
CEGAR++
Saturated Cost Partitioning for Diverse Sets of Abstractions

Raphael Kreft, Clemens Büchner, Silvan Sievers
University of Basel, Switzerland

{raphael.kreft, clemens.buechner, silvan.sievers}@unibas.ch

Abstract

Heuristic search based on abstraction heuristics belongs to the
most common techniques in cost-optimal classical planning
these days. Our planner combines different types of abstrac-
tions using saturated cost partitioning (Seipp, Keller, and
Helmert 2020). In essence, our planner augments Scorpion
(Seipp 2018) which combines Cartesian abstractions (Seipp
and Helmert 2018) generated by counterexample-guided ab-
straction refinements (CEGAR) and pattern databases (PDBs)
computed over interesting patterns of size 2 (Pommerening,
Röger, and Helmert 2013) and patterns generated by hill
climbing (Haslum et al. 2007). We extend the list with the re-
cent adaptations of CEGAR for computing patterns (Rovner,
Sievers, and Helmert 2019) and domain abstractions (Kreft
et al. 2023). The implementation is based on Fast Downward
(Helmert 2006) and Scorpion (Seipp 2018).

Introduction
There are four classes of abstractions used in classical
planning: projections, the abstractions underlying pattern
databases (PDBs; Culberson and Schaeffer 1998; Edelkamp
2001), domain abstractions (Hernádvölgyi and Holte 2000;
Kreft et al. 2023), Cartesian abstractions (Seipp and
Helmert 2018), and merge-and-shrink abstractions (e.g.,
Helmert et al. 2014; Sievers and Helmert 2021). This list is
ordered by increasing generality. Projections are the most
simple abstractions, representing a variable of a planning
task either perfectly or not at all. Domain abstractions sub-
sume projections by allowing to abstract some values of a
variable. This is more restrictive than Cartesian abstractions,
which allow abstracting variables differently in different ab-
stract states: each abstract state must be the Cartesian prod-
uct of subsets of the domains of all variables. Finally, merge-
and-shrink can represent arbitrary abstraction functions.

Except for merge-and-shrink abstractions, single abstrac-
tion heuristics that can be computed within reasonable
time and memory limits typically do not yield high-quality
heuristics. Coping with that circumstance, one state-of-the-
art approach for using abstraction heuristics is to compute
many smaller abstractions and to combine them in diverse
saturated cost partitioning (SCP) heuristics (Seipp, Keller,
and Helmert 2020). While it is also possible to integrate
merge-and-shrink heuristics in SCP heuristics (Sievers et al.
2020), they typically require long runtimes for computation.

As a consequence, not enough time would be left for com-
puting other abstractions and running a search algorithm.
For this reason, our planner only integrates projections, do-
main abstractions, and Cartesian abstractions in SCP heuris-
tics.

Abstraction Generation
We use the following techniques for computing the collec-
tion of abstractions:
Hill-climbing patterns Haslum et al. (2007) propose to use

hill-climbing search to find a locally optimal collection of
patterns with respect to a canonical heuristic, which eval-
uates a pattern collection by summing the corresponding
PDB values whenever patterns are additive and maximiz-
ing otherwise. The search starts with the collection of
patterns such that every pattern contains a single, distinct
goal variable of the given planning task. In the search
space, the neighbours of a collection are collections aug-
mented with one additional pattern. Said pattern extends
one of the patterns previously present in the collection by
one additional variable. The procedure stops when either
there are no more improving neighbours or a time limit
is reached.

Systematic patterns Pommerening, Röger, and Helmert
(2013) suggest to consider all interesting patterns up to
a certain size. They define whether a pattern is interest-
ing or not based on the causal graph of the underlying
problem. A pattern is interesting if the subgraph induced
by the pattern is weakly connected and there is a directed
path of precondition arcs to a goal node for each node.

CEGAR patterns Rovner, Sievers, and Helmert (2019)
build a collection of patterns iteratively. For each indi-
vidual pattern, they apply the counter-example guided
abstraction refinement (CEGAR) procedure as follows:
find a plan in the given projection, try to apply that plan
on the original task, and add a variable to the pattern for
which a flaw was detected. To get more diverse patterns
when repeating the process for the same goal variable,
Rovner, Sievers, and Helmert suggest to blacklist (i.e.,
exclude) certain variables from being added to the pat-
tern.

CEGAR domain abstractions Kreft et al. (2023) use CE-
GAR to compute a collection of domain abstractions. Ini-



tially, all variables except a goal variable are entirely ab-
stracted such that their abstract domain has only a single
value. Instead of repairing flaws by adding a fully rep-
resented variable to the pattern, the (abstract) domain of
the corresponding variable is refined by adding one more
value to it and mapping the original domain values to
the abstract domain values so that the flaw cannot occur
again.

CEGAR Cartesian abstraction Seipp and Helmert (2018)
were the first to use the CEGAR principle in the plan-
ning context, namely for computing Cartesian abstrac-
tions. For domain abstractions, splitting an abstract do-
main value happens globally. This is not the case for
Cartesian abstractions where an abstract domain value is
only splitted locally wherever the flaw occurred. In par-
ticular, two values can be treated as the same value in
the abstractions in some parts of the abstract state space
while they are distinguished in others. Seipp and Helmert
(2018) compute a Cartesian abstraction for subtasks in-
duced by single goal variables and fact landmarks (e.g.,
Hoffmann, Porteous, and Sebastia 2004) and combine
them using SCP heuristics.

