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ABSTRACT

Alternative polyadenylation is a main driver of tran-
scriptome diversity in mammals, generating tran-
script isoforms with different 3° ends via cleav-
age and polyadenylation at distinct polyadenylation
(poly(A)) sites. The regulation of cell type-specific
poly(A) site choice is not completely resolved, and
requires quantitative poly(A) site usage data across
cell types. 3’ end-based single-cell RNA-seq can
now be broadly used to obtain such data, enabling
the identification and quantification of poly(A) sites
with direct experimental support. We propose SCIN-
PAS, a computational method to identify poly(A)
sites from scRNA-seq datasets. SCINPAS modifies
the read deduplication step to favor the selection
of distal reads and extract those with non-templated
poly(A) tails. This approach improves the resolution
of poly(A) site recovery relative to standard soft-
ware. SCINPAS identifies poly(A) sites in genic and
non-genic regions, providing complementary infor-
mation relative to other tools. The workflow is mod-
ular, and the key read deduplication step is gen-
eral, enabling the use of SCINPAS in other typical
analyses of single cell gene expression. Taken to-
gether, we show that SCINPAS is able to identify
experimentally-supported, known and novel poly(A)
sites from 3’ end-based single-cell RNA sequencing
data.

INTRODUCTION

The majority of genes in the human genome have multi-
ple isoforms, most of which come from the use of alterna-
tive transcription start or polyadenylation sites (1). While
the regulation of transcription initiation by transcription
factors has been extensively studied, much less is known
about the regulation of poly(A) site (PAS) choice (2,3).
Comprehensive and quantitative PAS usage data across cell

types is essential for studying the PAS choice, and a vari-
ety of methods have been developed to obtain such data
by specifically sequencing mRNA 3’ ends (2,4). With the
introduction of single-cell RNA sequencing (scRNA-seq)
the scale and resolution of PAS choice analyses can be
dramatically expanded, because the broadly used 10x Ge-
nomics technology targets the 3’-terminal fragments of mR-
NAs. Consequently, various studies have emerged, describ-
ing the polyadenylation landscape of various cell types (5—
10). However, as the scRNA-seq reads are generated from
the 5’ ends of terminal mRNA fragments, they do not typi-
cally reach into the poly(A) tails to directly define the PAS.
These are inferred computationally by associating peaks in
read coverage with putative PAS, which can and does lead
to aloss of resolution in PAS identification. Moreover, anal-
yses of PAS usage in scRNA-seq data invariably start from
genome-mapped reads, once the pre-processing and the
‘deduplication’ of the reads based on their unique molec-
ular identifiers (UMIs) have been performed with standard
tools like CellRanger (11) and UMI-tools (12). These tools
were not developed with the specific intent of detecting and
quantifying the usage of PAS, and therefore, they do not at-
tempt to extract the reads that are most relevant for PAS
analyses. To fill this gap, we have developed SCINPAS, a
tool that modifies the pre-processing of sScRNA-seq data to
improve the extraction of reads that carry non-templated
poly(A) tails and thus provide direct evidence for PAS us-
age. SCINPAS should be applicable to any dataset gener-
ated with a 3’-biased approach to increase the recovery of
PAS from individual cells and cell types, and thus improve
the understanding of PAS usage and 3’ untranslated region
(UTR) dynamics across cell types.

MATERIALS AND METHODS
Analyzed datasets

Single-cell RNA sequencing data of the Tabula Muris Se-
nis dataset were downloaded from czb-tabula-muris-senis
S3 Public Bucket (13). Single-cell RNA sequencing data of
mouse CD8 + T cells - naive and from Listeria monocy-
togenes infection (14) - as well as from mouse germ cells
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(15) were downloaded from the NCBI's GEO database
(accession numbers GSE106264 and GSE104556 respec-
tively). Table 1 provides further information on these
samples.

Mapping reads to the genome

Alignments of reads-to-genome were obtained with the
CellRanger software, as it provided only the primary,
highest-accuracy alignments and did not discard reads that
mapped to non-exonic regions.

For the Tabula Muris Senis datasets, we used the align-
ments already available at czb-tabula-muris-senis S3 Public
Bucket (13), generated with CellRanger version 2.0.1 (11),
using the GENCODE GRCm38 vM19 annotation (avail-
able from the same S3 Public Bucket).

For the T cell activation and sperm cell development
datasets, we used the 10x Genomics CellRanger software
version 5.0.0 (11) to map the reads to the CellRanger-
provided genome assembly, which is a modification of
the GENCODE GRCm38 vM23 assembly version of the
mouse genome.

Read deduplication

A key step in the scRNA-seq data analysis is the identifica-
tion and ‘deduplication’ of reads that come from the PCR
copies of the same initial mRNA. This is done based on
the UMIs that are added during the cDNA synthesis step
and then sequenced as part of read 2, while the 5’ end of
the mRNA fragment is captured in read 1, in a paired-
end sequencing approach. In principle, reads carrying the
same cell identifier and the same UMI should come from
PCR copies of one mRNA molecule. However, mutations
may be introduced in the UMIs during sample prepara-
tion and sequencing, so that distinct UMIs do not always
imply distinct initial mRNAs. CellRanger corrects appar-
ent sequencing errors in the molecule identifiers (UR tag),
providing read barcodes (UB). Moreover, as the UMIs are
very short, there is a small chance that two distinct mR-
NAs end up with the same UMI. The standard approach
for read deduplication with the UMI-tools software uses the
genome annotation, to collapse the reads that have the same
UMI only if they fall inside one gene. This of course makes
sense, since the reads should be derived from a unique ini-
tial mRNA, but it also means that reads that fall outside of
annotated regions are not considered. Furthermore, UMI-
tools is not optimized to extract the most distal and thus
most likely to contain a poly(A) tail from among reads with
the same UMI. As our goal is to identify PAS in as com-
prehensive a manner as possible, including those outside of
annotated genes or exonic regions, we do not use the gene
annotation for deduplication, but implemented a different
pre-processing approach.

Determination of read spans. First, we investigated the
span of the genome covered by reads that originated in the
same cell (same cell barcode - CB tag, provided by Cell-
Ranger) and the same molecular identifier, not trying to
correct errors in the molecular identifier (UR tag). We cal-

culated the span of a set of reads as follows:
span_of read_set(CB, UR) = max(read_end|CB, UR)
—min(read_start|CB, UR)

The start and end coordinates refer to the genomic coor-
dinates of reads within the set with a specific (CB, UR) com-
bination. For reads that spanned splice junctions (coming
from adjacent exons of spliced mRNA), only the most dis-
tal part of the mapped read was used to compute the span.

The distribution of spans had two distinct peaks, one at
100-1000 and the other at 10-100 million nucleotides. Only
the first one corresponds to terminal fragment sizes that are
generated in the experiments, while the second peak may
correspond to cases where two distinct mRNAs ended up
with the same UMI.

Read clustering. Based on these results, we restricted the
deduplication to reads with the same (CB, UR) tag com-
bination that covered a maximum span of 100’000 nu-
cleotides. That is, we traversed the genome, adding reads to
the 3’ end of a cluster for as long as the maximum cluster
span was not reached. Once this happened, we initiated a
new subcluster, with a new subcluster tag (Y B tag, Table 2).
In the very unlikely case that reads originating in the same
mRNA will be split into multiple clusters by this procedure,
the identification of PAS will not be impacted, because only
the distal cluster will contain reads with poly(A) tails.

UMI correction.  Similar to CellRanger, we then corrected
errors in the molecular identifiers, by merging clusters
whose span overlapped, and whose UR tags differed in one
nucleotide. The majority UR tag in a merged cluster was
then taken as the UMI of all reads in the cluster.

