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ABSTRACT
We consider a Darwinian (evolutionary game theoretic) version of a
standard susceptible-infectious SI model in which the resistance of
the disease causing pathogen to a treatment that prevents death to
infected individuals is subject to evolutionary adaptation. We deter-
mine the existence and stability of all equilibria, both disease-free
and endemic, and use the results to determine conditions under
which the treatment will succeed or fail. Of particular interest are
conditions under which a successful treatment in the absence of
resistance adaptation (i.e. one that leads to a stable disease-free equi-
librium) will succeed or fail when pathogen resistance is adaptive.
These conditions are determined by the relative breadths of treat-
ment effectiveness and infection transmission rate distributions as
functions of pathogen resistance.
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1. Introduction

In the twenty-first century , the world had seen a large reduction in the incidence of com-
municable diseases and their associated mortality, primarily due to improved access to
and development of novel treatments and preventive vaccines, as well as improving cover-
age of interventions targeting disease vectors [20]. However, the evolution of resistance to
treatment in pathogens and vectors remains a major hurdle to disease control and elimi-
nation (see [19] and the World Health Organization (WHO) Global Malaria Programme
at https://www.who.int/teams/global-malaria-programme/prevention/vector-control/
insecticide-resistance. Increasing antimicrobial resistance has led to reduced efficacy of
treatments, resulting in a higher disease burden and higher mortality from infectious dis-
eases. Similarly, increasing insecticide resistance in disease vectors, especially mosquitoes,
has reduced the effectiveness of preventive interventions such as insecticide-treated nets,
resulting in higher incidences of vector-borne diseases and associated mortality.
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There is a substantial body of literature in modelling resistance; however, most studies
have focused on the transmission of resistant pathogens or vectors, not the evolution of
resistance; subsequently they consider either the impact of interventions on the transmis-
sion of resistance or on the effect of resistance on intervention effectiveness [5,15]. The
studies that have modelled the evolution of resistance have focused on discrete genotypes
that only consider a limited number of phenotypes [3,14–16]. Our main goal here is to
investigate the methodology of Darwinian dynamics (evolutionary game theory) [18] as
a tool to study the effectiveness of treatment in the presence of a pathogen’s ability to
develop resistance through evolutionary principles. Unlike most applications of adaptive
dynamics [6], we do not focus here on a limited number of pathogen mutants or strains
or genotypes, utilize methods of optimizing R0, nor assume a separation of ecological and
evolutionary time scales [7–9]. Instead we consider a pathogen with a continuously dis-
tributed phenotypic trait that confers resistance to a treatment and consider a model in
which the host dynamics and the evolutionary dynamics of themean trait are coupled. The
model is based on the (so-called first order) methodology of evolutionary game theory in
which themean trait dynamics are governed by Lande’s equation (sometimes referred to as
Fisher’s equation or the canonical equation of evolution) [18]. In this paper we focus only
on the existence and stability properties of disease-free and endemic equilibria and how
they depend on the way treatment resistance and pathogen infectiousness depend on the
evolving mean trait. To do this we extend a basic compartmental susceptible-infectious-
recovered model to better understand the evolution of resistance to treatment and the
impact of this evolution on treatment effectiveness. We assume in the model that

(i) there is a constant recruitment/birth rate into the population;
(ii) the force of infection follows a mass action law;
(iii) infection leads to an additional disease-induced death rate; and
(iv) recovery from infection leads to lifelong immunity.

Since the recovered population does not influence the dynamics of the susceptible or
infectious populations, we do not explicitlymodel the recovered class, and henceforth refer
to the model as an SI model.

We consider a treatment that is fully effective in preventing disease-induced mortality
and that further reduces the duration of the infectious period, in the absence of resistance.
The evolution of resistance increases the fitness of the pathogen by reducing the effec-
tiveness of the treatment in clearing the infection and thereby increasing the duration of
infection. However, it also reduces the fitness of the pathogen since reducing treatment
effectiveness leads to an increase in host death due to increased disease-induced mor-
tality (and consequently leads to the loss of the pathogen). We furthermore assume that
resistance has a cost to the pathogen in onward transmissibility from one host to another,
leading to reduced infectivity of individuals infected with resistant pathogens.

We focus on a situationwhere the disease causing pathogen is controlled (asymptotically
eliminated) by a certain level of a treatment in the absence of the pathogen’s ability to evolve
resistance to the treatment. Using the methodology of evolutionary game theory [18], we
derive a Darwinian SI model and using it to address the following questions. Under what
conditions will this treatment level still work in eliminating the pathogen if it is capable
of evolving resistance to the treatment? If this treatment level fails due to the pathogen’s
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adaptation, will a higher treatment level succeed? Are there conditions under which no
level of treatment will successfully eliminate an evolutionarily adapting pathogen?

We first describe the SI model with treatment in the absence of pathogen resistance,
including the definition of the basic reproductive number,R0 and the existence and stability
of equilibrium solutions. We then derive a Darwinian version of this model that describes
the evolution of the fitness of the pathogen in response to treatment.We analytically inves-
tigate the existence and stability of disease-free and endemic equilibria. We discuss the
criteria for the existence and stability in terms of two important bifurcation parameters:
the proportion of people treated and the ratio of the variance of treatment effectiveness to
the variance of the infection transmission rate. We illustrate these results with time series
plots, phase portrait plots and bifurcation diagrams. We summarize these results with a
parameter map showing the criteria for the existence and stability of the equilibria.

The basic SI model we use in this study is described, as is commonly done, by ordinary
differential equations. The method of Darwinian dynamics which we apply to the model
is also available for discrete time (difference equation) models, which are also often used
for modelling epidemics (for example, by A.-A. Yakubu, to whom this paper is dedicated).

