 

reliability of TIP by analyzing a large set of data from an international airport. We also assessed 12 

the validity of the TIP data by analyzing whether it can predict how well screeners detect prohibited 13 

items in covert tests, wherein instructed people attempted to smuggle prohibited items in their 14 

baggage (e.g., knives, inert bombs, or guns) past the checkpoint (Walter et al., 2021; Wetter et al., 15 

2008).  16 

2. Background and theory 17 

In many countries, TIP is mandated and used to ensure the minimum detection performance 18 

of screeners (Bassetti, 2021). Therefore, pre-recorded images of threats, known as fictional threat 19 

items (FTIs), are projected onto 1%–4% of all passenger baggage during screening (Cutler and 20 

Paddock, 2009; Hofer and Schwaninger, 2005; Meuter and Lacherez, 2016; Skorupski and 21 

Uchroński, 2018). When screeners suspect a prohibited item, they press a designated button and 22 

the system immediately provides feedback on whether an FTI is present or not (Bassetti et al., 23 
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2015; Schwaninger, 2006). The screeners’ responses to such TIP images are recorded by the system 1 

(TIP events), providing data on the TIP performance of screeners, typically calculated as the hit 2 

rate (the percentage of projected TIP images detected by the screener) (Hofer and Schwaninger, 3 

2005; Meuter and Lacherez, 2016). If screeners do not achieve a minimum hit rate, they must 4 

undergo remedial training and successfully complete a recertification process before they are 5 

allowed to continue screening during the operation. Some airports also reward or penalize 6 

screeners depending on their TIP performance (Bassetti, 2018). Researchers analyze TIP data to 7 

answer various research questions related to visual search and human factors at security 8 

checkpoints (Buser et al., 2022; Meuter and Lacherez, 2016; Skorupski and Uchroński, 2016). 9 

Other than performance measurement, TIP also addresses the fact that most threats, such as real 10 

bombs or guns, occur very rarely at checkpoints. Research has shown that people do not recognize 11 

rare targets well, which is known as the target prevalence effect (Godwin et al., 2010; Menneer et 12 

al., 2010; Wolfe et al., 2007, 2005). By increasing the number of threats to be detected, TIP aims 13 

to mitigate this effect while also increasing motivation by providing screener feedback on detection 14 

performance (Cutler and Paddock, 2009; Harris, 2002; Riz à Porta et al., 2022; Schwaninger, 2009).  15 

TIP data must be reliable and valid for effective use. Reliability refers to the extent to which 16 

results are reproducible with repeated measurements, which corresponds to its accuracy or 17 

consistency (Murphy and Davidshofer, 2014). In other words, the measured TIP performance is 18 

reliable if a screener shows similar TIP performances when measured repeatedly under similar 19 

conditions. Ensuring reliability is of particular importance when the measurement of a skill or 20 

construct has consequences for the tested subjects (Murphy and Davidshofer, 2014). The reliability 21 

of a measurement method can be quantified by adopting a statistical model, like the classical test 22 

theory (CTT). CTT was originally conceptualized to test the accuracy and sensitivity of 23 
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questionnaires or tests. It assumes that a single underlying dimension, such as threat detection 1 

skills, is being measured and that every person has a single true score (T) on that dimension 2 

(Murphy and Davidshofer, 2014; Rindskopf, 2015). Therefore, all test items (in this case, TIP 3 

images) should measure the same skill (threat detection). It is assumed that a person’s observed 4 

test score, X, is equal to the sum of their true score, T, and the measurement error, e. Therefore, 5 

the basic equation of CTT is as follows:  6 

X = T + e   7 

CTT thereby assumes that the errors have a mean of zero, are independent of the true score 8 

and that errors on different measures are independent. A consequence of this model is that the 9 

variation across individuals or the variance in the observed test scores is the sum variance of true 10 

scores, 𝑆𝑇
2, and the variance in the error, 𝑆𝑒

2. 11 

𝑆𝑋
2 = 𝑆𝑇

2 + 𝑆𝑒
2 12 

Based on this equation, reliability is defined as the proportion of total variance in scores 13 

