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Shape optimization under constraints on the probability
of a quadratic functional to exceed a given treshold

Marc Dambrine∗ , Giulio Gargantini∗ † , Helmut Harbrecht‡ , and Jérôme Maynadier†

Abstract. This article is dedicated to shape optimization of elastic materials under random loadings where

the particular focus is on the minimization of failure probabilities. Our approach relies on the fact

that the area of integration is an ellipsoid in the high-dimensional parameter space when the shape

functional of interest is quadratic. We derive the respective expressions for the shape functional

and the related shape gradient. As showcase for the numerical implementation, we assume that the

random loading is a Gaussian random field. By exploiting the specialties of this setting, we derive

an efficient shape optimization algorithm. Numerical results in three spatial dimensions validate the

feasibility of our approach.

1. Introduction. In recent decades, shape optimization has been developed as an effi-
cient tool for designing devices which are optimized with respect to a specific purpose. Many
practical problems in engineering lead to boundary value problems for an unknown function
that must be computed to obtain a desired quantity of interest. In structural mechanics, for
example, the equations of linear elasticity form the common model, which are then solved
to compute the leading mode of a structure, its compliance, or other quantities. Shape opti-
mization is then applied to optimize the workpiece of interest with respect to this objective
functional. We refer the reader to [1, 19, 27, 35, 42] and the references therein for an over-
view on the topic of shape optimization, which is a subfield of the optimal control of partial
differential equations.

The input parameters of the model, like the applied loadings, the material’s properties
(typically the value of the Young modulus or of the Poisson ratio) or the geometry of the
involved shapes itself are usually assumed to be perfectly known. Although this assumption
is convenient for the analysis of shape optimization problems, it is unrealistic with regard
to applications. In practice, a manufactured component achieves its nominal geometry only
up to a tolerance, the material parameters never match the requirements perfectly and the
applied forces can only be estimated. Therefore, shape optimization under uncertainty is of
great practical interest but started only recently to be investigated, see e.g. [2, 7, 9, 10, 11,
12, 21, 30, 40] for related results.

In this article, we are interested in the solution of a constrained shape optimization problem
on a set of mechanical structures subject to a random mechanical loading g = g(ω). Thus,
also the state u becomes a random field, i.e., u = u(ω). The cost functional Q (Ω,g) under
consideration is supposed to depend quadratically on the state u (and thus quadratically on
g), which covers important functionals such as the compliance or the square norm of the von
Mises stresses. The objective is the identification of the structure Ω with the smallest volume
for which the probability of failure P [Q (Ω,g) > τ ] does not exceed a prescribed threshold.
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The shape optimization problem under consieration is known to be computationally hard
as the probability of failure defines a quantity of interest which is not smooth with respect to
the random parameter ω. We are only aware of [2, 9], where this problem has been tackled,
however, only by approximating the non-smooth functional by a smooth one. Nonetheless,
in the present setting of a quadratic shape functional, we will show that the region, where
Q (Ω,g) > τ holds, is the exterior of an ellipsoid with respect to the stochastic parameter
ω. We will exploit this fact in order (i) to compute the shape derivate of the problem under
consideration and (ii) to derive an efficient, deterministic shape optimization algorithm.

The rest of this article is structured as follows. In Section 2, we introduce the model
problem and compute the shape functional and its shape gradient. Section 3 is then dedicated
to our showcase, where we suppose that the loading g = g(ω) is a Gaussian random field. We
develop a suitable quadrature formula which can be used to numerically compute the shape
functional and the associated shape gradient. Then, in Section 4, we present numerical results
in three spatial dimensions in order to demonstrate the feasibility of the present approach.
Finally, in Section 5, we state concluding remarks.

2. The shape optimization problem.

2.1. Problem statement. Let us consider a family of Lipschitz continuous admissible
domains Sadm in R

d (for d = 2 or 3) sharing the portions ΓN and ΓD, which we suppose to
be disjoint. For each Ω ∈ Sadm, we denote Γ0 = ∂Ω \ (ΓN ∪ ΓD) the optimizable portion of
the boundary. We suppose that the structure to be optimized is made up of a linear elastic
material, characterized by the Lamé parameters λ and µ, and is clamped on ΓD.

Let further (O,F ,P) be a probability space, where F ⊂ 2O is a σ-algebra on O and P is a
probability measure. A random mechanical load g ∈ L2

(
O,P; H−1/2 (ΓN)

)
is applied on the

portion ΓN of the boundary. In particular, we suppose that g can be written in terms of a
deterministic term g0 and a finite number N of random terms in accordance with

(2.1) g(ω) = g0 + g1X1(ω) + . . .+ gNXN (ω) for almost all ω ∈ O,

where X1, . . . , XN ∈ L2 (O,P;R) are centered and independent, real valued random variables
and g0, . . . ,gN ∈ H−1/2 (ΓN). Then, for almost any event ω ∈ O, the displacement uΩ,g(ω) ∈
H1 (Ω) is the solution of the following linear elasticity system:

(2.2)





−div σ (uΩ,g(ω)) = 0 in Ω,

σ (uΩ,g(ω))n = 0 on Γ0,

σ (uΩ,g(ω))n = g(ω) on ΓN,

uΩ,g(ω) = 0 on ΓD.

Here, for any displacement u ∈ H1 (Ω), ϵ (u) = (∇u+∇uT)/2 is the infinitesimal strain tensor
and σ (u) = 2µϵ (u) + λ Idiv (u) identifies the Cauchy stress tensor.

Throughout this article, we consider the shape optimization problem

(2.3)

∣∣∣∣∣∣∣∣

Find the admissible shape Ω ∈ Sadm minimizing Vol (Ω) under the constraint

P

[
⟨uΩ,g, QΩ uΩ,g⟩H1(Ω) > τ

]
≤ p̄,

where the state uΩ,g(ω) satisfies the state equation (2.2) for almost all ω ∈ O.
2



Note that the value of safety criterion Q (Ω,g) is supposed to be a quadratic functional of
the displacement uΩ,g. As we intend to adopt the moving boundary approach developed by
Hadamard in order to solve this shape optimization problem (see e.g. [1, 42, 27]), we require
that, for any g ∈ H−1/2 (ΓN), the mapping Ω 7→ Q (Ω,g) is differentiable with respect to the
shape (we refer to [27, Chapter 5] for the complete definition of differentiability with respect
to a moving domain).

2.2. Properties of the safety criterion. We shall highlight the dependency of the con-

straint P
[
⟨uΩ,g, QΩ uΩ,g⟩H1(Ω) > τ

]
from the random variables X1, . . . , XN appearing in the

definition (2.1) of the mechanical load. For all i ∈ {1, . . . , N}, we define the displacement
uΩ,i ∈ H1 (Ω) as the solution of the following deterministic elasticity problem:





−div σ (uΩ,i) = 0 in Ω,

σ (uΩ,i)n = 0 on Γ0,

σ (uΩ,i)n = gi on ΓN,

uΩ,i = 0 on ΓD.

Thanks to the linearity of the state equation (2.2), the displacement uΩ,g ∈ L2
(
O,P; H1 (Ω)

)

can be written as a sum of N terms, depending from the same random variables as in (2.1):

(2.4) uΩ,g(ω) = uΩ,0 + uΩ,1X1(ω) + . . .+ uΩ,NXN (ω) for almost all ω ∈ O.

Since the safety functional is quadratic with respect to the displacement, we can express it
as a quadratic function ΨΩ : RN → R of the random vectorX = (X1, . . . , XN ) ∈ L2

(
O,P;RN

)

as

(2.5) Q (Ω,g(ω)) = ΨΩ (X(ω)) = X(ω)TMΩX(ω) + 2bΩ
TX(ω) + cΩ,

for almost all ω ∈ O. The symmetric matrix MΩ ∈ SymN ⊂ R
N×N , the vector bΩ ∈ R

N , and
the scalar cΩ are functions of the displacements uΩ,1, . . . ,uΩ,N , and are defined as

• [MΩ]i,j = ⟨uΩ,i, QΩ uΩ,j⟩H1(Ω) for all i, j ∈ {1, . . . , N};
• [bΩ]k = ⟨uΩ,0, QΩ uΩ,k⟩H1(Ω) for all k ∈ {1, . . . , N};
• cΩ = ⟨uΩ,0, QΩ uΩ,0⟩H1(Ω).