2. An SImodel with resistance to treatment

A basic disease model with two classes of individuals, susceptible S and infectious I, is [4]

S′ = � − μS − cSI

I′ = cSI − ρI. (1)

Here � > 0 is the constant rate at which susceptible individuals enter the population and
μ > 0 is the (per capita) natural death rate. The coefficient c>0measures the transmission
rate at which infectious individuals infect susceptible individuals (assumed to follow amass
action law) and cause them to enter the infectious class. Finallyρ > 0 is the (per capita) rate
at which infectious individuals are removed from the population and, because complete
immunity is assumed, do not re-enter the susceptible class. There exist two equilibria, a
disease-free equilibrium

DFE :
(

S
I

)
=
⎛
⎝ �

μ
0

⎞
⎠

and, provided the basic reproduction number

R0 = c�
μ

1
ρ

satisfies R0 > 1, an endemic equilibrium

EE :
(

S
I

)
=

⎛
⎜⎝

�

μR0
μ

c
(R0 − 1)

⎞
⎟⎠ .

A routine linearization analysis shows DFE is stable if R0 < 1 and is unstable if R0 > 1
whenEE is stable. Thus, a standard transcritical bifurcation and exchange of stability occurs
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Table 1. Removal rates from the infectious class.

Rates Treated Untreated

Natural death μτ I μ(1 − τ)I
Death by disease 0 κ(1 − τ)I
Recovery (φ + γ )τ I φ(1 − τ)I

between these equilibria at R0 = 1. In fact, it is shown in [2] using Liapunov functions that
DFE is globally asymptotically stable on R2+ when R0 ≤ 1 and EE is globally asymptotically
stable on R2+\{(S, 0), S ≥ 0} when R0 > 1.

We parse the infectious removal rate ρ into the sum of three rates: the natural death rate
(which we assume equal to μ > 0, the natural death rate of susceptible individuals), the
death rate due to the disease κ > 0, and removal rate due to recovery from the infection
φ ≥ 0. We are interested in the effect of a treatment for the disease, which we assume is
successfully administered to a fraction τ of the infectious class, 0 ≤ τ ≤ 1. This treatment
introduces an additional recovery rate γ > 0 to the τ I individuals treated and prevents
death due to the disease. Adding together all the removals from the infectious class (see
Table 1), we get

ρI = μτ I + (φ + γ ) τ I + μ (1 − τ) I + κ (1 − τ) I + φ (1 − τ) I

which gives us the model equations

S′ = � − μS − cSI

I′ = [cS − (μ + κ + φ) − τ(γ − κ)]I.

We consider the reproduction number as a function of the treatment fraction τ :

R0 (τ ) = c
�

μ

1
(μ + κ + φ) + τ (γ − κ)

.

We are interested here in the scenario when the disease is endemic in the absence of the
treatment, but is eliminated if the treatment reaches a sufficient fraction of the infectious
class. To this end, we assume

R0 (1) < 1 < R0 (0) ,

inequalities which we can re-write as

μ + κ + φ < c
�

μ
< γ + μ + φ. (2)

Note that these constraints imply γ > κ , namely that the additional recovery rate provided
by the treatment exceeds the death rate due to the disease. The treatment is successful in
preventing an epidemic if R0(τ ) < 1, i.e. if

τ > τ0 :=
c�

μ
− (μ + κ + φ)

γ − κ
(3)

and fails if τ < τ0.
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3. A Darwinian SImodel

To derive the fitness of the pathogen for the Darwinian SI model, we re-interpret I as the
number of infections in the population, where each individual can have exactly zero or
one infection. The individuals with no infection are susceptible, while the individuals with
one infection are infectious. The derivation of the model in Section 2 remains exactly the
same with this new interpretation, but c now needs to have the appropriate units to convert
between individuals and infections. The number of infections increases when susceptible
individuals get infected and decreases when infected individuals recover or die (because
the death of the host also implies the death of the infection).

We suppose that the disease is caused by a pathogen that can develop resistance to
the treatment by Darwinian processes. We hypothesize that resistance is conferred by a
(continuous) phenotypic trait v that is subject to natural selection and that is normally
distributed throughout the population at all time, with variance σ 2

v and mean u. Let

p (v − u) = 1
σv

√
2π

exp
(

− (v − u)2

2σ 2
v

)

denote the probability distribution for v so that there are p(v − u)I infections with trait v
when the mean population trait is u. The fraction of these infections that are successfully
treated depends on the resistance of the pathogen and τ(v) is a function v.

We assume there is a trait v at which the pathogen has no resistance to the treatment.
We denote this reference point by v=0 and assume that the treatment τ(v) is a decreasing
function of increasing pathogen resistance v > 0.

In the model considered here, it is assumed that increased resistance to the treatment
comes at a cost to the pathogen, namely at the cost of decreased infectiousness. Thus, the
infection transmission rate c in model (1) becomes a decreasing function c(v) of v > 0.

Consider the sub-class p(v − u)I of infections with resistance v. The fraction of these
infections successfully treated is τ(v). The removal rates from this sub-class are shown in
Table 2. The total removal rate is the sum of the entries in Table 2, which equals

[(μ + κ + φ) + (γ − κ) τ (v)] Ip (v − u) .

The removal rate from the susceptible class due to infections with trait v and the entry rate
into this infectious sub-class is c(v)SIp(v − u). Thus, the change in this infectious class is
r(v, u, S)I where

r (v, u, S) := c (v) Sp (v − u) − [(μ + κ + φ) + (γ − κ) τ (v)] p (v − u) . (4)

We take this per capita rate as fitness of the pathogen with resistance v.

Table 2. Removal rates of infections with trait v.

