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BSTRACT 

lternative polyadenylation is a main driver of tran- 
criptome diversity in mammals, generating tran- 
cript isoforms with different 3’ ends via cleav- 
ge and polyadenylation at distinct polyadenylation 

poly(A)) sites. The regulation of cell type-specific 

oly(A) site choice is not completely resolved, and 

equires quantitative poly(A) site usage data across 

ell types. 3’ end-based single-cell RNA-seq can 

o w be broadl y used to obtain such data, enabling 

he identification and quantification of poly(A) sites 

ith direct experimental support. We propose SCIN- 
AS, a computational method to identify poly(A) 
ites from scRNA-seq datasets. SCINPAS modifies 

he read deduplication step to favor the selection 

f distal reads and extract those with non-templated 

oly(A) tails. This appr oach impr o ves the resolution 

f poly(A) site recovery relative to standard soft- 
are. SCINPAS identifies poly(A) sites in genic and 

on-genic regions, pr o viding complementary inf or - 
ation relative to other tools. The workflow is mod- 

lar, and the key read deduplication step is gen- 
ral, enabling the use of SCINPAS in other typical 
nalyses of single cell gene expression. Taken to- 
ether, we show that SCINPAS is able to identify 

 xperimentall y-supported, kno wn and novel poly(A) 
ites from 3’ end-based single-cell RNA sequencing 

ata. 

NTRODUCTION 

he majority of genes in the human genome have multi- 
le isoforms, most of which come from the use of alterna- 
i v e transcription start or polyadenylation sites ( 1 ). While 
he regulation of transcription initiation by transcription 

actors has been e xtensi v el y studied, m uch less is known
bout the regulation of poly(A) site (PAS) choice ( 2 , 3 ). 
omprehensi v e and quantitati v e PAS usage data across cell 
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ypes is essential for studying the PAS choice, and a vari- 
ty of methods have been de v eloped to obtain such data 

y specifically sequencing mRNA 3’ ends ( 2 , 4 ). With the 
ntroduction of single-cell RNA sequencing (scRNA-seq) 
he scale and resolution of PAS choice analyses can be 
ramatically expanded, because the broadly used 10x Ge- 
omics technology targets the 3’-terminal fragments of mR- 
 As. Consequentl y, various studies have emerged, describ- 

ng the polyadenylation landscape of various cell types ( 5– 

0 ). Howe v er, as the scRNA-seq r eads ar e generated from
he 5’ ends of terminal mRNA fragments, they do not typi- 
ally reach into the poly(A) tails to directly define the PAS. 
hese are inferred computationally by associating peaks in 

ead coverage with putative PAS, which can and does lead 

o a loss of resolution in PAS identification. Moreover, anal- 
ses of PAS usage in scRN A-seq data invariabl y start from 

enome-mapped reads, once the pre-processing and the 
deduplication’ of the reads based on their unique molec- 
lar identifiers (UMIs) have been performed with standard 

ools like CellRanger ( 11 ) and UMI-tools ( 12 ). These tools 
ere not de v eloped with the specific intent of detecting and 

uantifying the usage of PAS, and ther efor e, they do not at- 
empt to extract the reads that are most relevant for PAS 

nalyses. To fill this gap, we have developed SCINPAS, a 

ool that modifies the pre-processing of scRNA-seq data to 

mprove the extraction of reads that carry non-templated 

oly(A) tails and thus provide direct evidence for PAS us- 
ge. SCINPAS should be applicable to any dataset gener- 
ted with a 3’-biased approach to increase the recovery of 
AS from individual cells and cell types, and thus improve 
he understanding of PAS usage and 3’ untranslated region 

UTR) dynamics across cell types. 

ATERIALS AND METHODS 

nalyzed datasets 

ingle-cell RNA sequencing data of the Tabula Muris Se- 
is dataset were downloaded from czb-tabula-muris-senis 
3 Public Bucket ( 13 ). Single-cell RNA sequencing data of 
ouse CD8 + T cells - na ̈ıve and from Listeria monocy- 

ogenes infection ( 14 ) - as well as from mouse germ cells 
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( 15 ) were downloaded from the NCBI’s GEO database
(accession numbers GSE106264 and GSE104556 respec-
ti v ely). Tab le 1 provides further information on these
samples. 

Mapping reads to the genome 

Alignments of r eads-to-genome wer e obtained with the
CellRanger software, as it provided only the primary,
highest-accuracy alignments and did not discard reads that
mapped to non-exonic regions. 

For the Tabula Muris Senis datasets, we used the align-
ments already available at czb-tabula-muris-senis S3 Public
Bucket ( 13 ), generated with CellRanger version 2.0.1 ( 11 ),
using the GENCODE GRCm38 vM19 annotation (avail-
able from the same S3 Public Bucket). 

For the T cell activation and sperm cell development
datasets, we used the 10x Genomics CellRanger software
version 5.0.0 ( 11 ) to map the reads to the CellRanger-
provided genome assembl y, w hich is a modification of
the GENCODE GRCm38 vM23 assemb ly v ersion of the
mouse genome. 

Read deduplication 

A key step in the scRNA-seq data analysis is the identifica-
tion and ‘deduplication’ of reads that come from the PCR
copies of the same initial mRNA. This is done based on
the UMIs that are added during the cDNA synthesis step
and then sequenced as part of read 2, while the 5’ end of
the mRNA fragment is captured in read 1, in a paired-
end sequencing approach. In principle, reads carrying the
same cell identifier and the same UMI should come from
PCR copies of one mRNA molecule. Howe v er, mutations
may be introduced in the UMIs during sample prepara-
tion and sequencing, so that distinct UMIs do not always
imply distinct initial mRNAs. CellRanger corrects appar-
ent sequencing errors in the molecule identifiers (UR tag),
providing r ead bar codes (UB). Mor eover, as the UMIs ar e
very short, there is a small chance that two distinct mR-
NAs end up with the same UMI. The standard approach
for read deduplication with the UMI-tools software uses the
genome annotation, to collapse the reads that have the same
UMI only if they fall inside one gene. This of course makes
sense, since the reads should be deri v ed from a unique ini-
tial mRNA, but it also means that reads that fall outside of
annotated r egions ar e not consider ed. Furthermor e, UMI-
tools is not optimized to extract the most distal and thus
most likely to contain a poly(A) tail from among reads with
the same UMI. As our goal is to identify PAS in as com-
prehensi v e a manner as possible, including those outside of
annotated genes or exonic regions, we do not use the gene
annotation for deduplication, but implemented a different
pre-pr ocessing appr oach. 

Determination of read spans. First, we investigated the
span of the genome covered by reads that originated in the
same cell (same cell barcode - CB tag, provided by Cell-
Ranger) and the same molecular identifier, not trying to
correct errors in the molecular identifier (UR tag). We cal-
culated the span of a set of reads as follows: 

spa n of rea d s et( C B, U R ) = max( re ad e nd| CB, U R) 

−mi n ( read s t art | CB, U R)

The start and end coordinates refer to the genomic coor-
dinates of reads within the set with a specific (CB, UR) com-
bination. For reads that spanned splice junctions (coming
from adjacent exons of spliced mRNA), only the most dis-
tal part of the mapped read was used to compute the span.

The distribution of spans had two distinct peaks, one at
100–1000 and the other at 10–100 million nucleotides. Only
the first one corresponds to terminal fragment sizes that are
generated in the experiments, while the second peak may
correspond to cases where two distinct mRNAs ended up
with the same UMI. 

Read clustering. Based on these r esults, we r estricted the
deduplication to reads with the same (CB, UR) tag com-
bina tion tha t covered a maximum span of 100’000 nu-
cleotides. That is, we traversed the genome, adding reads to
the 3’ end of a cluster for as long as the maximum cluster
span was not reached. Once this happened, we initiated a
new subcluster, with a new subcluster tag (YB tag, Table 2 ).
In the very unlikely case that reads originating in the same
mRNA will be split into multiple clusters by this procedure,
the identification of PAS will not be impacted, because only
the distal cluster will contain reads with poly(A) tails. 

UMI correction. Similar to CellRanger, we then corrected
errors in the molecular identifiers, by merging clusters
w hose span overla pped, and w hose UR tags differed in one
nucleotide. The majority UR tag in a merged cluster was
then taken as the UMI of all reads in the cluster. 

