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Chapter 1

Introduction

While the Standard Model (SM) of particle physics describes many phenomena with great
precision, it is clear that it cannot be the final theory. A possible path towards a complete
description of nature would be to understand the shortcomings of the SM and find solutions.
One shortcoming presents itself in the neutrino sector. While the charged leptons obtain masses,
the SM neutrinos remain massless. This prediction is in contrast to observations, in particular,
flavour oscillations in solar neutrinos. Therefore an extension to the SM is needed that addresses
this point.

The reason that SM neutrinos are massless can be understood by studying the electroweak (EW)
theory. While the gauge group of the SM reads SU(3)c × SU(2)L ×U(1)Y , the EW theory does
not describe quantum chromodynamics (QCD), which symmetry group is SU(3)c. The gauge
group of a theory is also called the symmetry group since its generators yield transformations
that can be applied to the quantum fields of the corresponding theory without changing the
equations of motion. The EW gauge group is SU(2)L × U(1)Y . The part of the Lagrangian
governing the fermionic terms reads

LEW,f = iLαDµγ
µlα + LαY

αβlβH + H.c. .

Lα and H are the charged lepton and Higgs SU(2) doublets, respectively, where the flavour
index runs over the three families α = e, µ, τ . The lepton doublet contains the left chiral charged
leptons eα and the SM neutrinos να, while the right-handed charged lepton fields are denoted by
lα. Y αβ contains all Yukawa couplings, and the covariant derivative is defined by

DµLα =
(
∂µ − iqTaA

a
µ

)
Lα ,

where the implicit sum over Ta and Aa contains all gauge fields and respective generators the
spinor Lα transforms under.

A major part of the EW theory, and of the SM, is the spontaneous symmetry breaking, in this
case, called electroweak symmetry breaking (EWSB), implemented via the Higgs mechanism.
The potential of the Higgs is such that its neutral component acquires a vacuum expectation
value (VEV). This way, the SM gauge group is broken down

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM ,

where U(1)EM describes the electromagnetic interaction. It is worth noting that the SM contains
an accidental symmetry that preserves the lepton number.

1



As a result of the symmetry breaking, Dirac mass terms for the charged leptons are generated

LαY
αβlβH → (mD)α eαlα ,

where it is assumed that a bi-unitary transformation was performed, such that the charged
lepton mass matrix is diagonal. The Dirac mass term consists of a left chiral and a right chiral
field and is proportional to the Higgs VEV. For this reason, it is not possible to write down a
Dirac mass term for them. A second possibility to obtain a massive particle is writing down
a Majorana mass term. For this, the respective field describing the particle has to be neutral
under all symmetries. While neutrinos are electrically neutral and also do not interact via the
strong interaction, they are part of the SM lepton doublet Lα and therefore charged under the
SU(2)L and the U(1)Y . For those reasons, a Majorana mass term for the SM neutrinos is not
allowed; hence they remain massless.

As mentioned in the beginning, the absence of neutrino masses poses a problem. To see the
reason for this, observations of neutrinos produced in the sun, so-called solar neutrinos, can be
considered. The solar neutrino problem was discovered in the late 1960s, where the obtained
upper bound on electron neutrinos was significantly smaller than expected [5]. Neutrino flavour
oscillations were suggested as a possible solution for the seemingly vanishing neutrinos by
Pontecorvo and Gribov in 1969 [6]. Understanding the proposed solution requires understanding
the distinction between mass eigenstates and interaction eigenstates. While mass eigenstates
diagonalise the kinetic part of the Lagrangian, neutrino interaction eigenstates diagonalise
the interaction Lagrangian. Therefore, neutrinos are produced as interaction eigenstates but
propagate as mass eigenstates. If, e.g., a solar neutrino is produced as an electron flavour
eigenstate, it is expressed as a complex linear combination of mass eigenstates for propagation.
This linear combination is also called a superposition. When those mass eigenstates travel
from the sun to the earth, their complex phases vary differently if their masses are different.
Consequently, once they arrive at a detector stationed on earth, the complex superposition has
changed. The solar neutrino might no longer be in a well-defined flavour state but, instead, in a
superposition of different flavour states. This superposition can be projected onto the electron
flavour eigenstate to obtain the probability of the neutrino interacting as an electron neutrino.
Varying masses of the light neutrinos result in a varying probability of the solar neutrino still
being in its original flavour eigenstate. This constitutes a solution to the solar neutrino problem.
While the electron neutrinos have not vanished, they have oscillated into a different flavour
during propagation from the sun to the earth. Since the proposal of neutrino flavour oscillations
as a solution to the solar neutrino problem, precise measurements resulted in experimental
values for the two mass squared differences of the light neutrinos as well as additional neutrino
parameters, such as the three mixing angles of the (PMNS) lepton mixing matrix. However,
requiring the neutrinos to be massive, such that they can produce two mass differences, requires
an extension of the SM.

Besides adding higher dimensional terms to the SM Lagrangian, the only possibility to obtain
massive neutrinos is to extend the particle content of the SM. Note that ultimately higher
dimensional terms also have to be explained by adding additional particles at a higher energy
scale. At its coarsest, there are only two approaches to extend the SM with additional particles.
In a top-down approach, a model is developed at a high energy scale that exhibits theoretically
interesting features. A prominent example of such is a grand unified theory (GUT) [7–14]. A
GUT aims to unify the electroweak and strong interactions under a gauge group of at least the
same rank as the SM. The particle content then has to be arranged in representations of this
gauge group, which, e.g., in the case of SU(5) or SO(10), adds new particles compared to the
SM. The gauge group of the GUT has to be broken down to the gauge group of the SM at
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low energies, which can be realised using spontaneous symmetry breaking. The problematic
part is then to arrange the parameters of the GUT in such a way that the experimentally
validated predictions of the SM are reproduced at low energies. A somewhat contrary option
that circumvents these difficulties is to use a bottom-up approach. This strategy uses the SM as
a framework and adds new particles to it. Making these additional particles either very heavy,
compared to testable energy scales, or their coupling to the SM very small, the predictions of
the SM are typically preserved. For this reason, the bottom-up approach is considered in this
thesis. The minimal extension needed to explain the two measured mass differences of the light
neutrinos is adding two sterile neutrinos. The term sterile is used to emphasise that they are
singlets under the SM gauge group. Sometimes, the term right-handed neutrino is used, which
is treated as a synonym in this work.

Even though the mass-squared differences of the light neutrinos are experimentally accessible,
the absolute mass scale is harder to probe. There are some general cosmological arguments that
set upper bounds [15–17]. From this, and from the fact that massless SM neutrinos explain most
experiments so well, the mass scale of the light neutrinos has to be orders of magnitude smaller
compared to the other massive SM particles.

The perhaps simplest possibility to obtain mass terms for the light neutrinos consists in adding
Dirac mass terms. In the same fashion as for the charged leptons, a Yukawa term is formed by a
SM lepton doublet, a Higgs doublet and a right-handed neutrino which yields

LαY
αaNaH̃ + H.c. , (1.0.1)

where H̃ is defined such that EWSB filters out the neutrino from the lepton doublet and Na

denote the right-handed neutrinos added to the SM. After EWSB, this Yukawa term produces
a Dirac mass term for the light neutrinos. Similar to the charged leptons, this mass term is
proportional to the Higgs VEV. To obtain neutrino masses at the order mν ⪅ 0.1 eV, the Yukawa
couplings of the additional terms have to be tiny y ⪅ O(10−12). While this is a valid possibility,
it opens up the question of why the neutrino Yukawa couplings are so small. Additionally, at
least from the point of view of a bottom-up approach, it seems ad-hoc to have no Majorana
mass term for the added right-handed neutrinos, even though they are singlets under the SM
gauge group.

A possible solution that addresses both points is provided by the Type-I seesaw mechanism [18–
24], in which a Majorana mass matrix for the sterile neutrinos is added, see [25]. Rotating into
a basis in which the Majorana mass matrix is diagonal with eigenvalues at the scale mM and
the Dirac masses at the scale mD, the light neutrino masses are naively expected to be at the
scale m2

D/mM . Compared to the pure Dirac case, it is now possible to have bigger Dirac masses -
and therefore bigger Yukawa couplings - if the Majorana mass scale is sufficiently large.

When introducing Majorana mass terms for the sterile neutrinos, the lepton number may no
longer be conserved. This enables processes that violate the lepton number symmetry of the SM
and introduce lepton number violation (LNV). Such processes are a key indicator for physics
beyond the SM and are, therefore, a main target of experimental searches. The, until now,
missing evidence of LNV puts constraints on the parameters of the seesaw machanism [26–29].

A major aspect of this thesis is to explore sterile neutrinos within reach of current collider
experiments. In a simplistic view, a particle collider is a machine that accelerates beams of
particles, collides them and measures the outcoming particles with sophisticated detectors. If two
colliding beam particles interact with each other, they produce an event. The possible interactions
and their kinematics are described by the underlying theory, e.g. the SM. Measurements that
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are under tension with the predictions from the SM may therefore be a hint towards new
physics. Following this simplistic view, we can summarise a particle collider by two numbers. Its
integrated luminosity L and centre of mass energy ECM . The ECM is a measure of the energy
available in collisions the collider produces. If, for example, a new particle is proposed at a mass
m ≫ ECM , the collider is not able to produce events that contain this particle1. Even if the
energy is large enough to produce the desired event containing the proposed particle, a discovery
would not be guaranteed. This is because the chances that the desired event takes place are
given by its cross-section.

A number of expected events can be obtained by considering how many events the collider is
able to produce in a given time. This is the purpose of the integrated luminosity L. The number
of expected events at a collider is then given by the integrated luminosity times the cross-section
of the event

n = σ ∗ L .
Therefore, a small cross-section requires a large integrated luminosity for the collider to produce
a certain amount of events. The high luminosity phase of the LHC (HL-LHC) has a center of
mass energy of 7 TeV and a integrated luminosity of 3 ab−1, assuming a run time of about 12
years [30].

To be within reach of the HL-LHC, the sterile neutrinos are required to have masses below a
few TeV while, at the same time, moderately sized Yukawa couplings to produce at least one
event with a given integrated luminosity of around 3 ab−1 are needed. Especially interesting
observations might be possible for sterile neutrinos, lighter than the W boson. For those, the
decay of a heavy neutrino into a W boson is energetically inaccessible, which increases the
neutrinos’ lifetime such that they become long-lived. As a consequence, after production, the
heavy neutrinos may travel a measurable distance before they decay, forming a displaced vertex.

If the heavy neutrinos are within reach of the HL-LHC, a mechanism is needed to protect the
smallness of the light neutrinos in order to satisfy experimental constraints. Such a mechanism is
provided by the symmetry protected seesaw scenario (SPSS) [31, 32]. Here, a lepton-number-like
symmetry is defined, which extends the lepton-number symmetry of the SM by assigning charges
to the sterile neutrinos. As long as the lepton number-like symmetry (LNLS) is intact, the light
neutrinos are massless and LNV processes are forbidden. In the case of two sterile neutrinos,
the LNLS ensures that the two Majorana degrees of freedom (DOFs) can be rearranged to form
a Dirac particle. The solution is to break the LNLS by a small parameter. This introduces both
a small amount of LNV and a small mass splitting between the heavy neutrinos. Subsequently,
they can no longer be arranged into a Dirac particle. In this case, the heavy neutrino pair is
called pseudo-Dirac.

Considering the phenomenology of such a SPSS, new strategies are needed to observe beyond
standard model physics since the naive LNV observables are suppressed due to the protective
lepton-number-like symmetry. An interesting feature that proves useful in that regard is particle
oscillations. Whenever there is a process in which the intermediate particles have different
masses, oscillations should be considered. However, since the time scale of such oscillations is
proportional to the inverse of the mass splitting of the intermediate particles, oscillations are
typically so fast that they average out at experimentally accessible scales. In the case of the
SPSS, the mass splitting of the heavy neutrinos is proportional to the small symmetry-breaking
parameter. Therefore, particle oscillations due to propagating heavy neutrinos can be relevant
in this case.

1 Here, the word contain is defined as to only apply to on-shell particles that participate in the interactions.
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In [1], it is shown that if only the heavy neutrinos are considered as propagating particles, flavour
oscillations are subdominant compared to so-called heavy neutrino-antineutrino oscillations
(HNANOs). In this type of oscillation, the interaction eigenstates are a neutrino produced
together with a charged antilepton and an antineutrino produced together with a charged
lepton. During the propagation of heavy neutrino mass eigenstates, the superposition oscillates
between neutrinos and antineutrinos. Since the mass difference between light and heavy neutrino
mass eigenstates is assumed to be much larger than the mass splitting among the light and
heavy neutrinos, the light neutrinos do not have to be taken into account as propagating DOFs.
Therefore, the resulting phenomenon is called heavy neutrino-antineutrino oscillation.

Due to the approximate LNLS, a neutrino projected onto the heavy mass eigenstates pre-
dominantly decays into a charged lepton, while a antineutrino projected onto the heavy mass
eigenstates decays predominately into charged antileptons. The projected neutrino is called heavy
neutrino, while the projected antineutrino is called heavy antineutrino. If an (anti)neutrino is
produced and decays again as an (anti)neutrino, the resulting event is lepton number conserving
(LNC). However, if the produced heavy neutrino oscillates and decays as an antineutrino, or
similarly for an antineutrino decaying as a neutrino, the resulting event is LNV. Therefore,
neutrino-antineutrino oscillations manifest themselves as an oscillating pattern between LNC
and LNV events. A measurement of this oscillation pattern would allow for the reconstruction of
the heavy neutrino mass differences and thus reveal some hints about the underlying mechanism
of neutrino mass generation.

Typically particle oscillations, such as light neutrino flavour oscillations, are discussed in a
quantum mechanical (QM) framework in which all particles are treated as plane waves. This,
however, does not discuss the so-called observability conditions, which allow computing under
which circumstances oscillations are suppressed. The derivation of HNANOs is put on a more
solid base by using the quantum field theoretical (QFT) framework of external wave packets.
While the derivation of oscillation formulae is technically more involved compared to the plane
wave QM treatment, the final oscillation probability takes a simple form. Apart from the
standard oscillation phase, the effects of the wave packets are gathered in a damping term
λ. This damping is not only relevant to the feasibility of measuring and reconstructing the
oscillation pattern but also has a major impact on the total ratio between LNV and LNC events
in some parts of the parameter space.

In summary, sterile neutrinos are a minimal extension to the SM, able to explain the light neutrino
masses under the right circumstances. When taking experimental bounds on the resulting heavy
neutrino couplings and masses into account, the only possibility to have them in the reach of
current collider experiments is a SPSS. The main work of this thesis focuses on describing
LNV observables for such a SPSS. While most studies in this field have been done under the
assumptions that the heavy neutrinos, which are also called heavy neutral leptons (HNLs) in
this context, exhibit either the phenomenology of Dirac particles or of Majorana particles, the
SPSS suggest the notion of a pseudo-Dirac particle. This exhibits new phenomenology, such as
HNANOs, and requires a different treatment in the interpretation of existing searches for HNLs,
which is explored in this work.

The papers in this thesis are organised as follows. In [1], the QFT wave packet formalism
is introduced. The details of the computation are presented, and general formulae for the
probability of HNANOs are obtained. These results are applied to the minimal low-scale linear
seesaw model. The resulting simple oscillation formulae are presented and discussed at leading
order (LO) and next-to leading order (NLO).
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[2] contains a general discussion about collider-detectable heavy neutrinos that allow generating
masses for the SM neutrinos via a SPSS. Subsequently, the phenomenological symmetry protected
seesaw scenario (pSPSS) is introduced, which contains the minimal set of parameters to describe
the phenomenology of a seesaw model with a slightly broken LNLS, including HNANOs. An
implementation of the pSPSS in FeynRules is presented, as well as a patch of MadGraph that
allows to simulate HNANOs. The implementations are then used to simulate the oscillation
pattern in the proper time frame of heavy neutrinos and in the lab frame. Further, a discussion
about the LNV over LNC event ratio Rll is presented, in which the introduced implementations
yield insights into the dependence of Rll on various cuts.

In [3] the implementation of the pSPSS and the patched version of MadGraph followed by
Pythia and Delphes are used to simulate HNANOs for three example parameter points at a
CMS-like detector. Possible background processes for the considered signal process are discussed
and partially simulated. A cut-based analysis, implemented in C++, is used to isolate the signal
process from the simulated background. A statistical analysis based on log-likelihood ratios is
presented in detail and subsequently applied to find the significance with which HNANOs can
be discovered at the HL-LHC.

In [4] the details of the suppression of oscillations due to decoherence of the mass eigenstate
superposition are discussed in detail. A distance-averaged oscillation formula is derived and
presented for short and medium lifetimes of heavy neutrinos. For the SPSS and a given signal
process, a simple suppression factor as a function of the heavy neutrinos’ mean mass and mass
splitting is obtained numerically. Finally, the effects of suppressed oscillations on the LNV over
LNC event ratio Rll are demonstrated.
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Chapter 2

Heavy neutrino-antineutrino

oscillations in quantum field theory

Abstract:

It has been proposed that the coherent propagation of long-lived heavy neutrino
mass eigenstates can lead to an oscillating rate of lepton number conserving (LNC)
and violating (LNV) events, as a function of the distance between the production
and displaced decay vertices. We discuss this phenomenon, which we refer to as
heavy neutrino-antineutrino oscillations, in the framework of quantum field theory
(QFT), using the formalism of external wave packets. General formulae for the
oscillation probabilities and the number of expected events are derived and the
coherence and localisation conditions that have to be satisfied in order for neutrino-
antineutrino oscillations to be observable are discussed. The formulae are then
applied to a low scale seesaw scenario, which features two nearly mass degenerate
heavy neutrinos that can be sufficiently long lived to produce a displaced vertex
when their masses are below the W boson mass. The leading and next-to-leading
order oscillation formulae for this scenario are derived. For an example parameter
point used in previous studies, the kinematics of the considered LNC/LNV processes
are simulated, to check that the coherence and localisation conditions are satisfied.
Our results show that the phenomenon of heavy neutrino-antineutrino oscillations
can indeed occur in low scale seesaw scenarios and that the previously used leading
order formulae, derived with a plane wave approach, provide a good approximation
for the considered example parameter point.
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2.1 Introduction

After neutrino oscillations have been proposed by Pontecorvo in the late 50’s [33], they have led
to great insight into the (light) neutrino parameters. First introduced as neutrino-antineutrino os-
cillations, Maki, Nakagawa and Sakata considered oscillations into different flavours in 1962 [34].
Pontecorvo proposed in 1967 the possibility of solar neutrino oscillation, after which the solar
neutrino problem was discovered [5]. In 1969, Pontecorvo and Gribov proposed neutrino flavour
oscillations as a possible solution to this problem [6]. Since then, precise measurements of the
light neutrino oscillations resulted in experimental values for the two mass squared differences of
the light neutrinos as well as of the three mixing angles of the (PMNS) lepton mixing matrix
and have provided a first indication of the range of the Dirac CP phase.

Despite this great success regarding the light neutrino parameters, the origin of the light
neutrino masses, which requires an extension of the present Standard Model (SM) of element-
ary particles, is still unknown. One way to generate them consists in introducing right-chiral
neutrinos as SM singlets. They can have Majorana mass terms as well as Yukawa couplings
to the left-chiral SM neutrinos and the Higgs doublet. After electroweak symmetry breaking,
the particle spectrum contains the three light neutrinos plus additional heavy neutrino mass
eigenstates. If such heavy neutrinos are within reach of collider experiments, and if they are
sufficiently long-lived, oscillations among the heavy neutrino and antineutrino interaction eigen-
states could lead to great insight into the heavy neutrino parameters and thus into the neutrino
mass generation mechanism.1

In parallel to the applications of neutrino oscillations also the framework in which they are
described has evolved. The first approach to neutrino oscillations has been a quantum mech-
anical description in which the neutrinos are treated as plane waves. For neutral K meson
oscillations, a quantum field model including wave packets was proposed in 1963 in Ref. [35].
In 1981, the authors of [36] pointed out conceptual problems of the plane wave approach for
light neutrino oscillations and suggested a wave packet treatment as solution. To resolve the
remaining difficulties, [37] introduced a quantum field theoretical model similar to [36], in which
the propagating particle (assumed stable) is treated as an internal line in a Feynman diagram
and the external particles are described by wave packets. A review of the existing quantum field
theoretical approaches is given in [38], where also a framework employing external wave packets
is discussed that can be used to describe the oscillations of unstable particles.

To describe heavy neutrino-antineutrino oscillations, a density matrix formalism (based on [39])
has been used in [40] for heavy neutrinos produced from meson decays. Using this formalism,
formulae for the oscillation of the LNC and LNV decay rates have been calculated. The authors
of [41] used a formalism for meson oscillations and plane wave arguments to derive formulae for
heavy neutrino-antineutrino oscillations. These formulae are then applied to heavy neutrinos
produced from WR decays in a left-right symmetric extension of the SM, for heavy neutrino
parameters testable at the LHC. There it was shown that without resolving the heavy neutrino-
antineutrino oscillations, the integrated effect can induce a non-trivial ratio between LNV and
LNC processes at colliders (for other early papers calculating non-trivial LNV/LNC ratios,
without specifying oscillation formulae, see e.g. [42, 43]). The parameter region in which such
non-trivial ratios are expected have been discussed e.g. in [44, 45]. In [44] it has been shown,

1 We define a neutrino (antineutrino) as the neutral lepton that is produced together with a charged antilepton
(lepton) and a W boson. The heavy neutrino (antineutrino) interaction eigenstates are defined as the projection
of the neutrino (antineutrino) state onto the subspace of heavy mass eigenstates.
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using the oscillation formulae from plane wave arguments (cf. [41]), that the signature of heavy
neutrino-antineutrino oscillations can be resolved at collider experiments, considering minimal
low scale type I seesaw extensions of the SM.

It has been shown in [44] that in the case of the low scale minimal linear seesaw model
and inverse light neutrino mass hierarchy, the light neutrino mass splittings predict the heavy
neutrino mass splitting, resulting in an oscillation length of order O(10 cm) that could be
resolved e.g. at the (high-luminosity phase of) LHCb. Furthermore, it has been pointed out that
in a realistic experimental setting, where the momenta of the heavy neutrinos are given by a
distribution, reconstructing these momenta and considering the oscillations as a function of the
heavy (anti)neutrino proper time is required to resolve the oscillation patterns. The method has
been demonstrated for an example parameter point, consistent with the present searches and
non-collider constraints [44].

Currently there is an increasing interest in exploring heavy neutrino-antineutrino oscillations.
For example, oscillations for rare W boson decays at LHC are further studied in [46, 47], and
from tau decays in [48, 49] (using the formulae of [40]). The authors of [50] use plane wave
arguments (together with a discussion of coherence conditions) to discuss the oscillations for
a rather general right-handed neutrino mass matrix in a left-right symmetric extension of the
SM. Discussions of how the insight into the low scale seesaw parameters from heavy neutrino-
antineutrino oscillations can help to test whether the baryon asymmetry of the universe can be
produced by the leptogenesis mechanism, are given e.g. in [51, 52]. So far, no QFT treatment
using external wave packets has been performed for heavy neutrino-antineutrino oscillations yet.

The goal of this paper is to put the discussion of heavy neutrino-antineutrino oscillations
on a more solid theoretical ground by treating them in the framework of QFT. We use the
formalism of external wave packets (cf. [38]) to obtain a more fundamental derivation of the
formulae for heavy neutrino-antineutrino oscillations, as well as a more fundamental discussion
of the coherence and localisation conditions that have to be satisfied such that oscillations are
observable. In addition, we apply our formulae to a specific realisation of the symmetry protected
seesaw scenario (SPSS) [31, 32] and expand them in small lepton number violating parameters.
The paper is organised as follows: In section 2 the formalism of heavy neutrino-antineutrino
oscillations is described, the oscillation formulae as well as formulae for the expected number
of events are derived and the coherence and localisation conditions are discussed. Section 3
contains the applications to the specific SPSS model and section 4 the approximations of the
oscillation formulae and the discussion of the LO and NLO effects. In section 5 we conclude.

2.2 QFT Formalism for Heavy Neutrino-Antineutrino Oscilla-

tions

As mentioned above, we define neutrinos (antineutrinos) as those particles produced from the
decay of a W boson, together with a charged antilepton (lepton), respectively. As a specific
example we consider in the following the dilepton-dijet signature at pp colliders, which can be
LNC as well as LNV. The relevant Feynman diagrams, in which the W boson is produced from
pp collisions, are shown in figures 2.1a and 2.1b. With a W boson decaying into an antilepton,
the produced neutrino state is a superposition of neutrino mass eigenstates, where we only
consider the heavy mass eigenstates. We define this projection of the (anti)neutrino interaction
eigenstate onto the heavy neutrino mass eigenstates as “heavy neutrino interaction eigenstate”.
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The neutrinos then propagate over a macroscopic distance after which they decay into either
a lepton or an antilepton and an off-shell W boson, which in turn decays into two jets. If the
neutrino superposition decays into a lepton and an off-shell W boson, the process is lepton
number conserving (LNC) and if it decays into an antilepton it is lepton number violating (LNV).
Although we focus on this example process, our results can be readily adapted to other processes
as well.2

q
p1

p

Ni p2

W+

k1

k2

W+

l+α

l−β

q

q

(a) Feynman diagram for the LNC process

q
p1

p

Ni p2

W−
k1

k2

W+

l+α

l+β

q

q

(b) Feynman diagram for the LNV process

Figure 2.1: Feynman diagrams describing the LNC and LNV processes.

Starting with the general formula for the connected amplitude

A = ⟨f | T̂
(

exp
(

−i
∫

d4x HI

))
− 1 | i⟩ , (2.2.1)

where HI is the interaction Hamiltonian and T̂ the time ordering operator, we follow the
procedure described in [38] for the LNC and LNV processes separately.

Using standard QFT methods in the canonical quantisation formalism, the process described
by the Feynman diagrams figures 2.1a and 2.1b is obtained by expanding the exponential up
to second order in the electroweak coupling constant. The external states are considered to be
wave packets that are centred at the space-time points of production or detection as in [38].
This introduces integrals over the momenta of the external particles together with functions
describing the shape of the wave packets, which we denote as Ψ , as well as space-time translation
operators in the form of exponentials accompanying each wave packet. The propagator of the
intermediate particle is obtained by contraction of the relevant fields in configuration space.
Using the Fourier transformation it is written down in momentum space, introducing the integral
over the neutrino momentum p. The relevant Feynman rules, which are applicable also to the
LNV process, can be found in [53]. The amplitudes for the processes described by the Feynman
diagrams figures 2.1a and 2.1b can be written as

ALNC
αβ :=

∑

j

VjβALNC
j V ∗

jα , (2.2.2)

ALNV
αβ :=

∑

j

V ∗
jβALNV

j V ∗
jα , (2.2.3)

2 The process in which the initial W + is replaced by a W − differs only in the leptonic mixing factors (later
denoted by V ), which are complex conjugate to the ones appearing in the process with an initial W +.
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where α and β denote the flavour indices of the charged leptons at production and detection
and LNC and LNV refers to the lepton number violating or lepton number conserving process,
respectively. The sum runs over the propagating mass eigenstates, which are denoted by the
indices i and j in this paper. The relevant part of the lepton mixing matrix, rotating the heavy
neutrino mass eigenstates into the active neutrino interaction eigenstates is denoted by V and
the so-called partial amplitude ALNX

j is defined as

ALNX
j :=

∫
d4x

∫
d4x′

∫
[dq]Ψ(q,Q)e−iqx

∫
[dp1]Ψ∗(p1,P1)eip1x

∫
[dp2]Ψ∗(p2,P2)eip2x′

∫
[dk1]Ψ∗(k1,K1)eik1x′

∫
[dk2]Ψ∗(k2,K2)eik2x′

∫ d4p
(2π)4 e

ipxe−ipx′
e−ip(x1−x0)MLNX

j (p,Q, P1, P2,K1,K2) 1
p2 −m2

νj

,

(2.2.4)

where Ψ(k,K) describes a wave packet centred at three momentum K. The integration measure
for the three momenta is written in a short hand notation where

[dk] = d3k

(2π)3√
2Ek

,

with Ek being the energy of the respective particle. The interaction amplitude MLNX
j is defined

as the matrix element of the LNX process without the lepton mixing matrix elements and
without the denominator of the propagator, where LNX can refer either to LNC or LNV. Note
that we have suppressed the spin and polarisation labels of the external particles to simplify
notation. The production (x0) and detection (x1) points in spacetime are defined with respect
to the laboratory frame. Therefore the propagation distance, which is defined as L := x1 − x0,
is also to be understood in the laboratory frame. The propagation time is given by T := x0

1 − x0
0.

The authors of [38] proceed with the partial amplitude by evaluating the integrals over the
three momenta of the external particles, which can be done analytically if the wave packets
are assumed to have a Gaussian shape and if the interaction amplitude is approximated at the
mean momenta of the external particles. The approximated interaction amplitude is written as
MLNX

j (p,Q, P1, XN ) := MLNX
j (p,Q, P1, P2,K1,K2), where XN denotes the mean momenta of

the decay products of the heavy neutrinos. This is followed by the integration over x and x′

corresponding to the production and detection vertices.

The last step in the computation of the partial amplitude consists in the integration over
the four momentum of the intermediate particle, which shows up in the propagator. The energy
integral is done by the use of the Jacob-Sachs theorem [54], which basically puts the intermediate
particle on-shell. The integration over the three momentum is done in three regimes separately
depending on the propagation distance of the intermediate particle. The following steps are valid
in the longitudinal dispersion regime, which is applicable when the propagation distance is larger
than the dispersion length (cf. [38]). In section 2.2.1 it is argued that this regime is indeed the
relevant one when we estimate the widths of the wave packets from measurement uncertainties.
In this regime the three-momentum of the j-th neutrino mass eigenstate is approximated around
the point of stationary phase pcl,j , which is the “classical” momentum given by

pcl,j = mjγclvcl , (2.2.5)
where the classical velocity is defined as vcl = L/T with the corresponding gamma factor
γcl = (1 − |vcl|2)−1/2. The classical energy is defined accordingly as

Ecl,j =
√
m2

j + |pcl,j |2 . (2.2.6)
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In the LNC case, the interaction amplitude MLNX
j is dependent on p, which we approximate at

the point pcl,j as well.

The “oscillation probability densities” are proportional to the absolute value squared of the
respective amplitudes, averaged over the macroscopic propagation time

PLNX
αβ (L, Q, P1, X

N ) ∝
∫
dTALNX

αβ (ALNX
αβ )∗ . (2.2.7)

To proceed with this integration Laplace‘s method is used in which the macroscopic propagation
time is expanded around T̃0 (cf. [38])

T ≈ T̃0 = Ẽ0|L|
|p0| , (2.2.8)

where p0 := p0 · L/|L|. The mean energy is defined as Ẽ0 :=
√
m̃2

0 + |p0|2, with the arithmetic
mean of the heavy neutrino masses m̃0. The four momentum p0 is defined via the mean momenta
of the external particles using energy-momentum conservation at the production and/or detection
vertex, which yields

p0 := Q− P1 = P2 +K1 +K2 . (2.2.9)
A related mass can be defined as

m2
0 := E2

0 − p2
0 . (2.2.10)

Note that these so called “reconstructed” quantities, which are labelled with a subscript ( )0,
represent experimentally accessible quantities. As described below (see section 2.2.1), the
reconstructed mass m0 is related to the physical masses of the heavy neutrinos. In particular we
note that if the heavy neutrinos are almost mass degenerate such that mi ≈ m̃0, equation (2.2.50)
can be used to argue that m̃0 ≈ m0 within the momentum uncertainty given by the wave packets
widths. Using equation (2.2.8) yields

pcl,j = mj
1√

1 − |p0|2
Ẽ2

0

|p0|
Ẽ0

L

|L| . (2.2.11)

Due to the wave packet nature of the intermediate particle there is a non-zero probability to
measure the decay vertex in a direction L from the production vertex not parallel to p0. How-
ever, those orthogonal directions are exponentially suppressed and negligible if the momentum
uncertainties are small, i.e. if σp (see section 2.A) is smaller than the orthogonal momentum
p0 × L/|L|. We therefore introduce an integration over the direction of L, which is evaluated
by approximating L/|L| ≈ p0/|p0|. This approximation allows to identify p0 = |p0|. Also, with
mj ≈ m0, which holds for nearly mass degenerate heavy neutrinos as mentioned above, the four
momenta pcl,i and p0 are approximately equal.

The time integration together with the integration over the direction of L leads to

PLNX
αβ (L,Q, P1, X

N ) :=
∫

4π
L2dΩLP

LNX
αβ (L, Q, P1, X

N )

=
∑

i,j

N2
gM

LNX
i (pcl,i, Q, P1, X

N )(MLNX
j (pcl,j , Q, P1, X

N ))∗

× VLNX
αβ ij exp

(
−2πi L

Losc
ij

)
,

(2.2.12)
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where L := |L| has been defined. We note that in the case of the no-dispersion regime, following
the steps in [38], one obtains the same equation equation (2.2.12) and therefore the next
considerations (until section 2.2.1) hold for both regimes. The proportionality constant N2

g can
be obtained by the following normalisation condition, which has to be computed ∀{L,α}

∑

spins

∫

PSN
dXN

∑

β

([
PLNC

αβ + PLNV
αβ

]
(L,Q, P1, X

N )
)

= 1 , (2.2.13)

where
∫
dXN denotes an integral over the whole phase space of the decay products of the

heavy neutrino PSN and
∑

spins represents the sum over all outgoing spins/polarisations and
the average over all incoming spins/polarisations. Lepton mixing matrix factors are contained in
VLNX

αβ ij , which is defined as

VLNC
αβ ij := VβiV

∗
αiV

∗
βjVαj ,

VLNV
αβ ij := V ∗

βiV
∗

αiVβjVαj .
(2.2.14)

The oscillation length is given by
Losc

ij = 4π|p0|
m2

i −m2
j

, (2.2.15)

where p0 is defined in equation (2.2.9). Additional terms which can be neglected, given the
adequate kinematic and experimental conditions, are discussed in section 2.2.1.

Together with the normalisation condition, the oscillation probability densities
PLNX

αβ (L,Q, P1, XN ) are defined as densities with respect to the mean momenta of the
decay products of the heavy neutrino. If this density is integrated over the considered phase
space of the heavy neutrino decay products PSN

p ⊂ PSN an oscillation probability is obtained
as

PLNX
αβ (L,Q, P1) =

∫

PSN
p

dXNPLNX
αβ (L,Q, P1, X

N ) . (2.2.16)

The results describe the probabilities that the superposition of heavy neutrino mass eigenstates,
produced by the decay of a W boson together with an antilepton of flavour α, produces an
(anti)lepton of flavour β if it decays after a distance L in the direction of p0 via an LNC (LNV)
process.3 When summing these probabilities over the flavour of the final (anti)lepton, the
resulting quantity

∑
β P

LNV
αβ (L,Q, P1) can be interpreted as the probability that the produced

heavy neutrino interaction eigenstate has oscillated into a heavy antineutrino interaction
eigenstate. The quantity

∑
β P

LNC
αβ (L,Q, P1) can be interpreted as the probability that the

heavy neutrino interaction eigenstate has “survived”, i.e. has not oscillated into a heavy
antineutrino interaction eigenstate.

At this point equation (2.2.16) together with the additional terms, to be discussed in
section 2.2.1, can be regarded as the most general result. We now proceed simplifying it, in
order to gain further insight. To this end, we first show under which conditions the interaction
amplitudes can be factored out of the sum over mass eigenstates, and subsequently be absorbed
into the normalisation constant.4 After that we commit to a specific model within the SPSS,

3 The normalisation condition is such that decays into other final states than the ones given in fig-
ures 2.1a and 2.1b are not considered.

4 We note that in the case of light neutrino flavour oscillations, when the possibility of oscillating into light
antineutrinos is neglected, this is always possible. On the contrary, in the here considered case of heavy
neutrino-antineutrino oscillations it is an approximation.
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which features two almost degenerate heavy neutrinos.

The interaction amplitude is dependent on the masses of the propagating neutrinos
through the numerator of the propagator, which reads (/pcl,j

+mj). The neutrino masses are
expressed as a deviation from the mean neutrino mass m̃0.5 In the case of just two heavy
neutrinos, with masses m4 and m5, where w.l.o.g. m4 < m5 can be assumed, one finds that

m4 = (1 − λm)m̃0

m5 = (1 + λm)m̃0 ,
(2.2.17)

where the dimensionless mass splitting parameter λm is defined as

λm = m5 −m4
m5 +m4

, (2.2.18)

and the mean mass is just given by

m̃0 = (m4 +m5)/2 . (2.2.19)

Using the definition equation (2.2.5), the classical momentum can also be expressed using the
mass splitting parameter, which yields

pcl,4 = (1 − λm)p̃cl,0

pcl,5 = (1 + λm)p̃cl,0 ,
(2.2.20)

where the mean momentum is defined as p̃cl,0 = m̃0γclvcl. Note that using equations (2.2.17)
and (2.2.20) it is easy to reparameterize the four momentum of an on-shell particle. This makes
it possible to factor out the mass dependence from the interaction amplitudes, yielding

MLNX
i (pcl,i, Q, P1, X

N )(MLNX
j (pcl,j , Q, P1, X

N ))∗ = Λij |MLNX(p̃cl,0, Q, P1, X
N )|2 , (2.2.21)

where Λij contains the factors describing the mass and momentum splitting and is given by

Λij =





(1 − λm)2 if i = j = 4
(1 + λm)2 if i = j = 5
(1 − λ2

m) if i ̸= j .

(2.2.22)

The interaction amplitudes of the processes figures 2.1a and 2.1b can be written down
by using the Feynman rule conventions described in [53], which are applicable also to the lepton
number violating diagram. This yields

iMLNC
j (pcl,j , Q, P1, X

N ) = i
4GF√

2

(
u(K1) Γ ν v(K2)

)

(
u(P2) Γν i(/pcl,j

+mj) ig2√
2
Γµ v(P1)

)
ϵ∗µ(Q) ,

(2.2.23)

and

iMLNV
j (pcl,j , Q, P1, X

N ) = i
4GF√

2

(
u(K2) Γ ν v(K1)

)

(
u(P2) Γ ′

ν i(/pcl,j
+mj) ig2√

2
Γµ v(P1)

)
ϵ∗µ(Q) ,

(2.2.24)

5 The following reparameterization can easily be extended to more than two mass eigenstates.
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where g2 is the coupling of the SU(2) gauge bosons and GF is the Fermi constant. The vertices
Γµ and Γ ′µ are given by γµ PL and −γµ PR respectively, with the left and right chirality
projection operators defined as

PL/R := 1
2(1 ∓ γ5) . (2.2.25)

Note that, as above we have suppressed spinor and color indices as well as indices denoting the
spin and polarisation of the external particles. For the neutrino we chose the fermion flow from
left to right in figures 2.1a and 2.1b.