Rates Treated Untreated

Natural death μτ(v)Ip(v − u) μ(1 − τ(v))Ip(v − u)
Death by disease 0 κ(1 − τ(v))Ip(v − u)
Recovery (φ + γ )τ(v)Ip(v − u) φ(1 − τ(v))Ip(v − u)
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The methodology of Darwinian dynamics provides a model for the dynamics of S, I,
and the mean trait u [1,10,11,13,18] :

S′ = � − μS − c(v)SIp (v − u)
∣∣
v=u

I′ = r (v, u, S)|v=u I

u′ = θ
∂r (v, u, S)

∂v

∣∣∣∣
v=u

where θ > 0 is called the speed of evolution. Since p(0) = 1 and p′(0) = 0 the expres-
sion (4) yields the model equations

S′ = � − μS − c (u) SI

I′ = (c (u) S − (μ + κ + φ) − (γ − κ) τ (u)) I

u′ = θ
(
c′ (u) S − (γ − κ) τ ′ (u)

)
.

(The primes denote differentiation with respect to a function’s argument.)
In this paper, we assume both the treatment effectiveness and the infection transmission

rates have Gaussian distributions as functions of the trait v. Thus, we replace τ(v) and c(v),
respectively, by

τ exp
(

− 1
2σ 2 v

2
)
, 0 ≤ τ ≤ 1

c exp
(

−1
2
v2
)
, c > 0. (5)

where τ and c now denote positive constants that denote the treatment effectiveness and
infection transmission rates for an pathogen with no resistance to the treatment (v=0).
The coefficient σ 2 is the variance of the treatment effectiveness relative to the variance of
the infection transmission rate (which we assume, by re-scaling the units for v if necessary,
to be equal to 1). The resulting Darwinian SI model equations are

S′ = � − μS − c exp
(

−1
2
u2
)
SI

I′ =
(
c exp

(
−1
2
u2
)
S − (μ + κ + φ) − (γ − κ)τ exp

(
− 1
2σ 2 u

2
))

I

u′ = θu
(

−c exp
(

−1
2
u2
)
S + (γ − κ)τ

1
σ 2 exp

(
− 1
2σ 2 u

2
))

. (6)

The two parameters τ and σ 2 that define the distributions appearing in (5) play a central
role in our analysis and findings below. τ is the maximal effectiveness of the treatment
(which occurs for those infections with trait v=0, i.e. with no resistance to the treatment).
The variance σ 2 measures how widely spread the treatment is effective; a larger value of σ 2

indicates that a larger distribution of infections are successfully treated.
Since the equations for I and u in (6) have factors I and u on their right sides and because

� > 0 (so that S′ > 0 when S = 0) we obtain the following lemma.
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Lemma 3.1: For ⎛
⎝ S (0)

I (0)
u (0)

⎞
⎠ ∈ R3+,

the solution of (6) satisfies ⎛
⎝ S (t)

I (t)
u (t)

⎞
⎠ ∈ R3+

for all t ≥ 0. Moreover for all t>0

(a) S(0) ≥ 0 implies S(t) > 0;
(b) I(0) > 0 implies I(t) > 0 and I(0) = 0 implies I(t) = 0;
(c) u(0) > 0 implies u(t) > 0 and u(0) = 0 implies u(t) = 0.

As a result of this lemma, we restrict our analysis of the dynamics of (6) (with a focus
on the existence and stability of equilibria) to R3+. In particular, we consider only solutions
with non-negative trait components u(t). Note that a change in variables from u to −u
leaves the model equations (6) unchanged and results for u(t) ≥ 0 yield symmetric results
for u(t) ≤ 0.

From the right sides of (6), with u fixed, we calculate the reproduction number

R0 (u, τ) = c exp
(

−1
2
u2
)

�

μ

1

(μ + κ + φ) + τ (γ − κ) exp
(
− 1

2σ 2 u2
) .

4. Equilibrium analysis of the Darwinian SImodel

The equilibrium equations of (6) are

0 = � − μS − c exp
(

−1
2
u2
)
SI (7a)

0 =
(
c exp

(
−1
2
u2
)
S − (μ + κ + φ) − (γ − κ) τ exp

(
− 1
2σ 2 u

2
))

I (7b)

0 = u
(

−c exp
(

−1
2
u2
)
S + (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
))

. (7c)

In the next section we see that these equations are analytically tractable and that there exist
two types of disease-free and two types of endemic equilibria.

4.1. Existence

A disease-free equilibrium ⎛
⎝ Se

Ie
ue

⎞
⎠
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is a solution of the equilibrium equations (7) with Ie = 0 and Se > 0 and ue that satisfy the
equations

0 = � − μSe (8)

0 = ue
(

−c exp
(

−1
2
u2e

)
S + (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
e

))
. (9)

Equation (8) implies Se = �/μ and equation (9) implies that either ue = 0 or ue > 0 is a
root of the equation

−c exp
(

−1
2
u2e

)
�

μ
+ (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
e

)
= 0. (10)

This results in two disease-free equilibria inR3+ : the non-adaptive disease-free equilibrium

DFE0 :

⎛
⎝ Se

Ie
ue

⎞
⎠ =

⎛
⎝ �

μ

0
0

⎞
⎠

and the equilibrium

DFE+ :

⎛
⎝ Se

Ie
ue

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

�

μ
0√

2
σ 2

1 − σ 2 ln
(

τ
σ 2
1

σ 2

)

⎞
⎟⎟⎟⎟⎟⎠ , σ 2

1 := μ

�c
(γ − κ)

with a positive equilibrium trait component ue in either of two cases depending on the
constraints

(a) 0 < σ 2 < 1 and τ >
σ 2

σ 2
1

(b) 1 < σ 2 and τ <
σ 2

σ 2
1

for the two distributional characteristics σ 2 and τ of the treatment effectiveness (5). Note
that DFE+ = DFE0 when τ = σ 2/σ 2

1 where these two disease-free equilibria mathemati-
cally undergo a pitchfork bifurcation (taking into consideration the additional DFE+ with
ue replaced by −ue).