Read selection. Finally, we chose the most distal read from
each cluster, as this should come closest to the PAS, possi-
b ly cov ering part of the poly(A) tail. If a cluster contained
reads mapping to both strands of the chromosome (as well
as having the same CB and UMI tags), we applied dedupli-
cation only to reads corresponding to the majority strand.
In case of an equal number of reads mapping to the pos-
iti v e and negati v e strands we chose arbitrarily those from
the negati v e strand. 

Alignment correction 

Inspection of read-to-genome alignments indicated that
ther e wer e some cases wher e the alignment program did not
fully extend the mappable parts of the reads into regions of
low nucleotide complexity. This resulted in unmapped (i.e.
‘soft-clipped’) regions of the reads that in fact matched the
genome. As we rely on soft-clipping to identify the PAS, it
is important that the alignment is correct, extending over
the entire alignable part of each r ead. We ther efor e imple-
mented an additional step following the read-to-genome
alignment, extending the mapped region of a soft-clipped
read for as long as the number of mismatches between the
soft-clipped region and reference genome remained under a
threshold, which was 

threshol d = max ( l ength o f so f t cli pped region/ 10 , 2 ) 
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Table 1. scRNA-seq datasets used in the study 

Dataset Accession number Sample BAM file size (GB) Tissue 

Tabula Muris Senis NA 10X P4 2 21 .8 Li v er 
NA 10X P4 7 23 .8 Spleen 
NA 10X P7 4 17 .8 Heart and Aorta 
NA 10X P7 11 22 .2 Thymus 
NA 10X P7 14 18 .8 Limb muscle 
NA 10X P7 15 15 .0 Limb muscle 

T cell activation dataset SRR6228889 10X nai v e 1 5 .7 Blood 
SRR6228891 10X infected 1 7 .0 Blood 
SRR6228892 10X infected 2 6 .8 Blood 
SRR6228895 10X infected 3 5 .8 Blood 

Sperm cell de v elopment dataset SRR6129050 10X mouse 1 16 .6 Germ line 
SRR6129051 10X mouse 2 16 .1 Germ line 

SRR: sequence read archi v e run identifier, BAM: binary alignment map, GB: gigabyte, NA: not available. 

Table 2. Tags added for deduplication and classification of read 3’ ends and PAS clusters 

Tag name Description Value 

XO Cleavage site implied by initial alignment Integer 
XF Corrected cleavage site implied by the extended alignment Integer 
YB Cluster of reads with same unique molecular identifier (UR) String (URID-subcluster #) 
ZI PAS cluster annotation class chromosome:start:end:strand:clusterID 

a 

ZS PAS score Integer 
ZD Tag indicating whether a read maps to the boundary between 

the 2 clusters 
Integer (0 / 1) 

Zi PAS sub-cluster id String (ATE / UTE) 
Zd Tag indicating whether a read maps to the boundary between 

the 2 sub-clusters 
Integer (0 / 1) 

a ClusterID consists of chromosome, cluster r epr esentati v e, corrected cleavage site and strand separated by ‘:’. 
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hat is, we extended the alignment for as long as the num- 
er of errors in the extended alignment stayed under 10%, 
r, for short extensions, until the number of errors remained 

 2. Once this point was reached, we backtracked to the 
’-most position in the alignment where the read and the 
enome matched over 3 consecuti v e bases. The corrected 

leavage site was set to the nucleotide after the last of these 3 

ositions. For further processing, we defined two additional 
ags associated with the extended read alignments, XO and 

F (Table 2 ), corresponding to the old cleavage site implied 

y the initial alignment, and the new cleavage site, after the 
lignment extension. 

xtraction of poly(A) tail-containing reads (PATR) 

any reads have a few soft-clipped nucleotides at their 3’ 
nd that cannot be aligned to the genome. In the dataset 
hat we used for de v eloping the method, Tabula Muris Senis 
ample 10X P7 14, the distribution of soft-clipped region 

ength decreased abruptly up to 4–5 nucleotides, and slower 
eyond this point, consistent with two processes generating 

hese soft-clipped regions. The longer soft-clipped regions 
ere also very A-rich (not shown), indicating that they rep- 

esent poly(A) tails. Thus, we extracted as poly(A) tail- 
ontaining reads (PATR) those reads that, after the align- 
ent extension and cleavage site correction, had at least 5 

oft-clipped nucleotides at the 3’ ends, with > 80% A’s. 

tandard approach to read deduplication 

o illustrate the utility of our tool in extracting 

xperimentally-supported PAS we compared the ex- 
racted reads with those obtained with the standard 

orkflow for scRNA-seq analysis. That is, we carried out 
he read deduplication with the UMI-tools ( 12 ) software 
version 1.1.1). Throughout we used one sample from 

he Tabula Muris Senis dataset, 10X P7 14 for these 
enchmarks. UMI-tools ̀ dedup` was used with parameters 
xtract-umi-method = ta g, umi-ta g = UB, cell-ta g = CB, 
ene-tag = GX, method = unique, per-gene and per-cell. 
We sorted and indexed the alignments with samtools ( 16 ) 

nd the set of reads was then processed as the set extracted 

y SCINPAS, starting with the identification of PATR. 

lustering of read 3’ ends into PAS clusters 

t has been observed before (e.g. ( 17 )) that poly(A) sites are 
ot processed with single-nucleotide precision, but rather 
RNAs ending a few nucleotides upstream or downstream 

f a dominant PAS are typically observed in large scale 
atasets. For analyses such as of regulatory motifs, it is im- 
ortant to identify these dominant sites, which we refer to 

imply as PAS, and their respecti v e clusters of secondary 

leavage sites. To retrie v e these PAS, BAM files containing 

lignments of PATR were used to construct BED files where 
he end positions were set to the corrected cleavage sites im- 
lied by the reads, the start positions were those preced- 

ng the end (i.e. corrected cleavage site –1) and the score 
as the number of reads with identical corrected cleavage 

ite. We clustered individual cleavage sites as done before 
 17 ): in each iteration, we started from the cleavage site with 

he highest score, which became a new PAS, and associ- 
ted with it all corrected cleavage sites within 25 nucleotides 
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upstr eam or downstr eam. The scor e of the P AS cluster (P AS
score) was computed as the total number of reads support-
ing the PAS cluster (Figure 1 ). We then removed all the
cleavage sites associated with the cluster, and moved to the
next most frequent cleavage site not yet considered. We re-
peated the procedure until all cleavage sites were examined
( 17 ). For the various controls, we started with the appro-
priate set of reads (depending on the analysis, reads with-
out poly(A) tails, i.e. non-PATR, or reads deduplicated by
standard tools) and applied the same clustering procedure
described above. 

Classification of PAS clusters 

To evaluate the SCINPAS-identified PAS we annotated
the clusters it produced by intersecting them with non-
overlapping fea tures annota ted on the genome, i.e. inter-
genic regions (IG), intronic regions (I), non-terminal exons
(NTE) or terminal exons (TE). We used the CellRanger-
provided GTF annotation mm10-2020-A build, which is a
modified version of the GRCm38 mouse genome assembly
from GENCODE. We extracted entries corresponding to
lncRNA and protein-coding mRNAs, and then intersected
the locations of PAS clusters with these annotation features.
For example, intronic clusters were those that intersected
gene loci but not exons (Figure 1 ). The intersections were
done with the BEDTools (software version 2.27.1) ‘window’
function with w = 1 ( 18 ), to allow for the ambiguity in as-
signing by different tools of the A nucleotide that frequently
occurs after the cleavage position to either the transcript or
to the poly(A) tail. For clusters annotated to TE we further
distinguished those whose PAS was < 100 nucleotides from
the annotated TE end (annotated in terminal exon, ATE)
and those whose PAS was farther away (unannotated in ter-
minal exon, UTE). 

Classification of PATR 

We also annotated individual reads within the clusters, by
propagating the cluster annotation to individual reads. This
was achie v ed by identifying the cluster in which each read
belonged and assigning it the annotation of the cluster (ZI
tag) and the PAS score (ZS tag). If a read mapped to the
boundary between 2 clusters, we assigned it to the cluster
with the highest score, and we noted the potential ambigu-
ity by setting another tag, ZD = 1. If a read belonged to
exactly 1 cluster, the ZD tag value was set to 0. Finally, we
used another tag, ‘Zi’ to denote the ATE or UTE annota-
tion (and a corresponding ‘Zd’ tag to indicate whether the
read overlapped two PAS clusters in the same terminal exon
(T able 2 ). T ag names are in accordance with SAM format
specification ( https://github.com/samtools/hts-specs ). 