Further simplifications are possible if the spin correlation between the production and
detection vertex are neglected, i.e. if the numerator of the propagator can be written as

(/̃pcl,0 + m̃0) =
∑

s

us(p̃cl,0)us(p̃cl,0) ≈
∑

s,s′
us(p̃cl,0)us′(p̃cl,0) . (2.2.26)

This approximation is also done in the narrow width approximation and makes it possible to
factorize the interaction amplitude into a production interaction amplitude and a detection
interaction amplitude. Using this approximation, the interaction amplitudes for the LNC and
LNV process are identical.

If the spin correlation is not neglected, the interaction amplitudes of the LNC and
LNV process differ due to the chirality structure. For a given process it could be possible that
the interaction amplitudes depend on the orientation of the momenta of the external particles in
such a way that a probabilistic classification into LNC or LNV becomes possible, which could
be interesting, e.g. for the SHiP experiment [55].

In order to simplify the expression equation (2.2.12), following the above discussion,
the spin correlation between the production and detection vertices are neglected. This allows to
absorb the mass splitting independent parts of the interaction amplitudes in equation (2.2.12)
into the normalisation constant.

This leads to the following oscillation probability, which is independent of the mean
momenta of the decay products of the heavy neutrino, spins and polarisations of the external
particles

PLNX
αβ (L,Q, P1) :=

∑

spins

∫

PSN
dXN PLNX

αβ (L,Q, P1, X
N ) . (2.2.27)

Due to these simplifications the oscillation probability only depends on Q and P1 in the
combination |p0| = |Q − P1|, which yields

PLNX
αβ (L, |p0|) =

∑

i,j

N2Λij VLNX
αβ ij exp

(
−2πi L

Losc
ij

)
. (2.2.28)

The normalisation condition for the simplified oscillation probability is given by
∑

β

([
PLNC

αβ + PLNV
αβ

]
(L, |p0|)

)
= 1 ∀{L, |p0|} . (2.2.29)

In section 2.4 the normalisation constant is evaluated explicitly for a specific example model of
interest.
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To proceed further we assume the experimental conditions and model parameters to
be such that the heavy neutrinos travel a macroscopic distance before they decay, forming a
displaced vertex. The number of expected events that feature such a displaced vertex can be
expressed as a formula similar to the one described in [56]. This formula has to be modified in
order to cover the circumstances of this paper. In particular an expression for the probability
that the heavy neutrino decays in an LNC (LNV) manner involving a specific lepton flavour
between a minimum and maximum distance is needed. Following the discussion in [38] regarding
unstable oscillating particles, it is shown that the only relevant modification to the oscillation
formula is given by the exponential discussed in section 2.2.1. If the masses and decay widths of
the heavy neutrinos are nearly identical, it is possible to define a common decay length as

L̃decay
0 := p0

m̃0Γ̃0
, (2.2.30)

where the common decay width is defined as

Γ̃0 := Γ4 + Γ5
2 . (2.2.31)

The exponential

exp
(

− L

L̃decay
0

)
(2.2.32)

describes the probability that a particle is still present at distance L. Therefore the probability
density that the particle decays at distance L is given by the derivative

− d

dL
exp
(

− L

L̃decay
0

)
. (2.2.33)

With this the probability that a particle decays in an LNX process into flavour β between
xmin(ϑ) and xmax(ϑ) is given by

PLNX
dv αβ(xmin(ϑ), xmax(ϑ), |p0|) =

∫ xmax(ϑ)

xmin(ϑ)
PLNX

αβ (L, |p0|)
(

− d

dL
exp
(

− L

L̃decay
0

))
dL , (2.2.34)

where the subscript dv stands for displaced vertex and ϑ denotes the angle of the heavy neutrino
with respect to the beam axis. Usually the interval [xmin(ϑ), xmax(ϑ)] will be chosen to lie inside
the detector, such that the decay products can be measured. The detector geometry can be
taken into account by the dependence on ϑ. The number of expected LNX events in which an
antilepton of flavour α is measured at the production vertex and a lepton (LNC) or antilepton
(LNV) of flavour β is measured at the detection vertex is given by

NLNX
αβ = σ̃N,0 B̃rljj,0 L

∫
DN (ϑ, |p0|) PLNX

dv αβ(xmin(ϑ), xmax(ϑ), |p0|) dϑd|p0| , (2.2.35)

where σ̃N,0 is the mean production cross section of the heavy neutrinos, which depends on model
parameters such as the masses of the heavy neutrinos and the details of the lepton mixing matrix.
B̃rljj,0 is the mean branching ratio for the decay of a heavy neutrino into a lepton and two jets
and L is the time integrated luminosity. Therefore, the factor σ̃N,0 B̃rljj,0 L describes the total
number of events in which a heavy neutrino is produced and decays into a lepton and two jets.
It is assumed that the branching ratios as well as the production cross sections for different
mass eigenstates are nearly identical in order for such an approximation to be appropriate. The
remaining factor DN (ϑ, |p0|) accounts for the probability density that the reconstructed heavy
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neutrino has momentum of modulus |p0| and is produced with an angle ϑ with respect to the
beam axis. As discussed above, PLNX

dv αβ(xmin(ϑ), xmax(ϑ), |p0|) gives the probability that the
heavy neutrino decays in an LNX manner into flavour β inside the interval [xmin(ϑ), xmax(ϑ)].
Note that if one wanted to consider the spin correlation, one has to use equation (2.2.16) in the
definition of equation (2.2.34).

2.2.1 Observability Conditions and Dispersion Length

In order for the oscillations to be observable there are several conditions which have to be satisfied.
This subsection describes those conditions and estimates their viability for typical parameters of
long-lived heavy neutrinos detectable at, e.g. HL-LHCb. We consider as an explicit example a
parameter point for the minimal low scale linear seesaw model that has also been used in Ref. [44].

To compute all relevant parameters it is necessary to know the kinematics of the pro-
cess and the widths of the external wave packets. One approach to estimate these widths is
based on the following considerations: Since the final particles at production and detection
are reconstructed by measurements at a detector, the uncertainty of the measurement should
be reflected by the widths of the respective wave packets. For charged leptons a relative
momentum uncertainty in the range (∆p/p)lepton = [0.5%, 1%] holds for particles with a long
enough track, cf. [57], which we therefore use for the widths of the charged lepton wave packets.
The momentum resolution for the quarks, which are reconstructed from displaced jets, is much
harder to determine. For a conservative estimate we therefore use a large range for their relative
momentum uncertainty (∆p/p)quark = [5%, 30%] (and thus for the possible widths of the quark
wave packets). Finally, the width of the wave packet of the initial W boson is taken to be its
decay width (ΓW ≈ 2 GeV).

Alternatively, one can also try to estimate the widths of the wave packets in position
space based on the consideration that the uncertainty is determined by interactions with
detector/beam particles and their respective widths. For the W boson one could use the
proton-proton distance in the proton bunches, which at the LHC is about 5 × 10−6 cm, whereas
for the leptons and quarks one might take a wave packet width of the order of an atom
radius, i.e. about 10−8 cm. This would lead to significantly smaller widths in momentum
space compared to the estimate using the measurement uncertainty, such that the appropriate
regime is the no-dispersion regime (cf. [38]). We have checked that the relevant observability
conditions in this case are all satisfied for our example parameter point, and our results from
equations (2.2.16), (2.2.35), (2.4.2), and (2.4.3) can also be used for these estimates of the
wave packet widths. From now on we will focus on the estimates for the wave packet widths
from the momentum space considerations.

The kinematics of the processes described by figures 2.1a and 2.1b have been simu-
lated, assuming two nearly degenerate heavy neutrinos. Since the purpose of the simulation is
to compute the parameters necessary to check the observability conditions and not to simulate
the oscillation process itself, all particles can be treated as plane waves, where their momentum
represents the momentum of the peak of the wave packet. Simulating enough events, where the
momentum of the W boson is taken in the range 340 GeV to 2 TeV. It is then possible to check
if the observability conditions are fulfilled. For the simulation the parameter values in table 2.1
have been used. It has also been assumed for simplicity that there are two heavy neutrino mass
eigenstates with masses m4 and m5.
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parameter value
γ ≈ 50

m̃0 [GeV] 7
δm2

45 [GeV2] −1.04 × 10−11

(∆p/p)lepton 0.5% – 1%
(∆p/p)quark 5% – 30%

Table 2.1: Parameters used for simulating the kinematics of the processes in figures 2.1a and 2.1b, in order to
evaluate the observability conditions for the example minimal low scale seesaw parameter point used in [44].
γ denotes the gamma factor of the heavy neutrinos, m̃0 their mean mass (which in the simulation coincides
with m0), and the squared mass splitting δm2

45 = m2
4 −m2

5 in the scenario of [44] is predicted by the meas-
ured values of the light neutrino mass splittings. The used range for the uncertainties in the measurement
of the momenta of the external charged leptons and jets are denoted as (∆p/p)lepton and (∆p/p)quark.

The observability conditions are given as exponential suppression factors. If it is not
clear that they are satisfied those exponential factors have to be included into the probability
equation (2.2.12) or equation (2.2.28), respectively. It is worth mentioning that including
exponential terms into the probability changes the normalisation constant, which can be
computed using equation (2.2.13) or equation (2.2.29). The quantities used in the computation
of the observability conditions are defined in section 2.A.

The oscillation length sets the scale of the experiment, since it is the length at which
the measurements should be taken in order to observe oscillations. As stated above it is given by

Losc
ij = 4π|p0|

m2
i −m2

j

.

With the parameters in table 2.1 (with γ = 50) it can be computed to be

Losc
45 ≈ 8.34 cm , (2.2.36)

where the two heavy neutrino mass eigenstates are labelled with subscript numbers 4 and 5.

The effective width σpeff (see [38]) can be interpreted as the width of the wave pack-
ets of the heavy neutrinos. A rough estimate of the effective width can be obtained by neglecting
the detection process and by approximating the lepton in the production process as a plane
wave. Due to energy-momentum conservation, the shape of the effective wave packets of the
heavy neutrinos is then given by the one of the initial W boson, which width is approximated
by its decay width. However, simulating the kinematics of the process and computing the width
numerically shows that it is in the range

σsim
peff ∈ [4.5 × 10−3, 32] GeV , (2.2.37)

showing that the estimate σpeff ≈ 2 GeV is indeed very rough.

The dispersion length is the threshold at which the spread of the wave packets of the
heavy neutrinos becomes significant in all directions. At distances larger than the dispersion
length the methods of the longitudinal dispersion regime have to be used. The dispersion length
is given by [38]

Ldisp
j = v0

E2
0

2m2
jσ

2
peff

, (2.2.38)
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where v0 = |p0|/E0 with p0 and E0 being the momentum and the energy given by the mean
momenta of the external particles and energy-momentum conservation at either vertex as defined
above. The simulation using the parameter values from table 2.1 shows that Losc > 1000 Ldisp.
The assumption that the longitudinal dispersion regime is the relevant one, in the case in which
the wave packet widths are estimated from measurement uncertainties, is therefore well justified.

The observability conditions can be divided into two groups. The so-called coherent ef-
fects, which are taken into account at the level of the wave function and the so-called incoherent
effects, which are included at the level of the probability.

Coherent Effects

The so-called coherence length describes the decoherence of the wave packets, which can have
two origins. The oscillations either vanish if the wave packets become separated due to different
group velocities, or if the wave packets spread beyond the oscillation length, in which case the
oscillations are averaged to zero. In momentum space both of these effects are taken into account
by the exponential

exp
(

− L

Lcoh
ij

)
, (2.2.39)

where (see [38])
Lcoh

ij = 1√
2π

|p0|
σpeff

Losc
ij . (2.2.40)

These terms can be neglected if the momentum of the intermediate particle is much larger than
the width of its effective wave packet. Using the parameters in table 2.1, all simulated events
satisfy at least

Lcoh
45 > 10 Losc

45 . (2.2.41)

It is therefore justified to neglect the effects of decoherence in the first oscillation cycles for the
parameter values in table 2.1.

We remark that the oscillation length and therefore the coherence length for oscilla-
tions including both the light and heavy neutrino mass eigenstates is smaller than 10−12 m.
Therefore it is appropriate to neglect the light neutrino mass eigenstates in the oscillations.

Localisation conditions determine whether there is decoherence from the start. The
relevant exponential suppressing the oscillations reads (see [38])

exp
(

−
(δm2

ij)2

32|p0|2

(
v2

0
σ2

m

+ ρ2

σ2
peff

))
, (2.2.42)

where δm2
ij := m2

i −m2
j . The effective width of the propagating neutrino is given in momentum

space by σpeff . The parameters σm and ρ are determined by the widths of the external particles
and their velocities (see [38]). Using the parameters from table 2.1 it follows that

(δm2
ij)2

32|p0|2

(
v2

0
σ2

m

+ ρ2

σ2
peff

)
< 10−10 (2.2.43)

is satisfied in all events. This allows to neglect the effects from localisation in the oscillation
formula for parameter values as in table 2.1.
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In the process considered in this paper the heavy neutrinos are unstable intermediate
particles. Therefore the full propagator should be used in equation (2.2.4). As discussed in [38]
this leads to the exponential decrease factor

exp
(

− L

Ldecay
ij

)
, (2.2.44)

where the decay length is given by

Ldecay
ij = 2|p0|

miΓi +mjΓj
, (2.2.45)

that has to be included in the sum over the mass eigenstates in equation (2.2.28). With the
definitions

m̃0 = m5 +m4
2 Γ̃0 = Γ5 + Γ4

2 , (2.2.46)

and
δm = m5 −m4 δΓ = Γ5 − Γ4 , (2.2.47)

the decay exponential can be written as

exp
(

− L

Ldecay
ij

)
= exp

(
−L(m̃0Γ̃0 + 1

4δmδΓ )
|p0|

)
exp
(

±δij

2
L(δmΓ̃0 + δΓm̃0)

|p0|

)
, (2.2.48)

where for i = j = 4 the plus sign and for i = j = 5 the minus sign is used. The first exponential
can be absorbed into the normalisation constant using the condition equation (2.2.29), since it
does not depend on the mass indices i and j. If e.g. the decay widths of the mass eigenstates
are too different, the second exponential can lead to a suppression of the oscillation pattern. On
the other hand, the exponential is negligible if the mass eigenstates are nearly degenerate and
if the decay widths are nearly equal. For the example point considered in this paper one can
verify that L(δmΓ̃0 + δΓm̃0) ≪ p0 such that this conditions is satisfied.

Since the detection of the decay products allows to reconstruct the invariant mass of
the propagating particle, a condition that relates the mass of the propagating particle with the
detection uncertainty is expected. This condition stems from the exponential

exp
(

−
(δm2

i + δm2
j )2

32σ2
mE

2
0

)
, (2.2.49)

that appears in the derivation of the amplitude (see [38]). Here δm2
i = m2

i −m2
0. It requires that

|m2
i +m2

j − 2m2
0|

E0
< σm , (2.2.50)

where mi and mj are the masses of the heavy neutrinos and m0 is as given above6

m2
0 := E2

0 − |p0|2 . (2.2.51)

The parameter σm (see [38]) is related to the widths and velocities of the external particles.
Since the detection process is described by the interaction with those external particles, their

6 We remark that m0 should not be confused with m̃0, which is the geometric mean of the heavy neutrino masses.
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widths are in turn related to the precision of the momentum measurement. In conclusion this
condition enforces the neutrinos to be either nearly degenerate in mass or highly relativistic,
such that the propagating mass eigenstates are within the uncertainty of the momentum
measurement. The simulation shows that σm ∈ [0.0035 GeV, 32 GeV], such that the above
condition is satisfied for the parameters in table 2.1.

In the processes considered in this paper (figures 2.1a and 2.1b) a W boson is decay-
ing in flight and is therefore an unstable source. In principle one would have to treat the W
boson as a propagator connecting the diagrams figures 2.1a and 2.1b and the particles producing
the W boson. This extra propagator would however result in technical difficulties. The authors
of [58–60] have used perturbation theory in a quantum mechanical model to describe neutrino
oscillations and found an additional localisation condition, which suppresses oscillations if the
unstable source moves a distance greater than the oscillation length during its lifetime. The
unstable source has been assumed to have a mean momentum at rest in those derivations. A
QFT approach to light neutrino oscillations has been used in [61], where a similar localisation
condition to the one above has been derived. The authors of [62] considered a moving unstable
source, i.e. a pion decaying in flight, in a QFT treatment. They obtained the constraint

(
2π vπ · v0

v2
0 − vπ · v0

) |pπ|
mπΓπ

≪ Losc
ij , (2.2.52)

where vπ, |pπ|,mπ, Γπ are the velocity, momentum, mass and decay width of the decaying pion.
In our case the initial W boson takes the place of the pion as the unstable source. The heavy
neutrino is highly boosted such that the velocities vW and v0 are almost parallel. Furthermore
it holds that vW ≪ v0 for the parameter space considered in this paper, which implies that

(
2π vπ · v0

v2
0 − vπ · v0

)
< 2π . (2.2.53)

Even putting the momentum of the W boson as 2 TeV, which is the maximum of the range
considered in this paper, we find that

|pW |
mWΓW

< 2.5 × 10−15 m . (2.2.54)

This constraint is therefore negligible for the process and parameter space considered. As
an additional remark, note that the above mentioned localisation conditions describe the
suppression stemming from the fact that the production vertex is not known due to the finite
lifetime and movement of the unstable source. At current and considered future colliders the W
boson decays promptly, due to its large decay width, which makes the possible decay region
much smaller than any macroscopic oscillation length. Already this argument shows that the
additional localisation condition, due to the instability of the W, should be satisfied.

As discussed in [59], the unstable source can also lead to a loss of coherence for dis-
tances larger than the coherence length

Lcoh
Γ = − 4E2

0
δm2

ijΓ
. (2.2.55)

For the parameters in table 2.1, this additional coherence length can be neglected compared to
the one given in equation (2.2.40).
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Incoherent effects

If the propagation distance is not precisely known, which is the case if the production or detection
points are measured with some uncertainty, neutrinos that have travelled different distances
overlap and wash out the oscillation pattern. This effect can be described by the following
exponential (see [38])

exp


−2π2

(
∆L

Losc
ij

)2

 , (2.2.56)

where we have assumed that the propagation distance of the neutrinos is given by a Gaussian
with width ∆L. Oscillations vanish if ∆L ≥ Losc

ij . In our case the oscillation length is around
8cm and therefore much bigger than the uncertainty in the resolution of the position of the
primary and secondary vertex.

In a real experiment there is a distribution of mean momenta of the external particles,
such that the reconstructed momentum of the intermediate particle, denoted by p0, follows
a distribution as well. The effect is already included in equation (2.2.35), where the factor
DN (ϑ, |p0|) describes the distribution of |p0|. A distribution of |p0| leads to a washout of the
oscillation pattern, since different oscillation lengths superimpose. In order to resolve the
oscillation patterns it is therefore helpful [44] to plot the oscillation probability as a function of
the reconstructed proper time using the following relations

|p0| = m0γ0|v0| = m0γ0
L

T0
= m0

L

τ0
, (2.2.57)

where the reconstructed gamma factor is defined as γ0 = (
√

1 − |v0|2)−1, the reconstructed
velocity is as before v0 = p0/E0, the reconstructed time is given by T0 = L/|v0| and the
reconstructed proper time is given by τ0 = T0/γ0. This leads to the following oscillation
exponential

exp
(

−2πi L

Losc
45

)
= exp

(
−im̃0
m0

δmτ0

)
, (2.2.58)

where equations (2.2.19) and (2.2.47) have been used. Using an oscillation probability based
on plane wave arguments, the above method has been demonstrated for an example parameter
point (assuming m̃0 = m0) in [44]. Note that, as mentioned above, the quantities denoted by
a subscript ( )0 are the ones which are reconstructed by experimental measurements of the
external particles in the process.

2.3 Low Scale Seesaw with Symmetry Protection

To further develop and apply the above results, we consider SPSS models (cf. [31, 32]) i.e. low
scale seesaw models where the smallness of the light neutrino masses is protected by a slightly
broken “lepton number”-like symmetry. As a particular example we focus on the “minimal low
scale linear seesaw” model with only two right-handed (sterile) neutrinos, that has also been
discussed as an example in [44]. The Lagrangian of this model takes the following form

L = LSM −N
1
RΛ(N2

R)c − YαN
1
Rϕ̃

†Lα − Y ′
αN

2
Rϕ̃

†Lα +H.c. , (2.3.1)

where LSM is the Standard Model (SM) Lagrangian, α = (e, µ, τ) is a family index and ϕ̃ := ϵϕ∗

with the Levi Civita symbol ϵ and the SM Higgs doublet ϕ. The Yukawa couplings to the sterile
neutrinos are denoted by Yα and Y ′

α. In the symmetry limit of the model, the Yukawa couplings
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Y ′
α are zero, and the “lepton number”-like symmetry is only broken slightly by the Yukawa

coupling Y ′
α, for which we assume that Y ′

α ≪ Yβ for all entries. Possibilities to realise a low scale
linear seesaw in the context of SO(10) Grand Unified Theories have been discussed e.g. in [63, 64].

After electroweak symmetry breaking the part of the Lagrangian responsible for neut-
rino masses and mixing can be written as

Lmass = −1
2(nc)TMνn+ H.c. , (2.3.2)

where n = (νeL , νµL , ντL , (N1
R)c, (N2

R)c)T and

Mν =




0 m m′

mT 0 Λ
(m′)T Λ 0


 =:

(
0 m
mT Mνh

)
. (2.3.3)

The symbols m and m′ denote column vectors given by Y vEW /
√

2 and Y ′vEW /
√

2, respectively.
vEW ≈ 246 GeV is the electroweak vacuum expectation value. The mass matrix can be
diagonalised using a Takagi decomposition

MD
ν = UTMνU. (2.3.4)

This can be achieved following the steps in [65] where first a block diagonalisation with an
exponential ansatz is performed, followed by a diagonalisation of the active neutrino 3x3 and
sterile neutrino 2x2 block. Expanding the exponential to second order yields

U =
(

1 − 1
2θθ

† θ
−θ† 1 − 1

2θθ
†

)(
U3 0
0 U2

)
, (2.3.5)

where θ = m∗(M∗
νh

)−1. It can be easily checked that the mass matrix is indeed block diagonalized
to second order in θ.

Furthermore, one finds that

U2 = e− i
2 arg(m′ m∗)

√
2

(
im′ m∗
|m′ m∗|

m′ m∗
|m′ m∗|

−i 1

)
(2.3.6)

diagonalizes the heavy neutrino 2x2 block. Regarding the heavy neutrino-antineutrino oscillations,
the interesting part of the mixing matrix is the upper right 3×2 block, which describes the mixing
between the active neutrino interaction eigenstates and the heavy neutrino mass eigenstates. In
the oscillation formula we called this part V . From equations (2.3.5) and (2.3.6) we find that

V = 1√
2
(
−i(θ)∗e−iϕ + i(θ′)∗eiϕ (θ)∗e−iϕ + (θ′)∗eiϕ

)
. (2.3.7)

where the phase is defined as 2ϕ = arg((θ′) · (θ)∗) and the expansion parameters are defined as

θ = m

Λ
= Y vEW√

2Λ
(2.3.8)

θ′ = m′

Λ
= Y ′ vEW√

2Λ
. (2.3.9)

Note that θ can be seen as a function of θ and θ′. From the hierarchy between the Yukawa
couplings of the sterile neutrinos it follows that θ′ ≪ θ. We restrict ourselves to maximally first
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order in the elements of θ′ in the following.

As a remark one can see that higher order terms in θ can be absorbed in a slight res-
caling of the Yukawa couplings Y , since in the symmetry limit (where θ′ = 0) V has the exact
form

Vsymm = 1√
2 + 2|θ|2

(
−i(θ)∗ (θ)∗) . (2.3.10)

Therefore those terms do not qualitatively change the oscillation formulae that are obtained in
section 2.4.

Using the expansion equation (2.3.7) it is also possible to obtain expressions for the
masses of the heavy neutrinos and thus also for the mass splitting parameter λm, introduced in
equation (2.2.18), which can be expressed as

λm = 2|m′ · m∗|
2Λ2 + |m′|2 + |m|2 ≤ |θ′ · θ∗| ≪ O(θ′) . (2.3.11)

Another important parameter entering the oscillation formula is the quadratic mass splitting
δm2

45, which enters the formula for the oscillation length. It can be expressed as

δm2
45 = −4m̃2

0λm = −2m̃0δm , (2.3.12)

where the mean mass of the heavy neutrinos m̃0 is defined in equation (2.2.19) and can be
expressed as

m̃0 = 2Λ2 + |m|2
2Λ + O(θ′) . (2.3.13)

2.4 Approximations of the Oscillation Formula

Using the results from section 2.3 the oscillation probability equation (2.2.28) can be expanded
in the small parameters θ′ appearing in the lepton mixing matrix and λm which has been
introduced in equation (2.2.18) to account for the mass splitting of the heavy neutrinos. Also,
as we discussed, the mass splitting parameter λm can be neglected at leading order as it is much
smaller than O(θ′), see equation (2.3.11). The following definitions are used

Iβ := Im(θ∗
βθ

′
β exp(−2iΦ)) ,

ϕij := − 2π
Losc

ij

= −
m2

i −m2
j

2|p0| ,

Φ := 1
2Arg

(
θ′ · θ∗) .

To derive the approximate oscillation formulae, the normalisation constant is computed using
the condition equation (2.2.29), yielding

N2
g = 1∑

β |θα|2|θβ|2 + . . .
, (2.4.1)

where the ellipses contain orders higher than O(θ′). With this the probability equation (2.2.28)
can be expanded in θ′. Note that we keep the exponential exp(iΦijL) exact. Up to first order in
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θ′, the probability equation (2.2.28) in the LNC case yields

PLNC
αβ (L) = 1

2
∑

β |θα|2|θβ|2
(

|θα|2|θβ|2(1 + cos(ϕ45L))

− 2(Iβ|θα|2 − Iα|θβ|2) sin(ϕ45L)
)
.

(2.4.2)

In the LNV case the expansion of equation (2.2.28) up to first order in θ′ yields

PLNV
αβ (L) = 1

2
∑

β |θα|2|θβ|2
(

|θα|2|θβ|2(1 − cos(ϕ45L))

− 2(Iβ|θα|2 + Iα|θβ|2) sin(ϕ45L)
)
,

(2.4.3)

where in both cases the LO terms are written in the first line and the NLO terms in the second
line. Note that if the initial W boson is replaced by a W−, the leptonic mixing matrix factors
are complex conjugate to the ones in the process where the initial boson is a W+. This results
in a sign change of the NLO contributions. The leading order term in those expansions describe
the oscillations from neutrinos into antineutrinos, whereas the first order term describes flavour
oscillations. This can be seen by adding up the LNC and LNV probabilities, which means that
the sign of the outgoing lepton is ignored. This should make the oscillations of neutrinos into
antineutrinos vanish, and indeed the oscillatory part of the leading order terms cancel each other.
We are left with

PLNC
αβ (L) + PLNV

αβ (L) = 1∑
β |θα|2|θβ|2

(
|θα|2|θβ|2 − 2Iβ|θα|2 sin(ϕ45L)

)
. (2.4.4)

Summing over the outgoing flavours makes the oscillatory part of the above equation vanish.
This happens because

∑
β θ

∗
βθ

′
β exp(−2iΦ) ∈ R, and therefore

∑
β Iβ = 0.

With the “lepton number”-like symmetry being broken, one also expects lepton num-
ber violation in the limit where the distance L goes to zero. As mentioned above, the
no-dispersion regime, which is the relevant one in this limit, results in the same formulae for
the oscillation probabilities if the observability conditions are met. From equation (2.4.3) it
can therefore be seen that there is no lepton number violation at zero distance. This leads to
the conclusion that this effect has to be introduced at a higher order and is therefore much
smaller than the lepton number violation due to oscillations. That this effect is indeed present
at higher orders can be confirmed by numerically diagonalizing the lepton mass matrix and
using equation (2.2.28) to compute the oscillation probability.

Taking only the leading order into account, the only relevant model parameters are
the Yukawa couplings Yα, or equivalently the mixing parameters θα, and the quadratic mass
splitting δm2

45 appearing in ϕ45. The leading order effects can therefore be described by the
symmetry limit of the SPSS [31, 32] plus the quadratic mass splitting as an additional parameter.
This holds even more generally, for all realisations of the SPSS.

If the mechanism of light neutrino masses is given by the minimal linear seesaw de-
scribed in equation (2.3.1), one can reparameterize the model in terms of active neutrino
parameters according to [66]. Assuming an inverse ordering of the light neutrino masses mνi

yields
Yα = y√

2
√

1 + ρ U∗
α2 +

√
1 − ρ U∗

α1 (2.4.5)
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Y ′
α = y′

√
2
√

1 + ρ U∗
α2 −

√
1 − ρ U∗

α1 (2.4.6)

where U denotes the unitary PMNS matrix,

ρ =
√

1 + r − 1√
1 + r + 1

(2.4.7)

and
r =

|m2
ν1 −m2

ν2 |
|m2

ν1 −m2
ν3 | . (2.4.8)

Note that we have absorbed the parameter ϵ appearing in [66] into the definitions of Y ′ and
y′. An interesting observation is that the heavy neutrino mass splitting is given by the light
neutrino mass splitting [44]

m5 −m4 = mν2 −mν1 , (2.4.9)

and therefore the squared mass splitting is given by

δm2
45 = −2m̃0(mν2 −mν1) . (2.4.10)

Taking the values of the active neutrino mixing angles and mass squared differences from [67, 68],
the only undetermined parameter is the Majorana phase α. Analyzing the parameterization of
the Yukawa couplings one finds that the products YαY

∗
α , Y

′
αY

′∗
α, Y

′
αY

∗
α are only independent

of the Majorana phase when summed over the flavour index. The oscillation probabilities
equations (2.4.2) and (2.4.3) are visualized in figures 2.2a, 2.2b, 2.3a, and 2.3b. The values
of the oscillation probabilities makes it clear that any higher order effects on the oscillation
patters will be extremely challenging to observe under realistic conditions for the chosen example
parameters from table 2.1.
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Figure 2.2: Heavy neutrino-antineutrino oscillation probabilities at LO.
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Figure 2.3: NLO contributions to the heavy neutrino-antineutrino oscillation probabilities.

2.5 Summary and Conclusions

In this paper we have applied the framework of quantum field theory (QFT) with external
wave packets (cf. [38]) to derive the probabilities for the oscillations between long-lived heavy
neutrino and antineutrino interaction eigenstates (cf. footnote 1), where we define a neutrino
(antineutrino) as the neutral lepton that is produced together with a charged antilepton (lepton)
and a W boson. These heavy neutrino-antineutrino oscillations can lead to an oscillating rate of
lepton number conserving (LNC) and violating (LNV) events at colliders, as a function of the
distance between the (anti)neutrino production and displaced decay vertices.

Our most general formula for the oscillation probability is equation (2.2.16) together
with the additional terms discussed in section 2.2.1. The latter can be neglected given the
adequate kinematic and experimental conditions, and are referred to as observability conditions.
The oscillation probability densities can be further simplified to equation (2.2.28) by neglecting
the spin correlation between the production and detection vertex. Including the decay probab-
ilities of the heavy neutrinos, formulae for the expected number of LNC/LNV events with a
certain displacement between primary and secondary vertex have been given in equation (2.2.35).

The simplified formulae for the oscillation probabilities have been applied to low scale
seesaw models where the smallness of the light neutrino masses is protected by a slightly broken
“lepton number”-like symmetry, i.e. to the SPSS (cf. [31, 32]). As a particular example we have
focused on the “minimal low scale linear seesaw” model with only two nearly mass-degenerate
heavy neutrinos, that has also been discussed as an example in [44]. Within this class of models,
an expansion of the probabilities in the small “lepton number”-like symmetry breaking parameters
θ′ has been performed, yielding the LO and NLO contributions (cf. equations (2.4.2) and (2.4.3)).

For the example parameter point used in Ref. [44], we have discussed the observability
conditions (cf. section 2.2.1) and found that they are all satisfied. However, if the momentum
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p0 is given by a distribution, which is the case if the mean momenta of the external particles
follow a distribution as discussed in section 2.2.1, the oscillation pattern can be washed out as
has already been pointed out in [44]. The proposed solution to this is to reconstruct the four
momentum p0 (from the measurements) and to consider the oscillations as a function of the
heavy neutrino reconstructed proper time. In [44] it has been demonstrated, using estimated
uncertainties for the HL-LHCb and the above-mentioned example parameter point, that the
proposed solution is indeed feasible.

Comparing our simplified LO results with the existing literature, we found that we
agree with the results from [40] (when we set their parameters θLNV

21 = −π and θLNC
21 = 0

to match the considered low scale seesaw scenario). Our LO formulae also agree with the
ones derived using the formalism for meson oscillations and plane wave arguments and used
e.g. in [41, 44]. Our results in the most general form, i.e. equation (2.2.16) together with the
additional terms discussed in section 2.2.1, allow to discuss effects beyond LO and to check the
observability conditions (or include them explicitly in the calculations).

Our NLO results showed that beyond the LO heavy neutrino-antineutrino oscillations,
the probablities are also modulated by “flavour oscillations”, as discussed in section 2.4. On
the other hand, for the case of the “minimal low scale linear seesaw” model (with parameters
around the considered example point), it has turned out that the NLO effects are very small,
with a suppression which makes them undetectable at the currently considered future collider
experiments. While this does not necessarily have to be the case for other choices of parameters,
it indicates that there is a parameter region of interest for the LHC (and future colliders)
where the LO formulae are sufficient. In this region the only model parameters relevant
for heavy neutrino-antineutrino oscillations, in terms of the SPSS parameters, are the three
flavour-dependent active-sterile mixing angles θα and the mass squared difference δm2

45 between
the two heavy neutrinos.

In summary, our results show that the phenomenon of heavy neutrino-antineutrino os-
cillations can indeed occur in low scale seesaw scenarios and that the previously used leading
order formulae, derived with a plane wave approach, provide a good approximation for (at least)
the considered example parameter point. Our results help to put existing studies based on LO
formulae on a more solid theoretical ground (by providing the observability conditions which
have to be checked in the QFT framework) and can be used in future studies to explore the
phenomenon in other parameter regions and for different types of low scale seesaw models.

Appendix 2.A Formulas for the Observability Conditions

In the following, the formulas to compute the observability conditions of section 2.2.1 are given.
For more details we refer to [38].

The particles at production are labeled Pi and their wave packets are assumed to have
a Gaussian form of width σxPi in configuration space. The wave packet peaks, in momentum
space, at momentum Pi and since they are assumed to be on-shell, their peak energy is
given by EPi =

√
m2

pi
+ |Pi|2. The peak velocity is then defined as vPi = Pi/EPi . For the

particles at detection the letter P is simply replaced by D. The velocity v0 is defined using
energy-momentum conservation at the production and/or detection vertex, which yields

v0 := p0/E0 .
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Labelling the incoming particles at production Pi,in and the outgoing ones Pi,out yields

E0 :=
∑

Pi,in

EPi,in −
∑

Pi,out

EPi,out (2.A.1)

and
p0 :=

∑

Pi,in

Pi,in −
∑

Pi,out

Pi,out . (2.A.2)

The relevant parameters are defined as follows.

1
σ2

xP

=
∑

Pi

1
σ2

xPi

1
σ2

xD

=
∑

Di

1
σ2

xDi

(2.A.3)

σpP = 1
2σxP

σpD = 1
2σxD

(2.A.4)

vP = σ2
xP

∑

Pi

vPi

σxPi

vD = σ2
xD

∑

Di

vDi

σxDi

(2.A.5)

ΣP = σ2
xP

∑

Pi

|vPi |2
σxPi

ΣD = σ2
xD

∑

Di

|vDi |2
σxDi

(2.A.6)

σ2
eP = σ2

pP

(
ΣP − |vP |2

)
σ2

eD = σ2
pD

(
ΣD − |vD|2

)
(2.A.7)

1
σ2

p

= 1
σ2

pP

+ 1
σ2

pD

(2.A.8)

The following symbols are defined in the longitudinal dispersion regime, on which we focused
in this paper. We denote a velocity (v) projected onto the direction in which the oscillation
distance is measured (L̂) as ν.7

1
σ2

peff

= 1
σ2

pP

+ 1
σ2

pD

+ (ν0 − νP )2

σ2
eP

+ (ν0 − νD)2

σ2
eD

(2.A.9)

σxeff = 1
2σpeff

(2.A.10)

ρ = σ2
peff

(
1
σ2

pP

+ 1
σ2

pD

− νP (ν0 − νP )
σ2

eP

− νD(ν0 − νD)
σ2

eD

)
(2.A.11)

1
σ2

m

= σ2
peff

(
1
σ2

p

(
1
σ2

eP

+ 1
σ2

eD

)
+ (νP − νD)2

σ2
ePσ

2
eD

)
(2.A.12)

7 If one does only measure the scalar distance of oscillation, one might replace the direction L/|L| with the
direction p0/|p0|, which can be interpreted as the main direction in which the heavy neutrinos travel.
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Chapter 3

Simulating lepton number

violation induced by heavy

neutrino-antineutrino oscillations at

colliders

Abstract:

We study pseudo-Dirac pairs of two almost mass-degenerate sterile Majorana neutri-
nos which generate light neutrino masses via a low-scale seesaw mechanism. These
pseudo-Dirac heavy neutral leptons can oscillate between interaction eigenstates
that couple to leptons and antileptons and thus generate oscillations between lepton
number conserving and lepton number violating processes. With the pSPSS, we
introduce a minimal framework capable of describing the dominant features of
low-scale seesaws at colliders and present a FeynRules implementation usable in
Monte Carlo generators. Additionally, we extend MadGraph to simulate heavy
neutrino-antineutrino oscillations and present results from such simulations.
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3.1 Introduction

The discovery of flavour oscillations between SM neutrinos [69] implies that they have nonzero
masses. One possible extension of the SM able to generate neutrino masses consists of adding
sterile neutrinos, that are singlets under all SM symmetries, to its particle content [18–24].
Testing whether these sterile neutrinos are indeed the missing piece that explains the light
neutrino masses is one of the key questions towards a more complete theory of elementary
particles.

