
Computing Domain Abstractions for Optimal Classical Planning
with Counterexample-Guided Abstraction Refinement

Raphael Kreft, Clemens Büchner, Silvan Sievers, Malte Helmert
University of Basel, Switzerland

{r.kreft,clemens.buechner,silvan.sievers,malte.helmert}@unibas.ch

Abstract

Abstraction heuristics are the state of the art in optimal clas-
sical planning as heuristic search. A popular method for com-
puting abstractions is the counterexample-guided abstraction
refinement (CEGAR) principle, which has successfully been
used for projections, which are the abstractions underlying
pattern databases, and Cartesian abstractions. While projec-
tions are simple and fast to compute, Cartesian abstractions
subsume projections and hence allow more fine-grained ab-
stractions, however at the expense of efficiency. Domain ab-
stractions are a third class of abstractions between projections
and Cartesian abstractions in terms of generality. Yet, to the
best of our knowledge, they are only briefly considered in
the planning literature but have not been used for comput-
ing heuristics yet. We aim to close this gap and compute do-
main abstractions by using the CEGAR principle. Our empir-
ical results show that domain abstractions compare favorably
against projections and Cartesian abstractions.

Introduction
Classical planning (Ghallab, Nau, and Traverso 2004) is
the problem of finding a sequence of deterministic actions
leading from a specified initial world state to a desired
goal configuration. A popular approach for optimally solv-
ing classical planning tasks is the A∗ algorithm (Hart, Nils-
son, and Raphael 1968) with admissible heuristics (Pearl
1984). A state-of-the-art class of admissible heuristics is
based on abstractions. There is a hierarchy of three popu-
lar classes of abstractions: projections are the abstractions
underlying pattern databases (PDBs) (Culberson and Scha-
effer 1998; Edelkamp 2001), Cartesian abstractions (Seipp
and Helmert 2018) generalize projections, and merge-and-
shrink abstractions (e.g., Helmert et al. 2014; Sievers and
Helmert 2021) are the most general abstractions.

Recently, the counterexample-guided abstraction refine-
ment (CEGAR) principle, which originates from model
checking (Clarke et al. 2000), has successfully been used
in planning for computing projections (Rovner, Sievers,
and Helmert 2019a) and Cartesian abstractions (Seipp and
Helmert 2018). CEGAR starts with a coarse abstraction of
the given task and iteratively refines it based on failures of

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applying abstract solutions to the original task. For the re-
finement step, CEGAR needs to be able to efficiently re-
trieve the pre-image of abstract states. This is the case for
the simple and fast-to-compute projections. However, they
do not allow fine-grained refinement, which is why Seipp
and Helmert (2018) introduce Cartesian abstractions, which
are more fine-grained but also more expensive to com-
pute. Merge-and-shrink abstractions do not allow efficient
retrieval of pre-images of abstract states.

There is a fourth class of abstractions, namely do-
main abstractions (Hernádvölgyi and Holte 2000). Seipp
and Helmert (2018) briefly discuss them when introducing
Cartesian abstractions, but to the best of our knowledge,
they have not been used for computing heuristics in plan-
ning yet. In terms of generality, they are between projections
and Cartesian abstractions: they allow abstracting some val-
ues of a domain of a variable, thus subsuming projections
(when abstracting all values), but do so globally which is
more restrictive than Cartesian abstractions in general. Re-
fining domain abstractions is therefore very efficient.

In this paper, we investigate how domain abstractions
compare against PDBs and Cartesian abstractions. To this
end, we adapt the CEGAR algorithm for computing patterns
to the computation of domain abstractions. We present sev-
eral strategies for refinement and for obtaining collections
of diverse domain abstractions. We use saturated cost par-
titioning (Seipp, Keller, and Helmert 2020) to combine col-
lections of abstraction heuristics. Our empirical evaluation
shows that domain abstractions solve more tasks than PDBs
and Cartesian abstractions in isolation.

