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Abstract 8 

New techniques for systematic profiling of small molecule effects can enhance traditional growth 9 

inhibition screens for antibiotic discovery and change how we search for new antibacterial agents. 10 

Computational models that integrate physicochemical compound properties with their phenotypic 11 

and molecular downstream effects can not only predict efficacy of molecules yet to be tested, but also 12 

reveal unprecedented insights on compound Modes of Action (MoAs). The unbiased characterization 13 

of compounds that themselves are not growth inhibitory but exhibit diverse MoAs, can expand 14 

antibacterial strategies beyond direct inhibition of core essential functions. Early and systematic 15 

functional annotation of compound libraries thus paves the way to new paradigms in the selection of 16 

lead antimicrobial compounds. In this Review, we discuss how multidimensional small molecule 17 

profiling and the ever-increasing computing power are accelerating the discovery of unconventional 18 

antibacterials capable of bypassing resistance and exploiting synergies with established antibacterial 19 

treatments and with protective host mechanisms. 20 
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Introduction 23 

Empirical susceptibility screening, wherein new antimicrobial compounds are chosen for their ability 24 

to inhibit bacterial growth, catalyzed the initial formidable success in antibiotic discovery. However, 25 

screening of soil microorganisms for antibiotic production quickly yielded the rediscovery of the same 26 

common antibiotics, and the output of novel antibiotic classes rapidly decreased1. The danger raised 27 

by the evolution of antimicrobial resistance urges the development of novel paradigms in the search 28 

for small-molecule antibacterials with new mechanisms of action (Box 1) that do not cross-resist with 29 

existing classes of antibiotics2. While new genetic and genomic approaches have enabled the genome-30 

wide discovery of essential genes and revealed a plethora of new and unexploited antibacterial 31 

targets3 4, target-based drug discovery has struggled to deliver new classes of antibacterials. Molecules 32 

identified to bind and interfere with promising targets often fail to fulfill subsequent key 33 

requirements, such as permeability, toxicity or pharmacokinetics. Hence, the field of antimicrobial 34 

discovery is still largely dominated by in vitro susceptibility screening assays (Figure 1A) allowing to 35 

directly single out compounds that produce the desired growth inhibitory activity. This has restricted 36 

the search for antibacterials to compounds inhibiting core growth-related processes, mainly 37 

identifying inhibitors of macromolecule biosynthesis, like cell wall-, protein- and DNA/RNA synthesis, 38 

eventually leading to the rediscovery of the same antibiotics over and over again1. Furthermore, the 39 

use of in vitro conditions that largely differ from in vivo conditions5, and biases in physicochemical 40 

properties of synthetic chemical compound libraries 6 (e.g. optimized for permeability in eukaryotic 41 

cells) contributed to the lack of success in recent antibiotic discovery campaigns. As if it wasn’t enough, 42 

the almost inevitable evolution of resistance poses additional concerns to evaluate the effectiveness 43 

of newly discovered antibacterial molecules. Hence, there is an urgent need for alternative and 44 

efficient strategies for the experimental identification of starting points to produce the next 45 

generation of antibacterials. 46 

In the traditional susceptibility-based approach, only compounds exhibiting measurable growth 47 

inhibitory activity, typically with a Minimum Inhibitory Concentration (MIC) below 10 µM, are 48 

selected. Moreover, lead compounds are chosen without knowledge of their targets or Modes of 49 

Action (MoAs) (Box 1). These are major bottlenecks hindering the identification of promising 50 

antibacterial molecules that have poor bioactivity or penetration7 8, properties which could 51 

subsequently be rationally improved. Similarly, classical susceptibility screens overlook compounds 52 

that target processes not essential in vitro but that could be attractive strategies for in vivo treatment 53 

and may associate with a lower selective pressure for resistance 9 10. Meanwhile, new computational 54 

and experimental approaches have emerged to not only predict compound growth inhibitory activity, 55 

but also characterize the broader functional impact of small molecules on in vivo pathogen 56 
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physiology11 12 13. Multidimensional and high-throughput technologies, like molecular profiling 14 15 16  57 

or high-content imaging 17 18 19, in combination with novel genetic tools like gene editing (e.g. CRISPR) 58 

20, enable the prediction of drug targets, MoAs, secondary effects, tolerance mechanisms and in vivo 59 

efficacy at large scale and already at early stages of drug discovery14 21 22. Such a multiparametric 60 

characterization can guide the selection of the most promising bioactive compounds, mitigate the 61 

problem of rediscovering compounds with the same MoAs (i.e. dereplication problem) and empower 62 

computational approaches like Artificial Intelligence (AI) 22 23 that can learn new and fundamental 63 

principles in target-based design, chemical optimization and rational combination therapies.   64 

In this review, we focus on experimental technologies (Figure 1B-F) that, with the aid of mathematical 65 

modeling, can augment classical phenotypic screens and provide a more comprehensive 66 

characterization of the consequences of drug treatment (Figure 1G), beyond growth inhibition. First, 67 

we review recent technological advances that allow multidimensional characterization of drug effects 68 

and thereby of drug action. Next, we examine computational strategies to perform in silico 69 

antibacterial screening and extract functional information from multidimensional profiling of small-70 

molecule effects. Finally, we discuss how the systematic characterization of virtually any type of 71 

bioactive molecule can expand the search of antimicrobials to molecules that don’t directly inhibit 72 

bacterial growth but exploit synergies with the host or with conventional antibiotics.  73 

 74 

Beyond growth inhibition  75 

Early identification of antimicrobial targets 76 

Because essentiality is condition-dependent5 24, the translational relevance of in vitro susceptibility 77 

screens (Figure 1A and 2A) hinges on the availability of experimental models that can mimic in vivo 78 

environments and interactions with the host. Environmental conditions can be so important that 79 

clinically relevant antibiotics, while potent antibacterials in vivo, exhibit poor activity in standard 80 

laboratory conditions. An emblematic example is daptomycin, for which the use of synthetic media 81 

with physiological concentrations of calcium is sufficient to reduce its Minimal Inhibitory 82 