With sterile neutrinos added to the SM, there are two main routes resulting in nonzero neutrino
masses. In the first case, only Dirac mass terms are present. The Yukawa coupling term is
formed by sterile neutrinos, the Higgs field and the lepton doublets, analogous to the mechanism
generating charged fermion masses. After EWSB, this Yukawa term generates Dirac neutrino
masses. However, to yield the phenomenologically required small masses for the light neutrinos,
the size of the Yukawa couplings has to be tiny y ⪅ O(10−12).

Since the sterile neutrinos are SM singlets, it is possible to add a Majorana mass term to the SM
Lagrangian [25]. Therefore, realising light Dirac neutrinos requires a mechanism to eliminate
this term and enforce exact LNC. As soon as some LNV is present, the light neutrinos are of
Majorana-type [70]. One way to probe these considerations are searches for neutrinoless double
β (0νββ) decay [71] since its observation would prove LNV. The two main routes for nonzero
neutrino masses are depicted in the upper part of figure 3.1, and in this work we focus on the
case that the light neutrinos have Majorana masses.

As an alternative to 0νββ decays, one can also search for LNV induced by the sterile neutrinos
at colliders. While this sounds promising at first sight, one can argue on general grounds that
LNV, observable at the large hadron collider (LHC), would lead to too heavy light neutrino
masses, and thus it should be impossible to observe LNV [72]. An effect that has not been taken
into account in such considerations are heavy neutrino-antineutrino oscillations (NNOs) [1], see
also [40, 41, 44]. In particular, their interplay with the potential longevity of the heavy neutrinos
is the main subject of this paper. Despite the smallness of the LNV terms in the Lagrangian,
NNOs can introduce LNV processes at the same order as LNC processes, depending on the
lifetime and oscillation period of the sterile neutrinos. Since the oscillations are an interference
phenomenon, they are able to probe mass splittings of heavy neutrinos so small that they would
otherwise be unobservable in collider studies. Including the NNOs correctly in collider studies is
thus a crucial aspect when simulating seesaw extensions of the SM to explain the light neutrino
masses.

This paper is organised as follows: In section 3.2, we describe the possible domains of seesaw
models and argue that collider testable seesaw models are protected by a LNLS resulting in
pseudo-Dirac pairs of heavy neutrinos. Afterwards, in section 3.3, we give the relevant results
for the description of NNOs in the external wave packet formalism and derive the integrated
effects of these oscillations. Subsequently, we introduce the SPSS [31, 32] in section 3.4, first in
the symmetric limit, then extended by small symmetry violating terms, and finally as the pSPSS
with the minimal set of parameters able to describe the dominant collider effects of low-scale type
I seesaws. In section 3.5, we introduce the FeynRules model file of the pSPSS and describe the
necessary steps to extend MadGraph to be able to simulate NNOs. In section 3.6, we present
selected results from a Monte Carlo (MC) study using this software implementation. Finally,
we conclude in section 3.7. Additionally, we comment in section 3.A on the discussion about
whether it is possible to distinguish Majorana and Dirac particles from each other using their
decay width. Last but not least, the code for the MadGraph patch is presented in section 3.B.
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• HNL oscillations
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Figure 3.1: Comparison between the different possible choices for active and sterile neutrinos discussed
in the text. Note that for collider-accessible heavy neutrinos that generate Majorana masses for the
light neutrinos via a low-scale seesaw with couplings far above the naive seesaw line, only pseudo-Dirac
pairs of two nearly mass-degenerate Majorana DOFs are a viable option.

3.2 Seesaw models

With i = 1, . . . , n sterile neutrinos Ni and both Dirac and Majorana mass terms extending
the SM Lagrangian, one arrives at a general theoretical framework where the sterile neutrino
Lagrangian1

LN = −
∑

i

y(i)
α N c

i H̃
†ℓα − 1

2
∑

i

m
(i)
MN c

i Ni + H.c. , (3.2.1)

is added to the SM Lagrangian. Here H and ℓ are the SM Higgs and lepton SU(2) doublets,
respectively, y(i) is the neutrino Yukawa coupling vector (y(i)

1 , y
(i)
2 , y

(i)
3 )⊺, and m

(i)
M is the

Majorana mass parameter.2 To illustrate how small neutrino masses can emerge from this
framework, we consider the minimal case of two sterile neutrinos n = 2. It is minimal since
neutrino flavour oscillations require at least two of the light neutrino masses to be nonzero, which
in turn requires at least two sterile neutrino DOFs. The following discussion can be generalised
to larger n, which is necessary for models such as the inverse seesaw to be phenomenological
viable. After EWSB, the Lagrangian can be written in the diagonal basis for the Majorana
masses mM ,

LN = −m(1)
DαN

c
1να −m

(2)
DαN

c
2να − 1

2m
(1)
M N c

1N1 − 1
2m

(2)
M N c

2N2 + H.c. , (3.2.2)

where mD = yv with the SM Higgs VEV v ≈ 174 GeV describes the Dirac mass contribution.
When mM is sufficiently larger than mD, the light neutrino mass matrix is given by the seesaw
relation, which takes the form

Mν = m
(1)
D ⊗ m

(1)
D

m
(1)
M

+ m
(2)
D ⊗ m

(2)
D

m
(2)
M

. (3.2.3)

1 For ease of notation, the sterile neutrinos are introduced as left-chiral DOFs. Note that any left-chiral field
can also be described by the charge conjugate of a right-chiral field and vice versa.

2 We indicate quantities with a suppressed vectorial index by using boldface font.
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Figure 3.2: Depiction of the three limiting seesaw regimes described in the text. The phenomeno-
logically accessible parameter space of low-scale seesaws with large enough coupling is connected to
the symmetry-protected corner and indicated by dashed lines.

With these ingredients, there are three limiting cases allowing to arrive at the observed small
neutrino masses:

i) High-scale seesaw limit Here neutrino masses are small because the Majorana masses
mM of the sterile neutrinos are large. The neutrino Yukawa couplings y can be large in this
case — up to O(1) for mM close to the scale of grand unification. Due to the high mass
scale involved, this limit of the seesaw mechanism cannot be probed directly at colliders.

ii) Small coupling seesaw limit It is possible to simultaneously lower the sterile neut-
rino mass scale mM and the size of the neutrino Yukawa couplings y without changing
the generated light neutrino masses Mν in equation (3.2.3). Envisioned future collider
experiments such as the FCC-ee can probe this limit for some choices of parameters,
but for most cases the couplings are too small for direct tests.

iii) Symmetry-protected seesaw limit The third possibility emerges when the two
terms in equation (3.2.3) almost cancel. Then y can be large enough, and simultan-
eously mM can be small enough, such that the heavy neutrinos are within reach of
collider experiments. This cancellation can be protected by a lepton number-like sym-
metry (LNLS) that generalises the lepton number L of the SM and ensures that Mν

is equal to zero in the symmetry conserving limit.3

The various manifestations of the seesaw mechanism are schematically depicted in figure 3.2.
The three corners represent the three limiting cases discussed above. However, also the cases in
between are viable options. For the Majorana mass scales mM , there is a maximal value above
which it is no longer possible to test this sterile neutrino directly at a given collider experiment.
This means the observable seesaw models are low-scale models opposite to the high-scale seesaw
corner. Among the low-scale seesaw models, the small coupling limit is also not testable at e.g.
the LHC or even the HL-LHC. The potentially testable region of the (type I) seesaw mechanism
is thus the area inside the dashed lines in figure 3.2; it is bound to have a certain degree of
symmetry protection if one wants to avoid tuning of the parameters.

3 One can achieve this cancellation also by tuning of parameters without relying on a symmetry. However, this
mechanism of cancellation is unstable under radiative corrections, cf. [72]. We will not consider this possibility
further here, only noting that in this case, it is expected that the LNV effects would be generically unsuppressed.
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Figure 3.3: A neutrino interaction eigenstate is produced together with an antilepton. After some time, the
superposition of mass eigenstates ni has oscillated into a heavy neutrino N or antineutrino N interaction
eigenstate that decays into an antilepton l+ or lepton l−, such that the total process is LNV or LNC.

Although the model of two sterile neutrinos with exact LNLS serves as a valuable starting
point for the construction of viable seesaw models with small symmetry breaking, it is itself not
able to generate neutrino masses due to the unbroken symmetry. With the symmetry intact,
the two Majorana DOFs are mass degenerate and combine precisely to form a single Dirac
particle. However, a small amount of symmetry breaking not only generates small neutrino
masses but at the same time causes a small mass splitting between the two Majorana DOFs.
Such pseudo-Dirac heavy neutrinos can exhibit heavy neutrino-antineutrino oscillation (NNO)
potentially detectable at collider experiments. For large symmetry breaking, this feature vanishes
as the mass splitting becomes too big and decoherence sets in so that the two sterile neutrinos
appear as two separate Majorana particles. At the same time, the generated SM neutrino masses
become too large if the model has no additional mechanism to prevent this from happening. We
depict these considerations in the lower part of figure 3.1.

Although realistic low-scale seesaw models predict pseudo-Dirac heavy neutrinos, the majority
of searches for HNLs have been performed in either the pure Dirac or single Majorana scenario.
In an effort to distinguish between these two models, it has sometimes been argued that one can
discriminate Majorana from Dirac HNLs using their decay width. In section 3.A, we describe
in detail why this is not the case. The main insight is that the factor of two appearing when
comparing the decay widths counts the number of Majorana DOFs forming the observed HNL.
However, two Majorana particles can only be described as a Dirac particle when their Yukawa
couplings have a relative phase of −i, which cannot be determined using the decay width, cf.
section 3.A.

3.3 Heavy neutrino-antineutrino oscillations

Generically, neutral particles can oscillate into their antiparticles [33, 73, 74] as known e.g.
from meson oscillations [75–78]. The distinction between particle and antiparticle in the case of
sterile neutrinos can be made by distinguishing a neutrino interaction eigenstate by the charge
of the associated lepton it is produced with. If it is produced together with a lepton l−, it
is an antineutrino and if it is produced together with an antilepton l+, it is a neutrino. The
corresponding mass eigenstates ni interfere when propagating, which results in an oscillation
between different interaction eigenstates as a function of travelling distance. Heavy neutrinos N
and antineutrinos N are defined as the projection of neutrino and antineutrino states onto
the heavy mass eigenstates. This mechanism leads to heavy neutrino-antineutrino oscillations
(NNOs). In the collider testable region of figure 3.2, the mass splitting can be small enough
for the NNOs to be observable and of macroscopic length. If NNOs are present, one expects
processes such as the one shown in figure 3.3 to occur, leading to patterns as depicted in figure 3.4.
Furthermore, in cases in which the parameters do not allow for macroscopic oscillations to be
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Figure 3.4: Oscillations of the probability P that the process shown in figure 3.3 is LNC or LNV as
a function of the proper time τ . The oscillation period depends on the mass splitting ∆m, the overall
decay depends on the decay width Γ , and the decoherence depends on the damping parameter λ, all of
which are defined in section 3.3.2. Panel (a) shows a short oscillation period with ∆m/Γ = 100, panel (b)
shows an intermediate oscillation period with ∆m/Γ = 10, and panel (c) shows a long oscillation period
with ∆m/Γ = 1. All oscillations are shown for Γ ≈ meV

25 and λ = 1/5 and Rll is defined in section 3.3.3.

resolvable, an integrated effect could still be measured.

3.3.1 External wave packets

In order to predict the oscillatory behaviour of new particles, a holistic QFT framework is
necessary that, in contrast to the simplified QM framework, is able to not only capture potential
oscillations but can also predict the potential damping of these oscillations due to the loss of
coherence of the mass eigenstate superposition. Compared to the plane wave description of
particle oscillations, the QFT external wave packet approach discussed in [38] and adapted to
the case of NNOs in [1] allows the derivation of the phenomenon free of contradictions. This is
due to the fact that the inherent uncertainty of wave packets in momentum and position space
allows the simultaneous production of several on-shell mass eigenstates that can subsequently
interfere to produce oscillations. Furthermore, the approximate localisation of wave packets
is necessary to introduce the notion of a travelled distance and time, which is not possible
using infinitely extended plane waves. Additionally, several effects potentially leading to the
decoherence of the mass eigenstate superposition are included and discussed under the name
of observability conditions [4]. External refers to the fact that only the external particles are
explicitly assumed to be wave packets, whereas in an intermediate wave packed approach, the
intermediate particles, such as in this case the heavy neutrinos, are directly described by wave
packets. However, even in the external wave packet approach, it is possible to interpret the
intermediate particles as wave packets where some clarifications about the causal nature of this
interpretation can be found in [38, 79].

For the external wave packet models, the assumptions about the shape and the widths of the
involved wave packets are a major source of uncertainty when deducing results. Also, the
formalism discussed in [1, 38] was mainly developed having long-lived quasi mass-degenerate
particles in mind. In particular, the theorem of Jacob-Sachs [54] is only valid above a certain
time threshold, below which additional corrections have to be taken into account. In [1, 4], the
regions, as well as the effects of the above-mentioned corrections, are discussed in detail, and it
is shown that in phenomenological studies of nearly mass-degenerate, quasi long-lived heavy
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neutrinos, the effects of the corrections can be neglected for a range of external wave packet
widths spanning orders of magnitude.

3.3.2 Oscillations at leading order

In the case of slightly broken LNLS governing the physics of pseudo-Dirac heavy neutrinos, the
complete LO contributions to the NNO can be described using only two parameters in addition
to the seesaw model in the LNC limit [1, 4]. Hence instead of working with the whole family
of realistic seesaw models and their parameters, one can instead introduce, in addition to the
heavy neutrino mass m and the active-sterile mixing parameter θ defined in equation (3.4.6),
just the mass splitting of the heavy neutrinos ∆m and the damping parameter λ. As an effective
parameter, ∆m captures the effects induced by the LNLS breaking parameters, and λ entails
the decoherence effects appearing in certain parameter regions of the QFT description of neutral
particle oscillations. To LO, the formulae for the oscillation probabilities as a function of the
proper time τ are

P
LNC/LNV
osc (τ) = 1 ± cos(∆mτ) exp(−λ)

2 , (3.3.1)

hence the oscillation period is given by τosc = 2π/∆m. The overall decay of the heavy neutrino
is given by the usual probability density for the decay of unstable particles

Pdecay(τ) = − d
dτ exp(−Γτ) = Γ exp(−Γτ) . (3.3.2)

as function of the decay width Γ = Γ (m, θ). Therefore, the total probability for an unstable
and oscillating particle to decay in a proper time window is given by

P
LNC/LNV
ll (τmin, τmax) =

∫ τmax

τmin

P
LNC/LNV
osc (τ)Pdecay(τ) dτ , (3.3.3)

and the number of expected events in a collider experiment is then

N
LNC/LNV = L σBR

∫
D(ϑ, γ)P LNC/LNV

ll (τmin(ϑ, γ), τmax(ϑ, γ)) dϑ dγ , (3.3.4)

where the factor D(ϑ, γ) accounts for the probability density that the heavy neutrino has Lorentz
factor γ and is produced with an angle ϑ with respect to the beam axis, L is the luminosity of the
collider, and σ and BR are the sterile neutrino production cross section and branching ratio of the
process under consideration. The parameters τmin and τmax are defined by the detector geometry
when transitioning from proper time coordinates to the lab frame via τ(ϑ, γ) = (γ2 − 1)−1/2L(ϑ).

3.3.3 Integrated effect

In an experimental situation in which it is not possible to resolve the oscillation patterns, an
integrated effect could still be measurable by comparing the number of events with opposite-, and
same-sign leptons originating from processes such as the one presented in figure 3.3. Evaluating
the integral (3.3.3) in order to obtain the probability of LNC and LNV decays between the
minimal proper time τmin and the maximal proper time τmax results in the difference

P
LNC/LNV
ll (τmin, τmax) = Γ

P LNC/LNV(τmax) − P LNC/LNV(τmin)
2 , (3.3.5)

where the indefinite integral is given by

P
LNC/LNV(τ) = P (τ, Γ, 0) ± P (τ, Γ−, λ) + P (τ, Γ+, λ)

2 , (3.3.6)
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Figure 3.5: Impact of the finite detector size on the measurement of Rll. The plots show the observable
Robs

ll as a function of τ/τosc and the theoretical Rll, calculated by taking the limits (3.3.8) simultaneously.
In panel (a) τmin is variable and τmax → ∞ while in panel (b) τmax is variable and τmin → 0. Note
that only in the region where the contours are vertical Rll coincides with Robs

ll and that Robs
ll is not

bound to be smaller or equal to one and even has poles in panel (a).

with

P (τ, Γ, λ) =
∫
e−λ−Γ τ dτ = −e−λ−Γ τ

Γ
, Γ± = Γ ± i∆m . (3.3.7)

In the limit that the experiment can observe all decays from the origin to infinity and under
the assumption that the parameter point under consideration does allow to neglect decoherence
effects, which is equivalent to

τmin → 0 , τmax → ∞ , λ → 0 , (3.3.8)

this expression simplifies to

P
LNC/LNV
ll = 1

2

{
Γ 2

∆m2+Γ 2 + 1 for LNC
∆m2

∆m2+Γ 2 for LNV
. (3.3.9)

Therefore, the ratio between the two decay modes is, in this case, given by

Rll = PLNV
ll

PLNC
ll

= ∆m2

∆m2 + 2Γ 2 , (3.3.10)

which matches the result of references [41, 50]. While a Dirac heavy neutrino would have Rll = 0
and a Majorana heavy neutrino would have Rll = 1, a realistic pseudo-Dirac heavy neutrino can
have any value in between. However, even in the simplified case of a single Majorana heavy
neutrino, the measurement of Rll = 1 would be challenging since asymmetries in the number of
measured LNC and LNV events caused by the detector geometry in combination with the angular
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Figure 3.6: Oscillation period Losc as a function of the heavy neutrino mass m and the mass splitting
∆m. The Lorentz factor is estimated using W bosons at rest (3.3.14). The horizontal lines correspond
to the mass splitting appearing in the two minimal linear seesaw BMs given in table 3.1.

dependence discussed in section 3.6.5 as well as the detector effects discussed in the following
will have an impact on the measured Rll. For pseudo-Dirac heavy neutrinos, figure 3.14 compares
the dependence of Rll on ∆m/Γ derived in (3.3.10) with a MC simulation. Additionally, the
bands of Rll ∈ [0.1, 0.9] for five pseudo-Dirac benchmark models (BMs) introduced in table 3.1
are given in figure 3.18.

However, taking the finite size of the experimental setup into account by integrating only over
the fiducial detector size in (3.3.5) changes the picture drastically. In this case the parameters
τmin and τmax in

Robs
ll (τmin, τmax) = PLNV

ll (τmin, τmax)
PLNC

ll (τmin, τmax)
, (3.3.11)

cannot be taken to be zero and infinity, respectively. The consequences of this effect in the
limit of vanishing damping and in terms of the proper time are presented in figure 3.5. In this
representation, vertical contour lines indicate negligible deviation of Robs

ll from Rll. For a finite
τmin, an oscillatory pattern becomes apparent that has its minima for cuts in the vicinity of
multiples of the oscillation period. The dependence on τmax is less severe and only occurs close
to an Rll of one. The two extreme limiting cases are

Robs
ll =





tan2 rmin
2 for Rll → 0 and τmax → ∞

rmax − sin rmax
rmax + sin rmax

for Rll → 1 and τmin → 0
, rm = ∆mτm . (3.3.12)

While the effect for Rll → 1 and τmin → 0 is damped for large τmax the effect for Rll → 0 and
τmax → ∞ remains undamped when varying τmin as long as the Lorentz factor distribution, and
the decoherence can be neglected [4].
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3.3.4 Oscillations in the lab frame

When boosting the oscillations described in section 3.3.2 into the lab frame, two main effects
have to be considered. Firstly, the oscillation length in the lab frame, defined as

Losc =
√
γ2 − 1τosc , (3.3.13)

is, on an event-per-event basis, increased by the Lorentz factor. This well-known effect helps to
compensate for the short oscillation period of some realistic BMs. For processes such as the one
depicted in figure 3.3, the Lorentz factor of the heavy neutrino γ can be estimated to be

γ ≈ m2
W +m2

2mWm
, (3.3.14)

which relies on the assumption that the initial W boson decays at rest and neglects the mass of
the prompt muon. The resulting resolvable oscillation length as a function of the heavy neutrino
mass m and the mass splitting ∆m is shown in figure 3.6.

Secondly, the oscillation pattern is washed out by the event-dependent Lorentz factor. Therefore,
any study hoping to resolve NNOs needs to measure enough observables to reconstruct the
Lorentz factor. This makes studies relying on processes with final state neutrinos extremely
challenging and is the reason why we focus on semileptonic final states as shown in figure 3.3.

3.4 Symmetry protected seesaw scenario

As detectable heavy neutrinos cannot be too heavy or too weakly coupled, they must originate
from a model with an approximate LNLS and form pseudo-Dirac pairs as discussed in section 3.2.
In the following, we assume that one pseudo-Dirac pair dominates the collider phenomenology. We
will first introduce the type I seesaw in the limit of exact symmetry conservation in section 3.4.1.
This model builds on two Majorana DOFs that form one exact Dirac particle. Subsequently, we
add small symmetry-breaking terms in section 3.4.2 recovering models such as the linear and
inverse seesaw. After comparing this model with the LO terms governing the NNOs summarised
in section 3.3.2, we introduce a phenomenological model with a minimal number of parameters
that is able to describe the relevant observables in section 3.4.3.

3.4.1 Seesaw in the symmetric limit

In the symmetric limit of the symmetry protected seesaw scenario (SPSS) [31, 32], the two
heavy Majorana neutrinos are protected by a LNLS. One simple choice of charges for the LNLS
protecting the lepton number L is given by

ℓ N1 N2

L +1 −1 +1
, (3.4.1)

with all other fields having a charge of zero. In this case, the general Lagrangian (3.2.1) takes
the form

LL
SPSS = N c

i i/∂Ni − y1αN c
1H̃

†ℓα −N c
1mMN2 + · · · + H.c. , (3.4.2)

where N1 and N2 are taken to be left-chiral sterile neutrinos. The ellipses capture contributions
from additional sterile neutrinos, which are assumed to be heavier or much weaker coupled than
the explicitly denoted pair and are expected to contribute only sub-dominantly to the collider
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phenomenology of the model. After EWSB the neutrino mass Lagrangian of the interaction
eigenstates n = (νe, νµ, ντ , N1, N2)⊺ can be written as

Lmass = −1
2n

cMnn+ H.c. , (3.4.3)

where the mass matrix is given by

Mn =
(

0 M3×2
M

⊺
3×2 MN

)
=




0 mD 0
m

⊺
D 0 mM

0 mM 0


 , (3.4.4)

with mD = y1v being the Dirac mass term. The mass matrix can be approximately diagonalised
using a Takagi decomposition

Dn = U
⊺
nMnUn , U †U = 1 , (3.4.5)

following the steps presented in [1, 65]. Since the LNLS is conserved, the light neutrinos are
massless, and the heavy neutrinos are mass degenerate [80]. Up to the second order in the
active-sterile mixing parameter

θ = mD

mM

, (3.4.6)

where θ = (θe, θµ, θτ )⊺, their masses are

m4 = m5 = mM

(
1 + 1

2 |θ|2
)

+ O
(
|θ|4

)
, (3.4.7)

and the mixing matrix is given by

Un =
(
UPMNS UCL
U2×3 UN

)
=



13×3 − 1

2θ∗ ⊗ θ − i√
2θ∗ 1√

2θ∗

0 i√
2

1√
2

−θ
⊺ − i√

2(1 − 1
2 |θ|2) 1√

2(1 − 1
2 |θ|2)


 , (3.4.8)

where the upper left block is the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix. One can
show that the upper right 3 × 2 charged lepton (CL) block of the mixing matrix, which relates
heavy neutrinos and active SM neutrinos, has the exact form

UCL = 1√
1 + |θ|2

(
− i√

2θ∗, 1√
2θ∗
)
. (3.4.9)

Therefore it is possible to absorb higher order corrections in θ into a rescaling of the Yukawa
coupling. In particular the exact form of UCL can be recovered from the LO approximation by
rescaling of the mixing parameter

θ∗ → θ′∗ = θ∗
√

1 + |θ|2
. (3.4.10)

Consequently, it suffices to expand UCL to LO.

Due to the mass degeneracy and phase difference of the heavy neutrinos, there are no NNOs in
the symmetric limit, and this theory of two Majorana particles is equivalent to a theory with
a single Dirac particle. For any process with SM external particles that contains a Feynman
diagram with one of the heavy neutrino mass eigenstates, also the other heavy neutrino mass
eigenstate contributes. In an explicit calculation, it can be shown that the amplitudes from the
different mass eigenstates cancel each other, such that LNV processes are not present, see also
section 3.A. We recover the argument laid out in section 3.2 that a theory relying solely on one
exact Dirac heavy neutrino is LNC and incapable of generating SM neutrino masses.
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Seesaw Hierarchy BM

Linear ∆m = ∆mν
Normal ∆mν = (41.46 ± 0.29) meV
Inverted ∆mν = (749 ± 21) μeV

Inverse ∆m = mν |θ|−2
mν = 0.5 meV
mν = 5 meV
mν = 50 meV

Table 3.1: Five BMs for the linear and inverse seesaw are discussed in the text. The linear seesaw BMs
represent the only two possible models in the minimal linear seesaw of a single pseudo-Dirac heavy neutrino.
With more pseudo-Dirac heavy neutrinos in the spectrum, other models become feasible. Since the inverse
seesaw requires at least two pairs of pseudo-Dirac neutrinos, it is not possible to uniquely connect it to
the measured neutrino mass differences, and we use a wide spectrum of neutrino masses as BMs.

3.4.2 Seesaw with small symmetry breaking

In order to introduce SM neutrino masses, the symmetric limit of the SPSS can be perturbed by
extending the Lagrangian (3.4.2) with additional small LNV terms

L�LSPSS = −y2αN c
2H̃

†ℓα − µ′
MN c

1N1 − µMN c
2N2 + · · · + H.c. , (3.4.11)

where a Yukawa coupling y2 and two Majorana masses µM and µ′
M are introduced. The resulting

mass matrix is

Mn =




0 mD µD

m
⊺
D µ′

M mM

µ
⊺
D mM µM


 , (3.4.12)

where µD = y2v is a Dirac mass term. These additional terms break the LNLS symmetry
characterised by the charges given in equation (3.4.1). In order to ensure a small breaking of the
LNLS, we require

O
(

µD

mM

)
= O

(
µM

mM

)
= O

(
µ′

M

mM

)
= ϵ ≪ 1 , (3.4.13)

Since the parameters θ can be larger than O(ϵ), an expansion in small parameters might contain
powers in θ higher than in ϵ. The Takagi decomposition (3.4.5) of the mass matrix (3.4.12)
results now in two distinct heavy neutrino masses of

m4/5 = mM

(
1 + 1

2 |θ|2
)

∓
(

cos(ϕ)|µ∗
Dθ| + |µ∗

M + µ′
M |

2

)
+ O

(
max(ϵ2, ϵ|θ|2, |θ|4)

)
. (3.4.14)

where

ϕ =
{

0 for µM = µ′
M = 0

arg(µ∗
Dθ(µ∗

M + µ′
M )) otherwise

. (3.4.15)

The upper right 2 × 3 part of the mixing matrix is given by

UCL =
(

i√
2(θ∗ − θ∗

ϵ ), 1√
2(θ∗ + θ∗

ϵ )
)

+ O
(
max(ϵθ, |θ|2θ)

)
, (3.4.16)

where θϵ = µD/mM is the LNV equivalent to the active-sterile mixing parameter. In cases
where higher order terms in θ are of the same order as terms of O(ϵθ), the rescaling (3.4.10)
can be used to absorb higher order terms into a redefinition of the coupling θ. This shows that
higher order terms in θ yield no qualitative new effects, and the expansion of the mixing matrix
is valid up to O(ϵθ).
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Figure 3.7: Heavy neutrino mass splitting as a function of the active-sterile mixing parameter for the
five BMs of the minimal linear and inverse seesaw given in table 3.1.

The mass matrix (3.4.12) is the most generic tree-level seesaw matrix one can generate from
two sterile neutrinos. It incorporates as limiting cases the linear and the inverse seesaw. In
particular, the individual matrix elements have the following phenomenology:

• The Dirac contribution µD yields the linear seesaw [81, 82] for which the neutrino mass
matrix is given by Mν = µD ⊗ θ + θ ⊗ µD and has the two nonzero eigenvalues mν =
|µD||θ| ∓ |µ∗

Dθ|. The mass splitting of the heavy neutrinos is, in this case, ∆m = 2|µ∗
Dθ|.

When reproducing the measured light neutrino data in the minimal linear seesaw with
a single pseudo-Dirac pair, the mass splitting of the heavy neutrinos is therefore equal
to the mass splitting of the light neutrinos ∆m = ∆mν , cf. [44].

• The Majorana contribution µM in the third entry on the main diagonal yields the inverse
seesaw [83–85] for which the neutrino mass matrix is Mν = µM θ ⊗ θ. Since this expression
results in a single finite eigenvalue of mν = µM |θ|2 at least two pseudo-Dirac pairs are
necessary to describe the observed neutrino oscillation data. The mass splitting for the
pseudo-Dirac pair considered here is ∆m = |µM | and can therefore be expressed in terms
of the SM neutrino mass eigenvalue ∆m = mν |θ|−2, cf. [44].

• The Majorana contribution µ′
M in the second entry on the main diagonal introduces a

mass splitting between the heavy neutrinos of ∆m = |µ′
M | without a LO tree-level impact

on the light neutrino masses. It does, however, generate a contribution to Mν at one
loop [86, 87]. Furthermore, it can be exploited to reduce the mass splitting necessary to
generate realistic neutrino masses when added to the linear or inverse seesaw.4

• The 3 × 3 block in the upper left, which contains the light neutrino masses, is zero at tree-
level.

From the observed neutrino oscillation data, it is possible to extract two mass differences which
can be combined in two different mass hierarchies, the normal and inverted light neutrino mass
ordering. Whether the third neutrino is also massive cannot be determined with current data;

4 If additionally, the linear seesaw term is present, the subdominant contribution ∆Mν = µ′
M θϵ ⊗ θϵ to

the neutrino mass matrix is generated [88].
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hence we use as minimal BMs for the linear seesaw the two possible mass differences between the
two massive SM neutrinos ∆mnormal

ν = (41.46 ± 0.29) meV and ∆minverted
ν = (749 ± 21) μeV [89,

90]. At the same time, an upper bound on the sum of the neutrino masses
∑
mν < 120 meV has

been established using cosmological observations [17]. Since models relying on the inverse seesaw
require at least two pseudo-Dirac pairs, the mass splitting of the heavy neutrinos is not uniquely
determined by the observed light neutrino parameters. However, when defining masses for the
light neutrinos as BMs, the heavy neutrino masses can be deduced. We use as corresponding
BMs light neutrino masses of mν = 0.5, 5, 50 meV. These BMs are summarised in table 3.1.

The relation between the mass splitting and the mixing parameter for the five BMs of the linear
and inverse seesaw is visualised in figure 3.7. For BMs with a single LNV entry in the mass
matrix (3.4.12), the minimal value for the mass splitting of ∆m ≈ 750 μeV corresponding to a
maximal oscillation period of cτ ≈ 1 cm is reached in the linear seesaw with inverted ordering.
In order to generate pseudo-Dirac pairs with a smaller mass splitting and, therefore, larger
oscillation period, one can, on the one hand, rely on cancellations between the linear and inverse
seesaw terms or cancellations involving µ′

M or, on the other hand, go beyond the minimal model
consisting of a single pseudo-Dirac pair.

3.4.3 Phenomenological symmetry protected seesaw scenario

Given the small amount of symmetry breaking permissible for consistent low-scale seesaw models,
most of their effects can be neglected in phenomenological studies [72]. One important exception
are NNOs, as they are an interference phenomenon and, as such, strongly enhanced beyond
the typical expectation for an O(ϵ) effect. As shown in section 3.3.2 the NNOs at LO can be
described with just two parameters in addition to the symmetric limit of the SPSS, which are
the mass splitting of the heavy neutrinos ∆m governing oscillation period in the proper time
frame and the damping parameter λ governing the effects of decoherence.

Therefore, we introduce the phenomenological symmetry protected seesaw scenario (pSPSS)
optimised for phenomenological studies. Instead of adding the symmetry-breaking terms from
Lagrangian (3.4.11) to the SPSS Lagrangian (3.4.2), one can directly add the mass splitting
without specifying if it originates from a linear seesaw, an inverse seesaw, or a more complicated
model. The masses of the two heavy neutrinos in the pSPSS are derived from the mass in the
symmetric limit and the single additional parameter ∆m

m4/5 = mM

(
1 + 1

2 |θ|2
)

∓ 1
2∆m, (3.4.17)

capturing the entirety of sources contributing to the mass splitting in (3.4.14). Since oscillations
are an interference phenomenon, they are observable even though the mass splitting is orders of
magnitude below the energies that can be hoped to be resolved in experimental setups.

Additionally, the value of the damping parameter λ has to be determined for each parameter
point. As shown in [1, 4, 38], the effects of decoherence described as observability conditions, and
therefore the damping parameter λ, can be neglected for the part of the parameter space where
it is likely that NNOs can be reconstructed. In order to allow the simulation of parameter points
for which decoherence effects are important, we include the damping parameter in the pSPSS.
The relevant parameters of the pSPSS are thus the three active-sterile mixing parameters θ,
the heavy neutrino Majorana mass mM , its mass splitting parameters ∆m, and the damping
parameter λ.
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BLOCK PSPSS #

1 1.000000e+02 # mmaj
2 1.000000e-12 # deltam
3 0.000000e+00 # theta1
4 1.000000e-03 # theta2
5 0.000000e+00 # theta3
6 0.000000e+00 # damping

Table 3.2: The parameters of the pSPSS implemented in the FeynRules model file as they ap-
pear in the MadGraph param.card.

3.5 Software implementation

In order to simulate NNO at colliders, we have implemented the pSPSS in FeynRules. We
provide this implementation online [91] and explain its details in section 3.5.1. Furthermore, we
have patched MadGraph as described in section 3.5.2 in order to be able to simulate NNOs.

3.5.1 FeynRules model file

In the following, we introduce the quantities used in the FeynRules [92] model file [91]. For
each quantity we give, besides its mathematical symbol, also its variable name used in the model
file, denoted in brackets.

According to the discussion in the previous section, the SM Lagrangian has to be extended by two
sterile Majorana neutrinos denoted by N1 (N1L) and N2 (N2L). In the model file, an additional
new physics (NP) parameter for the Higgs VEV denoted by vevNP has been introduced. The
only difference to the usual Higgs VEV (vev) is the interaction order, which has been set to
{NP, -1} instead of {QED, -1} in order to provide MadGraph with the correct power counting
rules, but for all physical considerations they can be thought of as equal. Along with vevNP, the
field PhiNP is introduced, which corresponds to the usual Higgs doublet Phi where the vev is
replaced by vevNP. The masses of the heavy neutrinos are given by (3.4.17) where the Majorana
mass parameter is denoted by mM (Mmaj), the active-sterile mixing parameter given in (3.4.6)
by θ (theta1, theta2, theta3), and the mass splitting of the heavy neutrinos is implemented
via the parameter ∆m (deltaM).

The physical fields, i.e. the mass eigenstates, are extended by two self-conjugate neutrinos
labelled n4 (n4) and n5 (n5). The mixing matrix relating the mass eigenstate neutrinos to the
interaction eigenstates is denoted by Un (Un) and satisfies

U
⊺
nMnUn = diag(0, 0, 0,m4,m5) , (3.5.1)

up to second order in θ. The matrix U ′
CL (UnCL) is the upper right 3 × 5 part of Un and is

necessary for the automatic index contraction in FeynRules. A field that contains all mass
eigenstate neutrinos is introduced as ni (nL). With this, the active neutrino interaction eigenstates
of the SM can be rotated to the mass eigenstate neutrinos using the relation

nα = (U ′
CL)αini . (3.5.2)

The neutrinos interact with the SM only via the lepton doublet ℓ (LL). The mixing is implemented
using equation (3.5.2) by replacing the neutrino ν (vl) with the transformed neutrino (UnCL
nL).

The kinetic terms of the sterile neutrinos
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vtim = 0 width > 0 vtim = c * expovar(width)

vtim > threshold

particle.vtim = vtim

write event

false

true

false
true

Figure 3.8: The usual routine of MadGraph assigning the proper TOF (vtim) to a particle (particle) as
long as it is larger than the threshold value (threshold) given in the run.card. The process flows
from the node vtim = 0 to the node write event.

I (N1Lbar.Ga[mu].del[N1L, mu] + N2Lbar.Ga[mu].del[N2L, mu])

have been added to the LFermions Lagrangian of the SM. The mass term

- Mmaj CC[N1Lbar[sp1]].N2L[sp1]

where sp1 is an internal spin index and the Yukawa term

yvn[ff1] (CC[N1Lbar[sp1]].LL[sp1, ii, ff1] PhiNPbar[jj] Eps[ii, jj])

where yvn is the Yukawa vector yα1, ff1 is an internal family index and ii and jj are internal
SU(2) doublet indices, have been introduced in the NP Lagrangian (LNP). Finally, the complete
Lagrangian describing SM interactions of the pSPSS is denoted by LpSPSS. Since the implemented
mixing matrix Un is only valid up to the second order in θ, the full Lagrangian must be expanded
in θ and terms smaller than O(|θ|2) have to be neglected. This is achieved using the function
RemoveHigherOrder defined in the model file that expands its arguments up to second order in
θ and is automatically applied to the relevant Lagrangian parts.

The only additional free parameters in this model collected in the PSPSS block are the Majorana
mass mM (Mmaj), the mass splitting ∆m (deltaM), and the three active-sterile mixing parameters
θ (theta1, theta2, theta3). The damping parameter λ (damping) has also been implemented
in the FeynRules model file and can be adjusted in the MadGraph param.card. It is set to
zero by default. When it is nonzero, it has the effect of damping the oscillations as discussed in
section 3.3.2. All parameters as they appear in the param.card are collected in table 3.2.