Read selection.  Finally, we chose the most distal read from
each cluster, as this should come closest to the PAS, possi-
bly covering part of the poly(A) tail. If a cluster contained
reads mapping to both strands of the chromosome (as well
as having the same CB and UMI tags), we applied dedupli-
cation only to reads corresponding to the majority strand.
In case of an equal number of reads mapping to the pos-
itive and negative strands we chose arbitrarily those from
the negative strand.

Alignment correction

Inspection of read-to-genome alignments indicated that
there were some cases where the alignment program did not
fully extend the mappable parts of the reads into regions of
low nucleotide complexity. This resulted in unmapped (i.e.
‘soft-clipped’) regions of the reads that in fact matched the
genome. As we rely on soft-clipping to identify the PAS, it
is important that the alignment is correct, extending over
the entire alignable part of each read. We therefore imple-
mented an additional step following the read-to-genome
alignment, extending the mapped region of a soft-clipped
read for as long as the number of mismatches between the
soft-clipped region and reference genome remained under a
threshold, which was

threshold = max (length of soft clipped region/10, 2)
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Table 1. scRNA-seq datasets used in the study
Dataset Accession number Sample BAM file size (GB) Tissue
Tabula Muris Senis NA 10X_P4_2 21.8 Liver
NA 10X_P4_7 23.8 Spleen
NA 10X_P7 4 17.8 Heart and Aorta
NA 10X_P7_11 22.2 Thymus
NA 10X_P7_14 18.8 Limb muscle
NA 10X_P7_15 15.0 Limb muscle
T cell activation dataset SRR 6228889 10X naive_1 5.7 Blood
SRR6228891 10X _infected_1 7.0 Blood
SRR 6228892 10X _infected_2 6.8 Blood
SRR6228895 10X _infected -3 5.8 Blood
Sperm cell development dataset SRR 6129050 10X _mouse_1 16.6 Germ line
SRR6129051 10X_mouse_2 16.1 Germ line

SRR: sequence read archive run identifier, BAM: binary alignment map, GB: gigabyte, NA: not available.

Table 2. Tags added for deduplication and classification of read 3’ ends and PAS clusters

Tag name Description Value
X0 Cleavage site implied by initial alignment Integer
XF Corrected cleavage site implied by the extended alignment Integer
YB Cluster of reads with same unique molecular identifier (UR) String (URID-subcluster #)
Z1 PAS cluster annotation class_chromosome:start:end:strand:clusterID?
ZS PAS score Integer
ZD Tag indicating whether a read maps to the boundary between Integer (0/1)
the 2 clusters
Zi PAS sub-cluster id String (ATE/UTE)
Zd Tag indicating whether a read maps to the boundary between Integer (0/1)

the 2 sub-clusters

2ClusterID consists of chromosome, cluster representative, corrected cleavage site and strand separated by ‘.

That is, we extended the alignment for as long as the num-
ber of errors in the extended alignment stayed under 10%,
or, for short extensions, until the number of errors remained
<2. Once this point was reached, we backtracked to the
3’-most position in the alignment where the read and the
genome matched over 3 consecutive bases. The corrected
cleavage site was set to the nucleotide after the last of these 3
positions. For further processing, we defined two additional
tags associated with the extended read alignments, XO and
XF (Table 2), corresponding to the old cleavage site implied
by the initial alignment, and the new cleavage site, after the
alignment extension.

Extraction of poly(A) tail-containing reads (PATR)

Many reads have a few soft-clipped nucleotides at their 3’
end that cannot be aligned to the genome. In the dataset
that we used for developing the method, Tabula Muris Senis
sample 10X_P7_14, the distribution of soft-clipped region
length decreased abruptly up to 4-5 nucleotides, and slower
beyond this point, consistent with two processes generating
these soft-clipped regions. The longer soft-clipped regions
were also very A-rich (not shown), indicating that they rep-
resent poly(A) tails. Thus, we extracted as poly(A) tail-
containing reads (PATR) those reads that, after the align-
ment extension and cleavage site correction, had at least 5
soft-clipped nucleotides at the 3’ ends, with >80% A’s.

Standard approach to read deduplication

To illustrate the utility of our tool in extracting
experimentally-supported PAS we compared the ex-

tracted reads with those obtained with the standard
workflow for scRNA-seq analysis. That is, we carried out
the read deduplication with the UMI-tools (12) software
(version 1.1.1). Throughout we used one sample from
the Tabula Muris Senis dataset, 10X_P7_14 for these
benchmarks. UMI-tools "dedup’ was used with parameters
extract-umi-method = tag, umi-tag = UB, cell-tag = CB,
gene-tag = GX, method = unique, per-gene and per-cell.

We sorted and indexed the alignments with samtools (16)
and the set of reads was then processed as the set extracted
by SCINPAS, starting with the identification of PATR.

Clustering of read 3’ ends into PAS clusters

It has been observed before (e.g. (17)) that poly(A) sites are
not processed with single-nucleotide precision, but rather
mRNAs ending a few nucleotides upstream or downstream
of a dominant PAS are typically observed in large scale
datasets. For analyses such as of regulatory motifs, it is im-
portant to identify these dominant sites, which we refer to
simply as PAS, and their respective clusters of secondary
cleavage sites. To retrieve these PAS, BAM files containing
alignments of PATR were used to construct BED files where
the end positions were set to the corrected cleavage sites im-
plied by the reads, the start positions were those preced-
ing the end (i.e. corrected cleavage site —1) and the score
was the number of reads with identical corrected cleavage
site. We clustered individual cleavage sites as done before
(17): in each iteration, we started from the cleavage site with
the highest score, which became a new PAS, and associ-
ated with it all corrected cleavage sites within 25 nucleotides
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upstream or downstream. The score of the PAS cluster (PAS
score) was computed as the total number of reads support-
ing the PAS cluster (Figure 1). We then removed all the
cleavage sites associated with the cluster, and moved to the
next most frequent cleavage site not yet considered. We re-
peated the procedure until all cleavage sites were examined
(17). For the various controls, we started with the appro-
priate set of reads (depending on the analysis, reads with-
out poly(A) tails, i.e. non-PATR, or reads deduplicated by
standard tools) and applied the same clustering procedure
described above.

Classification of PAS clusters

To evaluate the SCINPAS-identified PAS we annotated
the clusters it produced by intersecting them with non-
overlapping features annotated on the genome, i.e. inter-
genic regions (IG), intronic regions (I), non-terminal exons
(NTE) or terminal exons (TE). We used the CellRanger-
provided GTF annotation mm10-2020-A _build, which is a
modified version of the GRCm38 mouse genome assembly
from GENCODE. We extracted entries corresponding to
IncRNA and protein-coding mRNAs, and then intersected
the locations of PAS clusters with these annotation features.
For example, intronic clusters were those that intersected
gene loci but not exons (Figure 1). The intersections were
done with the BEDTools (software version 2.27.1) ‘window’
function with w = 1 (18), to allow for the ambiguity in as-
signing by different tools of the A nucleotide that frequently
occurs after the cleavage position to either the transcript or
to the poly(A) tail. For clusters annotated to TE we further
distinguished those whose PAS was <100 nucleotides from
the annotated TE end (annotated in terminal exon, ATE)
and those whose PAS was farther away (unannotated in ter-
minal exon, UTE).

