
Uncovering new families and folds in the 
natural protein universe

Janani D ur ai ra j , A nd re w M. Waterhouse, Toomas M et s , T et iana Brodiazhenko, 
Minhal Abdullah, Gabriel Studer, Gerardo Tauriello, Mehmet Akdel, Antonina Andreeva, 
Alex Bateman, Tanel Tenson, Vasili Hauryliuk, Torsten Schwede & Joana Pereira

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. Nature 
is providing this early version of the typeset paper as a service to our authors and 
readers. The text and figures will undergo copyediting and a proof review before the 
paper is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers 
apply.

Received: 24 March 2023

Accepted: 7 September 2023

Accelerated Article Preview 
Published online xx xx xxxx

Cite this article as: Durairaj, J. et al. 
Uncovering new families and folds in the 
natural protein universe. Nature https://doi.
org/10.1038/s41586-023-06622-3 (2023)

https://doi.org/10.1038/s41586-023-06622-3

Nature | www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-023-06622-3


 

1 

Uncovering new families and folds in the natural protein universe 1 
 2 

Janani Durairaj1,2, Andrew M. Waterhouse1,2, Toomas Mets3,4, Tetiana Brodiazhenko3, 3 
Minhal Abdullah3,4, Gabriel Studer1,2, Gerardo Tauriello1,2, Mehmet Akdel5, Antonina 4 

Andreeva6, Alex Bateman6, Tanel Tenson3, Vasili Hauryliuk3,4,7,8, Torsten Schwede1,2, Joana 5 
Pereira1,2 6 

 7 
1 Biozentrum, University of Basel, Basel, Switzerland 8 
2 SIB Swiss Institute of Bioinformatics, University of Basel, Basel, Switzerland 9 
3 Institute of Technology, University of Tartu, Tartu, Estonia 10 
4 Department of Experimental Medical Science, Lund University, Lund, Sweden 11 
5 VantAI, New York, USA 12 
6 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), 13 
Hinxton, United Kingdom 14 
7 Science for Life Laboratory, Lund, Sweden 15 
8 Virus Centre, Lund University, Lund, Sweden 16 
 17 
Correspondence to: Joana Pereira (joana.pereira@unibas.ch), Torsten Schwede 18 
(torsten.schwede@unibas.ch) 19 
 20 
We are now entering a new era in protein sequence and structure annotation, with 21 
hundreds of millions of predicted protein structures made available through the 22 
AlphaFold database1. These models cover nearly all proteins that are known, including 23 
those challenging to annotate for function or putative biological role using standard 24 
homology-based approaches. In this study, we examine the extent to which the AlphaFold 25 
database has structurally illuminated this "dark matter" of the natural protein universe 26 
at high predicted accuracy. We further describe the protein diversity that these models 27 
cover as an annotated interactive sequence similarity network, accessible at 28 
https://uniprot3d.org/atlas/AFDB90v4. By searching for novelties from sequence, 29 
structure, and semantic perspectives, we uncovered the β-flower fold, added multiple 30 
protein families to Pfam database2, and experimentally demonstrate that one of these 31 
belongs to a new superfamily of translation-targeting toxin-antitoxin systems, TumE-32 
TumA. This work underscores the value of large-scale efforts in identifying, annotating, 33 
and prioritising novel protein families. By leveraging the recent deep learning revolution 34 
in protein bioinformatics, we can now shed light into uncharted areas of the protein 35 
universe at an unprecedented scale, paving the way to innovations in life sciences and 36 
biotechnology. 37 
 38 
Since the sequencing of the first protein, large-scale efforts brought about by faster and cheaper 39 
genome sequencing techniques have shed light into some of the sequences that nature has 40 
sampled so far. Currently, there are over 350 million unique protein coding sequences 41 
deposited in UniProt and over 3 billion in MGnify3,4. The rate at which this data is growing is 42 
much faster than experimental functional characterization. To close the gap, functional 43 
information is gathered for a subset of proteins and the findings extrapolated to close homologs. 44 
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Manual curation is carried out by those assembling the genomes and by biocurators5 and 45 
incorporated into automated annotation pipelines such as InterPro6.  46 
Despite the great success of such approaches, only 83% of UniProt sequences are covered by 47 
InterPro, and many correspond to Domains of Unknown Function (DUF). Thus, numerous 48 
protein sequences remain functionally unannotated and unclassified. Some of these may just 49 
correspond to divergent forms of known protein families that lie beyond the detection horizon 50 
of automated, homology-based methods; others could belong to so far undescribed protein 51 
families with yet-to-be determined molecular or biological functions7. 52 
The 3D structure of a protein is intrinsically linked with its molecular function. Experimental 53 
structure determination is an expensive and time-consuming process, and homology-based 54 
computational prediction loses its power for proteins without close homologs8. 55 
Notwithstanding, deep learning based approaches have recently achieved unprecedented 56 
accuracy, with AlphaFold2 at the forefront. Its success drove the establishment of the 57 
AlphaFold database (AFDB), which contains predicted structural models for about 215 million 58 
natural protein sequences from UniProt, including many of the unannotated proteins. At the 59 
same time, deep learning-based approaches have also recently been employed for predicting 60 
functional properties from structure9 and protein names from sequence10.   61 
In this work, we combine sequence similarities and structure features with deep learning-based 62 
function prediction tools to shed light on “functionally dark” proteins in UniProt. We revised 63 
their proportion, evaluated how many of them now have high confidence structural models that 64 
can be leveraged for downstream analysis, and constructed for the first time an annotated and 65 
interactive sequence similarity network with millions of proteins. By exploring this network, 66 
we discovered 290 putative new protein families, identified at least one novel protein fold, and 67 
defined a new superfamily of translation-targeting toxin-antitoxin systems which we 68 
experimentally validated and dubbed TumE-TumA. This work demonstrates that functional 69 
annotation of proteins, even from a purely computational perspective, requires a combination 70 
of data sources and approaches, which become increasingly available and attainable due to the 71 
rapid and ongoing advances at the interface between life sciences and deep learning.  72 
 73 
Functional darkness in UniProt and AFDB 74 
As of August 2022, there were more than 350 million unique protein sequences in UniProt (i.e., 75 
UniRef100 clusters11). We focus our analysis on these as they have a higher confidence than 76 
those deposited in metagenomics databases such as MGnify. These sequences correspond to 77 
circa 50 million non-redundant proteins when clustered to a maximum sequence identity of 78 
50% (UniRef50). Starting from these clusters, we define the “functional brightness” of a given 79 
protein as the full-length coverage with annotations of its close homologs, and a UniRef50 80 
cluster is as “bright” as the “brightest” sequence it encompasses (Fig. 1a). For that, we only 81 
considered those annotations that correspond to domains and families whose title does not 82 
include “Putative”, “Hypothetical”, “Uncharacterised” and “DUF”, but considered predicted 83 
coiled coil and intrinsically disordered segments in order to focus our analysis solely on 84 
functionally dark proteins with a potential for a globular (or other) fold type.  85 
We found that 34% of all UniRef50 clusters (10% of UniRef100, ~34 million unique proteins) 86 
are dark as they do not reach a functional brightness higher than 5% (Extended data Fig. 1a). 87 
While the brightness of a cluster is not directly proportional to the number of sequences within 88 
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it (Pearson correlation coefficient of 0.0), bright clusters (functional brightness ≥ 95%) tend to 89 

be larger than those whose members are poorly annotated (mean 19 土123 unique sequences 90 

in bright clusters compared to 2 土 7 in dark).  91 

While UniRef50 clusters encompass sequences from the UniProt Knowledgebase (UniProtKB) 92 
and the UniProt Archive (UniParc)12, the latest version of AFDB (version 4) covers only 93 
UniProtKB and excludes both long and viral sequences. Consequently, 78% of all UniRef50 94 
clusters have members with a predicted structure in AFDB (Extended data Fig. 1b). Of these, 95 
29% are functionally dark, a proportion that drops with an increase in predicted model accuracy 96 
(Extended data Fig. 1c,d) while retaining a similar proportion of DUFs (Extended data Fig. 1e). 97 
Thus, there is a considerable proportion of proteins in UniProt that can not be automatically 98 
annotated, but that high confidence structural information can now be leveraged to gain insights 99 
about a substantial number of these.  100 