Since QΩ is a self-adjoint positive definite operator, the matrix MΩ is symmetric having N
eigenvalues λΩ,1, . . . , λΩ,N that are real and strictly positive.

Let us consider the (deterministic) subset of RN E (ΨΩ, τ) containing all the realizations
of the random vector X for which the constraint is satisfied:

(2.6) E (ΨΩ, τ) =
{
x ∈ R

N : ΨΩ (x) ≤ τ
}
.

We denote τ̃Ω the following quantity:

(2.7) τ̃Ω = τ −
(
cΩ − bΩ

TMΩ
−1bΩ

)
.

Given the properties of the quadratic function ΨΩ and assuming that τ̃Ω > 0, we recognize
that E (ΨΩ, τ) is an ellipsoid in R

N , centered in −MΩ
−1bΩ, and whose semi-axes are oriented

3



as the eigenvectors of MΩ and have length rΩ,τ
1 , . . . , rΩ,τ

N :

(2.8) rΩ,τ
i =

√
τ̃Ω/λΩ,i for all i ∈ {1, . . . , N}.

However, if τ̃Ω < 0, we have that E (ΨΩ, τ) = ∅, and the constraint cannot be satisfied if p̄ < 1.
For the sake of clarity, we introduce the shape functional Φ : Sadm → R defined as the

probability of the constraint to be satisfied:

Φ (Ω) = P [Q (Ω,g) ≤ τ ] = 1− P [Q (Ω,g) > τ ].

The inequality constraint in problem (2.3) can be written alternatively as Φ (Ω) ≥ 1 − p̄.
Especially, Φ (Ω) can be expressed by means of the probability for the random vector X to
belong to the ellipsoid E (ΨΩ, τ)

Φ (Ω) = P [ΨΩ (X) ≤ τ ] = P [X ∈ E (ΨΩ, τ)].

Therefore, Φ (Ω) can be interpreted as the volume of the ellipsoid E (ΨΩ, τ) with respect to
the probability measure PX induced by the random variable X:

(2.9) Φ (Ω) = P [X ∈ E (ΨΩ, τ)] = PX (E (ΨΩ, τ)) =

∫

E(ΨΩ,τ)
1 dPX(x).

2.3. Sensitivity of the exceeding probability. In order to solve problem (2.3) using a
gradient-based optimization algorithm, we have to compute an expression for Φ (Ω) and for
its shape derivative d

dΩ [Φ (Ω)] (·). To this end, let us suppose that the random vector X

admits a probability density function f : RN → R
+, such that f ∈ W1,1

(
R
N
)
. Then, in view

of (2.9), the quantity Φ (Ω) can be written as:

(2.10) Φ (Ω) =

∫

E(ΨΩ,τ)
f(x) dx

Moreover, we suppose that all entries of MΩ and bΩ, as well as cΩ are differentiable with
respect to the shape, and we denote their shape derivatives by d

dΩ [MΩ] (θ),
d
dΩ [bΩ] (θ), and

d
dΩ [cΩ] (θ), respectively.

We recognize in (2.10) the expression of the integral of a constant function over a variable
domain E (ΨΩ, τ). Let ξ ∈ W1,∞ (

R
N ;RN

)
be a Lipschitz continuous deformation field in R

N .
Then, we can compute the derivative of the mapping ξ 7→ P [X ∈ E (ΨΩ, τ) ◦ (I+ ξ)] thanks
to the usual shape differentiation techniques (see [27, Eq. (5.24)]). Moreover, since E (ΨΩ, τ)
is an ellipsoid and supposing that ξ is also C1, we can apply Hadamard’s regularity theorem
(see [27, Proposition 5.9.1]) and write

(2.11)

d

dξ̃
P

[
X ∈ E (ΨΩ, τ) ◦ (I+ ξ̃)

]∣∣∣∣
ξ̃=0

(ξ) =

∫

E(ΨΩ,τ)
div ξ(x) f(x) dx

=

∫

∂E(ΨΩ,τ)
f(s)

(
ξ(s) · n(s)

)
ds.

Here, for all s ∈ ∂E (ΨΩ, τ), n(s) ∈ R
N is the unitary vector orthogonal to ∂E (ΨΩ, τ) in s.
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Lemma 2.1. Let us consider an admissible domain Ω ∈ Sadm and a regular enough dis-

placement field θ ∈ C1 ∩ W1,∞ (
R
d;Rd

)
for the domain Ω such that ∥θ∥∞ < 1. We denote

ΞΩ,θ ∈ R
N×N and rΩ,θ ∈ R

N the matrix and the vector respectively defined as

ΞΩ,θ =
d
dΩ [τ̃Ω] (θ)

2τ̃Ω
I− 1

2
MΩ

−1 d

dΩ
[MΩ] (θ) ;(2.12)

rΩ,θ = −MΩ
−1 d

dΩ
[bΩ] (θ) +

(
d
dΩ [τ̃Ω] (θ)

2τ̃Ω
I+

1

2
MΩ

−1 d

dΩ
[MΩ] (θ)

)
MΩ

−1bΩ,(2.13)

where d
dΩ [τ̃Ω] (θ) has the expression

(2.14)
d

dΩ
[τ̃Ω] (θ) = − d

dΩ
[cΩ] (θ)−MΩ

−1 d

dΩ
[MΩ] (θ)MΩ

−1bΩ +MΩ
−1 d

dΩ
[bΩ] (θ) .

Then, ξθ : x 7→ ΞΩ,θ x+ rΩ,θ is a C1 Lipschitz-continuous displacement field on R
N such that

the shape derivative of Φ (·) in Ω can be written in its volumic and surface forms as

(2.15)
d

dΩ
[Φ (Ω)] (θ) =

∫

E(ΨΩ,τ)
div

(
f(x)ξθ(x)

)
dx =

∫

∂E(ΨΩ,τ)
f(s)

(
ξθ(s) · n(s)

)
ds.

Proof. Let δ > 0 be such that, for any t ∈ [0, δ], τ̃Ω◦(I+tθ) > 0. We consider the following
dynamical system:

(2.16)

{
ẋ(t; x̄) = ΞΩ◦(I+tθ),θx(t; x̄) + rΩ◦(I+tθ),θ for t ∈ [0, δ], x̄ ∈ R

N ,

x(0; x̄) = x̄ for x̄ ∈ R
N .

We set
y(t, θ, x̄) := x(t; x̄) +MΩ◦(I+tθ)

−1bΩ◦(I+tθ)

and remark that the quantity defined as

FΩ◦(I+tθ)

(
y(t, θ, x̄)

)
=

y(t, θ, x̄)TMΩ◦(I+tθ)y(t, θ, x̄)

τ̃Ω◦(I+tθ)

is constant along the trajectories. Indeed, using the expressions (2.12), (2.13), and (2.16),
there holds

d

dt
FΩ◦(I+tθ)

(
y(t, θ, x̄)

)
= τ̃−2

Ω◦(I+tθ)

[
− d

dΩ

[
τ̃Ω◦(I+tθ)

]
(θ) y(t, θ, x̄)TMΩ◦(I+tθ)y(t, θ, x̄)

+ τ̃Ω◦(I+tθ)

(
y(t, θ, x̄)T

d

dt
MΩ◦(I+tθ)y(t, θ, x̄) + 2y(t, θ, x̄)T

×
(
MΩ◦(I+tθ)ẋ(t; x̄)−

d

dt
MΩ◦(I+tθ)MΩ◦(I+tθ)

−1bΩ◦(I+tθ) +
d

dt
bΩ◦(I+tθ)

))]
= 0.

