
Mapping the 3D Space
of Drug Resistance Variants

Inauguraldissertation
zur

Erlangung der Würde eines Doktors der Philosophie
vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät
der Universität Basel

von

Erblin Asllanaj

2023

Originaldokument gespeichert auf dem Dokumentenserver der
Universität Basel edoc.unibas.ch

This work is licensed under a Creative Commons Attribution-NonCommercial
4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


2

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Erstbetreuer:
Prof. Dr. Torsten Schwede

Zweitbetreuer:
Prof. Dr. Timm Maier

Externer Experte:
Prof Dr. Vincent Zoete

Basel, 21.02.2023

Prof. Dr. Marcel Mayor
Dekan



All happy families are alike; each unhappy family is
unhappy in its own way.

- Leo Tolstoy



Erblin Asllanaj
Mapping the 3D space of drug resistance

PhD thesis, University of Basel, Basel, Switzerland (2023)
With references, with summary in English



CONTENTS

Contents 5

1 Introduction 9

1.1 Variants . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.1 Variants: The Engine of Evolution . . . . . . . . 10
1.1.2 Variants in the Context of Protein Structure Biology 13

1.2 Antibiotic Drug Resistance And Protein Structure Biology 15
1.2.1 Overview of Antibiotic Drug Resistance . . . . . 15
1.2.2 Improved Diagnostics is Essential for Combat-

ing Antibiotic Resistance . . . . . . . . . . . . . 18
1.2.3 Biological Basis of Antibiotic Resistance . . . . 20
1.2.4 Tuberculosis as a Model Organism to Study An-

tibiotic Resistance Variants in their Structural
Context . . . . . . . . . . . . . . . . . . . . . 23

1.3 Naturally Occurring Resistance of Antibody Therapeutics 24
1.3.1 Overview over Antibody Therapeutics . . . . . . 24
1.3.2 Naturally Occurring Polymorphisms Affect Epi-

tope Recognition . . . . . . . . . . . . . . . . . 27

1.4 Thesis Objective . . . . . . . . . . . . . . . . . . . . . 30

2 Var3D: Structure-Based Variant Analysis Framework 39

2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.1.1 Software Architecture . . . . . . . . . . . . . . 40
2.1.2 Data Import . . . . . . . . . . . . . . . . . . . 42
2.1.3 Data Annotation . . . . . . . . . . . . . . . . . 43

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Deployment of Var3D . . . . . . . . . . . . . . 48



6 CONTENTS

2.2.2 Var3D Pipelines . . . . . . . . . . . . . . . . . 48

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Publication and Code Availability . . . . . . . . . . . . 51

3 TBvar3D: Mapping Antibiotic Resistance Variants in My-
cobacterium Tuberculosis on 3D Protein Structures 55

3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.1 Analysis Pipeline . . . . . . . . . . . . . . . . . 56
3.1.2 Curation of the WHO MTB Mutation Catalogue 58
3.1.3 Curation of the TBvar3d Target Structure Database 59

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 WHO Mutation Catalogue Data Set . . . . . . 62
3.2.2 TBvar3D Structure Data Set . . . . . . . . . . 69
3.2.3 Usage Of TBvar3D . . . . . . . . . . . . . . . 71
3.2.4 Case Study: Investigation of Bedaquiline-Resistant

Variants on Siderophore Exporter MmpL5 . . . . 76
3.2.5 Case Study: Compensatory Mutation on ahpE

for Isoniazid Resistance . . . . . . . . . . . . . 81

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.1 Limitations . . . . . . . . . . . . . . . . . . . . 85
3.3.2 Future Work . . . . . . . . . . . . . . . . . . . 85

3.4 Supplementary . . . . . . . . . . . . . . . . . . . . . . 87

4 Impact of Natural Polymorphisms in Antibody-Antigen Interfaces 97

4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.1 Overview . . . . . . . . . . . . . . . . . . . . . 98
4.1.2 Selection and Annotation of Therapeutic Anti-

bodies . . . . . . . . . . . . . . . . . . . . . . 99
4.1.3 Quality Control of Antibody-Antigen Complex

Structures . . . . . . . . . . . . . . . . . . . . 100
4.1.4 Identification of Antigen Proteins and Mapping

of Human Polymorphisms . . . . . . . . . . . . 101
4.1.5 Annotation of Variants in their Structural Con-

text with Var3D . . . . . . . . . . . . . . . . . 102

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.1 Identification of Antibody Therapeutics with Struc-

tural Information . . . . . . . . . . . . . . . . . 104



CONTENTS 7

4.2.2 Annotation of Variants in their Structural Context 107
4.2.3 Target Selection . . . . . . . . . . . . . . . . . 110
4.2.4 Selected Candidate Variants for Experimental

Validation . . . . . . . . . . . . . . . . . . . . 112

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . 118
4.4.1 Experimental Characterization of Natural Poly-

morphisms at Antibody-Antigen Interfaces . . . 118

General Discussion 121

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 Future Outlook . . . . . . . . . . . . . . . . . . . . . . 122

4.7 Closing Remarks . . . . . . . . . . . . . . . . . . . . . 123

List of Publications 124

Acknowledgements 125





CHAPTER 1
Introduction
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1.1 Variants

1.1.1 Variants: The Engine of Evolution

The concept of biological species arising from natural selection of benefi-
cial traits began to spread among biologists at the beginning of the 18th
century. This idea contributed to the creation of the field of evolutionary
biology with the release of the book On the Origin of Species by Charles
Darwin1, where he stated: “Nothing at first can appear more difficult
to believe than that the more complex organs and instincts should have
been perfected, not by means superior to, though analogous with, human
reason, but by the accumulation of innumerable slight variations, each
good for the individual possessor.”

Nowadays, it is known that the information on the growth, functioning,
reconstruction and reproduction of all organisms and viruses is stored
in the sequences of nucleic acids that constitute a genome. Mutations
result from errors during replication, mitosis, meiosis and external dam-
ages to the DNA, which are repaired in such a way that the genetic
sequence is altered. These mutations are the source of all genetic vari-
ation and provide the building blocks that drive the process of genetic
change over multiple generations, leading to the emergence of new traits
or characteristics of a species.

The importance of mutations cannot be understated. They play a vital
role in driving evolution, cause the majority of cancers and enable our
immune system to keep up with the evolution of pathogens. Understand-
ing how mutations affect the traits of an organism is one of the major
questions in the life sciences.

Mutations can be distinguished by their impact on the genetic code.
Large-scale mutations, or chromosome abnormalities, are drastic alter-
ations of the chromosomal structure which include deletions, duplica-
tions, inversions, insertions and translocations of chromosomal segments.
These mutations are considered to be impactful on the affected cell as a
whole due to the altering of large parts of the genetic code. Small-scale
mutations, on the other hand, encompass local changes in the genetic
sequence. It can include the insertion or deletion of several nucleotides
in the DNA or the altering of nucleotides2.

The location of the mutation in the DNA is essential to understand its
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impact. An important distinction can be made between mutations which
lie outside or inside of the protein-coding region. Mutations in non-
coding, regulatory sequences such as promoters, silencers or enhancers,
can alter the level of gene expression, but most likely will not affect
the protein sequence itself. Mutations in the coding region could alter
the protein product in such a way that its function is impacted. Due
to the involvement of proteins in practically all biological processes of
an organism and their participation in a complex network of molecular
biological interactions, the slightest changes of the protein might alter
the phenotype of an organism significantly3.

Mutations in the coding region can be separated by their effect on the
respective amino acid sequence. Frameshift mutations are caused by
insertions or deletions of nucleotides in such a way that the reading frame
of the protein shifts from its original frame, leading to drastic alterations
of the protein product. The event in which a number of nucleotides
evenly divisible by three is inserted or removed is called an “in-frame
mutation” and will insert or remove multiple amino acids from the protein
sequence. A point substitution changes a single nucleotide, which can
either be synonymous if the amino acid encoded by the altered nucleotide
triplet is the same as the original amino acid, or non-synonymous if the
amino acid is different. A nonsense mutation refers to the replacement
of an amino acid encoding nucleotide triplet coding with a triplet which
gives rise to a stop codon. The presence of the new stop codon results
in the production of a shortened protein that is likely non-functional.
Finally, missense mutations refer to mutations that substitute an amino
acid in the protein product with another amino acid4.

The central questions in the research of mutations are (1) how are the
function of genes and proteins altered by mutations, and (2) what those
changes entail for the phenotype of the organism as a whole. Answering
these questions requires the inspection of the event through the lens of
multiple biological disciplines. This endeavour includes the investigation
of the structural and functional changes of proteins upon mutations,
the analysis of the impact of the changed proteins on the metabolism
or system of protein interactions in the organism and the study of how
these changes manifest in the phenotype of the organism in the end.
This can bring us closer to strengthening our understanding of how and
why species adapt and change.
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Figure 1.1: Schematic of the central scientific question of variant research: understanding the
steps from genotype to phenotype.

Besides the academic interest in the investigation of mutations in the
context of evolutionary biology, the topic also has practical relevance for
medical research. The two main applications are research into disease-
associated variants and the development of drug resistance.

The functioning of an organism relies on an intricate system of working
interactions between thousands of proteins. Perturbations in this system,
such as those caused by changes in the coding region of the DNA, can
manifest themselves in a highly diverse set of diseases. Mutations in a
germ cell can be passed to all cells of an organism. If such a muta-
tion leads to harmful or damaging effects, it could result in an inherited
disease. An example is albinism, which is caused by a mutation in the
OCA1 or OCA2 gene and leads to the absence of melanin in the indi-
vidual. This results in an increased risk of many types of cancers and
impaired vision5.

Somatic mutations that disrupt the balance between the proliferation
of a cell and its apoptosis lead to uncontrolled cell division. This is
considered to be the causative agent of most types of cancer. Due to
the high mutation rate of cancer cells, the interpretation of variants
plays a role not only in understanding how cancer emerges but also in
how cancer cells adapt to evade the immune system and resist treatments
using anticancer agents6–8.

Changes in the DNA do not have to be harmful to an organism. Oc-
casionally the genotypic effect is positive and allows a population to
propagate and withstand environmental stresses better than organisms
with the standard genotype (wild-type). If the organisms in question are
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pathogens which are adapting in order to survive the medical drugs used
to combat them, then we are facing a medical challenge9.

Drug resistance is a major public health threat in the 21st century. The
combination of the innate capacity of microbes to develop resistance at
a rate that outpaces the development of new drugs leads to the spread of
resistant pathogens for which treatment is more expensive, constitutes
a higher burden for the patient and is more lethal than the susceptible
pathogens. Understanding the underlying mutations in pathogens that
cause the resistance phenotype is crucial to guide the development strat-
egy of new drugs, facilitating the diagnosis of resistant pathogens and
helping our understanding of resistance mechanisms.

1.1.2 Variants in the Context of Protein Structure Biology

The fundamental principle of protein structure biology postulates that
the amino acid sequence of a protein determines its structure and bio-
physical properties10. The last part is not strictly true for protein chains
which require the aid of chaperone proteins to assume their functional
conformation11, but a direct relationship between amino acid sequence
and protein structure can be presumed. Protein structures are in gen-
eral relatively robust to small alterations of the underlying amino acid
sequence and are not expected to fundamentally change their structure
and function upon the mutation of a few residues12,13.

However, numerous examples do exist where even a single amino acid
substitution leads to functional impairment, aggregation, conformational
changes and unfolding of the whole protein14–19. The prediction of these
impactful mutations is still a challenge due to computationally demanding
methods with limited accuracy20. They could help us understand exactly
how these single mutations lead to such a drastic structural change21 and
thus predict if and how specific conformational changes are induced by
mutations.

The robustness of protein structures towards mutations and the difficulty
in predicting large conformational changes caused by small mutations
leads us as a first approximation for the purpose of structure-based vari-
ant interpretation to assume that the wild-type structure is not going
to undergo drastic changes. Therefore, most structure-based analyses of
mutations will rely on the wild-type conformation of the protein of in-
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terest. Wild-type experimental structures are more readily available, and
structure prediction of wild-type proteins has higher precision and qual-
ity. The impact of mutations in the context of the wild-type structure is
then used to assess their potential to induce a phenotype change

For mutations that are expected to strongly disrupt the protein struc-
ture, structure-based variant interpretation cannot offer much informa-
tion. Frameshifts or large deletions (or indels) will likely lead to a non-
functional protein. The details on how the structure of the protein is
impacted exactly are not considered to be necessary to arrive at the con-
clusion that the affected protein ceases to function. The structure of
large-scale insertions into the protein sequence can be potentially pre-
dicted by the latest structure prediction methods, but the accuracy of
the results requires further assessment22.

The information protein structures can provide to aid the interpretation
of small-scale mutations (which are usually understood to be single amino
acid substitutions) is the comparison of the chemical environment of the
mutated residue in the wild-type setting to the mutated setting. The
wild-type environment of the mutation site can offer insights into impor-
tant chemical interactions that the wild-type amino acid is a part of. The
spatial pattern of hydrogen bonds, hydrophobic interactions, ionic bonds
and disulfide bridges are the chemical building blocks which define the
biophysical and functional properties of proteins. Hydrophobic interac-
tions and interactions between opposite charge pairs between residues of
two different protein chains are essential to make protein-protein inter-
actions possible23. In some cases, a single mutation is enough to abolish
the entire protein interaction24 or to generate an entirely new one25. Cer-
tain amino acids are also essential in the formation of a ligand binding
site, where a 3D pattern of chemical moieties allows a ligand to interact
with the protein. Any change to that environment can weaken or even
completely abolish the ligand interaction26–28. The same principle is also
true for catalytic sites in enzymes, where a specific chemical reaction
needs to be enabled by the same chemical 3D pattern next to the proper
interaction with the target ligand29–31. A mutation that weakens or re-
moves a participant in this system of chemical interactions can lead to a
perturbation of the energy surface which abolishes the catalytic activity
of the enzyme32,33.
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Inspecting the protein structure also reveals the available space in the
immediate environment of a mutation site. Amino acids in a structured
protein are usually packed together efficiently. Mutations of residues
with a small volume to amino acids with a large volume will lead to
steric clashes which disrupt the environment of the mutation site, inde-
pendently of any potential effects on chemical interactions. A mutation
towards a smaller amino acid can also cause issues for the stability of the
protein by introducing voids in the core of the protein. The structure of
the protein is required to accommodate for these disruptions, which can
lead to the destabilisation of the affected protein region34,35.

The 3D information of protein structures allows us to interpret the sys-
tems of chemical interactions and the available space of specific residue
sites. Mutations either disrupt these interactions or introduce instabilities
into the protein structure due to the loss of favourable interactions.

1.2 Antibiotic Drug Resistance And Protein Struc-

ture Biology

1.2.1 Overview of Antibiotic Drug Resistance

With the discovery of Penicillin by Sir Alexander Fleming in 192836 and
its purification and testing as an antibacterial drug by Ernst Chain and
Howard Florey in 194037, the antibiotic revolution began its march across
the world. The compound proved its use right away in World War II,
where it was mass-produced and used to treat infections in wounded
soldiers. After 1945, penicillin was mass-produced for the public and
antibiotics became a standard drug in the medical arsenal.

The treatment of infectious diseases was revolutionised worldwide, es-
pecially in Western countries. The introduction of antibiotics in the
United States caused the shift of the leading cause of death to change
from transmissible diseases to non-transmissible ones (for example, car-
diovascular diseases, cancer, and stroke) and the average life expectancy
to rise to 78.8 years38. They also enabled other medical fields in an
unprecedented way. Complex surgeries such as organ transplants, joint
replacements, or open-heart surgeries would be too risky without the
ability to treat infections. Antibiotics have successfully prevented or
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treated infections that can occur in patients who are receiving intensive
treatments such as chemotherapy and who have chronic diseases such
as diabetes. The time period after 1945 up to 1970 is known as the
golden age of antibiotic discovery. Around 80% of the clinically relevant
antibiotic classes were discovered in this time period39.

Antibiotics also revolutionised global food production and enabled the
spread of standardised animal monocultures across the world. In the
example of poultry production in Brazil, a twenty-fold production increase
between 1968 and 1990 was achieved and amounted to 12 million tons
of poultry in 2009. In Europe and the United States, antibiotics are used
as a standard agricultural treatment to not only treat disease but also to
prevent their spread40.

