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The reason why most individuals with COVID-19 have relatively limited symptoms while
other develop respiratory distress with life-threatening complications remains unknown.
Increasing evidence suggests that COVID-19 associated adverse outcomes mainly rely on
dysregulated immunity. Here, we compared transcriptomic profiles of blood cells from
103 patients with different severity levels of COVID-19 with that of 27 healthy and 22
influenza-infected individuals. Data provided a complete overview of SARS-CoV-2-
induced immune signature, including a dramatic defect in IFN responses, a reduction of
toxicity-related molecules in NK cells, an increased degranulation of neutrophils, a
dysregulation of T cells, a dramatic increase in B cell function and immunoglobulin
production, as well as an important over-expression of genes involved in metabolism
and cell cycle in patients infected with SARS-CoV-2 compared to those infected with
influenza viruses. These features also differed according to COVID-19 severity. Overall and
specific gene expression patterns across groups can be visualized on an interactive
website (https://bix.unil.ch/covid/). Collectively, these transcriptomic host responses to
SARS-CoV-2 infection are discussed in the context of current studies, thereby improving
our understanding of COVID-19 pathogenesis and shaping the severity level of COVID-19.
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INTRODUCTION

Coronaviruses (CoV) are enveloped single-stranded positive-sense
RNA viruses surrounded by spike glycoproteins shaping the typical
“corona-like” appearance (1). To date, seven strains of human CoV
have been identified. Four of them (HCoV-229E, HCoV-OC43,
HCoV-NL63, HKU1) circulate in the population and cause only
mild upper-respiratory tract infections in immunocompetent
individuals (2). In the last two decades, three highly pathogenic
viruses acquired by zoonotic transmission caused outbreaks of
severe pneumonia. Severe acute respiratory virus (SARS)-related
CoV 1 infected ~8000 individuals in 2002-3, with a fatality rate of
10%; the Middle-East respiratory syndrome CoV (MERS-CoV)
infected ~8000 individuals since 2012, with a ~36% fatality rate; the
new coronavirus SARS-CoV-2 emerged in the province of Wuhan
(China) in the end of 2019, infecting more than 100,200,000
individuals worldwide and killing over 2’150’000 as of January 2021.

While the immune response to SARS-CoV-2 has not yet been
fully characterized, it is likely to engage immune mechanisms
similar to those previously described for SARS-CoV and MERS-
CoV, and, more generally, other RNA viruses (3, 4). Viral single
stranded and double-stranded RNA are recognized by at least 3
families of pattern recognition receptors (PRR), including
extracellular and endosomal Toll-like receptors (TLR3/4/7/8),
cytoplasmic retinoic acid-inducible gene I-like receptors (RIG-I/
MDA5), and the cytosolic RNA-activated protein kinase (PKR).
Signal transduction by PRR subsequently leads to the induction
of transcription factors such as interferon regulatory factors
(IRFs) and nuclear factor k B (NF-k B), thereby inducing the
synthesis and secretion of pro-inflammatory cytokines such as
Type I and III interferons (IFNs), as well as the production of
chemokines inducing adaptive immunity. In turn, both type I
and III IFNs induce the expression of interferon stimulated genes
(ISGs), which restrict and limit viral spread and stimulate the
adaptive immune responses (5, 6), resulting in the generation of
viral peptide-specific T cells (7, 8) and the production of viral-
specific antibodies (9–11).

Increasing evidences suggest that SARS-CoV-2 induces specific
response mechanisms, probably distinct from those triggered by
other viruses, that can lead to major immune dysregulation (12).
However, only few clinical studies have investigated the comparison
of immune activation responses during COVID-19 to other viral
infections. To better understand the specific features of the immune
response to COVID-19, we compared the transcriptional profiles of
patients infected by SARS-CoV-2 across different disease severity to
that of patients infected by Influenza A or B viruses. Altogether, our
results suggest that severe COVID-19 presentation results from a
defect in or escape from innate immunity associated with an
unbalanced adaptive immune response.
METHODS

Patients
This prospective observational study of SARS-CoV2 and
Influenza viruses-infected patients was conducted in the
Frontiers in Immunology | www.frontiersin.org 2
emergency department, internal medical ward and in the
intensive care unit of Lausanne University Hospital (CHUV), a
tertiary care center in Switzerland. Adult patients were included
in this study if COVID-19 or Influenza were confirmed by real
time polymerase chain reaction from a nasopharyngeal swab.
COVID-19 patients were included between February 6th 2020
and April 3rd 2020. Patients with Influenza were included
between January 21st 2015 and March 17th 2020. Healthy
volunteers had a negative COVID-19 serology and were
included in June 2020. Patients and healthy volunteers
included in this study signed an informed consent form for
genetic and functional testing, according to protocols approved
by the Cantonal Ethics Committee of the state of Vaud (CER-VD
479/13, CER-VD 2019-02283, CER-VD 2020-01108). Samples
were stored within a dedicated biobank fulfilling quality
standards according to the Swiss Biobanking Platform criteria
(“Vita label”, certificate CHUV_2004_3).

Patients demographics, comorbidities, symptoms, vital signs
and laboratory results performed during routine care were
recorded using a standardized electronic case report form in
REDCap (Research Electronic Data Capture) or Secutrial.
Bedside clinical scores to identify patients at risk of poor
outcome were calculated at first assessment in the emergency
department: (i) Quick Sequential Organ Failure Assessment
(qSOFA): one point each for systolic hypotension (≤100
mmHg), tachypnea (≥22/min) or altered mentation [Glasgow
coma score ≤14 (13)], CRB-65: one point each for Confusion
(Glasgow coma score ≤14), elevated Respiratory rate (≥30/min),
low blood pressure (systolic <90 mmHg or diastolic ≤60 mmHg),
age ≥65 years (14). Clinical outcomes were assessed by checking
the electronic health record and by calling patients. COVID-19
patients were classified into three groups according to disease
severity: (i) outpatients and/or inpatients (e.g. admitted for a
motif other than COVID-19) without oxygen requirement
(OXY0); (ii) inpatient with oxygen requirement without
intubation (OXY1) and (iii) intubation and/or respiratory-
related death (TUBE).

RNA Extraction and Library Preparation
Total RNA from whole blood was isolated using Blood RNA
tubes (BD) for blood collection. RNA integrity was assessed with
a Bioanalyzer (Agilent Technologies). The TruSeq mRNA
stranded kit from Illumina was used for the library preparation
with 400 ng of total RNA as input. Library molarity and quality
were assessed with the Qubit and Tapestation using a DNA High
sensitivity chip (Agilent Technologies). Libraries were pooled at
2 nM and loaded for clustering on several lanes of a Single-read
Illumina Flow cell to reach an average of 30 Million of reads per
library. Reads of 100 bases were generated using the TruSeq SBS
chemistry on an Illumina HiSeq 4000 sequencer.

Gene Quantification
Transcript abundance quantification was performed with
Salmon v1.3.0 (15) in quasi-mapping-based mode using the
human reference transcriptome obtained from GENCODE
(16) (release 34 corresponding to human genome assembly
GRCh38). Default parameters were used plus the –
May 2021 | Volume 12 | Article 666163
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validateMappings –numBootstraps 0 –numGibbsSamples 0 –
fldMean 306 –fldSD 30 –seqBias –gcBias parameters. Gene
abundances were collected directly with Salmon using –g
parameter . Hemoglob in genes ENSG00000206172 ,
ENSG00000188536, ENSG00000244734, ENSG00000229988,
ENSG00000223609, ENSG00000213931, ENSG00000213934,
ENSG00000196565, ENSG00000206177, ENSG00000086506,
ENSG00000130656 and ENSG00000206178 were removed and
the remaining genes used to compute the usable library sizes and
filter out genes without at least 1 cpm in at least 15 samples (e.g.
the size of the smallest group, TUBE early).