Concentration (MIC) almost by 100 fold with respect to standard Mueller Hinton broth (MHB) 25. 83 

Conversely, compounds with promising in vitro activity, such as pyrimidine–imidazole derivatives, can 84 

target processes that become dispensable in vivo5. Thus, standard in vitro growth assays don’t 85 

adequately evaluate the in vivo antimicrobial potential of bioactive small molecules, and screening for 86 

growth inhibitory compounds in rich laboratory conditions that fail to reproduce host environments 87 

can miss attractive antibiotic candidates or potential strategies to potentiate the effect of classical 88 
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antibiotics 5 26.  Nevertheless, mimicking the complexity of in vivo conditions and host-pathogen 89 

interactions with scalable in vitro systems remains challenging27.   90 

Shifting the focus from merely characterizing growth inhibitory activity to identifying drug binding 91 

partners can reveal properties of small molecules that are largely condition-independent and hence 92 

provide an orthogonal starting point from which to assess their potential as antibacterials. Classical 93 

biochemical approaches to directly probe drug-target binding and mechanisms of action (Box 1), such 94 

as affinity purification, chromatography or in vitro enzyme assays, are not only low-throughput, but 95 

typically focus on a small number of protein targets at a time, making these techniques inadequate to 96 

systematically identify new drug targets. Conversely, new mass spectrometry approaches for the 97 

profiling of protein conformational changes (i.e. chemical proteomics, Figure 1B) such as thermal 98 

proteome profiling (TPP)28 and limited proteolysis (LiP-MS) 29, while still limited in throughput, can 99 

probe drug-target interactions proteome-wide (Figure 2B). Both technologies detect the stabilization 100 

of protein structures as the drug binds its target, leading to higher thermal stability (e.g. melting 101 

temperature), measured by TPP, or protection from proteolytic cleavage, measured by LiP-MS, 102 

allowing the de novo identification of direct drug-protein binding events and indirect effects on the 103 

interaction of drug targets with other proteins. TPP can be performed in intact cells, allowing 104 

confirmation of drug penetration and of whether the interaction occurs within the cell, while LiP-MS 105 

is able to report on binding sites, potentially facilitating chemical optimization. Hence, these two 106 

technologies are complementary to each other and can become key to train new in silico structural 107 

models30 31 to predict ligand-target binding at an unprecedented scale. 108 

While chemical proteomics methods are attractive technologies to characterize putative targets of 109 

candidate antibacterials, physical interactions don’t directly report on the functional consequences of 110 

drug treatment. Hence, binding assays are typically performed together with functional (i.e. 111 

phenotypic) assays that inform on cellular processes affected by the drug treatment. An emblematic 112 

example is the characterization of the mechanisms of action underlying the bactericidal activity of a 113 

novel antibiotic SCH-79797 32. Only by combining TPP with phenotype-based assays were the authors 114 

able to reveal that SCH-79797 not only binds and inhibits dihydrofolate reductase, but simultaneously 115 

disrupts membrane potential, similar to nisin or polymyxin B32.  116 

Complementing phenotypic with molecular descriptors 117 

An effective approach for the systematic and mechanistic characterization of large compound libraries 118 

and to accelerate the discovery of antimicrobials with potentially new MoAs is to combine genome 119 

editing technologies with scalable in vitro phenotypic assays. Versatile genetic tools like RNAi, 120 

antisense RNA-, haploinsufficiency or CRISPR-Cas9 technology allow systematically generating 121 
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genome-wide mutant-, knockout-, knockdown- or overexpression libraries, in virtually any organism. 122 

In arrayed or pooled formats, these collections are invaluable resources enabling high-throughput 123 

growth profiling of genetically modified bacteria against compound libraries (i.e. chemogenetic 124 

screens) to query for genes that enhance or suppress antimicrobial activity 3 4 20 33. Genes associated 125 

with drug action can encode direct or proximal drug targets, such as downstream enzymes in the same 126 

pathway of the drug target, or cellular functions crucial to endure drug treatment (Figure 1C). When 127 

interpreting chemogenetic screening data, it is important to consider that changing gene expression, 128 

such as with RNAi or CRISPR-based modulators, is not always sufficient to reveal functional 129 

dependencies between gene function and the drug MoA. For instance, proteins might be in excess, 130 

such that overexpression or mild down-regulation might not be sufficient to induce measurable 131 

changes in drug susceptibility. Similarly, if a drug target is regulated mainly at the post-translational 132 

level, protein activity can be largely invariant to protein abundance. Moreover, an increased 133 

expression of a drug target does not always lead to an inversely proportional change in susceptibility 134 

to an antimicrobial. For example, antibiotics like ciprofloxacin that don’t directly act on the catalytic 135 

activity of the targeted protein but rather modify its function, can exhibit a counterintuitively higher 136 

toxicity when the target (e.g. gyrase complex) is overexpressed34.   137 

Testing changes in susceptibility for all gene-drug combinations remains laborious, and classical 138 

chemogenetic screening is limited to compounds directly or indirectly affecting growth-related 139 

processes (Figure 2C). Advances in imaging technologies have bypassed this limitation and made it 140 

possible to monitor several cytological features in a single-pass screen (Figure 1D). Such features are 141 

largely orthogonal to growth inhibition, like cell/colony morphology (e.g. shape, area, length, width) 142 

18 19 35 or fluorescent labels reporting on transcriptional activity or metabolic states 17 36 (Figure 2D and 143 

Table 1). A key advantage of imaging-based approaches is that parameters can be measured at the 144 

single-cell level, offering unique insights into the heterogeneity of bacterial responses and drug 145 

efficacy, potentially unraveling key factors contributing to tolerance and evolution of resistance 37.  146 

