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A B S T R A C T

Civil registration and vital statistics systems capture birth and death events to compile vital statistics and to
provide legal rights to citizens. Vital statistics are a key factor in promoting public health policies and the
health of the population. Medical certification of cause of death is the preferred source of cause of death
information. However, two thirds of all deaths worldwide are not captured in routine mortality information
systems and their cause of death is unknown. Verbal autopsy is an interim solution for estimating the cause
of death distribution at the population level in the absence of medical certification. A Verbal Autopsy (VA)
consists of an interview with the relative or the caregiver of the deceased. The VA includes both Closed
Questions (CQs) with structured answer options, and an Open Response (OR) consisting of a free narrative of
the events expressed in natural language and without any pre-determined structure. There are a number of
automated systems to analyze the CQs to obtain cause specific mortality fractions with limited performance.
We hypothesize that the incorporation of the text provided by the OR might convey relevant information to
discern the CoD.

The experimental layout compares existing Computer Coding Verbal Autopsy methods such as Tariff 2.0
with other approaches well suited to the processing of structured inputs as is the case of the CQs. Next,
alternative approaches based on language models are employed to analyze the OR. Finally, we propose a new
method with a bi-modal input that combines the CQs and the OR. Empirical results corroborated that the
CoD prediction capability of the Tariff 2.0 algorithm is outperformed by our method taking into account the
valuable information conveyed by the OR. As an added value, with this work we made available the software
to enable the reproducibility of the results attained with a version implemented in R to make the comparison
with Tariff 2.0 evident.
1. Introduction

Mortality statistics are essential for countries to inform health poli-
cies and design interventions to tackle the peaks of disease in the
population. The final aim of producing cause of death statistics enables
the comparison of changing health situations between countries. Hav-
ing reliable and timely mortality statistics is necessary for an effective
design and implementation of preventive interventions and health ser-
vices. This implies that all countries should count with a health system
with the required resources, both human and material, to identify the
Cause of Death (CoD) of a considerable part of the population. That is
not the case for all countries as many of them lack access to medical
certification in many places within the country.

∗ Correspondence to: Ixa taldea, UPV-EHU, Manuel Lardizabal Ibilbidea, 1, Donostia-San Sebastián 20018, Spain.
E-mail address: arantza.casillas@ehu.eus (A. Casillas).

1 (www.ixa.eus).

In areas where physicians are not available to certify the CoD, Ver-
bal Autopsy (VA) has been shown to reliably provide this information
at the population level [1]. A VA consists of a series of questions about
the signs, symptoms, demographic characteristics and the condition
that led to death answered by the relatives or the caregiver of the
deceased. The VA instrument includes Closed Questions (CQ), and an
Open Response (OR) where the interviewees can talk freely about
how the death occurred. Expert clinicians are able to discern the most
probable CoD from the answers conveyed in the VA. Needless to say,
manual inspection of VA is time-consuming for expert clinicians.

In order to extract the CoD, VAs can be analyzed by either physi-
cians or automated algorithms. Given the scale of some VA implemen-
tations, manual coding of VAs is becoming an unrealistic burden for
vailable online 9 July 2023
933-3657/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.artmed.2023.102622
Received 19 September 2022; Received in revised form 19 May 2023; Accepted 1 J
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

uly 2023

https://www.elsevier.com/locate/artmed
http://www.elsevier.com/locate/artmed
mailto:arantza.casillas@ehu.eus
http://www.ixa.eus
https://doi.org/10.1016/j.artmed.2023.102622
https://doi.org/10.1016/j.artmed.2023.102622
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2023.102622&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Artificial Intelligence In Medicine 143 (2023) 102622A. Cejudo et al.

a
W
n
e
i
s
w
a

2

t
d
G
a
i
a

W
l
t
a
w
a
o
a
t
3

m
i
a
d
m
M
s
I
w
f
d
o
w

many countries and the use of automated methods is gaining traction.
To delve into the quantitative assessment of the VA, the InterVA [2]
method was developed. This was the first method developed for VA
analysis [3] and it mimics the behavior and decisions of a physician in
terms of a heuristic algorithm based on hand-crafted rules. Then, the
Institute for Health Metrics and Evaluation (IHME), along with other
organizations, conducted the Population Health Metrics Research Con-
sortium (PHMRC) gold standard verbal autopsy validation study [4].
As a result of this study, an VA gold-standard was released and made
publicly available. Since then, some additional tools and algorithms
have been implemented to automatically estimate the CoD given the
CQs [5].

One of the algorithms tested in the PHMRC data was Tariff 2.0 [6],
indeed, one of the WHO standards. The core idea of this algorithm is
to assign a score, that is, a ‘tariff’ score to an item in the question-
naire according to the number of ‘yes’ given by the respondent for
a certain CoD. The InSilicoVA method [7] also analyzes the VA data
by identifying the most likely joint probability distribution of cause-
specific mortality fractions. All these methods have in common that
they estimate the CoD by only taking into account the CQs, while the
OR is disregarded or used minimally.

In this work we explore the potential of the OR to contribute to
the ascertainment of the CoD and our first goal is to quantitatively
ssess the predictive capabilities of the OR in comparison to the CQs.
e hypothesize that the OR brings valuable information that should

ot be disregarded by automated methods. In addition to this, we
xplore if CQs and OR are redundant or whether they provide valuable
nformation for CoD ascertainment. If the hypothesis is true, we could
implify the complex hierarchical questionnaire. If both CQs and OR
ould complement each other, this would imply that we could gain
ccuracy in the prediction of the CoD.