However, the efficacy of antibiotics did not last forever and antibiotic
drug resistance started to become a major issue. Even before antibiotic
drugs properly began their worldwide advance, occurrences of antibi-
otic resistance were recorded. Penicillin-resistant bacterial strains were
already documented in 1942 in London when hospitalised patients in-
fected with Staphylococcus aureus were found to resist treatment with
penicillin41. Similarly, Streptomycin-resistant strains of Mycobacterium
tuberculosis were detected only 5 years after the discovery of the antibi-
otic in 194342. In 1945, Sir Alexander Fleming warned that the “public
will demand [the drug and] . . . then will begin an era . . . of
abuses.”43.

Resistance against multiple antibiotics in a single bacterial strain was
first described a decade later in the late 1950s to the early 1960s44–46 for
Escherichia coli, Shigella and Salmonella. These strains were quite chal-
lenging to treat and often lead to deadly outcomes in poorer countries
that do not have access to the latest antibiotics to circumvent the resis-
tance. But at that time, antibiotic resistance was still perceived only as
a medical curiosity and not a serious problem for the industrialised world.
The attitude changed quickly in the 1970s with an outbreak of Neisseria
gonorrhoeae with resistance to ampicillin47 and Haemophilus influenzae
with resistance to ampicillin, chloramphenicol and tetracycline48–50.

The situation became more precarious when the discovery of new antibi-
otics stopped in the 90s. This so-called “Discovery Void” (Figure 1.2) is
primarily attributed to the refocusing of the pharmaceutical industry to
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more profitable therapeutic ventures51. Since the discovery of oxazolidi-
nones in 1987 no new antibiotic family has been discovered. Some new
antibiotic compounds were still developed and deployed by modifying
existing and established antibiotic compounds like through the commer-
cialisation of linezolid in 2003 and daptomycin in 2001, even though
these compounds were already known as potential antibiotic compounds
in the 1950s and 1980s respectively52.

Figure 1.2: Time-line of the discovery of different antibiotic classes in clinical use. Figure 1
from 53

Today, antibiotic resistance is considered one of the most challenging
public health problems we are facing. Infectious diseases were the sec-
ond most frequent cause of death right behind cardiovascular diseases
before the start of the SARS-CoV-2 pandemic in 202054. High rates
of antibiotic resistance are encountered in bacterial infections such as
sepsis, urinary tract infections and sexually transmitted diseases, which
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is an indication that our antibiotic arsenal is running out. The rate of
resistance to ciprofloxacin, which is used to treat urinary tract infections,
varied from 8.4% to 92.9% in Escherichia coli and from 4.1% to 79.4%
in Klebsiella pneumonia in countries that are reporting to the Global An-
timicrobial Resistance and Use Surveillance System (GLASS). In 2019,
25 countries, territories and areas provided data to GLASS on blood-
stream infections due to methicillin-resistant Staphylococcus aureus and
49 countries provided data on bloodstream infections due to Echerichia
coli. The median rate observed for methicillin-resistant S. aureus was
12.11% and that for E. coli resistant to third-generation cephalosporins
was 36.0%55. Antibiotic-resistant Mycobacterium tuberculosis (MTB)
threatens the progress to containing the global tuberculosis epidemic.
The World Health Organization (WHO) estimates half a million new
rifampicin-resistant MTB cases globally in 2018, of which the majority
are also multi-drug resistant MTB (MDR-TB). Less than 60% of those
treated for MDR/RR-TB are successfully cured54.

1.2.2 Improved Diagnostics is Essential for Combating An-
tibiotic Resistance

The development of new antibiotics is not the only way to thwart the
resistance crisis. Quick and reliable diagnosis of the resistance status of
infecting strains can provide crucial information to increase the efficiency
of medical treatment. A medical professional with the knowledge of
which antibiotics will work for the patient can drastically decrease the
treatment time and increase treatment success.

Antibiotic resistance is classically determined by measuring the minimum
inhibitory concentration (MIC). The MIC is the lowest concentration of
an antibiotic necessary to kill a bacterial population. The resistance
strength is proportional to the MIC increase. The MIC is usually mea-
sured in a broth dilution assay of a bacterial sample, where the concen-
tration of an antibiotic is steadily increased across multiple fluid bacterial
cultures with an incubation time of 17-20h. The lowest concentration
that decreases the turbidity of the cultures to zero is the MIC56. While
the measurement of the MIC is considered to be the gold standard of
antibiotic resistance diagnosis, it is not always a practical option. The
experimental setup requires a microbiology laboratory, which is not read-
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ily available in less developed regions of the world. The time required to
conduct the experiment can also be a bottleneck. While most bacterial
species require 1 to 2 days until the culture is fully grown, some species
like MTB require close to a month57. The bacterial sample growing
successfully is also not a guarantee, which potentially means that exper-
iments have to be repeated

With the next-generation sequencing revolution in the late 2000s, the
large-scale analysis of bacterial genomes is possible and cost-effective.
Specific genes and mutations were discovered to be characteristic of the
resistance phenotype of certain antibiotic drugs. This can be used to
infer the resistance phenotype by detecting these characteristic genetic
elements instead of evaluating the ability of the bacterial cell to survive
the presence of antibiotics in a laboratory setting58.

This rapid and precise diagnosis of antibiotic-resistant strains provides
the means to create a global surveillance system of the epidemiology of
antibiotic-resistant strains and allows the deployment of local, national
and global mitigation strategies.

The build-up of the infrastructure for the global surveillance of antibiotic
resistance started in 2015 when the WHO created GLASS59, which mon-
itors the spread of antibiotic-resistant strains in 107 countries. GLASS
provides a standardised methodology for genome analysis. Global surveil-
lance is a game-changing tool for the monitoring of new outbreaks of re-
sistance and for the evaluation of local, national and global containment
and mitigation strategies.

Next to large-scale sequencing efforts, innovations in the diagnosis of
resistance in a clinical setting were achieved through the development
of the GeneXpert platform60 for the diagnosis of rifampicin resistance
in TB. Rifampicin resistance is known to be conferred by mutations in
a specific region in the rpoB gene (Rifampicin Resistance Determining
Region61). The GeneXpert platform can detect mutations in this region
in the time span of 2 hours based on a sputum sample of the patient62.

The technology however relies on knowing which variants are causative
for resistance. While for certain antibiotic drugs that were under scientific
investigation for decades, the genetic determinants are well characterised,
the genetic resistance determinants for most antibiotics are not known.
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A systematic and accessible workflow to increase the understanding of
the mechanisms of resistance of a large number of resistance variants
is necessary for clinicians worldwide. This framework could be used to
decide the best course of action for the treatment of drug resistance by
providing as much available information as possible.

1.2.3 Biological Basis of Antibiotic Resistance

Antibiotic resistance is defined as the ability of a bacterial organism to
survive in an environment with a high concentration of antibiotic drugs63.
Antibiotic drugs bind a specific type of biomolecule in the bacterial cell
that is essential for its functioning. This interaction disables the target’s
function, and the consequence of this ceased or reduced function leads to
the death of the bacterial cell (bactericidal antibiotics) or the prevention
of further growth (bacteriostatic antibiotics).

Any phenotypic change that prevents this process from concluding in
cell death or ceased cell growth is a resistance mechanism. There are
multiple mechanisms for a bacterial cell to overcome its disruption by
the antibiotic. They ultimately rely on the reduction of the effective
concentration of the antibiotic compound in the cell to tolerable levels.
It is important to stress that the complete abrogation of the drug effect
is not necessary for antibiotic resistance to emerge. It is sufficient if the
bacteria can tolerate the antibiotic at the given concentration, even if
the bacterial cell is technically still susceptible to the drug. Antibiotic
resistance is not a binary trait but can be seen as a spectrum of resilience
dependent on antibiotic concentration64. This is reflected in the exper-
imental assay for the determination of drug susceptibility, in which the
MIC is measured65. It is important to keep in mind that the MIC is
not necessarily a predictor of the clinical effectiveness of the antibiotic
in vivo 66.

A mechanism of resistance is defined as the biochemical phenotype that
counters the adverse effect of an antibiotic drug. These phenotypes can
either be acquired through horizontal gene transfer (HGT) of resistance
genes, through mutations in genes related to the mechanisms of action
of antibiotics, i.e. encoding for the drug molecular target or other pro-
teins and enzymes involved in drug transport and metabolism67,68 (Figure
1.3).
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Figure 1.3: Overview over antibiotic drug targets and resistance mechanisms. Figure 1 from 69

Drug inactivation occurs when catalysing enzymes specifically targeting
antibiotic molecules are expressed in the bacterial cell. They are obtained
through HGT of plasmids70,71 and provide a direct route for the bacte-
rial cell to decrease the concentration of the drug by breaking the drug
molecule down into non-active compounds. Examples include the class
of β-lactamases that break down the name-giving chemical moiety in β-
lactames, the catalysis of tetracyclines by the monooxygenase tetX and
different classes of aminoglycoside modifying enzymes which are encoun-
tered in drug-resistant gram-positive and gram-negative bacteria72–74.

Drug-target alteration describes a biochemical change of the molecular
target with which the antibiotic drug needs to interact to fulfil its func-
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tion. The function of the drug target protein is significantly hindered by
this interaction. Changes of the binding site that decrease the strength
of the interaction between drug and target increase the tolerable antibi-
otic concentration in the cell75. This effect can also be achieved by a
different but related resistance mechanism in which enzymes responsible
for the post-translational modification of the drug binding site are af-
fected. For example, resistance mutations in methyltransferases prevent
methylations on the ribosome antibiotic binding sites which are necessary
for the functioning of the drug76.

Another drug resistance mechanism is the abrogation of prodrug acti-
vators. Some antibiotics are administered as pharmacologically inactive
forms, which are activated by specific bacterial enzymes. It is observed in
some cases that, while the drug target of the activated drug is essential
for the survival of the bacterial cell, this is not always the case for the
prodrug activator enzymes. In these cases, resistance can be achieved by
deleterious mutations in these enzymes that interrupt the chain of reac-
tions required for the prodrugs to transform into their activated form77.

Other mechanisms provide ways to stop the antibiotic without hindering
the binding of the drug to its designated target. Some mechanisms of
resistance compensate for the antibiotic-disabled biological pathway by
either activating an alternative metabolic pathway or by obtaining vari-
ations of the essential drug target through HGT. An example of this is
the resistance of sulfonamides mediated through the HGT of alternative
Dihydropteroate synthase plasmids78. Another example is the expres-
sion of tetracycline ribosomal protection proteins that are GTPases that
catalyse the GTP-dependent release of tetracycline from the binding site,
actively removing the antibiotic from the ribosome79.

Decreased antibiotic concentration can also be achieved by altering the
gene expression of certain proteins. Increased expression of active and
passive transporter proteins and changes in the composition of the cell
membrane can cause a general tolerance against antibiotics80. Muta-
tions in promoter regions, leading to the overexpression of the drug tar-
get have been associated with resistance to drugs like Trimethoprim,
Fluoroquinolones, β-lactames and sulfanilamides81.
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1.2.4 Tuberculosis as a Model Organism to Study Antibi-
otic Resistance Variants in their Structural Context

There are few illnesses which have accompanied humanity throughout
history as consistently as tuberculosis. From the first report of the symp-
toms in Ancient Egypt to the description of the disease in the 19th cen-
tury as the ”white death” in art and literature, tuberculosis remained
a constant companion of humanity. Tuberculosis is an infection of the
lungs with the bacteria Mycobacterium tuberculosis (MTB). Although
MTB is known to reproduce relatively slowly (roughly once per day), it
is extremely resilient to the immune response of its host. Macrophages
cannot digest the bacteria due to its thick mycolic acid protective layer.
If the macrophage attempts to destroy the bacteria, it will reproduce in
the macrophage and slowly eliminate it with secreted toxins. The infec-
tion attacks the lung tissue directly, causing small wart-like lesions (in
Latin tubercles). Additionally, it is easily spread by air droplets from the
host’s mouth, which are produced even by speaking alone. Its spreadabil-
ity, resilience towards the human immune system and devastating effect
on the lung tissue of the host make tuberculosis a deadly disease82.

Figure 1.4: Left: Picture of Mycobacterium tuberculosis. Scanning electron micrograph. Mag
15549X. Center for Disease Control US. Right: Postmortem examination of lungs of a 40 year
old tuberculosis patient 83
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Today, tuberculosis is considered the second-deadliest infectious disease
after COVID-19. In 2021, around 2.9 million people were confirmed with
bacteriologically confirmed pulmonary TB. 71% of these patients were
tested for rifampicin resistance. 150’000 multidrug-resistance MTB and
25’000 cases of extensively drug-resistant MTB were detected. With 10.6
million MTB cases occurring worldwide in the year 2021, it is assumed
that many more cases of drug-resistant MTB remain unreported and,
therefore, the data collected does not necessarily give the full picture of
the situation54.

Having a reliable and widespread way to diagnose drug resistance in pa-
tients allows health professionals to use treatments tailored to individual
patients. Utilising the current antibiotic arsenal to its fullest extent can
help to contain MDR-TB. The way drug resistance in MTB is diagnosed
currently is by using a combination of bacteriological confirmation of
MTB and testing for drug resistance using rapid molecular tests, culture
methods or sequencing technologies. Given the slow growth rate, difficult
growing conditions of MTB and the high expenses of a laboratory setting,
culture methods alone are not considered to be a viable global testing
strategy84. While characteristic resistance variants for commonly used
antitubercular drugs like Rifampicin and Fluoroquinolones are well known
and can be used to diagnose resistance with rapid molecular testing85,
many variants associated with resistance for other MTB antibiotics are
only poorly understood or even not documented. Even the well-known
resistance mechanisms of drugs like Rifampicin have many resistance-
associated variants outside the binding site of the drug for whose variant
impact is not characterised thoroughly.

1.3 Naturally Occurring Resistance of Antibody Ther-

apeutics

1.3.1 Overview over Antibody Therapeutics

In the last four decades, the use of monoclonal antibodies changed drasti-
cally from a scientific tool to a powerful human therapeutic. The market
for the pharmaceutical application of therapeutic antibodies is growing
immensely: 50 antibody therapeutics were approved by the U.S. Food
and Drug Administration (FDA) until 2015. The same number rose to
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122 approved drugs in 202286. The market share of antibody thera-
peutics in the world is estimated to be worth 186 billion USD in 2021
and based on ongoing clinical trials and preclinical studies the market is
projected to grow to 445 billion USD by 202887.

Antibodies (Abs) or immunoglobulins are multimeric glycoproteins se-
creted by B-cells and formed by two identical light (L) and heavy (H)
chains made by structurally similar domains, two for the light and four
or more for the heavy chain (Figure 1.5). The antigen binding site is
located on the upper tip of the molecule and is formed by the pairing
of the VH and the VL variable domains, each contributing three hyper-
variable loops or complementary determining regions (CDR). The amino
acid sequence, structure and length variability of the CDRs are the main
determinant of the ability of antibodies to specifically recognise virtually
any targets, called antigens.88

Figure 1.5: Schematic of the structure of an antibody. Immunoglobulin G (IgGs) are large
proteins consisting of pairs of heavy and light chains connected through disulfide bridges. The
heavy chain contains a variable domain VH, a hinge region and three constant domains (CH1,
CH2 and CH3). The light chain contains a variable domain VL and only one constant domain
CL. The antibody can be divided into a fragment antigen binding (Fab) region and a fragment
crystallisation (Fc) region. The three hypervariable protein loops in each variable domain are also
called the complementarity-determining region (CDR) and are responsible for the recognition of
the respective antigen.

The immune response to an antigen is polyclonal, meaning that a diverse
set of antibodies are produced that interact with different regions of the
antigen (known as epitopes). Antibody therapeutics are monoclonal,
referring to a homogenous population of antibodies to ensure a high
specificity to a single epitope, low cross-reactivity and reproducibility of
the drug product. The production of monoclonal antibodies (mAbs) was
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described first in 1975 by Kohler and Milstein89, where the authors suc-
ceeded in creating a fusion of myeloma cell lines with B cells to create
hybridomas that could produce antibodies to a specific antigen. In the
late 1980s, murine mAbs were tested in clinical trials. The therapeutics
showed significant drawbacks, though. They caused strong allergic reac-
tions together with the induction of anti-drug antibodies in the patient,
which rendered the antibody therapeutic non-functional90. The first
murine mAbs also had a short half-life in the patient and were relatively
poor inducers of cytotoxicity when used for an oncological indication91.