 101 
Sequence similarity network of AFDB90 102 
While UniRef50 provides groups of sequences that are overall similar at the sequence level, 103 
they do not reach the family and superfamily levels and do not account for local similarities. 104 
To reach these levels and put functionally dark clusters into evolutionary context, we 105 
constructed a large-scale sequence similarity network of all clusters where structural 106 
information can be confidently leveraged to support functional annotations. This corresponds 107 
to the 6’136’321 UniRef50 clusters (circa 53 million unique protein sequences) which have 108 
structural representatives with an average pLDDT > 90 in AFDB (the AFDB90 dataset). 109 
We employed MMseqs213 for all-against-all sequence searches (Fig. 1b), connecting two 110 
sequences if they have an alignment that covers at least 50% of one of the proteins with E-111 
value < 1x10-4. The resulting network has over 4 million connected nodes and 10 million edges, 112 
which includes 43% of all dark UniRef50 clusters (Fig. 2). Remarkably, 40% of these dark 113 
clusters connect to bright UniRef50 clusters, revealing potential evolutionary relationships for 114 
over 700’000 unique proteins.  115 
The network is composed of 242’876 connected components with at least 2 nodes, with the 116 
largest encompassing about 50% of all AFDB90 (Fig. 2a). Of these components, 19% have an 117 
average brightness content below 5% (“fully dark”) (Fig. 2d). Only 25% of the components are 118 
“fully bright” (i.e., average functional brightness >95%). The percentage of UniRef50 clusters 119 
in fully dark components decreases with the component's size (Fig. 2b,c), highlighting that the 120 
lower the number of homologs the harder a protein is to annotate. Still, and while the 121 
distribution is skewed towards smaller sizes in both fully dark and fully bright components 122 
(Fig. 2e,f), the largest dark component in our network has over 800 nodes. These fully dark 123 
components are fertile ground for novel family discovery, as exemplified by the two new 124 
families we describe below. 125 
 126 
A new glycosyltransferase family  127 
The largest functionally dark connected component in our set is component 27, with 836 128 
UniRef50 clusters (4’889 unique bacterial protein sequences, average brightness 2±13%, Fig. 129 
3a). Their representatives have a median length of 665 ± 169 amino acids, most are predicted 130 
to be transmembrane, and are annotated as “Uncharacterised YfhO” in InterPro. Indeed, the 131 
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proteins in this component that are not called “Uncharacterised protein” mostly have the title 132 
“YfhO family protein”, which corresponds to a family involved in lipoteichoic acid or wall 133 
teichoic acid glycosylation14. However, the predicted structural model superposes poorly to the 134 
YfhO family (TM-score 0.58, Fig. 3b), prompting a more in-depth investigation.  135 
HHPred15 and Foldseek16 find multiple, medium-to-high confidence matches in the PDB 136 
(Probability > 95% and TM-score ~0.6, Fig. 3b), including the eukaryotic Dolichyl-137 
diphosphooligosaccharide-protein glycosyltransferase subunit STT3 and its bacterial homolog 138 
oligosaccharyltransferase PglB17,18, absent from our network because their representatives have 139 
an average pLDDT < 90. We collected sequences for all four groups of proteins (YfhO, STT3, 140 
PglB, and component 27) and built a sequence similarity network in order to investigate how 141 
they may relate at the sequence level (Fig. 3a). This network highlighted that most dark proteins 142 
in component 27 cluster separately from the reference YfhO, forming a single YfhO-like 143 
protein family that is linked to the STT3/PglB groups by multiple hypothetical proteins, mostly 144 
of prokaryotic origin, often annotated as “Glycosyltransferase family 39 protein”.  145 
These results support the notion that component 27 belongs to the well-studied superfamily of 146 
transmembrane oligosaccharyl- and glycosyltransferases, but also indicate that it is a hitherto 147 
undescribed bacterial protein family. In this case, inspecting the AlphaFold model revealed 148 
possible inconsistencies in their automated annotation, illustrating the added value of structural 149 
models to guide sequence-based family classification. 150 
 151 
A new toxin-antitoxin superfamily 152 
Component 159 is composed of 327 UniRef50 clusters, corresponding to 1’222 unique protein 153 
sequences, mostly annotated as “Domain of Unknown Function 6516” (i.e. DUF6516, Fig. 4). 154 
These proteins are predicted to adopt a conserved α+β fold, where two α-helices pack against 155 
an antiparallel β-sheet with 7 strands (Extended data Fig. 2). Contrary to component 27, 156 
HHPred and Foldseek searches found no confident matches in the PDB. A high resolution 157 
similarity network unravelled 7 distinct classes of DUF6516-containing proteins (Fig. 4a).  158 
Based on the AFDB models, structure-based function predictor DeepFRI9 proposed that they 159 
may bind DNA or other nucleic acids and carry a hypothetical catalytic site with a hydrolase 160 
activity over ester bonds (Fig. 4c, Supplementary file 1). Genomic context analysis with  161 
GCsnap19 highlighted that DUF6516-coding genes are commonly found in a conserved two-162 
gene (bicistronic) genomic arrangement, with DUF6516 predominantly located downstream of 163 
the conserved bicistronic “partner” (clusters 1, 2, 4 and 6).   164 
While most of the “partner” genes associated with DUF6516 code for “hypothetical proteins” 165 
of unknown function, one in cluster 1 is a remote homolog of RelB, a well-characterised 166 
antitoxin20. Indeed, the bicistronic arrangement is typical for toxin-antitoxin (TA) systems21. 167 
When active, the TA toxin proteins abolish bacterial growth, and the control of this toxicity is 168 
executed by the antitoxin, which, in the case of “type II TA systems”, is a protein that acts by 169 
forming an inactive complex with the toxin. DeepFRI predictions for DUF6516 partners 170 
suggests they may also bind DNA (Supplementary file 1), an activity characteristic for diverse 171 
antitoxins21, and co-folding prediction with AlphaFold-Multimer generated high confidence 172 
models (93 average pLDDT, 0.902 iPTM) that support the interaction between the two proteins 173 
as a dimer of dimers (Fig. 4b), as commonly observed for type II TAs. Therefore, we 174 
hypothesised that DUF6516 is a novel toxic TA effector that is neutralised either in trans by 175 
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diverse unrelated antitoxins (subclusters 1-4, 6 and 7) or in cis by a fused unknown antitoxin 176 
domain (UnkD, subcluster 5). 177 
To validate the putative TAs experimentally and gain insights into the mechanism of 178 
DUF6516-mediated toxicity, we used our established toolbox for TA studies22. We targeted 179 
TA from six Gammaproteobacterial species for testing in E. coli surrogate host, and all the 180 
putative toxins dramatically abrogated E. coli growth (Fig. 4d) while the putative antitoxins 181 
had no effect (Extended data Fig. 3). Neutralisation assays showed full suppression of toxicity 182 
when the toxins were co-expressed with cognate antitoxins (Fig. 4d), thus directly validating 183 
that these gene pairs are, indeed, bona fide TA systems.  184 
To probe the mechanism of DUF6516-mediated toxicity, we carried out metabolic labelling 185 
assays with 35S methionine (a proxy for translation), or 3H uridine (a proxy for transcription) 186 
or 3H thymidine (a proxy for replication). Expression of Allochromatium tepidum strain NZ 187 
DUF6516 toxin resulted in a decrease in efficiency of 35S methionine incorporation (Fig. 4e), 188 
indicative of  the inhibition of protein synthesis. We hypothesise that the effect could be 189 
mediated by the yet-unproven RNase activity of the DUF6516 toxin.  190 
We conclude that DUF6516 is a bona fide translation-targeting toxic effector of a novel TA 191 
family, and propose renaming it TumE (for “dark” in Estonian), with the antitoxin components 192 
dubbed as TumA, with A for “antitoxin”. This example illustrates the difficulty of automating 193 
functional annotation for proteins from completely novel superfamilies. Here, the combination 194 
of genomic context information, remote homology searches on genomic neighbours, and deep 195 
learning-based structure-guided function prediction helped formulate a testable functional 196 
hypothesis.  197 