3.5.2 Oscillations in MadGraph

The UFO folder exported from FeynRules can be imported into MadGraph [93] using the
import model command. In order to generate the process depicted in figure 3.3, one defines
the new multi-particles

define mu = mu+ mu-

define ww = w+ w-

define nn = n4 n5

As explained below, it is necessary to force the heavy neutrino to be on-shell. This can be
achieved by generating a process that contains LNC as well as LNV events via

generate p p > mu nn, (nn > mu j j)
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width > 0 particle = N

vtim = c * expovar(width) discard event

leptonnumber != 0

P LNC(τ) > rand()obtain leptonnumber

tau = expovar(width)vtim = 0

leptonnumber == 0

vtim = c * tauvtim > thresholdwrite event

particle.vtim = vtim

true
false false

true

false
true

falsetrue

false true

true

false

Code of the MadGraph Patch

Figure 3.9: Patched MadGraph routine assigning a proper TOF (vtim) in the presence of oscil-
lations to a particle (particle). The process flows from the node vtim = 0 to the nodes write
event and discard event.

If the heavy neutrino mass is significantly below the W mass, it is also possible to additionally
ignore off-shell effects from the W boson by using

generate p p > ww, (ww > mu nn, (nn > mu j j))

A directory with the code for this process can then be obtained using the output command. In
the following, the path of this directory is denoted by [pSPSS].

There are two reasons why it is desirable to ensure that the heavy neutrino is produced on-shell.
First, the derivation of the oscillation formulae is based on the Jacob-Sachs theorem, see [38,
54], which takes the heavy neutrinos on-shell for large enough times. In practice, the constraint
to be large enough does not give any restriction stronger than the ones already obtained in
the observability conditions [4], such that in cases where there are oscillations, the heavy
neutrino can be taken to be on-shell. For this paper, it has been assumed that decoherence
can be neglected, and therefore effects from times smaller than the threshold are also neglected.
The second reason to force the heavy neutrino to be on-shell is due to the implementation
details of the MadGraph patch given here. Since parameter points that feature oscillations
are close to the symmetry limit, one expects almost no LNV events for a prompt decay. Since
MadGraph simulates the process as if it were prompt and adds displacement afterwards, one
would not get LNV events if interference between different mass eigenstates is taken into account;
see also the diagrammatic explanation in section 3.A. Taking the heavy neutrinos on-shell
destroys the interference between different mass eigenstates such that LNC and LNV events are
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created with equal probability. The correct interference patterns, featuring oscillations and the
correct ratio of LNC and LNV events, are then added with the implementation of the patch
given here.

The patch has been developed and tested with MadGraph5_aMC@NLO 2.9.10 (LTS) and is
given in section 3.B. The idea behind it necessitates changing the behaviour of the function
do_add_Time_of_flight located in the file [pSPSS]/bin/internal/madevent_interface.py,5
which derives the decay vertex of a long-lived particle. The main routine that is executed for
each particle in each event and which assigns the time of flight (TOF) to the particles is depicted
in figure 3.8. This routine is changed as described in figure 3.9. The main idea is to compare
the oscillation probability at a given proper time τ , to a pseudo-random variable in the range
[0, 1). Based on this, it is decided if the heavy neutrino should decay in a LNC or LNV process.
Comparing this with the actual lepton number of the process (leptonnumber), which is zero in
the LNC case and different from zero in the LNV case, it is then decided if the event should
be kept or discarded. This algorithm ensures that any spin correlations that are present in the
generated events are kept, but the drawback is that half of all events containing heavy neutrinos
are discarded.6

In order to activate the computation of TOF, one also has to set the parameter time_of_flight
in the run.card to an appropriate threshold value (threshold) value, e.g. to zero. Events can
then be generated in the usual way using MadEvent. As described in sections 3.B and 3.6 we
have carefully checked that the generated data faithfully represents the physical processes.

3.6 Example results

We have calculated various observables within the pSPSS using the model file and code modific-
ation described in section 3.5. For all of the results gathered here, we have set θe = θτ = 0 and
assumed that the effects of decoherence on the NNOs can be neglected, i.e. λ = 0. In order to
demonstrate that we reproduce prior results, we show as an example the heavy neutrino decay
width and the expected number of events in a CMS-like detector as a function of the heavy
neutrino mass and its coupling strength in section 3.6.1. Furthermore, we derive the most likely
Lorentz factors as well as the fraction of events with a larger Lorentz factor in section 3.6.2.
The main goal of this work is presented in section 3.6.3 where we show an example of NNOs.
Afterwards, the integrated effect is discussed in section 3.6.4. In section 3.6.5, the dependence
of the transverse impact parameter on the angular-dependent spin correlation is presented. We
conclude the results in section 3.6.6 by commenting on how displaced and prompt HNLs searches
can be interpreted as bounds on the pseudo-Dirac heavy neutrino of low-scale seesaw models.

3.6.1 Observable events at an LHC experiment

We present a scan over the parameter space resulting in the decay width and the number of
expected events for a given experimental setup and luminosity. For each parameter point, the
decay width Γ and the cross section σ are computed, and the event obtained from MadGraph is
used for a toy analysis. We present the decay width as a function of the heavy neutrino mass
m and the active-sterile mixing parameter |θ|2 in figure 3.10a. In order to derive the expected

5 If one wants to patch MadGraph globally, instead of just patching the individual process, one can apply
the patch to the file located in [MadGraph]/madgraph/interface/madevent_interface.py instead.

6 A possible alternative solution that does not keep the spin correlation but does keep all events could be to
change the charge of the second lepton depending on whether the event should be LNC or LNV.
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Figure 3.10: Panel (a): Scan over the decay width of the heavy neutrino as a function of its mass and
the active-sterile mixing parameter |θ|2. Panel (b): Scan over the number of expected displaced vertex
events in the CMS detector for the HL-LHC with L = 3 ab−1 and cuts as defined in section 3.6.1.

number of events, we employ the most important cuts used for displaced vertex analyses at the
LHC. For this example, we use cuts inspired by the CMS Phase II detector:

• Minimal transverse momentum pmin
T (µprompt) = 20 GeV of the prompt muon

• Minimal transverse momentum pmin
T (fdisp) = 1 GeV of the displaced muon and quarks

• Maximal pseudorapidity ηmax = 4 for leptons and quarks

• Minimal impact parameter dmin
0 (µdisp) = 2 mm of the displaced muon

• Maximal distance of half the tracker size for displaced muon and quarks

Where the pmin
T (µprompt) cut is used to ensure that the event is triggered, the pmin

T (fdisp) and
ηmax cuts ensure that the particles are captured by the detector, and the dmin

0 (µdisp) ensures
that the secondary muon is indeed reconstructed as a displaced muon. Finally, the cut on the
maximal displaced distance is used to ensure that the tracks of the displaced muons and of the
daughters of the quarks can be measured such that the displaced vertex can be reconstructed.
With the simulated events and the above-mentioned cuts, an efficiency factor and the number of
expected events are computed via

Nexp = σL feff , feff = Nafter cuts
Nall events

, (3.6.1)

The resulting expected number of events as a function of the heavy neutrino mass and active-
sterile mixing parameter are shown in figure 3.10b.

3.6.2 Maximal Lorentz factors

Based on the simulated events, the estimation of the Lorentz factor of the heavy neutrino in
equation (3.3.14) can be tested. Since this relies on the probability distributions for the Lorentz
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Figure 3.11: Panel (a): Histogram of the simulated Lorentz factor probability density function (PDF)
for heavy neutrinos with a mass of 7 GeV. Panel (b): Resolvable mass splittings for a fixed oscillation
length of Losc = 2 mm for event samples with different Lorentz factor thresholds γf . The horizontal lines
correspond to the mass splitting appearing in the two minimal linear seesaw BMs given in table 3.1.
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Figure 3.12: Panel (a): Most likely Lorentz factors γ̂ of heavy neutrinos as a function of their masses.
The points correspond to MC data and the lines to a fit. Panel (b): fit parameter of the function (3.6.2)
for the most likely Lorentz factors γ̂ after applying a threshold f .
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factor of the heavy neutrinos, one example of such a Lorentz factor distribution is shown in
figure 3.11a. In the following, we define the most likely Lorentz factor γ̂ as the one where the
distribution has its maximum.

It is also possible to consider only a fraction of events with the largest boost in order to probe
the smaller mass splittings that become accessible since the most likely Lorentz factor will be
increased in such a data sample. We define the Lorentz factor threshold γf such that only the
fraction f of events with the highest Lorentz factors is kept. The mass splittings, still resolvable
for different thresholds and a fixed oscillation length of Losc = 2 mm, are depicted in figure 3.11b.

In addition to the information in equation (3.3.14), the boost of the initial W boson can also be
taken into account. To that end, the momentum of the heavy neutrino in the rest frame of the
W boson is multiplied by a fitting parameter α ∈ [0, 1] estimating the component parallel to the
W boson momentum. Finally, the energy and parallel momentum are boosted with −βW from
the W rest frame to the lab frame, yielding

γ ≈ γW

(
m2

W +m2

2mWm
+ α

m2
W −m2

2mWm

√
1 − 1

γ2
W

)
. (3.6.2)

The parameters α and γW are obtained by fitting this equation to simulated data; the results
are presented in figure 3.12. Comparing this most likely Lorentz factor to the estimate of
the Lorentz factor equation (3.6.2) shows that γW ≈ 1 as used in equation (3.3.14) is a good
approximation when considering the full event sample as can be seen in figure 3.12a. The values
for the constrained event samples have been used in the derivation of figure 3.11b.

3.6.3 Oscillations

The main purpose of this work is to provide the necessary tool to study NNOs at colliders. We
use the FeynRules model file of the pSPSS together with the MadGraph patch presented here
to explore if such oscillations are potentially detectable at a CMS-like detector. In figure 3.13
the oscillation pattern as simulated by MadGraph is depicted in the lab frame as well as in
the proper time frame. As discussed in section 3.3.4 the oscillation pattern in the lab frame is
washed out since heavy neutrinos with different Lorentz factors overlap. However, the oscillations
in the proper time frame of the heavy neutrino are not affected by the washout caused by the
Lorentz factor, and the oscillation pattern is visible. The detectability of NNOs at the CMS
detector during the HL-LHC is studied in detail in [3].

3.6.4 Integrated effect

In the cases where oscillations cannot be directly resolved, there might still be non-trivial
relations between LNC and LNV events. The integrated effect presented in section 3.3.3 depends
on the interplay between the decay width and the oscillation period as shown in equation (3.3.10).
Counting the number of the opposite- and same-sign events while scanning the parameter space
over different values for the Majorana mass mM and the mass splitting ∆m reproduces the
analytic dependence of (3.3.10) as shown in figure 3.14 [41, 45, 94].

Furthermore, the MC simulation reproduces the analytic calculation leading to figure 3.5 when
taking the finite detector size into account as shown in figure 3.15. The MC simulation agrees
with the analytic calculation for τmin → 0. However, for τmax → 0, the upper left part of the
plot is inaccessible since no events are generated for these parameter points. In particular, this
effect regularises the divergent parts in the corresponding analytic calculation. Although the
cut in τ corresponds to the cleanest theoretical description of Rll with finite detector effects, it
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Figure 3.13: PDFs of the NNOs in the lab frame are shown in panel (a), and the ones in the proper
time frame are shown in panel (b). The parameter point used for these plots features heavy neutrinos
with a Majorana mass of mM = 20 GeV, an active-sterile mixing of |θ|2 = 10−8, and a mass splitting
of ∆m = 748 μeV. The latter corresponds to the linear seesaw BM point with inverted hierarchy. The
oscillations are simulated by MadGraph using the model file [91] presented in section 3.5.1 after applying
the patch explained in section 3.5.2 and explicitly given in section 3.B. While the oscillations in the
lab frame are washed out, they are clearly visible in the proper time frame.
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Figure 3.15: MC simulation of the reliability of the observation of Rll when considering finite detectors.
The variables are the same as in figure 3.5. The plot in panel (a) agrees only in the lower right half
with the theoretical results figure 3.5a, since for large cut values and small Rll no events are generated.
The plot in panel (b) reproduces the analytic behaviour from figure 3.5b.

does not correspond to realistic physical cuts. Therefore, we present additional results using a
d0 cut, a minimal distance lab frame cut dmin, and a maximal distance lab frame cut dmax in
figure 3.16. Since the boost to the lab frame introduces a dependence on the Lorentz factor, we
report the results for the three mass points m = 10, 100, 1000 GeV.

For the masses above the W threshold, the d0 cut reproduces approximately the first maximum
of the analytic calculation. Furthermore, the area in which no events are generated becomes
larger, and for smaller masses, the first maximum is pushed to larger values of the oscillation
period. When applying a minimal distance cut in the lab frame dmin, parts of the behaviour
described for a τmin and d0 cut are washed out, and the vertical lines that indicate a trivial
relation between Rll and Robs

ll are recovered. However, they are shifted and compressed towards
lower values of Rll. Nonetheless, the maximum remains, although it is shifted to larger values
of the oscillation period. A maximal distance cut in the lab frame dmax does not show the
oscillatory pattern and leads only to small distortions for cuts larger than the oscillation period.
However, for cuts below one to two oscillation periods, large deviations can be observed.

We conclude that although the Lorentz factor distribution smears the finite detector effect
observed in section 3.3.3, it remains important and cannot be neglected, especially when
applying a d0 cut of the order of the oscillation period.

3.6.5 Transverse impact parameter and spin correlation

The transverse impact parameter d0 of particles emerging in a secondary vertex is defined as

d0 = d′
T ∧ p′

T

p′
T

=
ϵijx

′
ip

′
j

p′
T

=
x′p′

y − y′p′
x

p′
T

, (3.6.3)
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Figure 3.16: Simulation of Rll under consideration of a finite d0 in (a), (b), and (c), of a finite
dmin in (d), (e), and (f) as well as of a finite dmin in (g), (h), and (i). Each cut is shown for
three different masses m = 10, 100, 1000 GeV.
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Figure 3.17: Comparison between the angular dependence of the LNC process compared to the LNV
process in the observable (3.6.5) using a MC simulation.

where d′
T = (x′, y′) is the position of the point with the smallest distance to the z-axis and

p′
T = (p′

x, p
′
y) is the transverse momentum at this point.7 In cases where the transverse

momentum of the particle is large or the magnetic field is small, such that the radius of the
trajectory of the particle is much larger than the relevant length scales of the detector, the
trajectory is well approximated by a straight line. In this case, the value of d0 is constant for
every point on the trajectory. Therefore, it is possible to replace d′

T with the coordinates of the
production vertex dT = (x, y), which coincides with the transverse distance of the production
vertex. In the case of the displaced muon, whose production vertex is the decay vertex of the
heavy neutrino, one can furthermore use the relation

d′
T → dT = dT

pN
T

pN
T

, (3.6.4)

where pN
T is the transverse momentum of the heavy neutrino. This yields a simplified definition

of the impact parameter for displaced muons, under the assumption that their trajectories can
be approximated as straight lines

d0 ≃ dT
pN

T ∧ pµ
T

pN
T p

µ
T

= dT sin(φ(pN
T ,p

µ
T )) , sin(φ(pN

T ,p
µ
T )) = pN

T ∧ pµ
T

pN
T p

µ
T

. (3.6.5)

Therefore, the impact parameter consists, besides the transverse decay length of the invisible
particle, of an angular-dependent part. The angular-dependent part encodes a spin dependence
which can be exploited to distinguish the LNC and LNV processes as shown in figure 3.17. One
can see that just by measuring this or a related quantity such as the angle between the two
charged leptons in figure 3.3, it is possible to compute probabilities for the event being LNC or
LNV [55]. On the other hand, imposing a minimal d0 cut is the standard strategy to reduce the
background of displaced HNL searches as seen in section 3.6.1. The angular dependence of d0
leads after cuts to a residual oscillation in the observable NLNC +NLNV that naively would be
expected to be free of oscillations.

7 The two-dimensional wedge product results in a scalar quantity.
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Figure 3.18: Contour lines for the heavy neutrino mean lifetime cτlife in m overlayed by contour bands
of Rll ∈ [0.1, 0.9] for the BMs summarised in table 3.1. While the two bands generated by the linear
seesaw are well separated and reach far below the W mass threshold, the bands generated by the inverse
seesaw are very close to each other and only reach below the W threshold for comparably small values
of the active-sterile mixing parameter. For comparison, the regions excluded by the ATLAS and CMS
experiments via displaced searches are shown as grey areas [28, 29]. The areas shaded in grey at the
centre top are excluded by prompt searches [26, 27], as long as the prompt same-sign dilepton signature
is valid. This is the case only for seesaw models in which Rll is close to one in this region, hence to the
bottom left of the Rll bands of the BM under consideration. The reach of the HL-LHC [95], FCC-ee [96,
97], large hadron electron collider (LHeC) and FCC-eh [98] are shown as black lines. When producing
the figure, we have neglected potential effects from a nonzero damping factor λ as well as from times
shorter than the Jacob-Sachs threshold; for details, see sections 3.3.1 and 3.5.2.

3.6.6 Experimental bounds on low-scale seesaw models

Although neither pure Dirac nor single Majorana particles are sufficient to describe the phe-
nomenology of low-scale seesaw heavy neutrinos, almost all prior searches are performed using
these two models. Therefore it is necessary to correctly interpret these searches in order to
extract the proper bounds on the pseudo-Dirac heavy neutrinos of low-scale seesaw models.
Customarily, the searches relying on displaced vertex signatures are reported for both pure
Dirac and single Majorana HNLs. Since these searches usually do not rely on LNV, the major
difference affecting these searches is the factor of two that appears in the decay width and is
described in detail in section 3.A. Since the Dirac particle has the same decay width as the
pseudo-Dirac particle, it is prudent to interpret the exclusion extracted for displaced Dirac
HNLs as the correct exclusions for displaced pseudo-Dirac heavy neutrinos. The situation is
more complicated in the case of prompt searches. The majority of prompt searches rely on the
very clean same-sign dilepton signature of LNV decays. Since these are not generated for Dirac
particles, the searches are only reported for single Majorana particles. Therefore, these searches
assume an Rll of one, which depending on the mass splitting, might not be a good approximation
of reality. Hence the exclusion bound depends on the details of the model under consideration.
In practice, one has to check the intersection between the Rll band of one specific model and
the reported exclusion bounds for the same-sign dilepton search in a representation such as the
one presented in figure 3.18. For Rll close to one (to the bottom left of the bands) the reported
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exclusion bounds are valid up to the factor of two between the simulated single Majorana particle
and the realistic pseudo-Dirac particle discussed in section 3.A. For Rll close to zero (to the top
right of the bands) there will be no LNV, rendering the searches inconsequential. Therefore,
prompt searches can only be interpreted model-dependently, e.g. as a function of ∆m. The
model file presented in section 3.5.1 together with the example implementation of NNOs in
section 3.5.2 provides a unified framework for the correct simulation of prompt and displaced
processes of pseudo-Dirac heavy neutrinos in low-scale seesaw models.

3.7 Conclusion

In this paper, we have reviewed the arguments that collider testable seesaw models that do not
rely on tuning must be protected by an approximate LNLS. The breaking of the symmetry by
small parameters simultaneously ensures small LNV, tiny SM neutrino masses, and generically
generates a small mass splitting between the heavy neutrinos. The latter leads to NNOs that
can have macroscopic oscillation lengths such that they are potentially resolvable at high-energy
colliders.

In order to simulate the effects of these oscillations, we have reviewed the SPSS that builds on a
systematic expansion in the small parameter governing the breaking of the LNLS. We have then
reduced it to the pSPSS that relies on the minimal number of parameters necessary to describe
pseudo-Dirac heavy neutrinos and NNOs in phenomenological studies. In addition to the SM
parameters, the pSPSS introduces only the Majorana mass parameter mM , the active-sterile
mixing parameters θ = (θe, θµ, θτ )⊺, the mass splitting ∆m governing the oscillation period,
and a damping parameter λ that captures possible decoherence effects. The last of these can be
neglected in the parts of the parameter space where prospects are good to resolve the oscillations,
as discussed in [1] and further elaborated in [4].

In order to facilitate MC studies using this model, we have published a FeynRules implementation
of the pSPSS together with a patch extending MadGraph in such a way that it is capable
of simulating NNOs. Using these tools, we have calculated some example results: We have
demonstrated that our implementation recovers typical prior results, such as the heavy neutrino
decay width. Additionally, we have provided the maximal mass splitting ∆m for which it may
be feasible to resolve the oscillation pattern when only a fraction of events containing the largest
Lorentz factors is considered. Furthermore, we have shown that the integrated effect of the
oscillations is reproduced by our model file. We have emphasized in this context that care has
to be taken when measuring Rll, as the finite detector geometry can have a major impact on
the derived values. Finally, we have demonstrated the dependence of the impact parameter on
the angular-dependent spin correlation and have shown that this observable can be used, in
principle, to distinguish between LNC and LNV decays.

Appendix 3.A Decay widths of Majorana, Dirac, and pseudo-

Dirac particles

In the main part of this article, we have discussed that in order to explain light neutrino masses,
the corresponding heavy neutrino cannot be a Dirac particle. Additionally, in order to generate
the observed light neutrino oscillation pattern, at least two neutrinos have to be added to the
SM. Nevertheless, it is standard practice to study the phenomenology of a single heavy neutrino
that is either of Majorana or Dirac type. In the following, we compare their phenomenology
with the one of pseudo-Dirac heavy neutrinos with different mass splittings and comment on the
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decay widths of each of these particles.

Single Majorana The relevant part of the Lagrangian describing a single Majorana particle
N1 reads

LMajorana = −yαN c
1H̃

†Lα − 1
2mMN c

1N1 + H.c. . (3.A.1)

After EWSB, the coupling to the W bosons is obtained from the kinetic terms of the active
neutrinos via the mixing of light να and heavy n4 neutrino mass eigenstates and reads

LW
Majorana = θ′∗

α l̄αn4W + H.c. , θ′
α

n4

lα

W . (3.A.2)

where the mixing parameter is given by θ′ = yvm−1
M . The expected number of LNC and LNV

events at a collider experiment can then be schematically computed using

|A|2 =
∣∣∣∣∣

LNC
m

θ′
α θ′∗

α

∣∣∣∣∣

2

+
∣∣∣∣∣

LNV
m

θ′
α θ′

α

∣∣∣∣∣

2

∝ 2|θ′
α|2 , (3.A.3)

where the diagram encodes the production and decay of a heavy neutrino from and to charged
leptons and W bosons. In this case, one expects an equal number of LNC and LNV events and
therefore Rll = 1. As long as Γ ≪ m, the magnitude of the (greyed out) coupling in the decay
vertex is not relevant since it is cancelled by the decay width dependence of the propagator of
the heavy neutrino, which can be verified using the narrow width approximation.

In general, the value of the active-sterile mixing parameter can be obtained by measuring the
production cross section and the decay width of the heavy neutrino. In the case of a single
Majorana particle, the production cross section is proportional to |θ′|2. Generically, the decay
width can be obtained by scanning the p2 distribution of any process with the heavy neutrino
mass eigenstate on the s-channel and comparing it to the Breit-Wigner shape. Furthermore,
regarding long-lived particles, it can be extracted from the decay exponential reconstructed by
counting the number of displaced vertices per distance interval. In the case of a single Majorana
particle, the decay width is proportional to |θ′|2.

Dirac A heavy Dirac neutrino can be described as two mass-degenerate Majorana neutrinos
N1/2 with an exact phase difference of −i in their couplings. The relevant part of the Lagrangian
is given by

LDirac = −yαN c
1LαH̃

† −mMN c
1N2 + H.c. . (3.A.4)

After EWSB, the mass matrix of the neutrinos can be diagonalised, and the active SM neutrino
interaction eigenstates can be expressed as a linear combination of the heavy neutrino mass
eigenstates. These linear combinations are the heavy neutrino N and heavy antineutrino N
introduced in section 3.4.1

N = θ∗
√

2
(−in4 + n5) , N = θ∗

√
2

(in4 + n5) , (3.A.5)

which leads to the coupling to the gauge bosons via

LW
Dirac = θ∗

α l̄α
1√
2

(−in4 + n5)W + H.c. , ±i θα√
2

n4

lα

W ,
θα√

2

n5

lα

W , (3.A.6)
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where θ = yvm−1
M . Compared to the case of a single Majorana particle, the coupling of the

gauge bosons to each heavy neutrino mass eigenstate obtains an additional factor of 1/
√

2, which
originates from the diagonalisation of the heavy neutrino 2 × 2 block in the mass matrix. The
number of LNC and LNV events can be derived using the Feynman diagrams
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(3.A.7)
where the Dirac condition ensures mass degeneracy m4 = m5. In contrast to the Majorana heavy
neutrino, the Dirac heavy neutrino generates only LNC decays and, therefore, Rll = 0. In the
picture where the heavy Dirac neutrino is represented by two Majorana DOFs, this is due to the
phase difference of −i between the couplings of the mass eigenstates, ensuring that the LNV
diagrams cancel exactly. Both the Dirac and the Majorana heavy neutrino yield the same total
number of events, such that it is not possible to distinguish them just by the observation of the
overall number of events.

The production cross section of a single mass eigenstate n4/5 in (3.A.6) is proportional to |θ|2/2.
However, since it is intrinsically impossible to distinguish the two identical mass eigenstates in a
single Dirac particle, the measured production cross section is proportional to |θ|2. Nonetheless,
the decay width is only proportional to |θ|2/2 as one does not sum over the two DOFs in order to
calculate the total decay width. Therefore, in comparison to the single Majorana heavy neutrino,
the decay width is reduced by a factor of two.

Naively one might expect to distinguish Dirac from Majorana heavy neutrinos in this way.
However, this is impossible as we will demonstrate using different limits of a model consisting of
a pair of two heavy Majorana neutrinos with finite mass splitting.

Majorana pair The Majorana and Dirac heavy neutrinos can both be described as limiting
cases of a model with two Majorana particles also encompassing the pseudo-Dirac heavy neutrino.
Starting from the Dirac heavy neutrino, a small perturbation of the LNLS, such that the
two masses of the Majorana DOFs, as well as the modulus of their couplings, are no longer
exactly degenerate, generates a pseudo-Dirac heavy neutrino, as explicitly shown in section 3.4.2.
Conversely, the Dirac heavy neutrino can be seen as the limit of the pseudo-Dirac heavy neutrino
in which the perturbation of the LNLS goes to zero, such that the symmetry is restored. In the
limit of large mass splitting, the phenomenology of two well-separated Majorana heavy neutrinos
is recovered. In the following, when we refer to the size of the mass splitting, we imply that the
Yukawa couplings are also perturbed compared to the degeneracy given in the Dirac case.

Pseudo-Dirac For small mass splittings as described in section 3.4.2, the mass eigenstates
n4/5 in (3.A.7) are still produced coherently describing the phenomenology of a pseudo-Dirac
pair. However, the LNV diagrams do not cancel exactly anymore, leading to LNV processes.
While the total number of produced events stays the same, NNOs are possible such that a
part of generated events are now LNV leading to 0 < Rll < 1. However, the arguments for the
production and decay of a pure Dirac particle apply also to this case.

Intermediate mass splitting While intermediate mass splitting can still be too small to
experimentally distinguish different mass eigenstates, it is still possible that decoherence already
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Pure Dirac Majorana Pair Single Majorana
Pseudo-Dirac

Mass splitting Small Intermediate Large
Production |θ|2 |θ|2 |θ|2 |θ′|2 |θ′|2
Decay |θ|2/2 |θ|2/2 |θ|2/2 |θ′|2 |θ′|2
Rll 0 0 < Rll < 1 1 1 1

Table 3.3: Production ratios and decay widths for different types of heavy neutrinos. The primed mixing
parameters occur in models without mass mixing between two heavy states, while the unprimed mixing
parameters occur in models with mass mixing between the two heavy neutrinos.

sets in. This effect is governed by the observability conditions [1, 4] and by the damping factor
included in the patch. In this case, the interference between diagrams with different mass
eigenstates in (3.A.6) is destroyed. Therefore the LNC and LNV processes become both equally
likely while the total number of events is proportional to
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2

= 2|θα|2 (3.A.8)

and thus remains the same. The production cross section corresponds to the sum of the
production cross sections of both mass eigenstates, i.e. it is proportional to |θ|2, while the
decay width is the one of each individual mass eigenstate and therefore proportional to |θ|2/2.
Although the ratio between LNC and LNV processes is identical to the case of a single heavy
Majorana neutrino, one still obtains a decay width that is a factor of two smaller compared to
the case of a single Majorana particle. Therefore, from the comparison of the decay width and
the production cross section of a newly discovered heavy neutrino, one can gain information
about the number of Majorana DOFs taking part in the production cross section. However,
it is not possible to distinguish a Dirac particle from two Majorana particles with a small or
intermediate mass splitting just by the comparison of the production cross sections, decay widths
or total event numbers.

Large mass splitting For large mass splitting, the individual mass eigenstates can be
experimentally distinguished. As before, one finds for each mass eigenstate the production cross
section as well as the decay width to be approximately proportional to |θ|2/2. Considering
that it is likely that the lighter of the two mass eigenstates is discovered first, it is insightful to
express the coupling in the language of a single Majorana, which would lead to |θ′|2 =: |θ|2/2.
Therefore, one obtains exactly the same phenomenology as if the two mass eigenstates are two
distinct Majorana particles, avoiding the unnecessary interpretation as a quasi pseudo-Dirac
particle with large mass splitting.

Summary We summarise the discussion above in table 3.3 and conclude by noting that the
comparison of the decay widths yields insight into whether there are two Majorana DOFs, as in
the case of Dirac particles, or only one, as in the case of a single Majorana particle, but it cannot
prove the Dirac property of the heavy neutrino. This is already clear from the fact that the factor
of two in the decay widths approximately remains when a small LNV term is added, which turns
the pure Dirac heavy neutrino into a pseudo-Dirac heavy neutrino. In order to test the Dirac
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1 for event in lhe:
2 for particle in event:
3 id = particle.pid
4 width = param_card[’decay’].get((abs(id),)).value
5 if width:
6 vtim = c ∗ random.expovariate(width/cst)
7 if vtim > threshold:
8 particle.vtim = vtim
9 #write this modify event

10 output.write(str(event))
11 output.write(’</LesHouchesEvents>\n’)
12 output.close()

Listing 3.1: Original MadGraph code calculating particle TOF.

property of the heavy neutrino, it is unavoidable to test for LNV. From a measurement of the
mass(es) and lifetime(s), one can, at best, conclude that there are two Majorana particles with
almost identical properties. But whether these two DOFs can be combined to form a LNC Dirac
heavy neutrino depends on the phase between the Yukawa couplings of the two mass-degenerate
Majorana particles. Only when the phase is −i, then, on the one hand, LNV cancels out and on
the other hand, the two Majorana particle DOFs can be combined into a Dirac heavy neutrino.
As long as this phase (related to LNV) is not tested, one can only speak of two Majorana DOFs.

Appendix 3.B MadGraph Patch

The patch presented here is used to include NNOs in MadGraph. It is applied to the [pSPSS]

/bin/internal/madevent_interface.py8 generated by MadGraph5_aMC@NLO 2.9.10 (LTS).
To apply the patch, the main event loop, responsible for adding TOF information to the .lhe file
given in listing 3.1, has to be replaced by the code presented in listing 3.2.9 The loop over the
particles in the event, starting in line 6, is used to determine the leptonnumber of the event.
Electrons, muons and τ -leptons are counted as leptons, whereas their antiparticles are counted as
antileptons. The masssplitting is extracted from the PSPSS block in the param.card in line 1
and the damping factor damping similar in line 1. In line 16 the program executes the new code
of the patch if the particle is a heavy neutrino with particle ID 8000011 or 8000012 as defined
in the model file presented in section 3.5.1. First, the proper time at which the heavy neutrino
decays is obtained in line 17. Next, the formula for the oscillation probability in the proper time
frame is used together with a random number to decide if the event should be LNC or LNV.
Subsequently, if the leptonnumber agrees with the result from line 18, the switch write_event
is set to True. Otherwise, it is set to False. In line 22, the proper time is converted to mm as
in the unpatched code from MadGraph. Finally, using the write_event switch from above, it
is decided if the event should be kept or discarded in line 28.

Note that when using the automated width computation of MadGraph, for some parameter
points, there are issues with the computation of the phase space volume in the decay n5 → n4νν,
where n5 is the heaviest neutrino, and the ν are massless neutrinos, due to the unusually small
mass splitting. Since we found this decay channel to be negligible, we fixed the issue by replacing
the argument of the square root of the return value of the function calculate_apx_psarea in

8 In other versions, the relevant section might be found in the [pSPSS]/bin/internal/common_run_

interface.py file.
9 The relevant lines can be found by searching for the keyword vtim.
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1 mass_splitting = param_card.get_value(’PSPSS’, 2)
2 damping = param_card.get_value(’PSPSS’, 6)
3 for event in lhe:
4 leptonnumber = 0
5 write_event = True
6 for particle in event:
7 if particle.status == 1:
8 if particle.pid in [11, 13, 15]:
9 leptonnumber += 1

10 elif particle.pid in [−11, −13, −15]:
11 leptonnumber −= 1
12 for particle in event:
13 id = particle.pid
14 width = param_card[’decay’].get((abs(id),)).value
15 if width:
16 if id in [8000011, 8000012]:
17 tau0 = random.expovariate(width / cst)
18 if 0.5 ∗ (1 + math.exp(−damping)∗math.cos(mass_splitting ∗ tau0 / cst))

>= random.random():
19 write_event = (leptonnumber == 0)
20 else:
21 write_event = (leptonnumber != 0)
22 vtim = tau0 ∗ c
23 else:
24 vtim = c ∗ random.expovariate(width / cst)
25 if vtim > threshold:
26 particle.vtim = vtim
27 # write this modify event
28 if write_event:
29 output.write(str(event))
30 output.write(’</LesHouchesEvents>\n’)
31 output.close()

Listing 3.2: Patched MadGraph code calculating particle TOF and NNOs. Note that the sterile
neutrino particle IDs and the position of the mass splitting parameter in the param.card are model
file dependent and might need to be adjusted.

the file [MadGraph]/mg5decay/decay_objects.py by its absolute value. However, this can be
a drastic change in the MadGraph behaviour. Therefore we have checked that the results are
physically meaningful [99]. In our case, that was found to be true since the problematic decay
channel is discarded by MadGraph at a later step independently of the change, so there is no
impact on any physical results. Additionally, we also compared the automated computed width
for a parameter point with a small mass splitting of the heavy neutrinos to a parameter point
with a large mass splitting, changing the other parameters in such a way that the mass of n4,
as well as its couplings constant, stays constant. The two computations yield the same results,
showing that there is no impact from the extremely small mass splitting in the computation
performed by MadGraph.
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Chapter 4

Beyond lepton number violation

at the HL-LHC: Resolving heavy

neutrino-antineutrino oscillations

Abstract:

Collider testable low-scale seesaw models predict pseudo-Dirac heavy neutrinos, that
can produce an oscillating pattern of lepton number conserving and lepton number
violation events. We explore if such heavy neutrino-antineutrino oscillations can be
resolved at the HL-LHC. To that end, we employ the first ever full Monte Carlo
simulation of the oscillations, for several example benchmark points, and show under
which conditions the CMS experiment is able to discover them. The workflow builds
on a FeynRules model file for the phenomenological symmetry protected seesaw
scenario (pSPSS) and a patched version of MadGraph , able to simulate heavy
neutrino-antineutrino oscillations. We use the fast detector simulation Delphes and
present a statistical analysis capable of inferring the significance of oscillations
in the simulated data. Our results demonstrate that, for heavy neutrino mass
splittings smaller than about 100 μeV, the discovery prospects for heavy neutrino-
antineutrino oscillations at the HL-LHC are promising.
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4.1 Introduction

The observed light neutrino flavour oscillations [69] can be explained by introducing at least two
mass splittings between the light neutrinos. It follows that at least two of the neutrinos have to
be massive. However, the SM of particle physics lacks the corresponding mass terms. Therefore,
it needs to be extended with a model able to generate these light neutrino masses, such as the
type I seesaw mechanism [18, 19, 21–24]. In order to generate the two light neutrino masses
in this model at least two sterile neutrinos have to be added to the particle content of the SM.
In general, the type I seesaw mechanism is governed by two sets of parameters, that can be
adjusted to obtain light neutrino masses at the right order of magnitude. Besides their Yukawa
couplings, the second set is given by their Majorana masses mM , which are only possible since
the additional neutrinos are SM singlets. After EWSB the Yukawa couplings result in Dirac
mass terms m

(i)
D between each of the sterile neutrinos Ni and the active neutrinos να.1 For the

case of two heavy neutrinos, the generated light neutrino mass matrix then follows from the
seesaw equation

Mν = m
(1)
D ⊗ m

(1)
D

m
(1)
M

+ m
(2)
D ⊗ m

(2)
D

m
(2)
M

. (4.1.1)

In order to obtain light neutrino masses, one could take the Yukawa couplings to be very small
or choose the Majorana masses of the heavy neutrinos to be very large. Those two limits of the
seesaw mechanism are referred to as the small coupling and the high scale limit, respectively. In
both cases the parameters have to be taken to such extreme values that a direct detection of
the sterile neutrinos at current collider experiments is not feasible. A third possibility, which
leads to collider testable low-scale seesaw models, consists in heavy neutrino pairs forming a
pseudo-Dirac structure. This leads to a cancellation between the two terms in (4.1.1) and can be
justified by an approximate symmetry. The symmetry can be realised as an extension of the SM
lepton number and we refer to it as a LNLS [2, 31, 32]. It allows for the heavy neutrinos to
be light enough, and at the same time have sufficiently large Yukawa couplings, to be directly
observable at e.g. the LHC [26–29, 95].

When the LNLS is exact, the light neutrinos are massless and the two heavy neutrinos are
precisely mass-degenerate, forming a single Dirac neutrino. However, if the LNLS is broken by
small parameters, light neutrino masses are generated and typically a mass splitting between
the heavy neutrinos is introduced. The corresponding seesaw scenario is referred to as SPSS [2,
31, 32]. The phenomenological effects of the slightly broken LNLS are captured by the pSPSS
introduced in [2]. Similar to the case of other neutral particles, this leads to particle-antiparticle
oscillations [75–78], which are in this context called NNOs [44]. The QFT framework of external
wave packets, which has been developed in [35–38] and applied to the case of NNOs in [1],
allows to describe this phenomenon including decoherence effects.

Although the small breaking of the LNLS generates LNV processes, one can argue on principle
grounds that for prompt heavy neutrino decays it is not possible to observe LNV at the LHC [72].
In contrast, NNOs generate observable amounts of LNV when the heavy neutrinos are sufficiently
long-lived compared to their oscillation period. When the heavy neutrinos have large enough
lifetimes, such that their time of decay can be reconstructed, it can be possible to resolve the
oscillation pattern of the NNOs. This allows to deduce the mass splitting of the heavy neutrinos,
which might not be possible from measuring the amount of LNC and LNV processes alone.
The possibility of resolving the NNOs at colliders has been estimated to be feasible during the
HL-LHC in [44].

