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Information-to-work conversion in single-molecule experiments:
From discrete to continuous feedback
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We theoretically investigate the extractable work in single molecule unfolding-folding experiments with
applied feedback. Using a simple two-state model, we obtain a description of the full work distribution from
discrete to continuous feedback. The effect of the feedback is captured by a detailed fluctuation theorem,
accounting for the information aquired. We find analytical expressions for the average work extraction as well as
an experimentally measurable bound thereof, which becomes tight in the continuous feedback limit. We further
determine the parameters for maximal power or rate of work extraction. Although our two-state model only
depends on a single effective transition rate, we find qualitative agreement with Monte Carlo simulations of
DNA hairpin unfolding-folding dynamics.
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Introduction. The ability to manipulate and measure sys-
tems at the nanometer and the piconewton scale has driven
the need to understand systems that are subject to large
fluctuations out of thermal equilibrium. Stochastic thermody-
namics provides the theoretical framework for describing such
systems. A cornerstone is provided by fluctuation theorems
(FTs) [1–6], most prominently the Crooks FT [7–9] and the
Jarzynski equality [10,11], which leads to the second law
〈W 〉 � �F . Hence, in work generating processes, the work
extracted along a single trajectory can be larger than the free
energy difference. Taking advantage of such transient viola-
tions (TVs) of the second law, information and feedback (FB)
may be used to increase the average extractable work [12–25].
For a single measurement with subsequent FB, Sagawa and
Ueda [12] found a generalization of the second law 〈W 〉 �
�F − kBT 〈I〉 with the thermal energy kBT and the mutual
information between system state and measurement outcome
〈I〉. This inequality was experimentally verified using an opti-
cally trapped colloidal particle [26].

For consecutive discrete measurements, similar inequali-
ties were found [15,16,18,19,21,27], but their extension to
the continuous FB limit proved to be problematic as 〈I〉,
known as the transfer entropy when multiple measurements
are performed, tends to diverge [18,22]. Similar to the trans-
fer entropy (reducing to the Shannon entropy for error-free
measurements), the information quantifier γ , characterizing
the efficacy of the FB protocol [14], also generally diverges
for continuous measurements. As a remedy to this divergence
problem, two of us introduced the entropy 〈�s〉 [25], inferable
from the measurement outcomes alone and remaining finite
in the continuous limit. The usefulness of the inferable en-
tropy as an information quantifier for continuous FB protocols
is illustrated in the present Letter. Experimentally, central

results of stochastic thermodynamics were verified in a
number of architectures. Examples are the verification of
Landauer’s principle [28] using optical tweezers [29] and
a virtual potential feedback trap [30], implementations of
Maxwell’s demon [31], and Szilard’s engine [32] using a
colloidal particle [26], single-electron boxes [33–35], super-
conducting circuits [36–38], as well as thermal light [39], and
the verification of FTs and the determination of free energies
using optically trapped particles [40–44] and quantum dots
[45,46]. Of particular interest are experiments based on sin-
gle molecule force spectroscopy (SMFS) [47–55], providing
unique possibilities of simultaneous force and molecular ex-
tension measurements in a biological system, making work
directly accessible, see Fig. 1. SMFS on DNA/RNA hairpins
was used to verify the Jarzynski relation [49] and the Crooks
FT [50] as well as to investigate a continuous-time version of
Maxwell’s demon [56,57]. In a recent work by some of us,
the effect of feedback on dissipation reduction and improved
free energy determination was investigated in single molecule
pulling experiments [58].

In this Letter, we theoretically investigate the extraction
of work in a SMFS experiment on DNA hairpins, providing
an understanding of information-to-work conversion for FB
ranging from discrete to continuous. We consider a DNA
strand that is attached at both ends, see Fig. 1(a). Its ends
are then pulled apart with a constant velocity. During this
process, measurements of the system state are performed.
As soon as the DNA strand is found to be unfolded, the
velocity is increased, see Figs. 1(d) and 1(e), resulting in the
extraction of work. We model the experiment with a single
parameter two-state system [48,59–61] coupled to a single
heat bath, comparing well to detailed Monte Carlo simulations
[62] of the full system. We show that going from discrete
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FIG. 1. (a) Force-position trace for single DNA hairpin experi-
ment, with force jumps showing folding/unfolding events (see the
text). The inset: DNA molecule held between a micropipette and
movable optical tweezers, with a force applied. (b) Schematics of the
molecule free energy landscape for initial (solid) and final (dashed)
times of the protocol. The two molecular states U (unfolded) and F
(folded) shown at their corresponding local energy minima. (c)–(e)
Energy-time trajectories in state space with transitions at times τn,
denoted by vertical arrows. The dissipated (dimensionless) heat at
the transitions is qn = ±2τn. Regions in time where work is extracted
are shaded blue. In (d) measurements and FB are performed at times
τ ∗