While imaging-based profiling augments conventional phenotypic screening from one (e.g. growth) to 147 

dozens of features (e.g. morphological parameters), predicting and characterizing new drug MoAs 148 

based on low-dimensional descriptors remains challenging. Molecular profiling technologies, by 149 

generating multiparametric signatures encoding drug-induced changes in the abundance of thousands 150 

of individual proteins 15, transcripts 16 or metabolites 38 (Figure 1E and Table 1), can fill this gap and 151 

enable unbiased and de novo characterization of compounds with potentially unconventional MoAs39. 152 

Thanks to advances in recent years, technologies like metabolomics, proteomics and transcriptomics 153 

16 15 38 40 now achieve the necessary throughput and scalability to rapidly generate large compendia of 154 

high-dimensional molecular profiles (Figure 2E), increasingly also at the single-cell level41 (Figure 1F). 155 
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Remarkably, molecular profiling methods are often able to detect subtle adaptive changes even in the 156 

absence of measurable phenotypic effects 38. Such high sensitivity enables deriving functional insights 157 

also for molecules or drug concentrations that exhibit poor penetration or result in low activity, 158 

respectively, maximizing the information collected from single-pass screening (Figure 1G).  159 

Several characteristics define the potential and limitations of technologies used for the 160 

characterization of small molecule effects. There are inevitable tradeoffs between throughput, 161 

number of measured parameters, level of resolution – i.e. from phenotypic to molecular descriptors 162 

or from averaged population measurements to single cells –, and the possibility to make comparative 163 

or de novo predictions of compound MoAs. Currently, no single technology outperforms the others in 164 

all aspects (Figure 2). Therefore, the characterization of in vitro small molecule effects by both 165 

phenotypic and molecular profiling is crucial for mechanistic and predictive modeling of antimicrobial 166 

efficacy in more complex environments, and for identifying possible synergies with the host immune 167 

response or with classical antimicrobial treatments.  168 

From in silico activity to functional annotation  169 

Identifying bioactivity and MoAs early in the discovery pipeline aids the selection of the most 170 

promising next-generation antibacterials, e.g. excluding compounds with conventional MoAs and 171 

widespread (cross-)resistance, while prioritizing compounds exhibiting novel and promising MoAs. 172 

Computational frameworks able to integrate heterogenous small molecule-associated profiles are key 173 

to maximize the utility of multidimensional data42 38 43 22, providing experimentally testable 174 

hypotheses on drug efficacy, MoA and molecular targets (Figure 1G). 175 

In silico prediction of inhibitory activity and effects  176 

The size and complexity of drug profiling data has fostered the adoption of automated analysis 177 

strategies able to extract non-obvious patterns and to learn new fundamental rules (Figure 3A). 178 

Machine- and deep learning algorithms 22 23 are particularly efficient approaches to mine high-179 

dimensional and heterogeneous chemoinformatics-, phenotypic- and molecular drug profiling data 180 

and to address problems like activity prediction44 22 12. For example, machine learning algorithms 181 

enabled the prediction of mouse treatment outcomes based on growth inhibitory activities of drug 182 

combinations measured in multiple in vitro models of M. tuberculosis infection11. Similarly, when 183 

trained on in vitro growth inhibitory activity of 2335 molecules, a deep learning approach allowed in 184 

silico prediction of the inhibitory activities of more than 100 million molecules in only few days 12. This 185 

approach identified molecules that, while structurally dissimilar from already known antibiotics, 186 

exhibit growth inhibitory activity in vivo against a broad bacterial spectrum – a remarkable result 187 

considering that deep neural networks typically require more data for training compared to classical 188 
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machine learning algorithms. Strikingly, the authors found a human kinase inhibitor, renamed Halicin, 189 

to be a potent antibacterial12, emphasizing the importance of considering compound diversity45 in 190 

screening for new antibacterial compounds. 191 

AI models trained on in vitro growth inhibitory activities can overlook molecules with promising 192 

antibacterial targets, but poor bacterial penetration. To overcome this problem, measuring the 193 

accumulation of 180 diverse compounds in the Gram negative bacterium Escherichia coli uncovered 194 

new practical rules on how to optimize the physicochemical properties of small molecules to increase 195 

their accumulation inside bacteria8. Thus, high-throughput assays that inform on drug 196 

accumulation/penetration46 could provide invaluable information in the training and application of 197 

machine- and deep learning algorithms for the simultaneous discovery and optimization of new 198 

antibacterial molecules. Unfortunately, AI approaches are generally “black-box” systems, and 199 

rationalizing the AI decision-making process to derive causal and mechanistic biological insights from 200 

complex drug profiling data is a daunting task. Combining multiscale modeling such as genome-scale 201 

metabolic networks with drug profiling data can render AI approaches more transparent and 202 

interpretable 47. In a recent approach, instead of directly training a machine-learning model on growth 203 

inhibitory data, a genome-scale model of Escherichia coli metabolism and constraint-based modeling 204 

was used to map measured screening data into network representations of changes in metabolic 205 

fluxes47. This network model-driven machine-learning approach revealed a previously unappreciated 206 

causal role of purine biosynthesis in mediating the bactericidal activity of diverse antibiotics. Hence, 207 

machine- and deep learning frameworks, by incorporating additional molecular characteristics (e.g. 208 

metabolic changes) in the analysis of growth inhibitory activities, could expand the scope of virtual 209 

screening to a broader characterization of the functional impact of small molecules. 210 

Comparative annotation of small molecules MoAs 211 

Despite recent advances, in silico antibiotic discovery still suffers from the lack of mechanistic insights 212 

on the MoAs of newly identified compounds. To enable rapid and systematic MoA predictions, 213 

molecular profiles of small molecules can be directly compared to those of compounds with known 214 