Moreover, for any t ∈ [1, δ], the inequality FΩ◦(I+tθ)(x) ≤ 1 defines the same ellipsoid
E
(
ΨΩ◦(I+tθ), τ

)
as the inequality ΨΩ◦(I+tθ)(x) ≤ τ . Therefore, the deformation x 7→ (I+ Ft)x
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gives the identity E
(
ΨΩ◦(I+tθ), τ

)
= E (ΨΩ, τ) ◦ (I+ Ft), where Ft : R

N → R
N is defined as

Ft x =
∫ t
0 ẋ(s;x)ds for t ∈ [0, δ].

We recall that, for any differentiable shape functional F and Lipschitz-continuous domain
D ∈ R

N , we have

(2.17)
d

dt
F
(
D ◦

(
I+ ξ(t)

))∣∣∣∣
t=0

=
d

dD
F (D)

(
ξ′(0)

)
,

provided that ξ : [0, δ] → W1,∞ (
R
N ;RN

)
is a differentiable mapping that vanishes in t = 0.

Therefore, since d
dtFt

∣∣
t=0

= ẋ(0,x) = ΞΩ,θx+ rΩ,θ = ξθ(x), we conclude that

d

dΩ
[Φ (Ω)] (θ) =

d

dt
Φ (Ω ◦ (I+ tθ))

∣∣∣∣
t=0

=
d

dt

∫

E(MΩ◦(I+tθ),τ)
f(x) dx

∣∣∣∣
t=0

=
d

dt

∫

E(ΨΩ,τ)◦(I+Ft)
f(x) dx

∣∣∣∣
t=0

=

∫

E(ΨΩ,τ)
div

(
f(x) ξθ(x)

)
dx

=

∫

∂E(ΨΩ,τ)
f(s)

(
n(s) · ξθ(s)

)
ds.

A first remark on the result of Lemma 2.1 is that, since ξθ(x) is a linear function of θ,
the expression we found is a Fréchet derivative of the functional Φ (·). A second observation
concerns the expression of the derivative as a surface integral on a variable ellipsoid. For
numerical reasons, it might be more interesting to reformulate the integral as one on a fixed
domain. Thus, we can use the volumic expression of the shape derivative to write (2.15) as
an integral on the unitary N -sphere, as is done in the following proposition.

Proposition 2.2. Under the hypotheses of Lemma 2.1, the shape derivative of the functional

Φ (·) in Ω can be written as an integral on the unit N -sphere SN−1 in accordance with

(2.18)
d

dΩ
[Φ (Ω)] (θ) =

√
τ̃NΩ

detMΩ

∫

SN−1

f
(√

τ̃ΩMΩ
−1/2s−MΩ

−1bΩ

)

×
((

ΞΩ,θMΩ
−1/2s+

1√
τ̃Ω

(
rΩ,θ −ΞΩ,θMΩ

−1bΩ

))
·
(
MΩ

1/2s
))

ds.

Proof. In order to prove (2.18), we consider the expression of the shape derivative given
by Lemma 2.1 and apply the change of variables such that y = 1√

τ̃Ω
MΩ

1/2
(
x+MΩ

−1bΩ

)
,

mapping E (ΨΩ, τ) to BN . We recall that, for any function f : RN → R
N that is C1 (A) in a

given open subset A of RN , the expression of the divergence with respect to the variable y is

div f(x) =
1√
τ̃Ω

divy

(
MΩ

1/2 f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

))
.

Considering the expression of the displacement field ξθ : RN → R
N as ξθ(x) = ΞΩ,θ x+ rΩ,θ,
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where ΞΩ,θ and rΩ,θ are defined in (2.12) and (2.13), we get

(2.19)
d

dΩ
[Φ (Ω)] (θ) =

∫

E(ΨΩ,τ)
div

(
f(x) ξθ(x)

)
dx =

∫

E(ΨΩ,τ)
div (f(x) (ΞΩ,θ x+ rΩ,θ)) dx

=

√
τ̃NΩ

detMΩ

∫

BN

divy

((
f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

)

×MΩ
1/2

(
ΞΩ,θMΩ

−1/2y +
1√
τ̃Ω

(
rΩ,θ −ΞΩ,θMΩ

−1bΩ

))))
dy.

Observing that the normal vector on the unit sphere SN−1 in any point s coincides with the
vector s itself, (2.19) can be written as an integral on the sphere ∂BN according to (2.18).

The expression of the derivative of Φ (·) as found in Proposition 2.2 is valid only if the
random vector X admits a C1 density function f(·) in an open neighborhood of the ellipsoid
E (ΨΩ, τ). However, if the sensitivity of Φ (·) is computed as part of a shape optimization
procedure, such assumption should be verified for all shapes obtained during the execution
of the algorithm. Therefore, it is crucial that the density f(·) is C1 in an open subset of
R
N containing all the ellipsoids corresponding to Ω0, . . . ,Ωnmax . Such condition might be

unrealistic if the density f(·) is not C1 on the entire space R
N which especially happens if it

is compactly supported like the uniform distribution.
The expression (2.18) can be reformulated in order to highlight the terms depending on

the argument of the shape derivative θ. We denote {e1, . . . , eN} the canonical basis of RN ,
and we consider a basis

{
Bi,j

}
0≤i≤j≤N

for the space of N ×N symmetric matrices such that

[
Bi,j

]
k,ℓ

=





βi,j , if k = i, ℓ = j,

βi,j , if k = j, ℓ = i,

0, otherwise,

βi,j =

{
1, if i = j,

1/
√
2, if i ̸= j.

Thus, the shape derivative of Φ (·) in Ω becomes

(2.20)
d

dΩ
[Φ (Ω)] (θ) =

∑

1≤i≤j≤N

((
MΩ

1/2ΞΩ,θMΩ
−1/2

)
: Bi,j

×
∫

SN−1

√
τ̃NΩ

detMΩ
f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

)
sisj ds

)

+

N∑

k=1


(rΩ,θ −ΞΩ,θMΩ

−1bΩ

)
· ek

∫

SN−1

√
τ̃N−1
Ω

detMΩ
f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

)
sk ds


 .

The expression (2.20) of the shape derivative of Φ (Ω) requires the computation of all the
entries of ΞΩ,θ and rΩ,θ (which are functions of d

dΩ [MΩ] (θ),
d
dΩ [bΩ] (θ), and

d
dΩ [cΩ] (θ)), as

well as N(N+3)/2 integrals on SN−1. The evaluation of said integrals can be done by applying
suitable quadrature formulas on SN−1, which of course might be quite expensive if the number
N of random variables is large. An alternative approach which applies to Gaussian random
fields is proposed in the next section.
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3. The generalized noncentral chi-squared distribution.

3.1. Series expansion of the cumulative distribution function. Let X ∼ N (µ,Σ) be
a Gaussian random vector with N components, mean µ and covariance matrix Σ, and let
D = diag {λ1, . . . , λN} be a positive definite diagonal matrix. Let T be the random variable
defined as follows:

(3.1) T = XT D X = λ1X
2
1 + . . .+ λNX2

N ,

Without loss of generality, we suppose that the covariance matrix of the Gaussian random
vector X is the identity matrix: X ∼ N (µ, I). In such case, each random variable X2

i follows a
noncentral chi-squared distribution with one degree of freedom and non-centrality parameter
µ2
i . The random variable T is said to follow a generalized non-central chi-squared distribution:

(3.2) T ∼ χ̃2 (1;µ⊙ µ;λ),

where 1 = [1, . . . , 1] is the vector of the degrees of freedom, µ ⊙ µ = [µ2
1, . . . , µ

2
N ] is the

vector of noncentrality parameters (the symbol ”⊙” represent the elementwise product), and
λ = diag {D} is the vector of the weights of the random variables X1, . . . , XN .