. Previous work

The PHMRC data-set is not the only known VA data, for example,
he Million Death Study (MDS) [8] collected the VA of thousands of
eaths that occurred in India. There is also a data-set collected in
hana [9] and another in Malasya [10], among others. The lack of
vailable data could be due to the fact that VAs might convey sensitive
nformation. PHMRC is, as far as we know, the only one publicly
vailable.

There are standards which are recommended and gathered in the
HO 2016 instrument with the aim of seizing and assigning the most

ikely CoD to each VA. Li et al. [11], used the PHMRC data and
he OpenVA [12] toolkit, which includes algorithms such as InterVA
nd InSilicoVA, and have reported a 21.24% accuracy for InterVA
ith the highest performance being 37.77% for the Naive Bayes [13]
lgorithm. Flaxman et al. [14] carried out a very similar study, but
nly with InSilicoVA, reporting a maximum accuracy of 37.6% for CoD
ssignment. McCormick et al. [5] compared also the algorithms inside
he WHO 2016 instrument, using as input the PHMRC data-set and top
CoD accuracy evaluation.

Complementary studies have also analyzed verbal autopsy data with
ethods from the WHO 2016 instrument mainly by means of artificial

ntelligence techniques. Typically, these studies have as input the CQs,
nd less frequently, the OR. For OR, Danso et al. [15], by focusing on a
ata-set of VAs collected in Ghana, employed simple text representation
ethods with classical classification approaches. The Support Vector
achine (SVM) [16] classifier attained the highest macro-averaged F1

core [17], 41.9% with the TF-IDF [18] representation, to be precise.
n contrast, Yan et al. [19], used word and character embeddings
ith the MDS data-set and they achieved 75.1% in F1 score metric

or the adult age group. For CQs, Moran et al. [20] split and tested
ifferent subsets of the PHMRC data-set and outperformed the results
f some of the WHO 2016 instrument algorithms, such as InSilicoVA,
ith their own Bayesian classifier (named BF). Li et al. [21], in similar
2

comparison opted for a Gaussian mixture [22] that seemed to convey
further improvements to the WHO 2016 algorithms.

The aforementioned studies made use of the information provided
by the CQs, while the OR remains nearly unexplored. In addition,
approaches that combine all the information are barely found. A com-
bination could provide insights which would enable a simplification of
the VA interview and help to improve the analysis.

3. Materials

This work makes use of the Verbal Autopsy Golden Standard (VA-
GS) generated as a result of the PHMRC study [4]. In order to learn from
VAs and evaluate the performance of the generated models, the data is
split into train and test sets with stratified subsets with 70% and 30% of
the VAs, respectively. In Table 1 a description of the whole data-set is
shown. Together there are above 7400 samples randomly divided into
train and test subsets with stratification. Each VA is described with two
types of features (OR and CQs) and has a unique CoD assigned out of
a total of 48 possible CoDs. The CQs are mainly categorical. Regarding
the OR, the average length is 90, 75 and 87 for adult, child and neonate
categories, respectively. Nonetheless, ORs with less than 10 words and
over 200 words can also be found in the data-set. The dataset contains
as the label the so called underlying cause of death which represents the
condition that directly triggered the chain of events that led to death.
Naturally, some CoDs are more frequent than others. For instance, 524
VAs were cases of pneumonia, while only 20 VAs had epilepsy as the
CoD. On average, there are 109 VAs per CoD and, per age group,
100 for adults, 45 for children and 146 for neonate. Nevertheless, the
deviation from the average is high as the CoD class is unbalanced. That
is to say, there are different CoDs and the number of VAs per CoD is
significantly different. For that reason, it is important to keep the same
proportion of the CoD in both train and test sets. To this end, the train
and test subsets were randomly selected with stratification. The split is
the same as in [23] in an attempt to enable comparisons in Table 4.

Note that the CQs were specially designed for each age-segment
(adult, child and neonate) since some questions do not apply to all the
segments. Hence, the number of closed questions varies by segment;
this is why in Table 1, there are 142 for adults (140 categorical and 2
numerical), 86 for children and 109 for neonates.

A large number of CQs lack value due to two phenomena: the
presence of values such as ‘‘Don’t know’’ and the so-called skip-patterns
(e.g. questions that were not asked as they are considered unnecessary
given the previous answers or contexts). These skip patterns are applied
in some cases when, for a determinate CQ, a ‘‘Don’t know’’ is answered
and some of the subsequent CQs that follow up in the questionnaire
are not asked, thus also obtaining a ’’Don’t know’’ value. Another case
is when, for example, the deceased is a man and the questions are
designed to be answered by a woman. For instance, one of the CQs of
the questionnaire is ‘‘Was the deceased a singleton or a multiple birth?’’
and if the answer is ‘‘Dont’ know’’, it makes sense to put the same value
in the next question of the questionnaire: ‘‘Was this the first, second or
later in the birth order?’’. In addition, the CQs have on average 3 to 4
possible answers.