Classification of PATR

We also annotated individual reads within the clusters, by
propagating the cluster annotation to individual reads. This
was achieved by identifying the cluster in which each read
belonged and assigning it the annotation of the cluster (ZI
tag) and the PAS score (ZS tag). If a read mapped to the
boundary between 2 clusters, we assigned it to the cluster
with the highest score, and we noted the potential ambigu-
ity by setting another tag, ZD = 1. If a read belonged to
exactly 1 cluster, the ZD tag value was set to 0. Finally, we
used another tag, ‘Zi’ to denote the ATE or UTE annota-
tion (and a corresponding ‘Zd’ tag to indicate whether the
read overlapped two PAS clusters in the same terminal exon
(Table 2). Tag names are in accordance with SAM format
specification (https://github.com/samtools/hts-specs).

Computation of summary statistics

Number of reads associated with various categories of PAS.
The BAM files enhanced with the tags indicating the an-
notation of the reads were used as input to the ‘pysam’
python package (version 0.18.0) (16,19) to count all types of
reads (i.e. raw reads, deduplicated, soft-clipped, non-PATR,
PATR, TE, ATE, UTE, NTE, I, IG).

Number of covered genes. We considered as annotated
those genes for which a transcript with support level (TSL)
< 3 is annotated in the GTF file. TSL 3 signifies that there
is at least one sequenced expressed sequence tag providing
evidence for a transcript. We counted the number of anno-
tated genes in the GTF file. We then computed the number
of expressed genes in a sample as the number of unique gene
IDs (GX tag) in the deduplicated BAM file for which there
were at least 2 reads mapping to one of the gene’s annotated
exons. Similarly, we computed the number of genes covered
with identified PATR.

Position-dependent nucleotide frequencies around PAS. To
determine whether different categories of PAS had the ex-
pected nucleotide composition in their vicinity, PAS clusters
of specific types were identified in BED files and the PAS,
i.e. the cleavage site with the highest read support (found in
the ZI tag, see Table 2) was used to extract 101 nucleotides-
long genomic sequences centered on these PAS. The relative
frequencies of the four nucleotides were computed and vi-
sualized for each PAS category.

Position-dependent frequency of polyadenylation signals.
The most conserved signal for polyadenylation, i.e. the
poly(A) signal, has the consensus sequence AAUAAA, but
12 variants (AAUAAA, AUUAAA, UAUAAA, AGUAAA,
AAUACA, CAUAAA, AAUAUA, GAUAAA, AAUGAA,
AAGAAA, ACUAAA, AAUAGA) have been found con-
served between human and mouse (17), and we refer to
them as ‘canonical’. We determined the position-dependent
frequency distribution of these canonical poly(A) signals
around PAS of various categories as done before (17).
Specifically, we extracted the sequence centered on each of
the PAS and stored all these sequences into a dataframe.
For each sequence we recorded which of the 12 canonical
poly(A) signals (17) occurred in it, as a 0 or 1 value in the
column corresponding to each poly(A) signal. A column
sum then gives the frequency of PAS containing the respec-
tive poly(A) signal. We then traversed the data frame iter-
atively, recording the highest frequency motif, construct-
ing the position-dependent distribution of its occurrence
in the sequences that contained it, then removing all these
sequences from the data frame and repeating the process
for the next-most frequent poly(A) signal. If a motif oc-
curred more than once in a sequence, its contribution to-
wards each of the positions where it occurred was weighted
by 1/number of occurrences, so that each sequence con-
tributed with equal weight to the motif frequency distribu-
tion. The analysis was done for entire PAS datasets as well
as for subsets of PAS with particular annotations. Running
averages (5 nucleotides to the left and right of a given posi-
tion) were plotted.

Position-dependent frequency of polyadenylation signals in
PAPERCLIP-identified PAS. To determine whether the
position-dependent frequency of polyadenylation signals
depends on the method by which the PAS were inferred, we
also analyzed data generated with the PAPERCLIP method
(20), in which mRNA termini are identified by crosslink-
ing and immunoprecipitation of the poly(A)-binding pro-
tein. We extracted PAPERCLIP-identified PAS from the
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Figure 1. Scheme of SCINPAS workflow. The inputs to SCINPAS are indicated in the green box. Alignments of reads from primary samples are generated
with CellRanger. The SCINPAS processing steps are shown in the cyan boxes and the outputs of the workflow are indicated in the orange box. File formats

for inputs and outputs are indicated in parentheses.

polyAsite atlas (21), which contains pre-analyzed data for
28 samples mapped to the mouse genome assembly version
GRCm38.96. Any PAS with TPM expression > 0 across all
PAPERCLIP samples was written out to a BED file and
further used to construct position-dependent frequency of
occurrence of poly(A) signals, following the procedure de-
scribed in the previous section.

Position-dependent  frequency distribution of AAUAAA
around SCINPAS- and SCAPE-identified PAS. We ap-
plied the procedure described in the previous two sections
to compare the position-dependent frequency distribution
of the main polyadenylation motif, AAUAAA, relative to
PAS identified with either SCINPAS or SCAPE.

Consistency of poly(A) signal distribution at PAS and an-
notated mRNA 3’ ends. To determine whether novel PAS
located in various genomic regions are characterized by the
same poly(A) signals as annotated PAS, we used the follow-
ing procedure. First, we constructed reference distributions
of poly(A) signals upstream of the 3’ ends of annotated mR-
NAs, as described in the above paragraph. Then, for each of
the 12 canonical poly(A) signals, we determined the loca-
tion of its peak around the 3’ ends of mRNAs and recorded
the interval around the peak where the frequency was >90%
of the peak value. This interval was considered the expected
location of the poly(A) signal at true poly(A) sites. Then,
for each category of PAS in a dataset we constructed the
position-dependent frequency of each canonical poly(A)
signal and we determined whether the peak position of each
poly(A) signal fell within the interval expected from the true
PAS. Finally, we counted for how many poly(A) signals this
condition held and we defined this count to be the motif

score for each category of PAS in a given dataset. Hence, the
minimum motif score of a dataset is 0 and maximum motif
score is 12. As negative control, we started from reads with-
out poly(A) tails (non-PATR reads) and applied the same
procedure, i.e. clustering, identifying the position with most
read support in each cluster, and finally determining the mo-
tif scores for these clusters.

Number of PAS in a given category. To compare the per-
formance of SCINPAS with that of other tools that iden-
tify PAS from scRNA-seq, we extracted PAS with specific
annotations from the relevant BED files (see section Classi-
fication of PAS clusters) and counted the number of clusters
supported by at least 2 PATR, thus requiring a minimum of
2 reads to support a PAS.

Comparison of PAS usage between 2 different cell types. To
compare the pattern of PAS usage in previously analyzed
datasets, we used the metadata provided in the respective
studies to identify cell types and merge the reads (aligned
and deduplicated) from individual cell types. The merged
BAM files were further processed to get the PAS of individ-
ual cell types. We then intersected the set of PAS identified
by SCINPAS with terminal exons of annotated transcripts,
and for each terminal exon, we calculated the length im-
plied by the location of PAS within this terminal exon. That
is, given the PAS score (number of supporting reads) s; of
a PAS i located at distance d; from the start of the termi-
nal exon, the average length /; of the terminal exon in the
respective sample is given by (Z; d;s; )/(Z; s;). If a cluster
overlapped multiple terminal exons, the PAS score was uni-
formly divided between these terminal exons. We then cal-
culated the ratio of average lengths of each terminal exon
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between two cell types and the distribution of log-values of
this ratio.

Comparison with SCAPE

Execution of SCAPE. We downloaded SCAPE from
https://github.com/LuChenLab/SCAPE, tested it with the
provided example data and executed it with default pa-
rameters (see below). By default, SCAPE requires stranded
data to infer the insert size. For the widely used 10x Ge-
nomics data, the second read contains only the bar-
codes and the insert size is approximated from paired-
end datasets. The number of PAS to search for in a spe-
cific terminal exon has to be provided. We used the pa-
rameter values suggested by the authors, namely maxi-
mum number of PAS = 5, minimum number of PAS =1,
the mean and standard deviation of insert size of the li-
brary = 300 and 50 bases, respectively, the length of the
poly(A) tail = Uniform(20,150) nucleotides, minimum dis-
tance between two PAS = 100 nucleotides, and maximum
length of UTR = 6000 nucleotides. SCAPE performs the
optimisation step-wise "theta_step = 9" and fixes the maxi-
mum standard deviation ‘'max_beta = 70". This explains the
discrete spans of the regions centered on poly(A) sites.