To find endemic equilibria we need to solve the equilibrium equations (7a) for Ie >

0 and the equilibrium equations become (after a cancellation of I)

0 = � − μS − c exp
(

−1
2
u2
)
SI

0 = c exp
(

−1
2
u2
)
S − (μ + κ + φ) − (γ − κ) τ exp

(
− 1
2σ 2 u

2
)
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0 =
(

−c exp
(

−1
2
u2
)
S + (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
))

u. (11)

The third equation implies either ue = 0 or ue > 0 is a root of the parenthetical factor on
the right side of the equation.

In the first case we can solve the second equation for S after which we can solve the first
equation for I. The result is the non-adaptive endemic equilibrium

EE0 :

⎛
⎝ Se

Ie
ue

⎞
⎠ =

⎛
⎜⎜⎜⎝

�

μ

1
R0 (0, τ)

μ

c
(R0 (0, τ) − 1)

0

⎞
⎟⎟⎟⎠

in R3+ provided

R0 (0, τ) = c
�

μ

1
(μ + κ + φ) + τ (γ − κ)

> 1

i.e. provided

τ < τ0.

In the second case the equilibrium equations reduce (after a cancellation of u) to the system
of equations

0 = � − μS − c exp
(

−1
2
u2
)
SI

0 = c exp
(

−1
2
u2
)
S − (μ + κ + φ) − (γ − κ) τ exp

(
− 1
2σ 2 u

2
)

0 = −c exp
(

−1
2
u2
)
S + (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
)
.

By adding the last two equations we get an equation for u alone (with S and I absent) which
we can solve for

ue =
√
2σ 2 ln

(
1 − σ 2

σ 2
γ − κ

μ + κ + φ
τ

)
(12)

after which we can solve the third and first equations (in that order) for

Se = 1
c

(γ − κ) τ
1
σ 2 exp

(
−1 − σ 2

2σ 2 u2e

)
(13)

and

Ie = 1
c
� − μSe

Se
exp

(
1
2
u2e

)
(14)
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Figure 1. Summary map in the bifurcation parameter space showing the criteria for the existence and
stability of the disease-free and endemic equilibria. The shaded regions correspond to disease-free
asymptotic dynamics and the unshaded regions correspond to endemic asymptotic dynamics.

to obtain the adaptive endemic equilibrium

EE+ :

⎛
⎝ Se

Ie
ue

⎞
⎠ ,

provided this vector lies in R3+. While it is clear that Se > 0, it takes some manipulations
with inequalities to show that Ie > 0 and EE+ lies in R3+ if and only if τ lies in the interval

μ + κ + φ

γ − κ

σ 2

1 − σ 2 < τ <
μ + κ + φ

γ − κ

σ 2

1 − σ 2

((
1 − σ 2) �c

μ

1
μ + κ + φ

) 1
σ2

.

Fixing all other parameters, we can view the various constraints required for the existence
of the two disease-free equilibria DFE0, DFE+ and the two endemic equilibria EE0, and
EE+ in terms of the two parameters σ 2 and τ characterizing the effectiveness of the treat-
ment as a function of pathogen resistance, as given by the assumed distribution (5). The
relevant region in the (σ 2, τ)-plane, namely the infinite rectangle σ 2 ≥ 0 and 0 ≤ τ ≤ 1, is
divided in to a number of sub-regions in each ofwhich there exist a specific set of equilibria.
These regions are shown in the parameter maps in Figure 1, which also include informa-
tion about the (local asymptotic) stability of the equilibria, a topic we take up in the next
section.



JOURNAL OF BIOLOGICAL DYNAMICS 11

4.2. Stability

The Jacobian associated with the equations (6) is

⎛
⎜⎜⎜⎜⎜⎜⎝

−
(

μ + cI exp
(

−u2

2

))
−cS exp

(
−u2

2

)
cuSI exp

(
−u2

2

)

cI exp
(

−u2

2

)
J22 (S, u) J23 (S, I, u)

−cθu exp
(

−u2

2

)
0 J33(S, u)

⎞
⎟⎟⎟⎟⎟⎟⎠

(15)

where

J22 (S, u) := − (μ + κ + φ) + cS exp
(

−u2

2

)
− (γ − κ) τ exp

(
− u2

2σ 2

)

J23(S, I, u) := 1
σ 2 u

[
(γ − κ) τ exp

(
− u2

2σ 2

)
− cσ 2S exp

(
−u2

2

)]
I

J33(S, u) := θ

σ 4

[
τ (γ − κ)

(
σ 2 − u2

)
exp

(
− u2

2σ 2

)
+ cσ 4S

(
u2 − 1

)
exp

(
−u2

2

)]

To apply the Linearization Principle to the disease-free equilibrium DFE0 we evaluate the
Jacobian (15) at DFE0 and obtain

⎛
⎜⎜⎜⎜⎝

−μ −c
�

μ
0

0 (γ − κ) (τ0 − τ) 0

0 0 θ
γ − κ

σ 2

(
τ − σ 2

σ 2
1

)
⎞
⎟⎟⎟⎟⎠

whose eigenvalues are the diagonal entries

λ1 = −μ < 0, λ2 = (γ − κ) (τ0 − τ) , λ3 = θ
γ − κ

σ 2

(
τ − σ 2

σ 2
1

)
.

Recalling that the assumptions (2) imply γ > κ , we explore the signs of λ2 and λ3 and
obtain the following result.