Differential Expression Analyses
Differential gene expression analyses were performed in R [using
DESeq2_1.26.0 built-in functions (17)]. Overall similarity
between samples was assessed by first applying a variance
stabilizing transformation (VST) to the gene-level count
matrices using the vst function taking into account the
experimental design (blind=FALSE), and then performing a
principal components analysis (PCA) on the regularized
matrix using the prcomp function on the 10% most varying
genes. To identify differentially expressed genes (DEGs), separate
paired analyses between groups were computed using the
function DESeq with default parameters. Log2 fold changes
were moderated with the lfcShrink function using the apeglm
(18) shrinkage estimator and differentially expressed genes were
selected based on their multiple testing corrected adjusted P
value (<0.01).

KEGG Pathway Enrichment
DOSE version 3.4.0 (19) and clusterProfiler version 3.6.0 (20)
were used to identify pathways with a significant enrichment of
DEGs. Analyses were performed separately for each comparison
using the gseKEGG function with genes ranked by sign
(log2FoldChange) * -log10 (pval). Pathways with an adjusted
P-value <= 0.05 were considered significantly enriched.

Gene Set Enrichment Analyses of
Functional Groups
Gene set enrichment analyses (GSEA) were performed in R using
fgsea version 1.12.0 built in functions (21). Normalized
enrichment scores and adjusted P-values were computed
separately for each comparison using the fgsea function with
genes ranked by sign(log2FoldChange) * -log10(pval), the
manually curated gene sets reported in Supplementary
Tables 2-3 and the number of permutations equal to the
number of genes in the ranked list (16,670). Gene sets with an
adjusted P-value <= 0.05 were considered significantly enriched.
RESULTS

Characteristics of Patients Infected With
SARS-CoV-2 and Influenza Viruses
Blood gene-expression was measured in 103 patients infected
with SARS-CoV-2 (collectively named “COVID-19”) and
Frontiers in Immunology | www.frontiersin.org 3
compared to that of 22 patients infected with Influenza A or B
(INFL) as well as 27 non-infected, healthy individuals (HLTY)
COVID-19 patients were stratified according to the level of
respiratory failure; 23 did not require oxygen support
(“OXY0”), 40 received oxygen but no mechanical ventilation
(“OXY1”) and 40 required mechanical ventilation (“TUBE”). In
the latter group, 15 patients were sampled within the first 7 days
in hospital (“TUBE early”) while 25 were sampled later
(“TUBE late”).

Patients andcontrols characteristics are shown inSupplementary
Table 1. The duration of symptoms before admission was similar
in all disease groups. Baseline characteristics and comorbidities
were also similar among all COVID-19 patients, except for an
over-representation of males among the TUBE late group. As
expected, baseline symptoms (fever, cough and dyspnea), signs
(temperature, systolic blood pressure and respiratory rate) and
severity scores (qSOFA and CURB65) significantly worsened
from OXY0 to OXY1 and TUBE patients. INFL patients were
significantly older than COVID-19 patients (mean age 73 versus
mean ages ranging from 54 in OXY0 to 64 in TUBE early), but
had a similar pattern of comorbidities, except for hypertension,
dyslipidemia and gastrointestinal diseases, which were
significantly less frequent in INFL than OXY1. Their qSOFA
score was comparable to that of OXY0 and OXY1 while the
CURB65 score and hospitalization rate was comparable to those
of TUBE patients. INFL were significantly more likely to have
fever, cough, fatigue, leukocytosis and thrombocytopenia at
baseline than OXY0. In contrast, they were less likely to have
hypotension, dyspnea, tachypnea, leukocytosis and radiological
infiltrates at baseline; and death at 30 days than OXY1 and
TUBE early.

Overall Transcriptomic Profile of Patients
Infected With SARS-CoV-2 and Influenza
Viruses
Total RNA libraries produced on average 34.1 million reads
(standard deviation, SD=4.7), among which an average of 30.6
million (SD=4.6) were mapped against the 228,048 transcripts of
Gencode v34 and aggregated at the gene level using Salmon
v1.3.0. After removal of hemoglobin genes, all samples had
produced at least 10 millions of usable reads, except samples
from subjects TUBE early.01 and TUBE late.05, which had 9.9
and 9.8 million reads, respectively (Supplementary Figure 1).
The mean number of usable reads for HLTY, patients infected
with SARS-CoV-2 (OXY0, OXY1, TUBE-early and TUBE-late)
and INFL was 17.3, 24.0, 24.4, 21.6, 16.4 and 22.1 millions,
respectively (Supplementary Figure 1). Sex was confirmed by
counting the number of reads mapping on the male and female
specific genes RPS4Y1 (ENSG00000129824.16) and XIST
(ENSG00000229807.12, Supplementary Figure 1). The 16,670
genes with at least 1 cpm in at least 15 samples (e.g. the size of the
smallest group) were kept for further analysis.

A total of 2,839, 3,821, 5,252 genes had higher expression
(adjusted P<= 0.01), and a total of 2,164, 3,305 and 3,956 genes
had lower expression, among OXY0, OXY1 and TUBE early,
respectively, compared to HLTY (Figure 1A). A total of 2,527,
May 2021 | Volume 12 | Article 666163
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1,832, and 1,135 genes had higher expression, and a total of
2,404, 1,848 and 737 genes had lower expression, among OXY0,
OXY1 and TUBE, respectively, compared to INFL (Figure 1B).
The number of upregulated genes compared to both reference
groups (HLTY and INFL) are 1,438, 1,001 and 636 in OXY0,
OXY1 and TUBE early, respectively (Figure 1C), whereas the
number of down-regulated genes compared to both reference
groups are 1,037, 835 and 318 (Figure 1C). The two first
principal components of the 10% most varying gene expression
across all samples explained 47.6%, 46.1% and 51.1% of variance,
respectively, when comparing OXY0, OXY1 and TUBE early
groups with HTLY and INFL (Figure 1D).

An unsupervised analysis was performed by using gene
pathways sets from the Kyoto Encyclopedia of Genes and
Genomes (22, 23) (KEGG, Supplementary Figure 2).
Compared to HTLY, TUBE early and INFL had over-
expression of genes involved in “human diseases”, including
Frontiers in Immunology | www.frontiersin.org 4
mainly infections (e.g. Influenza A [hsa05164], Epstein-Barr
virus infection [hsa05169] or Legionellosis [hsa05134]), but
also cancer (e.g. Transcriptional misregulation in cancer
[hsa05202]) and inflammatory diseases (e.g. Systemic lupus
erythematosus [hsa05322]). However, gene expression was not
uniform across both viral infections, with significant under-
expression in COVID-19 compared to INFL patients. Core-
enriched genes from infectious diseases genes sets largely
overlapped with those from immune pathways, encompassing
both innate (e.g. Toll-like receptor [hsa04620], TLRs, NOD-like
receptor signaling [hsa04621], NLRs, RIG-I like receptor
signaling [hsa04622]) and adaptive immunity (e.g. Natural
Killer cell mediated cytotoxicity [hsa04650], T [hsa04660] and
B [hsa04662] cells signaling), which were also under-expressed
among COVID-19 compared to INFL. Under-expression tended
to decrease with increased COVID-19 severity. Conversely, a
group of pathways covering “cellular processes” (e.g. cell cycle
A B C D

FIGURE 1 | Differential genes expression analysis. (A, B) Volcano plots showing the distribution of log2 fold changes and P-values of differentially expressed
genes (DEGs) among SARS-Cov-2 infected patients represented in yellow (no oxygen support, OXY0), orange (oxygen support, OXY1) and red (intubated with
sampling within 7 days in hospital, TUBE EARLY), respectively, using non-infected controls (HEALTHY, green shadow, A) and Influenza-infected patients
(INFLUENZA, blue shadow, B), as a reference group. Genes with a -log10 (P-value) not significant once adjusted for multiple testing (adjusted P > 0.01) are
represented in black (C). Venn diagram showing the number of up or down regulated DEGs in each comparison, and number of common DEGs between
comparisons. (D) Principal component analysis of gene expression in Influenza, severe and non-severe SARS-CoV-2 infected patients. The figure presents the
two major principal components using the 10% of most significant DEGs. Ellipses were drawn using the stat-ellipse function of the R ggplot2 package, using
default parameters.
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[hsa04110]) and “metabolism” (e.g. oxidative phosphorylation
[hsa00190]), sharing a number of core-enriched genes, were up-
regulated in COVID-19 compared to INFL, with a gradient from
less to more severe COVID-19.

