Shape optimization under constraints on the probability of a quadratic functional to exceed a given threshold

Marc Dambrine, Giulio Gargantini, Helmut Harbrecht, Jérôme Maynadier
Shape optimization under constraints on the probability of a quadratic functional to exceed a given threshold

Marc Dambrine∗, Giulio Gargantini†, Helmut Harbrecht‡, and Jérôme Maynadier†

Abstract. This article is dedicated to shape optimization of elastic materials under random loadings where the particular focus is on the minimization of failure probabilities. Our approach relies on the fact that the area of integration is an ellipsoid in the high-dimensional parameter space when the shape functional of interest is quadratic. We derive the respective expressions for the shape functional and the related shape gradient. As showcase for the numerical implementation, we assume that the random loading is a Gaussian random field. By exploiting the specialties of this setting, we derive an efficient shape optimization algorithm. Numerical results in three spatial dimensions validate the feasibility of our approach.

1. Introduction. In recent decades, shape optimization has been developed as an efficient tool for designing devices which are optimized with respect to a specific purpose. Many practical problems in engineering lead to boundary value problems for an unknown function that must be computed to obtain a desired quantity of interest. In structural mechanics, for example, the equations of linear elasticity form the common model, which are then solved to compute the leading mode of a structure, its compliance, or other quantities. Shape optimization is then applied to optimize the workpiece of interest with respect to this objective functional. We refer the reader to [1, 19, 27, 35, 42] and the references therein for an overview on the topic of shape optimization, which is a subfield of the optimal control of partial differential equations.

The input parameters of the model, like the applied loadings, the material’s properties (typically the value of the Young modulus or of the Poisson ratio) or the geometry of the involved shapes itself are usually assumed to be perfectly known. Although this assumption is convenient for the analysis of shape optimization problems, it is unrealistic with regard to applications. In practice, a manufactured component achieves its nominal geometry only up to a tolerance, the material parameters never match the requirements perfectly and the applied forces can only be estimated. Therefore, shape optimization under uncertainty is of great practical interest but started only recently to be investigated, see e.g. [2, 7, 9, 10, 11, 12, 21, 30, 40] for related results.

In this article, we are interested in the solution of a constrained shape optimization problem on a set of mechanical structures subject to a random mechanical loading \(g = g(\omega) \). Thus, also the state \(u \) becomes a random field, i.e., \(u = u(\omega) \). The cost functional \(Q(\Omega, g) \) under consideration is supposed to depend quadratically on the state \(u \) (and thus quadratically on \(g \)), which covers important functionals such as the compliance or the square norm of the von Mises stresses. The objective is the identification of the structure \(\Omega \) with the smallest volume for which the probability of failure \(\mathbb{P}[Q(\Omega, g) > \tau] \) does not exceed a prescribed threshold.

∗E2S UPPA, CNRS, LMAP, UMR 5142, Université de Pau et de Pays de l’Adour, Pau, 64000, France.
†Safran Helicopter Engines, Avenue Joseph Szydlowski, Bordes, 64510, France.
‡Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland.
The shape optimization problem under consideration is known to be computationally hard as the probability of failure defines a quantity of interest which is not smooth with respect to the random parameter ω. We are only aware of [2, 9], where this problem has been tackled, however, only by approximating the non-smooth functional by a smooth one. Nonetheless, in the present setting of a quadratic shape functional, we will show that the region, where $Q(\Omega, g) > \tau$ holds, is the exterior of an ellipsoid with respect to the stochastic parameter ω. We will exploit this fact in order (i) to compute the shape derivative of the problem under consideration and (ii) to derive an efficient, deterministic shape optimization algorithm.

The rest of this article is structured as follows. In Section 2, we introduce the model problem and compute the shape functional and its shape gradient. Section 3 is then dedicated to our showcase, where we suppose that the loading $g = g(\omega)$ is a Gaussian random field. We develop a suitable quadrature formula which can be used to numerically compute the shape functional and the associated shape gradient. Then, in Section 4, we present numerical results in three spatial dimensions in order to demonstrate the feasibility of the present approach. Finally, in Section 5, we state concluding remarks.

2. The shape optimization problem.

2.1. Problem statement. Let us consider a family of Lipschitz continuous admissible domains S_{adm} in \mathbb{R}^d (for $d = 2$ or 3) sharing the portions Γ_N and Γ_D, which we suppose to be disjoint. For each $\Omega \in S_{adm}$, we denote $\Gamma_0 = \partial \Omega \setminus (\Gamma_N \cup \Gamma_D)$ the optimizable portion of the boundary. We suppose that the structure to be optimized is made up of a linear elastic material, characterized by the Lamé parameters λ and μ, and is clamped on Γ_D.

Let further $(\mathcal{O}, \mathcal{F}, \mathbb{P})$ be a probability space, where $\mathcal{F} \subset 2^{\mathcal{O}}$ is a σ-algebra on \mathcal{O} and \mathbb{P} is a probability measure. A random mechanical load $g \in L^2(\mathcal{O}, \mathbb{P}; H^{-1/2}(\Gamma_N))$ is applied on the portion Γ_N of the boundary. In particular, we suppose that g can be written in terms of a deterministic term \bar{g}_0 and a finite number N of random terms in accordance with

\begin{equation}
(2.1) \quad g(\omega) = \bar{g}_0 + \bar{g}_1X_1(\omega) + \ldots + \bar{g}_NX_N(\omega) \quad \text{for almost all } \omega \in \mathcal{O},
\end{equation}

where $X_1, \ldots, X_N \in L^2(\mathcal{O}, \mathbb{P}; \mathbb{R})$ are centered and independent, real valued random variables and $\bar{g}_0, \ldots, \bar{g}_N \in H^{-1/2}(\Gamma_N)$. Then, for almost any event $\omega \in \mathcal{O}$, the displacement $u_{\Omega,g}(\omega) \in H^1(\Omega)$ is the solution of the following linear elasticity system:

\begin{equation}
(2.2) \quad \begin{cases}
-\text{div } \sigma(u_{\Omega,g}(\omega)) &= 0 & \text{in } \Omega, \\
\sigma(u_{\Omega,g}(\omega))n &= 0 & \text{on } \Gamma_0, \\
\sigma(u_{\Omega,g}(\omega))n &= g(\omega) & \text{on } \Gamma_N, \\
u_{\Omega,g}(\omega) &= 0 & \text{on } \Gamma_D.
\end{cases}
\end{equation}

Here, for any displacement $u \in H^1(\Omega)$, $\epsilon(u) = (\nabla u + \nabla u^T)/2$ is the infinitesimal strain tensor and $\sigma(u) = 2\mu\epsilon(u) + \lambda \text{div}(u)$ identifies the Cauchy stress tensor.

Throughout this article, we consider the shape optimization problem

\begin{equation}
(2.3) \quad \text{Find the admissible shape } \Omega \in S_{adm} \text{ minimizing } \text{Vol}(\Omega) \text{ under the constraint } \mathbb{P}\left[\left\langle u_{\Omega,g}, Q \Omega u_{\Omega,g}\right\rangle_{H^1(\Omega)} > \tau\right] \leq \bar{p},
\end{equation}

where the state $u_{\Omega,g}(\omega)$ satisfies the state equation (2.2) for almost all $\omega \in \mathcal{O}$.
We shall highlight the dependency of the constraint $P[\langle u_{\Omega, g}, Q \Omega u_{\Omega, g} \rangle_{H^1(\Omega)} > \tau]$ from the random variables X_1, \ldots, X_N appearing in the definition (2.1) of the mechanical load. For all $i \in \{1, \ldots, N\}$, we define the displacement $u_{\Omega, i} \in H^1(\Omega)$ as the solution of the following deterministic elasticity problem:

$$
\begin{cases}
-\text{div} \sigma(u_{\Omega,i}) &= 0 \quad \text{in } \Omega, \\
\sigma(u_{\Omega,i}) n &= 0 \quad \text{on } \Gamma_0, \\
\sigma(u_{\Omega,i}) n &= \bar{g}, \quad \text{on } \Gamma_N, \\
u_{\Omega,i} &= 0 \quad \text{on } \Gamma_D.
\end{cases}
$$

Thanks to the linearity of the state equation (2.2), the displacement $u_{\Omega,g} \in L^2(\Omega, \mathbb{P}; H^1(\Omega))$ can be written as a sum of N terms, depending from the same random variables as in (2.1):

$$u_{\Omega, g}(\omega) = u_{\Omega, 0} + u_{\Omega, 1} X_1(\omega) + \ldots + u_{\Omega, N} X_N(\omega) \quad \text{for almost all } \omega \in \mathcal{O}.
$$

Since the safety functional is quadratic with respect to the displacement, we can express it as a quadratic function $\Psi_\Omega : \mathbb{R}^N \rightarrow \mathbb{R}$ of the random vector $X = (X_1, \ldots, X_N) \in L^2(\Omega, \mathbb{P}; \mathbb{R}^N)$ as

$$Q(\Omega, g(\omega)) = \Psi_\Omega(X(\omega)) = X(\omega)^T M_\Omega X(\omega) + 2 b_{\Omega}^T X(\omega) + c_{\Omega},$$

for almost all $\omega \in \mathcal{O}$. The symmetric matrix $M_\Omega \in \text{Sym}_N \subset \mathbb{R}^{N \times N}$, the vector $b_{\Omega} \in \mathbb{R}^N$, and the scalar c_{Ω} are functions of the displacements $u_{\Omega, 1}, \ldots, u_{\Omega, N}$, and are defined as

- $[M_\Omega]_{i,j} = \langle u_{\Omega,j}, Q \Omega u_{\Omega,i} \rangle_{H^1(\Omega)}$ for all $i, j \in \{1, \ldots, N\}$;
- $[b_{\Omega}]_k = \langle u_{\Omega,0}, Q \Omega u_{\Omega,k} \rangle_{H^1(\Omega)}$ for all $k \in \{1, \ldots, N\}$;
- $c_{\Omega} = \langle u_{\Omega,0}, Q \Omega u_{\Omega,0} \rangle_{H^1(\Omega)}$.

Since Q_Ω is a self-adjoint positive definite operator, the matrix M_Ω is symmetric having N eigenvalues $\lambda_{\Omega, 1}, \ldots, \lambda_{\Omega, N}$ that are real and strictly positive.