In Table 2, two examples of ORs and the corresponding CoDs are
shown. As can be seen, the type of language used is non-technical and
the corresponding CoD can be easily extracted from the first example.
The CoD corresponds to an ICD-10 (International Classification of
Diseases) code from a finite list of possible codes for this task, and
which has a descriptor associated with it, for example, ‘‘Pneumonia’’.
In the second example, the first two words do not add any useful
information and they should not appear as there is more content in
the open response. This happens throughout some of the ORs, where
many texts have errors and others do not give any information, while

other ORs mention the CoD explicitly.
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Table 1
Quantitative description of the VA-GS data-set. Each verbal autopsy is an instance described in terms of bi-modal input information:
i.e. an Open Response (OR) or free text and a Closed Questions (CQs); each verbal autopsy has annotated the Cause of Death (CoD),
that is, the desired output. Out Of Vocabulary (OOV) tokens count the number of words of the vocabulary that appear in the test
subset but not in the train subset.

VA-GS data-set Adult Child Neonate Total

Train

Sample instances 3,389 945 875 5,209

Input: Features
OR |Vocabulary| 8,056 3,059 3,284 9,540

# Words 306,189 71,759 76,293 454,238

CQ Categorical 140 84 108 303
Numerical 2 2 1 3

Output: Class CoD Count 34 21 6 48

Test

Sample instances 1,460 396 377 2,233

Input: Features
OR

|Vocabulary| 5,407 2,358 2,189 6,379
# Words 131,068 29,264 29,893 190,225
OOV 1,384 612 549 1,641

CQ Categorical 140 84 108 303
Numerical 2 2 1 3

Output: Class CoD Count 34 20 6 48
𝑐

Table 2
Examples of two ORs with the corresponding CoD.

Open response CoD

Father set on fire both mother and baby. Baby died in the
afternoon. Father was in love with some other lady and to
get married to her he killed his wife and baby.

Fires

No comments. They were twins. The boy died because his
lungs were not developed, and had respiratory problems.

Preterm delivery

4. Methods

This section presents the methodological approach employed to
estimate the CoD. As shown in Table 1 each VA is characterized by
means of a bi-modal input (𝐶𝑄,𝑂𝑅) = (𝐱𝟏, 𝐱𝟐) and the aim is to estimate
a CoD as the output of the approach. In this section we present different
approaches to exploit the dual input. Each modality of the input shall
be characterized by a feature-vector, respectively, of size 𝑚 and 𝑛 as in
(1).

𝐱 = (𝐱𝟏, 𝐱𝟐) ∈ F𝑚 × R𝑛 with (1)
𝐱𝟏 = (𝑥11,… , 𝑥1𝑚) ∈ F𝑚 to represent the CQs (2)

𝟐 = (𝑥21,… , 𝑥2𝑛) ∈ R𝑛 to represent the OR (3)

n Section 4.1, the inference of the CoD given the CQs is presented,
hile in 4.2, the results by the OR are shown. Finally, in 4.3, the
roposed approach to deal with the dual OR and CQs is presented.

.1. Models based on closed questions

In this section we explore approaches well suited for the CQs
.e. able to infer classifiers from either categorical or numerical feature-
ectors (denoted, for simplicity, as in an m-sized space F𝑚). In general,

we shall refer to these methods as 𝑓𝐶𝑄2𝐶𝑜𝐷, as in (4), due to the fact
that they are able to compute the likelihood of the 𝑖th CoD (𝑦1𝑖) given,
as input, the responses to the CQs (𝐱𝟏 ∈ F𝑚). Thus, each 𝑦1𝑖 is bound to
the interval [0, 1].

𝑓𝐶𝑄2𝐶𝑜𝐷 ∶ F𝑚 ⟶ [0, 1]|𝐶𝑜𝐷| (4)
𝐱𝟏 ⟶ 𝑓𝐶𝑄2𝐶𝑜𝐷(𝐱𝟏) = (𝑦11,… , 𝑦1|𝐶𝑜𝐷|

) = 𝐲𝟏

Typically, the estimated CoD, formally 𝑐𝐶𝑄2𝐶𝑜𝐷, is the most likely
CoD, as in (5).

̂𝐶𝑄2𝐶𝑜𝐷 = arg
|𝐶𝑜𝐷|

max
𝑖=1

𝑦1𝑖 (5)

Among the CQ2CoD approaches we also have, as well, with the
3

standard Tariff 2.0 included in the WHO 2016 instrument [24]. The
Tariff 2.0 algorithm is available in the OpenVA package [12]. This
package is implemented in R and it offers functionalities such as
downloading the VA data, parsing the information into different for-
mats and also functions to train and assess the performance for CoD
estimation in VAs. Tariff 2.0 has been designed to assign a score, that
is, a ‘tariff’ score to an item in the questionnaire according to the
count of ‘yes’ given by the respondent for a certain CoD. Tariff 2.0
identifies the strength of association between a symptom and a specific
CoD, assuming that a symptom is statistically associated with certain
diseases (e.g. a cough is associated with major respiratory diseases
rather than others such as heart attack). This method outputs scores
that are positive but not bounded to any interval, thus, a softmax layer
is included in order to obtain probabilities for each CoD [25].