To overcome the drawbacks of murine mAbs, the antibody protein needed
to be more similar to its human counterpart. The first attempts to solve
this problem were through the creation of chimeric mouse-human anti-
bodies. The antigen-specific variable domain of a mouse Ab was grafted
onto a human Ab scaffold through genetic engineering techniques, result-
ing in mAbs that were around 65% human92. The half-life was increased
and the allergic reactions were reduced with this class of mAbs, but the
propensity to induce a specific immune response against the therapeutic
was still significant93. The mAB properties were improved by an in-
creased degree of humanization. Only the murine hypervariable region
was grafted on a human Ab framework. The resulting molecule was 95%
human94. The humanised mAbs resolved most of the issues in the clini-
cal application of murine Abs, but the process does have limitations and
can be a work-intensive process.

Figure 1.6: Overview over the four groups of monoclonal antibody therapeutics and their suffixes.
The groups distinguish each other by the degree of humanisation.
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Antibody drug discovery was revolutionised with the invention of the
antibody phage display technology. Specific bacteriophages that display
a protein of interest and contain its genetic information are screened
against a library of human Abs. This allows the efficient identification of
fully human candidate Abs for target proteins of interest95. Another way
to generate fully human mAbs was by using transgenic mouse strains that
express human variable domains96–98. The mAbs generated in transgenic
mice or discovered through phage display show similar performance in
the clinical setting. The compounds detected in a phage display screen
however require more frequent additional lead optimization. This dis-
advantage is offset through direct lead isolation and control over the
specificity and affinity of the mAb99.

1.3.2 Naturally Occurring Polymorphisms Affect Epitope
Recognition

In 1907, Paul Ehrlich observed during his foundational research on im-
munology that antibodies in the blood could attack invading pathogens
specifically without causing any harm to the body100. Based on this ob-
servation he developed the scientific concept of a “magic bullet”101, a
molecule that only interacts with a specific target similar to the behaviour
he observed for Abs.

The specificity of Abs arises from their highly variable complementary
determining regions. The immune system has a wide arsenal of methods
to increase the diversity of its Abs: somatic recombination102, impre-
cise joining, random addition of nucleotides at the junction and somatic
hypermutation103,104 after the exposure to an antigen can be used to
counter the diversity of pathogenic epitopes. Additionally, structural
plasticity105,106 adds to the process of generating even more antibody
diversity. The antigen and antibody combining sites show a certain level
of conformational flexibility to achieve complementarity at the antibody-
antigen interface. This phenomenon was first described as “flexible keys
and adjustable locks” by Edmundson et al.107 when describing the bind-
ing of opioid peptides to an Mcg light chain dimer.

This arms race between pathogens and antibodies demonstrates that
the immune system is required to regenerate new and flexible antibodies
to combat the diversification of the surface epitopes of pathogens. An
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antibody therapeutic, however, is a specific protein with a fixed amino
acid sequence and will not undergo any change. Its efficacy is highly
dependent on its respective antigen epitope to not undergo any change.

In 2014, a publication described the poor response of a subset of patients
when treated with mAb Eculizumab108. This therapeutic agent is used
to treat paroxysmal nocturnal hemoglobinuria (PNH), a rare, acquired
and life-threatening haematological disease in which part of the innate
immune system attacks the red blood cells of the patient. Eculizumab
is a whole humanised antibody that targets the complement protein C5,
a protein that is part of the cylindrical membrane attack complex that
punctures the membrane of pathogenic cells, destroying them in the pro-
cess. The binding of Eculizumab prevents the cleavage of the C5 protein
into its two active products which activate an inflammatory response and
build part of the attack complex109.

The study assessed the sequences of the gene that encodes C5 in pa-
tients from Japan with PNH who either had a good response or a poor
response to Eculizumab. Among the 345 patients with PNH treated with
Eculizumab, 11 patients had a poor response. All 11 patients had a sin-
gle heterozygous mutation, c.2654G→A, which translates into the single
amino acid substitution p.Arg885His. It was found that the prevalence
of this mutation in patients with PNH (3.2%) is reflecting the prevalence
in the healthy Japanese population (3.5%).

This mutation did not arise due to any kind of evolutionary pressure but
is present due to natural genetic diversity in a human population. Yet,
the naturally occurring polymorphism can lower the efficacy of an Ab
therapeutic and has real clinical consequences for the affected patients.

Structural biological investigations of the mutation in C5 could show
that the p.Arg885His mutation is located in the centre of the antibody-
antigen interface and that the arginine is interacting with an arginine
binding pocket on the antibody interface. The histidine mutation is
too short to fill this pocket, likely leading to a significant change in the
conformation of the CDR3 loop of the opposing heavy chain, which leads
to a loss of binding affinity110 (Figure 1.7). Cases similar to the mutation
in C5 are documented111 but a systematic analysis of this phenomenon
has to our knowledge not been conducted.
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Figure 1.7: Variant p.Arg885His on complementary protein C5 in complex with eculizumab.
The antigen is wheat coloured with the mutation site coloured in cyan. The antibody protein
is coloured orange. The arginine residue (left panel) reaches deeply into the antibody protein
having an interaction with an antibody glutamic acid and tyrosine. This interaction cannot be
maintained if the residue is mutated to a histidine (right panel). Additionally, the most favourable
rotamer still clashes with antibody phenylalanine. The visualisations were created with PyMol
1.30 112
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1.4 Thesis Objective

The main objective of this thesis is to advance the investigation of the
impact of protein variants with a specific focus on their role in drug
resistance mechanisms and epitope recognition.

The large set of variant and structure data necessitate software tools
which facilitate their analysis. To this aim, I developed a new tool that
allows the investigation of variants in their structural context. The vari-
ant annotation software, named Var3D, automatically aggregates and
annotates variant and structural data. The results of these efforts are
described in Chapter 2.

The further development of structure-based analysis tailored to resistance-
associated variants in MTB can provide a framework for clinical re-
searchers worldwide to form compelling hypotheses on their impact. Us-
ing Var3D and the resources of the protein structure modelling server
SWISS-MODEL, I lead the development of TBvar3D, a web server for
the analysis of protein variants of MTB in the context of protein structure
information and antibiotic resistance variants. The tool allows the user
to inspect their variants in the context of the “Catalogue of mutations
in Mycobacterium tuberculosis complex and their association with drug
resistance”113 from the WHO, which provides a reference standard for
the interpretation of mutations conferring resistance to all first-line and
some second-line drugs. This server is the main topic of Chapter 3.

A systemic analysis of the impact of naturally occurring polymorphisms
on epitope recognition has to our knowledge not been performed yet and
could reveal variants which are critical for the clinical application of anti-
body therapeutics. Through the use of Var3D, I identified and annotated
all known variants on therapeutic antibody-antigen interfaces. In collab-
oration with Pr. Dr. Lukas Jeker of the Department of Biomedicine at
the University of Basel we aim to experimentally validate the impact of
a subset of variants which were selected based on the calculated anno-
tations. This subject is described in Chapter 4.
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[78] Sköld, O. (2000). Sulfonamide resistance: mechanisms and trends. Drug
resistance updates, 3 , 155–160.

[79] Connell, S. R., Tracz, D. M., Nierhaus, K. H., & Taylor, D. E. (2003). Ri-
bosomal protection proteins and their mechanism of tetracycline resistance.
Antimicrobial agents and chemotherapy , 47 , 3675–3681.

[80] Wright, G. D. (2010). Q&a: Antibiotic resistance: where does it come from
and what can we do about it? BMC biology , 8 , 1–6.

[81] Palmer, A. C., & Kishony, R. (2014). Opposing effects of target overexpression
reveal drug mechanisms. Nature communications, 5 , 1–8.

[82] Lawn, S. D., & Zumla, A. I. (2011). Tuberculosis. The Lancet, 378 , 57–72.
URL: https://doi.org/10.1016/s0140-6736(10)62173-3.

[83] ”Wikimedia Commons”. ”Cavitary tuberculosis”. URL: https:

//upload.wikimedia.org/wikipedia/commons/1/18/Cavitary_

tuberculosis.jpg by Yale Rosen.

[84] Stevens, W. S., Scott, L., Noble, L., Gous, N., & Dheda, K. (2017). Impact
of the genexpert mtb/rif technology on tuberculosis control. Microbiology
spectrum, 5 , 5–1.

https://doi.org/10.1016/s0140-6736(10)62173-3
https://upload.wikimedia.org/wikipedia/commons/1/18/Cavitary_tuberculosis.jpg
https://upload.wikimedia.org/wikipedia/commons/1/18/Cavitary_tuberculosis.jpg
https://upload.wikimedia.org/wikipedia/commons/1/18/Cavitary_tuberculosis.jpg


36 Chapter 1

[85] Brown, S., Leavy, J. E., & Jancey, J. (2021). Implementation of genexpert for
tb testing in low-and middle-income countries: A systematic review. Global
Health: Science and Practice, 9 , 698–710.

[86] Kaplon, H., Crescioli, S., Chenoweth, A., Visweswaraiah, J., & Reichert, J. M.
(2023). Antibodies to watch in 2023. In Mabs (p. 2153410). Taylor & Francis
volume 15.

[87] Lyu, X., Zhao, Q., Hui, J., Wang, T., Lin, M., Wang, K., Zhang, J., Shentu,
J., Dalby, P. A., Zhang, H. et al. (2022). The global landscape of approved
antibody therapies. Antibody Therapeutics, 5 , 233–257.

[88] Buss, N. A., Henderson, S. J., McFarlane, M., Shenton, J. M., & De Haan,
L. (2012). Monoclonal antibody therapeutics: history and future. Current
opinion in pharmacology , 12 , 615–622.
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Understanding the structural context of variants can provide valuable
insights into their potential effects on protein function. However, the
exponential growth of available genetic and structural data as well as
the diversity of data formats and tools made it increasingly challenging
to effectively analyse and interpret variant data. This creates the neces-
sity for a software framework which is scalable, generically applicable to
different variant and structure data sets and groups and applies various
annotation methods efficiently to create a comprehensive overview of a
mutation in its structural context.

To solve this problem, we created Var3D. It automates the integration of
variant and structure data from various sources and provides interfaces
for a diverse set of analysis tools. This allows to streamline annotation
workflows which can be plugged together in a flexible manner, simpli-
fying the analysis and interpretation of protein-coding variations from a
structural perspective.

Using strategy patterns1, we implemented reusable software for tasks
common to all structure-based variant analysis pipelines. This approach
reduces the amount of manual work required to implement a variant
analysis pipeline and allows researchers to tailor the analysis to their
specific needs and research goals.

In this chapter, we present Var3D, a general structure-based variant anal-
ysis framework which enables the customisation of data aggregation and
data annotation processes for variant analysis in their 3D structure con-
text. Var3D was used as the central framework for the implementation of
TBvar3D, a web server for the automatic analysis of antibiotic resistance
variants in MTB in Chapter 3 and the detection of critical polymorphisms
in antibody-antigen interfaces in Chapter 4.

2.1 Methods

2.1.1 Software Architecture

Var3D divides variant analysis into two tasks: data import and data
annotation. The primary focus of the data import is to parse variant
and structural data from generic sources (web-based, variant table, . . . )
into a standardised data aggregation of a reference sequence, variants,
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and protein structures. This serves as input for the data annotation task
which manages and runs individual annotation processes. The output of
each annotation process is collected into an annotation data set which
links the outputs to the respective data points in the data aggregation.

The separation of the pipeline into standardised interfaces (yellow in
Figure 2.1) for recurring tasks and their problem-specific implementation
(green in Figure 2.1) allows for exchanging and adapting the import and
annotation processes to construct the desired analysis pipeline.

Figure 2.1: Schematic overview of the Var3D architecture. The central reference point is the
protein reference sequence, to which any imported variant data and structure data refer to. After
the data was aggregated through the VarImporter and StructImporter interface, annotation pro-
grams can be run on the aggregated data set. The annotation processes follow four categories:
Annotations of the sequence (SeqAnno), annotations of variants only requiring sequence infor-
mation (VarSeqAnno), Annotations of the structure (StructAnno) and annotations of variants
requiring also structural information (VarStructAnno). The end result is an annotated data set
in which the calculated annotations link to the respective data points in the aggregated data.

The task which needs to be implemented in the data import processes is
the provision of variant and structure data in a compatible format. All
other necessary tasks and checks are already provided in the VarImporter
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and StructImporter interface. This includes checking the variant data
set for redundancy, mapping variants, sequence and structures to each
other and reporting data inconsistencies.

The annotation processes communicate through the annotation interface
to i.) obtain the specific information they need to calculate or create
their annotation successfully and ii.) return the results of the annotation
process in a format which maps correctly to the respective data point in
the data aggregation step.

2.1.2 Data Import

The central data piece and starting point of any Var3D pipeline is the pro-
tein reference sequence onto which variants and structures are mapped.

Each implementation of the VarImporter interface has the task to parse
variant data into a human-readable (hr) variant format which consists of
the following four parameters:

1. Ref: Reference sequence which will change upon mutation

2. Pos: Residue number of first amino acid changed in reference

3. Alt: Alternative sequence

4. Variant type

Variant Type Description Ref Pos Alt
SUBSTITUTION Single amino acid substitution A 176 G
INSERTION Insertion of 1 or more amino acids A 176 AHH
DELETION Deletion of 1 or more amino acids ART 176 A
INDEL INSERTION and DELETION combined ART 176 AHHG
STOP GAINED Special case of substitution, leading to stop codon A 176 *
STOP LOST Special case of substitution, removing stop codon * 237 A
START LOST Special case of substitution, removing start codon M 1 L
FRAMESHIFT Any event that leads to a frameshift A 176 -
SYNONYMOUS No effect on amino acid identity A 176 A

Table 2.1: Overview of variant types which can be processed in Var3D together with examples
of variants in the Var3D variant format.

The consistency of the indicated reference sequence is verified for every
imported variant. Every variant which has a reference sequence, position
and alternative sequence which is already present in the data aggregation
will not be included again. It is also assessed if the variant type is
consistent with the given variant information.
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We provide two variant importers by default in the framework. One is the
variant importer “HRVarImporter” (human readable variant importer)
which parses strings in the format described in Table 1 (for example
“A176G”) into their respective Variant object. The second variant im-
porter we provide is the “UniprotEntryVarImporter” which obtains the
currently available variant data associated with a protein entry from the
UniProt knowledge base2, a database of protein sequence and functional
information that is maintained by the UniProt consortium. Every vari-
ant associated with the provided entry (defined as all features which are
annotated as “VARIANT”) is obtained and added to the Var3D data
aggregation.

Each implementation of the StructImporter interface needs to provide
the means of loading structural data that refer to the underlying ref-
erence sequence. The representation of full macromolecular complexes
beyond that reference sequence is explicitly supported in order to provide
the full structural context for subsequent annotation processes. We use
the Open-Source Computational Structural Biology Framework (Open-
Structure)3 to process structural data.

The Var3D framework contains two structure importers by default. The
“FileSystemStructImporter” requires as the name indicates the path to a
local protein structure file which is then added to the data aggregation.
The “SMRStructImporter” utilises the application programming inter-
face (API) of the SWISS-MODEL repository4 to get all structure entries
corresponding to a UniProt accession code. If structural information
is available, the returned structures will include experimental structures
from the Protein Data Bank (PDB)5 or homology models from SWISS-
MODEL6.

The imported variants and structures are finally stored in a data aggre-
gation which provides a mapping to the underlying reference sequence.

2.1.3 Data Annotation

The data annotation pipeline consists of several individual processes
which are applied to the data aggregation created in the data import
step. Depending on the chosen annotation tasks, the data annotation
interface passes the necessary data to the annotator and performs con-
sistency checks on the returned annotation results. In the example of
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sequence-specific annotations, e.g. any suitable conservation score, the
Var3D annotation interface sends a sequence to the annotator and ex-
pects a list with equal length as the annotation result.

The annotation process defines four interfaces which vary on the in-
put required to perform the respective computations: sequence-level
annotations (SeqAnno), variant annotations using only sequence fea-
tures (VarSeqAnno), structure-level annotations (StructAnno), and vari-
ant annotations using both sequence and structure features (VarStruc-
tAnno).

SeqAnno: requires the reference sequence as input and is expected to
return an annotation for every position in the sequence.