Computation of summary statistics 

Number of reads associated with various categories of PAS.
The BAM files enhanced with the tags indicating the an-
notation of the reads were used as input to the ‘pysam’
python package (version 0.18.0) ( 16 , 19 ) to count all types of
r eads (i.e. raw r eads, deduplicated, soft-clipped, non-PATR,
PATR, TE, ATE, UTE, NTE, I, IG). 
Number of covered genes. We considered as annotated
those genes for which a transcript with support le v el (TSL)
≤ 3 is annotated in the GTF file. TSL 3 signifies that there
is at least one sequenced expressed sequence tag providing
evidence for a transcript. We counted the number of anno-
tated genes in the GTF file. We then computed the number
of expressed genes in a sample as the number of unique gene
IDs (GX tag) in the deduplicated BAM file for which there
were at least 2 reads mapping to one of the gene’s annotated
exons. Similarly, we computed the number of genes covered
with identified PATR. 

Position-dependent nucleotide frequencies around PAS. To
determine whether different categories of PAS had the ex-
pected nucleotide composition in their vicinity, PAS clusters
of specific types were identified in BED files and the PAS,
i.e. the cleavage site with the highest read support (found in
the ZI tag, see Table 2 ) was used to extract 101 nucleotides-
long genomic sequences centered on these PAS. The relati v e
frequencies of the four nucleotides were computed and vi-
sualized for each PAS category. 

Position-dependent frequency of polyadenylation signals.
The most conserved signal for polyadenylation, i.e. the
poly(A) signal, has the consensus sequence AAUAAA, but
12 variants (AAUAAA, AUU AAA, U AU AAA, AGU AAA,
AA UACA, CA UAAA, AA UA UA, GA UAAA, AA UGAA,
AAGAAA, ACUAAA, AAUAGA) have been found con-
served between human and mouse ( 17 ), and we refer to
them as ‘canonical’. We determined the position-dependent
frequency distribution of these canonical poly(A) signals
around PAS of various categories as done before ( 17 ).
Specifically, we extracted the sequence centered on each of
the PAS and stored all these sequences into a dataframe.
For each sequence we recorded which of the 12 canonical
poly(A) signals ( 17 ) occurred in it, as a 0 or 1 value in the
column corresponding to each poly(A) signal. A column
sum then gi v es the frequency of PAS containing the respec-
ti v e poly(A) signal. We then traversed the data frame iter-
ati v ely, recor ding the highest frequency motif, construct-
ing the position-dependent distribution of its occurrence
in the sequences that contained it, then removing all these
sequences from the data frame and repeating the process
for the next-most frequent poly(A) signal. If a motif oc-
curr ed mor e than once in a sequence, its contribution to-
wards each of the positions where it occurred was weighted
by 1 / number of occurrences, so that each sequence con-
tributed with equal weight to the motif frequency distribu-
tion. The analysis was done for entire PAS datasets as well
as for subsets of PAS with particular annotations. Running
averages (5 nucleotides to the left and right of a gi v en posi-
tion) were plotted. 

Position-dependent frequency of polyadenylation signals in
P APERCLIP-identified P AS. To determine whether the
position-dependent frequency of polyadenylation signals
depends on the method by which the PAS were inferred, we
also analyzed data generated with the PAPERCLIP method
( 20 ), in w hich mRN A termini are identified by crosslink-
ing and immunoprecipitation of the poly(A)-binding pro-

https://github.com/samtools/hts-specs


NAR Genomics and Bioinformatics, 2023, Vol. 5, No. 3 5 

Figure 1. Scheme of SCINPAS workflow . The inputs to SCINPAS are indicated in the green box. Alignments of reads from primary samples are generated 
with CellRanger. The SCINPAS processing steps are shown in the cyan boxes and the outputs of the workflow are indicated in the orange box. File formats 
for inputs and outputs are indicated in parentheses. 
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olyAsite atlas ( 21 ), which contains pre-analyzed data for 
8 samples mapped to the mouse genome assembly version 

RCm38.96. Any PAS with TPM expression > 0 across all 
APERCLIP samples was written out to a BED file and 

urther used to construct position-dependent frequency of 
ccurrence of poly(A) signals, following the procedure de- 
cribed in the previous section. 

osition-dependent frequency distribution of AAUAAA 

round SCINPAS- and SCAPE-identified PAS. We ap- 
lied the procedure described in the previous two sections 
o compare the position-dependent frequency distribution 

f the main polyadenylation motif, AAUAAA, relati v e to 

AS identified with either SCINPAS or SCAPE. 

onsistency of poly(A) signal distribution at PAS and an- 
otated mRNA 3’ ends. To determine whether novel PAS 

ocated in various genomic regions are characterized by the 
ame poly(A) signals as annotated PAS, we used the follow- 
ng procedure. First, we constructed reference distributions 
f poly(A) signals upstream of the 3’ ends of annotated mR- 
As, as described in the above par agr aph. Then, for each of 

he 12 canonical poly(A) signals, we determined the loca- 
ion of its peak around the 3’ ends of mRNAs and recorded 

he interval around the peak where the frequency was ≥90% 

f the peak v alue. This interv al was considered the expected 

ocation of the poly(A) signal at true poly(A) sites. Then, 
or each category of PAS in a dataset we constructed the 
osition-dependent frequency of each canonical poly(A) 
ignal and we determined whether the peak position of each 

oly(A) signal fell within the interval expected from the true 
AS. Finally, we counted for how many poly(A) signals this 

ondition held and we defined this count to be the motif c
core for each category of PAS in a gi v en dataset. Hence, the
inimum motif score of a dataset is 0 and maximum motif 

core is 12. As negati v e control, we started from reads with-
ut poly(A) tails (non-PATR reads) and applied the same 
rocedure, i.e. clustering, identifying the position with most 
ead support in each cluster, and finally determining the mo- 
if scores for these clusters. 

umber of PAS in a given category. To compare the per- 
ormance of SCINPAS with that of other tools that iden- 
ify PAS from scRNA-seq, we extracted PAS with specific 
nnotations from the relevant BED files (see section Classi- 
cation of PAS clusters) and counted the number of clusters 
upported by at least 2 PATR, thus requiring a minimum of 
 reads to support a PAS. 

omparison of PAS usage between 2 different cell types. To 

ompare the pattern of PAS usage in previously analyzed 

atasets, we used the metadata provided in the respecti v e 
tudies to identify cell types and merge the reads (aligned 

nd deduplicated) from individual cell types. The merged 

AM files were further processed to get the PAS of individ- 
al cell types. We then intersected the set of PAS identified 

y SCINPAS with terminal exons of annotated transcripts, 
nd for each terminal exon, we calculated the length im- 
lied by the location of PAS within this terminal exon. That 

s, gi v en the PAS score (number of supporting reads) s i of 
 PAS i located at distance d i from the start of the termi- 
al exon, the average length l i of the terminal exon in the 
especti v e sample is gi v en by ( � i d i s i ) / ( � i s i ) . If a cluster
verla pped m ultiple terminal exons, the PAS score was uni- 
ormly divided between these terminal exons. We then cal- 
ulated the ratio of average lengths of each terminal exon 
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between two cell types and the distribution of log-values of
this ratio. 

Comparison with SCAPE 

Execution of SCAPE. We downloaded SCAPE from
https://github.com/LuChenLab/SCAPE , tested it with the
provided example data and executed it with default pa-
rameters (see below). By default, SCAPE r equir es stranded
data to infer the insert size. For the widely used 10x Ge-
nomics data, the second read contains only the bar-
codes and the insert size is appr oximated fr om paired-
end datasets. The number of PAS to search for in a spe-
cific terminal exon has to be provided. We used the pa-
rameter values suggested by the authors, namely maxi-
mum number of PAS = 5, minimum number of PAS = 1,
the mean and standard deviation of insert size of the li-
brary = 300 and 50 bases, respecti v ely, the length of the
poly(A) tail = Uniform(20,150) nucleotides, minimum dis-
tance between two PAS = 100 nucleotides, and maximum
length of UTR = 6000 nucleotides. SCAPE performs the
optimisation step-wise ̀ theta step = 9` and fixes the maxi-
mum standar d de viation ̀ max beta = 70`. This explains the
discrete spans of the regions centered on poly(A) sites. 