Background
Classical Planning We consider classical planning in the
SAS+ formalism (Bäckström and Nebel 1995). A planning
task is a 4-tuple Π = ⟨V, s0, G,A⟩. The state variables V =
⟨v1, . . . , vn⟩ are associated with finite domains D1, . . . , Dn.
We abuse notation by treating V as sets occasionally. A par-
tial state s is a set of atoms vi 7→ di over different variables
vi ∈ Vars(s) such that di ∈ Di. If Vars(s) = V , s is called
a state and we write s = ⟨d1, . . . , dn⟩. The state s0 is called
initial state and G is a partial state called goal. Finally, A is
a finite set of actions where each action a ∈ A is associated
with two partial states pre(a) and eff (a) called precondi-
tion and effect, respectively. Furthermore, each action has a

non-negative cost cost(a) ∈ R+
0 . An action a is applicable

in a state s iff pre(a) ⊆ s. The application of a in s leads
to the successor state sJaK = {v 7→ d ∈ eff (a) | v ∈
Vars(eff (a))} ∪ {v 7→ d ∈ s | v /∈ Vars(eff (a))}.

A planning task Π = ⟨V, s0, G,A⟩ induces the transition
system T Π = ⟨S,A, T, s0, S∗⟩where S is the set of states of
Π, T ⊆ S ×A× S such that ⟨s, a, t⟩ ∈ T iff a is applicable
in s and t = sJaK, and S∗ = {s ∈ S | G ⊆ s}. An s-plan
π = ⟨a1, . . . , an⟩ is a path in T leading from s to some goal
state in S∗. Its cost is

∑n
i=1 cost(ai). We say π is optimal if

it has minimal cost among all s-plans. A plan for Π is an s0-
plan. Optimal planning is the problem of finding an optimal
plan or showing that no plan exists.

Abstraction Heuristics We use the A∗ search algorithm
(Hart, Nilsson, and Raphael 1968) with an admissible
heuristic to find optimal plans. A heuristic h : S → R+

0 ∪
{∞} maps every state s to an estimation of the perfect
heuristic h∗(s), which denotes the cost of an optimal s-plan.
A heuristic h is admissible iff h(s) ≤ h∗(s) for all s ∈ S.

Let T = ⟨S,A, T, s0, S∗⟩ be a transition system in-
duced by a planning task Π. An abstraction for T (and
with that, for Π) is a function α : S → Sα where Sα

is a set of abstract states. It induces the abstract transi-
tion system T α = ⟨Sα, A, Tα, α(s0), S

α
∗ ⟩ where Tα =

{⟨α(s), a, α(t)⟩ | ⟨s, a, t⟩ ∈ T}, and Sα
∗ = {α(s) | s ∈

S∗}. The abstraction heuristic for T induced by α is de-
fined as hα(s) = h∗(α(s)), i.e, the perfect heuristic of the
abstract state in T α.

We use the notation by Seipp and Helmert (2018) in the
following. Let V = ⟨v1, . . . , vn⟩. A set of states over V is
Cartesian if it can be written as A1×· · ·×An with Ai ⊆ Di

for 1 ≤ i ≤ n. An abstraction α is Cartesian if all its abstract
states are Cartesian sets.1

A projection is an abstraction based on a subset P ⊆ V of
the variables called the pattern. It maps states s to the partial
state s|P = {v 7→ d ∈ s | v ∈ P}. Projections are a special
case of Cartesian abstractions: for state s = ⟨d1, . . . , dn⟩,
the abstract state can be written as the Cartesian product
α(s) = A1 × · · · × An where Ai = {di} if vi ∈ P and
Ai = Di otherwise. The heuristic hP induced by the projec-
tion to pattern P is called a pattern database (PDB).

Domain abstractions α can be defined as a tuple
⟨α1, . . . , αn⟩ of component abstractions αi of individual
variables, where αi : Di → 2Di denotes a partitioning of
Di such that αi(d) ⊆ Di represents all values mapped to the
same abstract value by αi. Like projections, domain abstrac-
tions are a special case of Cartesian abstractions: for state
s = ⟨d1, . . . , dn⟩, the abstract state can be written as the
Cartesian product α(s) = α1(d1) × · · · × αn(dn). Domain
abstractions generalize projections: defining αi(di) = {di}
if vi ∈ P and αi(di) = Di otherwise yields a projection.