Immunological Transcriptomic Features of
Patients Infected With SARS-CoV-2 and
Influenza Viruses
To translate the impact of differentially expressed genes (DEGs)
in terms of biological responses, we systematically analyzed sets
of genes matching specific immune processes (Figure 2).
Representative sets available from KEGG (22), Gene Ontology
[GO (24, 25)], Reactome (26) or Human Genome Organization
(HUGO) Gene Nomenclature Committee [HGNC (27)] were
selected (Supplementary Table 2) and shown by heatmaps and/
or volcano plots, with specific genes data detailed on box-plots.
For the sake of simplicity, expression patterns across the different
groups were regarded as “ascending” or “descending”, when
expression levels progressively increased, or decreased,
respectively, from HLTY to OXY0, OXY1, TUBE early, and
IFNL (Supplementary Figure 3 first and second rows). Patterns
were qualified to have a “hill” or “valley” shape, when highest and
Frontiers in Immunology | www.frontiersin.org 5
lowest expression levels were seen in COVID-19 (OXY1 or
TUBE early), and the lowest and highest in the other (HLTY
and INFL), respectively (Supplementary Figure 3 third and
fourth rows). Because the TUBE late group often represented a
convalescent status, their gene expression levels were ignored in
this pattern description.

When considering innate immune pathways, we first
analyzed sets of genes encoding PRR and their signaling
effectors, ISGs as well as cytokines/chemokines. Most genes
involved in antiviral signaling were over-expressed both in
TUBE early and INFL patients compared to HLTY
(Supplementary Figure 4; pathways involved in the detection
of Influenza A and other RNA viruses), but gene expression was
significantly lower among COVID-19 than among INFL
(Figure 3). Most striking was the under-expression of genes
involved in viral recognition (e.g. TLR7, UNC93B, RIG-I/DDX58,
Figure 3), as well as genes encoding downstream signaling
molecules and transcription factors (e.g. TRIF/TICAM1,
MYD88, IRF7, Figure 3), with the notable exception of IRF4,
in COVID-19 compared to INFL (Figure 4). Moreover,
compared to INFL there was also a significant under-
expression of genes involved in interferons signaling and ISGs
FIGURE 2 | Heatmap of differentially expressed genes (DEGs) sets for indicated pairwise comparisons. Groups used for comparisons (columns) include SARS-Cov-
2 infected patients with no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days (TUBE early) or >7 days (TUBE late) after hospital
admission, Influenza virus (INFL) infected patients and non-infected controls (HLTY). Significantly (adj. P-Value <=0.05) enriched genes sets (rows) are selected from
different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2), and their normalized enrichment score (NES) is indicated in each cell and used
for coloring.
May 2021 | Volume 12 | Article 666163

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bibert et al. COVID-19 Versus Influenza Transcriptomic Signatures
FIGURE 3 | Differentially expressed genes (DEGs) involved in innate immune detection of viruses. Upper panel: for each comparison indicated in the volcano plot
header, the distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes included in the SIG_PRR gene set
(innate immune detection of viruses and downstream signal transduction). Genes’ sets are selected from different GO, REACTOME and/or KEGG pathways (see
Supplementary Table 2). The dotted horizontal gray line indicates the limit under which –log10(P-value) becomes non significant once adjusted for multiple testing
(adjusted P > 0.01). Lower panel shows detailed expression levels for selected genes. Groups used for comparisons include SARS-Cov-2 infected patients (no
oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza virus
[INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are
indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6661636
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FIGURE 4 | Differentially expressed interferon-stimulated genes. Upper panel: for each comparison indicated in the volcano plot header, the distribution of log2 fold
changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes included in the ISGs (interferon-stimulated genes) gene set. Genes’ sets
are selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line indicates the limit under which
–log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed expression levels of selected genes
involved in IFN signal transduction and IFN stimulated genes in the different groups of patients. Groups used for comparisons include SARS-Cov-2 infected patients
(no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza
virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are
indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bibert et al. COVID-19 Versus Influenza Transcriptomic Signatures
(e.g. STAT2, IRF9, SOCS1, MX1, OAS2, TRIM6, Figure 4). Most
of these genes had expression levels increasing from less to more
severe COVID-19 (“ascending” pattern). Gene expression levels
for cytokines and chemokines could not always be assessed
(Supplementary Figure 5); when measurable, their expression
levels and that of their receptors tended to be lower among
COVID-19 compared to INFL, although the pattern was not
uniform and depended on structural groups. In particular, genes
coding for cytokines from the IL-4-like and IL-1-like subfamilies
had lower expression levels among OXY0 and/or OXY1, whereas
those belonging to the TGF-B family tended to have higher
expression levels among OXY0, compared to INFL.

When considering innate immune cells, we first observed that
genes involved in NK cell functions had an overall lower
expression levels in TUBE early compared to HLTY
(Supplementary Figure 6 right panel) and in each COVID-19
group compared to INFL (Figure 5 and Supplementary Figure 6
left panel). Some genes important for NK cell maturation were
significantly under-expressed, with a “valley” pattern (e.g.
Killer-cell inhibitory-receptors such as KIR2DL1 or KIR3DL2,
as well as TBX21) or an “ascending” pattern (FCGR3B,
Figure 5). Genes important for NK cell cytotoxicity also
harbored a “valley” (perforin/PRF1, granulysin/GNLY, KSP37/
FGFBP2) or “ascending” pattern (CD107a/LAMP1). In contrast,
NKG2A/KLRC1 and LAG3 were not overexpressed and CD94/
KLRD1 was even under-expressed among TUBE early compared
to both HTLY (Supplementary Figure 6 left panel) and INFL
(Figure 5). Genes involved in macrophage and neutrophils were
over-expressed in patients infected with viruses (COVID-19 and
INFL) compared to HLTY (“ascending” pattern, e.g. CLEC4D
and CD55 , Figure 6). Genes involved in neutrophil
degranulation (e.g. GGH) and/or other neutrophil functions
(S100A8/9 and S100A12) had a peak of expression in the
TUBE early group (“hill” pattern, Figure 6).

Adaptive immune pathways were notable for genes involved in
antigen presentation through MHCI with proteasome, MHCII
with endosome, T helper differentiation, proliferation/maturation/
function of T and B cells. Genes involved in antigen presentation
through the MHC I had higher expression levels among virus-
infected patients (TUBE early and INFL) compared to HLTY, with
an “ascending” pattern (e.g. HLA-A, HLA-B, TAP-1, TAP-2,
Figure 7 and Supplementary Figure 7). In contrast, genes
involved in antigen presentation through MHC II presented a
“valley” pattern, with under-expression among TUBE early
compared to HLTY and COVID-19 compared to INFL, which
strikingly predominated in TUBE early (e.g. HLA-DRA, HLA-
DRB1, HLA-DQA1, CD74/Ii/CLIP/SLIP, Figure 7).