The characterization of the cumulative distribution function FT of the random variable
T has been studied analytically in [36, 37]. The results of these articles have led to the
development of several algorithms for the numerical computation of the quantiles of T . Se-
quential methods that provide an estimate for the truncation error include the algorithms
developed by Imhof [28], Farebrother [22] (this method refines the result obtained by Sheil
and O’Muircheartaigh in [41]), and Davies [17, 18]. If the number N of random variables is
large, faster but less accurate approximations should be considered. Among such techniques
we mention Kuonen’s method [29], which is based on a saddlepoint approximation of the dis-
tribution of T , the approach based on the leading eigenvalues developed by Lumley et al. in
[33], and the several approaches based on the computation of the stochastic moments of the
random variable T like the methods deveolped by Liu–Tang–Zhang [32], Satterthwaite–Welch
[39], Hall-Buckley–Eagleson [25, 5], and Lindsay–Pilla–Basak [31]. Further information on the
comparison between the different methods can be found in [20, 4, 8].

In this section, we present the results of [37], where, for any threshold τ > 0, the quantity
FT (τ) is expressed in terms of a series of cumulative distribution functions of centered chi-
squared random variables (see [37, Theorem 1]). The coefficients of the decomposition are
defined by a recurrence relation. Moreover, an upper bound on the truncation error of the
series is provided.

Theorem 3.1 (Decomposition of FT (τ) by chi-squared random variables). Let T be a real-

valued random variable defined as in (3.1). Then, for any choice of β > 0, the quantity

FT (τ) = P [T ≤ τ ] can be expressed as

(3.3) FT (τ) =
∞∑

k=0

γkFχ2(2k+N)

(
τ

β

)
.
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The weights {γk}∞k=0 are computed by using the recurrence relation

(3.4) γ0 = e−
1
2
∥µ∥2βN/2 det (D)−1/2

and γk =
1

2k

k−1∑

ℓ=0

gk−ℓγℓ for k ≥ 1,

where the coefficients {gk}∞k=1 are defined in accordance with

(3.5) gk =

N∑

i=1

(
1− β

λi

)k−1(
1 + (kµ2

i − 1)
β

λi

)
.

In particular, if 0 < β < mini∈{1,...,N} {λ1, . . . , λN}, the series (3.3) is a mixture representa-

tion, meaning that all coefficients γk are non-negative and
∑∞

k=0 γk = 1.

This result is stated and proven in [37, Theorem 1], while the condition of the mixture
representation is stated in [37, Section 5]. Note that [37] provides also an explicit expression
for the coefficients {γk}∞k=0 which can be used to prove the uniform convergence of the series
(3.3) for any choice of β > 0 and for any finite value of the threshold 0 ≤ τ < ∞. Especially,
analogous results apply also to the probability density function of T .

Corollary 3.2. If 0 < β < mini∈{1,...,N} {λ1, . . . , λN}, for any τ > 0, the following expres-

sion for the probability density function of T holds:

fT (τ) =
∞∑

k=0

γkfχ2(2k+N)

(
τ

β

)
.

If the mixture representation holds (that is if 0 < β < min {λ1, . . . , λN}), it is possible to
establish the following upper bound on the truncation error of the series (3.3).

Proposition 3.3. If 0 < β < min {λ1, . . . , λN} and the hypotheses of Theorem 3.1 hold,

then

(3.6)

∣∣∣∣∣FT (τ)−
n∑

k=0

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣ ≤
(
1−

n∑

k=0

γk

)
Fχ2(2n+2+N)

(
τ

β

)

for all 0 < τ < ∞ and any integer n.

Proof. One readily verifies that Fχ2(m) (τ) < Fχ2(n) (τ) for any pair of integers m > n and

any τ > 0 fixed. Therefore, the sequence
{
Fχ2(2k+N+2)

(
τ
β

)}∞

k=0
is decreasing whenever τ/β

is fixed. Thus, we conclude

∣∣∣∣∣FT (τ)−
n∑

k=0

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑

k=n+1

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣

≤ Fχ2(2n+N+2)

(
τ

β

) ∞∑

k=n+1

γk =

(
1−

n∑

k=0

γk

)
Fχ2(2n+2+N)

(
τ

β

)
.
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3.2. Differentiating the probability of a quadratic form to exceed a threshold. Let τ
be a positive constant, and let us consider the following mappings:

• M : [0, δ] → SymN associating to any t ∈ [0, δ] a positive definite symmetric matrix;
• b : [0, δ] → R

N ;
• c : [0, δ] → R.

We assume that these three functions are all C1, and we denote by Ψt the quadratic form
defined on R

N given by

(3.7) Ψt : x 7→ xTM(t)x+ 2Tb(t)x+ c(t).

We suppose that Ψt(x) > 0 and that τ > c(t)− bT(t)M−1(t)b(t) = Ψt

(
−M−1(t)b(t)

)
holds

for all t ∈ [0, δ] and x ∈ R
N .

LetX ∼ N (h, I) be a Gaussian random vector where h ∈ R
N is constant and I is theN×N

identity matrix. We are interested in differentiating the cumulative distribution function of
the random variable Ψt(X) with respect to the parameter t. In order to do so, we prove the
following lemma about the derivative of the cumulative distribution function of a generalized

χ̃2 random variable.

Lemma 3.4. Let us consider two C1 vector-valued functions µ,λ : [0, δ] → R
N such that, for

all t ∈ [0, δ], all components of λ(t) are strictly larger than a positive constant β independent

from t. For all t ∈ [0, δ], let T (t) be a random variable with the following generalized chi-

squared distribution:

(3.8) T (t) ∼ χ̃2 (1;µ(t)⊙ µ(t);λ(t)),

Due to Theorem 3.1, its cumulative distribution function evaluated in τ can be expressed as

(3.9) FT (t) (τ) =

∞∑

k=0

γk(t)Fχ2(2k+N)

(
τ

β

)
.

Then, the coefficients γk(t) of the respective cumulative distribution function (3.3)evaluated
in τ are differentiable with respect to t for all t ∈ [0, δ] and all k ∈ N, and their derivative is

γ′k(t) = λ′(t) · pk + µ′(t) · qk.

Herein, the terms pk = [pk1, . . . , p
k
N ]T and qk = [qk1 , . . . , q

k
N ]T, and dj are defined as follows

for any j ∈ {1, . . . , N} and k ≥ 0:
• p0j = − γ0

2λj
and pkj = 1

2k

∑k−1
ℓ=0

(
νk−ℓ
j γℓ + pℓjgk−ℓ

)
for k ≥ 1;

• q0j = 0 and qkj = 1
2k

∑k−1
ℓ=0

(
κk−ℓ
j γℓ + qℓjgk−ℓ

)
for k ≥ 1;

• ν1j = β
λ2
j

(
1−µ2

j

)
and νkj = β

λ2
j

(
1− β

λj

)k−2[
(k− 1)

(
1+ β

λj
(kµ2

j − 1)
)
+
(
1− β

λj

)
(1−kµ2

j )
]

for k ≥ 1;

• κkj = 2kµj
β
λj

(
1− β

λj

)k−1
for k ≥ 1.

Proof. According to Theorem 3.1, the coefficients γk are defined as in (3.4), where the
coefficients gk are given by:

(3.10) gk =
N∑

j=1

(
1− β

λj

)k−1(
1 + (kµj(t)

2 − 1)
β

λj(t)

)
.
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Differentiating (3.10), we obtain

g′1(t) =
N∑

j=1

(
2
hiβ

λj
µ′
j(t)− (h2j − 1)

β

λ2
j

λ′
j(t)

)
=

N∑

j=1

(
κ1jµ

′
j(t) + ν1j λ

′
j(t)
)

and for k > 1

g′k(t) =
N∑

j=1

[(
1− β

λj

)k−2
(
(k − 1)

β

λ2
j

(
1 + (kµ2

j − 1)
β

λj

))
λ′
j(t)

+

(
1− β

λj

)(
2k

µjβ

λj
µ′
j(t)−

(
(kµ2

j − 1)
β

λj(t)2

)
λ′
j(t)

)]
=

N∑

j=1

(
κkjµ

′
j(t) + νkj λ

′
j(t)
)
.