Theorem 4.1: The disease-free equilibrium DFE0 is stable if

τ > τ0 and τ <
σ 2

σ 2
1
.

If either inequality is reversed, DFE0 is unstable.
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To apply the Linearization Principle to the disease-free equilibrium DFE+ we calculate
the Jacobian (15) at DFE+ and obtain

⎛
⎜⎜⎜⎜⎜⎝

−μ −�

μ
ce−

1
2u

2
e 0

0 J22
(

�

μ
, ue
)

0

−cuθe−
1
2u

2
e 0 J33

(
�

μ
, ue
)

⎞
⎟⎟⎟⎟⎟⎠

where

ue =
√
2

σ 2

1 − σ 2 ln
(

τ
σ 2
1

σ 2

)
.

The eigenvalues of this matrix are the diagonal entries:

λ1 = −μ < 0, λ2 = J22
(

�

μ
, ue
)
, λ3 = J33

(
�

μ
, ue
)
.

Since ue satisfies Equation (10) and hence the equation

1
σ 2 (γ − κ) τ exp

(
−1
2
u2e
σ 2

)
= c

�

μ
exp

(
−1
2
u2e

)

we obtain

λ2 = − (μ + κ + φ) − c
(
σ 2 − 1

) �

μ
exp

(
−1
2
u2e

)

λ3 = θ
σ 2 − 1

σ 2 c
�

μ
u2e exp

(
−1
2
u2e

)
.

If σ 2 > 1 then λ3 > 0 and DFE+ is unstable. If σ 2 < 1 then stability by linearization is
determined by the sign of λ2 which we treat as a function of τ and obtain the following
result.

Theorem 4.2: The disease-free equilibrium DFE+ is stable if

σ 2 < 1 and τ >
μ + κ + φ

γ − κ

σ 2

1 − σ 2

((
1 − σ 2) �c

μ

1
μ + κ + φ

) 1
σ2

and unstable if either inequality is reverse.
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To apply the Linearization Principle to the disease-free equilibrium EE0 (which, as we
saw above, is positive if and only if τ < τ0) we calculate the Jacobian (15) at EE0 and obtain

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− �c
(μ + κ + φ) + (γ − κ) τ

− (μ + φ + κ + (γ − κ) τ) 0

−μ
μ + κ + φ + (γ − κ) τ − c�

μ

μ + κ + φ + (γ − κ) τ
0 0

0 0 θ (γ − κ)
1 − σ 2

σ 2(
τ − μ+κ+φ

γ−κ
σ 2

1−σ 2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which is block diagonal. The eigenvalues are the two eigenvalues λ1 and λ2 of the 2 × 2
submatrix

⎛
⎜⎜⎝

− �c
(μ + κ + φ) + (γ − κ) τ

− (μ + φ + κ + (γ − κ) τ)

−μ
μ + κ + φ + (γ − κ) τ − c�

μ

μ + κ + φ + (γ − κ) τ
0

⎞
⎟⎟⎠

and the diagonal term

λ3 = θ (γ − κ)
1 − σ 2

σ 2

(
τ − μ + κ + φ

γ − κ

σ 2

1 − σ 2

)
.

Once again recall that (2) imply γ > κ . The trace-determinant criteria sufficient to guar-
antee that the eigenvalues of a 2 × 2 matrix lie in the left half complex plane are that the
trace be negative, which it clearly is, and that the determinant

−μ

(
μ + κ + φ + (γ − κ) τ − c

�

μ

)
= μ (γ − κ) (τ0 − τ)

be positive, which it is since τ < τ0. Thus, the stability by linearization ofEE0 is determined
by the sign of λ3. This leads to the the following result.

Theorem 4.3: The endemic equilibrium EE0 is stable if σ 2 > 1 or if

σ 2 < 1 and τ <
μ + κ + φ

γ − κ

σ 2

1 − σ 2 .

It is unstable if

σ 2 < 1 and τ >
μ + κ + φ

γ − κ

σ 2

1 − σ 2 .
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Finally we consider the endemic equilibrium EE+. In the second equilibrium equation
(11), we see that

(γ − κ) τ exp
(

− 1
2σ 2 u

2
e

)
= c exp

(
−1
2
u2e

)
S − (μ + κ + φ)

and hence J22(Se, ue) = 0. Using this fact, together with

c exp
(

−u2e
2

)
= � − μSe

SeIe

which follows from the first equilibrium equation (11), we find that the Jacobian at EE+ is
⎛
⎜⎜⎜⎜⎜⎝

−
(
μ + �−μSe

Se

)
−� − μSe

Ie
ue (� − μSe)

� − μSe
Se

0 J23 (Se, Ie, ue)

−θu
� − μSe

SeIe
0 J33 (Se, ue)

⎞
⎟⎟⎟⎟⎟⎠ . (16)

As shown by the parameter maps in Figure 1, the endemic equilibrium EE+ exists only
in restricted regions of the (σ 2, τ)-plane that require, among other constraints, that σ 2 be
not too large, namely, that σ 2 < σ 2

0 . Although we do not have a general analysis of this
Jacobian for all parameter values for which EE+ exists, we do have the following result for
small σ 2.

Theorem 4.4: For σ 2 sufficiently small, the endemic equilibrium EE+ is locally asymptoti-
cally stable.

Proof: From

lim
σ 2→0

σ 2 ln
(
1 − σ 2

σ 2

)
= 0

and

u2e = 2σ 2 ln

( 1−σ 2

σ 2 (γ − κ) τ

μ + κ + φ

)
= 2σ 2 ln

(
1 − σ 2

σ 2

)
+ 2σ 2 ln

(
(γ − κ) τ

μ + κ + φ

)

we get that

lim
σ 2→0

ue = 0.