Let us consider the (deterministic) subset of \mathbb{R}^N $E(\Psi_\Omega, \tau)$ containing all the realizations of the random vector X for which the constraint is satisfied:

$$E(\Psi_\Omega, \tau) = \{x \in \mathbb{R}^N : \Psi_\Omega(x) \leq \tau\}.$$

We denote $\tilde{\tau}_\Omega$ the following quantity:

$$\tilde{\tau}_\Omega = \tau - \left(c_{\Omega} - b_{\Omega}^T M_{\Omega}^{-1} b_{\Omega}\right).$$

Given the properties of the quadratic function Ψ_Ω and assuming that $\tilde{\tau}_\Omega > 0$, we recognize that $E(\Psi_\Omega, \tau)$ is an ellipsoid in \mathbb{R}^N, centered in $-M_{\Omega}^{-1} b_{\Omega}$, and whose semi-axes are oriented
as the eigenvectors of \(\mathbf{M}_\Omega \) and have length \(r_{1,\Omega}^{\tau}, \ldots, r_{N,\Omega}^{\tau} \):

\[
(2.8) \quad r_{i,\Omega}^{\tau} = \sqrt{\tau_\Omega / \lambda_{\Omega,i}} \quad \text{for all } i \in \{1, \ldots, N\}.
\]

However, if \(\tilde{\tau}_\Omega < 0 \), we have that \(\mathcal{E}(\Psi_\Omega, \tau) = \emptyset \), and the constraint cannot be satisfied if \(\bar{p} < 1 \).

For the sake of clarity, we introduce the shape functional \(\Phi : \mathcal{S}_{adm} \to \mathbb{R} \) defined as the probability of the constraint to be satisfied:

\[
\Phi(\Omega) = \mathbb{P}[\mathcal{Q}(\Omega, \mathbf{g}) \leq \tau] = 1 - \mathbb{P}[\mathcal{Q}(\Omega, \mathbf{g}) > \tau].
\]

The inequality constraint in problem (2.3) can be written alternatively as \(\Phi(\Omega) \geq 1 - \bar{p} \).

Therefore, \(\Phi(\Omega) \) can be interpreted as the volume of the ellipsoid \(\mathcal{E}(\Psi_\Omega, \tau) \) with respect to the probability measure \(\mathbb{P}_\mathbf{X} \) induced by the random variable \(\mathbf{X} \):

\[
(2.9) \quad \Phi(\Omega) = \mathbb{P}_\mathbf{X}[\mathbf{X} \in \mathcal{E}(\Psi_\Omega, \tau)] = \int_{\mathcal{E}(\Psi_\Omega, \tau)} 1 \, d\mathbb{P}_\mathbf{X}(\mathbf{x}).
\]

2.3. Sensitivity of the exceeding probability.

In order to solve problem (2.3) using a gradient-based optimization algorithm, we have to compute an expression for \(\Phi(\Omega) \) and for its shape derivative \(\frac{d}{d\Omega}[\Phi(\Omega)](\cdot) \). To this end, let us suppose that the random vector \(\mathbf{X} \) admits a probability density function \(f : \mathbb{R}^N \to \mathbb{R}^+ \), such that \(f \in \mathcal{W}^{1,1}(\mathbb{R}^N) \). Then, in view of (2.9), the quantity \(\Phi(\Omega) \) can be written as:

\[
(2.10) \quad \Phi(\Omega) = \int_{\mathcal{E}(\Psi_\Omega, \tau)} f(\mathbf{x}) \, d\mathbf{x}
\]

Moreover, we suppose that all entries of \(\mathbf{M}_\Omega \) and \(\mathbf{b}_\Omega \), as well as \(c_\Omega \), are differentiable with respect to the shape, and we denote their shape derivatives by \(\frac{d}{d\Omega}[\mathbf{M}_\Omega](\theta) \), \(\frac{d}{d\Omega}[\mathbf{b}_\Omega](\theta) \), and \(\frac{d}{d\Omega}[c_\Omega](\theta) \), respectively.

We recognize in (2.10) the expression of the integral of a constant function over a variable domain \(\mathcal{E}(\Psi_\Omega, \tau) \). Let \(\xi \in \mathcal{W}^{1,\infty}(\mathbb{R}^N; \mathbb{R}^N) \) be a Lipschitz continuous deformation field in \(\mathbb{R}^N \). Then, we can compute the derivative of the mapping \(\xi \mapsto \mathbb{P}[\mathbf{X} \in \mathcal{E}(\Psi_\Omega, \tau) \circ (\mathbb{I} + \xi)] \) thanks to the usual shape differentiation techniques (see [27, Eq. (5.24)]). Moreover, since \(\mathcal{E}(\Psi_\Omega, \tau) \) is an ellipsoid and supposing that \(\xi \) is also \(C^1 \), we can apply Hadamard’s regularity theorem (see [27, Proposition 5.9.1]) and write

\[
(2.11) \quad \frac{d}{d\xi} \mathbb{P}[\mathbf{X} \in \mathcal{E}(\Psi_\Omega, \tau) \circ (\mathbb{I} + \xi)](\xi) = \int_{\mathcal{E}(\Psi_\Omega, \tau)} \text{div} \, \xi(\mathbf{x}) \, f(\mathbf{x}) \, d\mathbf{x}
\]

Here, for all \(s \in \partial \mathcal{E}(\Psi_\Omega, \tau) \), \(\mathbf{n}(s) \in \mathbb{R}^N \) is the unitary vector orthogonal to \(\partial \mathcal{E}(\Psi_\Omega, \tau) \) in \(s \).
Lemma 2.1. Let us consider an admissible domain $\Omega \in \mathcal{S}_{adm}$ and a regular enough displacement field $\theta \in C^1 \cap W^{1,\infty}(\mathbb{R}^d; \mathbb{R}^d)$ for the domain Ω such that $\|\theta\|_\infty < 1$. We denote $\Xi, \theta \in \mathbb{R}^{N \times N}$ and $r_{\Omega, \theta} \in \mathbb{R}^N$ the matrix and the vector respectively defined as

\begin{align}
(2.12) \quad & \Xi_{\Omega, \theta} = \frac{d}{d\Omega} [\tau] (\theta) \left(1 - \frac{1}{2} \Omega^{-1} \frac{d}{d\Omega} [\Omega] (\theta) \right); \\
(2.13) \quad & r_{\Omega, \theta} = -\Omega^{-1} \frac{d}{d\Omega} [b] (\theta) + \left(\frac{d}{d\Omega} [\tau] \Omega^{-1} \frac{d}{d\Omega} [\Omega] (\theta) \right) \Omega^{-1} b, \\
\end{align}

where $\frac{d}{d\Omega} [\tau] (\theta)$ has the expression

\begin{align}
(2.14) \quad & \frac{d}{d\Omega} [\tau] (\theta) = -\frac{d}{d\Omega} [\Omega_{\theta}] (\theta) - \Omega_{\theta}^{-1} \frac{d}{d\Omega} [\Omega] (\theta) M_{\theta}^{-1} b + M_{\theta}^{-1} \frac{d}{d\Omega} [b] (\theta).
\end{align}

Then, $\xi^\theta : x \mapsto \Xi_{\Omega, \theta} x + r_{\Omega, \theta}$ is a C^1 Lipschitz-continuous displacement field on \mathbb{R}^N such that the shape derivative of $\Phi (\cdot)$ in Ω can be written in its volumic and surface forms as

\begin{align}
(2.15) \quad & \frac{d}{d\Omega} [\Phi (\Omega)] (\theta) = \int_{\mathcal{E}_{\Omega, \tau}} \operatorname{div} \left(f(x) \xi^\theta (x) \right) dx = \int_{\partial \mathcal{E}_{\Omega, \tau}} f(s) \left(\xi^\theta (s) \cdot n(s) \right) ds.
\end{align}

Proof. Let $\delta > 0$ be such that, for any $t \in [0, \delta]$, $\tau_{\Omega_{\theta} (1+t\theta)} > 0$. We consider the following dynamical system:

\begin{align}
(2.16) \quad \left\{ \begin{array}{ll}
\dot{x}(t; \bar{x}) = \Xi_{\Omega_{\theta} (1+t\theta)} x(t; \bar{x}) + r_{\Omega_{\theta} (1+t\theta), \theta} & \text{for } t \in [0, \delta], \bar{x} \in \mathbb{R}^N, \\
x(0; \bar{x}) = \bar{x} & \text{for } \bar{x} \in \mathbb{R}^N.
\end{array} \right.
\end{align}

We set

\[y(t, \theta, \bar{x}) := x(t; \bar{x}) + M_{\Omega_{\theta} (1+t\theta)}^{-1} b_{\Omega_{\theta} (1+t\theta)} \]

and remark that the quantity defined as

\[\tau_{\Omega_{\theta} (1+t\theta)} (y(t, \theta, \bar{x})) \]

is constant along the trajectories. Indeed, using the expressions (2.12), (2.13), and (2.16), there holds

\begin{align*}
\frac{d}{dt} \tau_{\Omega_{\theta} (1+t\theta)} (y(t, \theta, \bar{x})) &= \tau_{\Omega_{\theta} (1+t\theta)}^{-2} \left[\tau_{\Omega_{\theta} (1+t\theta)} (\theta) y(t, \theta, \bar{x}) \right] + \tau_{\Omega_{\theta} (1+t\theta)} \left(y(t, \theta, \bar{x}) \right)^T \left(M_{\Omega_{\theta} (1+t\theta)} \right)^{-1} y(t, \theta, \bar{x}) \\
& \quad \times \left(M_{\Omega_{\theta} (1+t\theta)} x(t; \bar{x}) - \frac{d}{dt} M_{\Omega_{\theta} (1+t\theta)} M_{\Omega_{\theta} (1+t\theta)}^{-1} b_{\Omega_{\theta} (1+t\theta)} + \frac{d}{dt} b_{\Omega_{\theta} (1+t\theta)} \right).
\end{align*}

Moreover, for any $t \in [1, \delta]$, the inequality $\tau_{\Omega_{\theta} (1+t\theta)} (x) \leq 1$ defines the same ellipsoid $\mathcal{E} (\Omega_{\theta_{\theta} (1+t\theta)}, \tau)$ as the inequality $\Phi_{\Omega_{\theta} (1+t\theta)} (x) \leq \tau$. Therefore, the deformation $x \mapsto (1 + \mathcal{F}_{\tau}) x$
Lemma 2.1 gives the identity \(\mathcal{E} (\Psi_{\Omega((I+t)\theta)}; \tau) = \mathcal{E} (\Psi_{\Omega}; \tau) \circ (I + J_1) \), where \(J_1 : \mathbb{R}^N \to \mathbb{R}^N \) is defined as \(J_1 \mathbf{x} = \int_0^t \dot{\mathbf{x}}(s, \mathbf{x}) \, ds \) for \(t \in [0, \delta] \).