n in intervals δτ . At the measurement detecting the first transition
F → U the states are shifted with infinite drive speed ζ ′ = 0 to their
final energies. In (e), measurement and FB is continuous (δτ = 0)
with nonero ζ ′: Directly after a first transition, the drive speed is
increased from ζ to ζ ′ < ζ . Red and blue lines in (c)–(e) stand for
the folded and unfolded energy branches.

to continuous FB, the amount of extractable work increases
in agreement with Ref. [58]. Based on a detailed FT which
circumvents problems encountered in continuous and error-
free measurements [25], we derive integral FTs and a bound
for the extractable work, becoming tight in the limit of contin-
uous FB. We moreover identify optimal parameters for work
extraction and power production.

Two-state model. Dynamical SMFS of DNA hairpin ex-
periments are well described by Monte Carlo simulations
with detailed DNA models [63]. However, the key dynamical
features of the hairpin experiments can be captured by simple
two-state models [51]. Such two-state models often allow for
analytical treatments of the full work distribution [48,59–61],
providing compelling and transparent pictures of the underly-
ing physics. Here we focus on the simplest possible two-state
model that captures the full dynamics with an effective trans-
fer rate. Key results are compared to a detailed DNA Monte
Carlo simulation, discussed below.

We first consider the system in absence of FB. The two
system states, with the molecule folded (F ) or unfolded (U )
see Fig. 1(b), have energies driven linearly in time as EF(t ) =
−EU (t ) = κt where κ is the constant energy velocity and the
energies are degenerate (and set equal to zero) at t = 0. The
drive protocol is symmetric, such that |EF − EU | = � both
at the beginning (t = −�/2κ ) as well as at the end of the
protocol (t = �/2κ ), i.e., there is no free energy difference
between the initial and the final state �F = 0. Throughout
the Letter, we keep � fixed which implies that protocols

with different velocities κ take a different amount of time.
We consider the experimentally relevant [50] limit kBT � �,
where the system is initially in state F (in thermal equilib-
rium) and ends in state U . The transitions between F and U
are thermally activated with time-dependent rates 	e±tκ/(kBT ),
Fig. 1(b), which fulfill local-in-time detailed balance by con-
struction. The constant attempt rate 	 depends on system
parameters, e.g., the height of the energy barrier separating F
and U . It is assumed that 	 � κ/�, ensuring that the system
has time to relax to U before the end of the protocol. We note
that in DNA-pulling experiments, the condition �F = 0 is
usually not fulfilled. However, a finite �F can be accounted
for by a constant shift of the extracted work W → W + �F .
Moreover, the symmetric kinetic rates correspond to a barrier
located a half distance between F and U [58].

The dynamics of the state occupation probabilities PF (t ),
PU (t ) = 1 − PF (t ) is described by a rate equation with time-
dependent rates. Introducing the dimensionless time τ =
κt/(kBT ), and the dimensionless, effective attempt rate ζ =
kBT 	/κ , we have

dPF (τ )

dτ
+ 2ζ cosh(τ )PF (τ ) = ζe−τ , (1)

showing that the dynamics is completely governed by ζ . The
solution to Eq. (1) for τ > τ0, with τ0 = −�/(2kBT ) the
initial time and PF (τ0) = 1, can be written as

PF (τ ) = 1 − ζ

∫ τ

τ0

ds es+2ζ [sinh s−sinh τ ], (2)

We note that for ζ � 1 we recover the quasistatic limit with
multiple transitions F ↔ U , giving the equilibrium result
PF (τ |ζ � 1) = 1/(1 + e2τ ). For ζ � 1 we enter the rapid
drive regime where only a single transition F → U takes
place and PF (τ |ζ � 1) = exp[−ζ exp(τ )], see Supplemental
Material [64].