CEGAR for Domain Abstractions
In this section, we describe the CEGAR algorithm for com-
puting a single domain abstraction. Recall that we need to

1We treat abstract states as the set of states from the original
transition system they represent, i.e., their pre-image under α.

Algorithm 1: CEGAR for domain abstraction generation.

Input: Planning task Π; subset of state variables Blacklist,
variable InitVar

Output: Domain abstraction α
1: function CEGAR(Π, Blacklist, InitVar)
2: α← INITIALIZE(Π, InitVar)
3: while TIME() < MAXTIME do
4: π ← COMPUTEPLAN(Π, α)
5: // COMPUTEPLAN exits early if no abstract

plan exists
6: Flaws← FINDFLAWS(Π, π,Blacklist)
7: // FINDFLAWS exits early if concrete plan found
8: if Flaws = ∅ then
9: break

10: ⟨α,Blacklist⟩ ← REFINE(α,Flaws,Blacklist)
11: return α

Algorithm 2: Refinement of domain abstractions.

1: function REFINE(α,Flaws,Blacklist)
2: (v 7→ d)← SELECTFLAW(Flaws)
3: α′ ← α
4: α′

v(d) = {d} // α′
v component abstraction for v

5: if RESPECTSSIZELIMITS(α′) then
6: return ⟨α′,Blacklist⟩
7: else
8: Blacklist = Blacklist ∪ {v}
9: return ⟨α,Blacklist⟩

be able to efficiently retrieve the pre-image of an abstraction
α = ⟨α1, . . . , αn⟩ for the refinement step. This is possible
as α−1 = ⟨α−1

1 , . . . , α−1
n ⟩. Furthermore, to obtain a com-

pact representation of T α, we use a perfect hash function to
map (domain-abstracted) states to integers ranging from 0
to |Sα|. This function can also be inverted efficiently. Com-
bining these observations, we build our implementation of
domain abstractions on top of the PDB implementation of
Sievers, Ortlieb, and Helmert (2012), using their efficient
implementations of T α and hashing.

Algorithm 1 shows how to compute a single domain ab-
straction using CEGAR. It takes three arguments: a planning
task Π and optionally a set of “blacklisted” variables Black-
list and a variable for initialization InitVar. For now, we as-
sume Blacklist to be empty and InitVar to be unspecified.

At the start (line 2), the algorithm initializes the domain
abstraction α via function INITIALIZE. Without a given Init-
Var, it computes the coarsest possible abstraction that maps
all values of a variable to the same abstract value, i.e.,
αi(d) = Di for all d ∈ Di and all 1 ≤ i ≤ n.

The main loop repeats until a user-specified time limit of
MAXTIME is reached. In each iteration, the algorithm first
computes an abstract plan π for the current abstraction us-
ing COMPUTEPLAN (line 4). We use the same algorithm as
Rovner, Sievers, and Helmert (2019a) (Algorithm 1 in their
technical report; Rovner, Sievers, and Helmert 2019b), using
domain abstractions instead of PDBs, to compute wildcard-
plans. These are defined as a sequence of steps where each

step corresponds to one transition from an abstract state to
another, associated with all minimum-cost operators that in-
duce this transition. If no abstract plan exists, the concrete
task Π must be unsolvable.