Obtaining classes of PAS clusters. For the comparison
with other tools / r esour ces, we cr eated an additional anno-
tation class, namely of regions of size 1kb downstream of
annotated genes and termed it ‘1kb downstream genes’. We
created these regions with BEDTools ‘flank’ function, then
r emoved r egions that overlapped with other genes on the
same strand. 

For SCINP AS P AS clusters, this is an additional inter-
genic class, which was obtained with the BEDTools ‘win-
dow’ function using the ‘1kb downstream genes’ regions
and the intergenic PAS clusters (parameter -u and one base
pair added up- and downstream of the PAS clusters (pa-
rameter -w 1)). The r emaining intergenic PAS clusters wer e
also obtained with BEDTools ‘window’ applied to the ‘1kb
downstream genes’, but with parameters -w 1 and -v, to re-
port to complement of the previously identified class, i.e.
PAS that were initially classified as intergenic, and were fur-
ther located outside of the 1kb downstream of annotated
genes. For both cases only overlaps on the same strand are
reported (parameter -sm). 

The main output of SCAPE, the ‘pasite.csv.gz’ file, con-
tains the count for each cell barcode and PAS. These val-
ues were summed and saved into a standard BED file. The
start and end coordinates of each PAS was computed as
floor(mean - beta / 2) and floor(mean + beta / 2), where mean
and beta were the parameters of the fitted Normal distribu-
tion from SCAPE. 

The SCAPE PAS were classified with BEDTools ‘inter-
sect’, similar to the classification of SCINP AS P AS. Ex-
onic PAS were obtained from the intersection with exons
but not terminal exons, intr onic PAS fr om the intersection
with genes but not exons, and intergenic PAS were those
that did not intersect with genes or with ‘1kb downstream
genes’. The annotation ‘1 kb downstream genes’ was ob-
tained when PAS did not intersect genes but overlapped
completely (-f = 1) with the class ‘1kb downstream genes’.
Lastly, terminal exon PAS were obtained from the intersec-
tion of terminal exons only. 

Analysis and gr aphics . In general, we used SCINPAS-
extracted PAS clusters with at least 2 supporting PATR.
This was also the case when we compared SCINPAS to
SCAPE. To visualize the number of PAS clusters, the in-
dividual classes (TE, exons , introns , intergenic and ‘1 kb
downstr eam genes’) wer e extracted and plotted as stacked
bar charts with ̀ geom col`. 

The distance between a PAS cluster and the closest PAS
cluster downstream was computed as follows. For each
chromosome and strand, PAS clusters were sorted by start
and end positions. Then for each but the last cluster we ob-
tained the distance from its end position to the start position
of the following cluster. The distance distribution plot was
created with ̀ geom freqpoly` using density estimates. 

The scatter of the number of supporting reads associ-
ated with SCINPAS and SCAPE-identified PAS in individ-
ual genes were generated as follows. For each gene, over-
laps between gene (g) and PAS cluster (p) were found by
requiring the same chromosome and strand and ( g s ≤ p e )
& ( g e ≥ p s ) for SCAPE and ( g s ≤ p e + 1) & ( g e ≥ p s - 1)
for SCINPAS, where (s) and (e) are start and end coordi-
nates respecti v ely. This allows for partial ov erla ps, w hich is
also the default behavior of BEDTools intersect and win-
dow functions. The found overlaps were counted and the
individual PAS scores (i.e. number of reads supporting the
PAS cluster) were summed. The log(read count + 1) val-
ues were plotted as a scatter. Density estimates were cre-
ated with ̀ geom density2d` using 200 grid points in each di-
rection. The Spearman rank correlation rho and associated
p-value was computed with ̀ cor.test(method = ’spearman’)`
on the PAS score at the gene le v el. 

For all PAS clusters, irrespecti v e of annotation, the span
was computed as the distance between the end and start co-
ordinates (from the BED file coordinates). 

All plots were generated with ggplot2 ( 22 ). 
Examples of PAS and read coverage of gene loci were vi-

sualized with IGV v2.11.9 ( 23 ). 

Overlap of SCINP AS-inferred P AS from the Tabula Muris
Senis samples with the polyAsite atlas 

We used the 6 Tabula Muris Senis samples from Table 1
to infer PAS, requiring a minimum of 2 reads support. We
then determined whether a SCINP AS P AS cluster ( x ) over-
lapped a PAS cluster ( y ) from the polyAsite atlas ( 21 ), lo-
cated on the same chromosome and strand if the start (s)
and end (e) coordinates of the clusters satisfied the condi-
tion ( y s ≤ x e + 1) & ( y e ≥ x s − 1). This condition, which
allows for clusters to be immediately adjacent to each other
rather than overlapping, accounts for the possibility that
tools may differ in whether they assign an A nucleotide that
frequently occurs in the genome immediately downstream
of the cleavage, to the templated part of the transcript or to
the poly(A) tail. We then counted the fraction of SCINPAS
clusters that overlapped a PAS cluster, for various numbers
of SCINPAS clusters, sorted by their read support (i.e. top
100, 500, 1000, etc.). 

https://github.com/LuChenLab/SCAPE
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xpression levels of RNAs with or without the AAGAAA 

AS motif 

e first filtered representati v e cleavage sites that overlap 

ith terminal exons and grouped them by the gene name 
f the terminal exons with which they overlapped. Defini- 
ion of overlap is the one in the paragraph above. If multiple 
erminal exons overlapped with a given r epr esentative cleav- 
ge site, the terminal exon whose end was closest to the rep- 
esentati v e cleavage site was associated with the respecti v e 
leavage site. The selected terminal exons were then divided 

n two sets, depending on whether or not any of the PAS 

ithin them had the AAGAAA motif in the region −40 bp 

o +20 bp. The distribution of transcript expression levels 
number of reads in the PAS clusters of the terminal exon) 
as then calculated for the two categories of TEs in the three 
atasets used for benchmarking: Tabula Muris Senis sam- 
le 10X P7 14, T cell activa tion da taset (union of sites in all
amples) and sperm cell de v elopment dataset (also union of 
ll sites in these samples). 

istance of PAS to terminal e x on ends 

o determine how pr ecise differ ent methods are in identi- 
ying TE ends, we first filtered representati v e cleavage sites 
hat overlap with terminal exons. The definition of overlap 

s the same as the two par agr aphs above. If a given r epr esen-
ati v e cleavage site overla pped m ultiple TEs, the TE whose 
nd was closest to the r epr esentati v e cleavage site was as-
ociated with the respecti v e cleavage site. Then the distance 
as computed as 

di s tance = ab s( e nd of te rminal e xon 

− r epr e se nt at ive c le avage s i te) 

he distances were computed for both samples and control 
o generate a cumulati v e frequency plot. For the control, 
MI-tools deduplicated 10X P7 14 was used. 

ESULTS 

cRNA-seq reads provide direct evidence of polyadenylation 

ites 

ncreasingly many studies have started to investigate APA 

rom scRNA-seq datasets that are generated with the 10x 

enomics technolo gy, w hich ca ptures 3’ fragments of mR- 
 As ( 5 , 6 , 8 , 10 ). Invariabl y, these studies start from ‘dedupli-

ated’ reads mapped to the r efer ence genome with the Cell- 
anger software ( 11 ). While a unique molecular identifier 

UMI) is attached to the 3’ end of an mRNA, PCR copies 
f the mRNA are fragmented and 3’-terminal fragments are 
equenced in the 5’-to-3’ direction, yielding distinct reads 
ssociated with the same UMI. For quantifying gene ex- 
ression it is not crucial which of the reads with the same 
MI is selected for quantification during the read dedupli- 

ation process. Howe v er, reads that ma p most distall y in 

he gene locus ar e mor e likely to reach the 3’ end of the
RNA. Thus, for the purpose of identifying reads that con- 

ain poly(A) tails and thus provide experimental evidence 
f the PAS, it is important to select these distal reads from 

mong those with identical UMIs. To demonstrate this, 
e determined the number of reads with unmapped (soft- 
lipped) nucleotides at the 3’ end that were extracted ei- 
her with standard software (CellRanger followed by UMI- 
ools) or by our software. On a randomly chosen sample 
rom the Tabula Muris Senis dataset (ID:10X P7 14), we 
ound that 0.44% of the reads that were extracted with the 
tandard software had soft-clipped nucleotides at their 3’ 
nd, while this proportion was ∼3-fold higher, 1.12%, when 

electing distal reads. Similar results were obtained on other 
atasets (not shown). This result emphasized the need for 
 tool to pre-process scRNA-seq reads so as to maximize 
he recovery of poly(A) tail-containing reads and thereby 

olyadenylation sites with experimental support. 
A scheme of the SCINPAS –– short for sc RNA-seq-based 

 dentification of n ovel p oly( A ) s ites –– workflow is shown in
igure 1 . SCINPAS is written in the nextflow language ( 24 ) 
nd its key features are the following. First, in contrast to 