1 We indicate quantities with a suppressed vector index by bold font.
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The goal of the present paper is to explore under which conditions it is possible to resolve NNOs
at the HL-LHC at the reconstructed level, employing the process shown in figure 4.2. To this
end, the FeynRules implementation of the pSPSS [91] is used to simulate NNOs in MadGraph.
Subsequently, Pythia is employed to simulate QCD effects such as hadronisation, and the fast
detector simulation Delphes is used to simulate the CMS phase II detector. A cut based analysis
of the generated events is performed using custom C++ code. Finally, the prospects to resolve
oscillation patterns for several BM scenarios of long-lived nearly mass degenerate heavy neutrinos
at the HL-LHC are derived, using a detailed statistical analysis implemented in Mathematica.

This paper is structured as follows: First, the pSPSS and NNOs are briefly reviewed in section 4.2.
Subsequently, in section 4.3 the simulation of signal events containing these oscillations and
relevant background processes are discussed. Afterwards, the statistical analysis is introduced in
detail in section 4.4. Finally, the results are presented in section 4.5 and the paper is concluded
in section 4.6. In section 4.A we comment on the induction of residual oscillations through cuts
on the transverse impact parameter.

4.2 Symmetry protected seesaw scenario

When considering two heavy neutrinos under the assumption of an intact LNLS, the only allowed
additions to the SM Lagrangian are

LL
SPSS = N c

i i/∂Ni − y1αN c
1H̃

†ℓα −N c
1mMN2 + · · · + H.c. , (4.2.1)

where N1 and N2 are sterile neutrinos written here as left-chiral four-component spinor fields.
The Higgs and lepton doublets of the SM are denoted by H and ℓ, respectively, and y1 is the
Yukawa coupling vector with components y1α. The ellipses capture further contributions that
can be generated by additional sterile neutrinos, but are assumed to be subdominant here. In
this case the two terms in the seesaw formula (4.1.1) cancel precisely. In addition, the following
symmetry breaking terms can be introduced

L�LSPSS = −y2αN c
2H̃

†ℓα − µ′
MN c

1N1 − µMN c
2N2 + · · · + H.c. . (4.2.2)

When the Yukawa coupling vector y2 times the VEV as well as the Majorana mass parameters
µM and µ′

M are small compared to mM , the light neutrino masses are guaranteed to be small as
well. Due to the approximate LNLS, it is possible for the heavy neutrinos to have a mass well
below the W boson mass, while at the same time their coupling can be large enough to obtain a
sizable number of events at e.g. the HL-LHC, without violating constraints from light neutrino
experiments such as searches for 0νββ decay.

4.2.1 Phenomenological symmetry protected seesaw scenario

In the SPSS with exact LNLS (4.2.1), the neutrino mass matrix for the interaction eigenstates
n = (νe, νµ, ντ , N1, N2)⊺ is given by

ML
n =




0 mD 0
m

⊺
D 0 mM

0 mM 0


 (4.2.3)

where mD = y1v with the SM Higgs VEV v ≈ 174 GeV. The mass term of the Lagrangian after
EWSB is given by

Lmass = −1
2n

cMnn+ H.c. . (4.2.4)
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BM ∆m/μeV cτosc/mm Rll

1 82.7 15 0.9729
2 207 6 0.9956
3 743 1.67 0.9997

Table 4.1: All BM points have a mass of 14 GeV and an active-sterile mixing parameter satisfying
|θµ|2 = 10−7, which results for all points in a decay width of Γ = 13.8 μeV. However, they vary
in their mass splitting and consequently have different oscillation periods τosc, which leads to dif-
ferent LNV to LNC ratios Rll, defined in (4.2.11).

This mass matrix does not generate neutrino masses. Furthermore, the two heavy neutrinos
are mass degenerate with a relative phase of −i in their Yukawa couplings and can therefore be
described as a single Dirac fermion.

However, in the presence of the small symmetry breaking terms (4.2.2) the complete mass matrix
reads

M �L
n =




0 mD µD

m
⊺
D µ′

M mM

µ
⊺
D mM µM


 , (4.2.5)

where µD = y2v. This mass matrix not only generates small masses for the light neutrinos, but
additionally introduces a mass splitting between the two heavy neutrinos, that is also suppressed
by the same small LNLS breaking parameters. Thus, the pair of two Majorana fermions can no
longer be described as a pure Dirac particle, but as a pseudo-Dirac particle.

The symmetry breaking terms can arise from specific low scale seesaw models, such as the linear
or the inverse seesaw, which yield only the terms proportional to µD and µM , respectively.
However, the complete mass matrix (4.2.5) can be generated from more complicated seesaw
models. Since the symmetry breaking terms are very small, their phenomenological effects
can often be neglected in collider studies with the notable exception of NNOs, which can be
phenomenologically significant as they are an interference effect.

At LO, the NNOs are fully described by the mass splitting ∆m between the heavy neutrinos
together with an additional damping parameter λ, capturing the potential decoherence effects
discussed in section 4.2.3. Therefore, instead of adding the terms (4.2.2) to the Lagrangian (4.2.1),
in the pSPSS, the mass splitting is directly introduced as a model parameter. Consequently, the
masses of the heavy neutrinos are given by

m4/5 = mM

(
1 + 1

2 |θ|2
)

∓ 1
2∆m, (4.2.6)

where θ = mD/mM is the active-sterile mixing parameter. A detailed description of the pSPSS
can be found in [2].

4.2.2 Benchmark models

In order to obtain the significance with which NNOs could be observed at colliders, three
BMs that differ only in their mass splitting are used and given in table 4.1. The Majorana
mass parameter and the active-sterile mixing parameters for all BM points are chosen to be
mM = 14 GeV and |θµ|2 = 10−7, leading to a decay width of Γ = 13.8 μeV. The active-sterile
mixing parameter corresponds to a Yukawa coupling of yµ = 2.55 × 10−5, while the Yukawa
couplings to the electron and τ -lepton have been set to zero. The number of expected events with
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Figure 4.1: Contour lines for the number of expected displaced vertex events N as well as bands for
the LNV over LNC event ratio Rll, cf. definition (4.2.11), for the three BMs defined in table 4.1. The
contour lines for N apply to the CMS detector at the HL-LHC with L = 3 ab−1 and cuts as defined
in sections 4.3.1 and 4.3.2. They have a nose-like shape and depend only on the heavy neutrino
mass m and the active-sterile mixing parameter θµ, with θe = θτ = 0. N is therefore identical for all
three BMs, which differ only in their mass splittings ∆m. The position of the BMs in the parameter
plane is indicated by a purple cross. The different ∆m of the BMs result in different Rll bands. The
contour lines where Rll ∈ [0.1, 0.9] are shown in yellow and orange for BM1 and BM3, respectively.
The relative position of the cross to the bands shows that the BMs have an Rll close to one. The
grey area corresponds to the exclusion bounds from displaced vertex searches [28, 29] and the shaded
grey area to the bounds from searches for prompt LNV processes [26, 27]. Since the prompt searches
rely on LNV signals, they apply only to models with an Rll close to one.

muons as final state leptons in conjunction with the cuts presented in sections 4.3.1 and 4.3.2,
are shown in figure 4.1. It becomes clear that the chosen BMs lie comfortably beyond the current
bounds [28, 29].

In the minimal linear seesaw model, only one pseudo-Dirac pair of heavy neutrinos is added
to the SM. This results in the lightest neutrino being massless and the mass splitting of the
heavy neutrinos ∆m being identical to the mass splitting of the light neutrinos, cf. [44]. The
mass splitting of BM3 is chosen to represent this possibility, where the light neutrino mass
splitting is taken from a recent global fit assuming inverse light neutrino mass hierarchy [89].
However, in top-down realisations of low scale seesaw models, e.g. the low scale linear seesaw
models in [63, 64], it is common to have multiple pseudo-Dirac pairs of heavy neutrinos. Since
the light neutrino masses get contributions from all these heavy neutrinos, it is possible for the
pseudo-Dirac pairs to have smaller mass splittings than in BM3 without the need of cancellations
in the mass matrix. For simplicity it might be assumed that the collider phenomenology is
dominated by only one of the pseudo-Dirac pairs. We introduce two additional BM points
reflecting this possibility.

4.2.3 Oscillations

Oscillations of neutral particles, and thus NNOs, can be described in the QFT framework of
external wave packets. Compared to simple methods relying on plane waves, wave packets
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allow for a self-consistent description of oscillations. This is due to the finite uncertainty in
energy-momentum and spacetime, that allows to produce a coherent superposition of non-
degenerate mass eigenstates, while simultaneously makes it possible to introduce the notion
of a travelled time and distance. The QFT framework also allows to calculate the possible
suppression of oscillations due to the loss of coherence between the propagating mass eigenstates.
For phenomenological studies these effects can be captured by a damping parameter λ, which is
thus included in the pSPSS.

At LO, the probability to obtain a LNC or LNV event is given by

P
LNC/LNV
osc (τ) = 1 ± cos(∆mτ) exp(−λ)

2 . (4.2.7)

Therefore, the oscillation period, defined in the proper time frame, is2

τosc = 2π
∆m

. (4.2.8)

Since the probability density of the heavy neutrino to decay is

Pdecay(τ) = − d
dτ exp(−Γτ) = Γ exp(−Γτ) , (4.2.9)

the probability for a heavy neutrino to decay between the proper times τmin and τmax and
forming an LNC or LNV event is given by

P
LNC/LNV
ll (τmin, τmax) =

∫ τmax

τmin

P
LNC/LNV
osc (τ)Pdecay(τ) dτ . (4.2.10)

By integrating the oscillations from the origin to infinity, one derives the total ratio between
LNV and LNC events [2, 41, 50]

Rll = PLNV
ll

PLNC
ll

= ∆m2

∆m2 + 2Γ 2 , (4.2.11)

that can be directly deduced from cut and count based analyses. The expected number of events
in a collider experiment is given by

N
LNC/LNV = L σBR

∫
D(ϑ, γ)P LNC/LNV

ll (τmin(ϑ, γ), τmax(ϑ, γ)) dϑ dγ , (4.2.12)

where the collider luminosity L , the heavy neutrino production cross section σ, and the
branching ratio (BR) are used and D(ϑ, γ) is the probability density of the heavy neutrino to
have a Lorentz factor γ and an angle ϑ with respect to the beam axis. The detector geometry
is incorporated in the parameters τmin and τmax when boosting to the laboratory frame via
τ(ϑ, γ) = (γ2 − 1)−1/2L(ϑ). The NNOs in the pSPSS have been discussed in detail in [2]. We
have checked that for the parameter points under consideration decoherence effects can be
neglected and we thus take λ = 0 in the following.

4.3 Simulation

In order to simulate events exhibiting NNOs, we employ the FeynRules [92] implement-
ation of the pSPSS [91]. FeynRules is used to generate an UFO output, passed to Mad-

Graph5_aMC@NLO 2.9.10 (LTS) [93] in order to generate events at parton level. We use the
2 We use time for quantities in the proper time frame and length for quantities in the lab frame, inde-

pendent from the units of those quantities.
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Figure 4.2: Diagram depicting the production, oscillation, and decay of a heavy neutrino. The heavy
neutrino interaction eigenstate N is produced in association with a prompt antimuon. Subsequently,
the mass eigenstates oscillate such that finally a neutrino or antineutrino interaction eigenstate de-
cays into a displaced muon or antimuon, respectively. We indicate that the process is initiated by
proton collisions and that, for our parameter points, the two final quarks, originating from the had-
ronic W decay, immediately hadronise into a single jet.

patch introduced in [2], that modifies the function calculating the particle’s TOF, to implement
the oscillations. When evaluating the matrix element, MadGraph treats the process as prompt,
adding the TOF information afterwards. Therefore, almost no LNV is obtained when interference
between diagrams with different mass eigenstates are taken into account. In order to circumvent
this, the process is initially specified in such a way as to prevent interference between the
heavy neutrino mass eigenstates. This is achieved by writing the heavy neutrinos explicitly as
intermediate states. As a consequence the total cross sections for the LNC and LNV process are
identical and the amount of generated LNC and LNV events is, except for statistical variations,
the same. The correct interference effects, including NNOs, are then included via the patch
described in [2]. The syntax to generate a process, as the one given in figure 4.2, is

generate p p > ww, (ww > mu nn, (nn > mu j j))

where, in addition to the jet j and proton p multi particles, containing quarks and gluons, the
multi particles

define mu = mu+ mu-

define ww = w+ w-

define nn = N4 N5

are used. Here, the initial W boson is additionally taken to be on-shell, since we focus on heavy
neutrinos with masses far below the W boson mass. An additional hard initial jet is included by
using

add process p p > ww j, (ww > nn mu, (nn > mu j j))

where MLM matching was enabled with the standard parameter choices of MadGraph to prevent
double counting.

MadGraph utilises Pythia 8.306 in order to hadronise and shower the parton level events [100].
Finally Delphes 3.5.0 is used with the standard CMS phase II card CMS_PhaseII_0PU to
simulate the detector effects [101].

Secondary vertex reconstruction and smearing Since Delphes neither simulates displaced
tracks properly, nor reconstructs secondary vertices, we implemented a smearing function affecting
the displaced vertices, with the idea to capture experimental uncertainties. To our knowledge,
no results for the overall precision of the vertex reconstruction have been published by CMS so
far. Therefore, we vary it in our simulations between zero and 4 mm, which we assume to be a
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conservative parametrisation of our ignorance, relying on private communication with members
on the experimental collaborations. We like to emphasise that it would be highly welcome if the
experimental collaborations could provide such information and, ideally, if such uncertainties
could be implemented in Delphes directly. In detail, it is assumed that each reconstructed
vertex is distributed with a Gaussian, with a standard deviation of nmm, around its actual
value. The true value of the displaced vertex is obtained from the displaced muon. The results
are presented for different values of n, demonstrating the effects of the uncertainty in the vertex
reconstruction.

4.3.1 Signal

In order to observe LNV via NNOs using the process given by the diagram presented in figure 4.2,
the two leptons have to be measured. For the BMs given in table 4.1 and indicated in figure 4.1,
the final state quarks are soft and immediately hadronise into a multi pion state, which then
forms a single jet that can be captured with a cone radius of ∆R = 0.4. Furthermore, the BM
points are chosen such that the heavy neutrinos are long-lived. Hence, the signal contains one
prompt muon, one displaced muon, and one displaced jet.

A cut is used, which requires the muon to have an impact parameter of |d0| ≤ 100 μm, to ensure
exactly one prompt µ. Furthermore, this muon is required to have a transverse momentum
pT greater than 20 GeV, ensuring that the event can be triggered. Events that do not contain at
least one displaced µ are excluded by a cut that requires at least one muon with an impact
parameter of |d0| ≥ 2 mm. Furthermore, the displaced muon candidate is only valid if it emerges
from the same vertex as the displaced jet. A jet is considered displaced if it contains at least
two displaced tracks that originate from the same vertex within a radius of 100 μm. A track is
considered displaced if it has an impact parameter of |d0| ≥ 2 mm. Signal events are required to
have exactly one displaced j.

In addition to those basic cuts that define the signal, we demand µ isolation by requiring
that the displaced muon and displaced jet have a ∆R larger than 0.4 in order to reject muons
radiated from the jet. Furthermore, restricting the reconstructed heavy neutrino mass to the
N mass window of ±2 GeV around its theoretical value results in a cleaner signal. Generally,
displaced particles are only considered if their origin falls inside a cylinder with dimensions
given by half the tracker size in each direction. For the CMS phase II detector, this means
that displaced tracks must have an origin with a transverse distance smaller than 60 cm, and a
longitudinal distance smaller than 150 cm, from the primary vertex. This requirement ensures
that the produced particles propagate through a volume of the tracker that should be large
enough to facilitate detection. At the moment this is an optimistic assumption about the
performance of the displaced track reconstruction in the CMS tracker, however, we think that
pushing this capability is a worthwhile goal for the collaboration (see also [95] and references
therein). Although the reconstruction of NNOs discussed here mostly relies on displaced vertices
appearing in the inner tracker, it is also possible to reconstruct muon tracks and vertices using
the muon chambers [102–104].

4.3.2 Background

The cuts introduced above define the basic search strategy for the signal, which is based on
reconstructing a displaced vertex. The main sources of background for such a process are given
by heavy flavour SM processes generating long-lived heavy hadrons, interaction of particles with
dense detector material, and cosmic ray muons [28, 29].
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Signal Background
Heavy hadrons

Produced events Physical 2854 8.882 × 107

Simulated 5 × 104 1.1 × 107

Cuts

Exactly one prompt µ −23196 −6.50 × 106

Exactly one displaced j −21652 −4.48 × 106

At least one displaced µ −1396 −17411
µ isolation −838 −45
Vertex direction 0 0
Prompt e veto 0 0
W mass window −111 −3
N mass window −1211 0

Remaining events Simulated 1596 0
Physical 91 0

Table 4.2: Cut flow for the signal and the heavy hadron background events. The physical events are
given at an integrated luminosity of L = 3 ab−1 with a signal cross section of σ = 951 ab.

The heavy SM hadrons can travel macroscopic distances before they decay, potentially forming
displaced vertices. However, this is only possible if those heavy flavour particles, and consequently
their decay products, are highly boosted. Since the selection rules that define the signal already
require the displaced muon and the displaced jet to have a |d0| > 2 mm, this background is
strongly reduced [28, 105]. A W mass window cut around the reconstructed W boson mass
of ±20 GeV is employed to reduce the background even further. We simulated this background
using the same programs as for the signal events. The MadGraph syntax we used is

generate p p > mu all bb

where the additional multi particle

define bb = b b~

is defined. An additional hard initial jet was included by using

add process p p > mu all bb j

where MLM matching was enabled with the standard parameter choices of MadGraph. The
whole process was simulated using the model sm-no_b_mass, which employs the five flavour
scheme in the definitions of the protons and jets. After the parton level events are passed to
Pythia and Delphes, the above mentioned cuts and event selection rules were used, and it has
been found that the background is eliminated entirely. The cut flow for the simulated signal and
background is given in table 4.2.

Interactions of SM particles with detector material can also result in a displaced vertex signature
and thus have to be considered as part of the background. A map of regions containing dense
detector material is required in order to accept only displaced vertices that are outside that
region. Simulating this background requires detailed knowledge about the detector structure and
is beyond the scope of this work. However, requiring a displaced vertex to be reconstructed from
enough good tracks reduces this background. In an experimental analysis, a sophisticated track
reconstruction algorithm judges which tracks are good, in the sense that the track is likely to
be produced from a charged particle rather than detector noise. With no specific insight about
this algorithm, we define the tracks as being good that pass our cut and selection rules, which
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ensure that the charged particles traverse at least half the tracker. With the cuts introduced
to define the signal, it is ensured that each event contains at least three displaced tracks from
which the displaced vertex can be reconstructed.

In order to veto against cosmic ray muons, the vertex direction cut is implemented that
requires the reconstructed heavy neutrino momentum to be in the same direction as the displaced
vertex. For this the distance in (η, ϕ)-space between the reconstructed momentum pN and
the displaced vertex direction d is limited to ∆R ≤ 1.5. We assume that this background is
eliminated when using this cut in combination with additional timing information, therefore we
have not attempted to simulate it.

With the cuts described above, the signal region can be assumed to be background free.
Additionally we found that a prompt e veto, where prompt is again defined as |d0| < 100 μm,
with a pT ≥ 20 GeV does not affect the signal, such that it could be used to eliminate further
background if that becomes necessary.

4.4 Statistical Analysis

The number of events entering the cut based analysis is given by the luminosity times the cross
section for the considered process. The number of expected events after the cut based analysis
Nexp is then given by

Nexp = L σfeff , feff = Nafter cuts
Nall events

, (4.4.1)

where the efficiency factor captures how the cuts summarised in table 4.2 impact the number of
signal events. The set of events surviving all cuts is labeled Dall, and can be divided into LNC
events DLNC and LNV events DLNV. These datasets are then binned in the proper time τ space
and the number of events in the i-th bin are given by

Ni = |{E ∈ D | τE in i-th bin}| , (4.4.2)

where | · | is the cardinality such that e.g. Nexp = |Dall|. The heavy neutrino TOF τE is defined
as the proper time at which it decays in the event E.

4.4.1 Hypotheses

The shape of the histograms describing the heavy neutrino TOF may be predicted by two
hypotheses. In contrast to the null hypothesis, the alternative hypothesis features oscillations.

Null hypothesis The hypothesis without oscillations M0 is based on the assumption that,
for each bin, the probability of the heavy neutrino superposition to decay in a LNC process is
equal to the probability to decay in a LNV process. Therefore, the mean number of predicted
events in the i-th bin is given by

µ
LNC/LNV
i (M0) = 1

2µ
all
i (M0) . (4.4.3)

The probability of a given bin count can then be computed assuming a Poisson distribution of
bin counts around this mean. In principle, one would expect the predicted mean values of this
hypothesis to follow an exponential due to the finite lifetime of the heavy neutrinos. However,

71



M0 M1

Data µall
i µLNC

i

µ
LNC/LNV
i µLNV

i

0 10 20 30 40 50 600

200

400

600

800

cτ/mm

N

Figure 4.3: Example histogram ( ) with 15 k events, demonstrating the proper time distribution
after applying the cuts summarised in table 4.2. The inverse Gaussian distribution µall

i (M0) described
in (4.4.4) is depicted ( ) together with the prediction of the null hypothesis µLNC/LNV

i (M0) ( ). The
inverse Gaussian is shown with the parameters given in point 1 on page 74, where the normalisation is
approximated as N0 = 15500. The distribution of the alternative hypothesis (4.4.5) is shown for LNC
( ) and LNV ( ) events of BM1, with example value α = 0.05 for the washout parameter.

the employed cuts change this distribution into a non trivial one, which can be approximated by
the PDF of a generalized inverse Gaussian, described by four free parameters, yielding

µall
i (M0) = N0

2
τ „−1

i

—„K„(–/—) exp
(

− –

—2
τ2

i + —2

2τi

)
, (4.4.4)

where N0 denotes the overall normalisation, „ is the index parameter, — is the mean of the
distribution, and – is a scale parameter. Additionally, τi denotes the position of the middle point
of the i-th bin, and Kα(z) is the modified Bessel function of the second kind. The distribution is
shown in figure 4.3, where the parameters correspond to the best fit point estimated in point 1
on page 74.

Alternative hypothesis The second hypothesis M1 includes oscillations, with an oscillation
period given by (4.2.8), on top of the distribution described by the first hypothesis. Due to
the imperfect reconstruction of the Lorentz factor, an additional washout effect obscures the
oscillation pattern for larger τ . This effect is included by an exponential factor α, suppressing
the oscillation. The prediction for the mean number of expected events in a bin is then given by

µ
LNC/LNV
i (M1) =

[
1 ± cos(∆mτi)e−ατi

]
µ

LNC/LNV
i (M0) , (4.4.5)

where the two additional parameters ∆m and α are incorporated, resulting in a total of six free
parameters. Again, a Poisson distribution of bin counts, around this mean, is assumed. One
example of such oscillations is given in figure 4.3.

4.4.2 Likelihood ratio test

To test whether the hypothesis including oscillations is statistically preferred by the simulated
data, we use a likelihood ratio test. The main idea is to decide if the null hypothesis, given by
M0, can be discarded in favour of the alternative hypothesis, given by M1. The likelihood is
denoted by P ({Ni},M) and describes the probability of finding the measured bin counts {Ni}
given the hypothesis M. It is given by the product of likelihoods for all bins in both, the LNC
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and LNV, cases. With the assumed Poisson distributed number of events around the mean value
µi in the i-th bin, the likelihood of a single bin is given by

P (Ni, µi) = µi
Nie−µi

Ni!
, (4.4.6)

where, as introduced above, Ni is the number of events in the i-th bin, which depends on the
dataset and the binning.

The best fit point for each hypothesis, given the bin counts {Ni}, is evaluated by maximising
the corresponding likelihood. A hypothesis at its best fit point is denoted with a hat, e.g. M̂0.
Therefore, the likelihood ratio can be computed, given the bin counts, and yields

L({Ni}) = P ({Ni},M̂0)
P ({Ni},M̂1)

=
∏

i

P (NLNC
i ,M̂0)P (NLNV

i ,M̂0)
P (NLNC

i ,M̂1)P (NLNV
i ,M̂1)

. (4.4.7)

Taking the washout parameter to infinity in the alternative hypothesis reproduces the null
hypothesis. The two hypotheses are therefore nested and as a consequence the inequality3

P ({Ni},M̂0) ≤ P ({Ni},M̂1) , (4.4.8)

holds and hence the likelihood ratio is restricted by

0 ≤ L({Ni}) ≤ 1 . (4.4.9)

A likelihood ratio close to zero means that the given binned data are much better fitted by the
alternative hypothesis than by the null hypothesis. In contrast, a ratio close to one shows that
there is no clear distinction between the two hypotheses for the given binned data. Since in
practice the logarithm of the likelihood is better suited for numerical computations, we continue
the discussion using the logarithm of the likelihood ratio (LLR) which is defined as

Λ({Ni}) = −2 log(L({Ni})) . (4.4.10)

The LLR ranges from zero to infinity, where now a value near zero states that both, the null
hypothesis and the alternative hypothesis, produce an equally good fit of the binned data.
Contrary, a high value states that the alternative hypothesis produces a better fit.

Probability Caused by statistical fluctuations of the bin counts around their predicted mean,
the null hypothesis M̂0 can also feature an oscillation pattern, as demonstrated in figure 4.4.
Therefore, the value of a LLR alone does not contain enough information to decide whether
oscillations in a given dataset are significant or not. To translate the LLR into a significance,
it is crucial to know the probability that the null hypothesis produces the same LLR due to
fluctuations. Per construction, the most likely LLRs produced by M̂0 are small, and the larger
the LLR the less likely it is to be produced. The distribution of LLRs, generated by statistical
fluctuations, is the PDF of the LLR under the assumption that the null hypothesis is true. We
label it P.

The challenge is then to find a value kp, for which the probability of obtaining a Λ({Ni}) ≥ kp

through statistical fluctuations, is smaller than p. This means that p is the probability of
3 This inequality can by violated if not a global but a local maximum of the likelihood is found, while

searching for M̂1. Such a local maximum might result in a smaller likelihood for the alternative hypothesis
than the likelihood obtained by a fit of the null hypothesis.
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(a) Low significance
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(b) Intermediate significance
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(c) High significance

Figure 4.4: Three examples of statistical fluctuations in the null hypothesis, producing patterns that
mimic NNO. From panel (a) to panel (c) the oscillatory pattern becomes more distinct while the
probability that the depicted histogram is generated decreases.

rejecting the null hypothesis with respect to the alternative hypothesis, even though the null
hypothesis is true. Given P, the value of kp can be obtained via

∫ ∞

kp

P(k) dk = p . (4.4.11)

While in the limit of large sample sizes the PDF is typically assumed to approach a χ2 distribution,
the form of the PDF for finite sample sizes is generally unknown. Therefore a simulation is
performed, with the goal to sample the PDF, as follows

1. All simulated events that survive the cut based analysis are used to estimate the true
distribution of the null hypothesis M̂0, which is depicted in figure 4.3. For those events,
the best fit parameters of M̂0 are given by — = 10.81, – = 17.28, and „ = 0.71. The
overall normalisation parameter N0 is not relevant for the following steps as they only
depend on the PDF, which is normalised to unity.

2. To obtain a set of events that follows the null hypothesis, taking statistical fluctuations
into account, TOFs are taken according to the PDF from point 1. This is done un-
til the set contains Nexp signal events.

3. Using these TOF values, bin counts are computed using the binning parameters based on
equation (4.4.2).

4. The LLR is computed based on the bin counts from point 3.

By repeating points 2 to 4 the desired distribution can be obtained.

The obtained distributions are well approximated by χ2 distributions, where the DOFs are
treated as a free parameter. The values of the DOFs for the three BMs are given in table 4.3.

Significance With the so obtained PDF it is possible to compute the probability that a given
LLR produced from statistical fluctuations of the null hypothesis M̂0. This probability p can
be translated to a significance Z by comparing it to a standard normal distribution. A smaller
probability translates to a larger significance and a higher threshold kp. A significance of 5σ
corresponds to a probability of p ≈ 2.87×10−7, which for BM1 corresponds to a LLR threshold of
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BM χ2 DOFs k(5σ)
1 2.25 30.94
2 3.28 34.05
3 3.92 35.82

Table 4.3: Statistical fluctuations in the bin counts, following the null hypothesis, lead to a χ2 distribution
with given DOFs. The distributions are computed following the points 1 to 4 on page 74. The LLR
corresponding to a p value of 5σ are found to be increasing from BM1 to BM3.

kp ≈ 30.94. See table 4.3 for the values of the other BMs. Therefore, in the case of BM1, a LLR
greater than 30.94 can be interpreted as a discovery, where oscillations have been found with a
significance larger than 5σ. For very small LLRs, it is possible that the obtained probability
is greater than 50 %. Since for the translation into a significance a standard Gaussian is used,
cf. [106], the corresponding significance would be smaller than zero . However, in cases where the
LLRs are so small, the result should just be interpreted in the way that no oscillations could be
proven in the given data. The simulated events and the resulting statistical fit for two example
oscillations are shown in figure 4.5.

4.4.3 Data pre-processing

Some pre-processing of the events is performed to stabilise the numerics. In principle, it is
expected that for sufficiently large proper times alternative hypotheses with a washout parameter
greater zero produce the same bin counts as the corresponding null hypotheses. Therefore, the
LLRs are dominated by small proper times, for which the washout effect is also small. We have
found that the fitting algorithm used by us gives more reliable results when we consider only
these dominant oscillations. Therefore we do not use all events for the statistical analysis but
consider only a window containing the first oscillations. The details of this restriction for each
BM point are given in table 4.4. To help reduce noise in the data a Gaussian filter of radius
r = 1, which corresponds to a standard deviation of σ = r/2 in bin space, is applied to the bin
counts before the maximisation takes place.

4.5 Results

In this paper, the first ever analysis of NNOs at reconstructed level is performed. A detailed
statistical analysis is employed to obtain a significance describing the feasibility to resolve the
oscillations at the HL-LHC. To that end, three BM points with different oscillation periods, given
in table 4.1, have been simulated. All BM points feature a mean mass of the heavy neutrinos of
14 GeV as well as an active-sterile mixing parameter of |θµ|2 = 10−7. This leads to a decay width
of Γ = 13.8 μeV. The parameters are chosen such that the bounds of current collider searches
are well evaded. While BM3 captures the mass splitting of the minimal linear seesaw model,
producing the measured light neutrino data with an inverted hierarchy, BM1 and BM2 feature a
smaller mass splitting as discussed in section 4.2.2.

Secondary vertex smearing Since Delphes does not provide the experimental uncertainty
to reconstruct secondary vertices, we have introduced a free parameter governing Gaussian
smearing of the otherwise perfectly reconstructed secondary vertices. Figure 4.6a shows the
expected confidence with which oscillations could be observed in the data for a given smearing
of the secondary vertex. With our BM points, the number of signal events that survive the cuts,
shown in table 4.2, is roughly 90. This assumes a luminosity of 3 ab−1 which is the expected
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(a) The simulated events are based on BM1 with an
oscillation period of 15 mm. The best fit parameters
are given by an oscillation period of 14.08+0.85

−0.71 mm
and a washout parameter of α = 3.66+31.73

−3.66 × 10−3.
The LLR was found to be 51.0, which in this case
yields a significance of 6.66σ.
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(b) The simulated events are based on BM3 with
an oscillation period of 1.67 mm. The best fit
parameters are given by an oscillation period of
1.63+0.03

−0.04 mm and a washout parameter of α =
7.44+17.76

−5.45 × 10−2. The LLR was found to be 5.29,
which in this case yields a significance of 0.67σ.

Figure 4.5: Examples for the best fit of the alternative hypothesis to the data. For each parameter point
a luminosity of 3 ab−1 is used, resulting in a total of about 90 events after cuts. However, the number of
events contributing to the fit is based on the range of τ values used as given in table 4.4 and therefore
differs between the BMs. The fit has been performed based on the binning options in table 4.4. In these
examples the secondary vertex smearing has been neglected. The bands around the oscillations depict
the errors of one standard deviation, assuming a Poisson distribution for the event count in each bin.

total integrated luminosity of the HL-LHC [30]. A factor of two in the number of events can
easily be achieved by choosing BM points closer to the excluded region. Therefore we regard
this analysis as conservative. For each data point in the plot, 100 LLRs have been computed to
obtain a mean value and a standard deviation for the significance. The figure shows that for
an oscillation period of 15 mm in proper time space, corresponding to BM1, a significance of
5.19σ can be expected if no smearing is taken into account. Moreover, the significance is above
5σ up to a smearing of 2 mm, dropping to 4.46σ for a smearing of 4 mm. Parameter points
with smaller oscillation periods are affected stronger by the smearing. This is expected since a
smaller oscillation period in proper time space is related to a smaller oscillation length in lab
space. A larger smearing therefore results in a stronger washout for smaller oscillation periods.

Lorentz factor reconstruction Since it is crucial to reconstruct the Lorentz factor on an
event by event basis, we show in figure 4.6b how a better reconstruction of the Lorentz factor
as well as a higher luminosity makes it possible to observe oscillations even for BM3. The
reconstruction error directly effects the quality of the reconstructed oscillations in the proper
time frame. Therefore, if the error is too large for the mass splitting one wants to resolve
oscillations for, a higher event numbers only yields a limited improvement. This is shown by the
lowest line in figure 4.6b. In contrast the higher lines, that represent a smaller reconstruction
error of the Lorentz factor, benefit much more from a larger event number.
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BM cτmax/mm Bins Used events
1 60 30 87
2 60 30 85
3 15 60 42

Table 4.4: Binning parameters for the different BM points, as well as the number of events used in
the computation of the LLR. Note that for small samples of event surviving the cut based analysis,
as it is the case here, the number of events participating in the computation of the LLR undergoes
fluctuations, which contribute to the fluctuations in the obtained significances.

The quality of the reconstruction of the Lorentz factor is measured using the relative error of
the Lorentz factor, which is defined as

∆γ =
|γ2

gen − γ2
reco|

γ2
gen − 1 , (4.5.1)

where γgen is the true Lorentz factor of the heavy neutrino and γreco is the reconstructed one.
The set of events used for the analysis yields an exponential distribution of the relative errors of
the Lorentz factor. Most events have a small ∆γ, while only a small fraction of events have a
large ∆γ. The overall quality in the reconstruction can be measured by the standard deviation
of that exponential distribution. While a large standard deviation corresponds to many events
with a large relative error, and therefore to a poor reconstruction, the opposite is true for a small
standard deviation. Without any improvement, with respect to the Lorentz factor achieved in
this analysis, the events of BM3 yield ∆γ’s that result in an exponential distribution with a
standard deviation of 0.16. By improving the reconstruction such that the standard deviation
is reduced to 0.0096, the significance is improved from around zero to (3.37 ± 1.10)σ for 90
events. Additionally doubling the number of events yields a significance of (5.13 ± 2.28)σ. This
scaling is justified since we assume that it is possible to improve the LHC analysis presented
here, such that more signal events survive while the background is still eliminated. Additionally,
it is possible to choose a BM point closer to the experimentally excluded region as mentioned
earlier. Furthermore, future collider experiments, such as the ones at the FCC [107, 108], might
yield much higher luminosities as well as better reconstruction possibilities of the Lorentz factor
of the heavy neutrino.

Mass splitting dependency Oscillations can be used to resolve very small mass splittings.
However, from the discussion above it is clear that if the mass splitting becomes too large,
i.e. the oscillation period becomes too small, the reconstruction of oscillation patterns will be
challenging. This is shown in figure 4.7 where the oscillation period has been varied, using a
fast simulation described below. One can see that larger oscillation periods produce higher
significances. It is expected that the significance drops again if the oscillation period reaches the
mean lifetime of the heavy neutrinos, since then oscillations can not develop before the mass
eigenstates decay.

The fast simulation is based on the assumption that the kinematics of the events is independent
of the oscillation period. With this assumption, the oscillation period has no impact on the cut
based analysis. As a consequence, the sum of LNC and LNV events follows for all BM points
the same distribution, given by the null hypothesis. Thus it is possible to obtain a large sample
of valid signal events by combining the events passing all cuts of the three simulated BM points.
It is then possible to give each event a new tag, describing if that events should be counted as
LNC or as LNV. For this the TOF of the heavy neutrino is computed on a per event basis,
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Figure 4.6: Panel (a): Significance of the three BM points at a luminosity of L = 3 ab−1 as a function
of the secondary vertex smearing. Panel (b): Significance of BM3, as function of the number of events
surviving the analysis, for three different relative errors of the reconstruction of the Lorentz factor (4.5.1).
For this comparison no smearing has been taken into account.

using the relation
τ = |d|√

γ2 − 1
, (4.5.2)

where d is the position of the displaced vertex with respect to the primary vertex. The formula for
the oscillation probability can then be used to tag the event based on the new oscillation period.
At this point one has generated a sample of valid signal events with the new oscillation period.
After that, one can pick a random subset of this sample containing the physical number of events,
that can be computed using (4.4.1). Subsequently, the analysis to obtain the significance can be
applied to this subset of events. This strategy is orders of magnitude faster than performing the
full MC simulation and cut based analysis for each oscillation period separately.

4.6 Conclusion

In this paper, we have performed a first full analysis of NNOs at the reconstructed level. The
simulations are based on the FeynRules implementation of the pSPSS introduced in [2]. After
the generation of events at parton level with a patched version of MadGraph, hadronisation
and showers are simulated using Pythia. Subsequently, a fast detector simulation of the CMS
detector has been preformed using Delphes . The uncertainty in the reconstruction of the
displaced vertex has been implemented with a smearing function, that randomly selects a value
of the displaced vertex around its true value, based on a Gaussian. The analysis of the events is
performed using custom C++ and Mathematica code.

In our analysis we have focused on three BMs within the pSPSS, defined in table 4.1, with heavy
neutrino parameters conservatively chosen inside the region allowed by current experimental
constraints. The BMs differ by the heavy neutrino mass splitting, which is largest for BM1 and
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Figure 4.7: Significance as function of the oscillation period for 90 events. Three independently sim-
ulated BM points as well as eight points simulated using a fast simulation are depicted. Smear-
ing of the secondary vertices is neglected.

smallest for BM3. Simulating events containing heavy SM hadrons, we have shown that with the
event selection rules and cuts as defined in sections 4.3.1 and 4.3.2 the corresponding background
is completely evaded. It has also been argued that with the given cuts other backgrounds that
could not be simulated should also be evaded. Thus, the surviving signal events can be treated
as background-free. The statistical method to obtain the significance with which oscillations can
be found in the simulated data is described in section 4.4.