Next, FINDFLAWS (line 6) attempts to execute π on Π.
The algorithm is similar to Algorithm 2 by Rovner, Sievers,
and Helmert (2019b) for finding flaws, however, we need to
adapt their algorithm to compute sets of atoms rather than
sets of variables. Our algorithm successfully executes a step
of π on Π if any (random) action of the step can be applied,
ignoring variables in Blacklist. If no action of a step can be
applied, FINDFLAWS builds the union over the precondition
flaw(s) of all actions ai of the step. A precondition flaw of
action ai is the set pre(ai) \ s which contains the atoms
of the precondition that are inconsistent with state s. Oth-
erwise, i.e., if applicable actions exist for all steps of π, we
distinguish two cases. If π did not lead to a state satisfying
G of Π, FINDFLAWS returns the goal flaw(s) G \ s. Other-
wise, if the blacklist is empty, π is a valid plan for Π and
the planner exits. If the blacklist is not empty, FINDFLAWS
returns an empty set of flaws which causes CEGAR to stop
(line 9) because α cannot be refined further.

The final step of each iteration is to refine α (line 10) us-
ing REFINE shown in Algorithm 2. It selects one v 7→ d from
Flaws using SELECTFLAW (line 2) and repairs it by updat-
ing the component αv of α to map d to the set consisting
of only itself (line 4). This ensures that the failed precon-
dition or goal check cannot fail in α′ anymore. However, if
the updated α′ violates a user-specified maximal number of
abstract states, the flaw is addressed instead by adding v to
Blacklist.2 As FINDFLAWS ignores blacklisted variables, v
cannot cause flaws in future iterations anymore.

We remark that in principle, we could also select and re-
pair multiple flaws at once. However, initial experiments
showed that this is not beneficial, mostly because abstrac-
tions grow too fast. Instead, we decided to stick with select-
ing a single flaw, which is also the approach used by CEGAR
for computing Cartesian abstractions (Seipp and Helmert
2018). To select a single flaw, we consider two strategies:
RAND chooses a flaw from Flaws uniformly at random, and
MINGROWTH corresponds to the strategy “max-refined” by
Seipp and Helmert (2018) which chooses a flaw such that its
corresponding variable is most refined among all candidates.
The potential benefit of MINGROWTH is that it causes the
smallest increase in abstraction size and thus allows more
refinements overall. In other words, MINGROWTH chooses
vi such that αi has the largest domain among all i, breaking
ties by choosing one of the candidates uniformly at random.

Algorithm 1 always terminates: in each refinement, it ei-
ther separates a value of a variable or adds the variable to
Blacklist. Either way, this ensures that the same flaw will not
be found in any future iteration. Since the number of flaws
is bound by the number of atoms, CEGAR terminates in at
most

∏n
i=1|Di| iterations assuming Π has n variables. Fur-

ther, each operation in the CEGAR loop can be implemented

2Note that blacklisting atoms instead of variables does not make
sense because repairing any flaw (by splitting the atom) on the vari-
able would violate the abstraction size limit.

to run in polynomial time in the representation size of Π and
the size bound on abstractions.

Collections of Domain Abstractions
While domain abstractions do not suffer as badly from ex-
ponential growth as PDBs, we still cannot expect that sin-
gle domain abstractions are informed enough to yield strong
heuristics. Instead, we want to compute a diverse set of do-
main abstractions to combine them using state-of-the-art sat-
urated cost partitioning (SCP) (Seipp, Keller, and Helmert
2020). We remark that domain abstractions, like PDBs and
Cartesian abstractions, are well-suited to be used in SCPs:
we can compute the minimum saturated cost function ef-
ficiently by iterating over all abstract transitions (Seipp,
Keller, and Helmert 2020).

We follow Rovner, Sievers, and Helmert (2019a) to com-
pute a collection of abstractions by repeatedly calling CE-
GAR (Algorithm 1). Their Algorithm 3 (Rovner, Sievers,
and Helmert 2019b) repeatedly iterates over all goal vari-
ables of the task and restricts each call of CEGAR to com-
pute a pattern starting from and containing only that goal
variable. It further performs duplicate detection on gener-
ated patterns. When no progress is made (stagnation) for
some time, it additionally forbids random subsets of non-
goal variables to be included in the computed pattern using
the Blacklist parameter. The algorithm has a time limit and
a size limit for the computed collection.

As there are many more different domain abstractions
than patterns, we expect to only rarely encounter duplicate
domain abstractions (and also confirmed this experimen-
tally). We therefore adapt the algorithm to drop the notion
of stagnation and instead start blacklisting random subsets
of variables3 after a specified percentage of the total time
limit has passed.