Obtaining classes of PAS clusters. For the comparison
with other tools/resources, we created an additional anno-
tation class, namely of regions of size 1kb downstream of
annotated genes and termed it ‘1kb downstream genes’. We
created these regions with BEDTools ‘flank’ function, then
removed regions that overlapped with other genes on the
same strand.

For SCINPAS PAS clusters, this is an additional inter-
genic class, which was obtained with the BEDTools ‘win-
dow’ function using the ‘1kb downstream genes’ regions
and the intergenic PAS clusters (parameter -u and one base
pair added up- and downstream of the PAS clusters (pa-
rameter -w 1)). The remaining intergenic PAS clusters were
also obtained with BEDTools ‘window’ applied to the ‘1kb
downstream genes’, but with parameters -w | and -v, to re-
port to complement of the previously identified class, i.e.
PAS that were initially classified as intergenic, and were fur-
ther located outside of the 1kb downstream of annotated
genes. For both cases only overlaps on the same strand are
reported (parameter -sm).

The main output of SCAPE, the ‘pasite.csv.gz’ file, con-
tains the count for each cell barcode and PAS. These val-
ues were summed and saved into a standard BED file. The
start and end coordinates of each PAS was computed as
floor(mean - beta/2) and floor(mean + beta/2), where mean
and beta were the parameters of the fitted Normal distribu-
tion from SCAPE.

The SCAPE PAS were classified with BEDTools ‘inter-
sect’, similar to the classification of SCINPAS PAS. Ex-
onic PAS were obtained from the intersection with exons
but not terminal exons, intronic PAS from the intersection
with genes but not exons, and intergenic PAS were those
that did not intersect with genes or with ‘1kb downstream
genes’. The annotation ‘1 kb downstream genes’ was ob-
tained when PAS did not intersect genes but overlapped
completely (-f = 1) with the class ‘1kb downstream genes’.

Lastly, terminal exon PAS were obtained from the intersec-
tion of terminal exons only.

Analysis and graphics. In general, we used SCINPAS-
extracted PAS clusters with at least 2 supporting PATR.
This was also the case when we compared SCINPAS to
SCAPE. To visualize the number of PAS clusters, the in-
dividual classes (TE, exons, introns, intergenic and ‘1 kb
downstream genes’) were extracted and plotted as stacked
bar charts with “geom_col".

The distance between a PAS cluster and the closest PAS
cluster downstream was computed as follows. For each
chromosome and strand, PAS clusters were sorted by start
and end positions. Then for each but the last cluster we ob-
tained the distance from its end position to the start position
of the following cluster. The distance distribution plot was
created with "geom_freqpoly” using density estimates.

The scatter of the number of supporting reads associ-
ated with SCINPAS and SCAPE-identified PAS in individ-
ual genes were generated as follows. For each gene, over-
laps between gene (g) and PAS cluster (p) were found by
requiring the same chromosome and strand and (gs < p.)
& (g > ps) for SCAPE and (gs < pe + 1) & (ge = ps - 1)
for SCINPAS, where (s) and (e) are start and end coordi-
nates respectively. This allows for partial overlaps, which is
also the default behavior of BEDTools intersect and win-
dow functions. The found overlaps were counted and the
individual PAS scores (i.e. number of reads supporting the
PAS cluster) were summed. The log(read count + 1) val-
ues were plotted as a scatter. Density estimates were cre-
ated with "geom_density2d" using 200 grid points in each di-
rection. The Spearman rank correlation rho and associated
p-value was computed with “cor.test(method="spearman’)’
on the PAS score at the gene level.

For all PAS clusters, irrespective of annotation, the span
was computed as the distance between the end and start co-
ordinates (from the BED file coordinates).

All plots were generated with ggplot2 (22).

Examples of PAS and read coverage of gene loci were vi-
sualized with IGV v2.11.9 (23).

Overlap of SCINPAS-inferred PAS from the Tabula Muris
Senis samples with the polyAsite atlas

We used the 6 Tubula Muris Senis samples from Table 1
to infer PAS, requiring a minimum of 2 reads support. We
then determined whether a SCINPAS PAS cluster (x) over-
lapped a PAS cluster (y) from the polyAsite atlas (21), lo-
cated on the same chromosome and strand if the start (s)
and end (e) coordinates of the clusters satisfied the condi-
tion (ys < xe + 1) & (¥ = x5 — 1). This condition, which
allows for clusters to be immediately adjacent to each other
rather than overlapping, accounts for the possibility that
tools may differ in whether they assign an A nucleotide that
frequently occurs in the genome immediately downstream
of the cleavage, to the templated part of the transcript or to
the poly(A) tail. We then counted the fraction of SCINPAS
clusters that overlapped a PAS cluster, for various numbers
of SCINPAS clusters, sorted by their read support (i.e. top
100, 500, 1000, etc.).
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Expression levels of RNAs with or without the AAGAAA
PAS motif

We first filtered representative cleavage sites that overlap
with terminal exons and grouped them by the gene name
of the terminal exons with which they overlapped. Defini-
tion of overlap is the one in the paragraph above. If multiple
terminal exons overlapped with a given representative cleav-
age site, the terminal exon whose end was closest to the rep-
resentative cleavage site was associated with the respective
cleavage site. The selected terminal exons were then divided
in two sets, depending on whether or not any of the PAS
within them had the AAGAAA motif in the region —40 bp
to +20 bp. The distribution of transcript expression levels
(number of reads in the PAS clusters of the terminal exon)
was then calculated for the two categories of TEs in the three
datasets used for benchmarking: Tabula Muris Senis sam-
ple 10X_P7_14, T cell activation dataset (union of sites in all
samples) and sperm cell development dataset (also union of
all sites in these samples).

Distance of PAS to terminal exon ends

To determine how precise different methods are in identi-
fying TE ends, we first filtered representative cleavage sites
that overlap with terminal exons. The definition of overlap
is the same as the two paragraphs above. If a given represen-
tative cleavage site overlapped multiple TEs, the TE whose
end was closest to the representative cleavage site was as-
sociated with the respective cleavage site. Then the distance
was computed as

distance = abs(end of terminal exon
— representative cleavage site)

The distances were computed for both samples and control
to generate a cumulative frequency plot. For the control,
UMI-tools deduplicated 10X_P7_14 was used.

RESULTS

scRNA-seq reads provide direct evidence of polyadenylation
sites

Increasingly many studies have started to investigate APA
from scRNA-seq datasets that are generated with the 10x
Genomics technology, which captures 3’ fragments of mR-
NAs (5,6,8,10). Invariably, these studies start from ‘dedupli-
cated’ reads mapped to the reference genome with the Cell-
Ranger software (11). While a unique molecular identifier
(UM]) is attached to the 3" end of an mRNA, PCR copies
of the mRNA are fragmented and 3’-terminal fragments are
sequenced in the 5’-to-3” direction, yielding distinct reads
associated with the same UMI. For quantifying gene ex-
pression it is not crucial which of the reads with the same
UMI is selected for quantification during the read dedupli-
cation process. However, reads that map most distally in
the gene locus are more likely to reach the 3’ end of the
mRNA. Thus, for the purpose of identifying reads that con-
tain poly(A) tails and thus provide experimental evidence
of the PAS, it is important to select these distal reads from
among those with identical UMIs. To demonstrate this,
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we determined the number of reads with unmapped (soft-
clipped) nucleotides at the 3” end that were extracted ei-
ther with standard software (CellRanger followed by UMI-
tools) or by our software. On a randomly chosen sample
from the Tubula Muris Senis dataset (ID:10X_P7_14), we
found that 0.44% of the reads that were extracted with the
standard software had soft-clipped nucleotides at their 3’
end, while this proportion was ~3-fold higher, 1.12%, when
selecting distal reads. Similar results were obtained on other
datasets (not shown). This result emphasized the need for
a tool to pre-process sSCRNA-seq reads so as to maximize
the recovery of poly(A) tail-containing reads and thereby
polyadenylation sites with experimental support.