Genes involved in T cell functions had contrasting
expression levels (Supplementary Figures 8, 9). A majority of
them had a “valley” (e.g. CD4, ZAP70, Figure 8; ADA, GATA3,
Supplementary Figure 8) or “descending” pattern, with
expression levels decreasing from HLTY to COVID-19 and
INFL (e.g. CD8, Figure 8; IL7R/IL7Ra, CD3D, IL2RA
Supplementary Figure 8). However, some genes still presented
an “ascending” pattern, such as the regulatory gene LILRB2
(Figure 8) or a “hill” pattern (e.g. JAK3, IL2RG/gC Figure 8).
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When focusing on T cell subclasses, some markers of memory
were over-expressed (e.g. SELL/CD62L Figure 8, CD103/ITGAE
Supplementary Figure 8), while others were under-expressed or
unchanged (e.g. CCR7, CD27, CD28 Supplementary Figure 8) in
COVID-19 compared to HLTY and INFL, without matching a
specific type of memory T cell. Similarly, some markers of T cell
activation were over-expressed (e.g. CD38, KI-67/MKI67
Supplementary Figure 8) while other were under-expressed
(e.g. IL2RB/CD122, Figure 8, CD69, Supplementary Figure 8)
among COVID-19 compared to INFL or HTLY. There were
no distinct expression patterns in genes involved in T helper
differentiation, except for a decreased expression in TH2-related
genes among OXY0 compared to INFL (Supplementary
Figures 10-11). Finally, exhaustion genes such as PDCD1/PD-1
or regulatory genes such as FOXP3 were under-expressed among
COVID-19 compared to INFL or HTLY, mainly among TUBE
early patients (Supplementary Figure 8).

In general, genes involved in B cell functions had
higher expression levels among TUBE early than HLTY
(Supplementary Figure 12 lower panel). However, the
patterns were inconsistent; some genes showed a “hill” pattern
(ILR2G, TNFRSF13B/TACI, PPP2R3C, Figure 8), while other
showed a “descending” pattern (CD40LG, Figure 8, CD19, UNG,
Supplementary Figure 13), as opposed to the “ascending”
pattern observed for the Bruton’s tyrosine kinase (BTK,
Figure 8). Immunoglobulin-encoding genes were markedly
over-expressed in COVID-19 compared to HLTY and INFL,
and peaked in OXY1/TUBE EARLY (“hill” pattern, e.g. IGHM,
IGHA1, IGHG1, JCHAIN, Figure 9).

Most genes involved in the complement cascade were over-
expressed in TUBE early and INFL compared to HTLY
(Supplementary Figure 14 right panel) but their expression was
usually lower among COVID-19 compared to INFL (“ascending”
pattern, e.g. C1QC, C2, C5), with the exception of C3, that, was
over-expressed in TUBE early compared to INFL patients
(Figure 10 and Supplementary Figure 14 left panel). Genes
encoding blood groups, some of which are part of the
complement cascade (e.g. C4A, C4B) or are involved in
complement activation (e.g. CR1, CD55, ABO) or regulation
(e.g.CD59, GYPA, GYPB) were overexpressed solely among
TUBE patients (e.g. ABO, GYPA, XK, Figure 10 and
Supplementary Figure 15). Overall, there was no differential
expression for genes involved in the coagulation cascade, except
for a decreased expression among OXY0 compared to INFL.

Genes involved in metabolism, such as oxidative
phosphorylation, were over-expressed mainly in TUBE patients
compared to all others (“hill” pattern, e.g. NDUFV2, UQCRQ,
ATP5PF, ACAT1, HIBCH and B4GALT2, Figure 11). Genes
involved in cell cycle, were over-expressed among COVID-19
compared to both HLTY controls and INFL, with a “hill” pattern
(e.g. PTTG1, CDC6, MAD2L1, E2F1, Figure 12). Accordingly,
regulator genes (e.g. CDKN1C and TP53, Figure 12) presented a
“valley” pattern, with under expression in SARS-CoV-2 infected
patients (mainly in TUBE early) compared to both HLTY and
INFL patients. Interestingly, genes involved in cell cycle were
largely over-expressed among COVID-19 patients compared to
May 2021 | Volume 12 | Article 666163
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Bibert et al. COVID-19 Versus Influenza Transcriptomic Signatures
FIGURE 5 | Differentially expressed genes (DEGs) involved in NK cells function and regulation. Upper panel: for each comparison indicated in the volcano plot
header, the distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes involved in NK cells function and
regulation. Genes’ sets are selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line indicates
the limit under which –log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed expression levels of
selected genes involved in NK cells function and regulation in the different groups of patients. Groups used for comparisons include SARS-Cov-2 infected patients
(no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza
virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are
indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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FIGURE 6 | Differentially expressed genes (DEGs) involved in macrophages and neutrophils functions. Upper panel: for each comparison indicated in the volcano
plot header, the distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes involved in neutrophils
degranulation. Genes’ sets are selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line
indicates the limit under which –log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed
expression levels of selected genes involved in macrophages function and neutrophils degranulation in the different groups of patients. Groups used for comparisons
include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7 days [TUBE
late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons between a
reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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FIGURE 7 | Differentially expressed genes (DEGs) involved in antigen presentation. Upper panel: for each comparison indicated in the volcano plot header, the
distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red and blue dots indicate genes involved in antigen presentation
through the MHC I and MHCII respectively. Genes’ sets are selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The
dotted horizontal gray line indicates the limit under which –log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel
shows detailed expression levels of selected genes involved in antigen presentation through the MHCI and MHC II in the different groups of patients. Groups used for
comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7
days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons
between a reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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FIGURE 8 | Differentially expressed genes (DEGs) involved in T cells and B cells functions. Expression levels of selected genes involved in T and B cells function and
regulation. Groups used for comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within
7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of
pairwise comparisons between a reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second
line, respectively.
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FIGURE 9 | Differentially expressed immunoglobulin encoding genes. Upper panel: for each comparison indicated in the volcano plot header, the distribution of log2
fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate immunoglobulin encoding genes. Genes’ sets are selected from different
GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line indicates the limit under which –log10(P-value) becomes
non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed expression levels of selected immunoglobulin encoding genes in
the different groups of patients. Groups used for comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation
with sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY].
Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on
the first and second line, respectively.
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FIGURE 10 | Differentially expressed genes (DEGs) involved in complement system and blood group. Upper panel: for each comparison indicated in the volcano
plot header, the distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red and blue dots indicate genes involved in
complement system and blood group respectively. Genes’ sets are selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2).
The dotted horizontal gray line indicates the limit under which –log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower
panel shows detailed expression levels of selected genes involved in complement system and blood groups in the different groups of patients. Groups used for
comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7
days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons
between a reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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FIGURE 11 | Differentially expressed genes (DEGs) involved in cell metabolism. Upper panel: for each comparison indicated in the volcano plot header, the
distribution of log2 fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes involved in cell metabolism. Genes’ sets are
selected from different GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line indicates the limit under which –

log10(P-value) becomes non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed expression levels of selected genes
involved in cell metabolism in the different groups of patients. Groups used for comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0],
oxygen support [OXY1], intubation with sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients
and non-infected controls [HLTY]. Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are indicated below the x axis.
Ref. is taken as [INFL] and [OXY0] on the first and second line, respectively.
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FIGURE 12 | Differentially expressed genes (DEGs) involved in cell cycle. Upper panel: for each comparison indicated in the volcano plot header, the distribution of
log2 fold changes and P-values of all detected genes is shown as gray dots. Red dots indicate genes involved in cell cycle. Genes’ sets are selected from different
GO, REACTOME and/or KEGG pathways (see Supplementary Table 2). The dotted horizontal gray line indicates the limit under which –log10(P-value) becomes
non significant once adjusted for multiple testing (adjusted P > 0.01). Lower panel shows detailed expression levels of selected genes involved in cell cycle in the
different groups of patients. Groups used for comparisons include SARS-Cov-2 infected patients (no oxygen support [OXY0], oxygen support [OXY1], intubation with
sampling within 7 days [TUBE early] or >7 days [TUBE late] after hospital admission), Influenza virus [INFL] infected patients and non-infected controls [HLTY].
Adjusted P-values of pairwise comparisons between a reference group (Ref.) and another group are indicated below the x axis. Ref. is taken as [INFL] and [OXY0] on
the first and second line, respectively.
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both healthy controls and patients infected with Influenza (Data
not shown).