Furthermore, to better make use of the more fine-grained
domain abstractions, we do not simply pass a different goal
variable in each iteration, but consider different strategies
for initializing the domain abstraction in each CEGAR run.
Recall that INITIALIZE of Algorithm 1, when not given a
variable via InitVar, initializes the domain abstraction α as
the trivial abstraction. We denote this variant N for no ini-
tialization. Our collection algorithm additionally considers
passing a random goal variable (G) or a random arbitrary
variable (A). When given a variable InitVar = v, INITIAL-
IZE considers two strategies: the identity strategy (I) means
to perfectly represent the variable as in a projection to {v},
i.e., αv(d) = {d} for all d ∈ Dv , and the value strategy (V)
only splits off a single value d from the domain of v, i.e.,
αv(d) = {d} and αv(d

′) = Dv \ {d} for all d′ ̸= d, where
d is the single goal value of v if v ∈ Vars(G) and a random
value in Dv otherwise.

Experiments
We implemented domain abstractions in Fast Downward
version 22.06 (Helmert 2006). Experiments were conducted

3Not restricted to non-goal variables because we do not restrict
CEGAR to a single goal variable as explained below.

0s 25s 50s 75s 100s

1058.8±7.2 1051.5±4.0 1049.0±3.6 1047.3±5.3 1045.1±5.1

Table 1: Coverage of different starting times for blacklisting.
0s denotes that blacklisting is enabled from the beginning
and 100s denotes that no blacklisting is used.

on Intel Xeon Silver 4114 2.2 GHz processors using Down-
ward Lab (Seipp et al. 2017) with a time limit of 30 min-
utes and a memory limit of 3.5 GiB for each run. Our
benchmark set consists of 1827 problems from the optimal
tracks of international planning competitions 1998–2018.
All code, benchmarks, and experiment data are published
online (Kreft et al. 2023).

We run our collection algorithm for 100s and combine
the obtained abstractions using offline SCP heuristics with
hybrid-optimized greedy orders diversified for 200s (Seipp
2017). We compare against the best pattern collection gen-
eration method by Rovner, Sievers, and Helmert (2019a)
(limit of 100s, 1M states for individual PDBs, 10M states
for the collection) and against Cartesian abstractions (limit
of 1M transitions). Since these algorithms depend on ran-
domness, we run our experiments 10 times with different
random seeds to cancel out noise and report average values
with standard deviations.

Before looking into different settings for refinement
strategies, we evaluate the influence of blacklisting and ab-
straction sizes. To do so, we imitate PDBs in terms of ab-
straction initialization by using strategy GI, which means to
initialize each CEGAR run with a single random goal vari-
able (G) and abstracting it with full precision (I). At this
stage, we fix flaws using the RAND strategy.

In contrast to PDBs that activate blacklisting after 20s of
stagnation or after 75s of total construction time (Rovner,
Sievers, and Helmert 2019a), we drop the stagnation strategy
and test to enable blacklisting earlier or later. Table 1 shows
that blacklisting from the beginning yields the best results,
most likely because it increases the diversity of the set of ab-
stractions significantly, which benefits SCP. We choose this
setting for the remaining experiments.

Table 2 reports the number of solved tasks for different
choices for the size limits. Rovner, Sievers, and Helmert
recommend 1M states per individual abstraction and 10M
states in the abstraction collection. We observe that cover-
age increases when reducing the single abstraction size limit
to 100k. However, also reducing the collection size limit to
maintain the ratio of 10 between abstraction and collection
size is not beneficial. Instead, the ratio 100 proves even more
effective when reducing the size limits further to 10k per ab-
straction and 1M for the collection. This makes sense be-
cause domain abstractions are more fine-grained than PDBs
and therefore smaller abstractions can suffice to yield simi-
larly good heuristics. We choose this setting for the remain-
ing experiments.