MoAs, following the “guilt-by-association” principle  14 15 48 – i.e. drugs that exhibit similar profiles can 215 

have similar MoA and/or efficacy (comparative prediction, Figure 3B). One key aspect in such a 216 

comparative analysis is the metric used to assess distance or similarity between compound profiles. 217 

The choice depends on the specifics of the problem and the nature of the data. Correlation metrics 218 

like Pearson correlation, estimated on the full set of measured features, favor global relationships of 219 

a specific form (e.g. linear), and could be better suited to find drugs with almost identical properties. 220 

Other metrics testing entropy-based similarity (e.g. mutual information) or conditional 221 

independence  (e.g. graphical Gaussian models), or techniques to decompose a signature into 222 
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individual components that are maximally independent from each other, like principal- or 223 

independent component analyses, are able to better exploit the complexity of high-dimensional data 224 

and can capture local similarities, revealing more subtle commonalities between compounds MoAs38 225 

14 49. A key premise of comparative approaches is that different classes of antibiotics exhibit distinct 226 

physicochemical properties or induce characteristic changes in cell morphology, transcriptome, 227 

proteome or metabolome profiles 14 15 20. Using drug profiling signatures at multiple scales and in 228 

combination is likely to maximize the predictive power of comparative analysis in chemically and 229 

functionally diverse compound libraries and to reveal crucial differences between compounds with 230 

similar MoAs 50 51 32  52. While the primary scope of comparative approaches is limited to the search 231 

against antimicrobials with already known MoAs, finding unique signatures that differ from those of 232 

conventional antimicrobials can lead to molecules with new MoAs, thereby alleviating the problem of 233 

rediscovering compounds with the same MoAs 14 19. Moreover, maximizing diversity in 234 

multidimensional drug profiling signatures can represent an attractive alternative to maximizing 235 

chemical diversity 45 38, which alone is not sufficient to yield compound sets with diverse biological 236 

actions 19. 237 

As an alternative to the comparison between drug profiles, profiling of large-scale libraries of 238 

genetically modified bacteria3 20 33 has opened the door to systematically search for genetic 239 

perturbations that can mimic the effect of small-molecule perturbations38 53 54 . Differently from 240 

chemogenetic screens in which each mutant is tested against all compounds, comparisons of 241 

molecular profiles in response to genetic vs chemical perturbations requires each perturbation to be 242 

tested only once. Hence, multidimensional profiling of genetic perturbations can generate a set of 243 

reference profiles to speed up the search for inhibitors of specific gene functions, and simultaneously 244 

accelerate the functional annotation of large compound libraries55. By using this principle and 245 

comparing metabolic changes induced by knocking down essential genes in E. coli with drug-induced 246 

metabolic changes, we discovered that tegaserod, a drug commonly used to treat irritable bowel 247 

syndrome, interferes with the essential structural anchoring between peptidoglycan and lipoproteins 248 

55. It is worth noting that modulating the expression of one individual gene is often not sufficient to 249 

completely mimic drug effects, because drugs can engage multiple targets without necessarily 250 

inhibiting their catalytic functions, and the response to drug treatment can be radically different from 251 

compensation for gene downregulation. In spite of these limitations, this approach has been used 252 

successfully in a number of diverse drug discovery applications, from antibiotics14 to anticancer 253 

agents40 55, offering new opportunities to combine target- and phenotype-based drug discovery and 254 

ultimately expanding the chemical space of small molecules for emerging therapeutic targets.   255 

Network modeling enables de novo predictions of MoAs 256 
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Molecular profiling of small molecule effects offers a sensitive and high-dimensional readout, able to 257 

detect effects of treatment also for molecules that fail to inhibit bacterial growth38. Exposure to 258 

antibacterials that have poor penetration, bioactivity22, or interfere with non-essential functions, can 259 

trigger adaptive molecular changes, such as target overexpression, without inducing macroscopic 260 

phenotypes (e.g. growth inhibition, morphological changes). If detected, such adaptive changes can 261 

still reveal key aspects of drug action. However, formulating experimentally testable hypotheses of 262 

drug targets, MoAs and response mechanisms is less straight-forward than with phenotypic assays. 263 

Differently from chemogenetic screening or mutational profiling of antibiotic-resistant strains, which 264 

directly point to genes interfering with the compound’s ability to inhibit growth, interpreting drug 265 

molecular profiles requires integration with prior knowledge and mathematical models, like gene 266 

regulatory-, signaling- or metabolic networks. In return, model-based analysis of molecular profiles 267 

allows differentiating drug targets from downstream effects and key processes mediating the 268 

response to drug treatment 43 51 56 57 58 (Figure 3C), also in the absence of measurable phenotypic 269 

changes 52. For instance, combining dynamic metabolic profiles with kinetic modeling unraveled how 270 

E. coli can robustly cope with fluctuations in the expression of essential genes, such as carbamoyl 271 

phosphate synthetase (CarAB) 56. The authors showed that the allosteric activation of CarAB by 272 

ornithine allows maintaining constant fluxes in arginine and pyrimidine nucleotide biosynthesis even 273 

when CarAB is knocked down. Network analysis of genetic perturbations can offer invaluable insights 274 

on the potential efficacy of drug targeting essential gene products, and which innate or potentially 275 

evolvable compensatory mechanisms can bypass and neutralize drug effects. 276 

Often, the large number of unknown parameters and variables limits the scope of these models to 277 

small-scale systems 51 56 57. A powerful approach is the linear approximation of dynamic systems 278 

operating at near-steady state, which enables formulating tractable models of complex non-linear 279 

regulatory and biochemical networks at genome-scale 58 43 59. For example, gene regulatory networks 280 

can be parametrized using large compendia of steady-state transcriptional profiles across largely 281 

diverse conditions59. These relatively simple models are able to identify genes encoding drug targets 282 

by estimating a set of additional external inputs that simulate drug-target interactions, and thereby 283 

improve fitting of drug-induced transcriptional changes 43 (Figure 3C). The potential of this approach 284 

applied to drug-induced gene expression changes was shown by inferring that 1-phenyl-1H-tetrazol-285 