Work distribution. Because the internal energy of the
molecule is the same at the beginning and at the end of each
trajectory, the first law of thermodynamics (which holds on
each trajectory) results in W = −Q, where W is the work
performed on the system and Q is the heat absorbed from
the environment. In the following, we will work with the
dimensionless quantities w = W/(kBT ) and q = Q/(kBT ). A
given trajectory with N state transitions is completely de-
termined by the set of transition times {τn}N

n=1. Moreover,
a transition at τn with n = 1, 3, . . . , N (n = 2, 4, . . . N − 1)
for F → U (U → F ), gives rise to a transferred heat qn =
−2τn (qn = 2τn), equal to the energy difference between the
two states, see Fig. 1(c) (note that the system always starts in
the folded state). The total work along the trajectory is then
w = −2

∑N
n=1(−1)nτn and the distribution of the work per-

formed, P(w), is, thus, directly obtained from the distribution
of transition times; the derivation for arbitrary ζ is presented
in the Supplemental Material [64]. In the quasistatic limit, the
distribution becomes a shifted Gaussian,

Pnf (w|ζ � 1) =
√

ζ

π
exp

[
− ζ

π

(
w − π

4ζ

)2
]
, (3)
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FIG. 2. (a) Probability distribution of work w for protocols with
no FB, (dashed lines) and continuous FB (solid lines) for three dif-
ferent effective rates ζ . Continuous FB shifts the distribution towards
negative w, most notably in the quasistatic regime ζ � 1. The inset
shows the fraction pTV of TV contributions without feedback (dashed
line) and continuous feedback (solid line) as a function of ζ . (b) Av-
erage work from dynamical simulations of continuous FB with a
finite rate ζ ′ after the first transition (see the text) for different sets of
ζ , ζ ′ (empty symbols). The work without FB, Eq. (5), (dashed line)
and continuous FB for ζ ′ → 0, Eq. (7), (solid line) and ζ ′ = 0.02
(dashed-dot line) for the two-state system are shown for reference.

whereas in the rapid drive regime we find

Pnf (w|ζ � 1) = 1

4K1(2ζ )
exp

[w

2
− 2ζ cosh

(w

2

)]
, (4)

where K1(ζ ) is a modified Bessel function of the second kind
and the subscript nf denotes no feedback. We stress that Pnf (w)
for any ζ obeys Crooks fluctuation theorem [7,8], which in our
symmetric case reads Pnf (w|ζ )/Pnf (−w|ζ ) = ew.

As is clear from Fig. 2(a), decreasing ζ shifts Pnf (w) to-
wards more positive w. In particular, the average work,

〈w〉nf = ζ
π2

4
[J0(2ζ )J1(2ζ ) + Y0(2ζ )Y1(2ζ )] (5)

is always positive, see Fig. 2(b). Here Jν (x) [Yν (x)] with
ν = 0, 1, as a Bessel function of the first [second] kind and
〈· · · 〉nf = ∫

dw · · · Pnf (w). However, for any ζ , there is a
nonzero probability for TVs of the second law; the fraction
of TV trajectories, pTV, goes from 0.5 in the quasistatic limit
towards zero in the rapid regime, see the inset in Fig. 2(a).

FB-enabled work extraction. In order to extract work on
average, we consider the use of FB to increase the fraction
of TV trajectories. To this end, we consider an ideal FB pro-
tocol with repeated error-free noninvasive measurements of
the system state. These measurements are performed at times
τ ∗

m = sgn(m)δτ (|m| − 1/2) for integers m = ±1,±2, . . . (for

FIG. 3. Average work 〈w〉δτ for the discrete FB protocol as a
function of the time between the measurements δτ for τ0 = −10.
Note that the time axis goes from large to small δτ . The work (black
line) decreases with decreasing δτ before it becomes negative and
eventually saturates at the continuous measurement result 〈w〉c (cyan
line). Three different entropies (see the text) 〈I〉 ( transfer entropy,
red), ln(γ ) (logarithmic efficacy, yellow) and 〈�s〉 (blue) are plotted,
showing that whereas H and − ln(γ ) diverge in the continuous FB
limit, 〈�s〉 is finite, constituting a tight bound on the extractable
work.

|τ ∗
m| < |τ0|), i.e., they are separated in time by δτ and are

situated symmetrically around τ = 0. Since the measurements
are performed at discrete times, we call this protocol a dis-
crete FB protocol [65]. Initially, at τ = τ0, the system is in
state F . The energy levels are then moved with velocity κ

(effective attempt rate ζ ). For every measurement, the possible
outcomes are F and U . If the system is found in U , the system
is instantaneously taken to its end position EF − EU = � (i.e.,
the velocity is taken to infinity, ζ → 0), and the protocol is
ended without further state transitions. If the system instead
is found in F no FB is performed, and the system evolves,
according to Eq. (1), to the next measurement.