From the formulas (12) and (13) we have, after some algebraic manipulations, that

Se = 1
c

(γ − κ) τ

(
μ + κ + φ

(γ − κ) τ

)1−σ 2
1
σ 2

(
σ 2

1 − σ 2

)1−σ 2
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and since

lim
σ→0

1
σ 2

(
σ 2

1 − σ 2

)1−σ 2

= 1

we find that

lim
σ 2→0

Se = 1
c

(μ + κ + φ) .

Finally from these two limits and the formula (14) we get

lim
σ 2→0

Ie = lim
σ 2→0

(
1
c
� − μSe

Se
exp

(
1
2
u2e

))

= 1
c

μ

μ + κ + φ

(
c�
μ

− (μ + κ + φ)

)
.

Thus,

lim
σ 2→0

⎛
⎝ Se

Ie
ue

⎞
⎠ =

⎛
⎜⎜⎜⎝

1
c

(μ + κ + φ)

1
c

μ

μ + κ + φ

(
c�
μ

− (μ + κ + φ)

)
0

⎞
⎟⎟⎟⎠ . (17)

The first column, third row entry in the Jacobian (16) tends to 0 as σ 2 → 0. Therefore, its
three eigenvalues are, for small σ 2, approximately equal to the two eigenvalues λ1(σ

2) and
λ2(σ

2) of the upper left 2 × 2 matrix

⎛
⎜⎝ −

(
μ + � − μSe

Se

)
−Sece−

1
2u

2
e

� − μSe
Se

0

⎞
⎟⎠ (18)

and the real eigenvalue λ3(σ
2) = J33(Se, ue).

If we re-write

λ3
(
σ 2) = θ

σ 4

[((
σ 2 − u2e

)+ σ 4 (u2e − 1
)) � − μSe

Ie
− (μ + κ + φ)

(
σ 2 − u2e

)]

and observe from (13) and (14) that

� − μSe
Ie

= cSe exp
(

−1
2
u2e

)
= μ + κ + φ

1 − σ 2

we find that

λ3
(
σ 2) = − θ

σ 2 u
2
e (μ + κ + φ) < 0.
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As σ 2 → 0 we see, by using (17), that the matrix (18) approaches the matrix

⎛
⎜⎜⎝

−c
�

μ + κ + φ
− (μ + κ + φ)

μ

μ + κ + φ

(
c�
μ

− (μ + κ + φ)

)
0

⎞
⎟⎟⎠ .

Since the trace of this matrix is negative and its determinant is positive, it follows that its
two eigenvalues lie in the left half complex plane. Thus, λ1(σ 2) and λ2(σ

2) lie in the left
half complex plane for σ 2 small. �

4.3. Summary of equilibrium analysis

The existence and stability results for the equilibria of the Darwinian SI model (6) that we
obtained in the preceding sections are geometrically summarized by the two maps in the
(σ 2, τ)-plane shown in Figure 1. The relevant infinite rectangle

R : 0 ≤ τ ≤ 1, σ 2 > 0

in the (σ 2, τ)-plane is partitioned into regions that result from the constraints determining
the existence and stability of the four types of equilibria. These regions are determined by
the following curves and lines:

• the vertical straight line at σ 2 = 1;
• the horizontal line at τ = τ0;
• the straight line L given by the equation

τ = σ 2

σ 2
1

where

σ 2
1 := μ

�c
(γ − κ) ;

• the curves given respectively by the equations

C0 : τ = μ + κ + φ

γ − κ

σ 2

1 − σ 2 , 0 < σ 2 < σ 2
0

and

C1 : τ = μ + κ + φ

γ − κ

σ 2

1 − σ 2

((
1 − σ 2) �c

μ

1
μ + κ + φ

) 1
σ2

, σ 2
2 < σ 2 < σ 2

0

that describe τ as a function of σ 2.
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The horizontal line at τ = τ0, the line L, and the curves C0 and C1 all intersect at the
point (σ 2, τ) = (σ 2

0 , τ0) where

σ 2
0 := μ

�c

(
�c
μ

− (μ + κ + φ)

)
.

The line L and the curve C1 intersect the horizontal line at τ = 1 at (σ 2
1 , 1) and (σ 2

2 , 1),
respectively, where σ 2 = σ 2

2 is the solution of the equation

1 = μ + κ + φ

γ − κ

σ 2

1 − σ 2

((
1 − σ 2) �c

μ

1
μ + κ + φ

) 1
σ2

.

Within each region appearing in the rectangle R there exists a certain number of equilibria,
as indicated by the tables in Figure 1. In each region there is exactly one stable equilib-
rium, with the exception of region IV. For parameter points (σ 2, τ) lying in region IV,
we show in the Appendix that the asymptotic dynamics are disease-free in the sense that
limt→∞ I(t) = 0, even though orbits do not equilibrate. As indicated in Figure 1 the sta-
bility of EE+ in regions A, B, and C is qualified in that it has been rigorously established
only for σ 2 small and is conjectured to be true throughout these regions.

As one moves around on the parameter maps in Figure 1, one passes through vari-
ous regions and by so doing loses or gains equilibria and/or equilibrium stability. These
occurrences result from equilibrium bifurcations which can be displayed in bifurcation
diagrams. For example, fixing the variance σ 2 < σ 2

2 and varying τ from 0 to 1 one follows
a vertical path on the left side of the parameter map in Figure 1, passing through regions
D, C, B and A, along which the equilibrium counts change from 2 to 3 to 4 to 3. A sample
bifurcation diagram for such a path is shown in Figure 2 along with some other sample
bifurcation diagrams along other vertical paths.