5-ylsulfonyl-butanenitrile (PTSB), a potent antifungal and anticancer drug, interferes with redox 286 

balance and specifically inhibits the thioredoxin/thioredoxin reductase system43. Additionally, 287 

integrating the dynamics of the drug-induced changes, while adding an additional level of complexity 288 

in the analysis, can provide crucial information to resolve direct (typically early-onset) from indirect 289 

drug effects51 57 56.  290 
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Exploiting unconventional antimicrobial targets  291 

The difficulties in finding antibiotics with new MoAs might also be a consequence of a limited number 292 

of druggable proteins being essential in nutrient-rich laboratory conditions. The number of essential 293 

genes can vary between 300 to 600, depending on genome size and bacterial species60. Of these, only 294 

less than 10% (i.e. 30-60) is predicted to be druggable 61, raising the question whether, with 50 non-295 

redundant antibiotic targets61, we have already discovered most MoAs that act by targeting core 296 

essential bacterial proteins. Expanding the systematic characterization of the chemical space also to 297 

molecules with no in vitro antimicrobial activity can facilitate the discovery of compounds targeting 298 

cellular processes fundamental for in vivo survival and colonization (Figure 4A), epistatically 299 

interacting targets (Figure 4B) or mechanisms to survive antimicrobial treatment (Figure 4C).  In this 300 

section, we will focus on how multidimensional profiling and computational tools could facilitate and 301 

enable the systematic exploration of unconventional antibacterial strategies. 302 

Systematically interfering with regulators of virulence. 303 

Anti-virulence therapies such as interfering with pathogen quorum sensing systems, in vivo 304 

adaptation, biofilm formation or bacterial toxins 62 63, are promising unconventional antibacterial 305 

strategies that, without killing or inhibiting bacterial growth, can fight and curb the emergence and 306 

spread of resistant pathogens. Transcriptome and proteome analyses of bacterial physiology at the 307 

infection site can reveal regulatory strategies of pathogens during colonization and infection and 308 

thereby, expose a plethora of new potential targets for antivirulance agents 82 64 65. For example, dosR-309 

mediated transcriptional regulation (DosRST) is essential in Mycobacterium tuberculosis (Mtb) to 310 

adopt a dormant state and survive in granuloma 9. By screening a large library of small molecules on 311 

a DosRST-dependent fluorescent Mtb reporter strain, new inhibitors of DosRST signaling have been 312 

discovered. Among them artemisinin, which was shown to induce transcriptional profiles largely 313 

similar to those of a dosR deletion mutant strain36. Because modulating key transcriptional regulators 314 

of virulence, like dosR in Mtb or toxT in Vibrio cholerae, induces unique transcriptional signatures 66 315 

67, transcriptome profiling of small molecule effects could be a valid alternative to monitoring 316 

individual gene reporters36 10 and speed up the search for compounds that selectively interfere with 317 

or revert the downstream effects of virulence factors. While monitoring individual gene reporters 318 

would require the genetic insertion of a new construct and to re-screen the compound library for each 319 

gene target of interest, reference databases of genome-wide transcriptome profiles of chemical and 320 

genetic perturbations together with similarity-based analysis could allow searching for molecules able 321 

to interfere with virtually any regulator. This strategy has been used to find selective inhibitors of 322 

human kinases 40, or to identify compounds potentially interfering with important E. coli regulators 323 

for in vivo cellular adaptation, such as rpoS and fur 38.  324 
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Targeting host-pathogen interactions 325 

Profiling of pathogen-induced gene expression changes in the host revealed that host-derived 326 

metabolites can play a key role in dictating the intracellular lifestyle of pathogens and in establishing 327 

host-pathogen interactions essential for virulence and survival  68 69. Mounting evidence suggests that 328 

the host can unintentionally promote virulence and pathogen survival 68, but also employ strategies 329 

that limit the access of bacteria to key nutrients like amino acids or cofactors  70 69. Pathogens in such 330 

hostile environments will likely exhibit vulnerabilities that cannot be discovered in standard 331 

phenotypic in vitro assays. Using human serum to mimic physiological conditions such as wound 332 

exudate or human blood revealed key differences in gene expression regulation of the arn operon, 333 

mediating arabinosaminylation of lipopolysaccharides in Pseudomonas aeruginosa 26. The authors 334 

found that downregulation of the arn operon is not only likely responsible for the increase in the 335 

susceptibility to azithromycin in host-like media with respect to standard MHB, but also for 336 

augmenting the synergy between azithromycin and synthetic host-defense peptides.  337 

Metabolic profiling of supernatants and analysis of uptake/secretion rates of nutrients and by-338 

products71 can be used to constrain genome-scale models of metabolism and predict attractive and 339 

selective targets essential in vivo 72 73 74  (Figure 4A). For example, a genome-scale metabolic model of 340 

E. coli was  able to identify conditionally essential enzymes in the human blood, macrophage and 341 

urinary tract, predictions which could subsequently be validated13. Overall, molecular profiling 342 

techniques able to measure the composition of complex nutritional environments or monitor in vivo 343 

pathogen physiology75 can aid the characterization68 76and in vitro reconstitution of conditions in 344 

infected tissues77 78 and enables directly searching for molecules that can target mechanisms to 345 

circumvent host-induced nutrient limitation, to scavenge essential nutrients 70 79 80, or further 346 

potentiate the host immune response81.  347 

Leveraging epistatic interactions between small molecules 348 

Large-scale di- and trigenetic screens have unraveled a large space of gene pairs or triples that, if 349 

simultaneously inhibited, could provide an alternative solution to the search for antibacterial 350 

monotherapies. Instead of single drugs targeting essential proteins, small molecules could be co-351 

administered to target synthetic lethal proteins (Figure 4B), or potentiate the action of classical 352 

antibiotics (Figure 4C) 82 83. Exploiting combinations of two or more compounds could dramatically 353 

expand the range of targets and molecules that could be selected from large-scale screening84. 354 