 198 
Semantic consistency across the network 199 
Recently, the ProtNLM10 large language model was implemented as an approach to 200 
automatically name proteins in UniProtKB titled as “Uncharacterised protein”. Given that 201 
language models have the tendency to “hallucinate” predictions when faced with an 202 
unknown23, we hypothesise that such an approach would generate a wide diversity of predicted 203 
names for completely novel protein families. To investigate this hypothesis, we compared the 204 
diversity of names predicted by the first release of ProtNLM for proteins in fully dark 205 
components and those in fully bright.  206 
In both cases, the distributions of names and words (collectively referred to as “semantic 207 
diversity”) were highly skewed towards extremely low diversities, but the fully dark set was 208 
significantly different from the fully bright (Kolmogorov–Smirnov two-sided test statistic 209 
0.2915, P-value = 8.882x10-16, Extended data Fig. 4a,b). Most bright components had a low 210 
semantic diversity, indicating a coherent and consistent naming. The maximum word diversity 211 
in these was 37%, corresponding to cases with variations of the same name (e.g. multiple 212 
“Cytotoxins” with different labels for component 100’340). On the other hand, fully dark 213 
components tended to have a higher semantic diversity, with a name diversity of 19% 214 
(compared to 10% in fully bright) and a word diversity of 7% (compared to 4%). The more 215 
consistently named dark components were those with previously submitted names, such as 216 
“DUF6516”.  217 
The dark component with the highest semantic diversity (45%) was component 3’314, 218 
composed of 53 proteins with a wide variety of unrelated predicted names, including 219 
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“Integrase”,“NADH-quinone oxidoreductase subunit F”, “Dynein light chain”, “Prophage 220 
protein”, etc. Despite this, proteins in component 3’314 share a common fold (Extended data 221 
Fig. 5a) but FoldSeek found no hits in the PDB. HHPred searches highlighted a small local 222 
match to the tubulin-binding domain of Chlamydomonas reinhardtii TRAF3-interacting 223 
protein 1 (Probability 71%), but when clustered together at sequence-level these two groups of 224 
proteins only formed a few weak connections (Extended data Fig. 5a). Though small, 225 
component 3’314 is dispersed throughout bacteria and bacteriophages, and the members do not 226 
share a conserved genomic context (Extended data Fig. 5b). Together with the presence of 227 
prophage-associated protein encoding genes in these genomic contexts, such as “Host-nuclease 228 
inhibitor protein Gam”24, these data support the “Prophage protein” title. 229 
Another example with a high semantic diversity (35%), and where structure information aided 230 
function assignment, is component 6’732. It consists of 54 entries, some of which are annotated 231 
inconsistently as “AbiEi_1 domain-containing protein”, “Transposase”, “Acyl-CoA 232 
dehydrogenase” and “TetR family transcriptional regulator”. HHpred searches found no hits in 233 
the PDB, but structure-based searches using AFDB models yielded matches to a number of 234 
type II restriction endonucleases. The most similar was EndoMS, a mismatch restriction 235 
endonuclease25 that superposes with an RMSD of 2.3-2.6 Å. Within the structural alignment, 236 
the most conserved residues are those constituting the EndoMS active site (Extended data Fig. 237 
5c), which are invariant in all members of component 6’732. This suggests that they share a 238 
similar active site architecture that has a common restriction endonuclease active site motif 239 
(E/D)-Xn-(E/D)XK26,27, and that component 6’732 may represent a new family of putative 240 
restriction endonucleases whose precise function is unknown.  241 
These results highlight that ProtNLM when presented with families with no homologs was 242 
indeed hallucinating a diverse range of names. By setting a word diversity cutoff of >20% for 243 
components with >50 proteins, we identified 290 such functionally dark components, covering 244 
4’618 UniRef50 clusters and 37’211 unique protein sequences, and are defining Pfam2 families 245 
for each of them (133 new families available in the next Pfam releases 36.0 and 37.0; 246 
Supplementary file 2). This includes component 3’314 as the PF21779 family and whose 247 
members are now titled DUF6874, and component 6’732, which is now PF22187 and its 248 
members named DUF6946.  249 
Overall, pooling predictions across the network can help assess the consistency of automated 250 
annotation methods, especially in data-driven approaches. As we define new Pfam families, 251 
their naming should become consistent as future versions of ProtNLM consume this data. 252 
Starting from UniProt release 2023_01, the criteria for displaying ProtNLM names has changed 253 
to include an ensemble approach, an increased confidence threshold, and an automatic 254 
corroboration pipeline (https://www.uniprot.org/help/ProtNLM), thus many of these 255 
hallucinated names have now reverted to “Uncharacterised protein”.  256 
 257 
Structural outliers across the network 258 
Just as semantic diversity revealed novelties in protein sequence space, we also investigated 259 
how different the predicted structural characteristics of proteins in our network are from the 260 
structures in the PDB. For this, we introduced the concept of “structural outliers” by using an 261 
alphabet of substructure representations covering 1’024 local structural contexts (16 residues 262 
in sequence and 10Å spatial neighbourhood, Extended data Fig. 6). We trained an outlier 263 
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detector on PDB structures and predicted that 699'084 AFDB90 structures have substructure 264 
compositions that are rare or absent in the PDB, giving us a measure of plausibility that can 265 
help prioritise protein family classification.  266 
While the examples described in the previous section are all structural inliers, we found that 267 
30% of outliers are in dark UniRef50 clusters (Fig. 5a) and that they tend to be shorter and 268 
more repetitive than inliers (Fig. 5a,b). Proteins may be structural outliers for a variety of 269 
reasons, including novel folds as in the next section. Short outliers typically represent 270 
fragments of existing families (Fig. 5c), likely due to frameshift errors introduced during 271 
whole-genome sequencing. Long outliers tend to be highly repetitive proteins (6’791 clusters, 272 
with >500 residues and shape-mer diversity fraction <0.1, of which 4’948 are bright), which 273 
are rare or absent in the PDB (Fig. 5d). Proteins that require conditions to fold that are not 274 
modelled by AlphaFold2, such as binding partners (Fig. 5e), sometimes have models in AFDB 275 
that do not resemble the single chain of the complex as found in the PDB, i.e the predicted 276 
monomeric fold may not always be functionally meaningful.  277 
While most fully dark and fully bright components do not contain structural outliers, the outlier 278 
content is significantly different between the two sets (Kolmogorov–Smirnov two-sided test 279 
statistic 0.0586, P-value = 5.245x10-81, Extended data Fig. 4c). Fully dark components have on 280 
average a higher outlier content (21%) than fully bright (15%), but these only correspond to 281 
about half of the structural outliers. Indeed, 44% of outliers are singletons, i.e UniRef50 clusters 282 
which do not form a component with at least 2 nodes, giving us a measure to prioritise even 283 
these cases for further analysis, as in the example below.  284 
 285 
The β-flower fold 286 
UniRef50_A0A494VZL1 is an example of a structural outlier which is a singleton in the 287 
network. It folds as a shallow, symmetric β-barrel with 96 residues, made of 10 short 288 
antiparallel β-strands that form a hydrophobic channel. On one side of the β-barrel, the loops 289 
connecting each strand are much longer (9 residues) than those on the other side (4 residues), 290 
and some are enriched with positively charged arginine and lysine residues with phenylalanines 291 
at the tips pointing towards the exterior of the β-barrel  (Fig. 5f). Overall, it looks like a flower 292 
(Fig. 5g) and hence we named it the “β-flower” fold.  293 
Foldseek searches found hits to 43 AFDB90 clusters (TM-score >0.6, most from bacteria) 294 
across 13 different components, some of which are bright because they are annotated as “Cell 295 
wall-binding protein” or “MORN repeat variant”. There are at least three globally different 296 
folds (Fig. 5f), differing in the number of strands (8, 10, or 12), with their “petals” comprising 297 
β-hairpins that are arranged in four-, five- or six-fold symmetry. Some of the hits resemble half 298 
of a flower, perhaps corresponding to fragments of longer domains, and many enclose a C-299 
terminal hydrophobic α-helix. Some β-flowers also contain N-terminal lipoprotein attachment 300 
motifs28,29, suggesting they may be associated with the bacterial inner membrane or transferred 301 
to the inner leaflet of the outer membrane.  302 
Although no similarity to the PDB was highlighted by Foldseek or HHpred searches, the β-303 
flower folds with six-fold symmetry are reminiscent of the Tubby C-terminal domain30, which 304 
adopts a twelve-stranded β-barrel fold enclosing a hydrophobic α-helix (Fig. 5f,g). Tubby-like 305 
proteins either bind to phosphoinositides or function as phospholipid scramblases30. β-flowers 306 
and Tubby-like proteins share a network of aromatic hydrophobic residues that flank the edges 307 
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of the β-strands and point toward the interior of the β-barrel, thus engaging in tight contacts 308 
with the central hydrophobic helix. Interestingly, the N-terminal strand of Tubby is circularly 309 
permuted in β-flowers (Fig. 5g), which leads to a different entry point of the α-helix into the β-310 
barrel channel, and to a difference in its directionality. Additionally, the length of the β-strands 311 
and the connecting loops in the β-flower proteins are significantly shorter.  312 
Based on their global structural similarity and the presence of a semi-conserved [DNEQ]XXG 313 
sequence motif at the tip of the β-hairpin, and the repeat unit of both β-flowers and Tubby-like, 314 
the diversity of these proteins has been added to Pfam as the new entries PF21784, PF21785 315 
and PF21786, which together with the Tubby C-terminal domain now form the CL0395 clan. 316 
This, together with the different types of structural outliers described, highlights that the 3D 317 
context provided by the models in AFDB is highly informative for protein analysis efforts and 318 
that the structural space covered needs to be put into a coherent evolutionary, functional, and 319 
local structural context before any model, even with high predicted accuracy, is used as a 320 
reference.   321 