Transcriptomics Signatures Associated
With SARS-CoV-2 Infection and Its
Severity
Finally, we investigated whether differential expressed gene
signatures may be used to characterize SARS-CoV-2 infected
patients (compared to the other) or severe versus non-severe
presentation of COVID-19 (Table 1). We first identified genes
Frontiers in Immunology | www.frontiersin.org 17
significantly differentially expressed in all acute COVID-19
groups (OXY0, OXY1 and TUBE early) compared to INFL,
and, to be even more stringent, to HLTY as well (Supplementary
Table 4). A total of 209 and 6 genes were significantly over- and
under-expressed, respectively, in all comparisons (adjusted P
<=0.01). Among the most significantly over-expressed genes, a
large number encoded immunoglobulins (N=67, e.g. JCHAIN,
adj P=3.5E-09 for TUBE versus INFL) or were related to cell
cycle (N=44, e.g. CDC6, adj P=6.3E-07 for the same
comparison). The most significantly down-regulated gene was
TABLE 1 | Most significant genes signatures for SARS-CoV-2 infection (upper panel) and severe COVID-19 presentation (lower panel).

COVID-19 vs INFL and HLTY OXY0 vs INFL OXY1 vs INFL TUBE early vs
INFL

OXY0 vs HLTY OXY1 vs HLTY TUBE early vs HLTY

log2 FC padj log2 FC padj log2 FC padj log2 FC padj log2 FC padj log2 FC padj

Over-expressed (top-10)
CDC6 0.92 2.5E-04 1.37 5.8E-09 1.50 6.3E-07 2.71 1.8E-27 3.14 4.0E-47 3.28 1.9E-32
IGLV3-25 3.28 4.1E-10 4.19 7.1E-20 3.22 7.0E-08 4.71 1.6E-23 5.60 5.1E-43 4.66 2.9E-19
JCHAIN 2.43 1.6E-09 2.87 7.3E-16 2.72 3.5E-09 3.67 8.1E-24 4.10 5.2E-39 3.97 8.9E-23
RRM2 1.08 1.4E-04 1.57 4.1E-09 1.55 5.3E-06 2.77 8.1E-24 3.22 6.3E-42 3.23 3.4E-26
IGLV3-19 2.09 3.0E-05 3.93 6.1E-17 4.10 1.1E-11 3.44 1.0E-12 5.22 2.6E-36 5.40 4.4E-24
IGLV3-1 2.35 3.2E-07 3.91 6.2E-21 2.65 6.5E-07 3.38 2.9E-15 4.91 1.3E-40 3.68 2.9E-15
SDC1 2.78 1.5E-07 3.51 2.2E-13 2.83 3.0E-06 4.78 3.5E-21 5.48 2.6E-35 4.85 1.5E-18
IGLV3-10 2.99 4.9E-08 3.86 6.9E-15 3.36 1.5E-07 4.50 9.6E-19 5.33 3.6E-34 4.86 3.3E-18
IGHV1-24 3.52 1.9E-08 5.03 2.2E-19 3.53 6.9E-07 4.49 8.1E-15 5.97 2.3E-33 4.52 4.5E-13
BHLHA15 2.04 2.1E-06 2.81 1.5E-12 2.38 1.9E-06 3.71 6.8E-18 4.44 5.2E-32 4.05 2.4E-18
Under-expressed (N=6)
HDAC6 -0.36 2.6E-05 -0.30 1.2E-04 -0.46 9.7E-06 -0.45 4.0E-08 -0.39 3.0E-08 -0.56 1.1E-09
UNK -0.26 4.9E-03 -0.28 1.2E-03 -0.59 8.0E-08 -0.26 3.1E-03 -0.27 2.3E-04 -0.60 3.3E-10
ZNF384 -0.40 7.6E-08 -0.22 1.2E-03 -0.30 4.6E-04 -0.34 5.2E-07 -0.16 5.8E-03 -0.26 6.0E-04
TGFBI -0.63 7.2E-03 -0.67 2.2E-03 -1.47 6.3E-07 -0.63 5.1E-03 -0.69 5.3E-04 -1.49 7.5E-09
UBAP2L -0.31 1.7E-03 -0.25 6.3E-03 -0.42 2.2E-04 -0.28 3.2E-03 -0.23 7.0E-03 -0.41 5.1E-05
DIAPH1 -0.41 1.2E-03 -0.33 4.7E-03 -0.43 4.1E-03 -0.40 7.8E-04 -0.33 1.5E-03 -0.46 6.4E-04

TUBE early vs TUBE early vs
OXY0

TUBE early vs
OXY1

TUBE early vs
INFL

TUBE early vs
HLTY

Control : OXY0 vs
HLTY

OXY0, OXY1, INFL and HLTY log2 FC padj log2 FC padj log2 FC padj log2 FC padj log2 FC padj

Over-expressed (top-10)
CATIP-AS1 2.99 2.1E-12 2.68 1.1E-11 1.82 1.3E-05 2.95 2.5E-15 -0.03 9.3E-01
MTCO1P12 3.77 2.2E-11 0.13 2.9E-06 8.05 1.7E-11 0.26 5.4E-11 -0.28 3.0E-01
GYPA 3.89 5.2E-10 3.25 1.9E-08 3.16 4.4E-07 4.22 3.0E-14 0.12 6.4E-01
CDK5RAP2 2.35 1.2E-09 2.07 1.5E-08 1.15 2.1E-03 2.74 1.5E-15 0.25 3.2E-01
MUC1 1.63 2.2E-08 1.52 3.5E-08 1.25 1.9E-05 1.98 3.1E-14 0.26 2.4E-01
NOL3 1.24 1.2E-09 0.54 2.7E-03 0.55 6.1E-03 1.67 1.0E-19 0.37 2.5E-02
CA1 4.82 2.1E-12 2.76 5.5E-06 2.47 1.3E-04 3.97 1.4E-11 -0.35 2.0E-01
EXTL3-AS1 1.76 5.9E-10 1.46 4.5E-08 0.83 2.4E-03 1.82 4.6E-13 0.04 8.7E-01
SMARCD3 1.50 2.0E-08 0.79 8.9E-04 0.94 4.1E-04 2.07 4.6E-18 0.46 2.2E-02
SERINC2 2.30 6.8E-12 1.55 6.2E-07 1.02 1.5E-03 2.00 8.8E-12 -0.21 3.5E-01
Under-expressed (top-10)
ENSG00000186076.5 -0.04 1.7E-10 -0.02 1.5E-11 -0.02 1.2E-19 -0.16 2.7E-18 -0.06 8.0E-02
EVL -0.98 1.3E-07 -0.74 2.3E-05 -0.80 4.7E-07 -1.39 1.6E-16 -0.35 2.3E-02
DCTD -0.62 2.9E-08 -0.42 7.4E-05 -0.43 4.5E-06 -0.82 7.5E-17 -0.19 4.1E-02
IL2RB -1.22 8.2E-07 -1.06 6.6E-06 -1.10 2.1E-07 -1.81 7.4E-16 -0.49 1.2E-02
SPN -1.02 1.4E-07 -0.76 2.5E-05 -0.94 3.2E-08 -1.33 1.7E-14 -0.26 9.8E-02
CDKN1C -3.26 1.7E-10 -1.15 4.2E-03 -3.59 6.8E-16 -2.30 1.4E-07 0.66 4.1E-02
RUNX3 -1.03 9.7E-07 -0.92 4.5E-06 -1.01 3.0E-08 -1.44 7.2E-14 -0.32 5.5E-02
SCART1 -1.54 7.7E-08 -1.17 1.7E-05 -0.78 4.9E-04 -1.99 1.1E-14 -0.35 8.9E-02
IL10RA -0.61 1.6E-05 -0.52 1.3E-04 -0.79 2.4E-10 -0.93 3.8E-13 -0.29 1.5E-02
ZNF703 -2.03 1.7E-07 -1.26 3.1E-04 -2.22 6.0E-11 -2.22 1.2E-10 -0.11 6.7E-01
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expressed in OXY0 compared to HLTY (negative control).
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HDAC6 (adj P=9.7E-06 for TUBE versus INFL), an important
regulator of transcription. We then identified markers of severe
presentation of COVID-19 by selecting genes differentially
expressed in TUBE-early compared to OXY0, OXY1, INFL and
HLTY; to have an even more stringent selection, genes were
selected if they were not differentially expressed in OXY0
compared to HLTY (Supplementary Table 5). A total of 163
and 112 genes were over- and under-expressed, respectively
(adjusted P <=0.01). Among significantly over-expressed genes
in all indicated comparisons, some encode blood-groups (e.g.
GYPA, adj P=1.7E-10 in TUBE early vs OXY0, see above);
among significantly under-expressed genes in all indicated
comparisons, several were immune genes (e.g. IL2RB, adj
P=8.2E-07 and IL10RA, adj P=1.6E-05, for TUBE early
versus OXY0).
DISCUSSION