attributable to true variance, 𝑆𝑇
2, rather than error variation, 𝑆𝑒

2. 14 

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑆𝑇

2

(𝑆𝑇
2  + 𝑆𝑒

2)
=  

𝑆𝑇
2

𝑆𝑋
2  15 

This statistical model leads to several possible methods for estimating reliability (for an 16 

overview see: Murphy and Davidshofer, 2014; Rindskopf, 2015); however, in principle, two or 17 

more tests are used at different time points and the outcomes of such correlation result in reliability 18 

values that lie between zero and one. Values close to one indicate a very reliable test, whereas a 19 

reliability of zero indicates that the measured scores are only random and are not because of the 20 

measured construct. To determine the reliability of the TIP data, we employed the split-half 21 
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reliability method. In this method, items of a test (in this case, responses to TIP images over a 1 

certain period) are split into two groups; the score of one half is related to that of the other half by 2 

correlating the test scores of both halves. The more similar the test scores of the two halves, the 3 

higher the reliability. A disadvantage of using split-half reliability is that it only determines the test 4 

score for half of the available items because they are split into two groups. As reliability increases 5 

with the number of considered items, the reliability for half of the items is lower than the reliability 6 

for the full set. Under the CTT assumptions, changes in reliability based on the number of items 7 

can be estimated using the Spearman–Brown prediction (Brown, 1910; Spearman, 1910). 8 

Therefore, this formula is commonly used to correct the split-half reliability for full tests or to 9 

calculate how long a test would have to be to achieve a certain reliability. 10 

𝑟2 =
𝑘 𝑟1

1 + (𝑘 − 1)𝑟1
  11 

 12 
Therefore, r1 is the reliability of the original test and r2 is the predicted reliability of a test, 13 

which is a factor k longer than the original test. Reliability should at least reach a minimum value 14 

of 0.7 (Kline, 2000; Murphy and Davidshofer, 2014). This applies if the test results are used as a 15 

first indication (e.g., dividing the screeners into two performance groups) or for group diagnostics. 16 

However, based on the results, if measures or decisions are taken with consequences for the 17 

individual (e.g., getting hired or undergoing remedial training), it is highly recommended to 18 

achieve higher reliability values of at least 0.8 (Brough, 2019; Murphy and Davidshofer, 2014).  19 

As introduced above, reliability coefficients indicate the proportion of the variance in score 20 

that is attributable to true variance and not error (e.g., a reliability of 0.8 indicates that 80% of the 21 

variance stems from variation in the true score and 20% stems from error), and therefore, provides 22 

a measure of accuracy relative to the score’s variance. Under the CTT assumptions, absolute 23 
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measures of accuracy, or the standard error and confidence intervals (CI), can be derived from the 1 

reliability coefficient of the test, r, and the variability of test scores, S2.  2 

𝑆𝐸 =  S2 ∗  √(1 −  𝑟)  3 

Standard error indicates the variability in test scores attributable to measurement errors in 4 

absolute terms (Murphy and Davidshofer, 2014). The standard error can then be used to compute 5 

CI, which inform the range in which the true score of an individual lies with a certain level of 6 

confidence in a normal distribution.  7 

It is unclear whether CTT assumptions can be applied to TIP data because of the differences 8 

between TIP and standardized tests. With FTI TIP, every image and test item is different because 9 

FTIs are always projected onto a different X-ray image of passengers’ baggage at a random 10 

position. Furthermore, different TIP libraries composed of different images can be used at one 11 

airport, and for each library, TIP images are exchanged and updated regularly. In addition, 12 

screeners differ in the number of TIP images they analyze, and responses to TIP images are 13 

collected over a long period of time (six months), during which the performance of screeners can 14 

change. Therefore, it is important to conduct research on TIP data reliability and how well TIP 15 

meets the CTT assumptions and whether estimates based on CTT can be applied to TIP.  16 

To our knowledge, only one study has examined the reliability of TIP data (Hofer and 17 