For this category, we provide two conservation scorers, the normalised
Shannon entropy7 and the ConSurf conservation score8. The Shannon
entropy is a measure of information content for a protein residue in
the context of a multiple sequence alignment on the UniRef909 protein
sequence database. Lower information content correlates with higher
conservation of the amino acid position. In contrast to the Shannon
entropy, the ConSurf score explicitly considers the evolutionary relation-
ships of the aligned homologous sequences. This score is based on an
estimation of evolutionary rates and is expected to be more accurate than
the conservation score based on Shannon entropy. Conservation scores
can help to identify conserved regions in a protein in which mutations
are expected to have a stronger impact10.

Two additional sequence annotators were implemented for importing pro-
tein sequence annotations from different sources. One annotator imports
functional annotations like binding sites, interaction sites and other vari-
ant annotations from the UniProt knowledge base. The other sequence
annotator obtains functional and protein domain annotations from the
InterPro database11, which aggregates the results of functional annota-
tions of proteins, classifications of proteins into families and predictions
of domains and important sites from 13 different databases. Both an-
notators require that a UniProt accession code is provided. Functional
sites which are located on or close to mutation sites can provide further
context to hypothesise how the mutation could affect protein function.
Variants located on the active site of an enzyme for example could indi-
cate that the chemical capabilities of the enzyme are altered drastically.
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VarSeqAnno: In addition to the reference sequence they require infor-
mation on the amino acids which are exchanged by a mutation.

We provide the PROVEAN mutation impact scorer12, which estimates
the impact of mutations not limited to single amino acid substitutions. It
measures the change in sequence similarity between the query sequence
and a homologous sequence upon mutation of the query sequence. A
set of homologs are searched for in the non-redundant protein sequence
database13 and an unbiased delta score is used to align the multiple delta
scores into the PROVEAN score. If the introduced mutation reduces the
similarity between the input sequence and many functional homologous
proteins by a score less than -2.28, it is considered to be damaging. The
PROVEAN score provides a quantitative measurement of the impact of
a mutation. It can be considered to be a more precise measurement of
the mutational impact than what is provided by conservation scores.

We also make use of the full capacity of the AAindex database14 which
contains a large set of numerical indices representing physicochemical
and biochemical properties of amino acids and pairs of amino acids. The
database consists of three sections: AAindex1 which contains 544 differ-
ent amino acid indices corresponding to various chemical properties of
amino acids which can be represented by a single numerical value. AAin-
dex2 consists of 94 amino acid substitution matrices and AAindex3 has 47
different amino acid contact potential matrices. By using the respective
AAindex accession code, the annotator can obtain the relevant values
of the chosen index or matrix. Four AAindex properties are going to be
used consistently in this thesis to describe the chemical distance between
reference and alternative amino acid in a mutation: the hydrophobicity
parameter pi15, the molecular weight16, the isoelectric point17 and the
STERIMOL length of the side chain18. These physicochemical features
demonstrate how the size and the electrostatic properties in single amino
acid substitutions are affected.

StructAnno: computed on the protein chains of all structures which
map to the reference sequence.

We calculate the per-residue solvent accessibility using an OpenStructure
implementation of an algorithm after Lee & Richards19. The annotator
can return the absolute value of the accessible surface area or a relative
value which is scaled by the theoretical maximum accessibility of the
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respective amino acid. Buriedness is an important property to interpret
variants. Mutations on buried sites for example are expected to have a
higher impact on the protein stability of a single protein chain than on
solvent-exposed surface sites.

The second structure annotation we provide is a predictor of transmem-
brane regions which is based on an implicit solvation model20 also im-
plemented in OpenStructure. The algorithm identifies transmembrane
structures based on energetic and geometric criteria and estimates the
orientation of the hypothetical membrane for predicted transmembrane
proteins. The assumptions for the chemical environment of a mutation
site change drastically if that site is located in a transmembrane region,
which implies that the site is located in a hydrophobic lipid bilayer envi-
ronment.

Residues located on protein-protein interfaces are detected and anno-
tated by a specific structure annotator module. Every residue which is
localised close to a different protein chain (the default detection distance
is 5 Ångstrom) is annotated as an interface residue. The annotator dis-
tinguishes between homomeric interfaces if the protein chain in contact
also maps to the reference sequence and heteromeric interfaces if the pro-
tein chain in proximity belongs to a different protein. Mutation sites on
protein interfaces often have an impact on protein-protein interactions21.

The last structure annotation we provide is the fully automated protein-
ligand interaction profiler22 (PLIP) applied to all the structures in the
data aggregation. PLIP automatically detects all ligands present in the
various structures and catalogues the chemical interactions between lig-
and and protein and identifies the respective protein residues involved in
the interaction. Important chemical interactions with a ligand which can-
not be maintained by the alternative amino acids are a strong indicator
of an impactful mutation.

VarStructAnno: uses information on both the amino acid sequence
changes introduced by the variant and 3D structure information.

For this category, we implemented the estimation of the free energy
change upon mutation using the FoldX empirical force field23. The
force field is based on an equation which sums up terms for hydrophobic
interactions, polar and hydrophobic desolvations, hydrogen bond ener-
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gies, electrostatic interactions, free energy change at protein interfaces
of oligomeric proteins, entropy costs and clashes of amino acids. The
difference between the energy in the wild-type structure and a structure.
FoldX first estimates the total free energy in the wild-type structure.
Then it introduces the mutation indicated by the currently processed
variant into the structure and optimises the structure of the new protein
variant. The free total energy is estimated again in the mutated struc-
ture and the difference between the wild-type energy estimation and the
mutation energy estimation is returned. High free energy differences in-
dicate that the protein is not coping well with the introduction of the
respective mutation.

The results of all the annotation processes are collected and stored in an
annotation data structure. This dictionary links the annotations to their
respective data structures in the data aggregation and contains a log if
errors in the single annotation processes were encountered.

VarImporter
HRVarImporter Parses variants from human readable (HR) strings, e.g. A123AB
UniprotEntryVarImporter Fetches and parses variants from UniProt entry
StructImporter
SMRStructImporter Fetches structures from the SWISS-MODEL repository (SMR)
FilesystemStructImporter Fetches user-defined structures from disk
SeqAnno
EntropySeqAnno Shannon entropy based on MSA
ConsurfSeqAnno Annotation with ConsurfDB pipeline
UniProtSeqAnno Functional annotations from UniProtKB
InterProSeqAnno Functional and domain annotations from InterProKB
VarSeqAnno
ProveanVarSeqAnno Variant annotation based on Provean
AAIndexVarSeqAnno Variant annotation based on the AAindex DB
StructAnno
AccessibilityStructAnno Annotations based on Solvent Accessibilities

TransmembraneStructAnno
Classifies if a structure has transmembrane-like properties.
If yes, the optimal membrane positioning is added too.

InterfaceStructAnno Annotates interface residues
PLIPStructAnno Annotates protein-ligand interactions with PLIP
VarStructAnno
FoldXVarStructAnno Variant annotation based on the “BuildModel” function of FoldX

Table 2.2: Overview over Importer and Annotator functionalities implemented in the Var3D
framework.
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2.2 Results

2.2.1 Deployment of Var3D

The Var3D toolbox was implemented using Python and can be accessed
at the following Git repository:
https://git.scicore.unibas.ch/schwede/var3d. To run Var3D, a Singular-
ity container24 must be set up to satisfy the software dependencies of
Var3D and the collection of provided importers and annotators. While
the container itself is not provided, the ”def builder.py” Python script
can be used to create a recipe file for the Var3D container construction.

After the Var3D container is set up, the pipelines provided in the reposi-
tory can be executed, or a new variant analysis pipeline can be developed.
If new software dependencies are required, it needs to be ensured that
the Var3D Singularity container is updated accordingly.

2.2.2 Var3D Pipelines

The first pipeline is a tutorial example to demonstrate and test the basis
of the structure of a Var3D pipeline. There, we annotate the small pro-
tein crambin with a single example variant and apply the two mentioned
conservation score annotators, an AAIndex annotation and the FoldX an-
notator to it. The structures for the crambin protein are obtained using
the SMR structure importer. The full pipeline is implemented in a single
short script and provides a good starting point for the implementation
of a customised pipeline.

The second pipeline demonstrates an application of Var3D with biological
relevance: the “sars cov2” pipeline, which analyses variants that lie on
the polyprotein of SARS-CoV-2. It uses the UniProt variant importer
and the SMR structure importer to get variant and structure data from
sources which will be updated periodically with the latest information on
the pathogen. The pipeline then annotates the aggregated data with the
two conservation scores and with the relative solvent accessibility.

The “tbvar3d” pipeline is the central piece of the TBvar3D web server
and will be the object of discussion in the next chapter. The variant
and structure data are obtained from a local source. All the annotators
described in the subsection “Data annotation” were applied to this data

https://git.scicore.unibas.ch/schwede/var3d


Var3D 49

aggregation. Further details on the analysis pipeline can be found in
Chapter 3.

The fourth pipeline is the “antibody” pipeline. Similar to the TBvar3D
pipeline, variants and structures were obtained from a local data set.
Besides the conservation scores, PROVEAN scores and certain AAindex
features provided by the default Var3D framework, it was required to
implement three new annotators: a detector of epitope residues and the
separate calculations of the relative surface accessibility and free energy
difference upon mutation for the structure of the full antibody-antigen
complex and the apo form of the antigen. A more in-depth description
of this pipeline can be found in Chapter 4.

var3d/pipelines/crambin annotation.py

A simple tutorial pipeline which manually creates
and imports one variant lying on the crambin
protein in a single script. The annotations calculated
are normalised entropy, ConSurf score, amino acid
similarity and the FoldX free energy difference.

var3d/pipelines/sars cov2/

Imports variants from the UniProt entries and
structures from the SMR entries of the SARS-Cov2
polyprotein and calculates normalised entropy, ConSurf
score and the relative solvent accessibility for all variants.

var3d/pipelines/tbvar3d/
Imports variants and structure from two manually
defined databases and uses several annotations
(Chapter 3)

var3d/pipelines/antibody/
Imports variants and structure from two manually
defined databases and uses several annotations
(Chapter 4)

Table 2.3: Pipelines provided in the Var3D Git repository. The path to the pipeline script or
folder is provided in the left column, with the title of the pipeline highlighted. A short description
is provided on the right. The last two pipelines are described in more detail in the indicated
chapters of this thesis.

In Table 2.4 is an overview of the data processed by the presented
pipelines together with the total computational time required to cal-
culate the annotations indicated in Table 2.3. While a small number of
variants and structures can be handled manually, the table demonstrates
the ability of Var3D to process the combination of large variant and
structure data sets.



50 Chapter 2

Var3D Pipeline
Reference
Sequences

Total
Annos

Total
Variants

Total
Structures

Accumulated
Run
Time

Longest
Running
Task

crambin annotation 1 4 1 26
0 h
11 min
47 sec

0 h
11 min
47 sec

sars cov2 20 3 109 1722
5 h
47 min
24 sec

1h
35 min
48 sec

tbvar3d 69 10 10’719 64
110 h
12 min
54 sec

3 h
42 min
25 sec

antibody 62 11 10’ 352 114
142 h
59 min
32 sec

5 h
15 min
15 sec

Table 2.4: Overview over the amount of data aggregated by the pipelines and the computa-
tion time. The computations were performed on a heterogeneous compute cluster (sciCORE,
scientific computing centre at the University of Basel). The Var3D pipeline for each reference
sequence was submitted as independent computation tasks.

2.3 Discussion

To efficiently process large amounts of variant, protein structure and
annotation data, we required a robust framework and the definition of
data standards. The usefulness of a stable workflow which enables the
handling of a diverse range of requests for variant interpretation would
not be only limited to the projects described in this dissertation.

With Var3D, we implemented a framework for the general analysis of
a large scale of variant data together with their respective structure
data. Processes required for every structure-based investigation of vari-
ants were automatized through the standardised software interfaces and
we provide a set of importers and annotators which allow the construction
of a custom variant analysis pipeline.

We demonstrate the capabilities of Var3D by the implementation of four
different variant analysis pipelines, two of which will be prominently fea-
tured in this dissertation. The next chapter will show how the Var3D
framework can also be used as the central server-side software component
in the implementation of a variant analysis web server.

The development of new prediction tools based on artificial intelligence
relies on large, consistent and homogeneously generated datasets. A
data standard and framework for variants would open up new possibili-
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ties for the application of these groundbreaking methods to predict the
impact of mutations. The Var3D framework enables the generation of
large, standardised data sets which can be utilised for machine learning
applications.

Var3D is focused on the investigation of the effect of variants on the level
of protein structures but as discussed in the Introduction, this would
only constitute the first step (Figure 1.1). The next step would be
to investigate how the change in the protein level would impact the
biological system in the cell. To enable researchers to build on top of
this framework, the code is made available as open-source.

2.4 Publication and Code Availability

The code base has been published on https://git.scicore.unibas.ch/schwede/var3d.
Description of the framework will be published in the context of a manuscript
describing the TBvar3D web server in chapter 3.

https://git.scicore.unibas.ch/schwede/var3d


52 Chapter 2

References
[1] Gamma, E., Johnson, R., Helm, R., Johnson, R. E., & Vlissides, J. (1995). De-

sign patterns: elements of reusable object-oriented software. Pearson Deutsch-
land GmbH.

[2] UniProt Consortium (2019). Uniprot: a worldwide hub of protein knowledge.
Nucleic acids research, 47 , D506–D515.

[3] Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner,
N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). Openstructure:
an integrated software framework for computational structural biology. Acta
Crystallographica Section D: Biological Crystallography , 69 , 701–709.

[4] Bienert, S., Waterhouse, A., De Beer, T. A., Tauriello, G., Studer, G., Bor-
doli, L., & Schwede, T. (2017). The swiss-model repository—new features and
functionality. Nucleic acids research, 45 , D313–D319.

[5] Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., &
Velankar, S. (2017). Protein data bank (pdb): the single global macromolecular
structure archive. Protein Crystallography , (pp. 627–641).

[6] Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny,
R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L. et al. (2018). Swiss-
model: homology modelling of protein structures and complexes. Nucleic acids
research, 46 , W296–W303.

[7] Shannon, C. E. (1948). A mathematical theory of communication. The Bell
system technical journal , 27 , 379–423.

[8] Ben Chorin, A., Masrati, G., Kessel, A., Narunsky, A., Sprinzak, J., Lahav, S.,
Ashkenazy, H., & Ben-Tal, N. (2020). Consurf-db: An accessible repository for
the evolutionary conservation patterns of the majority of pdb proteins. Protein
Science, 29 , 258–267.

[9] Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B., Wu, C. H., & Consor-
tium, U. (2015). Uniref clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinformatics, 31 , 926–932.

[10] Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I.,
Pupko, T., & Ben-Tal, N. (2013). Consurf: using evolutionary data to raise
testable hypotheses about protein function. Israel Journal of Chemistry , 53 ,
199–206.

[11] Blum, M., Chang, H.-Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell,
A., Nuka, G., Paysan-Lafosse, T., Qureshi, M., Raj, S. et al. (2021). The
interpro protein families and domains database: 20 years on. Nucleic acids
research, 49 , D344–D354.

[12] Choi, Y., & Chan, A. P. (2015). Provean web server: a tool to predict the
functional effect of amino acid substitutions and indels. Bioinformatics, 31 ,
2745–2747.

[13] Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2007). Ncbi reference sequences
(refseq): a curated non-redundant sequence database of genomes, transcripts
and proteins. Nucleic acids research, 35 , D61–D65.

[14] Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T.,



REFERENCES 53

& Kanehisa, M. (2007). Aaindex: amino acid index database, progress report
2008. Nucleic acids research, 36 , D202–D205.

[15] Fauchere, J.-L. (1983). Hydrophobic parameters pi of amino-acid side chains
from the partitioning of n-acetyl-amino-acid amides. Eur. J. Med. Chem.-Chim.
Ther., 18 , 369–375.

[16] Fasman, G. (1976). Handbook of biochemistry and molecular biology. 3rd ed.,
Proteins - Volume 1 , .

[17] Zimmerman, J., Eliezer, N., & Simha, R. (1968). The characterization of amino
acid sequences in proteins by statistical methods. Journal of theoretical biology ,
21 , 170–201.
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CHAPTER 3
TBvar3D: Mapping Antibiotic

Resistance Variants in

Mycobacterium Tuberculosis on 3D

Protein Structures

The work described in this chapter has been a collaborative effort between
Erblin Asllanaj, Andrew Waterhouse, Gabriel Studer and Rosalba Lepore.