However, due to the explosion in the combinatorial complexity, the discovery of combination 355 

therapies remains a major challenge. To bypass testing all possible combinations of small molecules, 356 

multidimensional profiling of the effects of individual molecules has opened new opportunities in the 357 
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data-driven prediction of effective drug combinations85 38 86. For instance, chemogenetic profiles were 358 

shown to be a powerful training data source for a machine learning algorithm able to predict epistatic 359 

interactions between antibiotics85.  Combining metabolomic- or transcriptomic profiling of small-360 

molecule effects with chemical-genetic interaction data not only enables to predict pairs of 361 

epistatically interacting compounds, but also reveals mechanistic insights underlying drug-drug 362 

interactions38 87. Hence, combining classical phenotypic with multidimensional profiling of chemically 363 

diverse compound libraries can rationalize and expedite the search for unconventional combination 364 

therapies. 365 

Hampering resistance and tolerance 366 

The rapid emergence of antimicrobial resistance represents a major challenge to the discovery and 367 

development of new antibacterial treatments. A growing body of genome-wide association studies 368 

has unraveled global molecular signatures, like gene expression or proteome changes, that associate, 369 

explain and could be predictive of resistance 28 88 89 90. A particularly comprehensive study 370 

demonstrated that proteome composition analysis of more than 300.000 clinical isolates enables 371 

machine learning to predict antimicrobial resistance across clinically relevant pathogens90. Even if the 372 

most obvious approach would be to directly target the element responsible for increased resistance 373 

(e.g. inhibiting β-lactamases, efflux pumps), the comprehensive characterization of the indirect effects 374 

of resistance elements uncovered additional ways to hamper and select against evolution of 375 

resistance, or predict collateral susceptibility28 91 92, i.e. increased susceptibility to antibiotics different 376 

from the one selecting for resistance. The fact that different resistance mechanisms associate with 377 

specific molecular signatures 93 94 offers the opportunity to search against reference databases, and 378 

reevaluate the profiles of small molecules with no or little antibiotic activity. Inhibiting non-essential 379 

cellular processes that are nonetheless key to evade antibiotic killing actions, such as those mediating 380 

metabolic homeostasis88 or compensating for the cost of resistance mutations91 can not only 381 

potentiate the efficacy of classical antibiotics, but also hamper evolution of resistance 91 92. A high-382 

throughput competitive assay identified two compounds, both with metal-chelating properties, that 383 

invert the selective advantage of an increased expression of  tetracycline-resistance efflux pump 384 

(TetA) in E. coli 92. Remarkably, the authors found that both compounds are able to select for null 385 

insertions or deletions of the tetA gene suggesting for the possibility that compounds that select 386 

against resistance genes can be used in a two-phase treatment regimen. The first phase can revert 387 

resistant pathogens back to sensitive thereby improving the efficacy of a second-phase treatment with 388 

a conventional antibiotic. 389 

Major obstacles in implementing such strategies in a clinical setting are the possible emergence of 390 

mutations conferring cross-resistance and the ability to evolve strategies to survive the exposure to 391 
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lethal antibiotic concentrations longer (i.e. tolerance) 95 96 (Figure 4C). The possibility to broadly profile 392 

the consequences of drug treatment has revealed indirect but nevertheless critical effects of classical 393 

antimicrobial treatments, as well as unexpected pathways allowing bacteria to tolerate treatment for 394 

longer periods, thus facilitating evolution of resistance96 97 98 99. Single point mutations in central 395 

metabolic genes, such as  proton-pumping NADH:ubiquinone oxidoreductase (Nuo complex)96, were 396 

shown to be sufficient to achieve high levels of multidrug tolerance in E. coli. Consistent with these 397 

findings, it has been suggested that secondary effects altering the homeostasis of potentially toxic 398 

metabolites act as key mediators of antibacterial activity of antibiotics with largely different MoAs 97 399 

98 55. For example, Korormicin is a small molecule that selectively kills gram-negative bacteria 400 

expressing the Na+-pumping NADH:quinone oxidoreductase. Interestingly, it was shown that the 401 

antibiotic’s action is not directly caused by inhibiting enzyme activity, but rather results from indirect 402 

promotion of the production of reactive oxygen species98. Hence, targeting cellular processes that 403 

catalyze or mitigate indirect toxicity of antibiotics, such as homeostatic regulation of metals, cofactors, 404 

purine biosynthetic intermediates or reactive oxygen species, represents an attractive strategy to 405 

potentiate conventional antibiotics (Figure 4C) 98 47 55. Altogether, multidimensional profiling of small-406 

molecule effects opens new opportunities in the rational design of combination therapies that can 407 

preserve the efficacy of conventional antibiotics and expands the scope of lead selection to small 408 

molecules with no growth inhibitory activity. 409 

Conclusions/Perspective 410 

Discovering new antibacterial strategies is a daunting and urgent challenge. Over the past decade, 411 

antibiotic discovery has been transformed from screening for growth inhibitory activity to the 412 

characterization of several alternative phenotypes and molecular characteristics of small-molecule 413 

effects. Moving the characterization of lead compounds MoAs up in the drug discovery pipeline has 414 

fostered an iterative learning process to expand the functional diversity of compound libraries and the 415 

spectrum of molecules with potential as antimicrobials (Figure 5). A new promising strategy in the 416 

selection of unconventional antibacterial molecules is to search for molecules that induce similar or 417 

synergistic signatures to downstream toxic antibiotic effects or that are able to interfere with key 418 

adaptive mechanisms to establish in vivo infection, without the requirement for growth inhibitory 419 

activity in vitro. Moreover, the unbiased characterization of small-molecule effects will enable 420 

assembly of compound libraries modulating diverse bacterial functions, providing an entirely new 421 

chemical probe toolbox to gain insights in fundamental aspects of microbiology. 422 