Our analysis shows that for small enough heavy neutrino mass splittings, corresponding to
large enough oscillation periods, it is possible to discover NNOs with the CMS detector at
the HL-LHC assuming 3 ab−1 integrated luminosity. The impact of the oscillation period, the
displaced vertex smearing, the number of events, and the error in the reconstruction of the
heavy neutrino Lorentz factor on the significance are shown in figures 4.6 and 4.7. For resolving
the NNOs, it is important that the smearing is smaller than the oscillation length in lab space.
Similarly, the variance of the TOF, due to the error in reconstructing the Lorentz factor, should
be smaller than the oscillation period. This is the case for BM1, for which a significance of
(5.01 ± 0.9)σ is obtained, assuming a smearing of 2 mm and around 90 total events relevant for
the analysis, cf. table 4.4. For smaller oscillation periods, as in BM2 and BM3, the significance
is below 3σ even if smearing is not taken into account.

However, we like to stress that smaller mass splittings might also be resolved with higher
significance if the reconstruction of the Lorentz factor is improved. This would not only
increase the significance itself but also improve the effect for larger event numbers as shown in
figure 4.6b. The event number could, e.g., be increased by choosing a parameter point closer to
the experimentally excluded region, cf. figure 4.1. Additionally, it might be possible to increase
the significance for smaller mass splittings by increasing the decay width of the heavy neutrinos,
i.e. parameter points with increased Yukawa couplings or mass. Then the heavy neutrinos would
decay faster and there would be more events in the first oscillation cycles such that resolving the
pattern becomes more feasible. However, more events would be lost by the d0 cut in this case.
In order to study the interdependence between such considerations, a scan over a larger sample
of benchmark parameters is necessary. In addition, the presented study might be improved by
more sophisticated background reduction and by optimising the window of considered TOFs
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Figure 4.8: Effects of the spin correlation sensitive cut d0, in comparison to the non-sensitive cut dT , on a
set of NLNC +NLNV events. For each of the three datasets, represented by histograms, 5 × 105 generator
level events, based on the values of BM3, have been simulated. All histograms are normalised with the same
factor, that ensures that the area under the uncut histogram in (a) sums to unity. Panel (a): Comparison
of the MC data before and after a dT cut of 4 mm. Panel (b): Impact of a d0 cut of 4 mm overlayed by the
pattern of LNV oscillations. Due to the angular dependence appearing in (4.A.1) the d0 cut does not only
generate a delayed onset but additionally imprints an oscillatory pattern originating in the LNV oscillations.

defined in table 4.4.

In summary, we have shown that the HL-LHC offers the exciting possibility to not only discover
the LNV induced by NNOs of long-lived heavy neutrinos, but also to resolve the NNO pattern.
Reconstructing the oscillation period would allow to measure this mass splitting and therefore
discover the pseudo-Dirac nature of the heavy neutrino pair. This would provide deep insight into
the mechanism of neutrino mass generation and could help to shed light on whether leptogenesis
is able to generate the baryon asymmetry of the universe (as discussed e.g. in [51]).

Appendix 4.A Residual oscillations

The transverse impact parameter d0, calculated for displaced tracks, is not only proportional to
the transverse lifetime of the decaying particle, but additionally contains a component depending
on the angle between the displaced vertex direction and the observed particle momentum. If the
magnetic field can be neglected, which we explicitly checked to be the case for the BM points
discussed in this paper, the transverse impact parameter is given by [2]

d0 = dT sin(φ(pN
T ,p

µ
T )) , (4.A.1)

where dT is the transverse distance of the displaced vertex and the sine measures the angle in
the transverse plane between the momenta of the heavy neutrino and the muon it decays into.
This sine introduces an angular dependency, sensitive to spin correlations in the process under
consideration. Since the LNC and LNV processes expose dissimilar spin correlations, the d0
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cut effects them differently. This leads to the observation of NNOs patterns in event samples
that are a priory insensitive to the difference between LNC and LNV processes. As an example,
figure 4.8 shows the residual oscillations appearing in a large sample of NLNC +NLNV events
after introducing a d0 cut. While the event sample with no cuts does not feature any oscillation
pattern, it is shown that the d0 cut results in residual oscillations, with peaks aligning with the
ones of the LNV oscillation pattern. It can be concluded that the d0 cut affect the LNC events
more severely than the LNV ones. By contrast, a cut on dT is independent of spin correlations
and thus no residual oscillations appear. We found that this effect is subdominant for smaller
event samples, such as in this analysis, and therefore neglected it in the main part of the paper.
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Chapter 5

Decoherence effects on lepton

number violation from heavy

neutrino-antineutrino oscillations

Abstract:

We study decoherence effects and phase corrections in NNOs, based on quantum field
theoretical with external wave packets. Decoherence damps the oscillation pattern,
making it harder to resolve experimentally. Additionally, it enhances LNV for
processes in symmetry-protected low-scale seesaw models by reducing the destructive
interference between mass eigenstates. We discuss a novel time-independent shift
in the phase and derive formulae for calculating decoherence effects and the phase
shift in the relevant regimes, which are the no dispersion regime and transverse
dispersion regime. We find that the phase shift can be neglected in the parameter
region under consideration since it is small apart from parameter regions with large
damping. In the oscillation formulae, decoherence can be included by an effective
damping parameter. We discuss this parameter and present averaged results, which
apply to simulations of NNOs in the dilepton-dijet channel at the HL-LHC. We
show that including decoherence effects can dramatically change the theoretical
prediction for the ratio of LNV over LNC events.

82



5.1 Introduction

The origin of the observed neutrino masses is one of the great open questions in current particle
physics. When the new particles involved in the neutrino mass generation have masses close to
the EW scale, it is possible to investigate this question at the LHC and future accelerators. One
possible extension of the SM of elementary particles that explains the observed light neutrino
masses is based on the introduction of sterile neutrinos, i.e. fermions which are uncharged under
the gauge symmetry of the SM [18], see also [19–24].

When they form Yukawa interaction terms with the lepton and Higgs doublets and, in addition,
have Majorana mass terms [25], light neutrino masses can be generated, which are then of
Majorana-type. However, when the sterile neutrino masses are around the EW scale, care has
to be taken not to exceed the bounds on the light neutrino masses [72]. When the Yukawa
couplings are not tiny, the smallness of the light neutrino masses is realised by an approximate
LNLS. The sterile neutrinos then form pseudo-Dirac pairs of nearly mass-degenerate heavy
neutrinos. Although LNV is significantly suppressed for prompt heavy neutrino decays, cf. [72],
it can lead to observable effects via the phenomenon of NNOs [1, 2], see also [40, 41, 44]. Since
the light neutrino masses become zero in the limit of exact LNC, observing LNV processes is
crucial for probing the origin of neutrino masses.

Due to the NNOs, the number of LNC and LNV events in a given process depends on the time
difference between the production and decay of the heavy neutrinos. Recently it has been shown
for a selected BMpoint consistent with present constraints, featuring a long-lived pseudo-Dirac
heavy neutrino pair, that NNOs could be resolved during the HL-LHC [3], see also [44]. However,
even when the oscillations are not resolvable, they can induce LNV. The total ratio of LNV over
LNC events, Rll, can be used to quantify the effect.

Decoherence and phase correction effects on NNOs are so far unexplored at the quantitative
level. Previous studies have used estimates to verify that decoherence effects can be neglected for
the considered BMparameters, e.g. [1, 3], or have assumed this to be the case. While decoherence
can, in principle, depend on various parameters, it has to be a function of the mass splitting of
the heavy neutrinos. This can be argued from the fact that for experimentally resolvable mass
splittings, the pseudo-Dirac pair must reproduce the phenomenology of two separate Majorana
neutrinos. In such cases, NNOs are expected to vanish. Thus, in regions where decoherence
effects are relevant, the simple NNO formulae have to be modified. Phase corrections for NNOs
have not yet been discussed.

One can calculate the possible decoherence and phase correction effects in NNOs using QFT
with external wave packets. The formalism is discussed in [38] and has been adapted to the
case of NNOs in [1]. In [2], the effective damping parameter λ is introduced, which contains the
collective effects of decoherence onto the LO oscillation formulae. In the present work, we explore
how decoherence and a time-independent phase shift affect NNOs as well as the quantitative
prospects for observing LNV.

The remainder of this publication is organised as follows: In section 5.2, we introduce the
external wave packet formalism. Afterwards, in section 5.3, we describe the derivation of the
damped oscillation probability for the general case and subsequently apply the results to the
case of NNOs in the SPSS. We show that the effects of decoherence can be summarised by
a damping parameter λ, leading to a simple extension of the oscillation formulae. Results for
λ, including its impact on Rll and searches for LNV, are discussed in section 5.4. Finally, we
conclude in section 5.5. Details of the analytical derivations of the oscillation probabilities are
presented in the appendices. The detailed steps necessary to integrate the transition amplitude
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over the intermediate particles’ momentum and travelled distance are presented in sections 5.A
and 5.B, respectively. The constant phase shift is discussed in section 5.C. The algorithm to
compute the damping parameter λ numerically is discussed in section 5.D, where the kinematics
of the considered process is simulated using the pSPSS introduced in [2, 91].

5.2 External wave packet formalism

In this section, we derive the transition amplitude between two external states that are prepared
as wave packets. This essential quantity is the main ingredient to derive an oscillation probability
following the arguments made in [1, 38]. It is defined as a function of a distance (t,x) in
spacetime1

A(t,x) =
〈
Φ(t′′,x′′)

∣∣∣∣ T exp
[
− i
∫

[dt‵]
∫

[d3x‵]H(t‵,x‵)
]

− 1
∣∣∣∣Φ(t′,x′)

〉
, (5.2.1)

where H(t‵,x‵) is the interaction Hamiltonian and T is the time ordering operator. In comparison
to the usual QFT approach, in which plane wave states |Φ(p)⟩ with momentum p are used, the
initial |Φ(t′,x′)⟩ and final ⟨Φ(t′′,x′′) | states are wave packets centred at the indicated points
in spacetime and can be written as a function of a plane wave state using

|Φ(t,x)⟩ =
∫

[ d3p

(2π)3
√

2E(p)
]ψ(t,x,p,p0) |Φ(p)⟩ , (5.2.2)

where E(p) is the energy of the particle, and ψ(t,x,p,p0) is the wave packet envelope which
describes the shape of the wave packet and is centred around the momentum p0. Assuming that
the external wave packets are Gaussian and approximating the matrix element at the peak of
those Gaussian functions, it is possible to evaluate the momentum integration over the external
wave packets, yielding the transition amplitude for a mass eigenstate i [38]

Ai(t,x) = N
∫

[dE]
∫

[d3p]Mi(E,p)Gi(s) exp[−f(E,p) − iϕ(t,x, E,p)] . (5.2.3)

Here Gi(s) is the denominator of the renormalised propagator with s = E2 − |p|2, Mi(E,p)
denotes the interaction amplitude, defined as the matrix element without the denominator of the
propagator, and N is a normalisation constant.2 The imaginary part of the exponent contains
the phase

ϕ(t,x, E,p) = Et− p · x . (5.2.4)

Here x is the distance, and t is the time difference between the production and detection point.
The real part of the exponent contains the energy-momentum envelope (EME). This name
is derived from the fact that it describes the shape of the intermediate particle’s wave packet
as a function of its energy and momentum. Its shape is defined by the shapes of the external
particles’ wave packets at the production P and detection D vertices V and is given by [38]

f(E,p) =
∣∣∣∣∣
p − p0
2σpP

∣∣∣∣∣

2

+
[
eP (E,p)

2σEP

]2
+ (P → D) , (5.2.5)

1 Quantities with a suppressed vectorial index are indicated by boldface.
2 The precise form of the normalisation constant N changes throughout the paper. However, the normalisation

constant can always be evaluated using an appropriate normalisation condition, as discussed in section 5.3.5.
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where

eV (E,p) = E − E0 − (p − p0) · vV , V ∈ {P,D} , (5.2.6)

Here E0 and p0 are the energy and momentum of the intermediate particle obtained from the
peaks of the external particles’ wave packets using energy-momentum conservation either at
the detection or production vertex. They are thus called reconstructed energy and momentum.
The (P → D) is a shorthand notation where quantities at production are replaced by similar
quantities at detection. If the EME is approximated as a Gaussian, its width can be interpreted
as the effective width σeff of the intermediate particles’ wave packet.

The total energy and momentum widths are given by the reciprocal sum of the respective widths
at the production and detection vertices

1
σ2

E

= 1
σ2

EP

+ 1
σ2

ED

,
1
σ2

p

= 1
σ2

pP

+ 1
σ2

pD

. (5.2.7)

Each of these widths can be expressed in terms of the widths of the external particles in position
space. The widths of the external particles in position space are parameters of the theory and
are determined by the experimental situation under consideration. In the following, we only
explicitly write definitions for quantities at production, while analogous definitions hold for
quantities at detection. The energy and momentum widths at this vertex are given by

σ2
EP

σ2
pP

= ΣP − |vP |2 , σpPσxP = 1
2 ,

1
σ2

xP

=
∑

n

1
σ2

xPn

, (5.2.8)

where σxPn
is the width of the external particle n in position space and

ΣP = σ2
xP

∑

n

|vPn
|2

σ2
xPn

. (5.2.9)

The velocity of the production region is defined by

vP = σ2
xP

∑

n

vPn

σ2
xPn

, vPn
=

pPn

EPn

. (5.2.10)

The particle with the smallest width dominates these terms unless its velocity is much smaller
than the velocities of the other particles. Since it holds that [38]

0 ≤ |vP |2 ≤ ΣP ≤ 1 , 0 ≤ ΣP − |vP |2 ≤ 1 , (5.2.11)

one can calculate that the energy and momentum widths obey the inequality

σE ≤ σp . (5.2.12)

From the EME equation (5.2.5), it follows that energies E and momenta p far from the
reconstructed energy E0 and momentum p0 are exponentially suppressed, where far is defined
according to the energy or momentum width, respectively. Additionally, damping from the
propagator is expected when the reconstructed energy and momentum are such that the
reconstructed mass

m2
0 = E2

0 − |p0|2 (5.2.13)

is far from the intermediate particles’ masses mi. This damping defines the shape of the
resonance, which in plane wave QFT would be given by the Breit–Wigner distribution.
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Figure 5.1: Flowchart depicting the integration steps from the spacetime-dependent transition amplitude
Ai(t,x) of the mass eigenstate i to the time and distance-dependent oscillation probabilities P(t) and
P(x), respectively. The terms appearing in the exponential part of the transition amplitude and the
oscillation probability are the energy-momentum envelope (EME) f , the phase ϕ, the decay term γ,
the dispersion term F , and the localisation term Λ. The last two terms give the main contribution
to decoherence. Thus they dominate the damping parameter λ.

5.3 Derivation of the damped oscillation probability

The transition amplitude equation (5.2.3) needs to be integrated over the energy and momentum
of the intermediate particle. The strategy to perform these integration steps is depicted in
figure 5.1. While the energy integral is performed using the Jacob-Sachs theorem in the following
section, the subsequent momentum integral is evaluated in section 5.A. The final step is a
distance average performed in section 5.B, contrasting the time average used in [38]. In this
publication, we express the oscillation probability as a function of elapsed time instead of distance
since the relevant observables naturally depend on the proper time of the oscillating particles
rather than their travelled distance.

For example, since the heavy neutrinos, once they are detected at a collider experiment, will
exhibit a range of Lorentz boosts, the oscillation pattern has to be translated into the proper
time frame of the heavy neutrino in order to be reconstructable, see [1, 3, 44]. Therefore, an
oscillation probability as a function of time, averaged over the distance, is more suited for this
purpose. The same applies to measurements of the Rll ratio, which is sensitive to the interplay
between NNOs and the decay of heavy neutrinos and, hence, naturally defined in the proper
time frame of the neutrinos. Furthermore, a distance average is more straightforward from a
technical point of view since there are fewer distance-dependent terms than time-dependent
terms in the relevant exponential, as can be seen in figure 5.1.

5.3.1 Energy integration via Jacob-Sachs theorem

To further evaluate the transition amplitude equation (5.2.3), the energy integral is evaluated
using the Jacob-Sachs (JS) theorem [54]. This theorem states that for times larger than a
threshold time tJS, which is estimated in section 5.3.2, and for functions Ψ(E,p) that are
non-zero only for a finite range of s = E2 − |p|2, the energy integral can be approximately
evaluated using

∫
[dE]Ψ(E,p)Gi(s) exp[− iEt] ≈ NΨ(E′

i(p),p) exp
[
− iE′

i(p)t
]
, (5.3.1)
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where the complex pole energy is defined in terms of the complex pole of the propagator as

E′2
i (p) = |p|2 + zi , zi = m2

i − imiΓi . (5.3.2)

while mi and Γi are the mass and decay width of the mass eigenstate i, respectively. After this
approximate integration, the transition amplitude reads

Ai(t,x) = N
∫

[d3p]Mi(E′(p),p) exp
[
−f(E′

i(p),p) − iϕ(t,x, E′
i(p),p)

]
. (5.3.3)

The pole energy can be rewritten as

E′2
i (p) = [1 − 2 i ϵi(p)]E2

i (p) , (5.3.4)

where the decay width expansion parameter, ϵi(p), and the mass eigenstate energy, Ei(p), are
defined as

ϵi(p) := γi(p)
Ei(p) , γi(p) := miΓi

2Ei(p) , E2
i (p) = |p|2 +m2

i . (5.3.5)

Under the assumption that the decay width is small compared to the mass eigenstate energy, the
phase, equation (5.2.4), can be expanded in the decay width expansion parameter, which yields

ϕ(t,x, E′
i(p),p) =

[
1 − i ϵi(p) + O

(
ϵ2i (p)

)]
Ei(p)t− p · x , ϵi(p) ≪ 1 . (5.3.6)

The real part results in the phase of the mass eigenstate i, while the imaginary part generates
an exponential decay term

ϕi(t,x,p) := Ei(p)t− p · x , γi(t,p) := γi(p)t . (5.3.7)

After the energy integration, the EME equation (5.2.5) of the mass eigenstate i can be approx-
imated to be

f(E′
i(p),p) = f(Ei(p),p) + O(ϵi(p)) , (5.3.8)

such that the LO term reads

fi(p) := f(Ei(p),p) =
∣∣∣∣∣
p − p0
2σpP

∣∣∣∣∣

2

+
[
eiP (p)
2σEP

]2
+ (P → D) , (5.3.9)

where
eiV (p) := eV (Ei(p),p) = Ei(p) − E0 − (p − p0) · vV . (5.3.10)

The derivation from which follows that higher orders in the decay width expansion parameter
can generically be neglected is presented in section 5.A.1. However, for very short times, the
O(ϵi(p)) terms can lead to a time-independent phase shift, discussed in section 5.C. In the
numerical calculation presented in section 5.D, these corrections are explicitly taken into account
by identifying the imaginary part as a correction to the phase.

Finally, the transition amplitude equation (5.2.3) after the energy integration equation (5.3.3)
takes the form

Ai(t,x) = N
∫

[d3p]Mi(p) exp[−fi(p) − γi(t,p) − iϕi(t,x,p)] , (5.3.11)

where NLO terms in the decay width expansion of the interaction amplitude Mi(p) = Mi(Ei,p)
are neglected. The remaining integrals are the three-momentum integral and an integral that
averages over distance or time.
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5.3.2 Applicability of the formalism

The Jacob-Sachs (JS) theorem used in the previous section is only valid for times larger than the
Jacob-Sachs threshold time tJS. It is defined via the diameter of the support of the intermediate
particle’s wave packet

t ≥ tJS := 1
|supp exp[−f(E,p)]| . (5.3.12)

Since the interaction amplitude, and therefore the wave packet envelope, must vanish for values of√
s−mi larger than the uncertainties, this support is estimated by the experimental uncertainty

in reconstructing the mass mi in [38, 54]. In the case of NNOs, where the mass of the heavy
neutrino has to be reconstructed from semi-leptonic decay products, assuming this uncertainty
to be of the order of one per cent of the heavy neutrino mass yields a time threshold of

tJS ≈ 100
m

= 1 GeV
m

6.58 × 10−23 s . (5.3.13)

In order to have a fraction f of particles decaying beyond that time requires decay widths of

Γ ≤ ΓJS := γ

tJS
ln 1
f
, (5.3.14)

where γ denotes the Lorentz boost factor. Demanding 99 % of all particles decaying later than
that time results in a JS width of

ΓJS ≈ m

1 GeV100 MeV , (5.3.15)

when assuming a Lorentz boost factor of γ ≈ 10, which is a reasonable estimate for the parameter
region considered in this work.

In contrast, the width of the wave packets of the external particles is estimated in section 5.4
using the size of the silicon atom radius and the proton-proton distance in a beam bunch for
final and initial states, respectively. This line of argument suggests that the neutrino wave
packet should be zero outside a range defined by the width of the wave packet in the squared
four-momentum s = p2

1
2σ2

s

= s

2E2
0σ

2
E

+ O(p − p0) (5.3.16)

Using the approximations derived in section 5.4.3, the numerical values given in table 5.1 and
further approximating

√
s = m, this estimate leads to a time threshold of

tJS ≈ γ

nσE

≈ 2γσp

n
≈ γ

n
200 nm ≈ γ

n
6.66 × 10−16 s (5.3.17)

where n is the number of standard deviations which is taken to define the support of the Gaussian
distribution. Requiring a fraction f = 99 % of particles decaying later than that time leads to a
decay width of

ΓJS ≈ n0.0199 eV . (5.3.18)

Taking the 5σ range leads to a JS decay width of about 0.1 eV. In order to be conservative, we
use this more restrictive value in the following.
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5.3.3 Dispersion regimes of the momentum integration

The integration over the three-momentum is carried out differently in three separate regimes
depending on how fast the phase varies over the effective width. For slowly varying phases, the
integral is evaluated using Laplace’s method. This regime is called the no dispersion regime
(NDR) since time-dependent dispersion effects can be neglected. In this regime, the argument of
the exponential in the transition amplitude equation (5.3.11) is expanded up to second order
in the momentum p around the position of the minimum of the EME at pi. Therefore, the
momentum pi maximises the exponential of the EME

pi = argmax
p

exp[−fi(p)] , (5.3.19)

The Hessian of the EME equation (5.3.9) with respect to the momentum is given at LO, i.e.
neglecting the mass splitting, by equation (5.A.10)3

˚0 = 1

2σ2
pP

+ uP ⊗ uP

2σ2
EP

+ (P → D) , uV := vV − v0 , (5.3.20)

and defines the inverse of the effective width of the intermediate particle.

2ff2
eff = ˚−1

0 . (5.3.21)

The matrix structure of ˚0 is defined by the two vectors uP and uD. Therefore, there exists a
vector which is orthogonal to both, and the corresponding eigenvalue is

|˚0|smallest = 1
2σ2

p

. (5.3.22)

Due to the inequality equation (5.2.12), this is the smallest eigenvalue leading to the largest
effective width. The other two eigenvalues, which are dominated by the energy width, are
therefore larger and approximately given by

|˚0|larger = |u|2
2σ2

E

+ O
(
σE

σp
, |vP − vD|

)
. (5.3.23)

This approximation is justified when the velocity vectors are almost aligned u :≈ uP ≈ uD and
the inequality equation (5.2.12) is large σE ≪ σp. The NDR applies to times shorter than the
short-time threshold equation (5.A.20)

t ⪅ tshort , tshort = |˚0|smallestE0 = E0
2σ2

p

. (5.3.24)

Since, in its derivation, the phase is required to vary slowly over the effective width of the EME
in all directions, the short-time threshold depends on the largest effective width and, therefore,
the smallest eigenvalue of the Hessian. The detailed computation is described in section 5.A.1.

When wave packets travel longer, the phase oscillates more rapidly as a function of p, such that
Laplace’s method, used in the short time regime, becomes unsuitable. Since the wave packets
are broader in directions transversal to the reconstructed momentum p0, an intermediate regime
exists in which Laplace’s method can only be used for the longitudinal direction. In contrast,
transversal directions are integrated using the method of stationary phase. This intermediate
regime is called the transverse dispersion regime (TDR). The method of stationary phase

3 Quantities with suppressed matrix indices are indicated by sans-serif font.
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Figure 5.2: Partition of the parameter space into longitudinal dispersion regime (LDR), transverse
dispersion regime (TDR), and no dispersion regime (NDR) through the long- and short-time thresholds
as a function of the heavy neutrino mass m. Panel (a) shows the partition in the lab frame dis-
tance ct as defined in equations (5.3.24) and (5.3.28) and panel (b) shows the partition in the
proper time τ frame as defined in equation (5.3.29).

yields px = py = 0, assuming that the longitudinal component, indicated by hatted variables, is
p0 = p̂0ez. Laplace’s method in the longitudinal direction results in

pi|z = p̂i = argmax
p̂

exp[−fi(p̂)] , p|x = p|y = 0 . (5.3.25)

The Hessian at LO is given by equation (5.A.38)

Σ̂0 = 1
2σ2

pP

+ û2
P

2σ2
EP

+ (P → D) = û2

2σ2
E

+ O
(
σE

σp
, |v̂P − v̂D|

)
, ûV := v̂V − v̂0 , (5.3.26)

where the last approximation holds for û :≈ ûD ≈ ûP and when the inequality equation (5.2.12)
is large, i.e. σE ≪ σp. Similar to the definition in the NDR equation (5.3.21), the effective width
in the TDR is defined as

2σ̂2
eff = Σ̂−1

0 . (5.3.27)

and the long-time threshold, which forms the upper bound for this regime equation (5.A.42), is
defined by

tshort ⪅ t ⪅ tlong , tlong = Σ̂0
E3

0
m2

0
= û2

2σ2
E

E3
0

m2
0

+ O
(
σE

σp
, |v̂P − v̂D|

)
. (5.3.28)

The computation leading to this result is presented in detail in section 5.A.2.

Longer times t ⪆ tlong are not relevant for the discussion of heavy neutrinos in the parameter
space of interest for this paper. However, for the respective regime, called the longitudinal
dispersion regime (LDR), the distance-dependent formulae derived in [1, 38] can be used.
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The short- and long-time thresholds equations (5.3.24) and (5.3.28) are given in the lab frame.
Using τ = tm0/E0 they can be reexpressed in the proper time frame as

τshort = |˚0|smallestm0 = m0
2σ2

p

, τlong = Σ̂0
E2

0
m0

= û2

2σ2
E

E2
0

m0
+ O

(
σE

σp
, |v̂P − v̂D|

)
. (5.3.29)

For heavy neutrinos appearing in the process presented in figure 5.3, these regimes are depicted
in figure 5.2 after averaging over 100 events. The partition based on distances is presented in
figure 5.2a. It shows that for experimental length scales smaller than about 100 km, only the
NDR and TDR are relevant, and the short-time threshold is of O(dm). The regimes in the
proper time frame are shown in figure 5.2b. For decay widths leading to lifetimes comparable to
the short-time threshold, it becomes relevant to quantify the fraction of events that fall into the
NDR and the TDR, respectively. Decay widths Γ ≈ τ−1

short result in a fraction of 1 − e−1 events
decaying before the threshold, and therefore inside the NDR. For decay widths Γ ⪆ 10τ−1

short
practically all events decay before the threshold. Contrary, for decay widths Γ ⪅ 10−1τ−1

short,
practically all events decay beyond the threshold, and therefore in the TDR. For decay widths
Γ ⪅ 10 peV, the LDR, becomes relevant.

5.3.4 Time dependent oscillation probability

The probability for a superposition of mass eigenstates i and j to yield the transition between
the given initial and final states, defined in the amplitude equation (5.2.1), is given by

P(t) = N
∫

[dx]x0+∆x
x0−∆x

∑

ij

Ai(t,x)A∗
j (t,x) . (5.3.30)

The normalisation constant N can be evaluated using the condition
∑

outgoing
P(t) = 1 , (5.3.31)

where the sum is understood to include all possible processes, i.e. decay channels of the in-
termediate particle. Since mass eigenstates acquire a complex phase while propagating, the
superposition of distinct eigenstates depends on a phase difference that varies with time and
distance, leading to a periodic fluctuation of the probability. Therefore, we refer to the probability
equation (5.3.30) as an oscillation probability. The position space integral in this probability is
performed in section 5.B.1 for the NDR and in section 5.B.2 for the TDR. After this integration,
the oscillation probability reads, according to results equations (5.B.16) and (5.B.31),

P(t) = N
∑

ij

Mij exp
[
−λ′

ij(t) − iϕij(t)
]
, λ′

ij(t) = fij + Λij + γij(t) + Fij(t) , (5.3.32)

where the product of the interaction amplitudes with their momenta evaluated at the peak of
the intermediate particle’s wave packet is

Mij = MiM
∗
j , Mi = Mi(pi) . (5.3.33)

From the definition of the oscillation probability equation (5.3.30), it can be seen that it
depends on the sum over the two mass eigenstates of the absolute value squared transition
amplitudes. Since the EME equation (5.3.9) and the decay term equation (5.3.7) are real-valued,
the probability depends on their sum

fij = fi + fj , γij(t) = γi(t) + γj(t) , (5.3.34)
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Figure 5.3: Feynman diagram depicting the heavy neutrino production at a hadron collider with
subsequent oscillation and semi-leptonic decay. In the external wave packet formalism, each external
particle’s width is a free parameter and needs to be adjusted according to the experimental setting.
We present our estimates for the external widths in table 5.1.

where their values at the minimum of the EME are given by

fi = f(Ei,pi) , γi(t) := γit , γi := γi(pi) = miΓi

2Ei
, E2

i = |pi|2 +m2
i . (5.3.35)

Contrary, the exponential term describing the phase equation (5.3.7) is imaginary, such that the
probability depends on the phase difference calculated in equations (5.B.13) and (5.B.27),

ϕij(t) = mijτ(t) , mij = mi −mj , τ(t) = m0
E0

t , (5.3.36)

where E0/m0 is the Lorentz factor of the intermediate particle and τ(t) denotes the proper time
the intermediate particle travels between production and decay. It vanishes when the mass
splitting becomes zero, e.g. if i = j. This expression is modified by subdominant NLO terms [1,
38] and augmented by a time-independent shift, see section 5.C.

From the derivation of the localisation term Λij in equations (5.B.15) and (5.B.30) as well as
the dispersion term Fij(t) in equation (5.B.21a), it can be seen that they inherit this dependence
on the mass splitting and that they are given by

Λij = 1
4

{
p
⊺
ij˚0pij NDR ,

Σ̂0p̂2
ij TDR ,

Fij(t) = 1
4

{
0 NDR ,

Σ̂−1
0 v̂2

ijt
2 TDR ,

(5.3.37)

with

pij = pi − pj , p̂ij = p̂i − p̂j , v̂ij = v̂i − v̂j , (5.3.38)

where the inverse of the effective width Σ0 is defined in equations (5.3.20) and (5.3.26). Both
the localisation and the dispersion term are decoherence terms and thus lead to a damping of
the oscillations. While the time-dependent dispersion term is absent in the NDR, it becomes
relevant in the TDR.

5.3.5 Heavy neutrino-antineutrino oscillation probability

From here on, we restrict to the LO phenomenology of symmetry-protected low-scale seesaw
models and heavy neutrino-antineutrino oscillations (NNOs) appearing in processes such as the
one presented in figure 5.3. The discussion is based on the symmetry protected seesaw scenario
(SPSS), recently introduced with its minimal phenomenological version, the pSPSS, in [2]. The
generation of light neutrino masses in seesaw models is directly related to the presence of LNV.
The process in figure 5.3 is LNC if the two charged leptons have opposite charges and LNV if
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they have equal charge. In this scenario the oscillation probability equation (5.3.32) for these
two possible processes takes the form

PLNV/LNC
αβ (t) = Nα(t)

∑

i,j

V
LNV/LNC

αβij exp
[
−λ′

ij(t) − iϕij(t)
]
. (5.3.39)

In comparison to reference [1, equation 2.28], the exponential has been replaced by the one
of the oscillation probability equation (5.3.32) containing, apart from the phase, additional
terms due to the wave packet nature of the involved particles. An additional term in [1], which
summarises the effects of the mass splitting in the interaction amplitudes, is neglected here since
we treat the oscillations at LO. The factors of the leptonic mixing matrix at production α and
decay β are collected in the terms

V LNC
αβij := VβiV

∗
αiV

∗
βjVαj , V LNV

αβij := V ∗
βiV

∗
αiVβjVαj . (5.3.40)

For the SPSS this results at LO in [2]

V
LNC/LNV

αβij = ±|θα|2|θβ|2
4

{
for LNC and for LNV with i = j ,

for LNV with i ̸= j .
(5.3.41)

where the active-sterile mixing angle is defined by

θ = y
v

mM

, (5.3.42)

with the SM Higgs VEV v ≈ 174 GeV and the Yukawa coupling of one sterile neutrino labelled
y, see [2]. The normalisation condition equation (5.3.31) for this scenario is evaluated for each
flavour at production and yields

1 =
∑

β

∑

LNC
LNV

PLNC/LNV
αβ (t) =

∑

β

∑

LNC
LNV

Nα(t)
∑

ij

V
LNC/LNV

αβij exp
[
−λ′

ij(t) − iϕij(t)
]

=
∑

β

Nα(t) |θα|2|θβ|2
2

∑

i=j

exp[−fij − γij(t)] .
(5.3.43)

In the last step, it has been used that the sum of leptonic mixing matrix factors over LNC and
LNV processes vanishes for i ̸= j. Since the dispersion term, the localisation term, and the phase
difference vanish for i = j, they are absent in the last line.

The oscillation probability equation (5.3.39) between the two mass eigenstates N4 and N5 is
then given by

PLNC/LNV
αβ (t) = |θβ|2

2
∑

γ |θγ |2 (1 ± exp[−λ45(t)] cos[ϕ45(t)]) ∀α , (5.3.44)

where the damping parameter takes the form

exp[−λ45(t)] = 2 exp[−λ′
45(t)]

exp[−f44 − γ44(t)] + exp[−f55 − γ55(t)] , (5.3.45)

and can be expressed as

λ45(t) := Λ45 + F45(t) − ln sech[f4 − f5 + γ4(t) − γ5(t)] . (5.3.46)
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Here sech(x) denotes the hyperbolic secant function, which is equal to one at the origin, and
decays exponentially for values |x| ≫ 1. For the parameter region and time scales considered in
this work, it is justified to assume that the two decay parameters are approximately equal such
that

λ45(t) = Λ45 + F45(t) − ln sech[f4 − f5] + O(ε) , ε = |γ4(t) − γ5(t)| , (5.3.47)

From the EME equation (5.3.9), it can be seen that its minimum goes to zero if mi = m0.
However, heavy neutrinos with distinct masses cannot have m4 =m0 andm5 =m0 simultaneously.
Therefore, we consider two more limiting cases:

On the one hand, in cases where the reconstructed mass is near the mean of the heavy
neutrino masses, with respect to the energy and momentum widths, the values of the EMEs are
approximately equal f4 ≈ f5. The normalisation then cancels these contributions, such that the
damping factor becomes

λ45(t) = Λ45 + F45(t) + O
(
ε2) , O(ε) = O

(
|γ4(t) − γ5(t)|

)
= O

(
|f4 − f5|

)
. (5.3.48)

On the other hand, configurations in which either the EMEs or the decay terms are significantly
different between the two mass eigenstates can lead to a damping of the oscillations. For example,
for mass splittings much larger than the energy and momentum widths, the minima f4 and f5
are very different. The result is that one of the mass eigenstates is favoured by the available
energy and momentum of the process, such that each event is dominated by one of the two
Majorana particles, and the phenomenology is that of a pair of Majorana neutrinos without
NNOs. If, e.g., ε = |γ4(t) − γ5(t)| ≪ 1 but f4 ≪ f5 the damping parameter is given by

λ45(t) = Λ45 + F45(t) − ln sech f5 + O(ε) = Λ45 + F45(t) + f5 + ln 1 + e−2f5

2 + O(ε) . (5.3.49)

This leads to significant damping if f5 ≫ 1. A similar argument holds for γ4(t) ≪ γ5(t). The
interpretation, in this case, is that if one of the mass eigenstates decays much faster than the
other, oscillations are significantly suppressed, and damping is large.

The reconstructed mass m0 has to be near to one of the pole masses m4 or m5 since otherwise,
the whole process is suppressed. This effect is similar to the resonant scattering, described by
an s-channel process with an intermediate particle of mass m. For cases in which |s−m| ≫ Γ ,
the process is suppressed compared to |s−m| ≪ Γ . In the present case, s is labelled m0, and
the width of the resonance is dominated by the energy and momentum widths.

While the definition of the damping parameter is derived in the context of NNOs in the SPSS,
the presented strategies for its evaluation also apply to more general processes.

5.4 Damped heavy neutrino-antineutrino oscillations

For the simulation of the damped oscillations discussed in the previous section, the parameters
that can impact the damping are

• The masses of the heavy neutrinos.

• The decay widths of the heavy neutrinos, correlated with the time the heavy neutri-
nos propagate between production and decay.

• The momentum configuration of the external particles.
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Production Detection

Particle
q q l l q q

W W

Width σp σl σl σj

(a) Classes.

σp σl σj

100 0.111 1.11

(b) Values in nm.

Table 5.1: Position space widths assumed for the external wave packets of the incoming and outgoing
particles appearing in the process presented in figure 5.3. For simplicity, we assume that the widths
fall into three distinct classes. The widths of the incoming particles σp are estimated by the LHC beam
bunch proton-proton distance. The widths of the outgoing leptons σl are estimated by the atom radius
of the silicon in the detector, and the width of the outgoing quarks and W bosons σj are estimated to
be ten times as large. Panel (a) shows the different classes the widths fall into, and panel (b) shows
our baseline estimates assumed for the simulations performed in this work.

• The wave packet widths of the external particles.

The masses of the heavy neutrinos can be described in terms of their mean mass and their mass
splitting

m = m4 +m5
2 , ∆m = m45 = m5 −m4 . (5.4.1)

The considered process and the heavy neutrinos’ mean mass restrict the external particles’
momentum configuration. Since the exact momentum configuration changes on an event-per-
event basis, a general result is obtained by averaging the computed damping parameter over
several events. Realistic momentum configurations are generated using the general purpose MC
generator MadGraph5_aMC@NLO [109] together with the FeynRules [92] implementation
of the pSPSS defined in [2, 91]. The numerical computation, obtained using the algorithm
presented in section 5.D, takes the decay time of the heavy neutrino into account and is
accordingly performed either in the NDR or in the TDR.