MI-tools, which uses the genome annotation to collapse 
eads that have the same UMI and map to the same gene, 
CINPAS does not assume a specific genome annotation 

ut rather is able to identify PAS that are located outside 
f the currently annotated exonic / genic regions. To demon- 
trate this, we first clustered the reads that came from the 
ame cell and had the same unique molecular identifier. 

ost clusters spanned < 10 kb (Figure 2 A), as expected 

hen reads come from terminal fragments of mRNAs, ter- 
inal exons being generally kilobases-long ( 25 ). Howe v er, 

ome clusters had a much larger span. This could occur 
hen the sequenced fragments span splice junctions, or per- 
aps from rare cases when distinct mRNAs were tagged 

ith the same UMI. In SCINPAS, we collapse all the reads 
ith the same CB and UMI, but only within some maxi- 
um cluster span. That is, we traverse the genome in the 

’-to-3’ direction to construct clusters of such reads, ending 

 cluster when a predefined threshold (100’000 nucleotides) 
n length is reached. The selection of the distal read is done 
eparately for each such cluster (Figure 2 B). As only reads 
ith poly(A) tails contribute to PAS identification, if reads 
ith the same UMI end up erroneously in multiple clus- 

ers, the reads originating from the upstream clusters would 

ot have poly(A) tails and thus spurious PAS will not be 
enerated, despite the error in read clustering. On the other 
and, if the initially large cluster span was really due to the 
ame UMI being attached to multiple isoforms, then the up- 
tream clusters should also contain reads with poly(A) tails, 
nd they will be kept for further analysis. 

The second key step is to identify the reads containing 

oly(A) tails. For this, we extracted all the reads whose 
’ ends could not be mapped to the genome, i.e. those 
ith soft-clipped nucleotides at the 3’ end. In the sample 

hat we arbitrarily picked for the tool de v elopment, the 
0X P7 14 sample from the Tabula Muris Senis dataset, 
he soft-clipped part of the reads was generally very short, 
–3 nucleotides in 58.2% of the cases (Figure 2 C). How- 
 v er, many reads still had longer soft-clipped regions, up 

o ∼30 nucleotides. Inspection of read-to-genome align- 
ents re v ealed some cases in which the alignment (gen- 

rated by the STAR software ( 26 )) could be further ex- 
ended into the soft-clipped region, without a decrease in 

he alignment quality (Figure 2 D). Thus, we implemented 

n additional step of refining the alignment by extending 
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A B

C D

E

Figure 2. Key steps in SCINPAS . ( A ) Distribution of genomic spans of reads with the same cell and molecular identifier (CB and UR tag, log 10 ) constructed 
from the sample 10X P7 14 of Tabula Muris Senis . ( B ) Illustration of distal read selection, from among the reads with the same CB and UMI. In this case, 
only the most 3’ read has 3’ non-templated A nucleotides (indicated by the green color). ( C ) Distribution of soft-clipped region length in reads from the 
same sample, as gi v en by the STAR software. ( D ) Illustration of a read-to-genome alignment that could be extended further over the region marked as 
soft-clipped in the initial alignment. The read maps to the negati v e strand of the genome. The start of the soft-clipped region marks the ‘Initial cleavage site’ 
implied by the alignment. The ‘Corrected cleavage site’ (red arrow) results from the extension of the alignment over the mappable part of the soft-clipped 
region. ( E ) Scheme of SCINPAS annotation of PAS and PATR. 
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the mapped regions of soft-clipped reads until the number
of mismatches between the soft-clipped region and refer-
ence genome reached a maximum threshold and then cor-
recting the cleavage site implied by the read (see Materials
and Methods). Finally, we selected the reads that contained
non-templated poly(A) tails of at least fiv e nucleotides and
over 80% A’s, and we clustered them as described previously
( 17 ), to remove the small variability in cleavage sites. We
consider the most frequently used cleavage site in a cluster
(cluster r epr esentati v e) to be the pol y(A) site (simpl y PAS).
In the 10X P7 14 sample we found that 1.6% of the dedu-
plicated reads contained poly(A) tails. The clusters and in-
dividual cleavage site positions (including corrected posi-
tions) within them were then saved in BED and BAM files,
respecti v ely, and then finally, annotated (Figure 2 E). 

SCINPAS impr ov es the recovery of poly(A) sites relative to
standar d softw ar e 

To compar e PAS r ecover ed from r eads extracted by ei-
ther SCINPAS or the standard software, we investigated a
few properties previously found to characterize true PAS.
First, the mouse genome being quite e xtensi v ely annotated,
we expect that most well-expressed isoforms are already
r epr esented in this annotation, and are recovered by an
accura te PAS identifica tion tool. Of the 652 288 poly(A)
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ail-containing reads (PATR) extracted by SCINPAS from 

he Tabula Muris Senis 10X P7 14 sample, 415 299 mapped 

o annotated terminal exons (TE – 63.7 %), 2329 to other 
xons (NTE – 0.4 %), 34 484 to introns (I – 5.3 %) and
00 176 to intergenic regions (IG – 30.7 %) (Figure 3 A). In 

ontrast, only 133 536 PATR were extracted after a ppl ying 

he UMI-tools software, 126 958 from terminal (95.1 %), 
66 (0.4%) from other types of exons, 952 ( 0.7 %) from in-
rons and 5060 ( 3.8 %) from intergenic regions. The main 

if ference is tha t SCINP AS identifies P ATR in intergenic 
 egions. When these ar e not consider ed, as in the standard 

nalysis, the proportion of PATR in terminal exons com- 
ared to other genic regions is indeed very high, 91.9 %. The 
mall number of reads that end up with intergenic and in- 
ronic annotation after the application of UMI-tools dedu- 
lication come from regions that were considered genic in 

he older mouse genome annotation that was used by the 
abula Muris Senis project for mapping the reads to the 
enome, but not in the newer annotation that we used in 

CINPAS for read and PAS classification. Thus, SCINPAS 

dentifies many more polyadenylated reads, the majority of 
hich come from terminal exons, but also some that come 

rom intergenic regions. 
We also asked whether the transcript ends implied by 

he inferred PAS indeed correspond to the ends of anno- 
ated terminal exons. To answ er this, w e calculated the dis- 
ances between PAS, weighted by the number of support- 
ng reads, and the annotated ends of the terminal exons in 

hich the PAS are located. The cumulati v e density function 

f log 10 values of the distance, shown in Figure 3 B, con- 
rms that the vast majority of SCINPAS-extracted PATR 

re located within 10 nucleotides from the annotated termi- 
al exons, while UMI-tools-extracted reads end hundreds 
f nucleotides away from the terminal exon end. For better 
esolution of PAS annotation (Figure 2 E), we distinguished 

etween PAS located at most 100 nucleotides upstream of 
he terminal exon end (we called these ‘annotated’ TE PAS, 
r ATE) and those that were located further upstream in 

erminal exons (UTE PAS). 
The sequence composition around PAS, determined in 

any previous studies ( 17 , 27 , 28 ), is strongly enriched in A
ucleotides at ∼20 nucleotides upstream of the PAS, where 
he poly(A) signal is located, while the region downstream 

f the PAS is enriched in U nucleotides. To test this, we first 
lustered cleavage sites implied by the PATR into clusters of 
losely-spaced sites, and took the most frequently used po- 
ition in a cluster (the ‘cluster r epr esentati v e’) as the actual
oly(A) site (see Methods). Computing the nucleotide fre- 
uencies around these PAS, we obtained the expected pat- 
ern (Figure 3 C). This was not the case when the reads used 

o infer cleavage sites came from the UMI-tools dedupli- 
ation and were not constrained to contain poly(A) tails 
Figure 3 D). Furthermore, dif ferent ca tegories of PAS in- 
i vidually e xhibited a similarly biased nucleotide composi- 
ion (Fig. S1). 