Schwaninger, 2005). The researchers split TIP data from cabin baggage screening (CBS) and hold 18 

baggage screening (HBS) into two groups based on odd and even days and calculated multiple 19 

split-half reliabilities using different data aggregations. Reliability values above 0.7 were achieved 20 

for HBS data; however, reliability values were insufficient for CBS data (0.58 and lower). The 21 

researchers hypothesized that high TIP hit rates in the CBS data caused ceiling effects in 22 
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performance and that very small inter-individual differences in performance could have led to these 1 

low reliability results. However, differences in reliability between CBS and HBS TIP data may 2 

have also arisen because of differences in the TIP libraries and systems used; FTI TIP was 3 

implemented for CBS, whereas combined threat image TIP was used for HBS where pre-recorded 4 

X-ray images of baggage, including prohibited items, were projected into the stream of X-ray 5 

images during screening. Another limitation of the study was that the number of TIP events was 6 

not directly considered; the two halves of the test were unequal in size, and the reduced number of 7 

TIP images because of splitting of the data was not corrected. Moreover, the study did not examine 8 

the validity of the TIP data. 9 

TIP performance should not only be reliable, but also a valid measure of the detection 10 

performance. Validity is defined as the extent to which a test measures what it claims to measure, 11 

which, in this case, is the detection of real prohibited items. Several methods are used to assess 12 

validity (Murphy and Davidshofer, 2014). One method is to analyze the degree to which a 13 

performance measure can predict the true performance of the skill being measured. If the TIP 14 

performance is a valid measure of threat detection, it should be able to predict how likely a screener 15 

is to detect real prohibited items in an X-ray image. However, a study by Riz a Porta et al. (2022) 16 

showed that screeners at an international airport considered approximately one-third of all TIP 17 

images to contain artifacts and look unrealistic. Therefore, it is unclear whether TIP truly measures 18 

the detection of real prohibited items, and it is important to investigate whether TIP performance 19 

and the detection of prohibited items are correlated. Covert tests are conducted at airports and by 20 

governments and police staff as quality control measures (Schwaninger, 2009; Skorupski and 21 

Uchroński, 2016; Walter et al., 2021; Wetter et al., 2008). By correlating TIP data with covert test 22 

results, the validity of TIP can be investigated, which is another important contribution of our study. 23 
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 1 

3. Materials and Methods 2 

2.1 Participants and data 3 

The participants were professional airport security screeners who were selected, qualified, 4 

trained, and certified according to the standards set by the appropriate national authority (civil 5 

aviation administration) in compliance with the relevant regulations in the European Union 6 

(European Commission, 2015). We analyzed TIP and covert test data from an international airport 7 

covering four years of CBS. The data included all responses to the TIP events of the screeners, 8 

which were recorded as either hit (TIP detected) or missed (TIP missed). To examine the reliability 9 

of the TIP data, we analyzed 1,206,076 TIP events from 728 screeners over four years. To analyze 10 

the validity of the TIP data, we performed correlational analyses with 1,194 covert test results from 11 

474 screeners from the same participant sample. The study complied with the American 12 

Psychological Association’s Code of Ethics and was approved by the Institutional Review Board 13 

of the School of Applied Psychology, University of Applied Sciences and Arts Northwestern 14 

Switzerland. 15 

2.2 Procedure  16 

Similar to other airports (Michel et al., 2014), the screeners worked at four positions at the 17 

checkpoint and rotated among themselves. At the X-ray screening point, each screener logged into 18 

the workstation with a unique user ID and inspected the X-ray images of the passengers’ baggage 19 

for prohibited items. The TIP systems at this airport projected FTIs onto X-ray images of 20 

passengers’ baggage with a target prevalence of 2.9%. The screeners were aware that the TIP was 21 

operational and that their detection performance was monitored. When screeners suspected a 22 

prohibited item, they indicated this by pressing a specific button, and the TIP system provided 23 
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immediate feedback on whether an FTI was present or not. If FTI was present, the X-ray image 1 

had to be analyzed again without FTI. If no FTI was present, the relevant piece of baggage was 2 