5. Concluding remarks

As shown in Section 2, under the conditions (2) on the parameters in the non-evolutionary
SI model (1), any treatment level τ > τ0 will eliminate the disease pathogen (in the sense
that the disease-free equilibrium is stable), but the treatment will fail (in the sense that
there is a stable endemic equilibrium) if τ < τ0. We can use the results of the equilibrium
analysis of theDarwinian SImodel (6), summarized in Figure 1, to determine the success or
failure of the treatment when the disease pathogen can develop resistance to the treatment
by means of evolutionary adaptation.

Note that the shaded regions in both maps correspond to disease-free asymptotic
dynamics while the unshaded regions correspond to endemic asymptotic dynamics. This
implies that the treatment is successful if and only if τ and σ 2 are appropriately large;
otherwise the disease becomes endemic.

Recall that τ in the Darwinian SI model (6) is the treatment effectiveness against the
disease pathogens who have no resistance to the treatment (i.e. trait v=0) and that the
threshold treatment level τ0 is defined by (3). It is therefore no surprise that a treatment
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Figure 2. Four sample bifurcation diagrams showing the equilibrium components I and u plotted
against the bifurcation parameter τ with model parameter values � = 1, μ = 0.1,c = 0.1, κ = 0.1,
φ = 0.1, and γ = 1. The fours diagrams correspond to vertical paths in the parameter map in Figure
1(A) located at the displayed value of σ 2. For the upper left diagram σ 2 = 0.2 < σ 2

2 = 0.47 and for the
upper right diagram, σ 2 = 0.8 is between σ 2

0 = 0.7 and σ 2
1 = 0.9 in Figure 1 For the lower left diagram

σ 2 = 0.9 is between σ 2
1 and 1 and for the lower right diagram σ 2 = 1.1 > 1 in Figure 1.

τ < τ0 will also fail to eliminate the pathogen in theDarwinianmodel (6), as the parameter
maps in Figure 1 show (in which regions B, C, D and E correspond to stable endemic
equilibria). That is to say, if the treatment fails to eradicate a non-evolving pathogen, then
it will fail to eradicate an evolving pathogen.

It is also clear from the parameter maps in Figure 1 that a treatment level τ > τ0 that
eliminates the pathogen in the non-evolutionary model will not necessary eliminate the
pathogen in theDarwinianmodel. In order to successfully defeat an evolving pathogen (i.e.
for there to be a stable disease-free equilibrium), not only τ but also the ratio of the variance
of the treatment effectiveness to the ratio of the variance of the infection transmission rate,
σ 2, must be sufficiently large. More precisely, the pair (σ 2, τ)must lie in the shaded region
shown in the parameter maps. This leads to three distinct possibilities, depending on the
variance σ 2 of the treatment effectiveness:
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(i) σ 2 > σ 2
0 implies any treatment level τ > τ0 leads asymptotically to a disease-free

state;
(ii) σ 2

2 < σ 2 < σ 2
0 implies a treatment level τ leads asymptotically to a disease-free state

if and only if it meets a higher threshold (placing the point (σ 2, τ) above the curve
C1), namely

τ > τ1 := μ + κ + φ

γ − κ

σ 2

1 − σ 2

((
1 − σ 2) �c

μ

1
μ + κ + φ

) 1
σ2

;

(iii) 0 < σ 2 < σ 2
2 implies no treatment level will eradicate the disease causing pathogen

and it will become endemic by evolutionary adaptation.

In the case (i), the distribution of treatment effectiveness as a function of pathogen
resistance v is so wide that the treatment succeeds despite the evolutionary adaptation of

Figure 3. Shown are the time series of I(t) and u(t) for the solutions of the Darwinian SImodel (6) with
parameter values � = 5, μ = 1, c = 1, κ = 0.5, φ = 0.2, γ = 10, σ 2 = 0.35, θ = 1 and initial condi-
tions S(0) = 1, I(0) = 1 u(0) = 0.05when (a) τ = 0.4 and (b) τ = 0.8. The corresponding point (σ 2, τ)

is shown as a solid dot in the (numerically calculated) parameter map. In case (a) the point is below the
threshold curve C1 and, as predicted the endemic equilibrium EE+ is stable. In this case the treatment
is insufficient to eradicate the adapting disease agent which asymptotically attains a resistance level of
approximately u= 1. In case (b) the point is above the threshold curve C1 and as predicted the disease-
free equilibriumDFE+ is stable. In this case the treatment eradicates the disease, even though it develops
a level of resistance. In this example τ0 = 0.347, σ 2

0 = 0.660, and σ 2
2 = 0.281.
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Figure 4. The phase portrait orbits of the time series solutions in Figure 3 are displayed in three dimen-
sional phase space, together with a selection of other orbits (with initial conditions denoted by open
circles). The graphs (a) and (b) correspond to the graphs (a) and (b) in Figure 3. In (a) all orbits tend to an
equilibrium point indicated by the solid black circle which, because it located in the interior of the posi-
tive octant, is an endemic equilibrium. In (b) all orbits tend to an equilibrium point indicated by the solid
black circle which, because it located on the vertical coordinate plane I= 0, is a disease-free equilibrium.

the pathogen. In case (ii) in which the distribution is narrower, the treatment succeeds
only if it meets a higher threshold than what it would need in the absence of evolutionary
adaptation. Numerically calculated time series illustrating the adjusted threshold τ1 in case
(ii) are shown in Figure 3. The orbits associated with those times series are shown in the
three dimensional phase space, along with other sample orbits, in Figure 4. Finally, in case
(iii) the distribution of treatment effectiveness is too narrowly constrained around those
pathogens with little resistance to be successful in eradicating the disease.