The resulting average work, see Supplemental Material
[64], denoted 〈w〉δτ , is plotted in Fig. 3 as a function of δτ

for a given ζ . It is clear from the plot that 〈w〉δτ decreases
monotonically as δτ is reduced. In particular, the average
work becomes negative, showing that for sufficiently small
δτ , work is extracted using FB. This confirms the expected
trend that performing more measurements enables a better
work extraction.

Interestingly, in the limit of δτ → 0, the average work
saturates at a constant value. In this limit, the FB protocol
corresponds to a continuous monitoring of the system state
with a change to infinite drive speed immediately when the
first transition F → U occurs. From the known distribution of
τ1, the first unfolding time, see Supplemental Material [64],
and recalling that the heat q1 absorbed at the transition is
equal to −2τ1, we can directly write down the distribution of
performed work as

Pc(w) = ζ

2
ew/2−ζew/2

, (6)

a Gumbel distribution (see Fig. 2). Here the subscript c stands
for continuous monitoring and corresponds to δτ → 0. The
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average work [Fig 2(b), continuous blue line] reads

〈w〉c = −2(ln ζ + γE), (7)

with γE ≈ 0.577 as the Euler constant. The average work
decreases with increasing ζ , becoming zero for ζ = e−γE ≈
0.561. For larger ζ , we can, thus, achieve a net heat extraction
from the bath. In fact, as is clear from Eq. (6) and shown in
Fig. 2, increasing ζ only shifts the entire Pc(w) to smaller
work values without changing the shape of the distribution. As
a result, the fraction of TV trajectories increases towards unity
with increasing ζ , shown in the inset of Fig. 2(a). Note that for
ζ → 0, i.e., for infinitely fast drive, no FB is performed and
the expressions in Eqs. (6) and (4) coincide.

From Eq. (7) we see that 〈w〉c formally diverges when
ζ → ∞ in the quasistatic regime as it is derived taking
�/kBT → ∞. In reality, the work is bounded by the finite
�/kBT � 1. An informative figure of merit is the work ex-
traction per unit time or power. Performing the protocol takes
the time tp(w) up to the first observed transition, given by

tp = kBT

κ
(τ1 − τ0) = ζ

2	

(
w + �

kBT

)
 ζ

2	

�

kBT
, (8)

where we used that �/(kBT ) � w in all cases of interest. The
average power produced by the system then reads〈

w

tp(w)

〉
c

 −kBT

�

4	

ζ
(ln ζ + γE) > 0, (9)

which is finite and maximal for ζ = e1−γE ≈ 0.65.
Information bound on work extraction. To clarify the role

of information in the FB process, we consider a detailed FT
[25] applicable to repeated discrete FB with arbitrary δτ ,
i.e., including continuous FB. The FT is formulated in terms
of conditional probability distributions for work performed
in a “forward” and a “backward” experiment. The forward
experiment, described above, is characterized by the protocol
λs where the drive speed is switched from κ = 	/ζ to infinity
at τ ∗

s upon measuring for the first time the system in state
U . Hence, τ ∗

s , ζ , and δτ completely determine λs. The joint
probability for a given value of work w and a switching
time τ ∗

s is denoted P(w, s). In the backward experiment, the
time-reversed protocol λ†

s is applied with probability ps =∫
dw P(w, s). This protocol initiates the system in state U

(in thermal equilibrium) at EU = −EF = −�/2, immediately
takes the system to energy EU = −EF = −kBT τ ∗

s and then
shifts the energies with speed κ in the opposite direction
compared to the forward experiment. During the finite drive
speed, measurements are performed with the same interval
δτ as in the forward experiments. The first measurement is
performed when changing speed and necessarily results in U .
Considering only trajectories where all subsequent measure-
ments result in F [64], we have the FT,

P(w|s) = P†(−w|s)ew−�s , �s = ln(ps/p†
s ). (10)

We note that a similar FT was employed in Ref. [58], cf.
Eq. (4) therein. Here the forward conditional probability for
work P(w|s) = P(w, s)/ps and P†(w|s) is the corresponding
backward conditional probability given that the protocol λ†

s
is applied, and all measurements result in F. The fraction of
backward trajectories under λ†

s that give rise to measurement

outcomes F for all, but the first measurement is denoted p†
s .

Note that whereas
∑

s ps = 1 by construction, the quantity∑
s p†

s ≡ γ , the efficacy of the protocol [14,18], is typically
not unity.