Next, we turn our attention to different strategies for ini-
tializing and refining domain abstractions. We evaluate all
possible parameter combinations. Table 3 shows a pair-wise

1M 10M

10k 100k 10k 100k 1M

1142.4±3.8 1041.8±6.3 1122.1±4.6 1137.9±5.6 1058.8±7.2

Table 2: Coverage of different limits on states per abstrac-
tion (bottom row in the header) and states in the abstraction
collection (top row in the header).

RAND MINGROWTH

PD
B

C
ar

t.

N GI GV AI AV N GI GV AI AV coverage

R
A

N
D

N – 12 14 18 21 8 12 12 11 14 24 37 1132.0±5.3
GI 25 – 18 17 28 20 14 19 18 22 28 38 1142.4±3.8
GV 19 10 – 17 20 14 12 12 13 17 26 36 1135.7±4.9
AI 23 14 22 – 19 16 15 18 17 15 30 40 1139.8±5.0
AV 17 13 14 14 – 13 13 14 16 14 29 41 1131.1±3.9

M
IN

G
R

O
W

T
H N 30 18 24 24 29 – 15 14 19 19 30 42 1134.1±4.5

GI 31 14 27 20 30 19 – 13 19 23 32 41 1139.6±3.9
GV 29 15 25 20 28 16 11 – 21 20 30 41 1137.2±2.6
AI 29 17 27 20 27 13 11 13 – 17 33 42 1132.9±4.0
AV 22 13 20 21 23 11 11 8 12 – 30 39 1129.5±5.3

PDB 22 13 19 14 19 15 9 13 12 16 – 33 1091.5±3.1
Cart. 11 7 10 10 10 8 8 7 7 8 13 – 1070.4±0.7

Table 3: Domain-wise comparison in terms of coverage of
our collection algorithm (10 variants), PDBs and Cartesian
abstractions. An entry in row x and column y denotes the
number of domains in which x solves more tasks than y. It
is bold if (x, y) ≥ (y, x). The rightmost column shows the
total coverage of the configuration in the row.

domain comparison of coverage of all configurations, in-
cluding PDBs and Cartesian abstractions (Cart.). An entry
in row x and column y denotes the number of domains in
which configuration x solves more tasks than configuration
y. The rightmost column shows total coverage.

We first focus on the different techniques for domain ab-
stractions. While total coverage is very close generally, the
data shows that the configurations using MINGROWTH gen-
erally yield better results than RAND because they solve
more tasks in more domains in most pair-wise comparisons.
As explained before, MINGROWTH allows to perform more
refinements before reaching abstraction size limits, which
apparently pays off in practice. The only RAND strategy that
beats the MINGROWTH ones is the one with GI initialization
(in terms of total coverage only; they are identical in terms
of the pair-wise domain comparison). In fact, GI performs
best independent of the refinement strategy and solves more
tasks in more domains than all other configurations. It cor-
responds exactly to the initialization of a PDB with a single
random goal variable. While it makes sense to initialize with
variables that are relevant to reach the goal, we are surprised
that only splitting the goal value is inferior. This would keep
the initial abstraction small and allows to only split more
values of this goal variable if they occur in flaws.

Finally, we observe that all domain abstraction configura-
tions solve more tasks than PDBs and Cartesian abstractions.

100101102103104105106107

100
101
102
103
104
105
106
107

un
s.

uns.

Cart. abs. (lower for 253 tasks)

PD
B

s
(l

ow
er

fo
r4

30
ta

sk
s)

100101102103104105106107

100
101
102
103
104
105
106
107

un
s.

uns.

Cart. abs. (lower for 260 tasks)

D
om

.a
bs

.(
lo

w
er

fo
r5

01
ta

sk
s)

100101102103104105106107

100
101
102
103
104
105
106
107

un
s.

uns.