further inspected (through manual search and explosive trace detection). After X-ray image 3 

inspection, screeners logged out from the workstation and continued working at another 4 

checkpoint position or took a break.  5 

At the target airport, covert tests were conducted regularly by the staff recruited by the 6 

airport, which was rotated to avoid recognition by screeners. The staff were then instructed to 7 

smuggle a real threat through security control, either in their baggage or on themselves. The 8 

selection and placement of prohibited items followed the protocol defined by the quality control 9 

team. The prohibited items corresponded to the same categories as those in the TIP (guns, bombs, 10 

knives, etc.). For each test, the prohibited item category, where the item was placed, and the 11 

difficulty of the test were protocoled. After the covert test, the outcome was discussed with the 12 

involved screener(s) and the difficulty of each test was evaluated again by the quality team by 13 

reviewing the X-ray image of the baggage recorded during the test. The outcome was documented 14 

as either pass (item found) or fail (item not found). Further information such as which checkpoint 15 

the test was conducted, if and which X-ray machine type was used, as well as the date and time 16 

were protocoled. 17 

2.3 Analyses 18 

2.3.1. Reliability of TIP data 19 

To investigate the reliability of the TIP data, we assessed split-half reliability using the following 20 

procedure: to control for changes in TIP performance over time, TIP events were first sorted by 21 

date and time of occurrence, and every two consecutive TIP events per screener were paired. To 22 

estimate the reliability for n number of TIP events, n pairs of TIP events were randomly selected 23 
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(without replacement) and the TIP events of each pair were randomly split into two groups. This 1 

ensured that both groups had a comparable distribution of TIP events over time for each screener. 2 

For each screener and each of the two groups of TIP events, the TIP hit rate (proportion of detected 3 

TIP events) was calculated, and the Pearson correlation between the hit rates of the two groups 4 

was computed. To estimate reliability, all random steps (i.e., sampling and splitting of pairs) were 5 

repeated 10,000 times and the resulting correlation coefficients were averaged. 6 

As airports and authorities usually consolidate performance on a half-year basis, our analyses 7 

were conducted for half-year periods from July 2015 to June 2019. In the first step, we determined 8 

whether the Spearman–Brown prediction accurately described how the reliability varied as a 9 

function of the number of TIP events considered for TIP performance evaluation. To estimate the 10 

reliabilities for the various numbers of TIP events using the same sample of screeners, only 11 

screeners with at least 100 TIP events per six months were included. We calculated the split-half 12 

reliabilities (as described above) considering 5–50 TIP events for performance evaluation, in 13 

increments of five. The reliability of the corresponding number of TIP events was then estimated 14 

using the Spearman–Brown prediction. For this purpose, the reliability of 25 TIP events (per split) 15 

was used as the baseline. We then compared the reliabilities of the two calculations. To determine 16 

the reliability of each half-year, we wanted to retain as many screeners as possible for analysis. 17 

Therefore, 10 TIP events per screener and per split were used to calculate the split-half reliability 18 

for each half-year. Consequently, screeners that did not have a minimum of 20 TIP events within 19 

the respective half-year period were excluded from the analysis. Table 1 shows the number of data 20 

points excluded per half-year based on these requirements. The split-half reliability was 21 
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determined for 20 TIP events (per split), and based on the Spearman–Brown prediction, the 1 

reliability for higher numbers of TIP events (50, 100, 345) was calculated1.  2 

 3 

Table 1. Number of TIP events and screeners excluded from reliability analysis per half-year 4 

Time 

period 

Screeners 

excluded 

(N) 

Screeners 

excluded 

(%)  

TIP 

excluded 

(N)  

TIP 

events 

excluded 

(%)  

1 15 3.72 106 0.08 

2 16 3.90 168 0.12 

3 13 3.05 96 0.06 

4 16 3.59 138 0.08 

5 24 5.19 258 0.13 

6 34 7.05 305 0.18 

7 41 8.20 373 0.27 

8 49 9.86 355 0.36 

Note. The excluded screeners did not meet the minimum of 20 TIP events per half-year. 5 