In this study, we describe major differences in the blood
transcriptomic profiles of COVID-19 patients compared to
subjects affected with influenza and between COVID-19 of
different level of severity. One of the most striking features was
the low expression of ISGs in COVID-19 compared to INFL
patients. ISGs represent a group of genes transcriptionally
activated by IFN signaling, which is essential for both innate
and adaptive antiviral immunity against a wide range of
pathogens (28, 29). ISGs restrict viral replication and spread by
inhibiting key steps of viral life cycle (30, 31). The down-
regulation of ISGs is consistent with numerous immune escape
mechanisms developed by CoVs to enhance their replication and/
or survival in the host (32, 33). Specifically, CoVs have developed
mechanisms to evade the detection by PPRs including MDA5
[NSP15 encoded by several CoVs (34, 35)], RIG-I/RLRs[(SARS-
CoV-1 N-protein (36)], and PKR [MERS-CoV NS4a (37, 38)],
their signaling molecules, such as MAVS/TOM70 [SARS-CoV-2
ORF9b (39, 40)] and TBK1 [MERS-CoV ORF4b (41)], as well as
the transcription factors IRF3 [SARS-CoV-1 ORF8b (42)] and
NF-kB [MERS-CoV ORF4b (43)]. Similarly, CoVs inhibit
signaling molecules downstream of IFN production, including
IFNAR1 [SARS-CoV-1 3a protein (44)] and STAT1 [SARS-CoV-
1 ORF6 (45)]. The under-expression of genes involved in viral
detection (such as TLRS or RLRs) observed in this study may be
due to additional mechanisms, including genetic variation in the
host (46) or virus-dependent transcriptional regulation.
Furthermore, conditions associated with a severe presentation
of SARS-CoV-2, such as advanced age, diabetes and cancer (47)
are characterized by an impairment in type I and III interferon
responses (48).

While ISGs expression levels were lower in COVID-19
compared to INFL patients, expression levels of IFNs
themselves, were not detectable in the peripheral blood,
similarly to other transcriptomic studies (49). In a cellular
model of SARS-CoV-2 infection, the production of type I and
III IFNs was relatively low at low multiplicity of infection (MOI),
but not at higher MOI, suggesting that IFN induction is initially
Frontiers in Immunology | www.frontiersin.org 18
limited, but can increase once a high level of viral replication is
achieved (50). Conversely, in an animal model of SARS-CoV,
robust viral replication was associated with delayed IFN type I
responses, which subsequently leads to increased inflammation
and lung damage (51). In cellular models, MERS-CoV induced a
delayed and attenuated IFN type I response compared to those
induced by human coronavirus 229E (HCoV-229E) (52).
Similarly, SARS-CoV-2 patients requiring invasive mechanical
ventilation presented the highest amount of IFNa at days 8 to 10
of symptom onset (53). Recent studies have also suggested that
antibodies directed to IFN may be responsible for delayed
antiviral immunity (54). Single-cell RNA sequencing revealed a
suppression of IFN signaling among COVID-19 patients
compared to Influenza patients (55). In addition, the same
technique highlighted the key role of type I IFN in exacerbating
inflammation in severe COVID-19 patient compared to what
observed in healthy donors and in severe influenza patients (56).
Altogether, these observations indicate that unfavorable
outcomes in COVID-19 may result from the delayed or
impaired production of type I and III IFNs, or their subsequent
inhibition by antibodies, with compromised virus control and
prolonged activation of inflammatory cytokines. This is in
agreement with previously reported data from Galani et al. (57).

Natural killer (NK) cells and effector T cells both target
infected cells exposing viral peptides through the MHC I. As
reported for the SARS (58), the amount of both NK cells and T
cells was highly decreased in SARS-CoV-2 patients (59–61). In
addition, the frequencies of NK cells expressing CD16 and/or
KIRs were reduced in the blood of patients infected with SARS-
CoV-2 (61). Consistent with this observation, we found reduced
expression of CD16, KIRs and TBX21 in SARS-CoV-2 infected
patients compared to INFL patients. These data suggest that the
former patients harbor immature NK cells, which may not be
able to migrate towards infected tissues. Furthermore, we
observed that SARS-CoV-2 infected patients had lower
expression of genes involved in NK cell cytotoxicity such as
perforin (PRF1), granulysin B (GNLY) and CD107a (LAMP1), an
observation which is consistent with studies analyzing
intracellular expression patterns of NK cells from COVID-19
patients (59, 62). Immune checkpoints such as NKG2A/KLRC1,
a co-receptor of CD94/KLRD1 which interacts with HLA-E, as
well as inhibitory receptors such as LAG3 were upregulated in
SARS-CoV-2 infected patients compared to healthy individuals
(59). In our study, NKG2A/KLRC1 and LAG3 were not
overexpressed and CD94/KLRD1 was even under-expressed
among TUBE EARLY patients compared to both HTLY and
INFL, suggesting that the level of inhibition may depend on the
severity level of the disease. Genes involved in neutrophil
degranulation and/or other neutrophil functions had increased
expression levels in patients with severe manifestations of
COVID-19, such as S100A8/9 and S100A12, encoding
calprotectin and calgranulin, respectively, as recently reported
(63). However, such responses may be a general feature of severe
lung infection rather than a COVID-19-specific feature (64, 65).

Another relevant feature of transcriptional profiles observed
in this study is the low expression of MHC I and MHC II
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encoding genes among patients infected with SARS-CoV-2
compared to INFL patients. Down-regulation of genes involved
in antigen presentation through both the MHC I and MHC II
have been reported in lung epithelial cells infected with MERS-
CoV, but not with SARS-CoV-1, highlighting important
differences in viral escape mechanisms among different CoVs
(66). Inhibition of both MHC I [reviewed in (67)] and MHC II
[reviewed in (68, 69)] represents well-known mechanisms
developed by viruses to escape immune response. Specifically,
Herpesviridae can prevent MHC I mediated antigen presentation
by interfering with the generation of antigenic peptides by the
proteasome (EBV), preventing their transport across the
endoplasmic reticulum towards the peptide-loading complex
(HSV, CMV) and/or by avoiding adequate presentation of this
complex on cell surfaces [CMV, KHSV, reviewed in (67)].
Interestingly, our study shows that both transporters associated
with antigen processing (TAP) 1 and 2 had lower expression
levels in SARS-CoV-2 patients compared to patients with
influenza, revealing a potential immune escape mechanism for
SARS-CoV-2. In addition, it was recently proposed that the
protein encoded by SARS-CoV-2 open reading frame (ORF) 8
can directly interact with MHC I molecules and significantly
down-regulate their surface expression on various cell types (70).
Since ORF8 is among the viral sequences having the less
homology among CoVs, differences in ORF8 may explain
differential capability among CoVs to inhibit antigen
presentation through MHC I (69). Altogether, our results
suggest that SARS-CoV-2 restrains antigen presentation and T
cell mediated immune responses.