The assertion follows by differentiating the definitions of γk, found in (3.4), and using the
expression above for the derivatives of gk.

Proposition 3.5. Let Ψt : R
N → R be defined as in (3.7) for t ∈ [0, δ], let X ∼ N (h, I) be a

Gaussian vector, and let τ be a positive constant. We assume that τ > c(t)−bT(t)M−1(t)b(t)
for all t ∈ [0, δ], and that all eigenvalues of M(t) λ1(t), . . . , λN (t) are pairwise distinct and

larger than a strictly positive constant β > 0. We introduce the following notation:

• Y(t) ∈ L2 (O,P) is the random variable defined as Y(t) = X+M−1(t)b(t), therefore
its law is Y(t) ∼ N

(
h+M−1(t)b(t), I

)
;

• for all t ∈ [0, δ], we denote T (t) the random variable T (t) = YT(t)M(t)Y(t);
• τ̃ : [0, δ] → R mapping t 7→ τ − c(t) + b(t)TM−1(t) + b(t);
• M(t) is diagonalized as M(t) = Q(t)D(t)QT(t), where Q(t) = [v1|, . . . , |vN ] is an

orthogonal matrix, and D(t) = diag {λ(t)} = diag {λ1(t), . . . , λN (t)};
• µ : [0, δ] → R

N such that µ(t) = QT(t)h+QT(t)M−1(t)b(t).
Then, for any t ∈ [0, δ], Y(t) is a normalized Gaussian random variable centered in µ(t), and
T (t) has the following chi-squared distribution:

(3.11) T (t) ∼ χ̃2 (1;µ(t)⊙ µ(t);λ).

Moreover, for all t ∈ [0, δ], the following identity between the values of the cumulative distri-

bution functions of Ψt(X) and T (t) holds:

(3.12) FΨt(X) (τ) = FT (t) (τ̃(t)).

Finally, the mapping t 7→ FΨt(X) (τ) is differentiable and its derivative can be written as

(3.13)
d

dt
FΨt(X) (τ) =

( ∞∑

k=0

pkFχ2(2k+N)

(
τ̃(t)

β

))
· λ′(t)

+

( ∞∑

k=0

qkFχ2(2k+N)

(
τ̃(t)

β

))
· µ′(t) +

1

β

( ∞∑

k=0

γkfχ2(2k+N)

(
τ̃(t)

β

))
τ̃ ′(t).
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Here, for all n ∈ N, fχ2(n) is the density of a chi-squared random variable with n degrees of

freedom. The components of pk and qk are the coefficients appearing in the decomposition of

FT (t) (τ̃(t)) expressed as in Lemma 3.4, while the derivatives of λ, µ, and τ̃ are:

λ′(t) = diag
{
QT(t)M′(t)Q(t)

}
;(3.14)

µ′
i(t) =

∑

j ̸=i

(
1

λi − λi

(
viTM′(t)vj

)(
vjT

(
h+M−1(t)b(t)

)))
(3.15)

+ viT
(
M−1(t)b′(t) +M−1(t)M′(t)M−1(t)b(t)

)
for all i ∈ {1, . . . , N};

τ̃ ′(t) = − d

dt
c(t)− bT(t)M−1(t)M′(t)M−1(t)b(t) + 2bT(t)M−1(t)b′(t).(3.16)

Proof. The identity (3.12) follows from

FΨt(X) (τ) = P [Ψt(X) ≤ τ ] = P
[
XTM(t)X+ 2b(t)TX+ c(t) ≤ τ

]

= P

[(
X+M−1(t)b(t)

)T
M(t)

(
X+M−1(t)b(t)

)
≤ τ − c(t) + b(t)TM−1(t) + b(t)

]

= P [T (t) ≤ τ̃(t)] = FT (t) (τ̃(t)).

We prove next the differentiability of λ, µ, and τ̃ and equations (3.14), (3.15), and (3.16).
Equation (3.14) can be deduced directly from [34, Equation (4)]. Equation (3.15) can be
proven by using [34, Equation (5)] on the derivative of the eigenvector of a symmetric matrix
with distinct eigenvalues

vi′(t) =
(
λiI−M(t)

)+
M′(t)vi(t) =

∑

j ̸=i

1

λi − λj

(
vjTM′(t)vi

)
vj ,

where the symbol ”+” denotes the Moore-Penrose inverse. Indeed, using the properties of the
Moore-Penrose inverse, we arrive at

(
λiI−M

)+
=
(
Q (λiI−D)QT

)+
= Q(t) diag

{
di(t)

}
Q(t)T.

Herein, for all i, j ∈ {1, . . . , N}, di(t) = [di1(t), . . . , d
i
N (t)]T with dii = 0 and dij =

1
λi(t)−λj(t)

if

i ̸= j. Since µi(t) = viTM−1(t)b(t) for all 1 ≤ i ≤ N , we deduce

µ′
i(t) = vi′(t)TM−1(t)b(t) + vi(t)TM−1(t)M′(t)M−1(t)b(t)M−1(t)b′(t),

which is equivalent to (3.15). Next, Equation (3.16) can be computed directly applying the
chain rule on the definition (3.16) of τ̃ .

Finally, in order to prove the expression (3.13) of the derivative of FΨt(T ) (τ), we consider
the identity (3.12) and the result of Theorem 3.1 to write

FΨt(X) (τ) = FT (t) (τ̃(t)) =
∞∑

k=0

γk(t)Fχ2(2k+N)

(
τ̃(t)

β

)
.
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By differentiating both sides with respect to t, we obtain

(3.17)
d

dt
FΨt(X) (τ) =

∂

∂t1
FT (t1) (τ̃(t))

∣∣∣∣
t1=t

+
∂

∂t2
FT (t) (τ̃(t2))

∣∣∣∣
t2=t

.

We treat the two terms on the right-hand side of (3.17) separately.
In order to evaluate the first term, we aim to prove the uniform convergence of the series∑∞

k=0 p
k · λ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
and

∑∞
k=0 q

k · µ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
. We start proving by

induction the inequalities

(3.18)
∣∣∣pkj
∣∣∣ ≤ ηkγk and

∣∣∣qkj
∣∣∣ ≤ ζkγk for all j ∈ {1, . . . , N}, k ≥ 0,

where ηk and ζk are defined for k ≥ 0 as

(3.19)

ηk = max
1≤i≤N

{
1

2λi

}
+

k(k + 1)

2
max
1≤i≤N





β(h2i + 3)

λ2
i

(
1− β

λi

)



 ,

ζk =
k(k + 1)

2
max
1≤i≤N





2β |hi|
λ2
i

(
1− β

λi

)



 .