PDBs (lower for 356 tasks)

D
om

.a
bs

.(
lo

w
er

fo
r3

83
ta

sk
s)

Figure 1: Number of expanded states before the last f -layer.

original +PDBs +dom +both

of
fl. RAND 1141.8±1.3 1167.8±1.9 1158.4±4.0 1155.5±3.9

MINGR 1167.4±4.1 1166.8±5.3

on
l. RAND 1192.1±1.3 1192.1±2.4 1172.5±3.2 1160.0±2.9

MINGR 1181.2±5.3 1169.5±3.5

Table 4: Coverage of different configurations of the Scor-
pion planner: the IPC 2018 version using offline SCP (offl.)
and the most recent version using online SCP (onl.), both
computed using the abstractions originally used (original),
original extended with CEGAR PDBs (+PDBs), original ex-
tended with our CEGAR domain abstractions (+dom), and
original extended with both (+both).

In particular, our best configuration GI with RAND solves 50
tasks more than PDBs on average, which in turn solves 20
tasks more than Cartesian abstractions. Domain abstractions
seem to find a good trade-off between abstraction granular-
ity and efficiency in their computation.

To confirm that this is indeed the case, we also compare
heuristic quality of the three classes of abstractions. Fig-
ure 1 shows the number of expanded states before the last
f -layer for each pair, using RAND with GI to represent do-
main abstractions. Data points below the diagonal denote an
advantage for the abstraction class annotated to the y-axis.
The data points scatter in both directions from the diago-
nal by significant margins. We suspect these numbers are
highly influenced by the success of SCP. Nevertheless, both
PDBs and domain abstractions seem to outperform Carte-
sian abstractions in this comparison. Between PDBs and do-
main abstractions, the difference is less pronounced, but do-
main abstractions solve slightly more tasks with fewer ex-
pansions.

Finally, we also compare against Scorpion (Seipp 2018),
a state-of-the-art planner based on abstraction heuristics. It
also uses SCP but combines abstractions constructed with
different techniques to get the most out of their sometimes
complementary strengths. Its IPC 2018 version uses pro-
jections computed with hill climbing (Haslum et al. 2007),

all interesting patterns of size ≤ 2 (Pommerening, Röger,
and Helmert 2013), and Cartesian abstractions as we re-
ported them above, combined in SCP heuristics computed
offline before search for up to 200s. The most recent ver-
sion of Scorpion computes subset-saturated SCPs (Seipp
and Helmert 2019) online during search (Seipp 2021) and
drops the hill climbing projections from the considered ab-
stractions. Table 4 shows coverage for both versions of Scor-
pion, using offline SCPs (offl.) and online SCPs (onl.). Sim-
ilar to Rovner, Sievers, and Helmert (2019a), we consider
Scorpion using its original abstractions as explained above
(original) and add CEGAR PDBs (+PDBs), our CEGAR do-
main abstractions (+dom), or both (+both) to the abstrac-
tions used by Scorpion. Since both RAND and MINGROWTH
showed similar performance when using the best initializa-
tion strategy GI, we consider both of them for our domain
abstractions.

The results for both offline and online SCPs make clear
that there is an advantage to refine using the MINGROWTH
strategy rather than RAND. Moreover, we can see that adding
domain abstractions to the mix performs equally well as
adding PDBs with offline SCPs, but less so with online
SCPs. Adding both, however, does not improve the results.
One possible explanation is that domain abstractions, being
between PDBs and Cartesian abstractions, cannot add many
better-informed abstractions to the mix.

Conclusions

We presented an algorithm based on the CEGAR principle
for computing domain abstractions. We showed how to com-
pute diverse collections using this algorithm as subroutine.
Our experiments show that domain abstractions can perform
better than collections of PDBs or Cartesian abstractions.
We conclude that they offer a good trade-off between the
coarser but faster PDBs and more fine-grained but more ex-
pensive Cartesian abstractions. Promising directions for fu-
ture work include investigating further strategies for diversi-
fication and finding more “duplicates” by introducing a sim-
ilarity measure for domain abstractions.