In addition, beyond score-based methods, we could rely on data-
driven supervised inference approaches. Among them, we consider
XGBoost [26], a gradient boosting algorithm. This algorithm is based
on an ensemble of decision trees in a sequence, where each decision
tree is adapted to minimize the errors made by the previous tree as
it has as the input the output provided by the previous tree. The
sequential adding of decision trees is done until the difference between
the predicted CoD and the expected CoD reaches a minimum, in the
so-called gradient descent. A variety of parameters can be set in order
to maximize the performance for the specific task that it is used for:
number of iterations (i.e. the number of trees to use), the maximum
depth of the decision trees that are inferred during the training process
and 𝜂 as the learning rate.

Both methods included in the CQ2CoD approach provide, as the
output, the likelihood (i.e. a number bound to [0, 1]) of every CoD to
be the expected class of the input VA.

In addition, it should be taken into account that the questionnaire
differs per age group. This implies that the value of 𝑚, the size of
the input in (4) varies by age-segment and, accordingly, the function
𝑓𝐶𝑄2𝐶𝑜𝐷 is adapted to each age-segment.

4.2. Models based on open responses

As a second approach, we explored the OR as a source of valuable
information to ascertain the CoD as in (6).

𝑓𝑂𝑅2𝐶𝑜𝐷 ∶ R𝑛 ⟶ R|𝐶𝑜𝐷| (6)
𝐱𝟐 ⟶ 𝑓𝑂𝑅2𝐶𝑜𝐷(𝐱𝟐) = (𝑦21,… , 𝑦2|𝐶𝑜𝐷|

) = 𝐲𝟐

Again, the estimated CoD, 𝑐𝑂𝑅2𝐶𝑜𝐷, is the most reliable CoD, as
in (7).

̂ = arg
|𝐶𝑜𝐷|

max 𝑦 (7)
𝑂𝑅2𝐶𝑜𝐷 𝑖=1 2𝑖
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Fig. 1. Example of an incorrect estimation. On the top of the figure we have the Input (OR), and the expected or actual CoD is Suicide. For that input in the test set BERT
predicted the output 𝐶𝑜𝐷 = Homicide as it was the CoD with the highest output value among the all possibles outcomes.
Fig. 1 shows an example of the output of this approach. The input
to the model is the OR (a short text) and the output is an array (𝐲𝟐)
with weights related to the reliability of each code, as denoted in (6).
For the input string given in the example, the system estimates that
the CoD ‘Asthma’ shows a reliability of 𝑦2𝐴𝑠𝑡ℎ𝑚𝑎 = −11.0 and, thus, is
less reliable than ‘Suicide’ (with 𝑦2𝑆𝑢𝑖𝑐𝑖𝑑𝑒 = 4.4) but ‘Homicide’ has the
highest reliability (with 𝑦2𝐻𝑜𝑚𝑖𝑐𝑖𝑑𝑒 = 58.6). Then, as in (7) the model
provides the most reliable code (𝑐𝑂𝑅2𝐶𝑜𝐷 is ‘Homicide’ in the example).
Note that, in the example, the expected or gold CoD was, by contrast,
‘Suicide’, meaning that the system failed in its estimation.

A key issue of this approach is the conversion of the free narrative
into a meaningful numeric feature-vector (𝐱𝟐). Classical techniques like
Bag of Words (BoW) [27] and TF-IDF [18] make such a vectorization
possible. Nevertheless, these simple approaches do not convey contex-
tual information as the strings are represented by a mere count of the
presence of words in the narrative. Besides, these representations suffer
from a high dimension (large 𝑛) due to the fact that the vocabulary
involved in free narratives tends to be large (see the vocabulary in-
volved in our task in Table 1). Instead, word embedding [28] is one of
the emerging successful methods being currently employed to represent
the text with numeric vectors. The added value of these methods rests
on the fact that they encompass the contextual information of symbols
(words) into dense numeric vectors of small dimension (small 𝑛).

Admittedly, having represented the OR in a vector, the informa-
tion provided by the OR can be explored with classical data mining
approaches such as Support Vector Machines [16], Logistic Regres-
sion [29], XGBoost itself and Recurrent Neural Networks (RNNs) [28]
among others. Beyond the classical approaches, recent models like
RNNs [28] and transformers [30] are suited to learn the features i.e. the
word embeddings to effectively represent the input text. Moreover,
the transformers possess attention mechanisms that learn to focus
on different parts of the input data in order to accurately interpret
the contextual information. Current trends in natural language under-
standing rest on language modeling as a means of keeping contextual
information rather than mere symbolic representations. Transformer-
based models like BERT (Bidirectional Encoder Representations from
Transformers) [31] are gaining importance for solving difficult tasks
that require looking at the contextual information implicit in the lan-
guage. BERT is composed of stacked encoder layers which have, mainly,
two functions: several heads and a feed forward layer. An attention
mechanism is called a head and it is the one that focuses more on some
words rather than orders to maximize the final prediction accuracy.
4

The information conveyed in the language model can be extrapo-
lated in down-stream tasks involving language understanding. In this
case, pre-trained transformers seem appropriate to cope with language
modeling,while by fine-tuning the system learns to estimate the CoD.