We recall that, for any differentiable shape functional \(F \) and Lipschitz-continuous domain \(D \in \mathbb{R}^N \), we have

\[
\frac{d}{dt} F(D \circ (I + \xi(t))) \bigg|_{t=0} = \frac{d}{dD} F(D) (\xi'(0)) ,
\]

provided that \(\xi : [0, \delta) \to W^{1, \infty}(\mathbb{R}^N; \mathbb{R}^N) \) is a differentiable mapping that vanishes in \(t = 0 \). Therefore, since \(\frac{d}{dt} J_1 \bigg|_{t=0} = \dot{\mathbf{x}}(0, \mathbf{x}) = \Xi_{\Omega, \theta} \mathbf{x} + \mathbf{r}_{\Omega, \theta} = \xi^0(\mathbf{x}) \), we conclude that

\[
\frac{d}{d\Omega} [\mathcal{E}(\Omega)] (\theta) = \frac{d}{dt} \mathcal{E}(\Omega \circ (I + t\theta)) \bigg|_{t=0} = \frac{d}{dt} \int_{\mathcal{E}(M_{\Omega((I+t)\theta)}; \tau)} f(\mathbf{x}) \, d\mathbf{x} \bigg|_{t=0} = \int_{\mathcal{E}(\Psi_{\Omega}; \tau)} \text{div} \left(f(\mathbf{x}) \xi^0(\mathbf{x}) \right) \, d\mathbf{x}
\]

A first remark on the result of Lemma 2.1 is that, since \(\xi^0(\mathbf{x}) \) is a linear function of \(\theta \), the expression we found is a Fréchet derivative of the functional \(\Phi(\cdot) \). A second observation concerns the expression of the derivative as a surface integral on a variable ellipsoid. For numerical reasons, it might be more interesting to reformulate the integral as one on a fixed domain. Thus, we can use the volumic expression of the shape derivative to write (2.15) as an integral on the unitary \(N \)-sphere, as is done in the following proposition.

Proposition 2.2. Under the hypotheses of Lemma 2.1, the shape derivative of the functional \(\Phi(\cdot) \) in \(\Omega \) can be written as an integral on the unit \(N \)-sphere \(S_{N-1} \) in accordance with

\[
\frac{d}{d\Omega} [\mathcal{E}(\Omega)] (\theta) = \sqrt{\frac{2}{N}} \frac{\tau^2}{\det M_{\Omega}} \int_{S_{N-1}} f \left(\sqrt{\tau \Omega} \cdot M_{\Omega}^{-1/2} \mathbf{s} - M_{\Omega}^{-1/2} \mathbf{b}_{\Omega} \right) \cdot \left(\Xi_{\Omega, \theta} M_{\Omega}^{-1/2} \mathbf{s} + \frac{1}{\sqrt{\tau \Omega}} (r_{\Omega, \theta} - \Xi_{\Omega, \theta} M_{\Omega}^{-1/2} \mathbf{b}_{\Omega}) \right) \, d\mathbf{s}.
\]

Proof. In order to prove (2.18), we consider the expression of the shape derivative given by Lemma 2.1 and apply the change of variables such that \(\mathbf{y} = \frac{1}{\sqrt{\tau \Omega}} M_{\Omega}^{1/2} (\mathbf{x} + M_{\Omega}^{-1/2} \mathbf{b}_{\Omega}) \), mapping \(\mathcal{E}(\Psi_{\Omega}; \tau) \) to \(\mathbb{B} \). We recall that, for any function \(f : \mathbb{R}^N \to \mathbb{R}^N \) that is \(C^1(\mathcal{A}) \) in a given open subset \(\mathcal{A} \) of \(\mathbb{R}^N \), the expression of the divergence with respect to the variable \(\mathbf{y} \) is

\[
\text{div} f(\mathbf{x}) = \frac{1}{\sqrt{\tau \Omega}} \text{div}_y \left(M_{\Omega}^{1/2} f \left(\sqrt{\tau \Omega} M_{\Omega}^{-1/2} \mathbf{y} - M_{\Omega}^{-1/2} \mathbf{b}_{\Omega} \right) \right).
\]

Considering the expression of the displacement field \(\xi^0 : \mathbb{R}^N \to \mathbb{R}^N \) as \(\xi^0(\mathbf{x}) = \Xi_{\Omega, \theta} \mathbf{x} + r_{\Omega, \theta} \),
where $\Xi_{\Omega,\theta}$ and $r_{\Omega,\theta}$ are defined in (2.12) and (2.13), we get

$$
(2.19) \quad \frac{d}{d\Omega} [\Phi (\Omega)] (\theta) = \int_{E(\Psi,\Omega,\tau)} \text{div} \left(f(x) \xi^\theta (x) \right) dx = \int_{E(\Psi,\Omega,\tau)} \text{div} \left(f(x) \left(\Xi_{\Omega,\theta} x + r_{\Omega,\theta} \right) \right) dx
$$

$$
= \sqrt{\frac{\gamma^N_{\Omega}}{\det M_{\Omega}}} \int_{B_N} \text{div} \left(\left(f \left(\sqrt{\gamma_{\Omega} M_{\Omega}^{-1/2}} y - M_{\Omega}^{-1} b_{\Omega} \right) \right) \right) dy.
$$

Observing that the normal vector on the unit sphere S_{N-1} in any point s coincides with the vector s itself, (2.19) can be written as an integral on the sphere ∂B_N according to (2.18).

The expression of the derivative of $\Phi (\cdot)$ as found in Proposition 2.2 is valid only if the random vector X admits a C^1 density function $f (\cdot)$ in an open neighborhood of the ellipsoid $E (\Psi, \Omega, \tau)$. However, if the sensitivity of $\Phi (\cdot)$ is computed as part of a shape optimization procedure, such assumption should be verified for all shapes obtained during the execution of the algorithm. Therefore, it is crucial that the density $f (\cdot)$ is C^1 in an open subset of \mathbb{R}^N containing all the ellipsoids corresponding to $\Omega_0, \ldots, \Omega_{\text{max}}$. Such condition might be unrealistic if the density $f (\cdot)$ is not C^1 on the entire space \mathbb{R}^N which especially happens if it is compactly supported like the uniform distribution.

The expression (2.18) can be reformulated in order to highlight the terms depending on the argument of the shape derivative θ. We denote $\{e_1, \ldots, e_N\}$ the canonical basis of \mathbb{R}^N, and we consider a basis $\{B^{i,j}\}_{0 \leq i, j \leq N}$ for the space of $N \times N$ symmetric matrices such that

$$
[B^{i,j}]_{k,\ell} = \begin{cases}
\beta_{i,j}, & \text{if } k = i, \ell = j, \\
\beta_{i,j}, & \text{if } k = j, \ell = i, \\
0, & \text{otherwise},
\end{cases}
$$

$$
\beta_{i,j} = \begin{cases}
1, & \text{if } i = j, \\
1/\sqrt{2}, & \text{if } i \neq j.
\end{cases}
$$

Thus, the shape derivative of $\Phi (\cdot)$ in Ω becomes

$$
(2.20) \quad \frac{d}{d\Omega} [\Phi (\Omega)] (\theta) = \sum_{1 \leq i, j \leq N} \left(M_{\Omega}^{1/2} \Xi_{\Omega,\theta} M_{\Omega}^{-1/2} : B^{i,j} \right) \\
\times \int_{S_{N-1}} \sqrt{\frac{\gamma^N_{\Omega}}{\det M_{\Omega}}} f \left(\sqrt{\gamma_{\Omega} M_{\Omega}^{-1/2}} y - M_{\Omega}^{-1} b_{\Omega} \right) s_i s_j \, ds \\
+ \sum_{k=1}^N \left(r_{\Omega,\theta} - \Xi_{\Omega,\theta} M_{\Omega}^{-1} b_{\Omega} \right) \cdot e_k \int_{S_{N-1}} \sqrt{\frac{\gamma^N_{\Omega}}{\det M_{\Omega}}} f \left(\sqrt{\gamma_{\Omega} M_{\Omega}^{-1/2}} y - M_{\Omega}^{-1} b_{\Omega} \right) s_k \, ds.
$$

The expression (2.20) of the shape derivative of $\Phi (\Omega)$ requires the computation of all the entries of $\Xi_{\Omega,\theta}$ and $r_{\Omega,\theta}$ (which are functions of $\frac{d}{d\Omega} |M_{\Omega}| (\theta)$, $\frac{d}{d\Omega} |b_{\Omega}| (\theta)$, and $\frac{d}{d\Omega} |c_{\Omega}| (\theta)$), as well as $N(N+3)/2$ integrals on S_{N-1}. The evaluation of said integrals can be done by applying suitable quadrature formulas on S_{N-1}, which of course might be quite expensive if the number N of random variables is large. An alternative approach which applies to Gaussian random fields is proposed in the next section.
3. The generalized noncentral chi-squared distribution.

3.1. Series expansion of the cumulative distribution function. Let \(X \sim \mathcal{N}(\mu, \Sigma) \) be a Gaussian random vector with \(N \) components, mean \(\mu \) and covariance matrix \(\Sigma \), and let \(D = \text{diag}\{\lambda_1, \ldots, \lambda_N\} \) be a positive definite diagonal matrix. Let \(T \) be the random variable defined as follows:

\[
T = X^T D X = \lambda_1 X_1^2 + \ldots + \lambda_N X_N^2, \tag{3.1}
\]

Without loss of generality, we suppose that the covariance matrix of the Gaussian random vector \(X \) is the identity matrix: \(X \sim \mathcal{N}(\mu, I) \). In such case, each random variable \(X_i^2 \) follows a noncentral chi-squared distribution with one degree of freedom and non-centrality parameter \(\mu_i^2 \). The random variable \(T \) is said to follow a generalized non-central chi-squared distribution:

\[
T \sim \tilde{\chi}^2(1; \mu \odot \mu; \lambda), \tag{3.2}
\]

where \(\mathbf{1} = [1, \ldots, 1] \) is the vector of the degrees of freedom, \(\mu \odot \mu = [\mu_1^2, \ldots, \mu_N^2] \) is the vector of noncentrality parameters (the symbol ”\(\odot \)” represent the elementwise product), and \(\lambda = \text{diag}\{D\} \) is the vector of the weights of the random variables \(X_1, \ldots, X_N \).