Acknowledgments
We have received funding for this work from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-
ment no. 817639). Moreover, this research was partially sup-
ported by TAILOR, a project funded by the EU Horizon
2020 research and innovation programme under grant agree-
ment no. 952215.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In
Emerson, E. A.; and Sistla, A. P., eds., Proceedings of the
12th International Conference on Computer Aided Verifica-
tion (CAV 2000), 154–169.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence, 14(3): 318–334.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Cesta, A.; and Borrajo, D., eds., Proceedings of the Sixth Eu-
ropean Conference on Planning (ECP 2001), 84–90. AAAI
Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence (AAAI 2007), 1007–1012. AAAI Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. Journal of the
ACM, 61(3): 16:1–63.
Hernádvölgyi, I. T.; and Holte, R. C. 2000. Experiments
with Automatically Created Memory-Based Heuristics. In
Choueiry, B. Y.; and Walsh, T., eds., Proceedings of the
4th International Symposium on Abstraction, Reformulation
and Approximation (SARA 2000), volume 1864 of Lecture
Notes in Artificial Intelligence, 281–290. Springer-Verlag.
Kreft, R.; Büchner, C.; Sievers, S.; and Helmert, M. 2023.
Code, Benchmarks and Experiment Data for the ICAPS
2023 Paper “Computing Domain Abstractions for Optimal
Classical Planning with Counterexample-Guided Abstrac-
tion Refinement”. https://doi.org/10.5281/zenodo.7733329.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning.
In Rossi, F., ed., Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), 2357–
2364. AAAI Press.
Rovner, A.; Sievers, S.; and Helmert, M. 2019a.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning. In Lipovet-
zky, N.; Onaindia, E.; and Smith, D. E., eds., Proceedings
of the Twenty-Ninth International Conference on Automated
Planning and Scheduling (ICAPS 2019), 362–367. AAAI
Press.
Rovner, A.; Sievers, S.; and Helmert, M. 2019b.
Counterexample-Guided Abstraction Refinement for
Pattern Selection in Optimal Classical Planning: Additional
Material. Technical Report CS-2019-002, University of
Basel, Department of Mathematics and Computer Science.
Seipp, J. 2017. Better Orders for Saturated Cost Partition-
ing in Optimal Classical Planning. In Fukunaga, A.; and
Kishimoto, A., eds., Proceedings of the 10th Annual Sym-
posium on Combinatorial Search (SoCS 2017), 149–153.
AAAI Press.
Seipp, J. 2018. Fast Downward Scorpion. In Ninth Inter-
national Planning Competition (IPC-9): Planner Abstracts,
77–79.
Seipp, J. 2021. Online Saturated Cost Partitioning for Clas-
sical Planning. In Goldman, R. P.; Biundo, S.; and Katz, M.,
eds., Proceedings of the Thirty-First International Confer-
ence on Automated Planning and Scheduling (ICAPS 2021),
317–321. AAAI Press.
Seipp, J.; and Helmert, M. 2018. Counterexample-Guided
Cartesian Abstraction Refinement for Classical Planning.
Journal of Artificial Intelligence Research, 62: 535–577.
Seipp, J.; and Helmert, M. 2019. Subset-Saturated Cost
Partitioning for Optimal Classical Planning. In Lipovetzky,
N.; Onaindia, E.; and Smith, D. E., eds., Proceedings of the
Twenty-Ninth International Conference on Automated Plan-
ning and Scheduling (ICAPS 2019), 391–400. AAAI Press.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. Journal of Ar-
tificial Intelligence Research, 67: 129–167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Sievers, S.; and Helmert, M. 2021. Merge-and-Shrink: A
Compositional Theory of Transformations of Factored Tran-
sition Systems. Journal of Artificial Intelligence Research,
71: 781–883.
Sievers, S.; Ortlieb, M.; and Helmert, M. 2012. Efficient
Implementation of Pattern Database Heuristics for Classical
Planning. In Borrajo, D.; Felner, A.; Korf, R.; Likhachev,
M.; Linares López, C.; Ruml, W.; and Sturtevant, N., eds.,
Proceedings of the Fifth Annual Symposium on Combinato-
rial Search (SoCS 2012), 105–111. AAAI Press.