 6 

2.3.2 Validity of TIP data 7 

To assess the validity of the TIP data, we used binomial generalized estimation equations 8 

(GEE) (Ballinger, 2004; Liang and Zeger, 1986) with TIP and covert test data from July 2015 to 9 

June 2019.  10 

As was the case for TIP, only CBS covert test data from the X-ray positions were included. 11 

Furthermore, only covert tests for which it was possible to link half a year of TIP data before and 12 

after the covert test were included. In total, 1,194 covert tests from 474 screeners were used for 13 

statistical analyses. An average of 2.52 covert tests were analyzed per screener (SD = 1.79). To 14 

 

 

1 The data originate from two separate TIP systems. An additional analysis revealed that the 

reliabilities of the two systems were comparable, and that the data can be analyzed jointly. Individual 

analysis of the libraries resulted in a reliability value of 0.45 and jointly of 0.43 using 50 TIP events. 

Standard deviations were between 0.33–0.34 and the standard error was 0.0003. 
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examine the effect of the TIP hit rate on the covert test performance, a binomial GEE was 1 

calculated, as GEEs are suited to fit generalized linear models with longitudinal and clustered 2 

data.2 The TIP hit rate was included by aggregating TIP events that occurred within half a year 3 

before or after the covert test. To ensure a better model convergence, the TIP hit rate was z-4 

transformed. The model also controlled for the prohibited item category (gun, knife, improvised 5 

explosive device, etc.), different checkpoints within the airport, X-ray machine type, and 6 

complexity of the covert test as factors, and the screener as a random variable. The binomial GEE 7 

was estimated using the R-package GEE, with an exchangeable correlation structure. All analyses 8 

were performed using R (R Core Team, 2020). 9 

 10 

4.  Results 11 

3.1 Reliability of TIP data 12 

The Spearman–Brown prediction corresponded well with the empirically estimated 13 

reliabilities and, therefore, provided an accurate description of how the reliability increased with 14 

the number of TIP events, as illustrated in Figure 1 for the first three of the eight half-year periods 15 

(the other five half-year periods showed the same level of correspondence).  16 

 

 

2 Additionally, a generalized mixed model was estimated, which resulted in very similar 

coefficient estimates but showed singularity problems. 
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 1 

Figure 1. Split-half reliability based on the number of TIP events considered for calculating TIP 2 
performance for the first three half-year periods. The red dots indicate the empirically estimated split-half 3 
reliabilities. The blue lines show the predicted reliabilities based on the split-half reliability for 25 TIP 4 
events (red solid dot). 5 

  6 
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Figure 2 shows the split-half reliability of the TIP performance for 20, 50, 100, or 345 TIP events 1 

per half-year, with the latter corresponding to the average number of TIP events inspected by a 2 

screener per half-year.  3 

 4 

Figure 2. Reliability values for 20, 50, 100, and 345 TIP events (mean number of TIP events per screener 5 

per half-year period) for eight half-year periods. 6 

As shown, reliability decreased over time. Decomposing the reliability into true variance and 7 

standard error (Figure 3B and C) shows that the decrease in reliability was not attributable to an 8 

increasing standard error (which also decreased over time); rather, the reliability decreased because 9 

of an over-proportionate decrease in the true variance of the TIP performance between the 10 

screeners. As shown in Figure 3C, the average TIP performance increased over time, which might 11 

have led to a limited room for true variance (i.e., a ceiling effect).  12 

 13 

 14 
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 2 

Table 1 shows the necessary number of TIP events to reach a reliability of either 0.70, 3 

0.75, or 0.80 for each half-year period. Although considering 92 TIP images for performance 4 

evaluation was sufficient to achieve a minimum reliability of 0.7 in the first half-year, 205 TIP 5 

images were necessary to obtain an equal reliability in the eighth half-year.  6 

  7 

Figure 3. Mean hit rate (A),variance between screeners (B), and the standard error (C) for eight half-year 

periods. 
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 1 

Time period N TIP required to 

achieve a reliability of 

0.70  

(% of screeners who 

did not analyze this 

number of images or 

more) 