 322 
Towards large-scale function annotation 323 
In this work, we carried out a large-scale analysis of the UniProt protein sequence space 324 
covered by high confidence predicted structural models, as made available through AFDB 325 
version 4. In order to aid functional annotation of this space, we constructed an interactive 326 
sequence similarity network accounting for about 53 million proteins enriched with predicted 327 
name diversity and structural plausibility scores, the first network at such a large scale. We 328 
demonstrate that this network is a rich source of putative novel protein folds, families and 329 
superfamilies, providing multiple starting points for further downstream studies.  330 
We find that many functionally unannotated proteins are remote homologs of annotated ones, 331 
relationships which can now be easily explored. Additionally, over 1 million proteins belong 332 
to completely unannotated connected components, many of which cannot be named 333 
consistently using the most recent deep learning-based approaches or contain proteins with 334 
structural features distinct from what is seen in the PDB. When combined with traditional 335 
protein evolution approaches, structure-based comparisons, genomic context information, 336 
structure-based function prediction, and the conservation of local features such as active sites, 337 
we could gather support for common evolutionary origins, gain valuable insights into putative 338 
functions and put forward concrete testable hypotheses for experimental characterisation.  339 
Indeed, the functional annotation of dark proteins, even from a purely computational 340 
perspective, requires a combination of data sources and approaches. It is crucial to combine 341 
individual predictions across connections in the network to increase the confidence of any 342 
hypothesis. Most of our examples had such support from both sequence and structure, and even 343 
for the novel β-flower fold, a singleton in our network, the presence of a semi-conserved 344 
sequence motif captured only due to local structural similarities allowed us to generate an initial 345 
classification. This information can now help guide further validation experiments, such as 346 
those carried out for TumE. 347 
Our study has some caveats and limitations, however. All alignments required coverage across 348 
the entire protein sequence, while a domain-based exploration would provide a possible 349 
complementary solution. Our functional brightness definition excluded predicted intrinsically 350 
disordered and coiled-coil proteins, and misclassifies some functionally uncharacterised 351 
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proteins as bright due to ambiguous annotations (e.g “transmembrane” or “repeat”), or 352 
characterised ones as dark due to “Putative” annotations. Furthermore, we focus only on 353 
proteins with high confidence predicted structures from AFDB, setting aside the wealth of 354 
potential darkness in metagenomic data for which structural models are also now available 355 
through the ESM Metagenomic Atlas31. Though we could already highlight a significant 356 
proportion of novelty, in-depth exploration combining multiple sources of evidence could only 357 
be carried out for a small number of families and folds. Thus, the examples we discuss are the 358 
low-hanging fruit of uncharacterised or unannotated protein families, and they are only the tip 359 
of the iceberg.  360 
Similarity networks are a common representation of protein space32,33 and recent approaches 361 
to categorise protein diversity and uncover novelties have showcased the importance of 362 
incorporating multiple perspectives and methods in protein annotation31,34–36. Our work 363 
combines these concepts by providing the first annotated similarity network model of protein 364 
sequence space at such a large scale, which we make available as an interactive and accessible 365 
web resource. We anticipate that further advances in deep learning-based methods for function 366 
prediction9, remote homology detection37,38 and protein structure prediction31 will allow for 367 
analyses on an even larger scale, incorporating more diverse data sources with greater 368 
confidence. As such advances continue, we as a community are closer than ever to harnessing 369 
the full potential of the protein universe, from unknown biology to new biomedical, 370 
pharmaceutical and biotechnological applications. 371 
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 460 