In this work a variety of transformer-based models were considered
and included among the OR2CoD approaches: Small BERT, BERT [31]
and BioClinical BERT [32]. These transformer-based models do not
provide a probability; that is, 𝑦2𝑖 elements in (6) are not bound to [0, 1].
Instead, they give weights for each CoD that could be negative, as in
the example provided in Fig. 1 Small BERT and BERT are trained from
a general knowledge corpus (i.e. Wikipedia) and they differ in the size
of the architecture. Small BERT has 4 encoder layers and 512 heads,
whereas BERT has 12 encoder layers and 768 heads. BioClinical BERT
is the same as BERT but it was fine-tuned in corpora from the medical
domain including articles from PubMed. In practice, smaller models are
more suitable for simpler tasks in order to avoid overfitting (i.e. no
capacity to generalize for new data) such as Small BERT, while BERT
is expected to have a better performance in more complex tasks. As
BioClinical BERT has the same architecture as BERT but is trained with
different data, it is expected to have a slight improvement with respect
to BERT in those tasks which are from a technical and medical area.

While the models based on CQs had to be suited for each age-
segment (training a particular 𝑓𝐶𝑄2𝐶𝑜𝐷 for each age-segment), the
models based on ORs are transparent in the sense that a single approach
can cope with all the age segments, thus making the 𝑓𝑂𝑅2𝐶𝑜𝐷 versatile.
Nevertheless, the final dual-input model is not only trained and tested
with the whole VA data-set. An additional set of experiments was
carried out: the input data for OR analysis has been divided into the
different age groups (i.e. adult, child and neonate). Consequently, the
amount of data provided for the OR2CoD approaches is significantly
reduced for the fine-tuning process of these approaches, as is the
number of target CoDs to be predicted. We also wonder if the proposed
pre-trained models in OR2CoD will suffer more from a data amount
decrease rather than from having less CoD to ascertain.

4.3. Models based on dual input

In order to combine both the OR and the CQs, we propose a dual-
input approach. A model based on CQs (e.g. Tariff 2.0 or XGBoost)
and a model based on the OR (e.g. XGBoost or BERT) mentioned,
respectively, in Sections 4.1 and 4.2, are assembled to cope with the
insights extracted from both the CQs and the OR. Fig. 2 depicts the
architecture proposed.
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Fig. 2. Proposed ensemble model architecture having XGBoost for Closed Questions
(CQ) treatment and BERT model for the Open Response (OR). The output of the Logistic
Regression (LR) ̂𝑐𝐿𝑅 is the final prediction and is compared with the actual Cause of
Death (CoD). Finally, the error (𝜖) is measured.

The dual input approach relies upon both 𝑓𝐶𝑄2𝐶𝑜𝐷 and 𝑓𝑂𝑅2𝐶𝑜𝐷 to
obtain, respectively, 𝐲𝟏 ∈ [0, 1]|𝐶𝑜𝐷| and 𝐲𝟐 ∈ R|𝐶𝑜𝐷|, each of which de-
termines the reliability of the available CoDs. Next, both weight-vectors
are concatenated, leading to 𝐲 = (𝐲𝟏, 𝐲𝟐) ∈ [0, 1]|𝐶𝑜𝐷| × R|𝐶𝑜𝐷|. The
output of each model (𝐲𝟏 and 𝐲𝟐) has a slightly different meaning. The
output given by the models based on CQs (𝐲𝟏) is probabilistic, values
bound to [0, 1]. By contrast, in the case of the models based on ORs the
output, 𝐲𝟐, can entail real values either positive or negative. In order to
combine both outputs, an scaling operation is applied in order to adjust
the meaning of each output. Note that, the concatenation operation is
computed for each input instance. By contrast, the standardization is
computed for each input-attribute.

The result of the transformation is, now, the input feature-vector
of a simple logistic regression approach, and is denoted as 𝐱′ =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝑐𝑜𝑛𝑐𝑎𝑡(𝐲𝟏, 𝐲𝟐)).

𝑓𝐶𝑄𝑂𝑅2𝐶𝑜𝐷 ∶ R2|𝐶𝑜𝐷| ⟶ R|𝐶𝑜𝐷| (8)
𝐱′ ⟶ 𝑓𝐶𝑄𝑂𝑅2𝐶𝑜𝐷(𝐱′) = (𝑦′1,… , 𝑦′

|𝐶𝑜𝐷|

) = 𝐲′

The logistic regression is a classifier that learns a hyperplane for
each of the CoD that tries to minimize the error by separating as much
as possible the VAs that have the same CoD [29]. This hyperplane
is inferred with a linear combination between the input and a set of
weights (these are learnt in the training process). The capability of this
classifier to combine the input is beneficial as it will automatically find
the best combination of the input that maximizes the performance of
CoD prediction during the training. The set of weights that are learnt
is defined in (10) and the output will be a probability for each CoD
computed from a linear combination between the input and the set
of weights (i.e. 𝛼𝑖 and 𝛽𝑖 for the 𝑖th CoD). The main objective is to
maximize the prediction accuracy and, in order to validate this method,
the logistic regression will have at least the accuracy of the input model
which has previously achieved the highest accuracy. As a result, it is
expected that the output of both input models will need to be taken
into account in order to increase the perform of using both of them
separately.