A scheme of the SCINPAS—short for scRNA-seq-based
identification of novel poly(A) sites—workflow is shown in
Figure 1. SCINPAS is written in the nextflow language (24)
and its key features are the following. First, in contrast to
UMI-tools, which uses the genome annotation to collapse
reads that have the same UMI and map to the same gene,
SCINPAS does not assume a specific genome annotation
but rather is able to identify PAS that are located outside
of the currently annotated exonic/genic regions. To demon-
strate this, we first clustered the reads that came from the
same cell and had the same unique molecular identifier.
Most clusters spanned <10 kb (Figure 2A), as expected
when reads come from terminal fragments of mRNAs, ter-
minal exons being generally kilobases-long (25). However,
some clusters had a much larger span. This could occur
when the sequenced fragments span splice junctions, or per-
haps from rare cases when distinct mRNAs were tagged
with the same UMI. In SCINPAS, we collapse all the reads
with the same CB and UMI, but only within some maxi-
mum cluster span. That is, we traverse the genome in the
5’-to0-3’ direction to construct clusters of such reads, ending
a cluster when a predefined threshold (100’000 nucleotides)
in length is reached. The selection of the distal read is done
separately for each such cluster (Figure 2B). As only reads
with poly(A) tails contribute to PAS identification, if reads
with the same UMI end up erroneously in multiple clus-
ters, the reads originating from the upstream clusters would
not have poly(A) tails and thus spurious PAS will not be
generated, despite the error in read clustering. On the other
hand, if the initially large cluster span was really due to the
same UMI being attached to multiple isoforms, then the up-
stream clusters should also contain reads with poly(A) tails,
and they will be kept for further analysis.

The second key step is to identify the reads containing
poly(A) tails. For this, we extracted all the reads whose
3’ ends could not be mapped to the genome, i.e. those
with soft-clipped nucleotides at the 3’ end. In the sample
that we arbitrarily picked for the tool development, the
10X_P7_14 sample from the Tabula Muris Senis dataset,
the soft-clipped part of the reads was generally very short,
1-3 nucleotides in 58.2% of the cases (Figure 2C). How-
ever, many reads still had longer soft-clipped regions, up
to ~30 nucleotides. Inspection of read-to-genome align-
ments revealed some cases in which the alignment (gen-
erated by the STAR software (26)) could be further ex-
tended into the soft-clipped region, without a decrease in
the alignment quality (Figure 2D). Thus, we implemented
an additional step of refining the alignment by extending
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Figure 2. Key stepsin SCINPAS. (A) Distribution of genomic spans of reads with the same cell and molecular identifier (CB and UR tag, log) constructed
from the sample 10X_P7_14 of Tabula Muris Senis. (B) Illustration of distal read selection, from among the reads with the same CB and UMI. In this case,
only the most 3’ read has 3’ non-templated A nucleotides (indicated by the green color). (C) Distribution of soft-clipped region length in reads from the
same sample, as given by the STAR software. (D) Illustration of a read-to-genome alignment that could be extended further over the region marked as
soft-clipped in the initial alignment. The read maps to the negative strand of the genome. The start of the soft-clipped region marks the ‘Initial cleavage site’
implied by the alignment. The ‘Corrected cleavage site’ (red arrow) results from the extension of the alignment over the mappable part of the soft-clipped

region. (E) Scheme of SCINPAS annotation of PAS and PATR.

the mapped regions of soft-clipped reads until the number
of mismatches between the soft-clipped region and refer-
ence genome reached a maximum threshold and then cor-
recting the cleavage site implied by the read (see Materials
and Methods). Finally, we selected the reads that contained
non-templated poly(A) tails of at least five nucleotides and
over 80% A’s, and we clustered them as described previously
(17), to remove the small variability in cleavage sites. We
consider the most frequently used cleavage site in a cluster
(cluster representative) to be the poly(A) site (simply PAS).
In the 10X_P7_14 sample we found that 1.6% of the dedu-
plicated reads contained poly(A) tails. The clusters and in-
dividual cleavage site positions (including corrected posi-

tions) within them were then saved in BED and BAM files,
respectively, and then finally, annotated (Figure 2E).

SCINPAS improves the recovery of poly(A) sites relative to
standard software

To compare PAS recovered from reads extracted by ei-
ther SCINPAS or the standard software, we investigated a
few properties previously found to characterize true PAS.
First, the mouse genome being quite extensively annotated,
we expect that most well-expressed isoforms are already
represented in this annotation, and are recovered by an
accurate PAS identification tool. Of the 652 288 poly(A)
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tail-containing reads (PATR) extracted by SCINPAS from
the Tabula Muris Senis 10X_P7_14 sample, 415 299 mapped
to annotated terminal exons (TE — 63.7 %), 2329 to other
exons (NTE — 0.4 %), 34 484 to introns (I — 5.3 %) and
200 176 to intergenic regions (IG — 30.7 %) (Figure 3A). In
contrast, only 133 536 PATR were extracted after applying
the UMI-tools software, 126 958 from terminal (95.1 %),
566 (0.4%) from other types of exons, 952 ( 0.7 %) from in-
trons and 5060 ( 3.8 %) from intergenic regions. The main
difference is that SCINPAS identifies PATR in intergenic
regions. When these are not considered, as in the standard
analysis, the proportion of PATR in terminal exons com-
pared to other genic regions is indeed very high, 91.9 %. The
small number of reads that end up with intergenic and in-
tronic annotation after the application of UMI-tools dedu-
plication come from regions that were considered genic in
the older mouse genome annotation that was used by the
Tabula Muris Senis project for mapping the reads to the
genome, but not in the newer annotation that we used in
SCINPAS for read and PAS classification. Thus, SCINPAS
identifies many more polyadenylated reads, the majority of
which come from terminal exons, but also some that come
from intergenic regions.

We also asked whether the transcript ends implied by
the inferred PAS indeed correspond to the ends of anno-
tated terminal exons. To answer this, we calculated the dis-
tances between PAS, weighted by the number of support-
ing reads, and the annotated ends of the terminal exons in
which the PAS are located. The cumulative density function
of logjy values of the distance, shown in Figure 3B, con-
firms that the vast majority of SCINPAS-extracted PATR
are located within 10 nucleotides from the annotated termi-
nal exons, while UMI-tools-extracted reads end hundreds
of nucleotides away from the terminal exon end. For better
resolution of PAS annotation (Figure 2E), we distinguished
between PAS located at most 100 nucleotides upstream of
the terminal exon end (we called these ‘annotated’ TE PAS,
or ATE) and those that were located further upstream in
terminal exons (UTE PAS).