Figure legends 461 

Figure 1. General workflow for the collection, classification and mapping of functionally 462 
dark proteins in UniProt and AlphaFold database. (a) Starting from the clusters in 463 
UniRef50, we collected all the functional annotations for all included UniProtKB and UniParc 464 
entries, including coiled coil and intrinsically disordered (IDPs) predictions and excluding all 465 
of those with “Putative”, “Hypothetical”, “Uncharacterised” and “DUF” in their names. We 466 
selected the protein with the highest full-length annotation coverage (i.e., brightness) as the 467 
functional representative of each cluster. (b) From the collected UniRef50 clusters, we selected 468 
those with a structural representative with pLDDT >90 in the AlphaFold database v4, and 469 
constructed a large-scale sequence similarity network by all-against-all MMseqs2 searches, 470 
representing the sequence landscape of more than 6 million UniRef50 clusters. 471 
 472 
Figure 2. Large-scale sequence similarity network for over 6 million UniRef50 cluster 473 
representatives with high predicted accuracy models in AFDB (AFDB90). (a) Layout of 474 
the resulting network, as computed with Cosmograph (https://cosmograph.app/). The network 475 
contained 4’270’404 nodes connected by 10’339’158 edges, reduced for simplicity to a set of 476 
688’852 communities connected by a total of 1’488’764 edges (see Methods Section Large-477 
scale Sequence Similarity Network for details). The 1’865’917 UniRef50 clusters that did not 478 
connect to any other in the MMseqs2 searches were excluded. Only the 473’612 communities 479 
that have at least one inbound or outbound edge (degree of 1) are displayed in the figure. Nodes 480 
are coloured by the average functional brightness of the UniRef50 clusters included in the 481 
corresponding community. An interactive version is available at 482 
https://uniprot3d.org/atlas/AFDB90v4. (b) Histograms of functional brightness content for 483 
connected components with more than 50’000 and with only 5 to 2 nodes (UniRef50 clusters), 484 
highlighting their different darkness content. (c) Scatter plot of the component size (i.e. number 485 
of UniRef50 clusters) cut-off and the percentage of functionally dark UniRef50 clusters. (d) 486 
Histogram of the average brightness per component. Size distribution for (e) fully dark 487 
connected components (average brightness <5%) and (f) fully bright connected components 488 
(average brightness >95%). 489 
 490 
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Figure 3. Connected component 27 is a new family in a well-studied superfamily of 491 
transmembrane glycosyltransferases. (a) High resolution sequence similarity network for 492 
7’004 homologs of the sequences in component 27, computed with CLANS at an E-value 493 
threshold of 1x10-20. Points represent individual proteins and grey lines BLASTp matches at 494 
an E-value better than 1x10-20. Individual clusters are coloured and labelled accordingly to their 495 
representative members. Only YfhO-like and STT3/PglB sequences are highlighted, with grey 496 
dots depicting other homologous groups. AglB corresponds to the PglB/STT3-like sequences 497 
from archaea. Black dots depict those sequences that make component 27 in our network, and 498 
white dots mark those that are bright. (b) Predicted structural models as in AFDBv4 for the 499 
representative of component 27 (C27, UniProt ID A0A7X7MB17), and YfhO (UniProt ID 500 
YFHO_BACSU), and experimental structures of the PglB (PDB ID 6GXC, chain A) and STT3 501 
(PDB ID 7OCI, chain F) cluster representatives. Models are coloured according to the colour 502 
of their corresponding cluster in (a). The membrane regions, as predicted with PPM 3.0 503 
server39, are marked by dashed lines. 504 
 505 
Figure 4. Connected component 159 is a novel toxin in the hitherto undescribed toxin-506 
antitoxin superfamily TumE-TumA. (a) High resolution sequence similarity network for 507 
2’453 homologs of the sequences in component 159, computed with CLANS (E-value 1x10-508 
10). Points represent proteins and grey lines BLASTp matches (E-value <1x10-4). Individual 509 
subclusters are labelled 1-7, and subclusters a-c. The consensus genomic contexts, as identified 510 
by GCsnap, are displayed with different flanking families coloured from blue to red. (b) 3D 511 
model of the complex between the putative toxin and antitoxin from Allochromatium tepidum 512 
strain NZ, modelled with AlphaFold-Multimer, highlighting the regions where DNA is 513 
predicted to interact with the antitoxin. (c) Structural model of A. tepidum TumE/DUF6516 514 
toxin (EntrezID WP_213381069.1) coloured according to the two most frequent molecular 515 
functions predicted for 100 homologs with DeepFRI. Residues responsible for the predictions 516 
are highlighted in red. The percentage reflects the frequency of the highlighted prediction. (d) 517 
Validation of tumE-tumA. Plasmids for expression of putative toxins (pBAD33 derivates) were 518 
co-transformed into E. coli BW25113 cells with antitoxin expression plasmids or the empty 519 
pMG25 vector. Bacteria were grown for five hours in liquid LB media supplemented with 520 
appropriate antibiotics and 0.2% glucose. The cultures were normalised to OD600 = 1.0, serially 521 
diluted and spotted on LB plates containing appropriate antibiotics and 0.2% arabinose for 522 
toxin induction and 500 µM IPTG for antitoxin induction. The plates were scored after an 523 
overnight incubation at 37 °C. For source data, see Supplementary figure 1. (e) Metabolic 524 
labelling assays with E. coli BW25113 expressing A. tepidum TumE/DUF6516 toxin. Error 525 
bars indicate the standard error (SE) of the arithmetic mean. All experiments shown on (d) and 526 
(e) were performed as n=3 biologically independent replicates (individual independent 527 
cultures). All repetitions of the experiments shown on (d) yielded similar results. 528 
 529 
Figure 5. Structural outliers can represent fragments, repetitive proteins, proteins 530 
requiring folding conditions out of the scope of AlphaFold2, or novel folds. (a-b) 531 
Distribution of brightness, shape-mer diversity and length of the (a) structural outliers and (b) 532 
the same number of structural inliers with the most positive outlier scores. Shape-mer diversity 533 
is defined as the number of unique shape-mers by the length of the protein. (c) An AFDB model 534 
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of “TonB-dependent receptor-like” protein that is a fragment of the β-barrel domain. Over 535 
16’500 proteins across 1’258 components have this annotation, of which 86% are fully bright. 536 
From these, 82% have less than the required number of β-sheet shape-mers, despite 55% not 537 
being explicitly annotated as fragments in UniProtKB. (d) Two long repetitive outliers, one 538 
belonging to the PE-PGRS superfamily (G0TGH8), thought to be novel folds and found widely 539 
in mycobacteria40, and one to the Tetratricopeptide-like helical domain superfamily 540 
(A0A015IZK3) where the median PDB structure length of structures with resolution < 3Å is 541 
only 370. (e) AFDB model annotated as containing “Putative type VI secretion system, Rhs 542 
element associated Vgr domain” (A0A377W562), a trimeric PDB structure (PDB ID 6SK0) 543 
also containing this domain, and an AlphaFold-Multimer model of the A0A377W562 trimer 544 
which has 1.1Å RMSD to the PDB structure. The AFDB model does not resemble the PDB 545 
structure because these proteins form obligate complexes and adopt a trimeric β-solenoid fold. 546 
(f) AlphaFold models of different variations of the  β-flower, with positively charged residues 547 
in red and phenylalanine in green for A0A494VZL1, and PDB structures of the human Tubby 548 
C-terminal domain (PDB ID 2FIM). Black arrows indicate the circularly permuted loop in 549 
A0A0S7BXY3 and PDB ID 1ZXU. (g) AlphaFold model of A0A0S7BXY3 and PDB structure 550 
of Arabidopsis thaliana putative phospholipid scramblase (PDB ID 1ZXU). Black arrows 551 
indicate the circularly permuted loop. 552 
 553 
Methods 554 
 555 
Data collection 556 
We started from the 53’625’855 UniRef5011 clusters as of August 2022 (UniRef version 557 
2022_03) and the 214’683’829 structural models for most UniProtKB entries available via the 558 
AlphaFold database (version 4, AFDBv4). For each Swiss-Prot5, TrEMBL3 and UniParc12 559 
entry in each UniRef50 cluster we collected their sequence, taxonomy and functional and 560 
structural annotations from UniProt and InterPro6 using custom Python 3.6 code. Redundant, 561 
overlapping annotations were continuously merged (Fig. 1a), selecting as the preferential name 562 
the first occurrence that did not include “Putative”, “Hypothetical”, “Uncharacterised” and 563 
“DUF”. Each entry in AFDBv4 was mapped to their UniRef50 cluster, selecting as the 564 
structural representative the longest protein with an average pLDDT41 > 70. 565 
 566 
Darkness estimation 567 
We define functional brightness of a given protein as the full-length coverage with annotations 568 
of its close homologs, with 0% meaning “dark” and 100% meaning “bright”. We first computed 569 
the full-length coverage with annotations for all entries in all UniRef50 clusters, and considered 570 
a cluster as “bright” as the “brightest” sequence it encompasses (Fig. 1a). Annotations 571 
considered were: domains annotated in InterPro, and families, predicted disorder and predicted 572 
coiled coil regions annotated in UniProtKB and UniParc. All those with “Putative”, 573 
“Hypothetical”, “Uncharacterised” and “DUF” in their name were given a coverage of 0. 574 
Pearson correlation was computed using SciPy (v1.5.4). 575 
 576 
Large-scale sequence similarity network 577 
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To model the sequence landscape covered by all UniRef50 clusters with a high confidence 578 
structural model, we built a large-scale sequence similarity network of 6’136’321 clusters 579 
having a structural representative with pLDDT > 90 (AFDB90 dataset). All-against-all 580 
MMseqs213 (release 13-45111) comparisons were carried out with the UniRef50 cluster 581 
representatives of all selected clusters, connecting two sequences if they have a match that 582 
covers at least 50% of their full length sequences with an E-value better than 10-4. Each edge 583 
was given a weight proportional to the E-value of the match, and a maximum of 4 outbound 584 
edges were considered per node (Fig. 1b). The direction of the edges was not further 585 
considered.  586 
To visualise the graph, each connected component was simplified to a set of connected 587 
communities, detected using the asynchronous label propagation algorithm, as implemented in 588 
the asyn_lpa_communities method in networkx (v2.5.1)42. This reduced the graph to a total of 589 
688’852 communities (hereafter referred to as the AFDB90Communities set) connected by 590 
1’488’764 edges, whose layout could then be computed with Cosmograph 591 
(https://cosmograph.app/) with the following settings: maximum space allowed = 8192,  592 
gravity = 0.5, repulsion = 1.4, repulsion theta = 1.71, link strength = 2,  minimum link distance 593 
= 1, friction = 1. For each community, we collected the longest and median-length 594 
representatives, whose structures were used in our analyses. Individual connected components 595 
were visualised in figures with Datashader (v0.12.1, https://datashader.org/index.html).  596 
The interactive, annotated and searchable web version of this network was created using the 597 
Cosmograph library (https://github.com/cosmograph-org/cosmos, v1.3.0) for network 598 
visualisation and the Mol* toolkit (v3.35.0) 43 for 3D macromolecular visualisation of 599 
individual structure representatives. Sequence searches over the interactive network are carried 600 
out with a simple k-mer search to rapidly identify close homologues in the AFDB (>70% 601 
sequence identity) and structure searches with Foldseek (3Di method16, E-value better than 10-602 
1) through its API over the AFDBv4 database filtered to 50% sequence identity (UniProt50). 603 
Returned matches are mapped back to their corresponding communities. 604 
 605 
Sequence-based prioritisation of dark connected components and their semantic name 606 
diversity 607 
Each node in a connected component was attributed a functional brightness value, and 608 
components were sorted by their average brightness and their overall size (i.e., number of 609 
nodes), so that the top ranking were the largest and darkest. To analyse UniProt name diversity, 610 
we extracted names as of UniProt version 2022_04 (December 2022, which includes the initial 611 
release of ProtNLM10 predictions) for all UniRef100 representatives included in clusters of 612 
fully dark (average functional brightness ≤ 5%) and fully bright   (average functional brightness 613 
≥ 95%) connected components with at least 50 unique protein sequences. We computed the 614 
proportion of unique names (i.e., name diversity) as well as the proportion of unique words 615 
(i.e., word diversity), in order to account for small variations of the same name. Kolmogorov–616 
Smirnov statistical test (two-sided) was computed using SciPy (v1.5.4). 617 
 618 
Protein substructure decomposition 619 
To represent and analyse 3D substructure composition, we built upon Geometricus (v0.5.0, 620 
Python 3.9)44, and use 16 rotation invariant moments45–47 and one chiral invariant moment48. 621 
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These moments were calculated on ɑ-carbon coordinates for overlapping k-mers of size 8 and 622 
16, and overlapping spheres of radii 5Å and 10Å; for a total of 68 moments for each central 623 
residue in a protein, using ProDy (v2.2.0). We trained a neural network using PyTorch 624 
(v1.12.0)49 with these 68 moments as input, 2 linear hidden layers of size 32, a sigmoid output 625 
layer of size 10, and with contrastive loss to reduce the output distance between equivalent 626 
pairs of central residues and increase the distance between non-equivalent pairs in a training 627 
set. The output of the network for each residue, 10 floating point numbers between 0 and 1, 628 
was discretized into 10 bits based on whether the value was greater than or less than 0.5, 629 
resulting in 1024 shape-mers. 630 
The training set was created from structures from the CATH database (v4.2.0) having less than 631 
40% sequence identity (CATH40) that could be assigned to a CATH functional family 632 
(FunFam50) with an E-value better than 1x10-6. From these 8’333 structures, US-align (version 633 
20220924)51 was used to align and superpose all pairs within each FunFam cluster and three 634 
randomly chosen pairs for each protein across clusters. Aligned pairs of residues from two 635 
same FunFam proteins with TM-score > 0.8 were considered as positive pairs. Aligned or 636 
random pairs of residues from two proteins belonging to different CATH superfamilies, with 637 
TM-score < 0.6 were considered as negative pairs. In addition, using all 31,883 CATH40 638 
proteins, we sampled up to 50 pairs of central residues from each protein, where positive pairs 639 
had <2 sequence distance and negative pairs had 5-20 sequence distance. In total, this resulted 640 
in 6 million residue pairs for training, of which 42% were positive pairs. This dataset could be 641 
used for training and/or refining any kind of residue-level contrastive learning task. Training 642 
took 30 mins on 1 RTX-3080TI with the ADAM optimizer, a batch size of 1024, and a learning 643 
rate of 10−3 over 5 epochs. 644 
Shape-mers were calculated for ProteinNet CASP12 proteins in the 100% sequence identity 645 
set52 with over 20 amino acids. Extended data Fig. 6 shows an example protein with its 6 most 646 
common shape-mers highlighted. We trained a FastText model53 on the shape-mer bit 647 
representations using Gensim54 (v4.2.0, window size of 16, embedding size of 1024). Extended 648 
data Fig. 7a shows the sensitivity of SCOPe family retrieval on the SCOPe40 dataset of 11’211 649 
structures for all-vs-all Smith-Waterman alignment with FastText shape-mer similarities used 650 
as the score matrix (runtime: 12 mins on 10 threads). Shape-mer FastText alignment scores are 651 
compared to three structure aligners, Dali55, Foldseek16, and TM-align56; one sequence aligner, 652 
MMseqs213; and 2 other structure alphabet-based structural sequence aligners, 3D-BLAST57 653 
and CLE-SW58, using the scripts and benchmark data provided in van Kempen et al.16. Protein-654 
level embeddings are obtained by averaging across normalised FastText embeddings using the 655 
get_sentence_vector function. Extended data Fig. 7b shows the distributions of cosine distances 656 
of these embeddings within the same SCOPe family and across SCOPe folds.  657 