In (9), the input (𝐱′) is made up of the concatenation and the
standardization of the outputs of the transformer and the XGBoost
model. The output of the logistic regression (𝑦𝐿𝑅) is the confidence
assigned to each of the |𝐶𝑜𝐷| codes. This time, the final output will be
𝑐𝐶𝑄𝑂𝑅2𝐶𝑜𝐷, that is, the predicted CoD. Training the logistic regression
entails an optimization process in order to improve the performance in
the CoD prediction.

Some preliminary experiments were carried out with a simple base-
line approach that opted for the CoD with the highest probability
5

in (𝑧1,… , 𝑧
|𝐶𝑜𝐷|

) ∈ R|𝐶𝑜𝐷|, with the rationale of what was done in
(7), leading to lower evaluation scores. Thus, the need of a more
complex way of combining the input is required and that is the reason
why a logistic regression approach is employed in our approach as in
(9). In addition, the logistic regression layer learns the best overall
combination of the input that maximizes the performance.

𝐱′ = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒(𝑐𝑜𝑛𝑐𝑎𝑡(𝐲𝟏, 𝐲𝟐)) (9)
𝑦𝐿𝑅(𝐱′) = (𝑧1,… , 𝑧

|𝐶𝑜𝐷|

) ∈ R|𝐶𝑜𝐷|with𝑧𝑖 as in (10)

̂𝐶𝑄𝑂𝑅2𝐶𝑜𝐷 = arg
|𝐶𝑜𝐷|

max
𝑖=1

𝑧𝑖

The output of the logistic regression, 𝐲𝐿𝑅 = (𝑦1,… , 𝑦
|𝐶𝑜𝐷|

), is computed
as in (10), where 𝑧𝑖 represents a confidence weight of the input VA
being associated with the 𝑖th CoD.

𝑧𝑖 = 𝛼𝑖 × 𝐱′ + 𝛽𝑖 with (10)

�⃗� = (𝛼𝑖1,… , 𝛼𝑖|𝐱′|) ∈ R2|𝐶𝑜𝐷|

In the computation, the parameters 𝛼𝑖 are inferred in the training
process of the logistic regression approach, which has a vector of
weights (𝛼𝑖) associated and learnt during the training process of the
logistic regression. If the learnt weight for the k input, that is 𝛼𝑖𝑘,
is large, the output given for the 𝑖th cause of death (i.e. 𝑧𝑖) will be
influenced by the value given by the k input. Extracting these weights
leaves room for interpretability, as will be shown in Figs. 4 and 5,
where each row corresponds to the learnt 𝛼𝑖 vector and each column is
the k input of the model.

5. Experimental results and discussion

In this section we offer and discuss the results given by the afore-
mentioned methods. In Section 5.1, a comparison between XGBoost and
Tariff 2.0 is made, having the CQs as input. In Section 5.2, instead,
a XGBoost and a variety of transformer-based models are compared
for the treatment of the OR. Finally, in Section 5.3, the results of the
proposed ensemble model are shown.

5.1. Assessment of models based on closed questions

In this first experiment, the objective is to measure the performance
of the WHO standard Tariff 2.0 for CoD prediction and compare it with
the proposed XGBoost model.

In the training stage, several parameters were adjusted to opti-
mize the performance of the resulting XGBoost model leading to the
following values: maximum depth to 2, learning rate value to 0.25,
sample type equal to ‘weighted’ and a grow policy as ‘lossguide’. We
have found that 𝜂 has a great impact on the performance and that the
optimal number of rounds (i.e. training iterations) is 75 for adults, 15
for children and 33 for neonates.

The per-class (per CoD) weighted averaged results of this experi-
ment can be seen in Table 3. Note that these results are given only for
the adult age group (and not for all the age groups) due to the fact that
the OpenVA package including the Tariff 2.0 method only supports the
adult age segment.

An inspection of Table 3 confirms that the results attained by
Tariff 2.0 in our experiments are comparable to the results achieved in
the antecedents [11], with an accuracy of 32.37%. Even more remark-
able are, however, the results attained by XGBoost, outperforming the
Tariff 2.0 in all the evaluation metrics. For example, the accuracy for
the adult group attained by Tariff 2.0 is 37.39%, while by XGBoost it
is 50.61%, leading to an improvement of more than 13% in terms of
accuracy (the same applies to the F1 score metric).
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Table 3
Assessment of the models based on CQs (denoted as CQ2CoD in Fig. 2): comparison between Tariff 2.0 and
XGBoost for the adult age group by means of accuracy, precision, recall and F1 score.
Models based on CQs Age group Accuracy Precision Recall F1 score

Tariff Adult 37.39 39.05 37.39 35.59
XGBoost Adult 50.61 49.13 50.61 50.22
In an attempt to ease reproducibility and, as a secondary contribu-
tion, with this article we have made available an R notebook2 where
the XGBoost and the Tariff 2.0 are compared for the adult group in two
widely employed evaluation approaches: a 10-fold cross validation and
a hold-out evaluation. The comparison between both models with the
hold-out evaluation (i.e. splitting the data-set into train and test sets)
is done with the data partitions described in Table 1.

With XGBoost clearly outperforming Tariff 2.0 and given that XG-
Boost can be implemented for all the age-groups, herein after, we
continue our study with the XGBoost approach and do not restrict
our evaluation to the adult age-group. Instead, we shall show the
experimental results for all the age groups.