Contributions: RL designed and supervised the project. EA and RL
designed the pipeline and performed the analysis of the catalogue. EA
and GS implemented the backend of the TBvar3D web server. AW and
EA implemented the front end of the web server. All names are ordered
by the amount of contributions.



56 Chapter 3

The antibiotic resistance crisis is one of the greatest worldwide challenges
to medical research and society. The continuous spread of multi-drug re-
sistant bacterial strains in combination with a shortage of new antibiotic
drugs puts healthcare systems worldwide in a precarious situation1. In
2018, the World Health Organisation (WHO) reported about 500’000
new cases of multidrug-resistant tuberculosis (MDR-TB), which are re-
sistant against the two most powerful antitubercular drugs, Rifampicin
and fluoroquinolones, with an estimation of further 1 million unreported
cases2.

Besides the need for new antibiotic drugs, quick and reliable diagnosis
of the drug resistance status of pathogens is essential to exercise bet-
ter and immediate effective control over the situation. Variants with a
strong resistance phenotype are used as genetic markers of resistance for
antibiotic resistance diagnosis. But these well-characterised variants are
vastly outnumbered by variants for which the phenotypic consequence is
not known.

TB researchers across the world would highly benefit from an accessible
web service which facilitates a structure-based analysis of new variants
in the context of established resistance variant data and relevant struc-
ture models of variant target proteins. This enables the exploration of
variants with an unknown consequence concerning drug resistance and
could enable the selection of promising candidates for further experimen-
tal characterisation.

In this chapter, we describe the variant analysis web server TBvar3D. The
web server is based on the Var3D software presented in the previous chap-
ter and provides the user with an up-to-date web-based environment that
streamlines data integration, analysis and hypothesis generation on the
role of given variants in MTB drug resistance. TBvar3D has no login re-
quirement and is freely available at https://swissmodel.expasy.org/var3d/.

3.1 Methods

3.1.1 Analysis Pipeline

The backend of the TBvar3D web server is based on two Var3D pipelines:
one for precomputing annotations of all variants of the WHO catalogue

https://swissmodel.expasy.org/var3d/
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of drug resistance mutations in the MTB complex3 and a second for
processing user-submitted variants in real-time for the TBvar3D web
server (Figure 3.1).

The precomputation pipeline uses a customised variant importer which
directly parses the unprocessed WHO variant catalogue file. The struc-
tures are loaded through the file system structure importer from the
curated TBvar3D structure database (see subchapter 3.1.3). The anno-
tation pipeline contains all annotators which were described in Chapter
2 under the “Data annotation” section. The output is stored for future
use in the TBvar3D web server, where the catalogue variants can be
explored on their own.

Figure 3.1: Schema of the overall TBvar3D software architecture. The left pipeline precomputes
variant annotations in the WHO catalogue using the protein structure models from the curated
structure database. The results are stored and then reused in the TBvar3D web server. The user
of the server can submit variants on any protein in the MTB proteome. If the protein is part of
the resistance target set represented in the curated structure database, then the structure and
precomputed WHO variant annotations will be obtained from there, else it is provided by the
SWISS-MODEL repository.
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The web server pipeline mirrors the precomputation pipeline but pro-
cesses a user input which consists of a protein together with a list of
variants located on it. The structure data is either obtained from the
TBvar3D structure database if the indicated protein is represented in
it, or obtained from the SWISS-MODEL repository otherwise. Variants
from the WHO catalogue are included if they map to the user-provided
input protein.

3.1.2 Curation of the WHO MTB Mutation Catalogue

The WHO catalogue of drug resistance mutations in the MTB complex
is a worldwide effort to categorise and standardise the current knowledge
of antibiotic resistance variants in MTB3. The catalogue provides a ref-
erence standard for the interpretation of mutations conferring antibiotic
resistance. The current release contains 18 ’446 genetic mutations and
their resistance phenotype towards 13 antibiotics commonly used in MTB
treatment.

We implemented a Var3D variant importer which processes the variant
list from the raw data set of the variant genome indices made available
by the WHO. The variants in the catalogue use as reference the pro-
tein sequences from Mycobrowser4, a TB-specific gene and protein se-
quence database with computationally generated and manually reviewed
information dedicated to complete genomes of Mycobacterium tuber-
culosis, Mycobacterium leprae, Mycobacterium marinum and Mycobac-
terium smegmatis. All the Mycobrowser sequences in the catalogue were
mapped to proteins in the UniProtKB proteome ID UP000001584 (MTB
strain ATCC 25618 / H37Rv, access date 01.02.2022) which TBvar3D
is using as the reference proteome from this point on. The mapping to
UniProt is required for the use of the Var3D SMR structure importer and
the Var3D Uniprot feature annotator. The alignments were performed
using the semi-global alignment method (Needleman/Wunsch without
gap penalty) from OpenStructure5.

In three cases, the UniProt protein sequence starts at a later position
than the respective Mycobrowser sequence. 23 variants were mapped to
a part of the protein which was not covered by the respective UniProt
sequence and could not be processed.

A mismatch of the starting amino acid is observed for 27 proteins but
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was not considered as relevant for the analysis. Modifications of the
starting codon prevent the expression of the full protein. UniProt pro-
tein sequences consistently start with a methionine while MycoBrowser
protein sequences can start with other amino acids: Valine (25 times in
this protein set) or Leucine (2 times) which is supported by the fact that
alternative starting codons for MTB are expected6.

3.1.3 Curation of the TBvar3d Target Structure Database

The structure of proteins not represented in the WHO catalogue is ex-
tracted by the Var3D SMR structure importer. The SMR7 has a weekly
update cycle and provides a ranked selection of PDB experimental struc-
tures and SWISS-MODEL homology models for every protein in the MTB
proteome.

The structures of the proteins in the WHO catalogue were manually
curated. The two goals of the selection are (i) the presence of the
antibiotic ligand in the proper binding site if the protein is a known drug
target and (ii) the proper oligomeric state of the protein target.

Whether an antibiotic ligand was expected to be present in a protein
was decided by conducting an extensive literature search on the re-
sistance mechanisms of all targets (Supplementary, Table 3.1). The
oligomeric state predictions were provided by the SWISS-MODEL repos-
itory (SMR)8.

Experimentally resolved structures of the targets were obtained directly
from the Protein Data Bank wherever possible. Other targets were ob-
tained from the AlphaFold DB9 which contains structure predictions of
single protein chains. The modelling of homo-oligomeric targets with-
out experimental structures was performed by using AlphaFold-Multimer
(v.2.1.1)10.

Three protein targets are part of a complex oligomeric structure which
could not be modelled with AlphaFold due to size limitations. These
proteins were the ATP-synthase subunits atpE and subunit atpB which
are part of the large ATP synthase machinery (an 18-mer consisting of
8 different proteins, Figure 3.2)) and a homo-6-mer of the large (848
residues) ATP-dependent Clp protease. We used SWISS-MODEL11 to
create a homology model of these complexes using as templates structure
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of the ATP synthase in complex with Bedaquiline in Mycobacterium
smegmatis (PDB ID 7jga) and of the Clp protease in Escherichia Coli
(PDB ID 5og1). The average model confidence for the ATP synthase
model was on the higher end with a QMEANDisCo score12 of 0.82 while
the confidence for the Clp protease was scored at 0.55.

Figure 3.2: Homology model of the ATP-synthase complex based on the template 7jga. The
template contained the full complex of the protein machinery with Bedaquiline, a novel antibiotic.
Presumed resistance variants are located either on the atpE subunits or the atpB subunits which
are both predicted to be immersed in the membrane of the bacteria.

The drug targets gyrase subunit B and subunit A have incomplete ex-
perimental structures of the gyrase complex with DNA and the two flu-
oroquinolones Moxifloxacin and Gatifloxacin13. Roughly 60% of the N-
terminal gyrA sequence and 40% of the C-terminal gyrB sequence are
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covered in the available experimental structures. Using AF2 single chain
models, the structure was completed by superposing the chains on the ex-
perimental structure with the UCSF Chimeras MatchMaker algorithm14

(Figure 3.3). We detected no clashes between the two DNA chains, the
two ligand molecules and the gyrase subunits using the clash detector of
UCSF Chimera.

Figure 3.3: Assembled model of the gyrase complex using an experimental scaffold and AF2
predictions of the single subunits. The model shows for the first time a predicted beta-propeller
domain in the gyrA subunit with an unknown function and an additional domain in the gyrB
subunit.

For targets with no experimental structure of the drug-ligand complex
but with a homologous experimental structure which contained the drug
of interest, the ligand could be modelled by superposition of the ligand
template with the target structure. The ligand was either transferred
directly by the modelling tool (example in Figure 3.2) or transferred using
the UCSF Chimeras MatchMaker to superpose the ligand template with
the structure of the target.
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For the drug target of Linezolid, the 50S ribosomal protein rplC, an
experimental structure exists of the complex with a Linezolid analogue
(Linezolid-114)15. We superposed the Linezolid molecule (obtained from
PubChem16) with its analogue by using the field-based ligand alignment
of the ligand-based design software Flare™17 from Cresset®. The al-
gorithm uses a combination of atomic and electrostatic features of the
ligand and the binding pocket to calculate a more accurate superposition
between ligand molecules.

We used the molecular docking program AutoDock Vina 1.2.018 to
predict the binding pose of three targets (Two fragments of Pyrazi-
namide (123.11 Da) and Ethionamide (166.244 Da), and Delamanid
(534.48 Da)) in their respective protein targets (pncA (Experimental),
ethA (AF2), and ddn (AF2)). The docking of Pyrazinamide could be
confined to a 10x10x10 Ångstrom search space due to an active site an-
notation. The best poses were selected through a combination of binding
affinity estimations, manual inspection19, and interaction analysis. How-
ever, it should be noted that the results may not be highly accurate due
to the fragment ligands and AF2 models as targets20,21.

Structures and models of the curated TBvar3d target structure database
were deposited to ModelArchive [9]. ModelArchive is a database for pro-
tein structure models where users can deposit their model structure data
sets with detailed information on the methods (parameters, the version
number of tools, etc.) used for their structure predictions. The Mode-
lArchive entry of the structure database (Accession code “10.5452/ma-
tbvar3d”) contains detailed descriptions of the data sources, pipelines
and tools used.

3.2 Results

3.2.1 WHO Mutation Catalogue Data Set

While parsing the 18’446 genetic mutations from the catalogue, the
TBvar3D variant importer discarded variants which are located outside
protein-coding regions (1’347), synonymous variants (4’922), variants
with ambiguous or missing genetic locus (991), duplicated variant entries
(836) and ambiguous descriptions of the amino acid mutations (the na-
ture of the mutation is not described) or sequence mapping mismatches
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(57). This leaves 10’293 protein-coding variants across 66 unique pro-
tein targets, broken down as follows (Figure 3.4): 928 (9%) are classified
as resistance variants and 110 (1.06%) are categorised as susceptible or
neutral variants. The remaining variants (9’255) lack a definite grading
and are thus considered uncertain.

The majority of the variant data set contains single amino acid substi-
tutions. 9’ 139 of the variants (88.7%) in the data set belong to this
variant type with the overwhelming majority of these substitutions be-
ing labelled as uncertain (8’ 736). Susceptible variants in this data set
are, with one exception in the indel group, represented by this variant
type with 109 variants. The next group of represented variant types are
frameshifts which constitute 723 (7%) of the variant data set. In this
variant group, half are considered as resistant while the other half was
labelled ”uncertain”. The other variant types follow the same pattern.
Mutations leading to a loss of the start codon are all labelled uncertain.

Figure 3.4: Annotations of the WHO mutation catalogue variant data set. The variants are split
according to their variant type (see Chapter 2, Table 2.1) and the variant label they received
from the WHO.
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The distribution of resistance variants within the catalogue across pro-
tein targets can be observed in Figure 3.5. Prodrug activators exhibit
the highest number of resistance variants (625), with notable examples
including the enzymes katG, which activates the first-line drug Isoni-
azid and pncA, which activates the first-line drug Pyrazinamide. Drug
targets exhibit the second highest number of resistant variants (152),
with the RNA polymerase subunit rpoB, a target of the first-line antibi-
otic Rifampicin, predominating in this category (122). The two methyl-
transferases rmsG and tlyA comprise the third largest group of resistant
variants (147) due to their mechanism of resistance, which involves the
disruption of methylation function, similar to prodrug activators. Methy-
lation of ribosomal RNA is required for the proper function of aminogly-
coside antibiotics. The distribution of variants classified as resistance is
heavily skewed towards proteins whose mechanism involves the disruption
of function, as well as prominent drug targets.
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Figure 3.5: Distribution of variants in the mutation catalogue across targets in the data set.
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The distribution of the ConSurf conservation scores (Figure 3.6) suggests
that resistance variants tend to be located at more conserved sites than
both susceptible variants and uncertain variants. The comparisons of
distributions show a significant difference (Wilcoxon rank sum to test for
the equality of the means) between resistance variants and susceptible
variants.

Figure 3.6: Conservation score distributions in the WHO variant data set. The violin plot above
shows the distribution of the ConSurf score which ranges from 1 (not conserved) to 9 (very
conserved). The displayed statistical testing results between the variant label categories used
the Wilcoxon rank sum to test for the equality of the means.
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The alignment-based PROVEAN score follows a similar trend (Figure
3.7). Variants which were labelled as resistant tend to have lower PROVEAN
scores than susceptible variants. The variant type can have a drastic ef-
fect on the score: deletions, insertions and indels are scored with strongly
negative values. The distribution of scores in the resistant variants tends
to be lower than the PROVEAN deleteriousness threshold.

Figure 3.7: PROVEAN score distributions in the WHO variant data set. The violin plot above
shows the distribution of the numeral score. Variants which have a value below -2.28 (red
line) are considered deleterious The displayed statistical testing results between the variant label
categories used the Wilcoxon rank sum to test for the equality of the means. The outlier points
are coloured by variant type.
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The distribution of relative solvent accessibility (RSA) values (Figure 3.7)
also suggests that resistant variants tend to be more buried in the protein
than susceptible variants. The mean RSA value for resistant variants is
15% lower than for susceptible variants. The largest contribution to this
effect comes from the large number of resistance mutations mapping to
the Rifampicin Resistance Determining Region (RRDR) which is part of
the deeply buried Rifampicin binding site in rpoB.

Figure 3.8: Relative solvent accessibility score distributions of the WHO variant data set. The
value is usually a percentage between 0% and 100% but can be higher than 100% for highly
exposed residues (improper reference values for normalisation can lead to RSA values above 1 22).
The displayed statistical testing results between the variant label categories used the Wilcoxon
rank sum to test for the equality of the means.
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3.2.2 TBvar3D Structure Data Set

The curated TBvar3D structure data set was created by extending experi-
mental structures of TB proteins with a diverse set of structure prediction
methods (Figure 3.9). Among the 66 protein targets in the WHO mu-
tation catalogue, 28 have experimental structures present in the Protein
Data Bank which could be used directly. Further, 35 proteins have been
modelled using AlphaFold2 (AF2). 23 of these proteins were predicted
to have a monomeric state which meant that the prediction from the Al-
phaFold DB could be used directly while 10 structures predicted to adopt
a homo-oligomeric state were modelled using AlphaFold-Multimer. 3 tar-
gets required the modelling of large heteromeric complexes and could be
modelled using SWISS-MODEL (see Methods). The partial experimen-
tal structures of the gyrase complex containing the two targets gyrA and
gyrB were completed by superposing the respective AF2 models on the
experimental structure (see Methods).