We also note that a decreased treatment level τ always results in a higher disease
prevalence Ie in endemic equilibria. (It is an elementary calculus exercise to show that
dIe/dτ < 0 for the adaptive endemic equilibria EE+ and EE0). Therefore, in this model
a decreased treatment level τ always results in a higher disease prevalence Ie.

Although we applied this novel methodology to a relatively simple model to allow for
tractability, the derivation ofDarwinian dynamics described in Section 3 could in principle
be applied to many other compartmental infectious disease models (in continuous or dis-
crete time). The key requirement would be to identify a class that represents the number of
infections, fromwhich the fitness of the pathogen can be derived. This methodology could
similarly be applied to mosquito population dynamics to model the evolution of insecti-
cide resistance, that can then be combined with models of vector-borne disease dynamics.
However, applying Darwinian dynamics tomore complicated disease transmissionmodels
would likely result in systems of equations where analytical solutions of equilibria and their
Jacobiansmay not be tractable, requiring a greater reliance on numerical simulations. Nev-
ertheless, such models could provide greater understanding of the evolution of resistance
in specific pathogens, and the role of the evolution of insecticide resistance in vector-borne
disease control.
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Appendix

In the triangle in Figure 1(A) defined by the inequalities

σ 2 > 1, τ0 < τ < 1, τ >
σ 2

σ 2
1

(A1)

in the case when

σ 2
1 := μ

�c
(γ − κ) > 1

the only equilibrium DFE0 is unstable.

Theorem A.1: Assume (A1) and σ 2
1 > 1. For solutions (S(t), I(t), u(t)) of (6) with initial conditions

(S(0), I(0), u(0)) ∈ R3+ the following hold:

(a) lim supt→∞ S(t) ≤ �/μ

(b) u(0) > 0 implies limt→∞ u(t) = +∞
(c) limt→∞ I(t) = 0.

Proof: From Lemma 3.1 it follows that S(t) > 0 and I(t) ≥ 0 for all t> 0.

(a) From the first equation in (6) we see that

S′ ≤ � − μS.

By standard comparison theorems

0 ≤ S (t) ≤ x (t)

for all t ≥ 0 where x(t) is the solution of the initial value problem

x′ = � − μx

x (0) = S (0) ≥ 0.

Since lim supt→∞ x(t) = �/μ the result follows.
(b) By (a), for any ε > 0 there exists a t∗(ε) > 0 such that

0 ≤ S (t) <
�

μ
+ ε for t ≥ t∗ (ε) .

From the third equation in (6)

u′ > θu
(

−c exp
(

−1
2
u2
)(

�

μ
+ ε

)
+ (γ − κ) τ

1
σ 2 exp

(
− 1
2σ 2 u

2
))

= θu exp
(

− 1
2σ 2 u

2
)(

−c exp
(

−1
2

(
σ 2 − 1

σ 2

)
u2
)(

�

μ
+ ε

)
+ (γ − κ) τ

1
σ 2

)
.

https://www.who.int/publications/i/item/9789241509763
https://apps.who.int/iris/handle/10665/342703


JOURNAL OF BIOLOGICAL DYNAMICS 23

Since σ 2 > 1 in (A1) we get

u′ > θu exp
(

− 1
2σ 2 u

2
)(

−c
(

�

μ
+ ε

)
+ (γ − κ) τ

1
σ 2

)

= θu exp
(

− 1
2σ 2 u

2
)(

γ − κ

σ 2

(
−�c

μ

1
γ − κ

σ 2 + τ

)
− cε

)

= θu exp
(

− 1
2σ 2 u

2
)(

γ − κ

σ 2

(
τ − σ 2

σ 2
1

)
− cε

)
.

If we choose ε so that

0 < ε <
1
c

γ − κ

σ 2

(
τ − σ 2

σ 2
1

)

(which we can do by (A1)), then u′ > 0 for all t > t∗(ε), i.e. u(t) > 0 is eventually monotonically
increasing and if we define

u∞ := lim
t→∞ u (t)

then either u∞ < +∞ or ue = +∞. If u∞ < +∞, then the first two equations of (6) constitute an
asymptotically autonomous system

S′ = � − μS − c exp
(− 1

2u
2) SI

I′ =
(
c exp

(− 1
2u

2) S − (μ + κ + φ) − (γ − κ) τ exp
(
− 1

2σ 2 u2
))

I (A2)

for S and I with limiting system

S′ = � − μS − c exp(− 1
2u

2∞)SI
I′ = (c exp(− 1

2u
2∞)S − (μ + κ + φ) − (γ − κ)τ exp(− 1

2σ 2 u2∞))I.

(Note that right sides of (A2) converge uniformly as t → ∞ for (S, I) in any compact set in R2.)
This limiting system is an SI model of the form (1). As pointed out in Section 2 solutions globally
equilibrate on R2+ to an equilibrium (S∞, I∞) [2]. Then we can invoke TheoremA.2 to conclude that
(S(t), I(t), u(t)) approaches the equilibrium (S∞, I∞, u∞). However, this is a contraction to the fact
that on the triangular region (A1) the only equilibrium present in the system is DFE0 for which the
u component equals 0. Thus, u∞ < +∞ cannot hold and it follows that ue = +∞. �

(c) Since ue = +∞ the first two equations for S and I in the Darwinian model (6) are asymptot-
ically autonomous system (A2) for S(t) and I(t) with the limiting equation

S′ = � − μS
I′ = − (μ + κ + φ) I

all of whose solutions equilibria to (S, I) = (�/μ, 0). Invoking TheoremA.2 belowwe conclude that
that limt→∞ I(t) = 0.

Theorem A.2: (Theorem 1.3 in [17] or Theorem 7 in [12]) The omega limit set of any orbit of the
asymptotically autonomous system either contains equilibria of the limiting system or is the union of
periodic orbits of the limiting system.
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