 658 
Structural outlier detection 659 
The benchmarking and comparison results (Extended data Fig. 7) demonstrate that the learned 660 
structural alphabet and FastText similarities still have discriminative power in distinguishing 661 
protein families, despite being much less “local” than approaches such as Foldseek and TM-662 
align which work on individual coordinates of up to 2 residues. We don’t explore further 663 
alignment optimization, such as compositional bias correction or penalty optimization to 664 
increase sensitivity, as more local structural aligners will still have the advantage of higher 665 
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resolution alignment. However, for the task at hand, our substructure representations give us a 666 
good compromise - a discriminative structural alphabet for representing a protein structure as 667 
a structural sequence; and substructure decomposition at the level of whole secondary-668 
structural elements, allowing for a broader exploration of substructure composition across the 669 
AlphaFold database.  670 
For this, we trained the Isolation Forest outlier detection algorithm59 as implemented in scikit-671 
learn (v1.1.1)60 on the ProteinNet CASP12 FastText sentence embeddings with 1% 672 
contamination rate. Shape-mers for all AFDB90 structural representative AlphaFold models 673 
were calculated following the approach described in the analysis of AFDBv135 to split each 674 
protein into segments with Gaussian smoothed plDDT > 70, after first splitting into domains 675 
based on a combination of pLDDT and the predicted aligned error (PAE) matrix, and 676 
concatenating shape-mers across each segment in each domain. A shape-mer diversity fraction 677 
was defined for each protein as the number of unique shape-mers divided by the total number 678 
of residues for which shape-mers are calculated. The trained outlier detection model was used 679 
to predict structural outlier scores for AFDB90 proteins. Proteins with negative scores are 680 
labelled as outliers. Kolmogorov–Smirnov statistical test (two-sided) was computed using 681 
SciPy (v1.5.4). 682 

 683 
Computational investigation of selected examples 684 
For the analysis of all examples, we combined data from the sequence-based network and its 685 
functional brightness annotations, as well as from structural searches with Foldseek and the 686 
outlier scores. Structural homologs for selected representatives (those with a length close to the 687 
median length in the component) in the PDB or the AFDB90Communities set were searched 688 
with Foldseek (v7.04e0ec8) using the TM-align mode16. Remote sequence homologs were 689 
detected for selected representatives by HHPred searches over the PDB, ECOD and Pfam 690 
databases through the MPI Bioinformatics toolkit using default settings61,62. AlphaFold-691 
Multimer63 version 3 was used for protein complex prediction when required, with default 692 
settings and relaxation, and the model with the best predicted TM score (pTM) and interface 693 
pTM score was selected. PyMol (v2.5.0) was used to visualise selected examples. Further case-694 
by-case analyses were carried out as below.  695 