We also specifically checked for the presence of the 
ol y(A) signal, w hich has the AAUAAA consensus and is 

oca ted a t ∼20 nucleotides upstream of the cleavage site 
 17 , 29 , 30 ). Ther e ar e 12 variants of the consensus that are
onserved between human and mouse ( 17 ), and almost all 
howed the expected peak at ∼20 nucleotides upstream of 
he PAS (Figure 3 E). In contrast, no such pattern was exhib- 
ted by the negati v e control data set, constructed from reads 
ithout poly(A) tails obtained with the standard UMI- 

ools-based deduplication (Figure 3 F). Altogether, these re- 
ults demonstrate that our tool improves the recovery of 
ona fide PAS from scRNA-seq data relati v e to the stan- 
ar d wor kflows. 

CINPAS identifies PAS in genic and non-genic regions 

i v en that the majority of PATR and PAS correspond to 

erminal exon ends, we wondered whether PAS that SCIN- 
AS identified in other types of genomic regions also carry 

he expected signals for 3’ end processing and polyadeny- 
ation. Thus, we constructed position-dependent distribu- 
ions of occurrence of canonical poly(A) signals around 

utati v e PAS of different annotation categories. As nega- 
i v e control, we compared these distributions with those 
btained for a similarly analyzed dataset, where the reads 
ere deduplicated with UMI-tools and did not contain soft- 
asked nucleotides. Indeed, all but the smallest category 

f SCINP AS-extracted P AS had the expected enrichment 
f almost all poly(A) signals at ∼20 nucleotides upstream 

f the PAS (Figure 4 A–E). The few PAS identified in non- 
erminal exons had the expected enrichment of the main 

ol y(A) signal, AAUAAA, w hile for the other signals the 
umber of occurrences was low and the positioning rela- 
i v e to PAS less clear. These results indicate that reads with 

oly(A) tails selected by our tool identify bona fide PAS 

cross all types of genomic r egions. The r esults also suggest 
hat position-specific patterns of occurrence of poly(A) sig- 
als are very reliable and can be used to flag datasets from 

hich PAS are not accurately identified. 
One of the 12 conserved signals, AAGAAA showed a dif- 

erent positional pattern than the other motifs, peaking not 
t ∼–20 nucleotides of the PAS, but in the region –10 to 

. We also checked this motif’s frequency around the ends 
f the annotated TEs in our genome annotation and found 

t to peak at ∼+10 nucleotides, i.e. downstream of the TE 

nd (Figure 4 F). To exclude the possibility that priming on 

nternal poly(A) stretches underlies the differences in mo- 
if occurrence around SCINP AS P AS compared to anno- 
ated TEs, we further determined the position-dependent 
requency of the motif occurrence in the vicinity of PAS that 
ere determined with an orthogonal experimental method, 
APERCLIP ( 20 ), which uses crosslinking and immuno- 
recipitation of the poly(A) binding protein rather than 

riming with oligo(dT) to detect poly(A) tails. We extracted 

he PAPERCLIP-identified sites from the polyAsite atlas 
 21 ) and constructed the position-dependent motif distri- 
ution as done for all other categories of sites. The re- 
ults show that in this data set as well, the AAGAAA mo- 
if peaks at ∼10 nucleotides upstream of the PAS, simi- 
ar to SCINPAS-identified PAS, and not to annotated TEs 
Figure 4 G). 

AS identified by SCINPAS exhibit the expected dynamics 
uring cell differentiation 

o further test the ability of SCINPAS to identify non- 
anonical PAS, we applied it to two systems in which the 
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A

B

C

D

E

F

Figure 3. PAS extracted by SCINPAS contain the expected poly(A) signals. ( A ) The number of reads from the Tabula Muris Senis sample 10X P7 14, 
a t dif ferent steps of the pr ocessing pipeline, when the pr ocessing is done with SCINPAS (b lue) or the standar d UMI-tools-based wor kflow (orange). ( B ) 
Distribution of log 10 distances between inferred and annotated terminal exons, when processing is done with SCINPAS (blue) or the standard workflow 

(orange). ( C ) Position-dependent nucleotide frequencies in PAS constructed from SCINPAS-extracted r eads. PAS ar e anchor ed at position 0, and the 
genomic sequence upstream and downstream (from –50 to + 50 nucleotides) was used to calculate nucleotide frequencies. ( D ) Similar for negati v e control 
sites. ( E ) Position-dependent occurrence of poly(A) signals. The genomic sequence from –40 to +20 around PAS was extracted, poly(A) signals were 
identified and tabulated, and the frequency of poly(A) signal occurrence across all examined sequences was calculated. ( F ) Similar for negati v e control 
sites. 
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abundance and dynamics of such sites has been reported
before, T cell activation and sperm cell de v elopment, sys-
tems in which the usage of intronic and / or coding-region-
proximal PAS is activated ( 31 , 32 ). A ppl ying SCINPAS to
the T cell activa tion da taset ( 14 ) we found that intronic
PAS ar e mor e fr equent, 13.9% of all annotated PAS, in ac-
tivated T cells compared to the naive T cells, where 10.3%
of PAS were annotated as intronic. The average terminal
exon length as implied by the PAS inferred from the respec-
ti v e samples, remained largely unchanged, as we observed
similar numbers of terminal exons that became shorter or
longer by at least a factor of 2 upon T cell activation (3.3%
vs. 2.8%, Figure 5 A). We carried out a similar analysis for
a sperm cell de v elopment dataset ( 15 ), comparing PAS us-
age in elongating spermatids and spermatocytes. The pro-
portion of intronic PAS in this dataset was more similar
between the two dif ferentia tion stages 10.8% versus 9.3%
in spermatocytes and elongating spermatids, respecti v ely,
but many more terminal exons (13.4%) became at least 2-
fold shorter upon spermatocyte differentiation into elon-
ga ting sperma tids than becoming longer by the same factor
(1.6%, Figure 5 B). As with other analyzed datasets, the in-
tronic PAS inferred from activated T cells (Figure 5 C) and
elonga ting sperma tids (Figure 5 D) had the expected peak
poly(A) signals at ∼20 nucleotides upstream of the inferred
cleavage site (Figure 5 C, D). An example of intronic PAS
usage in the sperm cell dif ferentia tion system is shown in
Figure 5 E. 
 

SCINPAS provides complementary information relative to
other tools 

As already mentioned, a number of tools have been de-
veloped for extracting PAS from scRNA-seq data, though
they do not focus on PATR. A v ery recently-pub lished and
benchmarked tool, called SCAPE ( 6 ), uses PATR in the es-
timation of insert length in paired-end sequencing datasets,
so that peaks in read coverage corresponding to PAS can be
a ppropriatel y positioned on the genome. SCAPE was also
found to perform favorably with respect to the other tools
de v eloped to date, namely scAPA ( 33 ), Sierra ( 34 ), scAPA-
trap ( 8 ), SCAPTURE ( 10 ) and MAAPER ( 35 ). 