5.2. Assessment of models based on open response

In this section, we are concerned with the use of the OR to extract
the CoD. We carried out a comparison between different approaches
based on transformer architecture: XGBoost, Small BERT, BioClinical
BERT and BERT. The goal is to determine if valuable information can
be extracted from the OR and decide which model shows the best
performance.

The three BERT-based models were fine-tuned with the training
corpus by means of the Transformers python package [33] for sequence
classification. In Fig. 3, a comparison of the performance of the three
transformer-based models is given as the number of training epochs
increases. The BERT model has the highest accuracy in all the epochs
compared with the other two approaches, obtaining the highest score at
the end of the training with an accuracy of 47.55% for the prediction of
48 different CoDs. Furthermore, the BioClinical BERT seems to behave
like BERT with a lower performance but close until the fifth epoch
where it begins to behave more like the Small BERT in terms of ac-
curacy. Eventually, BERT (employing the OR), on its own, outperforms
the results attained by Tariff 2.0 (employing the CQs).

In Table 4, weighted averaged CoD assessment for the 4 models:
XGBoost as in [23], Small BERT, BERT and BioClinical BERT are shown
by age-segment. While the CQs depend on the age-segment, the OR
is a free text conveying an explanation and the format does not vary
by age-segment, enabling, thus, the analysis of all the age groups in a
versatile way. The results for the XGBoost with the OR reported by the
antecedents [23] are compared with the transformer-based approaches
explored in this work. We have not tested the XGBoost for the OR, as
techniques such as word-embeddings or BoW reach high dimensionality
representations which are not so appropriate for a XGBoost classifier for
language modeling as the proposed transformer-based models.

In general, BERT seems to achieve the best results except for the
adult set, where the accuracy and the recall are higher for the XGBoost
model, and for neonate, where BioClinical BERT obtains the best score
for precision and F1 score. Taking into account that this corpus contains
health related terms, BioClinical BERT could be expected to get a higher
score than the other two transformers-based models. Nonetheless, BERT
surpasses BioClinical BERT in most cases and it can be due to the
corpus used by BioClinical BERT, which is far more technical than
the OR collected in the VAs. Even though the VA-GS corpus is framed

2 The software developed is made available with the user-name IX-
AVA and password Vaor2022? at the following url: https://ixa2.si.ehu.eus/
VAOpenResponse. Any use or any modification bound to the citation of this
article.
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Fig. 3. Assessment of the models based on OR (denoted as OR2CoD in Fig. 2):
comparison between three transformer-based models by means of accuracy on the test
set for each of the training epochs for all the age groups.

in a medical area, the OR collects what the interviewee says and
can be considered to be text of general knowledge and, consequently,
non-technical.

We found that, overall (looking at the group denoted as ‘All’), BERT
is the best model to ascertain the cause of death with the OR in terms of
accuracy and F1 but the difference with the XGBoost model for adults is
small. Finally, as a conclusion of this experiment, it seems that valuable
information can be extracted from the OR and we hypothesize that
adding this information to these CQs could be useful for improving the
performance when predicting the CoD.

5.3. Assessment of models based on dual input

In this final set of experiments we aim to combine the best two
models obtained in Sections 5.1 and 5.2 in order to make use of both
the OR and the CQs to predict the CoD. For the OR, the BERT model
will be used while for the CQs, the XGBoost has proved to be the most
suitable model for CoD prediction. Consequently, we wish to determine
whether the OR adds valuable information or not. Indeed, this is one of
the key points of this work. The results of these sets of experiments are
shown in Table 5, given that the proposed ensemble models are based
on the architecture represented in Fig. 2.

Table 5 reveals that the results obtained for all the age groups have
been improved using both CQ and OR compared with just the use of
the OR separately (as shown in Table 4). For instance, for all the age
groups (i.e. denoted as ‘All’ in Table 5) the ensemble model attains a
56.20% in accuracy, while BERT achieves 47.55% in Table 4, having
only the OR in the input. Thus, adding the CQs leverages the accuracy
to 56.20%, resulting in a performance increase of around 8 points.

It is also remarkable that the performance attained by the ensemble
model for the adult age group, which is 51.57% in accuracy,is nearly
the same when it is compared to the 50.61% obtained when just using
XGBoost with CQs as input in Table 3. This implies an increase of
almost 1%. We hypothesize that the ensemble model benefits when
having more data, as is the case of the ‘All’ age group. This shows
a greater improvement compared with only using the OR for CoD
prediction, even though there are more CoDs to predict, unlike the
adult age group where there is less data and fewer CoDs.

https://ixa2.si.ehu.eus/VAOpenResponse
https://ixa2.si.ehu.eus/VAOpenResponse
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Table 4
Assessment of the models based on OR (denoted as OR2CoD in Fig. 2): our experimental BERT-based results compared
to the XGBoost in the antecedents [23] (the antecedents do not report the ‘All’ perspective). The results are presented
per age group and measured with the weighted averaged CoD prediction accuracy, precision, recall and F1 score.
The best accuracy and F1 results per age group are boldfaced.
Models based on OR Age group Accuracy Precision Recall F1 score

XGBoost [23]
Adult 45.60 46.00 45.60 44.70
Child 46.90 44.50 46.90 43.70
Neonate 59.30 54.20 59.30 55.30

Small BERT

Adult 43.97 48.25 43.97 45.16
Child 51.01 69.07 51.01 56.63
Neonate 58.35 66.97 58.35 61.95
All 45.81 51.04 45.81 47.42