The characterization of the cumulative distribution function \(F_T \) of the random variable \(T \) has been studied analytically in [36, 37]. The results of these articles have led to the development of several algorithms for the numerical computation of the quantiles of \(T \). Sequential methods that provide an estimate for the truncation error include the algorithms developed by Imhof [28], Farebrother [22] (this method refines the result obtained by Sheil and O’Muircheartaigh in [41]), and Davies [17, 18]. If the number \(N \) of random variables is large, faster but less accurate approximations should be considered. Among such techniques we mention Kuonen’s method [29], which is based on a saddlepoint approximation of the distribution of \(T \), the approach based on the leading eigenvalues developed by Lumley et al. in [33], and the several approaches based on the computation of the stochastic moments of the random variable \(T \) like the methods developed by Liu–Tang–Zhang [32], Satterthwaite–Welch [39], Hall–Buckley–Eagleson [25, 5], and Lindsay–Pilla–Basak [31]. Further information on the comparison between the different methods can be found in [20, 4, 8].

In this section, we present the results of [37], where, for any threshold \(\tau > 0 \), the quantity \(F_T(\tau) \) is expressed in terms of a series of cumulative distribution functions of centered chi-squared random variables (see [37, Theorem 1]). The coefficients of the decomposition are defined by a recurrence relation. Moreover, an upper bound on the truncation error of the series is provided.

Theorem 3.1 (Decomposition of \(F_T(\tau) \) by chi-squared random variables). Let \(T \) be a real-valued random variable defined as in (3.1). Then, for any choice of \(\beta > 0 \), the quantity \(F_T(\tau) = \mathbb{P}[T \leq \tau] \) can be expressed as

\[
F_T(\tau) = \sum_{k=0}^{\infty} \gamma_k F_{\chi^2(2k+N)} \left(\frac{\tau}{\beta} \right), \tag{3.3}
\]

where \(\gamma_k \) are the coefficients determined by the recurrence relation.
The weights \(\{\gamma_k\}_{k=0}^{\infty} \) are computed by using the recurrence relation

\[
\gamma_0 = e^{-\frac{1}{2}||\mu||^2 \beta^{N/2}} \det(D)^{-1/2} \quad \text{and} \quad \gamma_k = \frac{1}{2k} \sum_{\ell=0}^{k-1} g_k - \epsilon_k for k \geq 1,
\]

where the coefficients \(\{g_k\}_{k=1}^{\infty} \) are defined in accordance with

\[
g_k = \sum_{i=1}^{N} \left(1 - \frac{\beta}{\lambda_i} \right)^{k-1} \left(1 + (k\mu_i^2 - 1) \frac{\beta}{\lambda_i} \right).
\]

In particular, if \(0 < \beta < \min_{i \in \{1, \ldots, N\}} \{\lambda_1, \ldots, \lambda_N\} \), the series (3.3) is a mixture representation, meaning that all coefficients \(\gamma_k \) are non-negative and \(\sum_{k=0}^{\infty} \gamma_k = 1 \).

This result is stated and proven in [37, Theorem 1], while the condition of the mixture representation is stated in [37, Section 5]. Note that [37] provides also an explicit expression for the coefficients \(\{\gamma_k\}_{k=0}^{\infty} \) which can be used to prove the uniform convergence of the series (3.3) for any choice of \(\beta > 0 \) and for any finite value of the threshold \(0 \leq \tau < \infty \). Especially, analogous results apply also to the probability density function of \(T \).

Corollary 3.2. If \(0 < \beta < \min_{i \in \{1, \ldots, N\}} \{\lambda_1, \ldots, \lambda_N\} \), for any \(\tau > 0 \), the following expression for the probability density function of \(T \) holds:

\[
f_T(\tau) = \sum_{k=0}^{\infty} \gamma_k f_{\chi^2(2k+N)} \left(\frac{\tau}{\beta}\right).
\]

If the mixture representation holds (that is if \(0 < \beta < \min \{\lambda_1, \ldots, \lambda_N\} \)), it is possible to establish the following upper bound on the truncation error of the series (3.3).

Proposition 3.3. If \(0 < \beta < \min \{\lambda_1, \ldots, \lambda_N\} \) and the hypotheses of Theorem 3.1 hold, then

\[
\left| F_T(\tau) - \sum_{k=0}^{n} \gamma_k f_{\chi^2(2k+N)} \left(\frac{\tau}{\beta}\right) \right| \leq \left(1 - \sum_{k=0}^{n} \gamma_k\right) F_{\chi^2(2n+2+N)} \left(\frac{\tau}{\beta}\right)
\]

for all \(0 < \tau < \infty \) and any integer \(n \).

Proof. One readily verifies that \(F_{\chi^2(m)}(\tau) < F_{\chi^2(n)}(\tau) \) for any pair of integers \(m > n \) and any \(\tau > 0 \) fixed. Therefore, the sequence \(\left\{ F_{\chi^2(2k+N+2)} \left(\frac{\tau}{\beta}\right) \right\}_{k=0}^{\infty} \) is decreasing whenever \(\tau/\beta \) is fixed. Thus, we conclude

\[
\left| F_T(\tau) - \sum_{k=0}^{n} \gamma_k f_{\chi^2(2k+N)} \left(\frac{\tau}{\beta}\right) \right| = \left| \sum_{k=n+1}^{\infty} \gamma_k f_{\chi^2(2k+N)} \left(\frac{\tau}{\beta}\right) \right| \leq F_{\chi^2(2n+N+2)} \left(\frac{\tau}{\beta}\right) \sum_{k=n+1}^{\infty} \gamma_k = \left(1 - \sum_{k=0}^{n} \gamma_k\right) F_{\chi^2(2n+2+N)} \left(\frac{\tau}{\beta}\right).
\]
3.2. Differentiating the probability of a quadratic form to exceed a threshold. Let τ be a positive constant, and let us consider the following mappings:

- \(M : [0, \delta] \to \text{Sym}_N \) associating to any \(t \in [0, \delta] \) a positive definite symmetric matrix;
- \(b : [0, \delta] \to \mathbb{R}^N; \)
- \(c : [0, \delta] \to \mathbb{R}. \)

We assume that these three functions are all \(C^1 \), and we denote by \(\Psi_t \) the quadratic form defined on \(\mathbb{R}^N \) given by

\[
\Psi_t : x \mapsto x^T M(t)x + 2^T b(t)x + c(t).
\]

We suppose that \(\Psi_t(x) > 0 \) and that \(\tau > c(t) - b^T(t)M^{-1}(t)b(t) = \Psi_t \left(-M^{-1}(t)b(t)\right) \) holds for all \(t \in [0, \delta] \) and \(x \in \mathbb{R}^N. \)

Let \(X \sim \mathcal{N}(h, I) \) be a Gaussian random vector where \(h \in \mathbb{R}^N \) is constant and \(I \) is the \(N \times N \) identity matrix. We are interested in differentiating the cumulative distribution function of the random variable \(\Psi_t(X) \) with respect to the parameter \(t \). In order to do so, we prove the following lemma about the derivative of the cumulative distribution function of a generalized \(\chi^2 \) random variable.

Lemma 3.4. Let us consider two \(C^1 \) vector-valued functions \(\mu, \lambda : [0, \delta] \to \mathbb{R}^N \) such that, for all \(t \in [0, \delta], \) all components of \(\lambda(t) \) are strictly larger than a positive constant \(\beta \) independent from \(t \). For all \(t \in [0, \delta], \) let \(T(t) \) be a random variable with the following generalized chi-squared distribution:

\[
T(t) \sim \widetilde{\chi}^2 \left(1; \mu(t) \odot \mu(t); \lambda(t)\right).
\]

Due to Theorem 3.1, its cumulative distribution function evaluated in \(\tau \) can be expressed as

\[
F_{T(t)}(\tau) = \sum_{k=0}^{\infty} \gamma_k(t)F_{\chi^2(2k+N)} \left(\frac{\tau}{\beta}\right).
\]

Then, the coefficients \(\gamma_k(t) \) of the respective cumulative distribution function (3.3) evaluated in \(\tau \) are differentiable with respect to \(t \) for all \(t \in [0, \delta] \) and all \(k \in \mathbb{N}, \) and their derivative is

\[
\gamma'_k(t) = \lambda'(t) \cdot \mathbf{p}^k + \mu'(t) \cdot \mathbf{q}^k.
\]

Herein, the terms \(\mathbf{p}^k = [p_1^k, \ldots, p_N^k]^T \) and \(\mathbf{q}^k = [q_1^k, \ldots, q_N^k]^T, \) and \(\mathbf{d}^j \) are defined as follows for any \(j \in \{1, \ldots, N\} \) and \(k \geq 0: \)

- \(p_0^j = -\frac{\mu_j}{\lambda_j} \) and \(p_k^j = \frac{1}{2\pi} \sum_{\ell=0}^{k-1} (\nu_{j,\ell}^k - \gamma_{\ell} + \nu_{j,k-\ell}^k) \) for \(k \geq 1; \)
- \(q_0^j = 0 \) and \(q_k^j = \frac{1}{2\pi} \sum_{\ell=0}^{k-1} (\kappa_{j,\ell}^k - \gamma_{\ell} + \nu_{j,k-\ell}^k) \) for \(k \geq 1; \)
- \(\nu_{j,1}^j = \frac{\beta}{\lambda_j} (1 - \kappa_j^2) \) and \(\nu_{j,k}^j = \frac{\beta}{\lambda_j} \left(1 - \frac{\beta}{\lambda_j}\right)^{k-2} [\lambda_j(k-1)(1+\frac{\beta}{\lambda_j}(k\mu_j^2-1)) + (1-\frac{\beta}{\lambda_j})(1-k\mu_j^2)] \) for \(k \geq 1; \)
- \(\kappa_j^k = 2k\mu_j \beta \left(1 - \frac{\beta}{\lambda_j}\right)^{k-1} \) for \(k \geq 1. \)

Proof. According to Theorem 3.1, the coefficients \(\gamma_k \) are defined as in (3.4), where the coefficients \(g_k \) are given by:

\[
g_k = \sum_{j=1}^{N} \left(1 - \frac{\beta}{\lambda_j}\right)^{k-1} \left(1 + (k\mu_j(t)^2 - 1)\frac{\beta}{\lambda_j(t)}\right).
\]
Differentiating (3.10), we obtain
\[g_1'(t) = \sum_{j=1}^{N} \left(2 \frac{h_j}{\lambda_j} \mu_j'(t) - (h_j^2 - 1) \frac{\beta}{\lambda_j^2} \lambda_j'(t) \right) = \sum_{j=1}^{N} \left(\kappa_j \mu_j'(t) + \nu_j \lambda_j'(t) \right) \]
and for \(k > 1 \)
\[g_k'(t) = \sum_{j=1}^{N} \left[\left(1 - \frac{\beta}{\lambda_j} \right)^{k-2} \left((k - 1) \frac{\beta}{\lambda_j} \left(1 + (k \mu_j^2 - 1) \frac{\beta}{\lambda_j} \right) \right) \lambda_j'(t) \right. \\
+ \left. \left(1 - \frac{\beta}{\lambda_j} \right) \left(2k \mu_j \frac{\beta}{\lambda_j} \mu_j'(t) - \left((k \mu_j^2 - 1) \frac{\beta}{\lambda_j^2} \right) \lambda_j'(t) \right) \right] = \sum_{j=1}^{N} \left(\kappa_j \mu_j'(t) + \nu_j \lambda_j'(t) \right). \]

The assertion follows by differentiating the definitions of \(\gamma_k \), found in (3.4), and using the expression above for the derivatives of \(g_k \).