N TIP required to 

achieve a reliability of 

0.75  

(% of screeners who 

did not analyze this 

number of images or 

more) 

N TIP required to 

achieve a reliability of 

0.80  

(% of screeners who 

did not analyze this 

number of images or 

more) 

1 92 (16.38%) 118 (20.60%) 158 (25.06%) 

2 97 (15.12%) 125 (19.76%) 167 (22.68%) 

3 111 (16.20%) 143 (19.25%) 191 (23.47%) 

4 126 (18.16%) 162 (21.52%) 216 (26.91%) 

5 112 (16.23%) 144 (18.83%) 192 (21.21%) 

6 140 (19.71%) 180 (23.86%) 239 (30.50%) 

7 145 (27.00%) 187 (34.20%) 249 (46.40%) 

8 205 (56.34%) 263 (70.62%) 351 (84.91%) 

Average over 

time frames 

129 165 220 

 2 

Table 1. Number of TIP events required per screener to achieve reliable performance measurement for 3 
each time frame. The brackets indicate the percentage of screeners who did not analyze the number of 4 
required TIP image or more. 5 

 6 

Figure 4 illustrates the 95% confidence intervals (95%-CIs) for a reliability of .7 and .8 and a hit 7 

rate of .80, based on the average true variance across the eight half-year periods. The 95%-CI 8 

includes the true TIP performance with a 5% probability of error. As can be seen, a higher 9 

reliability results in a smaller 95%-CI (at constant true variance). 10 
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 1 

Figure 4. 95% CI for an average hit rate of 0.8 and a reliability of 0.7 (left) or 0.8 (right).  2 

 3 

3.2 Validity of TIP data 4 

The average covert test hit rate over all screeners was 79.50 % (SD = 0.40). The GEE with covert 5 

test performance as a dependent measure revealed that screeners with a better TIP performance 6 

also showed higher covert test performance (Table 2). Figure 5 shows the estimated relationship 7 

between the TIP hit rate and covert test performance. In total, 1,194 covert tests were considered, 8 

and on average, 826 TIP events were considered per covert test per screener (SD = 323.58). As 9 

shown in Figure 5, screeners with a higher TIP performance also showed a higher covert test 10 

performance. TIP data predicted the covert test performance well (odd ratio = 1.481; the odds of 11 

passing a covert test increase by about 48% for an increase in the TIP hit rate by one standard 12 

deviation). 13 

  14 
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 1 

Table 2. GEE results for covert test performance 2 

Term β Robust SE Robust z Odd ratio p 

Intercept 1.477 0.247 5.939 4.378 < 0.001 

TIP hit rate scaled 0.393 0.084 4.678 1.481 < 0.001 

Complexity: 2 -1.080 0.213 -5.073 0.339 < 0.001 

Complexity: 3 -2.085 0.279 -7.469 0.124 < 0.001 

Complexity: unknown -0.211 0.237 -0.892 0.810 0.372 

Category: bomb 0.114 0.224 0.507 1.120 0.612 

Category: knife -0.633 0.298 -2.128 0.531 0.034 

Category: other -0.682 0.247 -2.759 0.506 0.006 

Checkpoint: gates 0.465 0.201 2.314 1.592 0.021 

Checkpoint: staff & VIP 0.582 0.217 2.683 1.790 0.007 

Checkpoint: transfer 1.362 0.273 4.976 3.903 < 0.001 

Machine type 2 0.327 0.199 1.645 1.386 0.100 

      

 3 

 4 

 5 

Figure 5. Relationship between covert test and TIP hit rate (blue line). 95% confidence band indicated by 6 
the blue area around the blue line. The histogram shows the distribution of the number of conducted 7 
covert tests. 8 