BERT

Adult 45.48 48.57 45.48 46.28
Child 53.78 69.21 53.78 58.93
Neonate 61.80 71.80 61.80 64.79
All 47.55 51.66 47.55 48.85

BioClinical BERT

Adult 43.63 47.18 43.63 44.62
Child 51.26 60.35 51.26 54.18
Neonate 60.74 75.81 60.74 66.49
All 45.05 47.42 45.05 45.74
Table 5
Assessment of the model based on dual input (denoted as ORCQ2CoD in Fig. 2): the CQs are handled by XGBoost,
the OR handled by BERT and the final output given by the logistic regression. The results are presented per age
group and measured with the weighted averaged CoD prediction accuracy, precision, recall and F1 score.
Model based on dual input Age group Accuracy Precision Recall F1 score

XGBoost+BERT+Logistic Regression

Adult 51.57 50.89 51.57 50.89
Child 54.29 53.38 54.29 52.77
Neonate 70.82 68.87 70.82 69.17
All 56.20 56.17 53.87 53.87
Fig. 4. Heat-map of the weights learned in the last layer of the ensemble model of Fig. 2 by logistic regression for the input given by the XGBoost model scaled between 0 and
1. The 𝑦 axis represents the weights learnt for the final output, while the 𝑥 axis indicates to which of the XGBoost outputs (i.e. probability given by XGBoost for a particular CoD)
that weight corresponds.
7
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Fig. 5. Heat-map of the weights learned in the last layer of the ensemble model of Fig. 2 by logistic regression for the input given by the BERT model scaled between 0 and 1.
The 𝑦 axis are the weights learnt for the final output while the 𝑥 axis indicates to which of the BERT outputs (i.e. value given by BERT for a particular CoD) corresponds that
weight.
An interesting research question arising was to know the ex-
tent to which the logistic regression relied on two inputs, OR and
CQ, in making decisions for the ensemble model. We have inspected
the parameters involved in the combination, see expression, (10) and
graphically depicted them in heat-maps as shown in Figs. 4 and 5
to study the credibility given by the logistic regression to the values
provided in the input by XGBoost and BERT in predicting each CoD.
Each row represents the set of weights assigned to each CoD proposed
by XGBoost or BERT, which indicates how reliable the CoD value given
by the models is. The bigger the weight, the more relevant the input is
for the logistic regression when predicting the CoD.

Taking Figs. 4 and 5 into account, we can derive that the ensemble
relies on both the BERT model and XGBoost model, since in both
cases, several of the CoDs of the main diagonal have been assigned a
large weight. For example, for the output corresponding to ‘Suicide’ the
logistic regression was relying in both BERT and XGBoost. However,
for BERT, it was not only relying in the output given for ‘Suicide’, it
was also relying in the output given for ‘Homicide’. In Fig. 1, we can
see an example of an OR, whose CoD is ‘Suicide’, but the BERT model
has given the highest value to ‘Homicide’. Because this seems to be a
common mistake, the logistic regression relies on both values, hence,
the logistic regression is also able to reduce the impact of the common
mistakes that both input models can make.

As a conclusion, first, if we compare the predictive capability of
the CQ, we find that XGBoost is superior to Tariff 2.0 for every age
group. Additionally, simple and imperfect though the OR might seem,
it has proven able to convey competitive predictive capabilities and
is superior to Tariff 2.0. Finally, when the dual input is available,
marginal improvements are attained over the XGBoost, though signifi-
cant improvements with respect to Tariff 2.0. In any case, the OR gains
importance over the CQ in the ensemble approach.
8

Furthermore, although the proposed ensemble model has achieved
a superior classification performance with respect to previous ap-
proaches, there is still room for improvement compared to the results
obtained on related death certification tasks [34,35]. In addition, it
can be of interest to conduct a more detailed analysis by considering
a confidence score. This score would separate predictions with a high
probability of corresponding to a certain CoD with those predictions
with a low probability that may lead to prediction errors. This could
help data producers know when human expertise may be necessary to
handle cases whose CoD is difficult to estimate.

Finally, let us raise a general concern inherent in the data. Super-
vised learning approaches rest on the quality of the annotations in
the gold-standard and, hence, are bound to the underlying annotation
errors. That is, provided that the data was erroneously labeled, the
models would be inferred from noisy samples. McCormick et al. [5]
show that the labels can differ between different expert physicians,
especially when their training exposure and speciality vary.

6. Conclusions

This work considered the use of Open Response available in Verbal
Autopsies in the estimation of the cause of death, instead of limiting
the estimation to the information available in Closed Questions (as does
Tariff 2.0, a model made available within the WHO 2016 instrument).
State-of-the-art Natural Language Processing techniques were applied
and proven useful to extract valuable information.

Our approach outperformed Tariff 2.0. In fact, experimental results
showed that the OR brings significant information and results in a valu-
able source of information for CoD ascertainment. This finding opens
pathways towards the simplification of the Verbal Autopsy interview.

Data availability and quality is stressed as being a main limitation of
supervised algorithms and, thus, we would encourage the community
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to release these data to promote research in this field. This is a complex
multi-class classification task and the models developed in this work,
especially BERT, would benefit from further data.
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