In order to simulate the process shown in figure 5.3, the widths of the external particles’ wave
packets in position space need to be estimated. When the heavy neutrino is lighter than the
W boson, the first W boson can be on-shell such that its width can be directly estimated. In
contrast, the second W boson is off-shell, and the external widths of its decay products must be
estimated. The situation is reversed if the heavy neutrino is heavier than the W boson. The
wave packet widths in configuration space of the incoming particles σp are assumed to be defined
by the average distance between two protons in a beam bunch [110]. The wave packet width of
the outgoing leptons σl is assumed to be defined by the atom radius of silicon present in the
detector material. Final quarks and the final W boson are expected to have a larger uncertainty
than final leptons, such that their width σj is given by 10σl. See table 5.1 for more details.

5.4.1 Decay width dependence of the damping parameter

The mean decay width of the heavy neutrinos determines the time range the neutrino can
propagate before it decays. It is thus possible to examine the time dependence of the damping
parameter λ = λ45(t) by studying its dependence on the decay width. A numerical computation
of the damping parameters for fixed mean masses of heavy neutrinos is presented in figure 5.4a.
The shape of the contours depicting constant damping consists of three regions:

• To the right is a plateau stretching over several orders of magnitude. The plateau
demonstrates that the effects due to varying decay widths, and with it, the time de-
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Figure 5.4: Damping parameter λ as a function of Γ and ∆m. The contour lines for the damping
parameter are shown for two different masses m as a function of the decay width Γ and the mass splitting
∆m. The numerical results for the damping parameter λ averaged over 500 events per parameter point
are given four fixed values of exp(−λ) and in panel (a). The comparison between the numerical results
and the analytical approximations for the no dispersion regime (NDR) and the transverse dispersion
regime (TDR) are given for λ = ln 2 in panel (b). The mass dependence is given in more detail in
figure 5.5. Very small decay widths of Γ ⪅ 10 peV are governed by the longitudinal dispersion regime
(LDR), which is not calculated in this work. Therefore, the predictions for these events are simulated
using the same techniques as for the events falling into the TDR and hence are not reliable. Note that
in the m = 500 GeV case, the analytical TDR line and the numerical line coincide.

pendence of λ, are not significant in this region. The plateau can be understood from
the result equation (5.3.37), noting that neither the momentum differences pij nor the
matrix Λij contains any terms in Γ or t at LO.

• For smaller decay widths Γ ⪅ 0.1 μeV the damping increases with decreasing decay width.
This effect is due to non-identical group velocities of wave packets of different mass
eigenstates, which causes the wave packets to separate over time and, in turn, causes
decoherence. The effect becomes larger for heavy neutrinos that live longer. However, if
only the first 100 oscillation cycles are considered, the effect vanishes, and the plateau in
the central section continues for small decay widths. Alternatively, the effect also vanishes
if decays inside a sphere of radius 50 cm are considered.4 Since these two restrictions
cover most phenomenologically interesting cases, the effects of decoherence due to the
separation of wave packets can be neglected in the parameter region under consideration.
In the following discussions, we assume these restrictions. They imply that the damping
parameter depends, in addition to the width of the external wave packet in position space,
only on the mean mass and the mass splitting of the heavy neutrinos, i.e. λ = λ(m,∆m).

In figure 5.4 the plateau extends beyond Γ = 0.1 eV, until where our numerical calculations
are applicable, as we discussed in section 5.3.2. Since the physics leading to the damping as a

4 Note that the 50 cm represents a somewhat randomly chosen value for which we have checked that the effects
can be neglected. It does not represent a boundary at which those effects become relevant.
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function of ∆m is independent of Γ at LO according to our analytical derivations in section 5.C,
we conjecture that we can extrapolate the plateau also to larger Γ . We make use of this
conjecture when we analyse the consequence of damping on Rll in sections 5.4.4 and 5.4.5.

The analytical damping formula equation (5.3.47), together with the approximated expressions
for decoherence equation (5.3.37), reproduces the plateau found in the numerical evaluation for
both regimes, as shown in figure 5.4b. Since the time-dependent dispersion is disregarded in the
NDR, the respective formulae do not feature the increased damping for small decay widths. In
the region where they are applicable, the analytical formulae are in good agreement with the
numerical results for m = 10 GeV and in almost perfect agreement for m = 500 GeV.

5.4.2 Mass dependence of the damping parameter

With the restrictions established in the last section, the damping parameter is time-independent
and can be studied as a function of the mean mass m and the mass splitting ∆m of the heavy
neutrino. This dependency is presented in figure 5.5. The numerical results are shown in
figure 5.5a, the results for the time-dependent analytic formulae equation (5.3.47) are presented
in figure 5.5b, and the results for a distance-dependent oscillation probability, as obtained
in [1, 38], are shown in figure 5.5c. While the numerical results in the NDR and the TDR are
approximately equal, the results for the approximated analytic formulae derived in sections 5.A
and 5.B differ between those regimes. Therefore, the results obtained from the analytical
computation are presented for each regime individually, while the presented numerical results
are valid in both regimes.

Since the time-dependent formulae for the damping factor are similar in the NDR and TDR, the
LO effects of the momentum dependence can be explained by studying the time-independent
part of the damping factor equation (5.3.48)

λ45 = Λ45 + O
(
ε,

t

tshort

)
= 2
(

p45 · uP

2σEP

)2
+ O

(
ε,

t

tshort ,
σp

σE

)
, (5.4.2)

where equations (5.3.23) and (5.3.37) are used, and the last approximation is obtained by
observing that, in both regimes, the energy width at production dominates the reciprocal sum
in the localisation term for the baseline estimate of external widths, defined in table 5.1b.
Although the exact dependence of the damping factor on the mass is complicated since the
process-dependent orientation of momenta and velocities change with varying mass, the sudden
decrease of damping around the W boson mass can be explained by a change in the energy width.
The energy width at production is given by a sum of all external particles at the production
vertex. For heavy neutrinos lighter than the W mass, this includes the initial W boson and the
initial charged lepton. For heavy neutrinos above the W mass, the initial W boson is off-shell,
and thus, the relevant particles are given by the two incoming quarks and the initial charged
lepton. An increase in the number of external particles participating in the production process
results in a sudden increase in the energy width, which results in a sudden decrease in damping.

The shape of the contours describing constant damping is very similar for all computation
methods in all regimes, except for the distance-dependent formulae in the NDR. This difference
can be traced back to the localisation term in the NDR, which takes the form

Λij = 1
2

{
p
⊺
ij(∂x,xFij(t,x))−1pij

Eij(∂t,tFij(t,x))−1Eij

}
= 1

4

{
p
⊺
ij˚0pij time dependent ,
E2

ij

(
v
⊺
0˚

−1
0 v0

)−1 distance dependent .
(5.4.3)

where Eij := Ei −Ej and Fij(t,x) is the spacetime envelope (STE) in the NDR equation (5.B.5).
The time-dependent formula is given in equation (5.3.37), and the distance-dependent one
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(c) Distance dependent formulae.
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Figure 5.5: Simulation results for the damping parameter λ for four values of exp(−λ) as a function of
the mass m and the mass splitting ∆m using the numerical analysis from section 5.D in panel (a), the
time-dependent results from section 5.B in panel (b), and the distance-dependent results from [38] in
panel (c). Panel (d) compares these techniques. For the analytic results in panels (b) to (d), the results
for the no dispersion regime (NDR) and transverse dispersion regime (TDR) are shown separately.
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Figure 5.6: Dependence of the time thresholds and the damping parameter on the scaling of each external
wave packet width. The values for the widths of the baseline scenarios are given in table 5.1. The baseline
scenario for the time thresholds shown in panel (a) is given in figure 5.2, and the baseline scenario for
the damping parameter in panel (b) is given in figure 5.5a. The short- and long-time thresholds in
panel (a) are most sensitive to the scaling of the lepton σl and the proton σp widths, respectively. The
damping parameter in panel (b) is most sensitive to the scaling of the proton width.

can be found in [38, section 6.1.2, equation 99]. While the upper formula is proportional to
the eigenvalues of ˚0, the lower formula is proportional to the inverse of the eigenvalues of
˚−1

0 . Therefore, as long as the reconstructed neutrino velocity v0 is not parallel to one of the
eigenvectors of the effective width, this lead to significantly different damping behaviour.

The absence of the dispersion term in the NDR can yield different damping for each regime.
However, for the restrictions discussed in section 5.4.1, the effects of this term are expected to
be negligible. Together with the fact that all other additional effects considered in the numerical
derivation compared to the analytic one are small, the numerical and time-dependent analytical
results in both regimes are expected to be approximately identical. This is confirmed by the
results shown in figure 5.5. Therefore, the time-dependent results feature a smooth transition of
the damping between the NDR and the TDR. In contrast, for the distance-dependent results, the
damping in the NDR differs significantly from the results in the TDR. This smooth transition
can be seen as a further advantage of the time-dependent formulae, as derived in this work, over
the distance-dependent ones.

5.4.3 Wave packet widths dependencies

In order to understand the impact of the estimates for the widths of the external wave packets,
we rederive the previous results after rescaling individual widths by a factor of one hundred and
present their dependence on this scaling in figure 5.6.5

5 This scaling factor is chosen to generate large deviations from the baseline estimates to illustrate the
parameter dependence and does not represent uncertainty in the baseline estimates.
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The effects on the relevant time thresholds are presented in figure 5.6a. They can be understood
by considering their dependence on the external width given in equations (5.3.24) and (5.3.28).
While the momentum width σp depends on the smallest width in configuration space at production
and detection, which is given by the widths of the charged leptons σl, the energy width σE

depends, according to the following argument, mainly on the proton width σp.

The energy width depends on the two smallest widths at production and detection. While the
smallest width is cancelled by the global factor of σpP or σpD, respectively, the second smallest
width dominates the energy width equation (5.2.8). For the baseline of external widths, see
table 5.1, the energy width at production is much smaller than the corresponding energy width
at detection. The reciprocal sum of those energy widths, precisely σE , is thus dominated by the
proton width.

In figure 5.6b, we show that the main impact on the damping parameter is due to the proton
width by individually varying the external widths. This relation can be traced back to the fact
that the damping is dominated by the energy width, see approximation equation (5.4.2).

The effect of the non-monotonous behaviour of the contour around the W boson mass in
figure 5.6b is reduced when varying the jet width. The non-monotonous behaviour can be
explained by a change in the number of particles participating in production and detection, as
described in section 5.4.2. The change in the number of particles is the opposite for production
and detection, such that it weakens if the energy widths at production and detection are similar.
Multiplying the jet width by a factor of 100 has precisely the effect of equalising those energy
widths.

From the above results, it becomes clear that the value of the external widths plays an essential
role in the prediction of decoherence and merits further dedicated studies.

5.4.4 Decoherence effects on Rll

The ratio between the number of LNV and LNC decays is called Rll. Since it is calculated by
integrating over the NNOs, it is affected by decoherence. Therefore, it is necessary to know the
amount of damping to predict its value as a function of, e.g., the mean mass and the active-sterile
mixing parameter.

The probability of obtaining an LNC or LNV event, between proper times τmin and τmax, is
given by the integral [2]

P
LNC/LNV
ll (τmin, τmax) =

∫ τmax

τmin

Pdecay(τ)P LNC/LNV
osc (τ) dτ , (5.4.4)

where τ = m0/E0t is the proper time. Here, the decay probability density is given by

Pdecay(τ) = − d
dτ exp(−Γτ) = Γ exp(−Γτ) , (5.4.5)

and the oscillation probability is given by equation (5.3.44)

P
LNC/LNV
osc (τ) = N

(
1 ± exp

[
−λ− µ2τ2

4

]
cos[∆mτ ]

)
, (5.4.6)

where the time dependence of the damping parameter equation (5.3.47) has been made explicit
by defining the parameter µ using the dispersion term in the TDR equation (5.3.37). In the
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limit τmin → 0 and τmax → ∞ the integral and the ratio of LNV over LNC events is given by

P
LNC/LNV
ll (λ, µ) ∝ 1 ± f(λ, µ)

2 , Rll(λ, µ) = 2
1 + f(λ, µ) − 1 . (5.4.7)

where the function that appears in both quantities is

f(λ, µ) =
erfcx[Γ ′

−(µ)] + erfcx[Γ ′
+(µ)]

2 Γ ′
λ(µ) , (5.4.8)

which is defined in terms of

erfcx(x) = exp(x2)[1 − erf(x)] , Γ ′
±(µ) = Γ ± i∆m

µ
, Γ ′

λ(µ) = Γ

µ

√
π

expλ . (5.4.9)

Here erfcx(x) is the scaled complementary error function, which decays exponentially for negative
x approaches one for small x and is inversely proportional to x for large x. For a subleading
time dependence in the damping parameter, the function can be approximated using

f(λ, µ) = f(λ, 0)
(

1 − Γ 2 − 3∆m2

Γ 2 +∆m2
ε

2 + O
(
ε2)
)
, ε = 1

Γ ′
−(µ)Γ ′

+(µ) = µ2

Γ 2 +∆m2 . (5.4.10)

The LO term corresponds to the limit µ → 0, which captures the NDR. In this limit the
equations simplify to

f(λ, 0) = f(0, 0)
expλ , Rll(λ) := Rll(λ, 0) = 1 − 2

1 + (1 + ∆m2/Γ 2) expλ , (5.4.11)

where the damping independent term f(0, 0) corresponds to the term that appears when taking
furthermore the limit that also the constant localisation term can be neglected, λ → 0, which
recovers for the ratio of LNV over LNC events the known result [2, 41]

f(0, 0) = Γ 2

Γ 2 +∆m2 , Rll(0, 0) = ∆m2

∆m2 + 2Γ 2 . (5.4.12)

In cases where the damping is large λ(τ) ≫ 1, the coherence between the propagating mass
eigenstates is lost, and the phenomenology is that of two independent Majorana neutrinos.
Increasing λ, therefore, increases the observed Rll compared to the naive case that does not take
damping into account. This behaviour is depicted for time-independent damping in figure 5.7a.
Therefore, when considering Rll(λ) as a function of ∆m and Γ , parameter regions with large
damping must have a large Rll and lines representing a smaller Rll cannot penetrate those
regions. As depicted in figure 5.7b, the contours representing the naive Rll are given by constant
ratios between Γ and ∆m. However, damped Rll contours are bound from above by regions of
large damping. Therefore, once damping becomes relevant, the Rll bands follow the contour
lines of the damping parameter shown in figure 5.4.

5.4.5 Decoherence effects on prompt searches for lepton number violation

For the part of the parameter space where heavy neutrinos decay promptly, direct discovery of
oscillations by resolving them as proposed in [3] is not possible. However, the integrated Rll ratio
introduced in the last section can still be measured. Hence, it is relevant to predict this ratio for
the realistic benchmark models (BMs)of the linear and inverse seesaw, introduced and motivated
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Figure 5.7: Decoherence effects on the Rll ratio for values in Rll ∈ [0.1, 0.9]. Panel (a) depicts the
functional dependence given in equation (5.4.11) as a function of the naive value equation (5.4.12),
i.e. assuming λ = 0 and the damping parameter. The simulation results for the impact of decoher-
ence effects in the (Γ,∆m) parameter space are presented in panel (b). Results for the damping
parameter λ are used, as discussed in section 5.4.1.

in [2] and summarised in table 5.2. While the heavy neutrino mass splitting in the inverse
seesaw scenarios depends on the active-sterile mixing parameter, defined in equation (5.3.42),

∆m = mν |θ|−2 , (5.4.13)

the mass splitting in the linear seesaw scenarios is fixed for each BMpoint. Therefore, in the
inverse seesaw, it is always possible to restore coherence and the naive value of Rll by considering
larger values of the active-sterile mixing parameter and, accordingly, smaller mass splittings.
However, in the linear seesaw, the damping solely depends on the mass of the heavy neutrinos.
When it becomes relevant, coherence is lost independently of the value of the active-sterile
mixing parameter.

The effects of decoherence onto the Rll bands of the linear and inverse seesaw BMscenarios
are depicted in figure 5.8. For our baseline estimates of external particle widths, the damping
becomes relevant for mass splittings ∆m ⪆ 1 eV as shown in figure 5.5a. The presented BMpoints
for the inverse seesaw feature such mass splittings for values of the active-sterile coupling in
the range of 10−4 < |θ|2 < 10−1. Therefore, the Rll bands deviate from the naive ones in that
region. As discussed above, the bands then follow the contour lines of the damping parameter,
such that large damping results in an Rll of one. The mass splittings for the BMpoints for the
linear seesaw are such that decoherence effects can be neglected for our baseline estimate of
external particle widths, defined in table 5.1. Consequently, the Rll bands do not deviate from
the naive ones in this case.

However, the situation changes if different widths of the external wave packets are assumed.
As shown in figure 5.6b, the most significant effect on the damping is given by varying the
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Seesaw ∆m Hierarchy BM

Linear ∆mν
Normal ∆mν = (41.46 ± 0.29) meV
Inverted ∆mν = (749 ± 21) μeV

Inverse mν |θ|−2
mν = 0.5 meV
mν = 5 meV
mν = 50 meV

Table 5.2: Summary of the five benchmark models (BMs)considered in this publication, resulting in
various mass splittings of the heavy neutrinos ∆m. Since the SPSS with one pseudo-Dirac pair captures
the minimal linear seesaw, it suffices to define one BMfor each light neutrino mass hierarchy that
reproduces the observed mass splitting between two massive light neutrinos ∆mν [89]. In the case
of the inverse seesaw, the single pseudo-Dirac SPSS represents an incomplete theory since the model
generates only one of the two light neutrino masses. Therefore, we define the mass splitting as a function
of the generated neutrino mass mν , for which three BMvalues are defined.

0.10.20.30.40.50.60.70.80.9Rll
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Inverted 5 × 10−3 eV
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Figure 5.8: Bands of the LNV over LNC event ratio Rll ∈ [0.1, 0.9] for the five BMs defined in table 5.2.
The genuine results, taking damping into account as discussed in section 5.4.1, are depicted as coloured
bands, while the naive results that neglect damping are shown as grey bands. The mass splittings of
the two BMs of the linear seesaw are too small to be affected by decoherence, as seen at the lowest two
bands. However, the three BMs for the inverse seesaw, forming the uppermost three bands, deviate
from the grey bands beneath them. Hence, for a fixed prediction of Rll, the value of the squared
active-sterile mixing parameters between the genuine and the naive results can vary by up to four
orders of magnitude. The grey area indicates displaced searches by CMS, and ATLAS [28, 29]. The
shaded grey areas indicate searches for LNV signals by CMS and ATLAS [26, 27]. The two black
lines at low masses indicate the reach of the HL-LHC and the FCC-ee [95, 96, 111]. The two black
lines at high masses indicate the reach of the LHeC and FCC-eh [98].
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(a) Scaling of σp by ÷100.
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Figure 5.9: Impact of scaling the proton width σp on the Rll ratio. The naive Rll bands are depicted
as grey lines, and the coloured lines represent the Rll taking decoherence into account. Dividing the
proton width by a factor of 100 reduces damping, as shown in panel (a). Therefore, the effects in the
inverse seesaw are only significant for smaller values of the active-sterile mixing parameter. Contrary,
multiplying the proton width by a factor of 100 results in enhanced damping, see panel (b). The effects
in the inverse seesaw are then already significant for larger values of the active-sterile mixing parameter.
With enhanced damping, decoherence becomes relevant also for the linear seesaw with normal ordered
light neutrino masses. Since the mass splitting of the heavy neutrinos in the linear seesaw is fixed, the
damping parameter only varies as a function of the mass. Therefore, damping is relevant for masses in
the range 10 GeV ⪅ m ⪅ 120 GeV, where the contours in figure 5.5a show a local minimum.

proton width σp. Hence the effect of this variation on the Rll bands are depicted in figure 5.9.
If the proton width is divided by 100, the damping becomes relevant only above mass splittings
∆m ⪆ 120 eV. This results in the deviation from the naive Rll only at smaller values of the
active-sterile mixing parameter in the inverse seesaw, while the linear seesaw is still not affected
as depicted in figure 5.9a. On the contrary, if the proton width is multiplied by 100, the damping
already becomes relevant for mass splittings ∆m ⪆ 10 meV. The Rll bands of the inverse seesaw
BMpoints now deviate from the naive results already for larger values of the active-sterile
mixing parameter, and the effects on the linear seesaw BMpoints are also relevant, as shown in
figure 5.9b. The mass splitting of the linear seesaw with inverted ordering of the light neutrino
masses is still too small for decoherence to become relevant. However, for the normal ordered
linear seesaw, damping must be considered. From figure 5.6b, it can be seen that the mass
splitting of the normal ordered linear seesaw results in a small damping for masses m ⪅ 10 GeV
and 120 GeV ⪅ m. However, for masses in the range 10 GeV ⪅ m ⪅ 120 GeV, corresponding to
the local minimum observable in figure 5.5a, decoherence becomes relevant. The largest damping
is around m ≈ 50 GeV, and thus the observed Rll deviates from the naive one in this region.
Since, as discussed above, coherence cannot be restored by varying the active-sterile mixing
parameter as in the case of the inverse seesaw, the observed Rll is close to one in this mass range
for all values of the active-sterile mixing angle. Therefore, the Rll bands form a pole around
m ≈ 50 GeV as shown in figure 5.9b.

The effects of the damping parameter are crucial when reinterpreting prompt searches for LNV
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signals. Regions that result in an Rll close to zero for a considered model do not yield any LNV
events and, thus, are not restricted by these searches. However, if damping is significant, the
true value of Rll might significantly deviate from the naive one, as discussed above. Therefore,
decoherence effects can result in prompt searches for LNV becoming applicable in regions of the
parameter space that seem unconstrained when neglecting decoherence.

5.5 Conclusion

Low-scale symmetry-protected seesaw models generically predict the appearance of pseudo-
Dirac pairs of heavy neutrinos. It is usually expected that for such models, LNV is severely
suppressed [72]. However, these considerations omit the crucial possibility of heavy neutrino-
antineutrino oscillations (NNOs) which can lead to a sizable number of LNV events if the
oscillation period is shorter or of the same order as the lifetime of the heavy neutrinos [2]. In
particular, for long-lived heavy neutrinos, the oscillation pattern between LNC and LNV events
may be reconstructible in collider experiments [3]. Apart from NNOs, decoherence can yield
observable amounts of LNV by reducing the destructive interference between propagating mass
eigenstates and, with it, the suppression of LNV. While this obstructs the reconstruction of the
oscillation pattern, it also enhances the chances of observing LNV when the heavy neutrino’s
lifetime is smaller than its oscillation period. In this work, we have quantitatively studied this
effect for the first time.

To this end, we have derived oscillation probabilities for NNOs in the framework of QFT with
external wave packets, extending previous results, see [38], with a reformulation that depends
on the time difference between production and decay of the heavy neutrinos. The derivations
presented here are not only technically simpler than results that depend on the distance between
production and decay of the heavy neutrinos but also more readily applicable to cases where
an interplay between the oscillation period and lifetime is relevant, such as the LNV over LNC
event ratio Rll and the reconstruction of the NNO pattern, which requires a translation of
the oscillations into the proper time frame of the heavy neutrinos [1, 3, 44]. The analytical
calculation relies on expansions in small parameters and differentiates between the NDR and
the TDR that apply for short and longer-lived particles. The numerical comparison shows that
the time-dependent results for the NDR and TDR are almost identical, such that a smooth
transition connects the two regimes. On the contrary, in the distance-dependent results, the
differences between the two regimes are significant such that no smooth transition is possible.
We have compared the time-dependent analytical results with a numeric calculation using MC
data and confirmed a broad range of applicability.

In [2], we proposed using a single damping parameter λ that encodes all decoherence effects in
NNOs. Here, we provide the formulae necessary to calculate this damping parameter from first
principles as a function of the heavy neutrinos’ mean mass and mass splitting. To that end,
we provide the conditions under which the dependence on the decay width Γ and, therefore,
the dependence on the propagation time between the production and detection of the heavy
neutrinos can be neglected. Based on our analytical results, we conjecture that the dependence
of λ on m and ∆m also extends to Γ larger than the ones we calculated numerically.

Furthermore, we discussed a novel time-independent contribution to the phase and derived
analytical formulae for this phase shift in the no dispersion regime and transverse dispersion
regime. However, in the parameter region under consideration, the phase shift can be neglected
since it is either small or damping is large, which results in a suppression of the phase shift
effects.
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The employed framework depends on the widths of the external particles’ wave packets in
position space. These input parameters need to be adjusted to the described experimental
situation. We have picked well-motivated values in order to present our results. Additionally, we
have discussed the dependence of relevant quantities on changes in these parameters. We have
also discussed possible limitations of applicability of the formalism from the JS time threshold.
In our computations, we followed a conservative approach restricted to Γ < ΓJS = 0.1 eV.

We illustrate the impact of decoherence by presenting bands of Rll in the (m, |θ|2)-parameter
plane and show significant deviations from the predictions when decoherence is neglected. Hence,
we quantify for the first time how the transition of a coherently oscillating pseudo-Dirac pair
to two independently acting Majorana particles affects the phenomenology and, therefore, the
discovery prospects of symmetry-protected low-scale seesaw models.

From the results of this work, it is clear that the possibility of decoherence has to be considered
when studying LNV signatures. Large decoherence not only suppresses the oscillation pattern
but also disables the mechanism that suppresses LNV for a pseudo-Dirac pair. Therefore, the
phenomenology of a pseudo-Dirac pair changes significantly in regions of parameter space that
exhibit sizable decoherence.
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Appendix 5.A Momentum integration

The integration of the transition amplitude equation (5.3.11) over the three-momentum of the
intermediate particle is performed using different techniques depending on how fast the complex
phase varies over the width of the intermediate particles’ wave packet. In the no dispersion regime
(NDR), the phase varies slowly such that the integral is approximated around the maximum
of the intermediate wave packet up to the second order in the momentum. This method is
referred to as Laplace’s method. If the phase varies rapidly over the intermediate wave packet,
the method of stationary phase is used, where the largest contribution to the integral is obtained
near the point for which the phase has an extremum. In the transverse dispersion regime (TDR),
the phase varies slowly in directions transversal to the reconstructed momentum p0, while in
the longitudinal direction, Laplace’s method can still be used. The third regime, called the
longitudinal dispersion regime (LDR), in which the method of stationary phase has to be used
for all directions of the momentum p, is not relevant to the phenomenology considered in this
work. In the following, we treat the NDR and the TDR separately and derive an oscillation
probability in each of them.

5.A.1 No dispersion regime

For short times the phase equation (5.3.7) varies slowly, as a function of the momentum, over
the size of the intermediate particles’ wave packet given by the EME equation (5.3.9). Thus
the momentum integration can be performed using Laplace’s method, where the integral is
approximated around the momentum pi for which the EME together with the decay term
equation (5.3.7) is minimal. Hence a necessary condition that needs to be fulfilled in order to
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apply Laplace’s method is
d

dp
(fi(p) + γi(t,p))

∣∣∣∣
p=pi

= 0 . (5.A.1)

While the EME yields a Gauss-like shape for the amplitude with a maximum near the recon-
structed momentum, the decay term favours large momenta. Therefore we are interested in
the minima of the EME. For the analytic computation, it is assumed that the impact of the
decay term on the position of the maximum is negligible, which can be justified if the decay
term varies slowly over the width of the intermediate particles’ wave packet. The condition
for this assumption to be valid is derived in equation (5.A.24). However, in the numerical
computation in section 5.D, the effects of the decay term are taken into account. With the
decay term neglected, the position of the maximum is expanded around the maximum of the
reconstructed momentum

pi = p0 + p1δi + O
(
δ2

i

)
. (5.A.2)

where the mass splitting expansion parameter and the NLO term are

δi = m2
i −m2

0
2E2

0
, p1 = E0˚

−1
0

(
uP

2σ2
EP

+ uD

2σ2
ED

)
, uV = vV − v0 , V ∈ {P,D} , (5.A.3)

The matrix ˚−1
0 appearing in the NLO term of the expansion is the inverse of the Hessian of the

EME at LO in the momentum expansion, which is given in equation (5.A.10). Its eigenvalues
can be interpreted as effective widths of the wave packet of the intermediate particle mass
eigenstates in different directions, see section 5.3.3. The corresponding expansion of the energy
of the mass eigenstate at the minimum of the EME around the reconstructed energy yields

Ei = E0 + E1δi + O
(
δ2

i

)
, E1 = p1 · v0 + E0 , Ei = Ei(pi) . (5.A.4)

Finally, the expansion of the velocity of the mass eigenstate at the minimum reads

vi = v0 + v1δi + O
(
δ2

i

)
, v1 = p1 − v0E1

E0
, vi = vi(pi) . (5.A.5)

Expansion

In order to evaluate the momentum integral in the amplitude equation (5.3.11), each exponential
term is expanded up to second order in the momentum p around the minimum of the EME at
pi resulting in a function that can be evaluated using Gaussian integration as demonstrated in
section 5.A.1.

Energy-momentum envelope The expansion of the EME equation (5.3.9) around its
minimum at pi results in

fi(p) = fi + 1
2(p − pi)⊺˚i(p − pi) + O

(
|p − pi|3

)
, (5.A.6)

where the linear term vanishes since the evaluation is performed at the minimum. The constant
term and the Hessian of the EME at the minimum read

fi = fi(pi) , ˚i = ˚0 + O(δi) , (5.A.7)

where the constant term to LO in the mass splitting expansion defines the mass width

fi = f1δ
2
i + O

(
δ4

i

)
, f1 =

∣∣∣∣∣
p1

2σpP

∣∣∣∣∣

2

+
[
e1P

2σEP

]2
+ (P → D) , σm := E0

2
√
f1

(5.A.8)
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where

eiV := eiV (pi) = e1V δi , e1V := E1 − p1 · vV . (5.A.9)

and the LO term in the mass splitting expansion of the Hessian is

˚0 = 1

2σ2
pP

+ uP ⊗ uP

2σ2
EP

+ (P → D) . (5.A.10)

From the inequality equation (5.2.12) follows that the Hessian can be estimated to take values
within

1
2σ2

p

⪅ |˚i| ⪅
1

2σ2
E

, (5.A.11)

where |˚i| denotes that the considered inequality has to hold for all eigenvalues of ˚i.

Jacob-Sachs integration Solving the energy integral via the JS theorem as demonstrated in
section 5.3.1 introduces the complex pole energy equation (5.3.2). The dependence on the mass
eigenstate energy equation (5.3.4) can then be used to estimate the effects of the decay width
expansion parameter equation (5.3.5) on the EME

fi(E′
i(p),p) =

[
eP (E′

i(p),p)
2σEP

]2
+ . . . , (5.A.12)

where
eP (E′

i(p),p) =
√

1 − 2 i ϵi(p)
√

|p|2 +m2
i − E0 − (p − p0) · vP . (5.A.13)

and the ellipses denote terms that do not depend on the decay width expansion parameter,
and for simplicity, we only consider the term at production, keeping in mind that the same
arguments hold for the equivalent term at detection. Furthermore, assuming that the energy and
mass splitting expansion parameters are of the same order, the constant term and the Hessian
of the momentum expanded EME equation (5.A.7) are to LO

fi =
(
δi − i ϵi(p)

2σEP

E0

)2
+ . . . , ˚i =

(
uP

2σEP

)2
+ O(δi) + O

(
ϵ2i (p)

)
+ . . . . (5.A.14)

The effects of the decay width expansion parameter on the Hessian are subleading and can
therefore be neglected. While the effects on the EME are relevant, the term itself does only
contribute to the damping of the amplitude equation (5.3.11) if it differs greatly between different
mass eigenstates. This is due to the normalisation discussed in section 5.3.5. The effects of the
decay width expansion parameter are therefore neglected in the analytical derivation by using
equation (5.3.9) while they are taken into account in the numerical calculations in section 5.D.

Phase The expansion of the phase equation (5.3.7) around the minimum of the EME results
in

ϕi(t,x,p) = ϕi(t,x) + ∆i(t,x) · (p − pi) + 1
2(p − pi)⊺Ri(t) (p − pi) + O

(
|p − pi|3

)
, (5.A.15)

where the constant term, the linear coefficient, the Hessian, and the velocity of the i-th mass
eigenstate are

ϕi(t,x) = ϕi(t,x,pi) , ∆i(t,x) = vit− x , Ri(t) = 1− vi ⊗ vi

Ei
t , vi = pi

Ei
. (5.A.16)
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Since the inverse of ˚i can be interpreted as an effective width of the intermediate wave packet
equations (5.3.20) and (5.3.26), it can be used to quantify the condition that the phase varies
slowly over the width of the intermediate wave packet. Replacing |p − pi|2 in the expansion
series of the phase equation (5.A.15) with 2|˚i|−1 and requiring that the linear and quadratic
terms are small results in

2|∆i(t,x)|2 ≪ |˚i| , |Ri(t)| ≪ |˚i| , (5.A.17)

These conditions can be approximated to read

2|vit− x|2 ≪ |˚0| , |1− vi ⊗ vi|
Ei

t ≪ |˚0| . (5.A.18)

Since the averaging over the distance (or time) in a later step ensures that vit ≈ x, the linear
condition is automatically satisfied. The quadratic condition can be approximated as

t

Ei
≪ 1

2σ2
p

, (5.A.19)

where the eigenvalue of ˚0 containing σ2
p is used since it imposes the most restrictive condition,

see equation (5.3.22). For the same reason, the velocity-dependent parts in the contribution
from the phase can be neglected. This condition defines the short-time threshold up to which
this integration method is valid. It is given by

tshort
i = tshort + O(δi) = Ei|˚i|smallest , tshort = E0

2σ2
p

, t ⪅ tshort , (5.A.20)

and it is usually sufficient to work with the LO approximation.

Decay term The decay term equation (5.3.7) is also expanded up to second order in its
momenta around the minimum of the EME yielding

γi(t,p) = γi(t) − 𭟋𭟋𭟋i · (p − pi) + 1
2(p − pi)⊺Wi(t) (p − pi) + O

(
|p − pi|3

)
, (5.A.21)

where the constant term, the linear coefficient, the Hessian and the parameter appearing in
equation (5.3.5) evaluated at the minimum of the EME are given by

γi(t) = γit , 𭟋𭟋𭟋i(t) = viϵit , Wi(t) = 3vi ⊗ vi − 1
Ei

ϵit , γi = miΓi

2Ei
, ϵi = γi

Ei
. (5.A.22)

Similar to the conditions appearing in the evaluation of the phase equation (5.A.17), two
conditions can be derived, ensuring that the decay term varies slowly over the width of the wave
packet

2|𭟋𭟋𭟋i(t)|2 ≪ |˚i| , |Wi(t)| ≪ |˚i| . (5.A.23)

For times earlier than the short-time threshold equation (5.A.20), these conditions become

|pi|ϵi ≪ σp , ϵi ≪ 1
|3vi ⊗ vi − 1| . (5.A.24)

The linear condition holds as long as the decay width is of the same order or smaller as the
momentum width, while the quadratic condition is satisfied for the assumptions used in the
decay width expansion during the JS integration in section 5.3.1.
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Integration

The momentum integral can then be evaluated using a standard technique for multidimensional
Gaussian integrals over the coordinates x with a symmetric positive definite matrix A and a
linear term b ∫

[d3x] exp
[
b · x − 1

2x
⊺
Ax

]
= exp

[
1
2b

⊺
A−1b

]
. (5.A.25)

The vector b contains the linear order coefficients appearing in the momentum expansion of the
phase equation (5.A.15) and the decay term equation (5.A.22) and reads

b = i ∆i(t,x) + 𭟋𭟋𭟋i(t) = i ∆i(t,x) + O(ϵi) , (5.A.26)

For the analytical derivation, we neglect the correction from the decay term and proceed solely
with the linear coefficient from the expansion of the phase around the minimum of the energy-
momentum integral. In the numerical calculation presented in section 5.D the minimum pi

is computed for the sum of the EME and the decay term, such that the linear contribution
𭟋𭟋𭟋i(t) is absent all together. The matrix A collects the Hessian matrices resulting from the
momentum expansion of the EME equation (5.A.7), the phase equation (5.A.16), and the decay
term equation (5.A.22) around the minimum of the EME and reads

A = −˚i −Wi(t) − iRi(t) = −˚i + O
(

t

tshort

)
. (5.A.27)

For times earlier than the short-time threshold equation (5.A.20), it is justified to approximate
this sum with just the contribution from the EME, see the conditions equations (5.A.18)
and (5.A.23).

Hence the Hessian from the EME expansion equation (5.A.7) together with the linear term
of the phase expansion equation (5.A.15) integrated over the momentum using the Gaussian
integral equation (5.A.25) yield the spacetime envelope (STE)

Fi(t,x) := 1
2∆

⊺
i (t,x)˚−1

i ∆i(t,x) . (5.A.28)

For a given time and velocity, this term leads to an exponential damping of the transition
amplitude for values of x far from vit. Here, far is defined by the eigenvalues of ˚i. We have
explicitly discussed the effects of the decay width expansion parameter after equation (5.A.12)
and found the STE to agree with [38].

The oscillation amplitude in the NDR after momentum integration is therefore given by

Ai(t,x) ∝ exp[−fi − γi(t) − Fi(t,x) − iϕi(t,x)] . (5.A.29)

where the terms in the exponential are the constant EME equation (5.A.7), the time dependent
decay term equation (5.A.22), the spacetime dependent STE equation (5.A.28), and the
spacetime dependent phase equation (5.A.16).

5.A.2 Transverse dispersion regime

For times later than the short-time threshold equation (5.A.20), derived in the previous section,
the oscillations are fast compared to the width of the wave packet such that Laplace’s method is
no longer the preferred method for evaluating the momentum integral. However, this argument
depends on the direction of the heavy neutrino momentum. The second order term of the phase
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equation (5.A.15) yields a contribution |p|2t/E for momenta orthogonal to vi, while momenta in
the direction of vi obtain an additional Lorentz contraction factor that leads to (1 − v2

i )|p|2t/E.
Since at LO vi = v0, this factor slows down the oscillations in the direction of the reconstructed
momentum. Laplace’s method is therefore still preferred in the direction along p0, while in
directions orthogonal to it, the method of stationary phase is used.

Stationary phase

The linear term of the expanded phase equation (5.A.15) averages oscillations to zero for momenta
transversal to x. Therefore it can be assumed that p is parallel to x. Additionally, the EME
requires that p is parallel to p0, which yields that x has to be parallel to p0. Assuming that p0
is in the z direction the method of stationary phase can be used for x|x and x|y which yields

∂

∂px
ϕ(t,x,p) = ∂

∂py
ϕ(t,x,p) = 0 , (5.A.30)

resulting in px = py = 0. Using those, the argument of the exponential of the amplitude
equation (5.2.1) does not depend on px and py anymore such that only the integration over
p̂ = p|z is left. This integration is done using Laplace’s method, as in section 5.A.1.