For k = 0, the inequalities in (3.18) are satisfied. Let us therefore suppose that they are
valid for the step k − 1 and prove that they hold for the step k. Thanks to the fact that
0 < β < mini∈{1,...,N} {λ1, . . . , λN}, we have for all k ≥ 1 that

∣∣∣νkj
∣∣∣ ≤ β

λ2
j

(k − 1)(
1− β

λj

)
(
1− β

λj

)k−1
(
1 + (kh2j − 1)

β

λ2
j

)
+

β

λ2
j

(
1− β

λj

)k−1 ∣∣kh2j − 1
∣∣

≤ β

λ2
j

gk


 k − 1(

1− β
λj

) +

∣∣∣kh2j − 1
∣∣∣

(
1− β

λj
+ β

λj
kh2j

)


 ≤ β

λ2
j

gk
k − 1 +

∣∣∣1− kh2j

∣∣∣
(
1− β

λj

)

≤ kgkβ max
i∈{1,...,N}




1 + h2j + 2/k

λ2
j

(
1− β

λj

)



 ≤ kgk max

i∈{1,...,N}





β(h2j + 3)

λ2
j

(
1− β

λj

)





and

∣∣∣κkj
∣∣∣ ≤ 2k |hj |

β

λj

(
1− β

λj

)k−1

(
1 + (kh2j − 1) β

λ2
j

)

(
1− β

λ2
j

+ kh2j
β
λ2
j

)

≤ 2kgk |hj |β
λj

(
1− β

λj

) ≤ kgk max
i∈{1,...,N}





2β |hj |
λj

(
1− β

λj

)



 .
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In view of such upper bounds and since the sequences {ηk}∞k=0 and {ζk}∞k=0 defined in
(3.19) are strictly increasing, we arrive at

∣∣∣pkj
∣∣∣ =

∣∣∣∣∣
1

2k

k−1∑

ℓ=0

(
νk−ℓ
j γℓ + pℓjgk−ℓ

)∣∣∣∣∣ ≤
1

2k

k−1∑

ℓ=0

∣∣∣νk−ℓ
j

∣∣∣ γℓ +
1

2k

k−1∑

ℓ=0

∣∣∣pℓj
∣∣∣ gk−ℓ

≤ max
i∈{1,...,N}





β(h2j + 3)

λ2
j

(
1− β

λj

)





1

2k

k−1∑

ℓ=0

(k − ℓ)gk−ℓγℓ +
1

2k

k−1∑

ℓ=0

ηℓγℓgk−ℓ

≤ max
i∈{1,...,N}





β(h2j + 3)

λ2
j

(
1− β

λj

)





k

2k

k−1∑

ℓ=0

gk−ℓγℓ +
1

2k
ηk−1

k−1∑

ℓ=0

γℓgk−ℓ

=


k max

i∈{1,...,N}





β(h2j + 3)

λ2
j

(
1− β

λj

)



+ ηk−1


 γk = ηk γk,

and

∣∣∣qkj
∣∣∣ =

∣∣∣∣∣
1

2k

k−1∑

ℓ=0

(
κk−ℓ
j γℓ + qℓjgk−ℓ

)∣∣∣∣∣ ≤
1

2k

k−1∑

ℓ=0

∣∣∣κk−ℓ
j

∣∣∣ γℓ +
1

2k

k−1∑

ℓ=0

∣∣∣qℓj
∣∣∣ gk−ℓ

≤ max
i∈{1,...,N}





2β |hj |
λj

(
1− β

λj

)





1

2k

k−1∑

ℓ=0

(k − ℓ)gk−ℓγℓ +
1

2k

k−1∑

ℓ=0

ζℓγℓgk−ℓ

≤ max
i∈{1,...,N}





2β |hj |
λj

(
1− β

λj

)





k

2k

k−1∑

ℓ=0

gk−ℓγℓ +
1

2k
ζk−1

k−1∑

ℓ=0

γℓgk−ℓ

=


k max

i∈{1,...,N}





2β |hj |
λj

(
1− β

λj

)



+ ζk−1


 γk = ζk γk.

In order to prove the uniform convergence of the series of (3.18), we use two results from
[37]. The first one is presented as [37, Equation (4.14)] and states that

(3.20) γk ≤ γ0
Γ
(
N
2 + k

)

Γ
(
N
2

) νk

k!

for any k ≥ 0, where ν is a positive constant depending on β, λ(t), and µ(t). The second
result is [37, Lemma 4] and states that the series

(3.21)
∞∑

k=0

Γ
(
N
2 + k

)

Γ
(
N
2

) ν̃k

k!
Fχ2(2k+N) (x)

is uniformly convergent (and therefore absolutely convergent) for any positive and finite ν̃ and
x̄ on the interval [−∞, x̄]. Thus, we can introduce the quantities ρ1, ρ2, σ1 and σ2 with the
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property

(3.22) ηk ≤ ρ1σ
k
1 and ζk ≤ ρ2σ

k
2 for all k ≥ 0.

A suitable choice is given by

(3.23)

ρ1 = max1≤i≤N

{
1

2λi

}
, ρ2 = 1,

σ1 = max1≤i≤N





β(h2i + 3)

λ2
i

(
1− β

λi

)



 , σ2 = max1≤i≤N





2β |hi|
λ2
i

(
1− β

λi

)



 .

Using the bounds from (3.18) and the two results from [37] stated above, we remark that
the first and second series in (3.13) are absolutely convergent, since

∞∑

k=0

∣∣∣pkj
∣∣∣Fχ2(N+2k)

(
τ

β

)
≤

∞∑

k=0

ηkγkFχ2(N+2k)

(
τ

β

)

≤
∞∑

k=0

ρ1γ0
Γ
(
N
2 + k

)

Γ
(
N
2

) (σ1ν)
k

k!
Fχ2(N+2k)

(
τ

β

)
< ∞,

and

∞∑

k=0

∣∣∣qkj
∣∣∣Fχ2(N+2k)

(
τ

β

)
≤

∞∑

k=0

ζkγkFχ2(N+2k)

(
τ

β

)

≤
∞∑

k=0

ρ2γ0
Γ
(
N
2 + k

)

Γ
(
N
2

) (σ2ν)
k

k!
Fχ2(N+2k)

(
τ

β

)
< ∞.

Thus, the series
∑∞

k=0 p
k ·λ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
and

∑∞
k=0 q

k ·µ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
are abso-

lutely convergent and, hence, uniformly convergent by the Weierstrass criterion (see e.g. [38,
Theorem 7.10]). Consequently, it is possible to swap the summation and the derivative for
the first term of (3.17) (see [38, Theorem 7.17]) and we obtain

(3.24)
∞∑

k=0

(
pk · λ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))
+

∞∑

k=0

(
qk · µ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))

=
∞∑

k=0

(
pk · λ′(t)Fχ2(2k+N)

(
τ̃(t)

β

)
+ qk · µ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))

=
∞∑

k=0

γ′k(t)Fχ2(2k+N)

(
τ̃(t)

β

)
=

∂

∂t1

∞∑

k=0

γk(t)Fχ2(2k+N)

(
τ̃(t)

β

)
=

∂

∂t1
FT (t1) (τ̃(t))

∣∣∣∣
t1=t

.

We pass to the second term of (3.17). Since the generalized chi-squared distribution of T (t)
is continuous in R

+, for any τ∗ > 0 the quantity fT (t) (τ
∗) exists and is finite for any τ∗ > 0.

Moreover, thanks to Theorem 3.1 and Corollary 3.2, fT (t) (τ
∗) =

∑∞
k=0 γk(t)fχ2(2k+N)

(
τ∗

β

)
.
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Since the set T = {τ̃(t) : t ∈ [0, δ]} is compact, the series converges point wise, and all of its

terms are positive, the series
∑∞

k=0 γk(t)fχ2(2k+N)

(
τ∗

β

)
is uniformly convergent on T (see [38,

Theorem 7.13]). Hence, thanks to the absolute continuity of τ̃ ′(t) for all t ∈ [0, δ], we have

(3.25)
τ̃ ′(t)
β

∞∑

k=0

γk(t)fχ2(2k+N)

(
τ̃(t)

β

)
=

∞∑

k=0

∂

∂t2

(
γk(t)Fχ2(2k+N)

(
τ̃(t2)

β

)) ∣∣∣∣
t2=t

=
∂

∂t2

( ∞∑

k=0

γk(t)Fχ2(2k+N)

(
τ̃(t2)

β

)) ∣∣∣∣
t2=t

=
∂

∂t2
FT (t) (τ̃(t2))

∣∣∣∣
t2=t

.

In conclusion, the combination of the equations (3.17), (3.24), and (3.25) proves the ex-
pression (3.13) for the derivative of the cumulative distribution function of Ψt(X).