Activation of CD4+ T cells by interactions with peptides bound
to MHC II is a crucial step in clearance of most pathogens. Many
viruses have developed ways of blocking antigen presentation,
although fewer mechanisms or viral interference have been
described for MHC II compared to MHC I (69). Specifically,
viruses can target MHC class II transactivator (CIITA), a key
molecule in the control of MHC II proteins transcription (EBV,
KHSV, HIV), the invariant chain protein (Ii/CD74), which co-
assembles with MHC II ab heterodimers in the endosome (CMV,
EBV), its associated peptide (CLIP; HCV), as well as MHC II
proteins themselves, taken either alone (CMV, EBV) or during their
interaction with the T cell receptor [EBV; reviewed in (69)].
Accordingly, we observed that genes encoding proteins involved
in MHC II activation (including CTSB, Ii/CD74 and CLIP) had low
expression levels in patients infected with SARS-CoV-2 compared
to INFL patients, revealing another potential immune escape
mechanism for SARS-CoV-2.

T cells play a crucial role in antiviral immunity and were
reported to be decreased in SARS-CoV infection (59–61)
[reviewed in (71)] but their phenotypical and functional
alterations due to COVID-19 are poorly characterized. While
CD4 T helper cells contribute to B cell activation and subsequent
antibody production, CD8 T cells kill infected cells and reduce
viral burden. We observed reduced expression of CD4 in all
severity types of COVID-19 patients compared to HLTY and
INFL patients; in contrast, CD8 was under-expressed solely
among TUBE early patients compared to HTLY, with levels
Frontiers in Immunology | www.frontiersin.org 19
similar to those of INFL patients. Altogether, these data suggest a
more specific burden of SARS-CoV-2 on CD4 T cells than over
CD8 T cells. Persistence of high expression levels of CD8 among
OXY0 and OXY1 patients may result from the increased
expression of IRF4 which is known to enhances CD8
expression (72), and that showed an expression pattern
contrasting that of the other ISGs. Conversely, reduced
expression of CD8 T cells in TUBE early patients may result
from CD8 T cell infiltration of the lungs, as reported by
others (73).

When analyzing the differential expression of memory
markers in our dataset, we were not able to characterize
specific T cell subsets, a finding that may be a consequence of
the experimental design of the study (as a whole blood vs. single
cells were considered) or of the lack of a well-characterized T cell
memory pattern in the patients themselves. When considering
the differential expression of T cell markers of activation, we
noted a significantly enhanced expression of CD38, Ki-67/MK67
and CD44 [which is consistent with the observation by Braun
et al. (7)], but not of HLA-DR (7, 74), CD69 (75) and CD25 (76).
Furthermore, we noted an over-expression of CSF1/GM-CSF
correlated with COVID-19 severity, a finding that may lead to
increased inflammation in severe patients, as suggested by Zhou
et al. (77). Interestingly, GM-CSF+ CD4 T cells have been
associated with inflammation in autoimmune diseases (78). We
also observed a decreased expression of IL2RB/AKA CD122,
which correlated with severity and may result in T cell
deregulation (79). In contrast to previous studies (80), the
exhaustion marker PD-1 was not over-expressed, but rather
under-expressed, among TUBE early patients, which may
reflect a defect in TCR signaling and/or in effector T cells
activation. Altogether, the expression of T cell markers of
memory and activation was contrasted, suggesting an overall
dysregulation of T cell activity (81).

Humoral immune responses also play an important role in
the clearance of SARS-CoV-2 and the establishment of an
immunological memory (82). SARS-CoV-2 elicits a strong B
cell response with previously described kinetics (83, 84). Our
data reveal a dramatic increase in the expression of
immunoglobulin encoding genes of most classes (IGHM,
IGHA, IGHG) in COVID-19 compared to HLTY and INFL
subjects, with a peak among OXY1 and/or TUBE-early
patients. There was also an increased expression of J-CHAIN,
which contribute to polymer formation of secreted IgM and IgA,
thereby enhancing antigen avidity and viral binding (85). These
findings are consistent with the over-expression of genes
involved in B cell differentiation and antibody class switching
(CD40L, UNG, ICOS, BAFFR, CD19 and TACI) in OXY0 and
OXY1 compared to INFL patients, with the exception of the
Bruton’s tyrosine kinase (BTK). Paradoxically, antibodies can
play a deleterious role in SARS-CoV-2 pathogenesis.
Opsonization of anti-spike antibodies allow SARS-CoV
entering non-ACE2-expressing cells, which harbor Fc-g-RIIA,
a receptor that happened to be over-expressed in TUBE early
patients (86, 87). Excessive antibody production together with
presentation of host proteins resulting from prolonged tissue
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destruction may enhance auto-reactive responses contributing to
disease severity (88, 89). In addition, antibodies targeting SARS-
CoV epitopes were shown to cross-react with cytokines, such as
IL-11 (90, 91); recent studies also revealed presence of antibodies
targeting type-I IFN in COVID-19 patients (54). Single cells
transcriptome of peripheral blood mononuclear cells in both
COVID-19 and Influenza-infected patients revealed an
enrichment of plasma cells in COVID-19 patients which has
been correlated with the production of multiple protective
neutralizing antibodies (92). Altogether, these data suggest an
important activation of B cells with increased antibody
production in COVID-19 compared to INFL patients. Further
studies are needed to determine whether this strong response
results from specific features of the virus, from the absence of
previous exposure to its antigens, and to which extent they
contribute to an adverse outcome.

The complement and coagulation systems are increasingly
reported to play a relevant role in the pathogenesis of COVID-19
(93). Several studies have revealed that SARS-CoV-2 induced the
activation of several complement pathways (94, 95).
Complement system is based on the activation and cleavage of
proteins that cannot be addressed with transcriptomic data.
Interestingly, we observed an increased expression of
complement component-encoding genes in both COVID-19
and INFL compared to HLTY, with patterns not strikingly
different in patients infected with both viruses. Some genes
were slightly under-expressed among OXY0 compared to INFL
(C1qrs, C2, C5); in contrast, the complement component C3 was
over-expressed in TUBE early patients compared to INFL
patients. Activated C3 can exacerbate SARS-CoV-associated
acute respiratory distress syndrome (ARDS) (95). This suggests
that, while the activation of the complement exists in both
COVID-19 and in INFL, its persistence over a longer period of
time in COVID-19 may contribute to inflammation, tissue
damage, coagulation and neutrophil activation, leading to
organ injury. This is consistent with the significant increase in
the expression of neutrophil degranulation-associated genes
observed among TUBE early compared to INFL patients.
There was no definite profile in the expression of genes
involved in the coagulation cascade among COVID-19 patients
compared to INFL. In contrast, we observed a strong over-
expression of blood group encoding genes in TUBE early/late
patients compared to the other groups. Blood groups have been
shown to change the immune response to infections (96). Some
of these genes encode proteins involved in the pathogenesis of
viral infections, such as GYPA, which codes for glycophorin A, a
protein considered as the major receptor for different viruses on
the red blood cell surface (97–99). Others, such as those of the
Knops blood group system, play a role in the activation and/or
modulation of the complement cascade (100, 101). However, it
remains unclear whether the overexpression of blood-group
genes is related to the pathogenesis of COVID-19 or reflects a
general activation of inflammation and/or hematopoiesis.

Increasing evidence reveals important interactions between
metabolic and immune functions (102). For instance, aerobic
glycolysis is induced during the activation of numerous immune
Frontiers in Immunology | www.frontiersin.org 20
cells, such as M1 macrophages (103), dendritic cells (104), T cells
(105), B cell (106, 107) and NK cells (108). In addition, oxidative
phosphorylation plays an important role in the activation of M2
macrophages (109, 110) and in the expression of transcription
factors that are essential for T and B cells. This is consistent with
the over-expression of genes involved in carbohydrate metabolic
pathways in OXY1 compared to INFL patients. Differential
expression of genes involved in the metabolism may also
contribute to disease conditions (111).