The argument of the EME equation (5.2.5) can then be expressed as

fi(Ei(p̂), p̂) =
(
p̂− p̂0
2σpP

)2

+
(
eiP (p̂)
2σEP

)2
+ (P → D) , (5.A.31)

where
eiV (p̂) = Ei(p̂) − E0 − (p̂− p̂0)v̂V . (5.A.32)

Similar to the NDR, the phase, the EME, and the decay term are all expanded around the
momentum p̂i for which the EME is minimal. The effects of the decay term onto the position
of the maximum are neglected in the analytical derivation, and the exact conditions for this
approximation to hold are given in equation (5.A.46). The position of the maximum up to linear
order in the mass splitting expansion parameter equation (5.A.3) is

p̂i = p̂0 + p̂1δi + O
(
δ2

i

)
, p̂1 = E0

Σ̂0

(
ûP

2σ2
EP

+ ûD

2σ2
ED

)
, ûV := v̂V − v̂0 , (5.A.33)

the mass splitting expansion of the mass eigenstate energy reads

Ei = E0 + E1δi + O
(
δ2

i

)
, E1 = E0 + p̂1v̂0 , Ei = Ei(p̂i) , (5.A.34)

and the mass splitting expansion of the mass eigenstate velocity is

v̂i = v̂0 + v̂1δi + O
(
δ2

i

)
, v̂1 = p̂1 − E1v̂0

E0
, v̂i = v̂i(p̂i) . (5.A.35)

The effects of the decay width expansion parameter are neglected here for the same reasons as
in section 5.A.1.

Expansion

Just as in the NDR, the terms in the exponent of the amplitude equation (5.3.11) need to be
expanded up to second order in the momentum in order to perform a Gaussian integration in
section 5.A.2.
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Energy-momentum envelope The expansion of the EME equation (5.A.31) around the
momentum of the minimum is given by

fi(Ei(p̂), p̂) = fi + 1
2Σ̂i(p̂− p̂i)2 + O

(
|p̂− p̂i|3

)
, (5.A.36)

where the linear term vanishes since the expansion is evaluated at the minimum, while the
constant term and the Hessian are given by

fi = f1δ
2
i + O

(
δ4

i

)
= fi(Ei, p̂i) , Σ̂i = Σ̂0 + O(δi) , (5.A.37)

and their LO contributions in the mass splitting expansion are given by

f1 =
(

p̂1
2σp̂P

)2

+
(
E1 − p̂1v̂P

2σEP

)2
+ (P → D) , Σ̂0 = 1

2σ2
pP

+ û2
P

2σ2
EP

+ (P → D) . (5.A.38)

Phase The expansion of the phase equation (5.3.7) around the momentum of the minimum of
the EME yields

ϕi(t, x̂, p̂) = ϕi(t, x̂) + ∆̂i(t, x̂)(p̂− p̂i) + 1
2R̂i(t)(p̂− p̂i)2 + O

(
|p̂− p̂i|3

)
, (5.A.39)

where the constant term, the linear coefficient, the Hessian, and the velocity of the mass eigenstate
are given by

ϕi(t, x̂) = ϕi(t, x̂, p̂i) , ∆̂i(t, x̂) = v̂it− x̂ , R̂i(t) = m2
i

E3
i

t , v̂i = p̂i

Ei
. (5.A.40)

Similar to the case of the NDR, a time threshold can be obtained by requiring that the phase
varies slowly over the width of the wave packet. The wave packet width is approximated by Σ̂−1/2

i

and used to reexpress the momentum deviations. The conditions resulting from the requirement
that the linear and quadratic terms are small are

2∆̂2
i (t, x̂) ≪ Σ̂i , R̂i(t) ≪ Σ̂i . (5.A.41)

The linear condition is ensured by the distance average performed in the next section, while
the quadratic condition defines the long-time threshold. A time threshold independent of the
mass eigenstates can be defined by approximating it at LO in the mass splitting expansion
equation (5.A.2), leading to the validity range of the TDR

tlong
i = tlong + O(δi) = Σ̂i

E3
i

m2
i

, tlong := Σ̂0
E3

0
m2

0
, tshort ⪅ t ⪅ tlong . (5.A.42)

Decay term The expansion of the decay term equation (5.3.7) is the same as in the NDR
equation (5.A.21) where all vector quantities are replaced by their corresponding longitudinal
component.

γi(t, p̂) = γi(t) − �̂�i · (p̂− p̂i) + 1
2(p̂− p̂i)⊺Ŵi(t) (p̂− p̂i) + O

(
|p̂− p̂i|3

)
. (5.A.43)

The constant term, the linear coefficient, the Hessian and the terms appearing in equation (5.3.5)
are given by

γi(t) = γit , γi = miΓi

2Ei
, �̂�i(t) = v̂iϵit , Ŵi(t) = 3v̂2

i − 1
Ei

ϵit , ϵi = γi

Ei
. (5.A.44)
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The conditions for the decay term to vary slowly over the width of the neutrino wave packet read

2�̂�2
i (t) ≪ Σ̂i , Ŵi(t) ≪ Σ̂i . (5.A.45)

assuming t ⪅ tlong
i , these conditions reduce to

ϵip̂i
E2

i

m2
i

≪ σE ,
(
3v̂2

i − 1
)
ϵi ≪ m2

i

E2
i

. (5.A.46)

Similar to the situation in the NDR equation (5.A.24), the quadratic condition is automatically
satisfied. The linear condition requires the decay width to be of the same order or smaller than
the effective momentum width of the wave packet, which is typically of the order of the energy
width σE and thus much smaller compared to the width in the NDR. Additionally, the factor
Ei/mi can result in a violation of the condition for ultra-relativistic particles. This reflects the
fact that for such particles, the TDR is valid up to arbitrarily large times, such that eventually,
the decay term becomes important. In the numerical estimation of the damping, the effect of
the decay term is taken into account.

Integration

The integral in the transition amplitude equation (5.3.11) can be solved using the general
result equation (5.A.25) where the vector b, now scalar, contains the first order terms from the
expansion of the phase equation (5.A.39) and the decay term equation (5.A.43) and reads

b = i ∆̂i(t, x̂) + �̂�i(t) = i ∆̂i(t, x̂) + O(ϵi) . (5.A.47)

In the following, the decay width expansion parameter correction is neglected for the analytical
derivation but taken into account for the numerical calculation. The Hessians resulting from
the momentum expansion of the EME equation (5.A.36), the phase equation (5.A.39), and the
decay term equation (5.A.43) are collected in A which is now a scalar and reads

A = −Σ̂i − Ŵi(t) − i R̂i(t) = −Σ̂i + O
(

t

tlong

)
. (5.A.48)

For times earlier than the long-time threshold equation (5.A.42), the LO contribution is given
by the Hessian of the EME, see conditions equations (5.A.41) and (5.A.45). For the numerical
results, the contribution from the Hessian of the phase and the decay term are taken into account.

The integration equation (5.A.25) over the momentum yields the STE

Fi(t, x̂) := ∆̂2
i (t, x̂)

2Σ̂i(t)
, (5.A.49)

and the amplitude equation (5.2.1) after integration is given by

Ai(t, x̂) ∝ exp[−fi − γi(t) − Fi(t, x̂) − iϕi(t, x̂)] , (5.A.50)

where the terms in the exponent are the EME equation (5.A.37), the decay term equation (5.A.44),
the STE equation (5.A.49), and the phase equation (5.A.40).
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Appendix 5.B Distance integration

In order to obtain an oscillation probability, the amplitudes for different mass eigenstates are
coherently summed over

P(t,x) ∝
∑

ij

Ai(t,x)A∗
j (t,x) . (5.B.1)

An average over the oscillation distance is performed to obtain a formula dependent on the
time. For the NDR as well as for the TDR the only distance-dependent components in the
amplitudes equations (5.A.29) and (5.A.50) are the phases equations (5.A.16) and (5.A.40) and
the STEs equations (5.A.28) and (5.A.49). Since the STE restricts the values of t and x to a
range, similar to how the EME equation (5.2.5) restricts the values of p and E, the probability
is expanded up to second order around xij , the position of the minimum of the STE, before the
resulting Gauss-like integral is evaluated.

Typically, neither the oscillation distance x nor the oscillation time t are measured with perfect
precision. Therefore, the oscillation probability equation (5.B.1) is either integrated over a span
of time, as in [38], or over a region of space in order to address the experimental uncertainty. In
the following, the second possibility is employed, which yields an oscillation probability as a
function of time. The distance-integrated oscillation probability reads

P(t) ∝
∫

[dx]x0+∆x
x0−∆xP(t,x) , (5.B.2)

where ∆x labels the experimental uncertainty in determining the distance travelled by the
intermediate particle between its production and decay. This distance has to be larger than
the width of the intermediate particle in spacetime, which describes the minimal uncertainty
due to the wave packet nature of the intermediate particle. Due to the exponential damping
stemming from the STEs equations (5.A.28) and (5.A.49) for values |x−x0| ⪆ |˚0|, the distance
integration can be taken to infinity ∆x → ∞.

5.B.1 No dispersion regime

Since the oscillation probability equation (5.B.1) depends on the absolute value square of the
transition amplitude, the EME equation (5.A.7) and equation (5.A.22) need to be summed

fij = fi + fj = f1(δ2
i + δ2

j ) + O
(
δ4

i

)
, γij(t) = γi(t) + γj(t) = (γi + γj)t . (5.B.3)

The same holds true for the STE equation (5.A.28)

Fij(t,x) := Fi(t,x) + Fj(t,x) , (5.B.4)

Since dispersion effects are neglected in the NDR, the STE can be approximated by its LO term
in the mass splitting expansion

Fij(t,x) = F0(t,x) + O(δi) , F0(t,x) = ∆
⊺
0(t,x)˚−1

0 ∆0(t,x) , ∆0(t,x) = v0t− x . (5.B.5)

Since it is quadratic in the spacial coordinates, there are no constant or linear terms. The
position of the minimum of the STE is thus at LO given by

xij(t) = x0(t) + O(δi) , x0(t) = v0t . (5.B.6)
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Expansion The expansion of the STE in x around xij(t) reads at LO in the mass splitting
expansion

F0(t,x) = (x − x0(t))⊺˚−1
0 (x − x0(t)) + O(δi) . (5.B.7)

Since dispersion is neglected, there is no constant term. The phase equation (5.A.15) is rewritten
in terms of the deviation from the maximum in position space x − xij(t) yielding

ϕi(t,x) = ϕi(t) − pi · (x − xij(t)) , ϕi(t) = Eit− pi · xij(t) . (5.B.8)

Since the oscillation probability equation (5.B.1) is proportional to the absolute value square of
the transition amplitude, the phase difference

ϕij(t,x) = ϕi(t,x) − ϕj(t,x) = ϕij(t) − pij · (x − xij(t)) , (5.B.9)

needs to be considered. The constant term encodes the phase difference in time, while the linear
coefficient consists of a momentum difference

ϕij(t) := ϕi(t) − ϕj(t) = Eijt− pij · xij(t) , Eij = Ei − Ej , pij = pi − pj . (5.B.10)

Using the mass splitting expansion of the energy equation (5.A.4) and momentum equation (5.A.2)
yields

Eij = (E0 − v0 · p1)δij + O
(
δ2

i

)
, pij = p1δij + O

(
δ2

i

)
, δij := δi − δj , (5.B.11)

and the appearing difference in the mass splitting expansion parameter equation (5.A.3) can be
approximated to be

δij =
m2

i −m2
j

2E2
0

= mijm0
E2

0
+ O

(
m2

ij

E2
0

)
, mij = mi −mj . (5.B.12)

It is used that the reconstructed mass m0 cannot be far from the mean of the mass eigenstate
masses m, since otherwise, it is not possible to have pi ≈ p0 and Ei ≈ E0 for both mass eigenstates
at the same time, and thus one of the two fi terms in the amplitude equation (5.A.29) would
lead to large damping of oscillations. Therefore, the phase difference is at LO in terms of the
proper time

ϕij(t) = mijτ(t) + O
(
δ2

i ,
m2

ij

E2
0

)
, τ(t) = m0

E0
t . (5.B.13)

Integration The integral equation (5.B.2) can be evaluated as a Gaussian integral, using
relation equation (5.A.25) with the linear term from the phase expansion equation (5.B.10) and
the Hessian from the STE expansion equation (5.B.7)

b = pij , A = 2˚−1
0 , (5.B.14)

resulting in the time-independent localisation term

Λij = 1
4p

⊺
ij˚0pij + O

(
δ3

i

)
. (5.B.15)

The transition amplitude after this distance integration is, therefore,

P(t) ∝
∑

ij

exp
[
−λ′

ij(t) − iϕij(t)
]
, λ′

ij(t) = fij + Λij + γij(t) , (5.B.16)

where the STE and the decay term are given by equation (5.B.3), the phase is given by
equation (5.B.13), and the localisation term is given by equation (5.B.15).
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5.B.2 Transverse dispersion regime

The calculations for the TDR are very similar to the ones described in section 5.B.1. However,
compared to the NDR dispersion is not neglected, and therefore, the approximation vi ≈ vj does
not apply, which leads to a separation of wave packets of different mass eigenstates over time.
The sum of the EME equation (5.A.37) and the decay terms equation (5.A.44) are

fij = fi + fj = f1(δ2
i + δ2

j ) + O
(
δ4

i

)
, γij(t) = γi(t) + γj(t) = (γi + γj)t , (5.B.17)

The distance average is performed by extending the terms in the exponent of the transition
amplitude equation (5.A.50) around the minimum of the sum of the STEs equation (5.A.49) of
the two mass eigenstates appearing in the oscillation probability

Fij(t, x̂) = Fi(t, x̂) + Fj(t, x̂) . (5.B.18)

The minimum is given at the position

x̂ij(t) = Σ̂i(t)v̂j + Σ̂j(t)v̂i

Σ̂i(t) + Σ̂j(t)
t = v̂i + v̂j

2 t+ O(δi) , (5.B.19)

Expansion The expansion of the STE yields

Fij(t, x̂) = Fij(t) + 1
2Zij(x̂− x̂ij(t))2 + O

(
|x̂− x̂ij(t)|3

)
. (5.B.20)

where the constant term and the Hessian are

Fij(t) =
v2

ij

2
t2

Σ̂i(t) + Σ̂j(t)
= 1

4Σ̂
−1
0 v̂2

ijt
2 + O

(
δ3

i

)
, vij = v̂i − v̂j , (5.B.21a)

Zij(t) = 1
Σ̂i(t)

+ 1
Σ̂j(t)

= 2
Σ̂0(t)

+ O(δi) , (5.B.21b)

using the expansion equation (5.A.35) the velocity difference can be written as

vij = v̂1δij + O
(
δ2

i

)
= p̂1 − E1v̂0

E0
δij + O

(
δ2

i

)
, δij := δi − δj . (5.B.22)

Since the expansion is performed around the minimum, the linear term is still absent. However,
since dispersion is not neglected, the constant term does not vanish. The phase can be rewritten
similarly to the NDR in terms of a constant and a linear term

ϕi(t, x̂) = ϕi(t) − p̂i(x̂− x̂ij) , ϕi(t) = Eit− p̂ix̂ij . (5.B.23)

Since the phase contains the imaginary contributions to the amplitude, the difference between
the two mass eigenstates appears in the oscillation probability

ϕij(t, x̂) = ϕi(t, x̂) − ϕj(t, x̂) = ϕij(t) + p̂ij(x− x̂ij) , (5.B.24)

the constant term and the linear coefficient are

ϕij(t) = Eijt− p̂ij x̂ij , Eij = Ei − Ej , p̂ij = p̂i − p̂j . (5.B.25)

Using the expansions equations (5.A.33) and (5.A.34) yielding

Eij = E1δij + O
(
δ2

i

)
= (E0 − v̂0p̂1)δij + O

(
δ2

i

)
, p̂ij(t) = p̂1δij + O

(
δ2

i

)
, (5.B.26)

together with the approximation equation (5.B.12), leads for the phase difference to

ϕij(t) = mijτ(t) + O
(
δ2

i ,
m2

ij

E2
0

)
, τ(t) = m0

E0
t . (5.B.27)

which is identical to the phase difference in the NDR equation (5.B.13).
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Integration of the oscillation probability The integration

P(t) ∝
∫

[dx̂]x̂ij+∆x̂
x̂ij−∆x̂P(t, x̂) , (5.B.28)

can be performed using equation (5.A.25) with

b = p̂ij , A = Ẑij , (5.B.29)

resulting in the constant localisation term

Λij = 1
2 Ẑ

−1
ij p

2
ij = 1

2
Σ̂i(t)Σ̂j(t)
Σ̂i(t) + Σ̂j(t)

p̂2
ij = 1

4Σ̂0p̂
2
ij + O

(
δ3

i

)
. (5.B.30)

Finally, the oscillation probability reads

P(t) ∝
∑

ij

exp
[
λ′

ij(t) − iϕij(t)
]
, λ′

ij(t) = fij + Λij + Fij(t) + γij(t) , (5.B.31)

where the EME and the decay term are given by equation (5.B.17), the phase difference is given
by equation (5.B.27), the dispersion term is given by equation (5.B.21a), and the localisation
term is given by equation (5.B.30).

Appendix 5.C Phase shift

For short times, corrections to the LO expression of the phase equation (5.3.36), which scale
linearly with the decay width expansion parameter ϵi become relevant. The expansion in the
mass splitting expansion parameter δi is given in equations (5.B.13) and (5.B.27) in detail.
Therefore, we derive an analytical correction to the phase for parameter points in which ϵi is
non-negligible and test how the numerical phase as obtained via the algorithm described in
section 5.D deviates from the LO expression for the phase equation (5.3.36).

As presented in section 5.3.1, the NLO contribution in ϵi to the phase results in the usual decay
term γi(t,p) equation (5.3.7). However, there is also a contribution from the EME, which yields

ϕi(t,x,p) = Ei(p)t− p · x − γi(p)
[
eiP (p)
2σ2

EP

− eiD(p)
2σ2

ED

]
+ O

(
ϵ2i
)
. (5.C.1)

While the direct contribution of the correction term to the phase ϕi(t,x,p) is negligible, it has a
significant effect on the STE equation (5.B.5) since the corrections appear in the linear term

∆0(t,x) = v0t− x + γ0

(
uP

2σ2
EP

− uD

2σ2
ED

)
+ O

(
ϵ2i
)
. γ0 = m0Γ

2E0
, (5.C.2)

This correction to the STE results in a shift of the position of its minimum equation (5.B.6),
which is now at

xij(t) = v0t+ γ0

(
uP

2σ2
EP

− uD

2σ2
ED

)
+ O

(
δi, ϵ

2
i

)
. (5.C.3)

The correction becomes relevant for large decay widths since then the particle’s lifetime becomes
small, while simultaneously, the correction term becomes larger. The resulting phase is then
given by

ϕij(t) = ϕij +mijτ(t) , (5.C.4)
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Figure 5.10: The absolute value of the phase shift ϕij in panel (a) and the absolute value of the relative
phase shift ϕrel

ij , defined in equation (5.C.7), in panel (b) as functions of the decay width and mass splitting.

where the constant phase shift is

ϕij = −pij

(
uP

2σ2
EP

− uD

2σ2
ED

)
γ0 . (5.C.5)

Since ˚0 is symmetric, this can be simplified to read

ϕij = u
⊺
D

2σ2
ED

˚−1
0

uD

2σ2
ED

mmijϵ0 − (D → P ) + O
(
ϵ2i , δ

2
i ,
m2

ij

E2
0

)
, ϵ0 = γ0

E0
. (5.C.6)

Numerical results for the phase shift are shown in figure 5.10. As can be seen from figure 5.10a,
in the considered parameter region, the total value of the modulus of the phase shift is small
for most of the parameter space except for part of the region with large ∆m, where it can get
large. However, we remark that in this parameter region, many oscillations take place before the
heavy neutrino decays, and thus the phase shift per oscillation is still small. This is illustrated
in figure 5.10b, which shows the modulus of the relative phase shift

ϕrel
ij := ϕij

max(2π, |mijτ |) . (5.C.7)

Furthermore, comparing with figure 5.4, one can see that in the region with a large total phase
shift, the damping λ is very large, such that the oscillation term is strongly suppressed, making
the phase shift practically unobservable. In summary, the numerical results show that, for
current collider simulations, one can safely neglect the phase shift in the considered parameter
region.

However, outside the applicability region the phase shift can become significant, which can be
seen from equation (5.C.5). The numerical results match this behaviour. Since these results are
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1 define E0, p0, m0
2 for V in {P, D} do define σxV , σpV , σEV , ΣV , vV

3 for i in {4, 5} do define mi, Γi

4
5 t = rand.variate[expdistri[mean[Γ4, Γ5]]] E0/m0
6
7 for V in {P, D} do
8 eV [E,p] = E − E0 − (p − p0) · vV

9 fV [E,p, γ] = |p − p0|2/(2σpV )2 + (e2
V [E,p] − eV [0,p] γ2/E)/(2σEV )2

10
11 for i in {4, 5} do
12 Ei[p] = sqrt[|p|2 +m2

i ]
13 γi[p] = miΓi/2Ei[p]
14 fi[p] = fP [Ei[p],p, γi[p]] + fD[Ei[p],p, γi[p]]
15 λi[p] = fi[p] + γi[p]t
16 ei[p] = eP [Ei[p],p]/(2σ2

EP ) − eD[Ei[p],p]/(2σ2
ED)

17 ϕi[p,x] = Ei[p]t− p · x − γi[p]ei[p]
18 αi[p,x] = λi[p] + iϕi[p,x]
19
20 for i in {4, 5} do // momentum integral
21 pi = argmin[λi[p]]
22 ˚i[x] = hessian[αi[p,x],p] at p = pi

23 ∆i[x] = ∂pϕi[p,x] at p = pi

24 Fi[x] = ∆i[x] ·˚−1
i [x] · ∆i[x]/2

25
26 α45[x] = α4[p4,x] + F4[x] + conj[α5[p5,x] + F5[x]]
27
28 // distance integral
29 x45 = argmin[Re[α45[x]]]
30 Z45 = hessian[α45[x],x] at x = x45
31 Π45 = ∂xIm[α45[x]] at x = x45
32 Λ45 = Π45 · Z−1

45 · Π45/2
33
34 β45 = Λ45 + α45[x45]
35 N45 = log[exp[−2λ4[p4]]/2 + exp[−2λ5[p5]]/2]
36
37 λ45 = Re[β45 + N45]
38 ϕ45 = Im[β45 + N45]

Listing 5.1: Algorithm describing the strategy to calculate decoherence effects.

based on values of the decay width larger than ΓJS, and since we do not see a physical reasons
for the phase shift to become arbitrarily large, we neglect the phase shift for the main part of
this work.

Appendix 5.D Numerical decoherence derivation

In this section, the algorithm for the numerical computation of the damping parameter λ is
presented. The algorithm expects the momenta of the external particles and the widths of the
wave packets of the external particles as input. Our estimates for the external widths in the
process in figure 5.3 are given in table 5.1. Realistic momentum configurations can be generated
using a MC generator such as MadGraph together with the implementation of the pSPSS
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introduced in [2, 91].

We present an algorithm for the derivation of the numerical results in listing 5.1. In the first
lines, the kinematics of the event and the wave packet widths of the external particles are used
to define the given quantities as input to the algorithm. In particular, in line 1, the kinematics of
the external particles are used to define the reconstructed quantities equation (5.2.13), in line 2
the definitions equations (5.2.7), (5.2.8), and (5.2.10) are used to define relevant widths, and in
line 3 the masses and decay widths of the heavy neutrino mass eigenstates are defined. In line 5,
the propagation time between production and decay of the heavy neutrino superposition is drawn
from an exponential distribution, defined by the mean decay width of the neutrinos. In line 9, the
EMEs equation (5.3.9) at production and detection are defined, where the LO corrections in the
decay width expansion equation (5.3.4), are taken into account. In the following lines, quantities
for the mass eigenstates are defined. In line 13, the decay term is calculated, line 14 defines the
EME for the heavy neutrino, and in line 17 the phase, taking into account the imaginary part
stemming from the decay width expansion of the EME, is calculated. All exponential terms
relevant for the transition amplitude equation (5.3.11) are collected in line 18. The integration
over the three-momentum of the heavy neutrino wave packet is performed by approximating
all terms up to second order around the maximum of the wave packet. The maximum of the
wave packet is defined in line 21 by the minimum of the EME, where the effects of the decay
term are taken into account. Subsequently, the terms of the exponential quadratic in p − pi

are computed in line 22. Since the expansion is around the minimum of fi(p) + γi(p), only the
complex phase has to be considered for the linear terms in line 23. The integration results in
the STE in line 26, which is defined in equations (5.A.28) and (5.A.49). The following steps are
valid for the AiA∗

j terms in the probability since the damping term is relevant for terms i ̸= j,
which are responsible for oscillations. The distance integral is evaluated in the same fashion as
the three-momentum integral. The only terms in the exponential that depend on the distance
are the STE Fij(x) and the complex phase ϕij(x, t). The expansion is around the minimum
of the STE computed in line 29. Since the phase is linear in x, the only contribution to the
quadratic terms in x − xij are given by the Hessian of the STE computed in line 30. After the
integration, the final exponent term is defined by

Ai(t)A∗
j (t) = Nij(t) exp(−βij(t)) (5.D.1)

in line 34. The normalisation is computed in line 35 based on the condition equation (5.3.43).
For the computation of the damping in the case of NNOs in this paper, the decay terms γi[pi]
in β and in N have been neglected, as we found them to be not significant. Finally, the damping
parameter and the complex phase are computed in lines 37 and 38.

While the algorithm is presented with the NDR in mind, it can easily be applied to the TDR by
replacing vector quantities denoted with bold font by their projection onto the direction of p0.
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Chapter 6

Afterword

The aim of this chapter is to give a Summary of the work that is contained in this thesis, followed
by a conclusion that synthesizes the main points that can be drawn from the presented research.
Finally, an outlook is given with suggestions for further research opportunities.

6.1 Summary

The work presented in this thesis focuses on the phenomenology of an extension of the SM by
sterile neutrinos. While several scenarios lead to the desired mass splittings of the light neutrinos,
measured experimentally, the SPSS allows the sterile neutrinos to be within range of current
collider experiments. A key feature of heavy neutrinos protected by an approximate LNLS is
their small mass splitting, which renders particle oscillations relevant for phenomenology.

The effects of HNANOs are explored, which are derived in a QFT model of external wave packets
in [1] . General formulae for an oscillation probability between neutrinos and antineutrinos are
derived and subsequently applied to a dilepton dijet process within a low scale SPSS. The so-
called observability conditions that can lead to decoherence of the mass eigenstate superposition
of heavy neutrinos, and thus to damping of oscillations, are discussed and found to be negligible
for a considered benchmark point. The LO results of the probability are found to agree with the
results of [40, 41, 44]. Further, it is found that the NLO contributions feature flavour oscillations
which are too small to be of phenomenological interest around the considered example parameter
point. It is shown that for the example parameter point, the LO effects of HNANOs can be
described by two sets of parameters; the active-sterile mixing angles θα and the mass squared
difference δm2

45 between the two heavy neutrinos.

To further explore the low-scale phenomenology of HNANOs, we introduce the pSPSS in [2], a
model that describes the LO effects of a pseudo-Dirac pair of HNLs with the minimal set of
relevant parameters. The pSPSS is based on the assumption that a single pair of neutrinos,
forming a pseudo-Dirac particle, dominates the phenomenology at collider-accessible scales.
However, it includes the possibility of additional heavy neutrinos at a higher energy scale, which
allows for its parameters to be freely chosen compared to a minimal model. To facilitate MC
studies using the pSPSS, particularly for simulating HNANOs, a FeynRules implementation and
a patch are published, extending the general purpose MC generator MadGraph to be capable
of simulating HNANOs. Those tools are used to derive the maximal possible mass splitting of
heavy neutrinos for which HNANOs may be reconstructable if only a fraction of events with the
largest Lorentz boost is considered. The effects of finite detector geometry on the LNV over
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LNC event ration, labelled Rll, are examined by applying various cuts to the simulated events.
In particular, the effects of a minimum distance and impact parameter cut are relevant to the
observed Rll, which, in this cases, may exceed the value of one, representing an upper bound
in the naive case. Further, the impact parameter d0 is found to be sensitive to momentum
correlations in the considered process, affecting the LNC events differently than the LNV events.
Consequently, the application of a d0 cut is expected to introduce an oscillation of the total
number of events as a function of the heavy neutrino proper time of flight. The existence of
such an effect opens up the possibility to observe HNANOs in cases where it is not possible
to reconstruct the lepton number of the process. Such processes are relevant, e.g., for future
electron-positron colliders, when external leptons are light neutrinos that escape the detector.

In [3], the first-ever full collider simulation of NNOs and cut-based analysis at the reconstructed
level are presented. Events are generated at the parton level using the pSPSS and the patched
version of MadGraph. QCD effects are incorporated by Pythia, and a fast detector analysis of a
CMS-like detector is performed using Delphes. The cut-based analysis is implemented via custom
C++ code. Since Delphes is missing a feature that simulates reconstructed displaced vertices,
Gaussian smearing around the true displaced vertex is implemented to simulate the effects
of experimental uncertainty. The analysis is performed for three different example parameter
points that result in heavy neutrino parameters not excluded by experimental constraints. It is
found that the simulated background of heavy hadrons, resulting in a displaced vertex and thus
being capable of mimicking the signal process, can be evaded with the defined cuts. It is also
argued that other backgrounds, e.g. from cosmic muons, should be eliminated by the given cuts,
such that the signal events can be treated as background free. A detailed statistical analysis is
performed which results in a significance of 5.19σ for the benchmark parameter point featuring
a mass splitting of ∆m = 82.7 μeV. The benchmark point of ∆m = 743 μeV, which coincides
with the mass splitting of the minimal linear seesaw model, results in a significance near zero.
However, if the reconstruction of the Lorentz factor is improved and twice the signal events are
considered, which is easily achieved by moving the benchmark point closer to the experimentally
excluded region, the significance is improved to 5.13σ. The effects of the smearing are found to
be relevant for parameter points with a small oscillation length in lab space. The benchmark
point featuring ∆m = 207 μeV and hence an oscillation length of 6 mm in proper space results
in a significance slightly below 3σ. If the displaced vertex is smeared with a Gaussian of 4 mm
standard deviation, the significance is reduced close to zero.

In [4], formulae for the oscillation probability as a function of time are derived in the no dispersion
and transverse dispersion regimes. Additionally, the general algorithm for a numerical calculation
of the damping factor λ is presented. The damping factor contains all decoherence effects relevant
to the considered process that stem from the wave packet nature of the involved particles or
distinct decay widths of propagating mass eigenstates. Numerical results are presented for a
dilepton dijet process, averaged over several events to obtain a suppression independent of the
angular distributions of momenta. For fixed heavy neutrino masses, the conditions for which the
damping is independent of the mean decay width Γ are discussed. Under these conditions, the
damping factor is presented and discussed as a function of the heavy neutrinos’ mean mass and
mass splitting. As an overall summary, it is found that for mass splittings of heavy neutrinos
around 1 eV, the effects of decoherence become significant, considering a baseline of widths
of external wave packets. The effects of varying the widths of the external wave packets are
discussed. For very fast decaying heavy neutrinos, care has to be taken that the time of decay is
still above the threshold defined by the theorem of Jacob-Sachs [54] since otherwise, the obtained
formulae are no longer valid. As an example application of the derived results, the effects of the
damping factor on the observed values of Rll are presented.
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Overall it has been found that symmetry-protected sterile neutrinos exhibit the interesting
phenomenology of HNANOs. In cases where the mass splitting is smaller than around 100 μeV,
the prospects of resolving the oscillation pattern at the HL-LHC are promising. For bigger mass
splittings, the assumed experimental capabilities of reconstructing the Lorentz boost have to be
improved. Care has to be taken if a measured LNV over LNC event ratio is used to derive results
for the heavy neutrinos’ mass splitting. This is because the observed Rll might significantly
deviate from a naive computation if effects of cuts or decoherence effects are taken into account.
In particular, regions in parameter space that feature large damping result in an Rll of one.
This allows prompt searches of HNLs that require a LNV signature to be applicable in those
regions, even if, from the underlying symmetry protection, one would expect very few LNV
events compared to LNC events.

6.2 Conclusion

Introducing sterile neutrinos is a possible extension to the SM that can explain the observed
light neutrino masses. A mechanism that suppresses LNV and protects the smallness of the
light neutrino masses is needed to avoid the constraints from experimental searches if, at the
same time, the additional heavy neutrinos should be within reach of current colliders. Such a
mechanism is realised in the SPSS, which results in the heavy neutrinos forming pseudo-Dirac
pairs. When studying the phenomenology of such pseudo-Dirac HNLs, particularly their LNV
signature, it is crucial to consider HNANOs.

Typically the LNV caused by pseudo-Dirac HNLs is assumed to be non-observable, which is valid
as long as the HNLs decay prompt and if coherence between the propagating mass eigenstates is
present. This work shows, for the first time quantitatively, that detectable amounts of LNV are
introduced if

• HNLs propagate long enough for HNANOs to develop, or

• Coherence between propagating mass eigenstates is lost.

To study the essential effects of decoherence and obtain theoretically sound formulae for HNANOs,
a QFT formalism with external wave packets is used. While the derivation is somewhat technical,
the final formulae are elegant and simple. They describe decoherence effects by a single
damping parameter and oscillations by the well-known formulae that can also be obtained in a –
conceptually problematic – QM derivation.

HNANOs produce an oscillating pattern in the amount of LNV as a function of the propagation
time of the HNLs. If this pattern can be resolved experimentally, conclusions can be drawn for
the mass splitting of the HNLs and, consequently, for the mechanism of neutrino mass generation.
It is shown, under conservative assumptions, that the HL-LHC and a CMS-like detector are
capable of resolving HNANOs for non-excluded parameter points of HNLs. If the Lorentz boost
of the HNLs can be reconstructed more accurately, compared to what has been considered in
this work, resolving the oscillation pattern even in the minimal linear seesaw case with inverted
light neutrino mass hierarchy is feasible. With even better reconstruction efficiency or a higher
number of signal events, as a future collider might provide, additional minimal and non-minimal
scenarios for neutrino mass generation can be probed. However, it is crucial to consider the
effects of damping, which can suppress the oscillations, especially for large values of the HNL’s
mass splitting, and thus reduce the chances of resolving the oscillation pattern.

Also, in cases where the oscillation pattern cannot be resolved, HNANOs provide interesting
phenomenology by impacting the LNV over LNC event ratio, often called Rll. For HNL lifetimes
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much smaller than the oscillation period of HNANOs, the amount of LNV is typically negligible
and the Rll close to one. However, already for lifetimes equal to the oscillation period, the
resulting Rll is close to one. Additionally, significant decoherence effects, described by a large
damping factor λ, also increase the amount of LNV and thus the value of Rll. Both effects are
studied in detail in this work, and it is shown that they are critical when reinterpreting prompt
searches that rely on a LNV signature for pseudo-Dirac HNLs. From a measurement of Rll, it
is possible to draw conclusions about the HNLs mass splitting if their decay widths are also
measured. However, if such an argument is made, it is paramount to consider the effects of
damping and the detector geometry, including cuts, e.g., on the impact parameter. It is shown
that both effects can result in a significant deviation of the observed Rll compared to a naive
Rll, i.e. one that only takes HNANOs into account. Therefore, comparing the measured Rll to a
naive calculation of the Rll would result in the wrong HNL’s mass splitting.

Generally, this work shows that the effects of HNANOs, including the possibility of decoherence,
are crucial for the phenomenological study of LNV at current and future colliders.

6.3 Outlook

The work in this thesis derives oscillation probabilities for HNANOs based on a QFT framework
featuring external wave packets and applies the results to study the feasibility of reconstructing
the oscillation pattern at the HL-LHC for a CMS-like detector.

It would be interesting to see how far the capabilities of the HL-LHC and related detectors can
be pushed to resolve the oscillation pattern of HNANOs. Using more sophisticated analysis
techniques that allow for a better reconstruction of the Lorentz boost of the heavy neutrino
is crucial to successfully resolve the oscillation pattern for mass splittings larger than several
hundred μeV.

The ignorance of the external particles’ wave packet widths is a major source of uncertainty for
the damping factor λ. A further investigation aimed to obtain a better description of the wave
packet nature of external particles could solve those issues. To this end, processes have to be
considered that are close to the boundary at which decoherence effects due to the wave packet
nature of the involved particles become relevant. Given the typically microscopic dimensions of
the wave packet widths, the kinematics of a considered process must be measured with extreme
precision. A future electron-position collider might be best suited for those investigations.

If the experimental uncertainty in the reconstruction of the heavy neutrino mass is improved,
the Jacob Sachs threshold [54] is pushed to larger values. Consequently, heavy neutrinos must
have smaller decay widths for the formulae derived in this work to be applicable. For neutrinos
that have lifetimes close to Jacob Sachs threshold, additional corrections to the energy contour
integral, and thus to the oscillation formulae, become relevant [38, 54]. For even larger decay
widths, the application of the theorem of Jacob Sachs is no longer justified. However, resolving
the oscillation pattern, if it even exists in those circumstances, seems not feasible for such
prompt decays. A better description of such processes could be provided by standard QFT
methods, which, even though they do not yield HNANOs, might still be used to obtain LNV over
LNC event ratios. A detailed analysis of these methods and their connection to the oscillation
formulae, which require the theorem of Jacob Sachs, might provide useful insights for future
collider experiments regarding the observation of LNV.

The possibilities of HNANOs have to be considered when planning future colliders and their
detectors since their impact on LNV signatures is significant. To obtain the feasibility of resolving
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the oscillation pattern, a dedicated study on electron-positron colliders would be useful. Since
in cases where one of the external charged leptons is replaced by a light neutrino, the lepton
number of the process can no longer be derived from the measured charges of the particles, a new
strategy is needed. A possible solution might be to take advantage of spin correlations. Events
could be divided into LNC and LNV based on the momentum configuration of the external
particles. Such an effect has already been found and discussed in terms of the impact parameter
cut in [2]. However, better observables sensitive to spin correlations might be found using more
sophisticated techniques, e.g. machine learning.

Finally, it would be interesting to see to what degree HNANOs play a role in other fields of
physics, such as cosmology.
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