While new computational tools like AI algorithms are able to deal with levels of complexity that other 423 

methods cannot handle, they not only necessitate large amounts of data for training. Carefully 424 

designed experiments generating high-quality data that avoid potential biases, like enrichment for 425 
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specific physicochemical compound properties, or confounding elements such as batch effects, are of 426 

utmost importance. This raises the demand for generating data repositories and standards in data 427 

acquisition that can adequately support the development of computational approaches able to tackle 428 

long-standing challenges in antibacterial discovery and development. This is an already ongoing effort 429 

in other research fields, like anticancer research, where large multiscale data resources are being 430 

assembled and shared (e.g. https://depmap.org/broad-sanger/). Consortia involving academia and 431 

pharma companies engage the scientific community to develop and test new in silico approaches, such 432 

as new strategies to predict drug efficacy or combinations from gene expression profiling (e.g. DREAM 433 

Challenges), with the prospect of more rapidly advancing our understanding of how to extract 434 

biological insights from multidimensional data40 100. However, while in the cancer field there is a strong 435 

support from the private sector, this is lagging behind in antibacterial discovery, where most efforts 436 

are supported by government programs. The more mature experience in anticancer research could 437 

serve as a blueprint for establishing similar consortia to accelerate translational research in 438 

antibacterial discovery.  439 

With ever-increasing throughput and financial incentives to expedite antibacterial research, ultimately 440 

the bottleneck will move from data acquisition to data analysis. Combining artificial intelligence with 441 

mechanistic models of genetic and biochemical networks will not only increase the success rate and 442 

thereby reduce the cost of antibacterial discovery. We will also learn fundamental lessons in basic and 443 

pathogenic microbiology, opening new opportunities beyond antibacterial/drug discovery and 444 

potentially fostering new directions in synthetic biology, sustainability and biomedical applications. 445 
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Boxes 457 

Box 1: 458 

Mode of action: reports on the functional consequences of drug treatment and how the drug achieves 459 

its intended therapeutic effects. For example, most current antimicrobials can be grouped into 4 460 

classes with distinct modes of action: interference with the cell wall (e.g. penicillins), inhibition of 461 

nucleic acid metabolism and repair (e.g. fluoroquinolones), inhibition of protein synthesis (e.g. 462 

macrolides) and interference with folate metabolism (e.g. sulfonamides).  463 

Mechanism of action:  the mechanism of action of a drug is more specific than its mode of action. It 464 

defines the targets and specific biochemical interaction (e.g. competitive vs non-competitive, agonist 465 

vs antagonist) through which a drug produces its pharmacological effect. For example, the mechanism 466 

of action of penicillins is the irreversible binding of the β-lactam ring to the active sites of penicillin-467 

binding proteins (i.e. transpeptidase and acylates), ultimately preventing the formation of cross-links 468 

between peptidoglycans. 469 

 470 

Tables 471 

Table 1. Platforms and readouts for the screening and multidimensional characterization of small 472 

molecule effects. Different screening platforms (Figure 1) make use of different measurements and 473 

techniques to characterize drug effects on target organisms. As methods differ in the respective 474 

readouts they generate, functional and/or molecular effects of small molecules on target organisms 475 

can be profiled along multiple dimensions. 476 

 477 

Figures 478 
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 479 

Figure 1. Multidimensional and multiplexed characterization of small-molecule antimicrobials. Techniques for 480 
the systematic characterization and multidimensional description of small molecule effects are grouped in five 481 
major approach types. (A) Susceptibility screening: measures the ability of antimicrobial candidates to inhibit 482 
bacterial growth, typically by measuring cell density in planktonic cultures or colony size on solid media. (B) 483 
Chemical proteomics: alternative to classical biochemical approaches, by measuring stabilization of protein 484 
structural features and protection from proteolytic cleavage and melting (i.e. thermal stability), advanced mass 485 
spectrometry-based proteomics methods allow detecting direct and proximal physical interactions of small 486 
molecules with proteins. (C) Chemogenetic screening: identifies genetic perturbations, like gene deletion (x) or 487 
overexrepssion (++), that enhance or reduce susceptibility (i.e. sensitivity or tolerance). (D) Imaging-based 488 
phenotypic profiling: automated imaging platforms enable large-scale monitoring of additional cellular 489 
characteristics, such as cell- or colony morphology, cell shape transitions (e.g. bulging, cell lysis), reporters of 490 
gene expression or metabolic activity. (E) Molecular profiling: measures drug-induced changes in the abundance 491 
of intracellular biomolecules, like transcripts, proteins and metabolites, yielding high-dimensional signatures of 492 
drug action independent of growth inhibitory activity. While gene expression is typically profiled using DNA 493 
microarrays or RNA sequencing, proteomics and metabolomics rely mostly on mass spectrometry-based 494 
approaches. (F) Adaptations for single-cell profiling are emerging, allowing single-cell measurements of bacterial 495 
responses to candidate antibacterials to characterize rare sub-populations (e.g. persisters) and heterogeneity in 496 
the treatment response. (G) The reviewed technologies for the profiling of small-molecules effects are 497 
complementary to each other and can be multiplexed in drug screening. With the aid of models to predict and 498 
investigate how chemical and genetic perturbations propagate through biochemical and genetic networks and 499 
thereby affect pathogen physiology and its interactions with the host, phenotypic and molecular profiling of 500 
small molecules effects can unravel unique mechanistic insights on their antibacterial activity, MoAs or potential 501 
synergism with other compounds.   502 
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503 
Figure 2. Different scopes of small-molecule antibacterial profiling technologies. (A-F) Approaches for the 504 
profiling of small molecule effects reported in Figure 1 are here described by five major characteristics. 505 
Throughput: How many compounds can be profiled per day - susceptibility screens (panel A) are scalable and 506 
offer the highest throughput, while chemogenetic screens (panel C) necessitate that the growth inhibitory 507 
activity of each compound is tested against multiple genetically modified strains, typically genome-wide mutant 508 
libraries, reducing the effective throughput. Number of features: dimensionality (number of measured 509 
parameters) of the small-molecule descriptors. Cellular resolution: from bulk measurements reporting the 510 
average behavior of bacterial populations to single-cell measurements in image-based profiling (panel D), and 511 
more recently molecular profiling technologies (panel E, dashed line). Prediction type: from the comparative 512 
analysis of uncharacterized compounds against a reference set of antimicrobials to de novo predictions of new 513 
antimicrobial MoAs even for compounds without growth inhibitory activity. Precision: the ability to discriminate 514 
direct targets and mechanisms of action from drug MoA and indirect/general effects of small molecules.  515 
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 516 
Figure 3: Computational extraction of functional insights from multidimensional profiles of small-molecule 517 
effects. (A) AI algorithms for the in silico discovery of new and yet to be profiled antibacterials use 518 
multidimensional profiling data to train and improve interpretability, unraveling novel principles guiding 519 
compound optimization and development. (B) Profiles of uncharacterized molecules are compared to 520 
antibacterials with an already known MoA or with genetic perturbations, such as knockout or overexpression. 521 
Such comparative analysis enables the systematic functional annotation of compounds and their classification 522 
in already known classes of antimicrobials or as potential new and unconventional antibacterials. (C) 523 
Frameworks for the de novo prediction of MoAs integrate molecular profiles and a priori knowledge in 524 
mechanistic or probabilistic models of genetic and/or biochemical networks to simulate different possible 525 
scenarios, like the effects of inhibiting different drug targets. Model-based simulations are compared to 526 
experimental data to find the most plausible parameters and drug targets.  527 
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 528 