Component 27 696 
All UniRef100 representatives represented by the nodes of connected component 27 were 697 
collected and filtered to a maximum sequence identity of 50% with MMseqs2. The reduced set 698 
of sequences was aligned with MUSCLE64 (v5.1) and the resulting MSA used as input for three 699 
independent BLASTp65 searches over the eukaryotic, archaea and bacterial sequences in nr 700 
filtered to 70% sequence identity (nr_euk70, nr_arc70, nr_bac70) through the MPI-701 
Bioinformatics toolkit as of January 2023. The same BLAST searches were carried out for 702 
Swiss-Prot representatives of the PglB, STT3 and YfhO families (UniProt IDs PGLB_CAMJR, 703 
STT3_YEAST and YFHO_BACSU). The full-length sequences matched in all searches were 704 
then combined with those representatives of connected component 27 and filtered to a 705 
maximum sequence identity of 30% with MMseqs2. The resulting set of 7’004 sequences was 706 
clustered based on BLASTp all-against-all searches with CLANS66 at an E-value of 1x10-20 707 
until equilibrium. 708 
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 709 
Component 159 710 
Ninety-four randomly selected sequences from component 159 were aligned with MUSCLE. 711 
The resulting alignment was used for three independent PSI-BLAST65 searches over the 712 
eukaryotic, archaea and bacterial sequences in nr (nr_euk, nr_arc, nr_bac) with 8 rounds 713 
through the MPI-Bioinformatics toolkit as of October 202261,62. All collected sequences were 714 
filtered to a maximum sequence identity of 95% with MMseqs2 and clustered based on 715 
BLASTp all-against-all pairwise searches with CLANS until equilibrium at an E-value of 1x10-716 
10. 717 
The resulting sequence similarity network was used as input for GCsnap (v1.0.17)19 for the 718 
analysis of the conservation of the genomic contexts encoding for each of the proteins in the 719 
individual clusters. A window of four flanking genes was used, MMseqs2 was employed for 720 
protein family clustering at an E-value better than 1x10-4 and clusters of similar genomic 721 
contexts were detected using the operon_cluster_advanced method, which employs PaCMAP 722 
(v0.7.0)67 to project genomic contexts in 2D based on their family composition and DBSCAN68 723 
(as implemented in scikit-learn v1.2.2) to identify clusters of similar genomic contexts. Only 724 
families that were found in at least 30% of all genomic contexts were considered. For each 725 
cluster in the sequence similarity network and each identified neighbour family, up to 100 726 
structure representatives were selected from AFDBv4 and used as input to DeepFRI (v1.0.0)9 727 
with default settings. The top 10 most common predictions per cluster/context family were 728 
retrieved. The highest average scoring and most frequently predicted molecular functions were 729 
considered the most likely for each case.  730 
We generated the 3D structure of a tetramer consisting of two chains of the Allochromatium 731 
tepidum TumE toxin (EntrezID: WP_213381069.1) and two of its putative, cognate TumA 732 
antitoxin (EntrezID: WP_213381068.1) using AlphaFold-Multimer.  733 
 734 
Component 3314 735 
All non-redundant protein sequences represented by the nodes of connected component 3314 736 
were collected and filtered as for component 27, but over nr filtered to 90% sequence identity 737 
(nr_euk90, nr_arc90, nr_bac90, nr_vir90). The same BLAST searches were carried out for the 738 
tubulin-binding domain of Chlamydomonas reinhardtii TRAF3-interacting protein 1 (UniProt 739 
ID A8JBY2_CHLRE, residues 1-131). The full-length sequences matching component 3314 740 
homologs and the local sequence matching the TRAF3-interacting protein 1 tubulin binding 741 
domain were then combined with representatives of component 3314 and filtered to a 742 
maximum sequence identity of 90% with MMseqs2. The resulting set of 890 sequences was 743 
clustered based on BLASTp all-against-all searches with CLANS at an E-value of 1x10-5 until 744 
equilibrium. The 141 sequences making subcluster 1 in the resulting network, which included 745 
the component 3314-like proteins, were extracted, filtered to a maximum sequence identity of 746 
50% with MMseqs2 and used as input for GCsnap (v1.0.17), where a window of four flanking 747 
genes was used and MMseqs2 employed for protein family clustering at an E-value better than 748 
1x10-4. 749 
 750 
Component 6732 751 
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We have built the Pfam family PF22187 (named DUF6946) using component 6732 sequences 752 
and iteratively searching for homologs using HMMER (v3.3)69. Selected members of this Pfam 753 
family were subjected to HHpred searches (HHblits70 against UniRef30, 3 iterations with cutoff 754 
for inclusion 1x10-3 for multiple alignment generation and PDB70 search database). Foldseek 755 
and Dali server (DaliLite v.5)55 were subsequently used for structure similarity searches, using 756 
AFDB models as queries. The obtained structural alignments were manually inspected and 757 
compared with the Pfam family alignment. PF22187 was assigned to clan CL0236 that includes 758 
diverse families of nucleases. 759 
 760 
β-flower fold 761 
We constructed three new Pfam families to cover the sequence space of β-flower proteins. To 762 
do this we selected example proteins with 4,5 and 6-fold rotational symmetry and iteratively 763 
searched for homologs using HMMER’s hmmsearch. In general, we used an inclusion 764 
threshold of 27 bits, but manually lowered the threshold to identify more homologs or raised it 765 
to exclude false matches as identified by AlphaFold2 models. These three families were added 766 
to Pfam with accession numbers: PF21784, PF21785 and PF21786 and Pfam clan CL0395, 767 
which includes the Tubby C-terminal domain.   768 