3.3. Shape optimization under Gaussian perturbations. Let us consider once again the
shape optimization problem (2.3). Using the notations of Section 2, we suppose that the
random vector X follows a Gaussian distribution with mean h = [h1, . . . , hN ]T and, without
loss of generality, covariance matrix equal to the identity.

If the vector h or the deterministic load g0 are large enough, the uncertain component can
be seen as a small random perturbation around a deterministic load g = g0+g1h1+. . .+gNhN ,
and the shape derivative can be computed as in [2, Section 4.2.3]. Otherwise, if the mechanical
loads are centered on 0 or the uncertainties are wide enough not to be treated as small
perturbations, a different method should be considered. If the probability density fX of the
uncertainties is known, the technique detailed in Subsection 2.3 can be applied. However, if
the number of random variables involved in the modelization of the uncertainties is significant,
the computation of the integrals on the N -ball and the N -sphere can be challenging.

Since we suppose that X follows a Gaussian distribution, by considering the diagonaliza-
tion of the matrix MΩ = QΩDΩQΩ

T, we can use Corollary 3.2 and Proposition 3.5 to express
Φ (Ω) = P [ΨΩ (X) ≤ τ ] as the cumulative distribution function of a generalized chi-squared
random variable, and compute the shape derivative of Φ (·) in Ω ∈ Sadm.

Proposition 3.6. Let X ∼ N (µ, I) be a Gaussian random vector in R
N , Ω ∈ Sadm a

Lipschitz-continuous domain in R
2 or R

3, and τ ∈ R
+ a strictly positive threshold. The

quantities MΩ ∈ SymN , bΩ ∈ R
N , and cΩ ∈ R are functions of the domain Ω ∈ Sadm, and

are defined as in Subsection 2.2, and we suppose that τ̃Ω, defined as in (2.7), is strictly positive

for all Ω ∈ Sadm. In addition, we suppose that the mappings Ω 7→ [MΩ]i,j, Ω 7→ [bΩ]i, and
Ω 7→ cΩ admit a shape derivative at Ω for all i, j ∈ {1, . . . , N} and that all eigenvalues of MΩ

are distinct, strictly positive, and larger than a positive constant β independent from Ω.

Then, Φ (Ω) can be written as the cumulative distribution function as Φ (Ω) = FTΩ

(
τ̃Ω
β

)
,

where TΩ is a random variable such that

TΩ ∼ χ̃2 (1;µΩ ⊙ µΩ;λΩ)

with λΩ being the vector of the eigenvalues of MΩ and µΩ =
(
h+MΩ

−1bΩ

)
. Moreover, Φ ()

is shape-differentiable at Ω, and its derivative can be expressed as
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(3.26)
d

dΩ
[Φ (Ω)] (θ) =

( ∞∑

k=0

pkFχ2(2k+N)

(
τ̃Ω
β

))
· d

dΩ
[λΩ] (θ)

+

( ∞∑

k=0

qkFχ2(2k+N)

(
τ̃Ω
β

))
· d

dΩ
[µΩ] (θ) +

1

β

( ∞∑

k=0

γkfχ2(2k+N)

(
τ̃Ω
β

))
d

dΩ
[τ̃Ω] (θ) .

Once again, the components of pk and qk are the coefficients appearing in the decomposition of

FTΩ
(τ̃Ω) expressed as in Lemma 3.4, while d

dΩ [τ̃Ω] (θ) is as in (2.14), and the shape derivatives

of λΩ, µΩ, and τ̃ are

d

dΩ
[λΩ] (θ) = diag

{
QΩ

T d

dΩ
[MΩ] (θ)QΩ

}
;

d

dΩ
[µΩi] (θ) =

∑

j ̸=i

(
1

λΩ,i − λΩ,i

(
viT d

dΩ
[MΩ] (θ)v

j

)(
vjT

(
h+MΩ

−1bΩ

)))

+ viT
(
MΩ

−1 d

dΩ
[bΩ] (θ) +MΩ

−1 d

dΩ
[MΩ] (θ)MΩ

−1bΩ

)
for all i ∈ {1, . . . , N}.

Proof. The proof of the identity Φ (Ω) = FTΩ

(
τ̃Ω
β

)
is analogous to the proof of (3.12)

in Proposition 3.5. In order to compute the shape derivative of Φ (·) at Ω, we recall that
the identity (2.17) holds for any differentiable shape functional Sadm → R any Lipschitz-
continuous domain, and any mapping ξ : [0, δ] → W1,∞ (

R
d;Rd

)
. Thus, taking as deformation

field ξ(t) = tθ, we have

d

dΩ
[Φ (Ω)] (θ) =

d

dt
Φ (Ω ◦ (I+ tθ))

∣∣∣∣
t=0

=
d

dt
FTΩ◦(I+tθ)

(τ̃Ω)

∣∣∣∣
t=0

.

We denote T (t) = TΩ◦(I+tθ), λ(t) = λΩ◦(I+tθ), µ(t) = µΩ◦(I+tθ), and τ̃(t) = τ̃Ω◦(I+tθ). Equa-
tion (3.26) and the expressions of the shape derivatives of λΩ, µΩ and τ̃Ω are found using
Proposition 3.5 and the identity (2.17).

4. Numerical simulations.

4.1. Presentation of the algorithm. The theoretical results stated in the previous section
have been applied to the shape optimization of a cantilever and a bridge-like structure. In both
examples, we considered the structure to be composed by an isotropic linear elastic material,
subject to random mechanical loads. For the two structures, we aimed to minimize their mass
under constraints on the probability of the compliance to exceed a threshold. We recall that
the compliance of an elastic structure Ω is defined as the work of the external mechanical load
g and can be expressed as a quadratic function of the displacement uΩ,g as

(4.1) C (Ω,uΩ,g) =

∫

ΓN

g · uΩ,g ds =

∫

Ω
σ (uΩ,g) : ∇uΩ,g dx.
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The problems considered in the following can be resumed by the following structure:

(4.2)

∣∣∣∣∣∣∣∣∣∣∣∣

Find the admissible shape Ω ∈ Sadm minimizing J = Vol (Ω) under the constraint

H(Ω) =
P [C (Ω,uΩ,g(ω)) > τ ]

p̄
− 1 ≤ 0,

where the state uΩ,g satisfies the state equation (2.2) for almost all ω ∈ O
with g ∈ L2

(
O,P; L2 (ΓN)

)
satisfying (2.1) and X = (X1, . . . , XN )T ∼ N (µ, I).‘

All simulations have been performed under the python-based sotuto platform proposed by
Dapogny and Feppon in [15], which relies on the nullspace optimization algorithm [23, 24]. The
computation of the elastic displacements and the adjoint stateshas been performed using the
finite-element solver FreeFem++ [26]. We represented the domains by the means of conforming
meshes obtained using the implicit-domain remeshing tool of mmg [13, 14], coupled to the
level-set representation of the shapes [3, 44]. The advection of the level-set function is handled
by the advect library [6], while the computation of the signed distance function is performed
by mshdist [16] – both libraries are part of the ISCD toolbox [43]. The simulations have been
ran on a Virtualbox virtual machine Linux with 1GB of dedicated memory, installed on a Dell
PC equipped with a 2.80 GHz Intel i7 processor.

4.2. Optimization of a 3d cantilever. We consider Ω to be the cantilever structure rep-
resented as seen in Figure 1, subject to an uncertain mechanical load g perpendicular to the
main axis of the cantilever. The load is applied on the region of the boundary denoted by
ΓN, while the structure is clamped on the four corner regions marked as ΓD. We suppose that
the cantilever has a square cross section with side length ℓs, and its length along the x axis
is ℓx. Moreover, we consider the structure to made up of an elastic material characterized by
a Young’s modulus E and a Poisson’s ratio ν. We consider the uncertain load to have the
structure

(4.3) g(ω) = gxXx(ω)ex + gyXy(ω)ey +
(
g0 + gzXz(ω)

)
ez,

where Xx, Xy and Xz are real valued Gaussian random variables, {ex, ey, ez} is the canonical
basis of R

3, and gx, gy, gz and g0 are deterministic forces. The geometric and material
properties of the structure are collected in Table 1.