The result of the abstraction generation is the union of all
abstractions generated with the above methods. The induced
heuristics are then combined by maximizing over multiple
diverse and optimized SCP heuristics (Seipp, Keller, and
Helmert 2020). The basic idea of an SCP heuristic is to parti-
tion the costs of the operators of a given planning task among
the abstractions of the collection. Given a certain order of
abstractions of this collection, each operator gets assigned
only the costs necessary to match the heuristic values for
states within the current abstraction. The remaining costs
are passed on and possibly used by the remaining abstrac-
tions in the order. The core challenge for this procedure is
finding good orders for the abstractions so that the overall
heuristic value is maximized.

Competition Planner
Our planner derives an admissible heuristic from the abstrac-
tions and competes in the optimal track of IPC 2023. The
objective is to find optimal solutions for as many problems
as possible, under a time limit of 30 minutes for each prob-
lem. It does not matter how fast the solution is found. We can
therefore allocate a significant amount of time to precomput-
ing the abstractions and the saturated cost partitioning before
even starting the search. In the following, we record the con-
figuration of our planner.

Hill-climbing patterns Optimize for at most 100 seconds.
Systematic patterns Consider all interesting patterns up to

size 2.
CEGAR patterns Construct abstractions for up to 100 sec-

onds, individual abstractions have at most 10k states,
while the collection has at most 1M states. Blacklisting
is enabled from the beginning.

CEGAR domain abstractions Construct abstractions for
up to 100 seconds, individual abstractions have at most
10k states, while the collection has at most 1M states,

and blacklisting is enabled from the beginning. Each do-
main abstraction is initialized by choosing a random goal
variable and perfectly representing it as in a projection to
this variable. During the refinement of a domain abstrac-
tion with CEGAR, flaws that occur are fixed by choosing
a random atom of the flaw and refining the abstraction
by mapping the value of the atom to its own value in the
abstract domain of the variable.

CEGAR Cartesian abstraction Construct a Cartesian ab-
straction with no limit in terms of time and states, but
a limit of 1 million state-changing transitions in the ab-
straction. There is no limit for the maximum of concrete
states per abstract state but a maximum of 1 million state
expansions per flaw search. Subtasks for goals and land-
marks are used in random order. When flaws are found,
the abstract state with minumum h-value is chosen for
refinement. Among the possible refinements for the ab-
stract state, also called splits, the one that covers a maxi-
mum number of the flaws is chosen.

Regarding saturated cost partitioning, we use the configu-
ration of Scorpion (Seipp 2018) and repeatedly generate and
add orders for 200 seconds, allocating 2 seconds for opti-
mizing each individual order and adding it to the collection
only if it improves on previously found orders.

Furthermore, we use the h2 preprocessor by Alcázar and
Torralba (2015) to prune operators from the planning task
before even starting to compute abstractions. Finally, as
none of the abstractions as implemented in Fast Downward
support conditional effects naturally, we compile them away
by introducing copies of each operator, one for each possible
value a variable occurring in an effect condition can take.

Competition Results
The optimal track of IPC 2023 aimed for the most problems
solved within 30 minutes and 8 GiB of memory. The prob-
lems used for the competition are from 7 domains with 20
problems each, resulting in a benchmark set of 140 plan-
ning tasks. Our planner CEGAR++ solved 65 and earned
5th place in the competition.1 The first and second best per-
forming planners solved 77 and 74 problems, respectively.
The baseline using blind search solved 50 problems.

CEGAR++ solved the most problems in 4 out of the 7
domains, namely FOLDING, RECHARGINGROBOTS, RICO-
CHETROBOTS, and SLITHERLINK. Moreover, in FOLDING
no other planner was able to solve as many problems. Unfor-
tunately, in the RUBIKSCUBE domain, CEGAR++ failed
to compile away conditional effects which lead to solving 0
problems in this domain. The only reason why conditional
effects are not supported in CEGAR++ are the domain ab-
stractions. Dealing with them properly should not be an is-
sue, but we did not manage to implement this before the
competition deadline. It would be interesting to see how
this adaption would affect the competition results. All other
planners beating CEGAR++ in the final ranking solved 10
of the RUBIKSCUBE problems. If CEGAR++ was able to
keep up with this standard, it might have claimed second
place in the overall ranking.

1The optimal track had 22 competition entries in total.



Acknowledgments
Since we build upon Fast Downward and code from Scor-
pion, we would like to thank all contributors to these plan-
ners.

References
Alcázar, V.; and Torralba, Á. 2015. A Reminder about the
Importance of Computing and Exploiting Invariants in Plan-
ning. In Brafman, R.; Domshlak, C.; Haslum, P.; and Zilber-
stein, S., eds., Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling (ICAPS
2015), 2–6. AAAI Press.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hernádvölgyi, I. T.; and Holte, R. C. 2000. Experiments
with Automatically Created Memory-Based Heuristics. In
Choueiry, B. Y.; and Walsh, T., eds., Proceedings of the
4th International Symposium on Abstraction, Reformulation
and Approximation (SARA 2000), volume 1864 of Lecture
Notes in Artificial Intelligence, 281–290. Springer-Verlag.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22: 215–278.
Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023.
Computing Domain Abstractions for Optimal Classical
Planning with Counterexample-Guided Abstraction Refine-
ment. In Koenig, S.; Stern, R.; and Vallati, M., eds., Pro-
ceedings of the Thirty-Third International Conference on
Automated Planning and Scheduling (ICAPS 2023), 221–
226. AAAI Press.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
Rovner, A.; Sievers, S.; and Helmert, M. 2019.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Lipovet-
zky, N.; Onaindia, E.; and Smith, D. E., eds., Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), 362–367. AAAI
Press.

Seipp, J. 2018. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Pommerening, F.; Keller, T.; and Helmert, M.
2020. Cost-Partitioned Merge-and-Shrink Heuristics for Op-
timal Classical Planning. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2020), 4152–4160. IJCAI.