Proposition 3.5. Let \(\Psi_t : \mathbb{R}^N \to \mathbb{R} \) be defined as in (3.7) for \(t \in [0, \delta] \), let \(X \sim \mathcal{N} (\mathbf{h}, \mathbb{I}) \) be a Gaussian vector, and let \(\tau \) be a positive constant. We assume that \(\tau > c(t) - \mathbf{b}^T(t) \mathbf{M}^{-1}(t) \mathbf{b}(t) \) for all \(t \in [0, \delta] \), and that all eigenvalues of \(\mathbf{M}(t) \lambda_1(t), \ldots, \lambda_N(t) \) are pairwise distinct and larger than a strictly positive constant \(\beta > 0 \). We introduce the following notation:

- \(Y(t) \in L^2 (\mathcal{O}, P) \) is the random variable defined as \(Y(t) = X + \mathbf{M}^{-1}(t) \mathbf{b}(t) \), therefore its law is \(Y(t) \sim \mathcal{N} (\mathbf{h} + \mathbf{M}^{-1}(t) \mathbf{b}(t), \mathbb{I}) \);
- for all \(t \in [0, \delta] \), we denote \(T(t) \) the random variable \(T(t) = \mathbf{Y}^T(t) \mathbf{M}(t) \mathbf{Y}(t) \);
- \(\tilde{\tau} : [0, \delta] \to \mathbb{R} \) mapping \(t \mapsto \tau - c(t) + \mathbf{b}(t)^T \mathbf{M}^{-1}(t) \mathbf{b}(t) \);
- \(\mathbf{M}(t) \) is diagonalized as \(\mathbf{M}(t) = \mathbf{Q}(t) \mathbf{D}(t) \mathbf{Q}^T(t) \), where \(\mathbf{Q}(t) = [\mathbf{v}_1, \ldots, \mathbf{v}_N] \) is an orthogonal matrix, and \(\mathbf{D}(t) = \text{diag} \{ \lambda(t) \} = \text{diag} \{ \lambda_1(t), \ldots, \lambda_N(t) \} \);
- \(\mathbf{\mu} : [0, \delta] \to \mathbb{R}^N \) such that \(\mathbf{\mu}(t) = \mathbf{Q}^T(t) \mathbf{h} + \mathbf{Q}^T(t) \mathbf{M}^{-1}(t) \mathbf{b}(t) \).

Then, for any \(t \in [0, \delta] \), \(Y(t) \) is a normalized Gaussian random variable centered in \(\mathbf{\mu}(t) \), and \(T(t) \) has the following chi-squared distribution:

\[T(t) \sim \tilde{\chi}^2 (1; \mathbf{\mu}(t) \odot \mathbf{\mu}(t); \lambda). \]

Moreover, for all \(t \in [0, \delta] \), the following identity between the values of the cumulative distribution functions of \(\Psi_t(X) \) and \(T(t) \) holds:

\[F_{\Psi_t(X)} (\tau) = F_{T(t)} (\tilde{\tau}(t)). \]

Finally, the mapping \(t \mapsto F_{\Psi_t(X)} (\tau) \) is differentiable and its derivative can be written as

\[\frac{d}{dt} F_{\Psi_t(X)} (\tau) = \left(\sum_{k=0}^{\infty} p^k F_{\chi^2(2k+N)} \left(\frac{\tilde{\tau}(t)}{\beta} \right) \right) \cdot \chi'(t) \\
+ \left(\sum_{k=0}^{\infty} q^k F_{\chi^2(2k+N)} \left(\frac{\tilde{\tau}(t)}{\beta} \right) \right) \cdot \mu'(t) + \frac{1}{\beta} \left(\sum_{k=0}^{\infty} \gamma_k f_{\chi^2(2k+N)} \left(\frac{\tilde{\tau}(t)}{\beta} \right) \right) \tilde{\tau}'(t). \]
Here, for all $n \in \mathbb{N}$, $f_{\chi^2(n)}$ is the density of a chi-squared random variable with n degrees of freedom. The components of \mathbf{p}^k and \mathbf{q}^k are the coefficients appearing in the decomposition of $F_T(t)$ (Equation 3.14) expressed as in Lemma 3.4, while the derivatives of λ, μ, and τ are:

\begin{align}
(3.14) \quad \Lambda'(t) &= \text{diag} \left\{ Q^T(t)M'(t)Q(t) \right\}; \\
(3.15) \quad \mu'_i(t) &= \sum_{j \neq i} \left(\frac{1}{\lambda_i - \lambda_j} \left(v^j^T M'(t) v^j \right) \left(v^i^T (h + M^{-1}(t)b(t)) \right) \right) \\
&\quad + v^i^T (M^{-1}(t)b'(t) + M^{-1}(t)M'(t)M^{-1}(t)b(t)) \quad \text{for all } i \in \{1, \ldots, N\}; \\
(3.16) \quad \tau'(t) &= -\frac{d}{dt} c(t) - b^T(t)M^{-1}(t)M'(t)b(t) + 2b^T(t)M^{-1}(t)b'(t).
\end{align}

Proof. The identity (3.12) follows from

\[
F_{\Psi_i(t)}(\tau) = \mathbb{P}[\Psi_i(X) \leq \tau] = \mathbb{P}[X^TM(t)X + 2b(t)^TX + c(t) \leq \tau]
= \mathbb{P}\left[(X + M^{-1}(t)b(t))^T M(t) (X + M^{-1}(t)b(t)) \leq \tau - c(t) + b(t)^TM^{-1}(t) + b(t) \right]
= \mathbb{P}[T(t) \leq \tilde{\tau}(t)] = F_T(t)(\tilde{\tau}(t)).
\]

We prove next the differentiability of λ, μ, and τ and equations (3.14), (3.15), and (3.16). Equation (3.14) can be deduced directly from [34, Equation (4)]. Equation (3.15) can be proven by using [34, Equation (5)] on the derivative of the eigenvector of a symmetric matrix with distinct eigenvalues

\[
v^i(t) = (\lambda_i I - M(t))^+ M'(t) v^i(t) = \sum_{j \neq i} \frac{1}{\lambda_i - \lambda_j} \left(v^j^T M'(t) v^j \right) v^j,
\]

where the symbol "+" denotes the Moore-Penrose inverse. Indeed, using the properties of the Moore-Penrose inverse, we arrive at

\[
(\lambda_i I - M)^+ = (Q(\lambda_i I - D)Q^T)^+ = Q(t) \text{ diag} \{d'(t)\} \ Q(t)^T.
\]

Herein, for all $i, j \in \{1, \ldots, N\}$, $d'(t) = [d_1'(t), \ldots, d_N'(t)]^T$ with $d_i' = 0$ and $d_j' = \frac{1}{\lambda_i(t) - \lambda_j(t)}$ if $i \neq j$. Since $\mu_i(t) = v^i^T M^{-1}(t)b(t)$ for all $1 \leq i \leq N$, we deduce

\[
\mu'_i(t) = v^i(t)^T M^{-1}(t)b(t) + v^i(t)^T M^{-1}(t)M'(t)M^{-1}(t)b(t)M^{-1}(t)b'(t),
\]

which is equivalent to (3.15). Next, Equation (3.16) can be computed directly applying the chain rule on the definition (3.16) of $\tilde{\tau}$.

Finally, in order to prove the expression (3.13) of the derivative of $F_{\Psi_i(t)}(\tau)$, we consider the identity (3.12) and the result of Theorem 3.1 to write

\[
F_{\Psi_i(t)}(\tau) = F_T(t)(\tilde{\tau}(t)) = \sum_{k=0}^{\infty} \gamma_k(t) F_{\chi^2(2k+N)} \left(\frac{\tilde{\tau}(t)}{\beta} \right).
\]
By differentiating both sides with respect to t, we obtain

$$
\frac{d}{dt} F_{\psi_t}(x) (\tau) = \left. \frac{\partial}{\partial t_1} F_{T(t_1)} (\overline{\tau}(t)) \right|_{t_1=t} + \left. \frac{\partial}{\partial t_2} F_{T(t_2)} (\overline{\tau}(t)) \right|_{t_2=t}.
$$

We treat the two terms on the right-hand side of (3.17) separately.