The sequence composition around PAS, determined in
many previous studies (17,27,28), is strongly enriched in A
nucleotides at ~20 nucleotides upstream of the PAS, where
the poly(A) signal is located, while the region downstream
of the PAS is enriched in U nucleotides. To test this, we first
clustered cleavage sites implied by the PATR into clusters of
closely-spaced sites, and took the most frequently used po-
sition in a cluster (the ‘cluster representative’) as the actual
poly(A) site (see Methods). Computing the nucleotide fre-
quencies around these PAS, we obtained the expected pat-
tern (Figure 3C). This was not the case when the reads used
to infer cleavage sites came from the UMI-tools dedupli-
cation and were not constrained to contain poly(A) tails
(Figure 3D). Furthermore, different categories of PAS in-
dividually exhibited a similarly biased nucleotide composi-
tion (Fig. S1).

We also specifically checked for the presence of the
poly(A) signal, which has the AAUAAA consensus and is
located at ~20 nucleotides upstream of the cleavage site
(17,29,30). There are 12 variants of the consensus that are
conserved between human and mouse (17), and almost all
showed the expected peak at ~20 nucleotides upstream of
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the PAS (Figure 3E). In contrast, no such pattern was exhib-
ited by the negative control data set, constructed from reads
without poly(A) tails obtained with the standard UMI-
tools-based deduplication (Figure 3F). Altogether, these re-
sults demonstrate that our tool improves the recovery of
bona fide PAS from scRNA-seq data relative to the stan-
dard workflows.

SCINPAS identifies PAS in genic and non-genic regions

Given that the majority of PATR and PAS correspond to
terminal exon ends, we wondered whether PAS that SCIN-
PAS identified in other types of genomic regions also carry
the expected signals for 3’ end processing and polyadeny-
lation. Thus, we constructed position-dependent distribu-
tions of occurrence of canonical poly(A) signals around
putative PAS of different annotation categories. As nega-
tive control, we compared these distributions with those
obtained for a similarly analyzed dataset, where the reads
were deduplicated with UMI-tools and did not contain soft-
masked nucleotides. Indeed, all but the smallest category
of SCINPAS-extracted PAS had the expected enrichment
of almost all poly(A) signals at ~20 nucleotides upstream
of the PAS (Figure 4A-E). The few PAS identified in non-
terminal exons had the expected enrichment of the main
poly(A) signal, AAUAAA, while for the other signals the
number of occurrences was low and the positioning rela-
tive to PAS less clear. These results indicate that reads with
poly(A) tails selected by our tool identify bona fide PAS
across all types of genomic regions. The results also suggest
that position-specific patterns of occurrence of poly(A) sig-
nals are very reliable and can be used to flag datasets from
which PAS are not accurately identified.

One of the 12 conserved signals, AAGAAA showed a dif-
ferent positional pattern than the other motifs, peaking not
at ~—20 nucleotides of the PAS, but in the region —10 to
0. We also checked this motif’s frequency around the ends
of the annotated TEs in our genome annotation and found
it to peak at ~+10 nucleotides, i.e. downstream of the TE
end (Figure 4F). To exclude the possibility that priming on
internal poly(A) stretches underlies the differences in mo-
tif occurrence around SCINPAS PAS compared to anno-
tated TEs, we further determined the position-dependent
frequency of the motif occurrence in the vicinity of PAS that
were determined with an orthogonal experimental method,
PAPERCLIP (20), which uses crosslinking and immuno-
precipitation of the poly(A) binding protein rather than
priming with oligo(dT) to detect poly(A) tails. We extracted
the PAPERCLIP-identified sites from the polyAsite atlas
(21) and constructed the position-dependent motif distri-
bution as done for all other categories of sites. The re-
sults show that in this data set as well, the AAGAAA mo-
tif peaks at ~10 nucleotides upstream of the PAS, simi-
lar to SCINPAS-identified PAS, and not to annotated TEs
(Figure 4G).

PAS identified by SCINPAS exhibit the expected dynamics
during cell differentiation

To further test the ability of SCINPAS to identify non-
canonical PAS, we applied it to two systems in which the
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Figure 3. PAS extracted by SCINPAS contain the expected poly(A) signals. (A) The number of reads from the Taubula Muris Senis sample 10X_P7_14,
at different steps of the processing pipeline, when the processing is done with SCINPAS (blue) or the standard UMI-tools-based workflow (orange). (B)
Distribution of logjo distances between inferred and annotated terminal exons, when processing is done with SCINPAS (blue) or the standard workflow
(orange). (C) Position-dependent nucleotide frequencies in PAS constructed from SCINPAS-extracted reads. PAS are anchored at position 0, and the
genomic sequence upstream and downstream (from —50 to + 50 nucleotides) was used to calculate nucleotide frequencies. (D) Similar for negative control
sites. (E) Position-dependent occurrence of poly(A) signals. The genomic sequence from —40 to +20 around PAS was extracted, poly(A) signals were
identified and tabulated, and the frequency of poly(A) signal occurrence across all examined sequences was calculated. (F) Similar for negative control

sites.

abundance and dynamics of such sites has been reported
before, T cell activation and sperm cell development, sys-
tems in which the usage of intronic and/or coding-region-
proximal PAS is activated (31,32). Applying SCINPAS to
the T cell activation dataset (14) we found that intronic
PAS are more frequent, 13.9% of all annotated PAS, in ac-
tivated T cells compared to the naive T cells, where 10.3%
of PAS were annotated as intronic. The average terminal
exon length as implied by the PAS inferred from the respec-
tive samples, remained largely unchanged, as we observed
similar numbers of terminal exons that became shorter or
longer by at least a factor of 2 upon T cell activation (3.3%
vs. 2.8%, Figure 5SA). We carried out a similar analysis for
a sperm cell development dataset (15), comparing PAS us-
age in elongating spermatids and spermatocytes. The pro-
portion of intronic PAS in this dataset was more similar
between the two differentiation stages 10.8% versus 9.3%
in spermatocytes and elongating spermatids, respectively,
but many more terminal exons (13.4%) became at least 2-
fold shorter upon spermatocyte differentiation into elon-
gating spermatids than becoming longer by the same factor
(1.6%, Figure 5B). As with other analyzed datasets, the in-
tronic PAS inferred from activated T cells (Figure 5C) and
elongating spermatids (Figure 5D) had the expected peak
poly(A) signals at ~20 nucleotides upstream of the inferred
cleavage site (Figure 5C, D). An example of intronic PAS
usage in the sperm cell differentiation system is shown in
Figure 5E.

SCINPAS provides complementary information relative to
other tools

As already mentioned, a number of tools have been de-
veloped for extracting PAS from scRNA-seq data, though
they do not focus on PATR. A very recently-published and
benchmarked tool, called SCAPE (6), uses PATR in the es-
timation of insert length in paired-end sequencing datasets,
so that peaks in read coverage corresponding to PAS can be
appropriately positioned on the genome. SCAPE was also
found to perform favorably with respect to the other tools
developed to date, namely scAPA (33), Sierra (34), scAPA-
trap (8), SCAPTURE (10) and MAAPER (35).