Among the 66 protein targets, 20 targets were determined to require the
presence of a drug ligand in the structure. 10 of these targets have a
resolved experimental structure of the drug target complex. The SWISS-
MODEL pipeline transferred the ligand from the manually selected tem-
plate for two protein targets. For four targets, we found homologous
experimental structures which contained a drug of interest and through
superposition they were transferred to the AF2 structure of the original
target. One target had the experimentally resolved structure of a com-
plex with an antibiotic analogue which could be replaced using field-based
alignment. The remaining three targets had no template information on
the ligand, so the ligand pose was predicted by molecular docking using
AutoDock-Vina (see Methods).
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Figure 3.9: Overview over methods used to obtain the structures of the targets and the drug
target complexes.
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3.2.3 Usage Of TBvar3D

TBvar3D has been developed as a web server for mapping and analysing
MTB variants in the context of protein structures and the comprehen-
sive resistance variant catalogue provided by the WHO. The TBvar3D
homepage (Figure 3.10) allows a user to initiate the variant analysis by
entering a UniProt accession code for an MTB protein and a list of vari-
ants of interest in the protein. Upon entering a valid UniProt accession
code, the corresponding protein sequence is displayed to assist the user
in entering their variants of interest. Any errors in the variant input
are interactively communicated to the user and prompted for correction.
The user can also access previously submitted variant analysis projects
through the projects panel located at the bottom of the page, which is
stored for a period of two weeks. Additionally, the user has the option
to access a target exploration page for the inspection of WHO cata-
logue variants through the exploration button located at the top of the
webpage.

The target exploration page (Figure 3.11) consists of a table which lists
the links to the results page of 66 protein targets and contains information
on the antibiotics linked to the target, a categorization of the mechanism
of resistance linked to the target and the number of resistant, susceptible
and uncertain variants.
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Figure 3.10: Overview over the TBvar3D home page. The user can either enter their own
variants which will be analysed by the TBvar3D web server, get access to their previous projects
or explore variants from the WHO variant catalogue.
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Figure 3.11: Overview over the TBvar3D exploration page. The table gives an overview of all
66 antibiotic resistance targets present in the WHO catalogue with information on the drugs
targeting it, associated mechanisms of resistance and the number of different types of variants
located on the target.
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The results page (Figure 3.12) shows the aggregation of variant infor-
mation, sequence information and structure information.

The sequence panel (depicted in Figure 3.12A) presents a comprehensive
overview of the variants, functional annotations, and sequence features
of a given protein. The displayed variant data is separated into four
categories: user-submitted variants, WHO resistance variants, neutral
variants, and uncertain variants. This panel provides information to ex-
amine individual variants or groups of variants within the context of all
sequence annotations, including easy access to relevant information such
as proximity to interaction sites or regions of conservation. The bottom
of the sequence panel displays a list of structures associated with the
current protein target and also allows for the inspection of surface acces-
sibility and transmembrane prediction features linked to the respective
structure. If multiple structures are available, the structure display for
the current protein target can be switched here.

The variant panel (Figure 3.12B) presents the results linked to a specific
variant selected in the sequence panel. This includes the chemical dis-
tance for single amino acid substitutions and the PROVEAN score. For
variants listed in the World Health Organization (WHO) catalogue, the
panel also displays the antibiotics to which the variant confers resistance,
as well as the original WHO classification and a link to the PubChem
database for the respective antibiotic drug.

The structure panel (Figure 3.12C) uses the protein viewer implemen-
tation of SWISS-MODEL which is based on the NGL viewer23 and the
PV viewer24. In addition to the visualisation functionalities of a protein
viewer, the user can map features of the sequence panel (like variants)
onto the structure. Computationally predicted protein structure models
display a global quality estimation score (pLDDT for AF models25, QME-
ANDisCo for homology models12) in the structure title and the structure
can be coloured by local quality scores.

Selecting the drug (Figure 3.12D) in the variant panel focuses the display
on the drug-binding pocket in the structure panel (Figure 3.13). Mapping
of variants and annotations can still be performed in the ligand-centric
view. The size of the ligand environment around the drug can be ex-
tended up to 10 Ångstroms.
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Figure 3.12: Overview of the TBvar3D results page. (A) sequence panel with the variant data,
sequence features and structural features aligned to the reference sequence. (B) The variant
panel features directly related to the variant are shown here. The box below the variant panel
indicates the antibiotics which are present in the currently selected structure view and shows
variant annotations from the WHO mutation catalogue. (C) Protein structure viewer, through
the sequence panel the mapping of various features can be performed on the protein structure
view. (D) The ligand panel shows information on the antibiotic, by clicking on it the structure
view is centred on the ligand.
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Figure 3.13: The structure view upon clicking on the ligand panel. Now the antibiotic ligand is
centred in the structure view. Features from the sequence panel can be mapped on the ligand
binding site.

3.2.4 Case Study: Investigation of Bedaquiline-Resistant
Variants on Siderophore Exporter MmpL5

Bedaquiline (BDQ) is a novel drug which was approved for the treatment
of drug-resistant MTB in 2012, the first of its kind in 40 years26. It was
classified as one of three core drugs for treating rifampicin-resistant MTB
in 2018 by the WHO. With the increase in BDQ use, cases of treatment
failures were reported soon after its introduction27–29.

The WHO catalogue lists 6 resistance genes for BDQ. The first is the
drug target, the ATP synthase subunit c atpE (Figure 3.2 in the Meth-
ods section) which forms a 9-mer alpha-helical transmembrane barrel
in the ATP synthase heterocomplex. The next three targets which are
attributed clinical relevance are three genes of the siderophore exporter
MmpL5 together with the corresponding accessory protein MmpS5 and
the transcriptional regulator MmpR530. The last two candidates, the
probable cytoplasmic peptidase PepQ and the uncharacterized trans-
porter Rv1979c have only limited evidence linking them to BDQ re-
sistance31.

Understanding BDQ resistance is currently a crucial objective in the fight
against MTB drug resistance. With the increased use of the drug, re-
sistance variants associated with BDQ are expected to become more
prevalent. If it would be possible to identify variants whose phenotype
can be linked to clinically relevant drug resistance, BDQ resistance could
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be diagnosed similarly to how Rapid Molecular Assays (see Chapter 1.1.2)
are currently used to predict Rifampicin and Isoniazid resistance in pa-
tient samples today32. This requires the proper prioritisation of mutation
candidates for further research. TBvar3D can be used to speed up the in-
vestigation of emerging variants in the context of their protein structures
and to distinguish potentially impactful variants from less remarkable mu-
tations.

In the case study we describe here33, 291 isolates from South African
BDQ-naive patients were screened for naturally occurring BDQ resistance
by measuring the BDQ MIC and associating mutations in the 6 candidate
genes to isolates with large BDQ MIC shifts.

The number of naturally occurring BDQ-resistant isolates was low (2/291
were BDQ resistant) and two variants in the siderophore exporter MmpL5
were associated with BDQ resistance: p.Thr794Ile and p.Asp767Asn.
These associations are contradicted by the WHO catalogue which grades
them both as susceptible to BDQ.

The extracellular transmembrane protein MmpL5 is required for the ex-
port and synthesis of siderophores which are small, high-affinity iron-
binding compounds which help the organism to accumulate iron34. The
overexpression of MmpL5 is described to mediate non-target-based re-
sistance to azoles, clofazimine and BDQ35–37.

In this study we used an AF2 model of MmpL5. The protein is pre-
dicted to be a transmembrane protein. The mutations are located at the
beginning and end of a transmembrane alpha helix.

The mutation site of the first variant p.Thr794Ile (Figure 3.14) is slightly
conserved with a Shannon entropy of 0.71 and a ConSurf score of 6.
The site is rather buried with a relative solvent accessibility of 30.85%.
The mutation site is predicted to be immersed in the transmembrane
region. The mutation from a threonine to a more hydrophobic but still
similar amino acid isoleucine should not be problematic in the expected
hydrophobic environment. The PROVEAN score is far above the dele-
teriousness threshold with 3.65 denoting that the mutation is predicted
to be well-tolerated by the protein. The data in TBvar3D supports the
assessment of this variant made by the WHO.



78 Chapter 3

Figure 3.14: Close look at p.Thr794Ile (green) in TBvar3D
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The other mutation p.Asp767Asn (Figure 3.15) on the other hand is
on a strongly conserved site (Shannon 0.15, ConSurf 9). The residue
site itself is also buried with a relative solvent accessibility of 20.65%.
The residue site itself is predicted to be located outside the membrane
region. The transition from an aspartate to an asparagine introduces a
large difference in the isoelectric point of the amino acid (difference of
2.64) while every other physicochemical property remains very similar.
The PROVEAN score predicts this mutation to be deleterious (-4.9).
The WHO catalogue reports a different mutation with the “uncertain”
grading at the same position, p.Asp767Ala, whose PROVEAN score also
designates this to be a deleterious mutation (-7.9).

The first mutation p.Thr794Ile is likely not impactful from a structural
perspective. No annotation besides the relative conservation of the re-
gion is remarkable. The mutation to another hydrophobic amino acid
is unlikely to impact the protein structure. The mutation p.Asp767Asn
however might have a potential impact on MmpL5: the mutation site is
quite conserved with the PROVEAN score grading the mutation as hav-
ing a deleterious effect. The site itself is rather buried. The mutation
changes the isoelectric point of the site. The mutation p.Asp767Ala is
also located at the same site and is predicted to be even more deleterious
than p.Asp767Asn.

It has been shown for azoles37 that MmpL5 is linked to active transport of
the compound out of the cell, with a similar mechanism being postulated
for Clofazimine and Bedaquiline. The mutations on p.Asp767 could po-
tentially be linked to this mechanism, but further computational predic-
tions and annotations would be necessary and this falls outside the scope
of TBvar3D. Nevertheless, we could demonstrate how p.Asp767Asn is
more likely to have an impact on the protein function than p.Thr794Ile
given the available information.
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Figure 3.15: Close look at p.Asp767Asn (green) in TBvar3D
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3.2.5 Case Study: Compensatory Mutation on ahpE for
Isoniazid Resistance

Isoniazid is an antitubercular drug which was first created in 195238. The
combination of Isoniazid with Rifampicin, Ethambutol and Pyrazinamide
is still used as the standard of care for the treatment of drug-susceptible
tuberculosis39. The drug resistance mechanism against Isoniazid usu-
ally involves deleterious mutations in the prodrug activator catalase-
peroxidase katG. The distribution of variants per target in Figure 3.5
showed the large number of known resistance variants in katG which
includes many impactful mutations like frameshifts and indels.

Mutations whose phenotype is not linked directly to the resistance mech-
anisms can also be quite relevant for the study of drug resistance. Borell
et al.40 show the importance of two other phenotypes of bacterial strains
for the successful propagation of drug-resistant MTB strains: their viru-
lence and their relative fitness.

Fitness describes the ability of an organism to reproduce successfully.
Drug resistance mutations are known to decrease the relative fitness
when compared to their wild type41. For a resistant MTB cell to thrive,
it needs to further obtain mutations which will increase its relative fitness
while still maintaining the drug resistance phenotype. The alleviation
of the handicap caused by resistance mutations allows the phenotype of
drug resistance to increase their reproduction success rate and to be more
likely to successfully spread from one patient to another. This makes it
important to understand how the mechanism of fitness functions and to
identify mutations that increase fitness significantly.

In this case study we show how TBvar3D can also be used to profile
variants the resistance targets in the WHO mutation catalogue. Here
we characterise the potential compensatory mutation for Isoniazid resis-
tance p.Pro135Gln located in the Alkyl hydroperoxide reductase E en-
zyme (ahpE). Mutations in this enzyme were described to mitigate the
initial fitness cost caused by katG mutations42.

The result page (Figure 3.16) shows a SWISS-MODEL homo-2-mer ho-
mology model with an average model confidence of 0.93 (QMEANDisCo
score). The mutation site is a highly exposed non-conserved proline lo-
calised on the tip of a protein loop. The RSA is 120.28% (improper refer-
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ence values for normalisation can lead to RSA values above 100%22) and
the ConSurf score and relative entropy score are 3 and 0.85 respectively.
The mutation to glutamine would introduce an amino acid with profound
physicochemical differences from the wild type. The PROVEAN impact
score (-5.04) is also rating the mutation to be deleterious.

The mutation site is located in proximity to the active site of the protein
(Figure 3.17). The site p.Cys45 is annotated as a conserved redox-active
cysteine residue which performs the nucleophilic attack on its peroxide
substrate. The mutation site lies on the binding site of the substrate43.

The annotations in TBvar3D show that the mutation might impact the
catalytic reaction of the enzyme. Increased efficacy of the hydroperoxide
reductase might decrease the concentration of radicals which would be
beneficial for the cell. A definite characterization would need further
research. The information aggregated by TBvar3D suggests that further
investigation of this mutation could be worthwhile and provides testable
hypotheses for experimental validation.
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Figure 3.16: Results page for the protein ahpE and the compensatory mutation p.Pro135Gln
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Figure 3.17: The mutation site of p.Pro135Gln is located close to the active site of ahpE, the
redox-active cysteine residue p.Cys45.

3.3 Discussion

With TBvar3D, we created a web server for mapping and analysing My-
cobacterium tuberculosis variants in the context of protein structures and
the comprehensive resistance variant catalogue provided by the WHO.
The web server is incorporated in the SWISS-MODEL technology stack
which ensures a rigorous update cycle and high-quality protein structures
and biologically relevant 3D models, providing the user with an up-to-
date web-based environment that streamlines data integration, analysis
and hypothesis generation on the role of a given variant or set of variants
of interest in drug resistance.

The combined display of information helps to identify and distinguish
potentially high-impact variants through a combination of annotations
on a sequence, structure and variant level and the visual inspection of
the mutation site on protein structure models. TBvar3D streamlines
an otherwise time-intensive process of manual generation of annotations
and the mapping and display of variants on structure models for a broad
audience of MTB scientists and makes it a valuable tool to assist the
user to formulate compelling hypotheses on the impact of variants across
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the MTB proteome.

3.3.1 Limitations

Due to performance limitations, certain time-consuming annotations are
not suitable for automated large-scale analyses within the TBvar3D pipeline.
For example, free energy calculations based on molecular dynamics sim-
ulations to estimate stability change upon mutations and calculations of
binding affinity changes would be valuable to characterise drug resistance
variants. Attempts to include such approaches within this work were not
successful due to challenges in automating such workflows.

TBvar3D does not provide structure predictions of the mutated protein.
To our knowledge, reliable methods to model structural changes upon
mutations are not available at the moment.

The curated structure database in its current form will require continuous
maintenance to reflect the current knowledge about the target proteins.
Newly released experimental structures will have to be integrated for pro-
teins which are currently represented by predictions. While advancements
in protein structure prediction and oligomeric predictions may allow to
automatise the generation of the structure itself, predictions of ligand-
target complexes are not yet fully reliable and will need curation.

Since TBvar3D focuses on the integration of variant data and protein
structures, genetic resistance variants lying on non-protein-coding regions
are not represented and not analysed in TBvar3D. The shift of genetic
expressions induced by genetic mutations lying on promoter regions is
a crucial mechanism of resistance in MTB and other bacteria but the
proper analysis of these mutations lies out of the scope of the TBvar3D
web server.

3.3.2 Future Work

There are three promising avenues for the further development of TB-
var3D: i) expansion to encompass a wider range of pathogens, ii) the
integration of more sophisticated tools for variant analysis, and iii) tools
for supporting the interpretation and predicting phenotypic effects.

TBvar3D could be expanded to include a wider spectrum of resistance
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variants, e.g. pathogens belonging to the clinically highly relevant ES-
KAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
various Enterobacter species), which have been also identified as a sig-
nificant global health threat in the context of drug resistance44. Addi-
tionally, the application of TBvar3D’s structure-based variant interpre-
tation can be extended to other areas of interest, such as human cancer
mutations45, and viral strains such as SARS-CoV-2.

The development and/or incorporation of new tools to estimate the sta-
bility change and drug binding affinity change upon mutation would be
valuable additions to the repertoire of TBvar3D and should greatly en-
hance its capabilities.

The modular buildup of the Var3D pipeline also enables an effortless ex-
pansion and adaption of the variant analysis pipeline. With the advent
of neural networks in bioinformatics, methods for the estimation of sta-
bility change upon mutation and the binding affinity change estimation
upon mutations which have a low computational runtime and are reli-
able seem to be within reach. These new methodologies can be made
available to any researcher worldwide without any prior computational
knowledge thanks to TBvar3D.

The development or incorporation of new tools to estimate the stability
change and drug binding affinity change upon mutation would be valuable
additions to the repertoire of TBvar3D and would greatly enhance its
capabilities.

Finally, a larger body of data for a broad spectrum of drug resistance in
a variety of organisms allows for the development of tools which support
the interpretation and prediction of phenotypic effects. Methods based
on artificial intelligence can be tailored to specific resistance mechanisms
and could be applied to predict the molecular phenotype of variants.
Network approaches such as boolean network modelling could be explored
to integrate data of individual protein variants into the prediction of a
global phenotype. In our case we could explain which antibiotics are likely
to be effective on a pathogen, given a list of variants in a clinical isolate.
The TBvar3D system today relies on some knowledge of protein structure
and function for efficient use. Future versions which include automated
artificial intelligence-based interpretation functionalities might find their
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use in a clinical setting to translate biological research findings to support
treatment decisions for antibiotics.