In order to evaluate the first term, we aim to prove the uniform convergence of the series

$$
\sum_{k=0}^{\infty} p^k \cdot \mathbf{x}'(t) F_{\chi^2(2k+N)} (\overline{\tau}(t)) \quad \text{and} \quad \sum_{k=0}^{\infty} q^k \cdot \mu'(t) F_{\chi^2(2k+N)} (\overline{\tau}(t)).
$$

We start proving by induction the inequalities

$$
|p^k| \leq \eta_k \gamma_k \quad \text{and} \quad |q^k| \leq \zeta_k \gamma_k \quad \text{for all} \quad j \in \{1, \ldots, N\}, \ k \geq 0,
$$

where η_k and ζ_k are defined for $k \geq 0$ as

$$
\eta_k = \max_{1 \leq i \leq N} \left\{ \frac{1}{2 \lambda_i} \right\} + \frac{k(k+1)}{2} \max_{1 \leq i \leq N} \left\{ \frac{\beta(h_i^2 + 3)}{\lambda_i^2 (1 - \frac{\beta}{\lambda_i})} \right\}.
$$

(3.19)

$$
\zeta_k = \frac{k(k+1)}{2} \max_{1 \leq i \leq N} \left\{ \frac{2 \beta |h_i|}{\lambda_i^2 (1 - \frac{\beta}{\lambda_i})} \right\}.
$$

For $k = 0$, the inequalities in (3.18) are satisfied. Let us therefore suppose that they are valid for the step $k - 1$ and prove that they hold for the step k. Thanks to the fact that

$$
0 < \beta < \min_{i \in \{1, \ldots, N\}} \{\lambda_1, \ldots, \lambda_N\},
$$

we have for all $k \geq 1$ that

$$
|p^k| \leq \frac{\beta}{\lambda_j} \left(\frac{k-1}{1 - \frac{\beta}{\lambda_j}} \right)^{k-1} \left(1 + (kh_j^2 - 1) \frac{\beta}{\lambda_j^2} \right) + \frac{\beta}{\lambda_j} \left(1 - \frac{\beta}{\lambda_j} \right)^{k-1} |kh_j^2 - 1|,
$$

$$
\leq \frac{\beta}{\lambda_j} g_k \left(\frac{k-1}{1 - \frac{\beta}{\lambda_j}} + \frac{|kh_j^2 - 1|}{1 - \frac{\beta}{\lambda_j} + \frac{\beta}{\lambda_j} kh_j^2} \right) \leq \frac{\beta}{\lambda_j} g_k \frac{k-1 + |1 - k h_j^2|}{1 - \frac{\beta}{\lambda_j} - \frac{\beta}{\lambda_j} kh_j^2}
$$

$$
\leq k g_k \beta \max_{i \in \{1, \ldots, N\}} \left\{ \frac{1 + h_i^2 + 2/k}{\lambda_i^2 (1 - \frac{\beta}{\lambda_i})} \right\} \leq k g_k \max_{i \in \{1, \ldots, N\}} \left\{ \frac{\beta(h_i^2 + 3)}{\lambda_i^2 (1 - \frac{\beta}{\lambda_i})} \right\}
$$

and

$$
|\kappa^k| \leq 2k |h_j| \frac{\beta}{\lambda_j} \left(1 - \frac{\beta}{\lambda_j} \right)^{k-1} \left(1 + (kh_j^2 - 1) \frac{\beta}{\lambda_j^2} \right) \left(1 - \frac{\beta}{\lambda_j} + \frac{\beta}{\lambda_j} kh_j^2 \frac{\beta}{\lambda_j} \right),
$$

$$
\leq 2 k g_k |h_j| \frac{\beta}{\lambda_j} \left(1 - \frac{\beta}{\lambda_j} \right) \leq k g_k \max_{i \in \{1, \ldots, N\}} \left\{ \frac{2 \beta |h_j|}{\lambda_j (1 - \frac{\beta}{\lambda_j})} \right\}.
$$
In view of such upper bounds and since the sequences \(\{\eta_k\}_{k=0}^\infty \) and \(\{\zeta_k\}_{k=0}^\infty \) defined in (3.19) are strictly increasing, we arrive at

\[
|p^k_j| = \left| \frac{1}{2k} \sum_{\ell=0}^{k-1} \left(p^\ell_j \gamma + p^\ell_j g_{k-\ell} \right) \right| \leq \frac{1}{2k} \sum_{\ell=0}^{k-1} |p^\ell_j| \gamma + \frac{1}{2k} \sum_{\ell=0}^{k-1} |p^\ell_j| g_{k-\ell} \\
\leq \frac{1}{2k} \sum_{\ell=0}^{k-1} \left(\frac{\beta(h_j^2 + 3)}{\lambda_j (1 - \beta/\gamma_j)} \right) \left(k - \ell \right) g_{k-\ell} \gamma + \frac{1}{2k} \sum_{\ell=0}^{k-1} \eta_\ell \gamma g_{k-\ell} \\
= \left(k \max_{i \in \{1, \ldots, N\}} \left\{ \frac{\beta(h_j^2 + 3)}{\lambda_j (1 - \beta/\gamma_j)} \right\} + \eta_{k-1} \right) \gamma_k = \eta_k \gamma_k,
\]

and

\[
|q^k_j| = \left| \frac{1}{2k} \sum_{\ell=0}^{k-1} \left(q^\ell_j \gamma + q^\ell_j g_{k-\ell} \right) \right| \leq \frac{1}{2k} \sum_{\ell=0}^{k-1} |q^\ell_j| \gamma + \frac{1}{2k} \sum_{\ell=0}^{k-1} |q^\ell_j| g_{k-\ell} \\
\leq \frac{1}{2k} \sum_{\ell=0}^{k-1} \left(\frac{2\beta|h_j|}{\lambda_j (1 - \beta/\gamma_j)} \right) \left(k - \ell \right) g_{k-\ell} \gamma + \frac{1}{2k} \sum_{\ell=0}^{k-1} \zeta_\ell g_{k-\ell} \\
\leq \frac{1}{2k} \sum_{\ell=0}^{k-1} \left(\frac{2\beta|h_j|}{\lambda_j (1 - \beta/\gamma_j)} \right) \left(k - \ell \right) g_{k-\ell} \gamma + \frac{1}{2k} \sum_{\ell=0}^{k-1} \zeta_{k-1} \gamma g_{k-\ell} \\
= \left(k \max_{i \in \{1, \ldots, N\}} \left\{ \frac{2\beta|h_j|}{\lambda_j (1 - \beta/\gamma_j)} \right\} + \zeta_{k-1} \right) \gamma_k = \zeta_k \gamma_k.
\]

In order to prove the uniform convergence of the series of (3.18), we use two results from [37]. The first one is presented as [37, Equation (4.14)] and states that

\[
(3.20) \quad \gamma_k \leq \gamma_0 \frac{\Gamma \left(\frac{N}{2} + k \right) \nu^k}{\Gamma \left(\frac{N}{2} \right) k!}
\]

for any \(k \geq 0 \), where \(\nu \) is a positive constant depending on \(\beta, \lambda(t) \), and \(\mu(t) \). The second result is [37, Lemma 4] and states that the series

\[
(3.21) \quad \sum_{k=0}^{\infty} \frac{\Gamma \left(\frac{N}{2} + k \right) \nu^k}{\Gamma \left(\frac{N}{2} \right) k!} F_{\tilde{\chi}^2(2k+N)}(x)
\]

is uniformly convergent (and therefore absolutely convergent) for any positive and finite \(\tilde{\nu} \) and \(\tilde{x} \) on the interval \([-\infty, \tilde{x}]\). Thus, we can introduce the quantities \(\rho_1, \rho_2, \sigma_1 \) and \(\sigma_2 \) with the
property

\begin{align}
\eta_k &\leq \rho_1 \sigma_1^k \quad \text{and} \quad \zeta_k \leq \rho_2 \sigma_2^k \quad \text{for all } k \geq 0.
\end{align}

A suitable choice is given by

\begin{align}
\rho_1 &= \max_{1 \leq i \leq N} \left\{ \frac{1}{2 \lambda_i} \right\}, \quad \rho_2 = 1,
\end{align}

\begin{align}
\sigma_1 &= \max_{1 \leq i \leq N} \left\{ \frac{\beta (h_i^2 + 3)}{\lambda_i^2 (1 - \frac{\beta}{h_i})} \right\}, \quad \sigma_2 = \max_{1 \leq i \leq N} \left\{ \frac{2 \beta |h_i|}{\lambda_i^2 (1 - \frac{\beta}{h_i})} \right\}.
\end{align}

Using the bounds from (3.18) and the two results from [37] stated above, we remark that the first and second series in (3.13) are absolutely convergent, since

\begin{align}
\sum_{k=0}^{\infty} \left| p^k_j \right| F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) &\leq \sum_{k=0}^{\infty} \eta_k \gamma_k F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) \\
&\leq \sum_{k=0}^{\infty} \rho_1 \gamma_0 \frac{\Gamma \left(\frac{N}{2} + k \right)}{\Gamma \left(\frac{N}{2} \right)} \frac{(\sigma_1 \nu)^k}{k!} F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) < \infty,
\end{align}

and

\begin{align}
\sum_{k=0}^{\infty} \left| q^k_j \right| F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) &\leq \sum_{k=0}^{\infty} \zeta_k \gamma_k F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) \\
&\leq \sum_{k=0}^{\infty} \rho_2 \gamma_0 \frac{\Gamma \left(\frac{N}{2} + k \right)}{\Gamma \left(\frac{N}{2} \right)} \frac{(\sigma_2 \nu)^k}{k!} F_{X^2(N+2k)} \left(\frac{\tau}{\beta} \right) < \infty.
\end{align}

Thus, the series \(\sum_{k=0}^{\infty} p^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) \) and \(\sum_{k=0}^{\infty} q^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) \) are absolutely convergent and, hence, uniformly convergent by the Weierstrass criterion (see e.g. [38, Theorem 7.10]). Consequently, it is possible to swap the summation and the derivative for the first term of (3.17) (see [38, Theorem 7.17]) and we obtain

\begin{align}
\sum_{k=0}^{\infty} \left(p^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) \right) + \sum_{k=0}^{\infty} \left(q^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) \right) \\
= \sum_{k=0}^{\infty} \left(p^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) + q^k \cdot \mathbf{I}(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) \right) \\
= \sum_{k=0}^{\infty} \gamma_k(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) = \frac{\partial}{\partial t_1} \sum_{k=0}^{\infty} \gamma_k(t) F_{X^2(2k+N)} \left(\frac{\tau(t)}{\beta} \right) = \frac{\partial}{\partial t_1} F_{\mathbf{T}(t)} \left(\frac{\tau(t)}{\beta} \right) \bigg|_{t_1=1}.
\end{align}