 9 
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 1 

5.  Discussion 2 

TIP data are used worldwide for quality control at airports and governments and security 3 

companies. At airports, if screeners do not achieve a minimum hit rate, they must undergo remedial 4 

training and successfully complete a recertification process before being allowed to continue 5 

screening during operation (Bassetti, 2018; Riz à Porta et al., 2022). We investigated whether TIP 6 

data provides a reliable and valid measure of detection performance by analyzing data from an 7 

international airport covering four years. We found that reliability increased with the number of 8 

TIP events following the Spearman–Brown prediction. This finding is important because the 9 

reliability of a TIP system can be estimated for a certain number of TIP events per screener (e.g., 10 

20 events), and the data can be extrapolated to calculate the necessary number of TIP events to 11 

achieve the desired reliability. Based on this method, we found that with a good TIP library, 12 

approximately 100 TIP events were sufficient to achieve a minimum reliability of 0.7. This 13 

reliability value is recommended if the measure is used as a first indication (e.g., dividing the 14 

screeners into two performance groups) or for group diagnostics. However, if performance 15 

measures have consequences for screeners (e.g., mandatory remedial training), it is highly 16 

recommended to achieve higher reliability values of at least 0.8 (Brough, 2019; Murphy and 17 

Davidshofer, 2014). To achieve this, our results suggested that approximately 170 TIP events were 18 

required, assuming that a good-quality TIP library is used. When estimating reliability based on a 19 

randomized split of the TIP data, we found resampling to be important because a single estimate 20 

can deviate strongly from the mean estimate. Therefore, we recommend resampling for a 21 

randomized split-half reliability estimation.  22 
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Our analyses also showed decreasing reliability throughout the four-year period. Although 1 

the error variance also decreased over time, there was a disproportionate decrease in the true 2 

variance between screeners, causing a decrease in reliability. It seems likely that the decline in the 3 

true variance was caused by an increase in the average hit rate, leading to a ceiling effect. With an 4 

increasing number of screeners reaching a TIP performance close to the possible maximum, TIP 5 

performance can no longer be distinguished between these high-performing screeners. Ceiling 6 

effects are a known reliability issue in performance measurement; for example, in competency 7 

assessment tests. The increase in the average hit rate may have been caused by improvements in 8 

screeners’ detection ability or, perhaps more likely, by an increase in familiarity with FTIs.  9 

Reliability informs the share of variance attributable to true variance as opposed to the 10 

variance because of measurement error and, therefore, not only depends on the amount of 11 

measurement error (error variance) but also on how much individuals differ (true variance). If one 12 

is more interested in the absolute TIP performance than in the comparison between individuals or 13 

groups, more informative standard errors and CIs can be derived from the estimated reliability and 14 

variance across screeners. For example, Figure 4 shows the 95% CI for a reliability of 0.7 or 0.8 15 

and the average true variance across all periods of our data set. These 95% CI show the interval in 16 

which the true TIP performance lies when accepting a 5% probability of error. As can be seen in 17 

Figure 4, the 95% CI decreases when reliability increases.  18 

To achieve high reliability, its strong dependency on the difficulty of the TIP images should 19 

be considered. Our results showed a decrease in reliability over time for a constant number of TIP 20 

events, which was likely because of an increase in the hit rate. To avoid this, a proportion of FTIs 21 

should be exchanged regularly (e.g., 10% every year) to prevent overlearning of images. TIP 22 

libraries should be large enough to ensure that screeners do not view the same prohibited items too 23 
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often. If the average hit rate of screener reaches very high values (such as 95%), then the TIP 1 

library should be exchanged. Furthermore, it is advisable to check them for artifacts (Riz à Porta 2 

et al., 2022) to avoid TIP images from being too easy. For a given TIP system, reliability can be 3 

improved by increasing the number of TIP events used for performance assessment by extending 4 

the evaluation period or by increasing the TIP rate (the percentage of baggage images selected for 5 

TIP).  6 

For TIP data to provide a useful assessment of detection performance, it must be reliable 7 

and valid; TIP performance must reflect the performance in detecting real prohibited articles. 8 