Viruses influence host cells to create a favorable environment
for their replication (112, 113). SARS-CoV non-structural
proteins 3b and 7a were shown to induce a G0/G1 phase arrest
in infected cells (114, 115). This phenomenon is probably limited
to the site of infection, i.e. respiratory epithelial cells, which are
infected in COVID-19. In contrast, the analysis of whole blood
transcriptome reveals significant overexpression of genes
involved in cell cycle, which probably reflects the activation of
immune cells distant from the site of infection. This over-
expression was present in all types of COVID-19 patients
(OXY0, OXY1 and TUBE) compared to both HTLY and INFL.
Further studies are needed to understand whether cell-cycle
activation is a specific feature of SARS-CoV-2 infection or a
component of the resulting inflammatory response.

To date, biomarkers of COVID-19 and/or COVID-19 severity
mostly included clinical and inflammatory characteristics (116).
To our knowledge, no study allowed for a large scale comparison
of gene expression between COVID-19 and another viral
infection. By using blood from patients with different severity
levels of COVID-19 as well as INFL and HLTY, we identified
and/or confirmed a number of very significant associations. In
particular, genes encoding immunoglobulins and those related to
cell cycle appear as a hallmark of COVID-19, as they were
significantly independently upregulated in each COVID-19
severity group (OXY0, OXY1 and TUBE early) compared to
both INFL and HLTY. Furthermore, a number of genes were
significantly over (e.g. genes encoding PRR, ISG, or related to
macrophages functions, degranulation of neutrophils, blood
groups, complement , metabol ism and/or oxidat ive
phosphorylation) or under-expressed (e.g. genes related to
MHC II, T-cell function or encoding immunoglobulins)
among TUBE early patients compared to the other severity
group (OXY0 and OXY1), thereby providing a potential basis
to predict COVID-19 outcome. However, new studies including
samples taken at different time-points of COVID-19 as well as
patients with infections due to other pathogens will be needed to
confirm these findings and/or establish reliable diagnostic tools
to predict COVID-19 outcome.

Like other transcriptomic studies, this work has several
limitations. The number of patients included in the different
groups was limited, a factor that may have restricted the number
of DEG reported. Samples were taken from whole blood and do
not necessarily reflect gene expression patterns in clinically
affected organs and/or individual cells. The sequencing depth
may have restricted differential detection of less abundantly
expressed genes. Finally, the samples were issued from a single
cohort of patients, and thus validation from other cohorts would
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be useful. This study provides a comprehensive overview of the
immune response among patients with different severity levels of
COVID-19. These include a dramatic decrease in IFN responses,
a reduced cytotoxicity activation in NK cells, an increased
degranulation of neutrophils, a dysregulation of T cells, a
dramatic increase in B cell function and immunoglobulin
production, as well as an important over-expression of genes
involved in metabolism and cell cycle. This study opens the way
to further investigations aimed at elucidating the molecular
mechanisms that underlay these observations. This study also
suggests that it may be possible to identify a signature which
could be useful to identify early patients at risk of
adverse outcome.
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Supplementary Figure 3 | Interpretation of boxplots (“ascending”,
“descending”, “hill” and “valley” pattern). Expression patterns across the different
groups were regarded as “ascending” or “descending” when median expression
levels progressively increased, or decreased, respectively, from HLTY to OXY0,
OXY1, TUBE-early, and INFL. Conversely, patterns were qualified to have a “hill” or
“valley” pattern, when peak and lowest median expression levels were seen in
COVID-19 (OXY1 or TUBE-early), and the lowest and higher in both HLTY and INFL,
respectively. Because TUBE-late often represented a convalescent status, their
gene expression levels were ignored in this pattern qualification.

Supplementary Figure 4 | KEGG map colored with pathview (117) “Influenza A”
pathway (hsa05164). Pathways involved in the detection of Influenza A overlap with
those involved in the detection of other RNA viruses including SARS-CoV-2.
Significantly DEGs (adj. P-Value < 0.01) are colored based on their log2 fold change.
Left panel: boxes are separated into 3 slots, for OXY0 versus INFL, OXY1 versus
INFL and TUBE-early versus INFL. Right panel: boxes are separated into 2 slots, for
INFL versus HTLY and TUBE_early versus HLTY.

Supplementary Figure 5 | KEGG map colored with pathview (117) “Cytokines-
cytokine receptor interaction” (hsa04060). Significantly DEGs (adj. P-Value < 0.01)
are colored based on their log2 fold change. Left panel: boxes are separated into 3
slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL. Right
panel: boxes are separated into 2 slots, for INFL versus HTLY and TUBE_early
versus HLTY.

Supplementary Figure 6 | KEGG map colored with pathview (117) “Natural killer
cell mediated toxicity” (hsa04650). Significantly DEGs (adj. P-Value < 0.01) are
colored based on their log2 fold change. Left panel: boxes are separated into 3
slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL. Right
panel: boxes are separated into 2 slots, for INFL versus HTLY and TUBE_early
versus HLTY.

Supplementary Figure 7 | KEGG map colored with pathview (117) “Antigen
processing and presentation” (hsa04612). Significantly DEGs (adj. P-Value < 0.01) are
colored based on their log2 fold change. Left panel: boxes are separated into 3 slots,
for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL. Right panel:
boxes are separated into 2 slots, for INFL versus HTLY and TUBE_early versus HLTY.

Supplementary Figure 8 | Box plots for selected genes involved in different T
cells functions.
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Supplementary Figure 9 | KEGG map colored with pathview (117) “T cell
receptor signaling pathway” (hsa04660). Significantly DEGs (adj. P-Value < 0.01)
are colored based on their log2 fold change. Left panel: boxes are separated into 3
slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL. Right
panel: boxes are separated into 2 slots, for INFL versus HTLY and TUBE_early
versus HLTY.

Supplementary Figure 10 | KEGG map colored with pathview (117) “Th1 and
Th2 differentiation” (hsa04658). Significantly DEGs (adj. P-Value < 0.01) are
colored based on their log2 fold change. Upper panel: boxes are separated into 3
slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL.
Lower panel: boxes are separated into 2 slots, for INFL versus HTLY and
TUBE_early versus HLTY.

Supplementary Figure 11 | KEGG map colored with pathview (117) “Th17
differentiation” (hsa04659). Significantly DEGs (adj. P-Value < 0.01) are colored
based on their log2 fold change. Upper panel: boxes are separated into 3 slots,
for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL. Lower
panel: boxes are separated into 2 slots, for INFL versus HTLY and TUBE_early
versus HLTY.

Supplementary Figure 12 | KEGG map colored with pathview (117) "B cell
receptor signaling pathway" (hsa04662). Significantly DEGs (adj. P-Value < 0.01)
are colored based on their log2 fold change. Upper panel: boxes are separated into
3 slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early versus INFL.
Lower panel: boxes are separated into 2 slots, for INFL versus HTLY and
TUBE_early versus HLTY.

Supplementary Figure 13 | Box plots for selected genes involved in B cells
functions/maturation/regulation.

Supplementary Figure 14 | KEGG map colored with pathview (117)
"Complement and coagulation cascades" (hsa04659). Significantly DEGs (adj. P-
Value < 0.01) are colored based on their log2 fold change. Left panel: boxes are
separated into 3 slots, for OXY0 versus INFL, OXY1 versus INFL and TUBE-early
versus INFL. Right panel: boxes are separated into 2 slots, for INFL versus HTLY
and TUBE_early versus HLTY.

Supplementary Figure 15 | Boxplots plots for complement, coagulation and
blood groups.
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