We performed three different simulations. In the first two, we solved the optimization
problem (4.2) for different distributions of the random vector X = [Xx, Xy, Xz]

T. In case

A, we consider a random load gA orthogonal to the main axis of the cantilever, which is
symmetric in the y direction, but on average a traction in the −z direction with modulus
g0. In case B, the stochastic term in the direction y in the load gB is replaced by a random
traction-compression force parallel to the main axis x. The third simulation considered is fully
deterministic: gD = g0ez is the only load applied to ΓN, and the constraint H(Ω) ≤ 0 of the
optimization problem (4.2) is replaced by

H̃(Ω) = C (Ω,uΩ,g(ω))− τ ≤ 0.

The results for the three simulations are reported in Table 2. The optimal shapes resulting
from the solution of case A, case B, and the deterministic case are shown in Figure 2,
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ΓD

ΓD

ΓD

ΓD

ΓN

Figure 1. Structure of the cantilever. The region ΓN where the random load is applied is marked in red,
while the clamping region ΓD is highlighted in grey.

Cross section length ℓs 1.0 cm
Longitudinal length ℓx 2.0 cm
Sidelength of ΓD 0.3 cm
Radius of ΓN 0.1 cm

Young’s modulus E 200MPa
Poisson’s ratio ν 0.3

Horizontal load gy 10 kPa

Vertical load gz 10 kPa

Minimal mesh size hmin 0.025 cm
Maximal mesh size hmax 0.10 cm
Average mesh size havg 0.05 cm

Threshold on the compliance τ 3× 10−3MPa cm3

Bound on the probability of failure p̄ 1.0%
Table 1

Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 1.

Figure 3, and Figure 4, respectively. The decrease of the objective function in the three
problems is shown in Figure 5a, and the trend of the constraint for case A and case B is
reported in Figure 5b.

By comparing Figure 2 and Figure 3, we observe that the optimal solutions for case

A and case B are quite similar, being convex hulls that are slightly reinforced on the z
direction. In contrast, the solution of the deterministic problem presented in Figure 4 is
radically different, showing a thin branched structure. Such difference can be explained by
the fact that, on average, the cantilever is subject to a stronger mechanical load in case A

and case B, therefore the corresponding optimal structures ought to be more robust in order
to satisfy the constraint on the probability for the compliance to exceed the threshold τ .

Another notable difference between the deterministic and the uncertain cases concerns
the speed of convergence. Indeed, Figure 5a shows that the volume of the cantilever in the
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case A case B Deterministic case

Number of iterations 500 500 348
Execution time 152min 32 s 177min 49 s 114min 15 s

Final volume Vol (Ωopt) 0.4605 cm3 0.4103 cm3 0.0573 cm3

P [Q (Ω,uΩ,g(ω)) > τ ]
Excess probability under load gA 0.996% 4.005% 59.579%
Excess probability under load gB 4.726% 0.991% 88.293%

Table 2

Numerical results for the optimization of the volume of a cantilever subject to uncertain mechanical loads
under constraint on the probability of the compliance to exceed a threshold τ .

Figure 2. Optimal shape for case A, where the applied load is gA(ω) = gyXy(ω)ey + (g0 + gzXz(ω)) ez.

deterministic problem converges much faster than the simulations of case A and case B.
Moreover, in the deterministic case, the optimization algorithm reaches a satisfying result
and stops after 349 iterations, while the rate of convergence is much slower for case A and
case B. Difficulties in the convergence of the cantilever structure discussed here have also
been observed in [23, Section 6.2.1].

Finally, we remark that the shapes resulting from the solution of for case A and case B

comply with the constraint on the probability of failure, as shown in Table 2. The observance
of the constraint, the decrease of the objective functional, and the radically different result
with respect to the deterministic case justify the use of the nullspace optimization algorithm for
the solution of Problem 4.2, and the suitability of the approach of Section 3 for the expression
of Φ (Ω) and its shape derivative.

4.3. Optimization of a 3d bridge. As a second example, we consider the optimization
of the bridge structure found in Figure 6. The structure is pinned on the lower surface on
its four corners, marked in light green in the picture. The pinned region, where Dirichlet
boundary conditions on the displacement are applied, is denoted ΓD. The upper face of the
bridge is divided into five sections Γ1

N, . . . ,Γ
5
N of equal size. On each section Γi

N, a random
load gi ∈ L2

(
O,P; L2

(
Γi
N

))
is applied. We suppose that the mechanical loads are oriented
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Figure 3. Optimal shape for case B, where the applied load is gB(ω) = gxXx(ω)ex + (g0 + gzXz(ω)) ez.

Figure 4. Optimal shape for the deterministic case, where the mechanical load applied is gD = g0ez.
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(a) Evolution of the objective function (in cm3).
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(b) Evolution of the constraint.

Figure 5. Convergence of the objective and the constraints for the cantilever problems.
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vertically (that is along the z axis), independent from one another, and such that

(4.4) gi(ω) = −giXi(ω)ez onΓN
i

for all i ∈ {1, . . . , 5}, where giez is a deterministic vertical pressure and Xi a Gaussian random
variable. The numerical parameters describing the geometry and the mechanical properties
of the bridge are reported in Table 3.

Γ1
N

Γ2
N

Γ3
N

Γ4
N

Γ5
N

Figure 6. Structure of the bridge. The non-optimizable supports of the bridge are marked in light green
and their lower surface ΓD is where Dirichlet are applied. The yellow block is non-optimizable as well, and on
its upper surface five random mechanical loads are applied on the sections Γ1

N, . . . ,Γ
5
N.

Longitudinal length ℓx 4.0 cm
Cross section length ℓy 1.0 cm
Height ℓz 1.0 cm

Sidelength of ΓD 0.2 cm
Sidelength of each Γi

N 1.0 cm

Young’s modulus E 200MPa
Poisson’s ratio ν 0.3
Vertical load gi 1MPa

Minimal mesh size hmin 0.10 cm
Maximal mesh size hmax 0.05 cm
Average mesh size havg 0.06 cm

Threshold on the compliance τ 1× 10−1MPa cm3

Bound on the probability of failure p̄ 1.0%
Table 3

Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 6.

We suppose that X = [X1, . . . , X5] is a Gaussian random vector with covariance matrix
equal to the identity where all random variables Xi to have a mean equal to −1.0. Thus, the
mean of X corresponds to an average compression load of 1.0MPa on each of the five sections
of the bridge. We consider the shape shown in Figure 6 as initial condition, and the optimized
shape is reported in Figure 7. The optimization algorithm needed only 100 iterations, which
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results in a computation time of 126min and 54 s. The volume Vol (Ωopt) of the final shape
is 1.217 cm3 and the excess probability P [Q (Ω,uΩ,g(ω)) > τ ] equals to 0.961%. The trends
of the objective and the constraint are presented in Figure 8a and Figure 8b. As for the
cantilever in Subsection 4.2, these results validate that the constraint on the probability of
failure is upheld. Moreover, Figure 8a show that the convergence of the objective function is
faster for the bridge than the cantilever.

Figure 7. Result of the shape optimization of the bridge for the non-centered case.
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Figure 8. Evolution of the objective and constraint functions through the execution of the algorithm when
optimizing a bridge-like structure.

5. Conclusion. In the present article, we presented a numerical approach to minimize
the probability of failure of elastic materials under random loadings. The objective under
consideration is non-smooth with respect to the random variables as it admits a kink induced
from the modulus function. However, the kink can be resolved in case of a quadratic shape
functional. We have proven the shape differentiability in a rather general setting and provided
then an efficient gradient based algorithm in case of Gaussian random fields. Numerical results
in three spatial dimensions have been presented to show the feasibility of our approach.
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