From Eq. (10), we get the integral fluctuation theorems
〈e−w〉δτ = γ and 〈e−w+�s〉δτ = 1 where from the latter the-
orem, via Jensen’s inequality, we get the modified second law,

〈w〉δτ � 〈�s〉δτ =
∑

s

ps ln(ps/p†
s ), (11)

providing a bound on the extractable average work. Three
important remarks can be made about Eq. (11). First, the
inferable entropy or information term 〈�s〉δτ depends only
on probabilities for measurement outcomes, allowing one to
experimentally determine the work bound. Second, in con-
trast to, e.g., the mutual information, 〈�s〉δτ does depend on
the feedback protocol. Depending on the protocol, a different
amount of information can, thus, be inferred from the mea-
surement outcomes. Third, 〈�s〉δτ is finite in the continuous
FB limit δτ → 0 in contrast to, e.g., the (negative) trans-
fer entropy 〈I〉 and efficacy γ as also illustrated in Fig. 3.
In fact, we find that 〈�s〉c = 〈w〉c, i.e., in the continuous
FB limit, the bound on the extractable work in Eq. (11) is
tight. As discussed in Ref. [25], this is because the mea-
surement outcomes contain the full knowledge of the entropy
production. An extended discussion, including examples of
system trajectories, is given in the Supplemental Material
[64]. Moreover, we stress that the transfer entropy, providing a
bound to the extractable work, reduces to the Shannon entropy
H = −∑

s ps ln(ps) in the case with error free measurements
considered here.

Comparison to dynamical DNA simulations. To emphasize
the relevance of our two-state model to unfolding-folding
experiments with DNA hairpins, we extend our idealized con-
tinuous FB model to account for finite driving speed after the
first unfolding event. That is, we consider a protocol λs(ζ , ζ ′)
with effective transfer rates ζ and ζ ′ before and after the
transition time, respectively. The work probability distribution
as well as the average work are obtained numerically, similar
to the idealized case, see Supplemental Material [64]. Three
representative probability distributions, for different ζ ′’s, are
shown in Fig. 4. The common feature is that the distribution
becomes bimodal with an additional peak at positive work val-
ues developing due to the finite probability of refolding events
U → F during the drive with ζ ′ after the first unfolding. The
average work 〈w〉ζ ′

c as a function of ζ , ζ ′, shown in Fig. 4, is
modified accordingly; any refolding after the first unfolding
event will increase the work performed on the system. In fact,
the average work can be written as 〈w〉ζ ′

c = 〈w〉c + 〈w〉ζ ′
, a

sum of the work performed under the continuous FB protocol
with ζ ′ → 0, Eq. (7), and the positive work, 〈w〉ζ ′

> 0 due to
the refolding events after the first transition.

For the Monte Carlo simulations, the unzipping of a short
DNA hairpin (20 base pair (bp) stem plus a tetraloop) tethered
between two polystyrene beads, one held with a micropipette,
the other trapped via 29 bp DNA handles with optical tweez-
ers, is modeled as a Markov chain. The distance between the
center of the optical trap and the micropipette is the control
parameter L. Transitions between the natural folded and the
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FIG. 4. Contour plot of average work 〈w〉ζ ′
c as a function of ζ , ζ ′.

Negative work values are found for small ζ ′ and large ζ . Side panel:
Work probability distributions for three sets of ζ , ζ ′, marked in the
main panel. Trajectories with refolding events (RE) contribute to a
shoulder at high work values with height increasing with increasing
ζ . For two uppermost panels, the corresponding work probability dis-
tributions obtained from the dynamical simulations are shown (black,
thin lines). For the lowest panel, the dynamical simulation were
found to be unfeasible, i.e., too time consuming for the parameters
chosen.

unfolded state are defined through the attempt rate, the barrier
height B(L), and the free energy �F (L). In principle B(L)
and �F (L) are functions of the number of open base pairs
and contain contributions of the handles, the linker molecules,

and the bead of a typical optical tweezers setup [51,62,66,67].
However, short DNA hairpins unfold in a cooperative way
[63] and can, thus, be simulated considering only transitions
between the completely folded and the completely unfolded
state, in analogy to the simple model considered above.
For each molecule 20—100-k trajectories (force, position,
and time) are simulated with time steps 10−4 s. After sub-
traction of an equilibrium trajectory, work contributions are
calculated as W = ∫ l1

l0
dL f (L) with f (L) denoting the force

acting on the molecule, and l0 (l1) denoting the initial (final)
control parameter. Using the transition statistics, ζ can be ex-
tracted. For more information see the Supplemental Material
[64]

Conclusions. We have analyzed work extraction in a
two-state model of a single molecule folding experiment,
increasing our understanding of information-to-work conver-
sion under discrete and continuous feedback and providing
key guidance for future experiments.
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