 529 
Figure 4: Leveraging potential synergies within the host and bacteria. Molecules that per se have little or no 530 
growth inhibitory activity in vitro could still be effective antibacterials: (A) by interfering with virulence factors 531 
(red), bacterial adaptation to the host (green) or synergizing with the host immune response, like inducing 532 
nutrient restrictions (blue). (B) By targeting synthetic lethal proteins, i.e. targeting proteins that become 533 
essential only when their activity is simultaneously inhibited (green + blue). (C) By interfering with antibiotics 534 
(orange) resistance mechanisms (e.g. efflux pumps) (blue) or potentiating the side effects of antibiotics action, 535 
like the production or remediation of toxic intermediates (red).   536 
 537 

 538 
Figure 5: New iterative cycles in the discovery and validation of potential antibacterial compounds.  539 
Multidimensional characterization of large compound libraries, beyond susceptibility, inform on drug action 540 
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already in the first screening phases (green). Multidimensional characterization of small molecules effects can 541 
be directly used to assemble libraries of diverse bioactive compounds (light blue). With the aid of computational 542 
tools, like AI or genome-scale models of metabolism or transcriptional regulation, small molecules profiles can 543 
provide systematic predictions of MoA, epistatic drug interactions, mechanisms of resistance/tolerance (purple). 544 
Model-based analysis of small molecules profiles can also make predictions of drug efficacy, before experimental 545 
in vivo testing. Moreover, model-based predictions can repurpose molecules that are not themselves growth 546 
inhibitory, but can target processes fundamental for virulence, colonization or can interfere with host-pathogen 547 
interactions, such as nutrients restrictions at the infection site (orange). In turn, the same technologies used to 548 
profile drug effects could be used to gain quantitative insights on physiology of bacteria at the infection site, 549 
providing additional information to refine model-based predictions (yellow) or foster the development of in vitro 550 
systems that better mimic naturalistic in vivo conditions (purple).  551 
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Highlighted references 552 

3 Systematic titration of gene expression and analysis of fitness cost in Mycobacterium tuberculosis reveals 553 
genes vulnerability and quantify essentiality of bacterial functions. 554 

4 Elegant strategy to screen large chemical libraries against hypomorph pools of strains depleted of essential 555 
bacterial targets. This strategy named PROSPECT increase the probability of hit compounds discovery and 556 
provide mechanistic insights on compound functions. 557 

14 Combination of high-throughput metabolic profiling of chemical libraries and limited proteolysis reveal the 558 
modes of action of new antituberculosis compounds. 559 

15 By combining SWATH technology with high-flow chromatography the authors developed an ultra-fast 560 
proteomics approach reducing sample acquisition measurement to 60 seconds opening new opportunities in 561 
drug mode-of-action screening. 562 

22 This study comprehensively demonstrates the power of combining multiparametric high content screening 563 
and genomic approach, beyond classical susceptibility screening, to guide lead compound selection and their 564 
functional annotation. 565 

38 Comparing metabolic changes induced by genetic and chemical perturbations can be used to characterize 566 
MoA of compounds that target non-essential processes and thereby enable searching for unconventional 567 
antibacterial compounds. 568 

12 The authors developed a deep learning model trained to predict antibiotics based on structure and in vitro 569 
growth inhibitory activity. AI was able to predict a molecule that while structurally different from classical 570 
antimicrobials exhibits broad-spectrum antibiotic activities in mice. 571 

87 The authors used a machine learning approach to screen in silico more than 1 million potential drug 572 
combinations using Mycobacterium tuberculosis transcriptomic profiles of individual drug effects revealing 573 
mechanistic insights on the mechanisms of drug-drug interactions. 574 

56Model-based regulatory analysis of metabolic adaptive changes upon gene knockdowns revealed regulatory 575 
mechanisms that can buffer fluctuations in enzyme protein levels. 576 
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