First, we determined the number of PAS clusters iden-
tified by SCAPE and SCINPAS in each sample in the T
cell activa tion da taset. As shown in Figures 6 A and S3A,
while the number of PAS from terminal exons does not show
a consistent difference between SCINPAS and SCAPE,
SCINPAS identifies many more PAS in intronic and inter-
genic regions that are not analyzed by SCAPE. The num-
ber of PAS identified per sample is more variable for SCIN-
PAS , proba bl y because SCINPAS onl y uses PATR, w hich
r epr esent only a few percent of the deduplicated reads in
a library (Figure 3 A). To better understand what the two
methods extract from the data it is insightful to examine
the distance from each PAS to the closest PAS downstream.
The distributions constructed from each sample in the T cell
activa tion da taset ar e shown in Figur e 6 B and in both cases
they have a prominent peak located at a pproximatel y 50’000
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G

Figure 4. Position-dependent frequency of occurrence of poly(A) signals at different types of PAS. ( A–E ) PAS were extracted and annotated with SCINPAS 
from the Tabula Muris Senis sample 10X P7 14. ATE – PAS within 100 nucleotides of annotated TE ends; UTE – PAS in TEs but > 100 nucleotides from 

the annotated TE ends; IG – intergenic; I – intronic; NTE – PAS in exons that are not TE. ( F ) Motif distributions around TE ends from the annotation of 
the GRCm38 mouse genome assembly. ( G ) Similar, for PAS identified by the PAPERCLIP ( 20 ) method for experimental identification of PAS. 
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ucleotides, roughly corresponding to end-to-end distances 
etween genes (red line), as expected. The left sides of the 
istributions, howe v er, are v ery different. SCAPE identi- 
es PAS that are ∼500 nucleotides a part, likel y reflecting 

hoices in the SCAPE model (Gaussian shape of the peaks 
ith mean insert size of 300 and standar d de viation of 
0 nucleotides). In contrast, the distances between SCIN- 
AS clusters have a broad distribution between ∼100 and 

10 000 nucleotides, with no pr eferr ed distance, as may 

e expected if the PAS occurred randomly within termi- 
al exons. SCINPAS clusters are either composed of sin- 
le cleavage sites, or have a relatively small span (peak at 
 nucleotides), indicating that the cleavage sites are well- 
efined, but also that the supporting data is sparse. In con- 
rast the span of SCAPE clusters shows a periodicity of 
 nucleotides, again likely indicating parameter choices of 
he method (Figure S2). We also compared the number of 
upporting reads associated with PAS in individual genes. 

hile the SCINPAS counts were ∼10-fold lower, as ex- 
ected from the fact that it only uses PATR and not all 
eduplicated reads, the Spearman correlation coefficient of 
CINPAS and SCAPE counts was relati v ely high, 0.68 ( P -
alue < 2.2e–16, Figure 6 C). In some instances, SCINPAS 
etected more PAS clusters per gene compared to SCAPE 

Figure 6 D, left panel), though examples where the opposite 
as the case also occurred (Figure 6 D, right panel). We per- 

ormed the same analysis as above on the sperm cell de v el-
pment dataset and found similar trends (Figure S3). Over- 
ll, SCINPAS detected fewer PAS clusters per gene in the 
 cell activation dataset (Fig. S2B) but more PAS clusters 

n the sperm cell de v elopment dataset (Fig. S2D). The in- 
reased positional resolution of SCINPAS-identified sites is 
lso emphasized by the position-dependent distribution of 
he canonical pol yadenylation motif, w hich has a sharper 
eak for the SCINPAS-identified sites compared to those 

dentified in SCAPE (Figures 6 E, S3E). 
Finally, we asked how reproducible the PAS identified by 

he two methods w ere betw een replicate samples, by cal- 
ulating the Jaccard statistic with BEDTools ( 18 ). As indi- 
ated in Table 3 , the Jaccard statistics were higher for SCIN- 
AS than for SCAPE when comparing replicates, and lower 
hen comparing PAS obtained from nai v e and activated T 

ells. 
Taken together, SCINPAS compared well with the most 

p-to-date method available, identifying not only sites in 

erminal exons, but also in intronic and intergenic regions. 
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A

B

C

D

E

Figure 5. SCINPAS-r ecover ed sites r eproduce APA patterns in pr e viously characterized systems. ( A ) Scatter plot of av erage terminal e xon (TE) length 
(log2 values) computed from the location and relati v e abundance of PATR mapping to individual terminal exons. Highlighted in r ed ar e TEs whose length 
changes (increases or decreases) by more than a factor of 2 in activated compared to resting T cells. ( B ) Similar to (A) but comparing elonga ting sperma tids 
with spermatocytes. ( C ) Position-dependent frequency distribution of canonical poly(A) signals at intronic PAS identified in activated T cells. ( D ) Similar 
to (C), for intronic PAS of elongating spermatids. ( E ) Example of an intr onic PAS identified fr om sperm cell de v elopment dataset. Top track shows the 
coverage of the region by reads, individual reads with poly(A) tails are shown in subsequent tracks (‘A’ nucleotides are shown with green color) and the 
gene annotation is shown in the bottom track. 
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The method is efficient, as it uses a much smaller fraction
of the sequenced reads than SCAPE, and gi v es mor e r epro-
ducible PAS when applied to closely-related samples. 

SCINPAS-based annotation of PAS from the Tab-
ula Muris Senis dataset 

Finally, to illustrate the generality and utility of SCINPAS
we applied it to a large dataset of mouse scRNA-seq, Tabula
Muris Senis ( 13 ), which was generated with a view of build-
ing an atlas of gene expression in the mouse. The run time of
SCINPAS ranged from 1.5 to 8 h for all samples in an indi-
vidual dataset (Table 1 ). To roughly assess the reliability of
PAS inferred from a gi v en sample, we used a measure based
on the poly(A) signal distribution around the PAS. Namely,
we determined the number of canonical poly(A) signals that
peaked at the same position in the SCINPAS-inferred PAS
as in annotated terminal exon ends. We considered a peak
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A B C

D

E

Figure 6. PAS recovery by SCINPAS and SCAPE. ( A ) Number of PAS inferred by SCINPAS (top) and SCAPE (bottom) from the T cell activation data. 
The colors indicate different classes of PAS (see legend). ( B ) Distribution of the distances from each PAS to the closest PAS downstream for SCINPAS 
(purple) and SCAPE (green). For comparison, the distribution of 3’end-to-5’end distances between genes is shown in red. ( C ) Scatter of the total number 
of PAS-associated reads within a gene for SCINPAS (x-axis) and SCAPE (y-axis). Spearman correla tion coef ficient was 0.68 ( P -value < 2.2e-16). The 
diagonal of equal read counts is shown in gray. 2D kernel density estimates obtained with the geom density 2d ( n = 200) function of ggplot2 are shown 
as blue contours. ( D ) Examples of PAS r ecover ed by SCINPAS (purple) and SCAPE (green) in the Capza2 (left) and Ccdc43 (right) genes, from the T 

cell activation dataset. Genes and terminal exons are shown in the IGV browser ( 23 ) in blue, and the coverage tracks in gray. ( E ) Position-dependent 
distribution of the canonical polyadenylation signal AAUAAA around SCINPAS- and SCAPE-identified PAS. 

Table 3. Jaccard statistics. Pairwise comparison of SCINPAS (left) and 
SCAPE (right) predicted PAS in individual samples from the sperm cell de- 
velopment (mouse 1 and 2) and T cell (nai v e 1 and infected 1–3) activation 
datasets 

SCINPAS SCAPE 

Mouse 1 versus 2 0 .3887 0.3088 
Infected 1 versus 2 0 .3903 0.3012 
Infected 2 versus 3 0 .3879 0.3834 
Infected 1 versus 3 0 .38478 0.2852 
Nai v e 1 versus infected 1 0 .2230 0.2479 
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o occur at the expected position if it was located within the 
0% peak frequency window inferred from annotated ter- 
inal exon ends (Figure 7 A). As shown in Figure 7 B, in 

ll datasets, all but the NTE PAS categories had the known 

oly(A) signal peaking at the expected position upstream of 
he PAS. This was not the case for the negati v e control which
as constructed based on non-PATR reads from the UMI- 

ools-deduplicated 10X P7 14 sample. The PAS located in 

on-terminal exons (NTE) generally r epr esented a small 
roportion of all the inferred PAS in each dataset (0.96– 

.86%, depending on the dataset), and for these, only the 
ain poly(A) signals, AAUAAA and AUUAAA occurred 

n sufficient frequency to yield stable profiles (Figure 7 B). 
To evaluate the sensitivity of our method we determined 

he proportion of expressed genes (supported by at least 
 reads) for which a PAS with a minimum support of 2 

ATR was found. The results in Figure 7 C show that SCIN- 
 AS identified a P AS for a pproximatel y 52–57 % of ex-
r essed genes, wher eas only 42% wer e cover ed by PAS in-
erred when starting from UMI-tools-deduplicated reads. 
he total number of PAS we identified in each of the sam- 
les is shown in Figure 7 D. 
We further compared the PAS that we obtained here with 

he polyAsite atlas ( 21 ), which contains a curated collection 

f ∼300 000 PAS identified in the mouse genome by bulk 3’ 
nd sequencing. By taking the union of PAS from the Tab- 
la Muris Senis samples ( 13 ) defined in Table 1 , we obtained
 total of 67’829 PAS. 35’741 of these are represented in the 
ol yAsite atlas, w hile 32’088 can be considered novel. The 
verlap with polyAsite atlas is larger when considering only 

he most supported PAS (Figure S4), as may be expected. 
hese results demonstrate the utility of our tool in the min- 

ng of scRNA-seq data to obtain a comprehensi v e cov erage 
f PAS in a gi v en species. 
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A B