First, we determined the number of PAS clusters iden-
tified by SCAPE and SCINPAS in each sample in the T
cell activation dataset. As shown in Figures 6A and S3A,
while the number of PAS from terminal exons does not show
a consistent difference between SCINPAS and SCAPE,
SCINPAS identifies many more PAS in intronic and inter-
genic regions that are not analyzed by SCAPE. The num-
ber of PAS identified per sample is more variable for SCIN-
PAS, probably because SCINPAS only uses PATR, which
represent only a few percent of the deduplicated reads in
a library (Figure 3A). To better understand what the two
methods extract from the data it is insightful to examine
the distance from each PAS to the closest PAS downstream.
The distributions constructed from each sample in the T cell
activation dataset are shown in Figure 6B and in both cases
they have a prominent peak located at approximately 50’000
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Figure 4. Position-dependent frequency of occurrence of poly(A) signals at different types of PAS. (A-E) PAS were extracted and annotated with SCINPAS
from the Tabula Muris Senis sample 10X_P7_14. ATE — PAS within 100 nucleotides of annotated TE ends; UTE — PAS in TEs but >100 nucleotides from
the annotated TE ends; IG — intergenic; I — intronic; NTE — PAS in exons that are not TE. (F) Motif distributions around TE ends from the annotation of
the GRCm38 mouse genome assembly. (G) Similar, for PAS identified by the PAPERCLIP (20) method for experimental identification of PAS.

nucleotides, roughly corresponding to end-to-end distances
between genes (red line), as expected. The left sides of the
distributions, however, are very different. SCAPE identi-
fies PAS that are ~500 nucleotides apart, likely reflecting
choices in the SCAPE model (Gaussian shape of the peaks
with mean insert size of 300 and standard deviation of
50 nucleotides). In contrast, the distances between SCIN-
PAS clusters have a broad distribution between ~100 and
~10 000 nucleotides, with no preferred distance, as may
be expected if the PAS occurred randomly within termi-
nal exons. SCINPAS clusters are either composed of sin-
gle cleavage sites, or have a relatively small span (peak at
5 nucleotides), indicating that the cleavage sites are well-
defined, but also that the supporting data is sparse. In con-
trast the span of SCAPE clusters shows a periodicity of
9 nucleotides, again likely indicating parameter choices of
the method (Figure S2). We also compared the number of
supporting reads associated with PAS in individual genes.
While the SCINPAS counts were ~10-fold lower, as ex-
pected from the fact that it only uses PATR and not all
deduplicated reads, the Spearman correlation coefficient of
SCINPAS and SCAPE counts was relatively high, 0.68 (P-
value < 2.2e-16, Figure 6C). In some instances, SCINPAS

detected more PAS clusters per gene compared to SCAPE
(Figure 6D, left panel), though examples where the opposite
was the case also occurred (Figure 6D, right panel). We per-
formed the same analysis as above on the sperm cell devel-
opment dataset and found similar trends (Figure S3). Over-
all, SCINPAS detected fewer PAS clusters per gene in the
T cell activation dataset (Fig. S2B) but more PAS clusters
in the sperm cell development dataset (Fig. S2D). The in-
creased positional resolution of SCINPAS-identified sites is
also emphasized by the position-dependent distribution of
the canonical polyadenylation motif, which has a sharper
peak for the SCINPAS-identified sites compared to those
identified in SCAPE (Figures 6E, S3E).

Finally, we asked how reproducible the PAS identified by
the two methods were between replicate samples, by cal-
culating the Jaccard statistic with BEDTools (18). As indi-
cated in Table 3, the Jaccard statistics were higher for SCIN-
PAS than for SCAPE when comparing replicates, and lower
when comparing PAS obtained from naive and activated T
cells.

Taken together, SCINPAS compared well with the most
up-to-date method available, identifying not only sites in
terminal exons, but also in intronic and intergenic regions.
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Figure 5. SCINPAS-recovered sites reproduce APA patterns in previously characterized systems. (A) Scatter plot of average terminal exon (TE) length
(log2 values) computed from the location and relative abundance of PATR mapping to individual terminal exons. Highlighted in red are TEs whose length
changes (increases or decreases) by more than a factor of 2 in activated compared to resting T cells. (B) Similar to (A) but comparing elongating spermatids
with spermatocytes. (C) Position-dependent frequency distribution of canonical poly(A) signals at intronic PAS identified in activated T cells. (D) Similar
to (C), for intronic PAS of elongating spermatids. (E) Example of an intronic PAS identified from sperm cell development dataset. Top track shows the
coverage of the region by reads, individual reads with poly(A) tails are shown in subsequent tracks (‘A’ nucleotides are shown with green color) and the

gene annotation is shown in the bottom track.

The method is efficient, as it uses a much smaller fraction
of the sequenced reads than SCAPE, and gives more repro-
ducible PAS when applied to closely-related samples.

SCINPAS-based annotation of PAS from the Tab-

ula Muris Senis dataset

Finally, to illustrate the generality and utility of SCINPAS
we applied it to a large dataset of mouse scRNA-seq, Tabula

Muris Senis (13), which was generated with a view of build-
ing an atlas of gene expression in the mouse. The run time of
SCINPAS ranged from 1.5 to 8 h for all samples in an indi-
vidual dataset (Table 1). To roughly assess the reliability of
PAS inferred from a given sample, we used a measure based
on the poly(A) signal distribution around the PAS. Namely,
we determined the number of canonical poly(A) signals that
peaked at the same position in the SCINPAS-inferred PAS
as in annotated terminal exon ends. We considered a peak
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Figure 6. PAS recovery by SCINPAS and SCAPE. (A) Number of PAS inferred by SCINPAS (top) and SCAPE (bottom) from the T cell activation data.
The colors indicate different classes of PAS (see legend). (B) Distribution of the distances from each PAS to the closest PAS downstream for SCINPAS
(purple) and SCAPE (green). For comparison, the distribution of 3’end-to-5’end distances between genes is shown in red. (C) Scatter of the total number
of PAS-associated reads within a gene for SCINPAS (x-axis) and SCAPE (y-axis). Spearman correlation coefficient was 0.68 (P-value < 2.2e-16). The
diagonal of equal read counts is shown in gray. 2D kernel density estimates obtained with the geom_density_2d (n = 200) function of ggplot2 are shown
as blue contours. (D) Examples of PAS recovered by SCINPAS (purple) and SCAPE (green) in the Capza?2 (left) and Ccdc43 (right) genes, from the T
cell activation dataset. Genes and terminal exons are shown in the IGV browser (23) in blue, and the coverage tracks in gray. (E) Position-dependent
distribution of the canonical polyadenylation signal AAUAAA around SCINPAS- and SCAPE-identified PAS.

Table 3. Jaccard statistics. Pairwise comparison of SCINPAS (left) and
SCAPE (right) predicted PAS in individual samples from the sperm cell de-
velopment (mouse 1 and 2) and T cell (naive 1 and infected 1-3) activation
datasets

SCINPAS SCAPE
Mouse 1 versus 2 0.3887 0.3088
Infected 1 versus 2 0.3903 0.3012
Infected 2 versus 3 0.3879 0.3834
Infected 1 versus 3 0.38478 0.2852
Naive 1 versus infected 1 0.2230 0.2479

to occur at the expected position if it was located within the
90% peak frequency window inferred from annotated ter-
minal exon ends (Figure 7A). As shown in Figure 7B, in
all datasets, all but the NTE PAS categories had the known
poly(A) signal peaking at the expected position upstream of
the PAS. This was not the case for the negative control which
was constructed based on non-PATR reads from the UMI-
tools-deduplicated 10X_P7_14 sample. The PAS located in
non-terminal exons (NTE) generally represented a small
proportion of all the inferred PAS in each dataset (0.96—
1.86%, depending on the dataset), and for these, only the

main poly(A) signals, AAUAAA and AUUAAA occurred
in sufficient frequency to yield stable profiles (Figure 7B).

To evaluate the sensitivity of our method we determined
the proportion of expressed genes (supported by at least
2 reads) for which a PAS with a minimum support of 2
PATR was found. The results in Figure 7C show that SCIN-
PAS identified a PAS for approximately 52-57 % of ex-
pressed genes, whereas only 42% were covered by PAS in-
ferred when starting from UMI-tools-deduplicated reads.
The total number of PAS we identified in each of the sam-
ples is shown in Figure 7D.