Bassetti (2018) reported that screeners sometimes recognize TIP images because they appear 9 

artificial. Riz à Porta et al. (2022) found that a third of TIP images from an international airport 10 

look unrealistic. However, with two-thirds of the images looking realistic, these researchers 11 

concluded that TIP performance should still achieve its purpose and, to a large extent, reflect the 12 

performance in detecting real prohibited articles. Consistent with this view, our analysis found that 13 

TIP performance was significantly associated with detection performance in covert tests. In other 14 

words, screeners who performed better in detecting TIP were more likely to detect prohibited items 15 

in covert tests. It must be noted that this finding provides the first validation of TIP performance. 16 

However, our results do not indicate that the TIP is perfectly realistic. For instance, we found that 17 

the hit rate was higher in the TIP test than in the covert test. This is consistent with previous 18 

findings that TIP produces a share of unrealistic and easy images (Riz à Porta et al., 2022). Despite 19 

these differences in difficulty, our results showed that TIP has predictive validity and distinguishes 20 

between screeners with high and low detection performance.  21 

When discussing TIP performance, one must be aware that it does not fully reflect the 22 

screeners’ detection ability. In a detection task such as X-ray image inspection, the hit rate depends 23 
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not only on searchers’ target-detection ability, but also on their response tendency (Green and 1 

Swets, 1966; Macmillan and Creelman, 2005). Screeners can increase their TIP hit rate by 2 

indicating that they suspect a threat at the cost of a higher false alarm rate more frequently. 3 

Therefore, assessing the screener detection ability should ideally consider both hit and false alarm 4 

rates. For many TIP systems, including those used in our study, the false alarm rate is unavailable 5 

(only the rejection rate is measured, which includes all bags selected for manual search because of 6 

prohibited items and false alarms). Therefore, studies based on TIP data are often limited to the hit 7 

rate (Hofer and Schwaninger, 2005; Meuter and Lacherez, 2016; Skorupski and Uchroński, 2016). 8 

However, even though the TIP hit rate does not provide complete information about the ability to 9 

detect threats, it is not immediately relevant whether threats are found owing to high detection 10 

ability or response tendency from a security perspective, and the hit rate is sufficient to evaluate 11 

the achieved security performance (Hofer and Schwaninger, 2005; Macmillan and Creelman, 12 

2005).  13 

A limitation of our study is that we could only analyze the reliability and validity of TIP 14 

data from one airport. It would be interesting to continue this research with TIP data from other 15 

airports, using different TIP systems and screening technologies. In addition to the analysis of FTI 16 

TIP (as in our study), it would be interesting to investigate the use of combined threat images 17 

(images of baggage with integrated prohibited items) (Hofer and Schwaninger, 2004). As such 18 

images consist of both baggage and prohibited items, they can be carefully prepared, and 19 

unrealistic images can be excluded beforehand. It can therefore also be expected that reliability in 20 

TIP using combined threat images is higher when compared to FTI TIP. By showing fully prepared 21 

images, images without prohibited items can be projected to assess the false alarm rate (Hofer and 22 

Schwaninger, 2004).  23 
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Despite these limitations, our results provide valuable information for the calculation of 1 

the reliability of TIP data. We showed that the Spearman–Brown formula can be used to calculate 2 

the number of TIP events required to achieve the desired reliability. Our results suggest that with 3 

a good TIP library, approximately 100 TIP events are sufficient to achieve a reliability of 0.7 and 4 

approximately 70% more TIP events are sufficient for a reliability of 0.8. Care should be taken 5 

when TIP performance increases over years; exchanging TIP images regularly is recommended. 6 

When interpreting absolute TIP performance, CIs provide useful information; they decrease with 7 

increasing reliability. Our study is the first to investigate the validity of TIP data. We found clear 8 

evidence that higher TIP scores are associated with better covert test performance. Both 9 

operational performance assessments complement each other; TIP allows exposing screeners to 10 

prohibited items frequently, whereas covert tests are important to ensure that screeners react 11 

appropriately. Our study also highlights the importance of maintaining a good TIP library and 12 

avoiding ceiling effects by regularly exchanging TIP images to draw reliable conclusions about 13 

detection performance. 14 
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