We pass to the second term of (3.17). Since the generalized chi-squared distribution of \(T(t) \) is continuous in \(\mathbb{R}^+ \), for any \(\tau^* > 0 \) the quantity \(f_{\mathbf{T}(t)} (\tau^*) \) exists and is finite for any \(\tau^* > 0 \). Moreover, thanks to Theorem 3.1 and Corollary 3.2, \(f_{\mathbf{T}(t)} (\tau^*) = \sum_{k=0}^{\infty} \gamma_k(t) F_{X^2(2k+N)} \left(\frac{\tau^*}{\beta} \right) \).
Since the set $\mathcal{T} = \{ \tilde{t}(t) : t \in [0, \delta] \}$ is compact, the series converges point wise, and all of its terms are positive, the series $\sum_{k=0}^{\infty} \gamma_k(t) f_{X^2(2k+N)} \left(\frac{\tilde{t}(t)}{\beta} \right)$ is uniformly convergent on \mathcal{T} (see [38, Theorem 7.13]). Hence, thanks to the absolute continuity of $\tilde{t}'(t)$ for all $t \in [0, \delta]$, we have

\begin{equation}
\frac{\tilde{t}'(t)}{\beta} \sum_{k=0}^{\infty} \gamma_k(t) f_{X^2(2k+N)} \left(\frac{\tilde{t}(t)}{\beta} \right) = \sum_{k=0}^{\infty} \frac{\partial}{\partial t_2} \left(\gamma_k(t) F_{X^2(2k+N)} \left(\frac{\tilde{t}(t)}{\beta} \right) \right) \bigg|_{t_2=t} = \frac{\partial}{\partial t_2} \left(\sum_{k=0}^{\infty} \gamma_k(t) F_{X^2(2k+N)} \left(\frac{\tilde{t}(t)}{\beta} \right) \right) \bigg|_{t_2=t} = \frac{\partial}{\partial t_2} F_{\tilde{T}(t)} \left(\tilde{t}(t) \right) \bigg|_{t_2=t}.
\end{equation}

In conclusion, the combination of the equations (3.17), (3.24), and (3.25) proves the expression (3.13) for the derivative of the cumulative distribution function of $\Psi_t(X)$. \hfill \blacksquare

3.3. Shape optimization under Gaussian perturbations. Let us consider once again the shape optimization problem (2.3). Using the notations of Section 2, we suppose that the random vector X follows a Gaussian distribution with mean $h = [h_1, \ldots, h_N]^T$ and, without loss of generality, covariance matrix equal to the identity.

If the vector h or the deterministic load g_0 are large enough, the uncertain component can be seen as a small random perturbation around a deterministic load $g = g_0 + g_1 h_1 + \ldots + g_N h_N$, and the shape derivative can be computed as in [2, Section 4.2.3]. Otherwise, if the mechanical loads are centered on 0 or the uncertainties are wide enough not to be treated as small perturbations, a different method should be considered. If the probability density f_X of the uncertainties is known, the technique detailed in Subsection 2.3 can be applied. However, if the number of random variables involved in the modelization of the uncertainties is significant, the computation of the integrals on the N-ball and the N-sphere can be challenging.

Since we suppose that X follows a Gaussian distribution, by considering the diagonalization of the matrix $M_\Omega = Q_\Omega D_\Omega Q_\Omega^T$, we can use Corollary 3.2 and Proposition 3.5 to express $\Phi(\Omega) = \mathbb{P}[\Psi_\Omega(X) \leq \tau]$ as the cumulative distribution function of a generalized chi-squared random variable, and compute the shape derivative of $\Phi(\cdot)$ in $\Omega \in \mathcal{S}_{adm}$.

Proposition 3.6. Let $X \sim \mathcal{N}(\mu, \Sigma)$ be a Gaussian random vector in \mathbb{R}^N, $\Omega \in \mathcal{S}_{adm}$ a Lipschitz-continuous domain in \mathbb{R}^2 or \mathbb{R}^3, and $\tau \in \mathbb{R}^+$ a strictly positive threshold. The quantities $M_\Omega \in \text{Sym}_N$, $b_\Omega \in \mathbb{R}^N$, and $c_\Omega \in \mathbb{R}$ are functions of the domain $\Omega \in \mathcal{S}_{adm}$, and are defined as in Subsection 2.2, and we suppose that τ_Ω, defined as in (2.7), is strictly positive for all $\Omega \in \mathcal{S}_{adm}$. In addition, we suppose that the mappings $\Omega \mapsto [M_\Omega]_{i,j}$, $\Omega \mapsto [b_\Omega]_i$, and $\Omega \mapsto c_\Omega$ admit a shape derivative at Ω for all $i, j \in \{1, \ldots, N\}$ and that all eigenvalues of M_Ω are distinct, strictly positive, and larger than a positive constant β independent from Ω.

Then, $\Phi(\Omega)$ can be written as the cumulative distribution function as $\Phi(\Omega) = F_{T_\Omega} \left(\frac{\tau_\Omega}{\beta} \right)$, where T_Ω is a random variable such that

$$T_\Omega \sim \chi^2(1; \mu_\Omega \circ \mu_\Omega; \lambda_\Omega)$$

with λ_Ω being the vector of the eigenvalues of M_Ω and $\mu_\Omega = (h + M_\Omega^{-1} b_\Omega)$. Moreover, $\Phi(\cdot)$ is shape-differentiable at Ω, and its derivative can be expressed as
Lemma In order to compute the shape derivative of \(\Phi (\Omega) \) (2.17) and the expressions of the shape derivatives of \(\lambda_\Omega \), \(\mu_\Omega \), and \(\tau \) \(\text{and the identity (3.12)} \), the proof of the identity \(\Phi (\Omega) = \int_{\Omega} p^T F(x, \nabla) \) \(\text{is as in (2.14), and the shape derivatives of} \lambda_\Omega, \mu_\Omega, \text{and} \tau \) are

\[
\frac{d}{d\Omega} [\lambda_\Omega] (\theta) = \frac{d}{d\Omega} \left[\frac{1}{\lambda_\Omega, i - \lambda_\Omega, i} \left(\nu^T \frac{d}{d\Omega} [M_\Omega] (\theta) \nu \right) \left(\nu^T (h + M_\Omega^{-1} b_\Omega) \right) \right]
\]

\[
+ \nu^T \left(\frac{d}{d\Omega} [b_\Omega] (\theta) + M_\Omega^{-1} \frac{d}{d\Omega} [M_\Omega] (\theta) \right) \text{ for all } i \in \{1, \ldots, N\}. \]

Proof. The proof of the identity \(\Phi (\Omega) = F_{\Omega} (\tilde{\tau}) \) is analogous to the proof of (3.12) in Proposition 3.5. In order to compute the shape derivative of \(\Phi (\cdot) \) at \(\Omega \), we recall that the identity (2.17) holds for any differentiable shape functional \(S_{adm} \rightarrow \mathbb{R} \) any Lipschitz-continuous domain, and any mapping \(\xi : [0, \delta] \rightarrow W^{1, \infty} (\mathbb{R}^d; \mathbb{R}^d) \). Thus, taking as deformation field \(\xi(t) = t \theta \), we have

\[
\frac{d}{d\Omega} [\Phi (\Omega)] (\theta) = \frac{d}{dt} \Phi (\Omega \circ (I + t \theta)) \bigg|_{t=0} = \frac{d}{dt} F_{\Omega \circ (I + t \theta)} (\tilde{\tau}) \bigg|_{t=0}.
\]

We denote \(T(t) = T_{\Omega (I + t \theta)} \), \(\lambda(t) = \lambda_{\Omega (I + t \theta)} \), \(\mu(t) = \mu_{\Omega (I + t \theta)} \), \(\tau(t) = \tilde{\tau}_{\Omega (I + t \theta)} \). Equation (3.26) and the expressions of the shape derivatives of \(\lambda_\Omega, \mu_\Omega \) and \(\tau_\Omega \) are found using Proposition 3.5 and the identity (2.17).

4.1. Presentation of the algorithm. The theoretical results stated in the previous section have been applied to the shape optimization of a cantilever and a bridge-like structure. In both examples, we considered the structure to be composed by an isotropic linear elastic material, subject to random mechanical loads. For the two structures, we aimed to minimize their mass under constraints on the probability of the compliance to exceed a threshold. We recall that the compliance of an elastic structure \(\Omega \) is defined as the work of the external mechanical load \(g \) and can be expressed as a quadratic function of the displacement \(u_{\Omega, g} \) as

\[
C (\Omega, u_{\Omega, g}) = \int_{\Gamma_N} g \cdot u_{\Omega, g} ds = \int_{\Omega} \sigma (u_{\Omega, g}) : \nabla u_{\Omega, g} dx.
\]
The problems considered in the following can be resumed by the following structure:

\[
\text{Find the admissible shape } \Omega \in S_{\text{adm}} \text{ minimizing } J = \text{Vol}(\Omega) \text{ under the constraint }
\]

\[
H(\Omega) = \frac{\mathbb{P}[\mathcal{C}(\Omega, \mathbf{u}_{\Omega, \mathbf{g}}(\omega)) > \tau]}{\mathbb{P}} - 1 \leq 0,
\]

where the state \(\mathbf{u}_{\Omega, \mathbf{g}} \) satisfies the state equation (2.2) for almost all \(\omega \in \mathcal{O} \) with \(\mathbf{g} \in L^2(\mathcal{O}; \mathbb{P}; L^2(\Gamma_N)) \) satisfying (2.1) and \(\mathbf{X} = (X_1, \ldots, X_N)^{\top} \sim \mathcal{N}(\boldsymbol{\mu}, I) \).

All simulations have been performed under the python-based sotuto platform proposed by Dapogny and Ffop in [15], which relies on the nullspace optimization algorithm [23, 24]. The computation of the elastic displacements and the adjoint states has been performed using the finite-element solver FreeFem++ [26]. We represented the domains by the means of conforming meshes obtained using the implicit-domain remeshing tool of mmg [13, 14], coupled to the level-set representation of the shapes [3, 44]. The advection of the level-set function is handled by the advect library [6], while the computation of the signed distance function is performed by mshdist [16] – both libraries are part of the ISCD toolbox [43]. The simulations have been ran on a Virtualbox virtual machine Linux with 1GB of dedicated memory, installed on a Dell PC equipped with a 2.80 GHz Intel i7 processor.

4.2. Optimization of a 3d cantilever.

We consider \(\Omega \) to be the cantilever structure represented as seen in Figure 1, subject to an uncertain mechanical load \(\mathbf{g} \) perpendicular to the main axis of the cantilever. The load is applied on the region of the boundary denoted by \(\Gamma_N \), while the structure is clamped on the four corner regions marked as \(\Gamma_D \). We suppose that the cantilever has a square cross section with side length \(\ell_x \), and its length along the \(x \) axis is \(\ell_z \). Moreover, we consider the structure to made up of an elastic material characterized by a Young’s modulus \(E \) and a Poisson’s ratio \(\nu \). We consider the uncertain load to have the structure

\[
\mathbf{g}(\omega) = \overline{g}_x X_x(\omega) \mathbf{e}_x + \overline{g}_y X_y(\omega) \mathbf{e}_y + \left(\overline{g}_0 + \overline{g}_z X_z(\omega) \right) \mathbf{e}_z,
\]

where \(X_x, X_y \) and \(X_z \) are real valued Gaussian random variables, \(\{\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z\} \) is the canonical basis of \(\mathbb{R}^3 \), and \(\overline{g}_x, \overline{g}_y, \overline{g}_z \) and \(\overline{g}_0 \) are deterministic forces. The geometric and material properties of the structure are collected in Table 1.