C D

Figur e 7. A pplication of SCINPAS on Tabula Muris Senis samples. ( A ) Illustration of the motif score calculation. The positional pr efer ence of polyadeny- 
lation motifs relati v e to 3’ ends of annotated terminal exons was first determined. Then, the motif frequency in PAS from individual samples and classes 
was calculated and was deemed consistent with the annotation when the peak fell within the 90% interval around the maximum frequency for annotated 
terminal exons. The motif score was the number of motifs found to be consistent in a gi v en sample and PAS class. ( B ) Statistics of PAS classes in the analyzed 
Tabula Muris Senis samples. ( C ) Number of genes (y-axis, log 10 scale) with an annotated PAS (‘covered’ genes) from among the expressed genes in each 
of the analyzed Tabula Muris Senis samples. The control was obtained with the same processing workflow as the PAS, but starting from UMI-tools-based 
deduplicated reads from the Tabula Muris Senis sample 10X P7 14. A minimum of 2 reads support was required for both considering a gene expressed 
and for considering a PAS. ( D ) Total number of SCINPAS-identified PAS (y-axis, log 10 scale) with at least 2 PATR support in each of the samples. 
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DISCUSSION 

APA is one of the main mechanisms of isoform di v ersifica-
tion in humans ( 1 ), with a wide range of consequences for
cell signaling and gene expression (re vie wed in ( 3 )). In the
past decade, dedicated 3’ end sequencing methods have been
de v eloped to map the relati v e usage of PAS across tissues
and conditions, and the resulting data have been consoli-
dated in specialized repositories ( 36 ). Howe v er, as it has be-
come clear from various types of single cell anal yses, m uch
remains to learn about the processes that gi v e each cell its
identity and alternati v e polyadenylation seems to play an
important role ( 37 ). scRNA-seq has opened new possibili-
ties for studying the polyadenylation landscape of individ-
ual cell types because available technologies target mRNA
3’ ends. Yet the field has not fully exploited scRNA-seq data
to extract reads that provide direct evidence for the usage
of specific PAS by virtue of containing part of the poly(A)
tail. While this property has been used before for PAS iden-
tification from bulk sequencing datasets (e.g. ( 38 )), the vol-
ume of the data and the breadth of coverage of cell types af-
forded by scRN A-seq, especiall y using the technolo gy from
10x Genomics, is unmatched. 

A number of methods have already been proposed for
analyzing the polyadenylation landscape from scRNA-seq
data ( 5 , 7 , 8 , 10 , 35 ). Howe v er, none of these methods ad-
dresses the very first step in the processing pipeline, which
is read deduplication. This is the focus of SCINPAS, which
impro ves the reco very of reads containing poly(A) tails
se v eral fold. The reads without poly(A) tails are also ex-
tracted, which means that previously de v eloped models for
interpr eting the entir e dataset can also be used. We also
implemented a procedure for identifying PAS, clustering
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ata from closely-spaced reads, and compared the PAS 

hat we r ecover ed with those r ecover ed by a recently de-
eloped method, SCAPE ( 6 ). We show that SCINPAS pro- 
ides complementary information (e.g. recovering PAS in 

on-exonic regions) and also, much higher resolution in 

 AS identification. SCINP AS enables studies of cleavage 
ite micr oheter ogeneity, as well as detection of alternati v e 
AS in 3’ UTRs without specific assumptions about their 
elati v e distance. A small fraction of the PAS that we clas- 
ify as intergenic are located within a relati v ely short dis- 
ance ( < 1 kb) downstream of terminal exon ends (Figures 
 and S3). Small variations in the position of cleavage sites 
an occur for multiple reasons, including the imprecision of 
he processing machinery, observed in many previous stud- 
es, as well as the ambiguity of assigning terminal A nu- 
leotides when the cleavage occurs immediately upstream 

f a genome-encoded A nucleotide. Howe v er, in these cases 
he variation is much smaller than 1kb. Further analysis of 
CINPAS-identified sites along with long read data should 

larify the transcription units to which these PAS belong. 
The most conserved poly(A) signal that guides the 3’ 

nd processing of pre-mRNAs is the AA UAAA hexamer , 
ound by the WDR33 and CPSF30 components of the 3’ 
nd processing complex ( 30 , 39 ). Twelve variants of this se-
uence have been previously found to have a similar pat- 
ern of position-dependent enrichment upstream of the PAS 

 17 , 29 ) and also to promote polyadenylation in vitro ( 40 ).
ere we found that the peak of the AAGAAA variant 
as located at ∼10 nucleotides upstream of the SCINPAS- 

dentified PAS, but ∼10 nucleotides do wnstr eam of anno- 
ated TE ends (Figures 4 , S5). To resolve this discrepancy, 
e also analyzed the position-dependent frequency of the 
otif at PAS obtained with PAPERCLIP, an orthogonal 
ethod for PAS identification that uses crosslinking and im- 
unoprecipitation of the poly(A)-binding protein to iden- 

ify bona fide poly(A) tails ( 20 ). In PAPERCLIP-identified 

AS, AAGAAA peaked also at ∼10 nucleotides upstream 

f P AS (Figure 4 ). P AS that are located in non-terminal 
x ons, introns and inter genic r egions ar e mor e likely to
ontain this motif, and genes with AAGAAA-containing 

AS have higher expression levels than genes that do not 
ontain such PAS (Figure S5). These results suggest that 
AGAAA-containing PAS are non-canonical PAS that can 

nly be observed under normal conditions when the gene 
 xpression le v el is high (Fig. S5). Whether they are func-
ionally relevant in specific conditions or cell types re- 
ains to be determined in futur e studies. Inter estingl y, w hile
AGAAA was found to promote the polyadenylation of a 

ubstra te in vitr o ( 40 ), it has also been observed associated
ith a specific class of genes; these genes have multiple PAS 

n both introns and exons, and they couple polyadenyla- 
ion with splicing to generate long or short transcripts ( 41 ). 
n example studied in detail is that of the imm uno glob- 
lin E-encoding gene ( 42 ), which generates either a short, 
ecreted form of the protein by the usage of an intronic 
AUAAA PAS, or a long, membrane-bound form that de- 
ends on the usage of multiple PAS, including one contain- 

ng the AAGAAA poly(A) signal. Also noted before is that 
AGAAA is a splice enhancer ( 41 , 43 ), and thus, the
osition-dependent enrichment of this signal may vary de- 
ending on the location of analyzed PAS within genes. For 
he other signals, the position-dependent enrichment was 
imilar between annotated 3’ ends and the PAS identified 

y SCINPAS, in terminal exons or elsewhere, supporting 

he accuracy of the method. 
Altogether, these results indica te tha t SCINPAS is an 

ccurate method for e xtracting e xperimentally-supported 

AS from scRNA-seq data. Running SCINPAS on typical 
atasets as we used here takes 1–8 h, allowing SCINPAS 

o be applied to the many datasets available in the pub- 
ic domain. While SCINPAS focuses on the extraction of 
ATR, it also carries out deduplication of all reads, and 

hus can be used in general workflows for scRNA-seq data 

nal ysis. Moreover, non-pol yadenylated reads may be fur- 
her taken into consideration when quantifying PAS usage 
tarting from the experimentally-supported PAS in the sys- 
em of interest. The vast volume of scRNA-seq data makes 
t possible to substantially improve the coverage of PAS in 

ublic repositories, to thus reach an improved understand- 
ng of PAS usage in individual cell types. This is an exciting 

 esear ch dir ection for the futur e. SCINPAS is available from 

ttps://github.com/zavolanlab/SCINPAS . 

A T A A V AILABILITY 

CINPAS is packaged into a nextflow workflow ( 24 ). The 
ode and analysis are available from: https://github.com/ 
avolanlab/SCINPAS (permanent DOI: https://doi.org/10. 
281/zenodo.8272892 ). 

The data and additional scripts used for visualization 

re deposited in the zenodo repository, with the DOI 
0.5281 / zenodo.7868155. 

UPPLEMENT ARY DA T A 

upplementary Data are available at NARGAB Online. 
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