 769 
Experimental validation and characterisation of a predicted toxin-antitoxin family 770 
(component 159) 771 
Six Proteobacteria TumE examples from subcluster 1a in the CLANS sequence similarity 772 
network produced for component 159. and their cognate TumA antitoxins were selected for 773 
experimental characterization (Supplementary file 3). The plasmids were constructed using the 774 
Circular Polymerase Extension Cloning (CPEC)71 approach with synthetic DNA procured from 775 
Integrated DNA Technologies. ORFs were synthesised with added strong Shine-Dalgarno 776 
sequence (AGGAGGAATTAA) and flanking sequences overlapping with multicloning sites 777 
of pBAD3372 (toxin genes) or pMG2573 (antitoxin genes). The DNA fragments were amplified 778 
with Phusion polymerase (Thermo Scientific™) using pBAD_SD_TOX_fwd and 779 
pBAD_TOX_MCS_rev or pMG25_insert_fwd and pMG25_insert_rev primer pairs. pBAD33 780 
was linearized using primers pBAD_lin_1 and pBAD_lin_2 and pMG25 was linearized using 781 
pMG25_lin_from_BlpI and pMG25_lin_from_HindIII. CPEC with Phusion polymerase 782 
(Thermo Scientific™) was performed to clone the genes into the vector backbone (25 cycles 783 
with 5 min 30 s extension). The CPEC reaction mixture was transformed into DH5α E. coli 784 
cells and colony PCR with HOT FIREPol® Blend Master Mix (Solis Biodyne) was used to 785 
identify colonies with correctly sized inserts. Plasmids were extracted from the overnight 786 
cultures using FavorPrepTM Plasmid Extraction Mini Kit (Favorgen) and sequenced. The 787 
cognate antitoxin plasmid or empty pMG25 was co-transformed with the toxin plasmids into 788 
BW25113 E. coli cells. DNA fragments and DNA oligonucleotides used for plasmid 789 
construction are provided in Supplementary file 3.  790 
Validation of toxicity and metabolic labelling experiments with 35S methionine, 3H uridine and 791 
3H thymidine were performed as described earlier by Kurata et al.22. Briefly, E. coli BW25113 792 
strains were transformed with a plasmid pair that allowed for controllable co-expression of 793 
putative TumE toxins (pBAD33 derivatives, the toxin is expressed under the control of L-794 
arabinose-inducible PBAD promotor) and TumA antitoxins (pMG25 derivatives73, IPTG-795 
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inducible expression of the antitoxin is driven by PTac promotor) and pregrown in liquid 796 
Lysogeny broth (LB) medium (Lennox) supplemented with 100 µg/mL carbenicillin 797 
(AppliChem) and 25 µg/mL chloramphenicol (AppliChem) as well as 0.2% glucose (for 798 
repression of toxin expression). Serial 10-fold 5 µL dilutions were spotted on LB plates 799 
supplemented with antibiotics (carbenicillin and chloramphenicol) as well as either 0.2% 800 
glucose (repressive conditions) or 0.2% arabinose and 1 mM IPTG (induction conditions). 801 
Plates were scored after an overnight incubation at 37 °C. 802 
For metabolic labelling experiments with TumE toxins, E. coli BW25113 strains co-803 
transformed with pBAD33 derivatives (for L-arabinose-inducible expression of toxins) as well 804 
as the empty pMG25 vector were first plated out on LB plates supplemented with 100 µg/ml 805 
carbenicillin, 25 µg/ml chloramphenicol and 0.2% glucose (to suppress the leaky expression 806 
of the toxin). Using fresh, individual E. coli colonies for inoculation, 2 mL liquid cultures were 807 
prepared in defined Neidhardt MOPS minimal media74 supplemented with 100 µg/ml 808 
carbenicillin, 25 µg/ml chloramphenicol, 0.1% of casamino acids, and 0.2% glucose, and 809 
grown overnight at 37 °C with shaking. Next, experimental 15-mL cultures were prepared in 810 
125 mL conical flasks in MOPS medium supplemented with 0.5% glycerol, 100 µg/ml 811 
carbenicillin, 25 µg/ml chloramphenicol as well as a set of 19 amino acids (lacking 812 
methionine), each at final concentration of 25 µg/mL. These cultures were inoculated overnight 813 
to final OD600 of 0.05, and grown at 37 °C with shaking up to of OD600 0.2. At this point, one 814 
1-mL aliquot (the pre-induction zero time-point) was transferred to 1.5 mL Eppendorf tubes 815 
containing 10 µL of radioisotope – either 35S methionine (4.35 µCi, Perkin Elmer), or 3H 816 
uridine (0.65 µCi, Perkin Elmer) or 3H thymidine (2 µCi, Perkin Elmer) – and transferred to 817 
the heat block at 37 °C. Immediately after, the expression of toxins in the remaining 14 mL 818 
culture was induced by addition of L-arabinose (final concentration of 0.2%). Throughout the 819 
toxin induction time course, 1-mL aliquots were taken from the 15 mL culture and transferred 820 
to 1.5 mL Eppendorf tubes containing 10 µl of radioisotope (35S methionine / 3H uridine / 3H 821 
thymidine). The incorporation of radioisotopes was stopped after 8 minutes of incubation at 37 822 
°C by adding 200 µL of ice-cold 50% trichloroacetic acid (TCA) to 1 mL cultures. In parallel 823 
with taking the time-points for labelling, 1 mL aliquots were taken for OD600 measurements. 824 
Isotope incorporation was quantified by normalising radioactivity counts (CPM) to OD600, with 825 
the pre-induction zero time-point set as 100%.  826 
All experiments were performed in three biological replicates (i.e. using three independent 827 
cultures inoculated from three different colonies). 828 
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Extended data 986 
 987 
Extended data figure 1. Distribution of functional darkness in UniProt and AFDB 988 
(version 4). Functional brightness distribution in (a) UniRef50, (b) UniRef50 clusters with 989 
models in AFDB (which excludes long proteins, and those UniRef50 clusters composed solely 990 
of UniParc entries and viral proteins), (c) UniRef50 clusters whose best structural 991 
representative has an average pLDDT > 70, and (d) UniRef50 clusters whose best structural 992 
representative has an average pLDDT > 90. For each set, the percentage of fully dark UniRef50 993 
clusters, and corresponding brightness bin, are highlighted in purple. The bar associated with 994 
functionally bright UniRef50 clusters (functional brightness >95%) is marked in white. (e) 995 
Percentage of fully dark UniRef50 clusters with proteins annotated as a domain of unknown 996 
function (DUF) in each set a-e.  997 
 998 
Extended data figure 2. Structural conservation and structure-based function prediction 999 
of TumE. Structural superposition of five randomly selected members of component 159 1000 
(UniProt IDs A0A0E3S9F7, A0A3R7AQ40, A0A520JWH3, A0A1W9UY89, A0A7J4P9B0) 1001 
with secondary structure elements labelled.  1002 
 1003 
Extended data figure 3. Testing the toxicity of putative TumA antitoxins. Antitoxin 1004 
expression plasmids were cotransformed with empty toxin expression vectors (pBAD33) into 1005 
E. coli BW25113 cells. The bacterial cultures were started from a single colony and grown for 1006 
five hours in liquid LB media supplemented with appropriate antibiotics. The cultures were 1007 
normalised to OD600 = 1.0, serially diluted and spotted on LB agar plates containing appropriate 1008 
antibiotics and 500 µM IPTG for antitoxin induction and 0.2% arabinose to mimic the 1009 
conditions in toxin neutralisation assay. The experiment was made in n=3 biologically 1010 
independent replicates. For source data, see Supplementary figure 2. 1011 
 1012 
Extended data figure 4. Diversity of the (a) names predicted by ProtNLM and (b) their 1013 
word composition, as well as the (c) fraction of structural outliers, for all fully dark and 1014 
fully bright connected components. Name diversity is calculated as the number of unique 1015 
protein names within a component by the total number of component proteins. Word diversity 1016 
is calculated as the number of unique words across all protein names within a component by 1017 
the total number of words, ignoring the words "protein", "domain", "family", “containing”, and 1018 
“superfamily”. Outlier content is calculated as the percentage of UniRef50 clusters with 1019 
negative structural outlier scores within that component. Fully bright and fully dark 1020 
distributions were compared using a two-sided Kolmogorov–Smirnov test, resulting in a test 1021 
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statistic of 0.2915 and P-value = 8.8829x10-16 for (b) and test statistic 0.05859 and P-value = 1022 
5.245x10-81 for (c). 1023 
 1024 
Extended data figure 5. The highly semantically diverse prophage-associated connected 1025 
components 3314 and 6732. (a) Sequence similarity network of homologs of members of 1026 
connected component 3314 and the tubulin-binding domain of TRAF3-interacting protein 1, 1027 
as computed with CLANS at an E-value threshold of 1x10-5. Points represent individual 1028 
proteins and grey lines BLASTp matches at an E-value better than 1x10-4. Individual 1029 
subclusters are labelled 1-2 and structural representatives are shown. For subcluster 1, 5 1030 
randomly selected structural representatives of component 3314 are superposed (UniProt IDs 1031 
A0A0F9A5W1, A0A0P9GTS8, AOA418VYX3, A0A2S5M855, A0A2K2VML8). For 1032 
subcluster 2, the tubulin-binding domain of Chlamydomonas reinhardtii TRAF3-interacting 1033 
protein 1 (PDB ID 5FMT, chain B) is shown. (b) Genomic context conservation of 30 1034 
sequences from subcluster 1 with a maximum sequence identity of 30%, as computed with 1035 
GCsnap. (c) Structure superposition of component 6732 representative (A0A098EYBO, 1036 
purple) and mismatch restriction endonuclease EndoMS (PDB ID 5GKH, chain A, grey). The 1037 
grey box indicates the active site pocket with conserved residues labelled. Note that the residue 1038 
D165 corresponding to D86 is mutated to alanine in the PDB structure. Structural homologs 1039 
were searched both with Foldseek, which resulted in a hit to Cas4 endonuclease PDB ID 8D3P 1040 
with TM-score 0.34, and Dali55 multiple hits to restriction endonucleases, the top-ranking with 1041 
a Z-score of 8.2. 1042 
 1043 
Extended data figure 6. An example of substructure decomposition. (a) An example 1044 
AlphaFold protein model with its 6 most common shape-mers highlighted in different colours. 1045 
Spheres mark the shape-mer central residue and backbone atoms within 4Å are coloured. (b-g) 1046 
Four random representatives of each selected shape-mer, obtained from CATH proteins with 1047 
<20% sequence identity. Spheres depict positions within 8 residues in sequence and 10Å 1048 
spatially from the central residue.  1049 
 1050 
Extended data figure 7. Shape-mer representations combined with FastText can 1051 
discriminate between protein families. (a) Cumulative distributions of sensitivity for 1052 
homology detection on the SCOPe40 database of single-domain structures. True positives 1053 
(TPs) are matches within the same SCOPe family, false positives (FPs) are matches between 1054 
different folds. Sensitivity is the area under the ROC curve up to the first FP. Results based on 1055 
shape-mer FastText Smith-Waterman alignment are shown in black. (b)  Protein-level 1056 
embedding distance measured as the cosine distance of FastText sentence vectors for proteins 1057 
within the same SCOPe family (top) and from different SCOPe folds (bottom).  1058 
 1059 
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Extended Data Fig. 1
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Extended Data Fig. 2

ACCELE
RATED ARTIC

LE
 PREVIEW



Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6ACCELE
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Extended Data Fig. 7
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