We performed three different simulations. In the first two, we solved the optimization problem (4.2) for different distributions of the random vector \(\mathbf{X} = [X_x, X_y, X_z]^{\top} \). In case A, we consider a random load \(\mathbf{g}_A \) orthogonal to the main axis of the cantilever, which is symmetric in the \(y \) direction, but on average a traction in the \(-z \) direction with modulus \(\overline{g}_0 \). In case B, the stochastic term in the direction \(y \) in the load \(\mathbf{g}_B \) is replaced by a random traction-compression force parallel to the main axis \(x \). The third simulation considered is fully deterministic: \(\mathbf{g}_D = \overline{g}_0 \mathbf{e}_z \) is the only load applied to \(\Gamma_N \), and the constraint \(H(\Omega) \leq 0 \) of the optimization problem (4.2) is replaced by

\[
\tilde{H}(\Omega) = \mathcal{C}(\Omega, \mathbf{u}_{\Omega, \mathbf{g}}(\omega)) - \tau \leq 0.
\]

The results for the three simulations are reported in Table 2. The optimal shapes resulting from the solution of case A, case B, and the deterministic case are shown in Figure 2,
Figure 1. Structure of the cantilever. The region Γ_N where the random load is applied is marked in red, while the clamping region Γ_D is highlighted in grey.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section length</td>
<td>ℓ_s 1.0 cm</td>
</tr>
<tr>
<td>Longitudinal length</td>
<td>ℓ_x 2.0 cm</td>
</tr>
<tr>
<td>Sidelength of Γ_D</td>
<td>0.3 cm</td>
</tr>
<tr>
<td>Radius of Γ_N</td>
<td>0.1 cm</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E 200 MPa</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>ν 0.3</td>
</tr>
<tr>
<td>Horizontal load</td>
<td>g_y 10 kPa</td>
</tr>
<tr>
<td>Vertical load</td>
<td>g_z 10 kPa</td>
</tr>
<tr>
<td>Minimal mesh size</td>
<td>h_{min} 0.025 cm</td>
</tr>
<tr>
<td>Maximal mesh size</td>
<td>h_{max} 0.10 cm</td>
</tr>
<tr>
<td>Average mesh size</td>
<td>h_{avg} 0.05 cm</td>
</tr>
<tr>
<td>Threshold on the compliance</td>
<td>τ 3×10^{-3} MPa cm3</td>
</tr>
<tr>
<td>Bound on the probability of failure</td>
<td>\bar{p} 1.0 %</td>
</tr>
</tbody>
</table>

Table 1: Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 1.

Figure 3, and Figure 4, respectively. The decrease of the objective function in the three problems is shown in Figure 5a, and the trend of the constraint for case A and case B is reported in Figure 5b.

By comparing Figure 2 and Figure 3, we observe that the optimal solutions for case A and case B are quite similar, being convex hulls that are slightly reinforced on the z direction. In contrast, the solution of the deterministic problem presented in Figure 4 is radically different, showing a thin branched structure. Such difference can be explained by the fact that, on average, the cantilever is subject to a stronger mechanical load in case A and case B, therefore the corresponding optimal structures ought to be more robust in order to satisfy the constraint on the probability for the compliance to exceed the threshold τ.

Another notable difference between the deterministic and the uncertain cases concerns the speed of convergence. Indeed, Figure 5a shows that the volume of the cantilever in the
Table 2

Numerical results for the optimization of the volume of a cantilever subject to uncertain mechanical loads under constraint on the probability of the compliance to exceed a threshold τ.

<table>
<thead>
<tr>
<th></th>
<th>case A</th>
<th>case B</th>
<th>Deterministic case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of iterations</td>
<td>500</td>
<td>500</td>
<td>348</td>
</tr>
<tr>
<td>Execution time</td>
<td>152 min 32 s</td>
<td>177 min 49 s</td>
<td>114 min 15 s</td>
</tr>
<tr>
<td>Final volume $\text{Vol}(\Omega_{\text{opt}})$</td>
<td>0.4605 cm3</td>
<td>0.4103 cm3</td>
<td>0.0573 cm3</td>
</tr>
</tbody>
</table>

-$\mathbb{P}[Q(\Omega, u_{\Omega, g}(\omega)) > \tau]$ |
| Excess probability under load g_A | 0.996 % | 4.005 % | 59.579 % |
| Excess probability under load g_B | 4.726 % | 0.991 % | 88.293 % |

Figure 2. Optimal shape for case A, where the applied load is $g_A(\omega) = \overline{y}_yX_y(\omega)e_y + (\overline{y}_0 + \overline{y}_xX_x(\omega))e_x$.

The deterministic problem converges much faster than the simulations of case A and case B. Moreover, in the deterministic case, the optimization algorithm reaches a satisfying result and stops after 349 iterations, while the rate of convergence is much slower for case A and case B. Difficulties in the convergence of the cantilever structure discussed here have also been observed in [23, Section 6.2.1].

Finally, we remark that the shapes resulting from the solution of for case A and case B comply with the constraint on the probability of failure, as shown in Table 2. The observance of the constraint, the decrease of the objective functional, and the radically different result with respect to the deterministic case justify the use of the nullspace optimization algorithm for the solution of Problem 4.2, and the suitability of the approach of Section 3 for the expression of $\Phi(\Omega)$ and its shape derivative.

4.3. Optimization of a 3d bridge.

As a second example, we consider the optimization of the bridge structure found in Figure 6. The structure is pinned on the lower surface on its four corners, marked in light green in the picture. The pinned region, where Dirichlet boundary conditions on the displacement are applied, is denoted Γ_D. The upper face of the bridge is divided into five sections $\Gamma^1_N, \ldots, \Gamma^5_N$ of equal size. On each section Γ^i_N, a random load $g_i \in L^2(O, \mathbb{P}; L^2(\Gamma^i_N))$ is applied. We suppose that the mechanical loads are oriented
Figure 3. Optimal shape for case B, where the applied load is $g_B(\omega) = \gamma_x X_x(\omega) e_x + (\gamma_0 + \gamma_z X_z(\omega)) e_z$.

Figure 4. Optimal shape for the deterministic case, where the mechanical load applied is $g_D = \gamma_0 e_z$.

(a) Evolution of the objective function (in cm3).

(b) Evolution of the constraint.

Figure 5. Convergence of the objective and the constraints for the cantilever problems.
vertically (that is along the z axis), independent from one another, and such that
\begin{equation}
\gamma_i(\omega) = -\bar{g}_i X_i(\omega) e_z \quad \text{on } \Gamma^i_N
\end{equation}
for all $i \in \{1, \ldots, 5\}$, where $\bar{g}_i e_z$ is a deterministic vertical pressure and X_i a Gaussian random variable. The numerical parameters describing the geometry and the mechanical properties of the bridge are reported in Table 3.

![Figure 6. Structure of the bridge. The non-optimizable supports of the bridge are marked in light green and their lower surface Γ_D is where Dirichlet are applied. The yellow block is non-optimizable as well, and on its upper surface five random mechanical loads are applied on the sections $\Gamma^1_N, \ldots, \Gamma^5_N$.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal length</td>
<td>ℓ_x</td>
</tr>
<tr>
<td>Cross section length</td>
<td>ℓ_y</td>
</tr>
<tr>
<td>Height</td>
<td>ℓ_z</td>
</tr>
<tr>
<td>Sidelength of Γ_D</td>
<td></td>
</tr>
<tr>
<td>Sidelength of each Γ^i_N</td>
<td></td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>ν</td>
</tr>
<tr>
<td>Vertical load</td>
<td>\bar{g}_i</td>
</tr>
<tr>
<td>Minimal mesh size</td>
<td>h_{min}</td>
</tr>
<tr>
<td>Maximal mesh size</td>
<td>h_{max}</td>
</tr>
<tr>
<td>Average mesh size</td>
<td>h_{avg}</td>
</tr>
<tr>
<td>Threshold on the compliance</td>
<td>τ</td>
</tr>
<tr>
<td>Bound on the probability of failure</td>
<td>\bar{p}</td>
</tr>
</tbody>
</table>

Table 3
Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 6.

We suppose that $X = [X_1, \ldots, X_5]$ is a Gaussian random vector with covariance matrix equal to the identity where all random variables X_i to have a mean equal to -1.0. Thus, the mean of X corresponds to an average compression load of 1.0 MPa on each of the five sections of the bridge. We consider the shape shown in Figure 6 as initial condition, and the optimized shape is reported in Figure 7. The optimization algorithm needed only 100 iterations, which
results in a computation time of 126 min and 54 s. The volume $\text{Vol}(\Omega_{opt})$ of the final shape is 1.217 cm3 and the excess probability $\mathbb{P}[Q(\Omega, u_{\Omega,g}(\omega)) > \tau]$ equals to 0.961%. The trends of the objective and the constraint are presented in Figure 8a and Figure 8b. As for the cantilever in Subsection 4.2, these results validate that the constraint on the probability of failure is upheld. Moreover, Figure 8a show that the convergence of the objective function is faster for the bridge than the cantilever.

![Figure 7. Result of the shape optimization of the bridge for the non-centered case.](image)

(a) Evolution of the objective function (in cm3).

(b) Evolution of the constraint.

![Figure 8. Evolution of the objective and constraint functions through the execution of the algorithm when optimizing a bridge-like structure.](image)

5. Conclusion. In the present article, we presented a numerical approach to minimize the probability of failure of elastic materials under random loadings. The objective under consideration is non-smooth with respect to the random variables as it admits a kink induced from the modulus function. However, the kink can be resolved in case of a quadratic shape functional. We have proven the shape differentiability in a rather general setting and provided then an efficient gradient based algorithm in case of Gaussian random fields. Numerical results in three spatial dimensions have been presented to show the feasibility of our approach.
REFERENCES

ISCD Sorbonne. ISCD toolbox.

25