3.4 Supplementary

Table 3.1: TBvar3D Structure Database

Gene
Drug
name

Method
structure

Method
ligand

Oligomeric
state

Associated Mechanism
of Resistance

Ref

katG Isoniazid Exp Trans homo-2-mer abrogated prodrug activation 46

rplC Linezolid Exp Sup ribosomal protein drug target alteration 47

rpsJ Linezolid Exp ribosomal protein unclear 48

aftA Ethambutol AFDB monomer unclear 49

fbiB Delamanid Exp homo-2-mer abrogated prodrug activation 47

embA Ethambutol Exp Exp hetero-1-1-1-mer drug target alteration 50

glf Ethambutol Exp homo-2-mer unclear 46

Rv3237c Pyrazinamide AFDB monomer unclear 51

embR Ethambutol Exp monomer gene regulation 52

eis Amikacin Exp homo-6-mer
abrogation of
drug inactivating enzyme

53

eis Kanamycin Exp homo-6-mer
abrogation of
drug inactivating enzyme

53

tap Isoniazid AFDB monomer drug efflux 54

tap Streptomycin AFDB monomer drug efflux 54

tap Pyrazinamide AFDB monomer drug efflux 54

Rv3806c Amikacin AFDB monomer unclear 55

Rv3806c Capreomycin AFDB monomer unclear 55

Rv3806c Ethambutol AFDB monomer unclear 55

Rv3788 Ethambutol AFDB monomer unclear 56

ahpC Isoniazid Exp homo-12-mer unclear 57

rpoB Rifampicin Exp Exp hetero-2-1-1-1-1-mer drug target alteration 47

mabA Isoniazid Exp homo-4-mer unclear 58

mabA Ethionamide Exp homo-4-mer unclear 58

gyrB Moxifloxacin AFDB Trans hetero-2-2-mer drug target alteration 47

gyrB Levofloxacin AFDB Trans hetero-2-2-mer drug target alteration 47

Rv1979c Clofazimine AFDB monomer drug efflux 59

Rv1979c Bedaquiline AFDB monomer drug efflux 59

whiB6 Amikacin AFDB monomer gene regulation 60

whiB6 Capreomycin AFDB monomer gene regulation 60

whiB6 Streptomycin AFDB monomer gene regulation 60

Rv0681 Streptomycin AlphaFold-Multimer homo-2-mer gene regulation 61

pncA Pyrazinamide Exp Dock monomer abrogated prodrug activation 62

fgd1 Delamanid Exp homo-2-mer abrogated prodrug activation 47

furA Isoniazid AlphaFold-Multimer homo-2-mer gene regulation 63

mpt64 Clofazimine Exp monomer unclear
mpt64 Bedaquiline Exp monomer unclear

fprA Amikacin Exp homo-2-mer unclear 64

fprA Capreomycin Exp homo-2-mer unclear 64

mymA Ethionamide AFDB monomer unclear 65

panD Pyrazinamide Exp Exp hetero-4-4-mer drug target alteration 66

PPE35 Pyrazinamide AFDB monomer unclear 67

inhA Isoniazid Exp Exp homo-4-mer drug target alteration 46

inhA Ethionamide Exp Exp homo-4-mer drug target alteration 46

embC Ethambutol AFDB Trans homo-2-mer drug target alteration 50

rpsD Rifampicin Exp ribosomal protein unclear 68

fbiD Delamanid Exp monomer unclear 69

Rv1692 Capreomycin Exp homo-2-mer unclear 70

rsmG Streptomycin Exp monomer
abrogation of
drug target methylation

71

ndh Isoniazid AlphaFold-Multimer homo-2-mer
overabundance of
drug target substrate

46

ndh Ethionamide AlphaFold-Multimer homo-2-mer
overabundance of
drug target substrate

46

rpoA Rifampicin Exp Exp hetero-2-1-1-1-1-mer unclear 58

fbiA Delamanid AFDB monomer unclear 47

ethA Ethionamide AFDB Dock monomer abrogated prodrug activation 46
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Rv3789 Ethambutol AFDB monomer unclear 72

prfB Amikacin AFDB monomer unclear 73

prfB Capreomycin AFDB monomer unclear 73

rnj Rifampicin AlphaFold-Multimer homo-4-mer unclear 74

rnj Isoniazid AlphaFold-Multimer homo-4-mer unclear 74

ddn Delamanid AFDB Dock monomer abrogated prodrug activation 47

fbiC Delamanid AFDB monomer abrogated prodrug activation 47

embB Ethambutol Exp Exp hetero-1-1-1-mer drug target alteration 47

murA Linezolid AlphaFold-Multimer homo-4-mer unclear 75

murA Capreomycin AlphaFold-Multimer homo-4-mer unclear 75

murA Streptomycin AlphaFold-Multimer homo-4-mer unclear 75

murA Amikacin AlphaFold-Multimer homo-4-mer unclear 75

murA Kanamycin AlphaFold-Multimer homo-4-mer unclear 75

Rv3236c Pyrazinamide AlphaFold-Multimer homo-2-mer drug efflux 67

whiB7 Amikacin Exp hetero-2-1-1-1-1-1-1-1-mer unclear 76

whiB7 Kanamycin Exp hetero-2-1-1-1-1-1-1-1-mer gene regulation 76

whiB7 Streptomycin Exp hetero-2-1-1-1-1-1-1-1-mer gene regulation 76

aftB Amikacin AFDB monomer unclear 67

aftB Capreomycin AFDB monomer unclear 67

Rv2044c Pyrazinamide AFDB monomer unclear 77

ccsA Amikacin AFDB monomer unclear 67

ccsA Capreomycin AFDB monomer unclear 67

rpoC Rifampicin Exp Exp hetero-2-1-1-1-1-mer unclear 57

mshA Isoniazid AlphaFold-Multimer homo-2-mer abrogated prodrug activation 78

mshA Ethionamide AlphaFold-Multimer homo-2-mer abrogated prodrug activation 78

mmpL5 Clofazimine AFDB monomer drug efflux 37

mmpL5 Bedaquiline AFDB monomer drug efflux 37

mmpS5 Clofazimine AFDB monomer drug efflux 37

mmpS5 Bedaquiline AFDB monomer drug efflux 37

mmpR5 Clofazimine Exp homo-4-mer gene regulation 37

mmpR5 Bedaquiline Exp homo-4-mer gene regulation 37

tlyA Capreomycin AFDB monomer
abrogation of
drug target methylation

47

Rv0528 Amikacin AFDB monomer unclear
Rv0528 Capreomycin AFDB monomer unclear

gyrA Moxifloxacin AFDB Trans hetero-2-2-mer drug target alteration 47

gyrA Levofloxacin AFDB Trans hetero-2-2-mer drug target alteration 47

ethR Ethionamide Exp homo-2-mer gene regulation 57

atpB Bedaquiline Hom SM hetero-1-3-1-1-1-1-1-9-mer drug target alteration 79

clpC1 Pyrazinamide Hom homo-6-mer unclear 66

Rv0485 Isoniazid AlphaFold-Multimer homo-2-mer gene regulation 80

Rv0485 Ethionamide AlphaFold-Multimer homo-2-mer gene regulation 80

atpE Bedaquiline Hom SM hetero-1-3-1-1-1-1-1-9-mer drug target alteration 47

rpsL Streptomycin Exp ribosomal protein unclear 47

pepQ Clofazimine AlphaFold-Multimer homo-2-mer unclear 81

pepQ Bedaquiline AlphaFold-Multimer homo-2-mer unclear 81

Rv1693 Capreomycin AFDB monomer unclear
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CHAPTER 4
Impact of Natural Polymorphisms

in Antibody-Antigen Interfaces

The work described in this chapter has been a collaborative effort be-
tween Erblin Asllanaj and Rosalba Lepore.

Contributions: RL designed and supervised the study. EA parsed the
structure data and variant data, annotated the therapeutics and imple-
mented the analysis pipeline. EA and RL identified a subset of targets for
further experimental characterization (equal contributions). RL organ-
ised collaboration to perform experimental validation (will be concluded
after submission of this dissertation).
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The phenomenon of human polymorphisms on the epitopes of anti-
body therapeutics which lower their efficacy has been observed in single
cases1,2 but to our knowledge has never been studied comprehensively.
With the high relevance antibody therapeutics have for the development
of new medical drugs3 it is important to understand the effect that hu-
man diversity might have on their efficacy.

The project described in this chapter aims to identify natural polymor-
phisms in the interfaces between human drug targets and their respective
antibody therapeutics. Using the available structural information of drug
target complexes we aim to capture the extent to which polymorphisms
are located on these interfaces and to assess the potential impact on an-
tibody binding, and therefore on the efficacy of the antibody therapeutic.

The first objective is to assemble and annotate the variant data set
of naturally occurring human polymorphisms which are located in the
epitopes of therapeutic antibodies. This requires the mapping of the
polymorphisms on quality-controlled protein structures of antigen thera-
peutic complexes. Mutations which are located in the interface between
antibody and antigen would constitute the variant data set on which
we focus our attention. Variants in this data set are then further anno-
tated with features related to structural properties and their frequency
of occurrence in various human subpopulations. We then use these an-
notations to select a subset of targets for which we plan to measure the
impact of the discovered variants on the interaction between antibody
and antigen experimentally.

4.1 Methods

4.1.1 Overview

The used methodology can be broken down into four steps (Figure 4.1):
(A) The selection and annotation of therapeutic mABs with structural
information (B) Quality control of the mAB complex structures resulting
in a curated structure database (C) The aggregation of human poly-
morphisms located on the antigens in the curated database and (D) the
automatic analysis and annotation of structure and variant data with
Var3D. The result is a list of annotated variants located on the inter-
faces of therapeutic mAB and their antigen target.
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Figure 4.1: Pipeline to obtain human polymorphisms on the interface of therapeutic mABs and
their antigen. The steps can be separated into (A) selection and annotation of therapeutic anti-
bodies (B) Quality control of antibody-antigen complex structures (C) Identification of antigen
proteins and mapping of human polymorphisms (D) Annotation of variants in their structural
context with Var3D. The result is a data set of epitope variants.

4.1.2 Selection and Annotation of Therapeutic Antibodies

We compiled a list of clinically relevant antibodies for which structural
information of their complex with their molecular targets was available,
with a specific focus on human targets. We used the Therapeutic Struc-
tural Antibody Database (Thera-SAbDab)4 as a reference for the search.
This database links antibody therapeutics with protein structure data
from the Protein Data Bank (PDB).

For this set of therapeutics we researched their clinical indications, esti-
mates of sales of approved therapeutics and most common brand names.
The clinical indications were obtained from DrugBank5, a knowledge
base with comprehensive molecular information on drugs, their mecha-
nisms, their interactions and their targets.

The most prominent brand name and the numbers on the sales of an
approved therapeutic in the year 2021 were inferred from various articles
in economic and pharmaceutical newsletters and publicly available yearly
sales reports of companies selling the approved therapeutics.
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4.1.3 Quality Control of Antibody-Antigen Complex Struc-
tures

The structure files of the therapeutics were obtained from the TheraSabDab
web page. The obtained set of structures required further refinement to
only select the protein structures which contained the complex of the
therapeutic antibody together with its designated antigen target. The
following three conditions were used for the selection: 1.) The presence
of the antigen protein chain in the structure 2.) The antigen is in contact
with the antibody CDR 3.) The amino acid sequence of the antibody
protein chain is identical to the sequence of the therapeutic mAB.

The structure metadata of TheraSabDab indicates the structures of the
complexes as opposed to structures of the mAB alone (Figure 4.2, left).
In the next step, the complex structures were manually curated to select
only the antibody-antigen complexes representing a biologically relevant
state. Complexes in which the antigen is not in contact with the CDR
were discarded (Figure 4.2, right).

Figure 4.2: Examples of discarded structures: Left: The crystal structure of adalimumab FAB
fragment (PDB ID 4NYL) does not contain an antigen protein chain. Right: Trastuzumab Fab
v3 in complex with 5-phenyl meditope variant (PDB ID 6B9Y) has protein chains in contact
with the antibody, but they are not interacting with the CDR located on top of the antibody
and the proteins are not the designated target of Trastuzumab (Receptor tyrosine-protein kinase
erbB-2).

We used the OpenStructure software framework6 to align the sequence
of the light and heavy chains in the structures to the therapeutic se-
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quence using a modified version of the Needleman/Wunsch algorithm
(in OpenStructure: ost.seq.SemiGlobalAlign). Any structure which had
the sequences of their antibody chains not match the respective thera-
peutic mAB sequence in the data set was discarded.

4.1.4 Identification of Antigen Proteins and Mapping of
Human Polymorphisms

Using the API of the universal protein knowledge base UniProt7 we ob-
tained the UniProt Accession code for all antigen protein chains present
in our structure data set. The accession code was used to acquire all
available human polymorphisms occurring on this set of proteins using
the Search API of the European Bioinformatics Institute8. We obtained
variant data from various large-scale population studies like ExAC9, the
genome aggregation database gnoMAD10, the 1000 Genomes project11,
TopMed12, the Exome Sequencing Project (ESP)13, ClinGen14, Clin-
Var15 and others. The variant data are furthermore annotated with
their somatic status, and their association with disease and also contain
sequence-based variant impact predictions using PolyPhen16 and SIFT17.

Variant Allele frequencies in various human subpopulations were retrieved
from the NCBI database of genetic variation dbSNP18. We identify
the respective genetic allele for every protein variant in our data set
and obtain the frequencies from the following studies: ExAC, gnomAD
and 1000Genomes. The frequency data is clustered according to the
major populations of the earth (African, American, Asian, European,
East Asian, Ashkenazi Jew) with the addition of the “Global” category
accounting for all population groups together and the “Other” category
for individuals which do not unambiguously cluster with any of the major
populations.
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4.1.5 Annotation of Variants in their Structural Context
with Var3D

The Var3D pipeline (Schema in Figure 4.3) implemented for this project
contains a new epitope detector and adjustments to the calculations of
the relative solvent accessibility (RSA) and the free energy estimation.

Figure 4.3: Schematic overview of the Var3D pipeline used for the analysis of the antigen
variant data. The pipeline first creates a sequence-centric data structure which links variants
and structures to a specific protein sequence. In the second step, various subprocesses annotate
the data aggregation.

An epitope was defined as the set of residues in the antigen protein
chains which have a distance lower than 5 Ångstrom to any residue
in the antibody. Variants lying on these residues are considered to be
epitope variants.

The calculation of the per-residue RSA was adjusted to include the cal-
culation and the difference of the RSA between the bound and unbound
state of the antigen (Figure 4.4). Similar adjustments were made to the
free energy estimator Figure 4.5).

Variants which show a high energy difference upon mutation in the com-
plex and a low energy difference in the apo form are of interest to us
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because they show that the mutation is primarily altering chemical in-
teractions of the mutated residue with antibody residues. We were in-
terested in mutations for which a large difference between the estimated
free energy of the complex structure and the apo form was observed.
Additionally, we can use the free energy difference in the apo form to
detect mutations which are generally deleterious to the protein. Ideally,
a variant we would consider critical would show a high free energy differ-
ence in the complex and inconspicuous energy estimates in the apo form
of the protein.

Figure 4.4: RSA calculation with 885.R of C5 as an example 1. The Arginine is deeply buried in
the complex while being very accessible in the apoprotein.
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Figure 4.5: Energy difference estimation of R885H in C5 as an example 1. The mutation of the
arginine to a histidine is estimated to cause a free energy increase of 5.5 kcal/mol in the complex
while the same mutation only causes an increase of 0.5 kcal/mol in the apo form of the antigen.
This indicates that the mutation is disruptive in the complex and benign in the apo form.

4.2 Results

4.2.1 Identification of Antibody Therapeutics with Struc-
tural Information

As of July 2022, there were 743 clinically relevant monoclonal antibody
therapeutics present in Thera-SAbDab. 169 therapeutics were repre-
sented by at least one experimental structure of the full therapeutic
antigen complex and 136 of these complexes have a human protein as
their antigen (Figure 4.6).