We further compared the PAS that we obtained here with
the polyAsite atlas (21), which contains a curated collection
of ~300 000 PAS identified in the mouse genome by bulk 3’
end sequencing. By taking the union of PAS from the 7ub-
ula Muris Senis samples (13) defined in Table 1, we obtained
a total of 67°829 PAS. 35’741 of these are represented in the
polyAsite atlas, while 32’088 can be considered novel. The
overlap with polyAsite atlas is larger when considering only
the most supported PAS (Figure S4), as may be expected.
These results demonstrate the utility of our tool in the min-
ing of sScRNA-seq data to obtain a comprehensive coverage
of PAS in a given species.
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Figure 7. Application of SCINPAS on Tabula Muris Senis samples. (A) Illustration of the motif score calculation. The positional preference of polyadeny-
lation motifs relative to 3’ ends of annotated terminal exons was first determined. Then, the motif frequency in PAS from individual samples and classes
was calculated and was deemed consistent with the annotation when the peak fell within the 90% interval around the maximum frequency for annotated
terminal exons. The motif score was the number of motifs found to be consistent in a given sample and PAS class. (B) Statistics of PAS classes in the analyzed
Tabula Muris Senis samples. (C) Number of genes (y-axis, logjg scale) with an annotated PAS (‘covered’ genes) from among the expressed genes in each
of the analyzed Tabula Muris Senis samples. The control was obtained with the same processing workflow as the PAS, but starting from UMI-tools-based
deduplicated reads from the Tabula Muris Senis sample 10X_P7_14. A minimum of 2 reads support was required for both considering a gene expressed
and for considering a PAS. (D) Total number of SCINPAS-identified PAS (y-axis, logjo scale) with at least 2 PATR support in each of the samples.

DISCUSSION

APA is one of the main mechanisms of isoform diversifica-
tion in humans (1), with a wide range of consequences for
cell signaling and gene expression (reviewed in (3)). In the
past decade, dedicated 3’ end sequencing methods have been
developed to map the relative usage of PAS across tissues
and conditions, and the resulting data have been consoli-
dated in specialized repositories (36). However, as it has be-
come clear from various types of single cell analyses, much
remains to learn about the processes that give each cell its
identity and alternative polyadenylation seems to play an
important role (37). scRNA-seq has opened new possibili-
ties for studying the polyadenylation landscape of individ-
ual cell types because available technologies target mRNA
3’ ends. Yet the field has not fully exploited scRNA-seq data
to extract reads that provide direct evidence for the usage

of specific PAS by virtue of containing part of the poly(A)
tail. While this property has been used before for PAS iden-
tification from bulk sequencing datasets (e.g. (38)), the vol-
ume of the data and the breadth of coverage of cell types af-
forded by scRNA-seq, especially using the technology from
10x Genomics, is unmatched.

A number of methods have already been proposed for
analyzing the polyadenylation landscape from scRNA-seq
data (5,7,8,10,35). However, none of these methods ad-
dresses the very first step in the processing pipeline, which
is read deduplication. This is the focus of SCINPAS, which
improves the recovery of reads containing poly(A) tails
several fold. The reads without poly(A) tails are also ex-
tracted, which means that previously developed models for
interpreting the entire dataset can also be used. We also
implemented a procedure for identifying PAS, clustering
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data from closely-spaced reads, and compared the PAS
that we recovered with those recovered by a recently de-
veloped method, SCAPE (6). We show that SCINPAS pro-
vides complementary information (e.g. recovering PAS in
non-exonic regions) and also, much higher resolution in
PAS identification. SCINPAS enables studies of cleavage
site microheterogeneity, as well as detection of alternative
PAS in 3° UTRs without specific assumptions about their
relative distance. A small fraction of the PAS that we clas-
sify as intergenic are located within a relatively short dis-
tance (<1 kb) downstream of terminal exon ends (Figures
6 and S3). Small variations in the position of cleavage sites
can occur for multiple reasons, including the imprecision of
the processing machinery, observed in many previous stud-
ies, as well as the ambiguity of assigning terminal A nu-
cleotides when the cleavage occurs immediately upstream
of a genome-encoded A nucleotide. However, in these cases
the variation is much smaller than 1kb. Further analysis of
SCINPAS-identified sites along with long read data should
clarify the transcription units to which these PAS belong.
The most conserved poly(A) signal that guides the 3’
end processing of pre-mRNAs is the AAUAAA hexamer,
bound by the WDR33 and CPSF30 components of the 3’
end processing complex (30,39). Twelve variants of this se-
quence have been previously found to have a similar pat-
tern of position-dependent enrichment upstream of the PAS
(17,29) and also to promote polyadenylation in vitro (40).
Here we found that the peak of the AAGAAA variant
was located at ~10 nucleotides upstream of the SCINPAS-
identified PAS, but ~10 nucleotides downstream of anno-
tated TE ends (Figures 4, S5). To resolve this discrepancy,
we also analyzed the position-dependent frequency of the
motif at PAS obtained with PAPERCLIP, an orthogonal
method for PAS identification that uses crosslinking and im-
munoprecipitation of the poly(A)-binding protein to iden-
tify bona fide poly(A) tails (20). In PAPERCLIP-identified
PAS, AAGAAA peaked also at ~10 nucleotides upstream
of PAS (Figure 4). PAS that are located in non-terminal
exons, introns and intergenic regions are more likely to
contain this motif, and genes with AAGAAA-containing
PAS have higher expression levels than genes that do not
contain such PAS (Figure S5). These results suggest that
AAGAAA-containing PAS are non-canonical PAS that can
only be observed under normal conditions when the gene
expression level is high (Fig. S5). Whether they are func-
tionally relevant in specific conditions or cell types re-
mains to be determined in future studies. Interestingly, while
AAGAAA was found to promote the polyadenylation of a
substrate in vitro (40), it has also been observed associated
with a specific class of genes; these genes have multiple PAS
in both introns and exons, and they couple polyadenyla-
tion with splicing to generate long or short transcripts (41).
An example studied in detail is that of the immunoglob-
ulin E-encoding gene (42), which generates either a short,
secreted form of the protein by the usage of an intronic
AAUAAA PAS, or a long, membrane-bound form that de-
pends on the usage of multiple PAS, including one contain-
ing the AAGAAA poly(A) signal. Also noted before is that
AAGAAA is a splice enhancer (41,43), and thus, the
position-dependent enrichment of this signal may vary de-
pending on the location of analyzed PAS within genes. For
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the other signals, the position-dependent enrichment was
similar between annotated 3’ ends and the PAS identified
by SCINPAS, in terminal exons or elsewhere, supporting
the accuracy of the method.

Altogether, these results indicate that SCINPAS is an
accurate method for extracting experimentally-supported
PAS from scRNA-seq data. Running SCINPAS on typical
datasets as we used here takes 1-8 h, allowing SCINPAS
to be applied to the many datasets available in the pub-
lic domain. While SCINPAS focuses on the extraction of
PATR, it also carries out deduplication of all reads, and
thus can be used in general workflows for scRNA-seq data
analysis. Moreover, non-polyadenylated reads may be fur-
ther taken into consideration when quantifying PAS usage
starting from the experimentally-supported PAS in the sys-
tem of interest. The vast volume of scRNA-seq data makes
it possible to substantially improve the coverage of PAS in
public repositories, to thus reach an improved understand-
ing of PAS usage in individual cell types. This is an exciting
research direction for the future. SCINPAS is available from
https://github.com/zavolanlab/SCINPAS.

DATA AVAILABILITY

SCINPAS is packaged into a nextflow workflow (24). The
code and analysis are available from: https://github.com/
zavolanlab/SCINPAS (permanent DOI: https://doi.org/10.
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The data and additional scripts used for visualization
are deposited in the zenodo repository, with the DOI
10.5281/zenodo.7868155.
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