This set of 136 therapeutics interacts with 73 different antigen proteins
through 152 antibody-antigen interfaces. Some therapeutics are able to
target multiple antigens, but we observe more frequently that multiple
therapeutics target the same antigen.

94 of the therapeutics (69%) are still actively maintained or developed.
Among the actively maintained therapeutics, 32 are approved and in
active clinical use and 7 awaited the completion of the approval process.
54 therapeutics are still being investigated in clinical trials (20 in Phase
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Figure 4.6: Overview over the entries in the therapeutic structural antibody database. The left
panel shows the clinical stage and the current status of the 743 therapeutics. The right panel
shows the organism in which the antigen target is expressed. (NFD: not further developed (no
longer marketed or distributed), TBC: to be confirmed)

III, 21 in Phase II, 5 in Phase I/II and 8 in Phase I). The clinical stage
of one therapeutic antibody was unknown.

31 (23%) of the therapeutics were discontinued. While most of these
therapeutics (29) were stopped during clinical trials, one was discontin-
ued in preregistration and one was approved and discontinued later due
to the age of the therapeutic (Okt3, the first monoclonal antibody to be
approved for clinical use in humans in 1986).

11 (8%) therapeutics are not further developed (NFD), which means that
the drug is no longer marketed or distributed. 10 of these therapeutics
were approved and 7 of them are still of high medical relevance today.
This group includes important drugs like Remicade against rheumatoid
arthritis or Aimovig which are used to treat migraines.
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Table 4.1 shows the number of therapeutics grouped by indication cat-
egories. The majority are used against various cancer types, against au-
toimmune diseases (Arthritis, Lupus, Crohn’s disease, ...) and to a lesser
extent therapeutics developed against degenerative disorders (age-related
diseases like Alzheimer, Parkinson’s, age-related macular degeneration,
...).

Indication group
Number
Therapeutics

Indication group
Number
Therapeutics

Cancer 47 Chirurgical Aid 2
Autoimmune 33 Cholesterol 1
Degenerative disorder 13 Infectious Disease 1
Rare diseases 5 Migraines 1
Blood Disorder 2

Table 4.1: Indication groups of the 136 antibodies with human targets and with protein structures
of the respective antibody-antigen complex

As an indirect measure of the clinical relevance of a therapeutic we col-
lected the available sales data for 32 approved therapeutics in the dataset
(Figure 4.7). The best-selling therapeutic was Humira, a medication
against rheumatoid arthritis, which would have been the drug generat-
ing the highest sales in 2021 with 20.694 billion USD were it not for
the Pfizer and BioNTech COVID-19 vaccine19. Sales were generated in
the same range by Keytruda, a cancer immunotherapeutic, with 17.186
billion USD.
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Figure 4.7: Sales numbers of approved therapeutic mABs for the year 2021 could be identified.
Therapeutics are referred to by their most prominent brand name. The colours show the indica-
tion group of the therapeutic.

4.2.2 Annotation of Variants in their Structural Context

After the completion of the structure quality control on the set of 289
PDB entries obtained from Thera-SAbDab, we have a data set of 114
structures which represent 98 therapeutics, 62 antigens and 104 epitopes.
72% of the initial set of therapeutics could be retained.

Based on the sequence of the protein antigens in our dataset, we re-
trieved a total of 25’453 unique variants using EBI Search. Of these, 10’
352 variants were mapped onto the 3D structure of the antibody-antigen
complexes using Var3D, and 1’389 were found to occur within the epi-
tope region of 60 antigens interacting with 98 therapeutics through 102
different epitopes. The distribution of the variants across the antigens
can be seen in Figure 4.9.

42 targets only interact with one therapeutic in our data set. 18 targets
have interactions with multiple therapeutics with PDCD1 (programmed
cell death protein 1) having the most interactions with 6 non-redundant
therapeutics.
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We find that every drug target has naturally occurring human polymor-
phisms which map to epitope regions. The epitope variants generally are
spread relatively evenly across all antigens: the target with the lowest
number of variants is Alpha-synuclein (SYUA) with 5 variants and the
target with the highest number of variants is Interferon alpha-2 (IFNA2)
with 58 variants. The mean and median of variant counts per target are
23.15 and 20.5 respectively.
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Figure 4.8: Overview over all epitopes and the number of human polymorphisms therein. On
the y-axis are the investigated antigens. The x-axis represents the number of residues which are
annotated as epitope residues. The number of sites in the epitope which are polymorphic are
coloured orange.
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4.2.3 Target Selection

We selected a subset of priority drug targets from our data set for which
we will further investigate the degree of disruption of the interaction
between therapeutic and target. We selected 10 antigen targets (Figure
4.10) using the following two criteria:

1. The therapeutics represented in this subset of targets should be of
high clinical relevance. The data set mostly contains therapeutics
against various types of cancers (7 targets, 20 therapeutics). The
represented cancer therapeutics included are highly relevant and
economically successful like Opdivo (Nivolumab), Darzalex (Dara-
tumumab), Perjeta (Pertuzumab) and 7 more approved therapeu-
tics. The therapeutic Dupixent (Dupilumab) is used to treat au-
toimmune diseases and Zinbryta (Daclizumab) was used to treat
relapsing forms of multiple sclerosis. The two therapeutics Soliris
(Eculizumab) and Crovalimab (Phase-III) are used to treat a rare
disease.

2. Targets with non-overlapping epitopes (e.g. CD38, CO5, ERBB2,
PD1L1 and PDCD1, see Figure 4.12) enable the comparison of
a variant effect on the interaction with different antibody ther-
apeutics which allows to investigate if a variant which prevents
epitope recognition of one therapeutic can be avoided by using an
alternative mAB which does not interact with the variant site.
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Figure 4.9: Overview of all epitopes and the localization of human polymorphisms therein for
the targets selected for experimental validation. Every subplot represents an antigen target. On
the y-axis are the therapeutics which are targeting the respective antigen. The x-axis represents
all the residues of the antigen which are annotated as epitopes. If a residue is known to carry a
human polymorphism, it is marked orange. If the residue is on an epitope, it is marked blue.
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4.2.4 Selected Candidate Variants for Experimental Valida-
tion

Nivolumab (brand name Opdivo) is an important anticancer drug that
targets a protein called PDCD1, which downregulates the immune sys-
tem20. The mutation p.Pro28Leu in PDCD1 may interfere with the
drug’s effectiveness (Variant ID: rs56234260, Sources: ClinGen, 1000Genomes,
ExAC, TOPMed, gnomAD). The highest frequency (0.0038) for this vari-
ant is reported in the “American” subpopulation of the ExAC dataset.
First, the difference between the RSA value of the apo form and the
complex form is very high (98.9% difference, 1.3% in complex, 100.2%
in apo form) which indicates that the proline is not interacting with any
other residue in the apo form but is deeply buried when interacting with
the antibody. The mutation of the proline to the leucine is also estimated
to be more deleterious in the complex (3.5 kcal/mol) when compared to
the apo form (0.45 kcal/mol).

Upon further investigation of the structure of the complex of Nivolumab
with PDCD1 (PDB ID: 5wt9), one can observe that the proline is located
closely to p.Trp52 of the antibody chain (3.5 Ångstrom distance) (Figure
4.11), suggesting an interaction between the polarised C-H bonds in the
antigen proline and the pi aromatic face of the antibody tryptophan.

When introducing a mutation to leucine using in silico mutagenesis21, we
observe clashes with the residues p.Trp52 and p.Val50 are unavoidable.
The mutation is expected to abolish a favourable hydrophobic interaction
and introduce repulsion between the antigen leucine and the antibody
tryptophan. Therefore, we expect that the binding affinity of the AB
should be significantly reduced for the variant protein target.
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Figure 4.10: Potential critical variant p.Pro28Leu in PDCD1 to showcase the mechanism in
which the mutation could disrupt the interaction with the cancer drug Nivolumab. Left: The
mutation site p.Pro28 (cyan) on the antigen chain (wheat) is a proline which probably undergoes a
hydrophobic interaction with the p.Trp52 of the heavy chain of Nivolumab. If the site is mutated
to a Leucine, clashes with p.Trp52 (symbolised by red discs) and p.Val50 are unavoidable.
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The former drug Daclizumab (brand name Zinbryta) is used to treat mul-
tiple sclerosis by targeting the interleukin IL2RA inhibiting their media-
tion in the activation of lymphocytes22. An interesting candidate variant
is the polymorphism p.Gly173Arg (Variant ID: rs752423140, Sources:
ClinGen, ClinVar, ExAC, TOPMed, dbSNP, gnomAD). The highest pop-
ulation frequency of 0.0012 for this mutation was reported for the African
subpopulation in the “gnomAD - Exomes” dataset. The solvent accessi-
bility difference between the apo form and the complex changes by 50%.
The free energy difference of the mutation in the complex is estimated to
be at 5.3 kcal/mol while the same difference in the apo form is estimated
at 2.3 kcal/mol. The mutation is predicted to not be tolerable in the
apo form, but it is even less tolerated in the complex.

Upon inspection of the mutation site in the drug target complex structure
(Figure 4.12), it can be observed that the wild-type glycine is adjacent to
an antibody tyrosine (p.Tyr48) and an antibody valine (p.Val102). The
distance is too large to assume any meaningful chemical interaction.

The problem caused by the mutation becomes evident when trying to
introduce an arginine into the limited space. The energetically most
favourable rotamer of arginine which can be introduced into this site is
still clashing strongly with the tyrosine in the immediate environment.
Any potential rotamer of arginine is pointing into p.Tyr48, which means
that without a conformational change of the antibody loop with the
tyrosine clashes between the mutated arginine and the antibody are un-
avoidable. As a result, we anticipate that the AB will not exhibit a
significant binding affinity to the variant protein.
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Figure 4.11: Potential critical variant p.Gly173Arg in IL2RA to showcase the mechanism in
which the mutation could disrupt the interaction with the former MS drug Daclizumab. Left:
The mutation site p.Gly173 (cyan) on the antigen chain (wheat) is a glycine which does not
undergo any interaction with antibody residues. If the site is mutated to arginine, clashes with
p.Tyr48 (symbolised by red discs) cannot be avoided.
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The mAB Barecetamab is currently undergoing clinical trials as a treat-
ment of lung and breast cancer by targeting the receptor tyrosine-protein
kinase erbB-3. The overexpression of erbB-3 is thought to be a ma-
jor cause of treatment failure due to its role in the activation of sev-
eral biological pathways which increase the resilience of cancer cells23.
The mutation p.Arg436Trp shows the potential of strongly disrupting
the interaction between the drug and target (Variant ID: rs375932235,
Sources: ClinGen, ESP, ExAC, TOPMed, gnomAD). The highest re-
ported frequency for this mutation is 0.0003 for the Ashkenazi Jewish
subpopulation in the “gnomAD - Genomes” dataset. The mutation site
itself is deeply buried in the complex (RSA 2.7%) and relatively exposed
(RSA 67.6%) in the apo form. Our free energy difference estimations
predict a strong deleterious effect (∆∆G in the complex is 21 kcal/mol)
while the mutation does not cause any significant energy shift in the apo
form (∆∆G 0.3 kcal/mol).

In the complex structure (Figure 4.13), we can observe the importance
of the residue p.Arg436 for the interaction between antibody and anti-
gen: The arginine extends deeply into the antibody interface and has an
electrostatic interaction with an aspartic acid of the light chain and a
histidine of the heavy chain, connecting the residues in a line of comple-
mentary electrostatic interactions. This interaction is not only completely
abolished upon the mutation to tryptophan, but the tryptophan is also
predicted to clash with three residues of the heavy chain: p.Phe108,
p.Tyr59 and p.His99. These clashes explain the predicted large value in
the free energy estimation in the hypothetical complex. We anticipate
that the mAB will not exhibit significant binding affinity to the variant
protein.
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Figure 4.12: Potential critical variant p.Arg436Trp in ERBB3 to showcase the mechanism in
which the mutation could disrupt the interaction with the anti-cancer drug Barecetamab. Left:
The mutation site p.Arg436 (cyan) on the antigen chain (wheat) is an arginine which constitutes
the central part of a system of electrostatic interactions between aspartic acid and histidine. If
the site is mutated to tryptophan, the electrostatic interactions can not be maintained anymore
and clashes with the 3 antibody amino acids p.Phe108, p.Tyr59 and p.His99 (symbolised by red
discs) cannot be avoided.

4.3 Discussion

To our knowledge no overview of human polymorphisms on therapeutic
antibody epitopes as comprehensive as the one presented here exists.
Notably, our analysis shows that on this dataset all epitopes contained
human polymorphisms, potentially affecting all therapeutics investigated
in this project. Among those, our computational analysis shows the
potential of some variants impacting the epitope recognition of antibody
therapeutics. To confirm this hypothesis, we plan to conclude this project
with the experimental validation of a subset of variants.

We could recover variants which are known to have a critical impact on
the drug interaction in this project like p.Arg885His in CO5, showing the
capability of our approach. We identified and showcased other potential
candidate variants which could affect the drug efficacy in a similar way.
Based on the work presented here, we plan to further refine the compu-
tational workflow and assess the capability to assist in the identification
of further variant candidates. The currently available set of variants with
experimental confirmation of their ability to disrupt epitope recognition is
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currently too small to undertake this kind of project successfully. Further
experimental profiling of the epitope variant data collected in this project
could permit the computational prediction of critical epitope variants.

The implications of these findings on the clinical applications of antibody
therapeutics is not yet clear. However, the amount and spread of the
variants across the targets of all therapeutics in this dataset justify their
further investigation and characterization.

4.4 Future Work

4.4.1 Experimental Characterization of Natural Polymor-
phisms at Antibody-Antigen Interfaces

We plan to measure the impact of the epitope variants on the target
subset (refer to “Target selection” in this chapter). We want to validate
the assertions we made on the impact of various variants based on their
structural features. The target subset contains 10 different antigens, 21
unique therapeutics and a total of 316 variants.

We aim to characterise around 20 variants which show the potential
to impact the epitope recognition of the therapeutic. The “Selected
candidate variants for experimental validation” showcases some examples
we would like to experimentally validate.

The experiments will be conducted in collaboration with the research
group of Prof. Dr. Lukas Jeker of the Department of Biomedicine of the
University and University Hospital of Basel. The reagents The experi-
ments are planned to begin in February 2023. The cloning and expression
of recombinant wild-type human proteins of the 10 selected target pro-
teins in the HEK293 cell line24 are currently ongoing and the respective
antibody therapeutics have been ordered. The antibody binding is going
to be measured using a fluorescence-activated cell sorter (FACS) an-
tibody assay, a method used to sort cells based on their physical and
chemical properties. Results are expected to be obtained within a few
months.
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General Discussion

4.5 Summary

This thesis aimed to advance the investigation of the impact of protein-
coding variants on protein structures. Using 3D representations of pro-
teins, we identify the respective mutation site and from the structural
environment we deduce parameters to describe the effect a specific amino
acid might have in this chemical environment. The interpretation of the
variant is complemented by the aggregation of conservation-based fea-
tures, physicochemical features, functional annotations, solvent accessi-
bility calculations and the estimation of the free energy difference upon
mutation. By combining these features with the visual inspection of the
protein structure environment of the site, a well-grounded hypothesis can
be constructed on the impact the variant might have on its immediate
structural environment. This process was streamlined and upscaled by
the creation of the Var3D variant analysis engine.

This analysis workflow was applied to facilitate the structure-based vari-
ant interpretation of antibiotic resistance variants in MTB. The release
of a resistance variant catalogue by the WHO and the publication of the
revolutionary structure prediction method AlphaFold2 made it possible
to obtain protein structure models for all antibiotic resistance target pro-
teins for a comprehensive view of the MTB resistome. The mutation
catalogue showed that 90% of the variants were still annotated as “un-
certain”, demonstrating the need for computational tools to aid in their
further characterization. Combining Var3D with the SWISS-MODEL
technology stack and a manually curated structure data set of resistance
targets, we were able to create the TBvar3D web server. The server fa-
cilitates the inspection of variants in a data-rich 3D context which would
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otherwise require manual time-consuming structure modelling steps, data
integration and visualisation. The results are displayed on the web server
and do not require the specific computational expertise of the user. This
makes TBvar3D a valuable tool to assist researchers worldwide to form
compelling hypotheses on the impact of variants for MTB.

The research goal of the second project in this thesis is the identifica-
tion of naturally occurring human polymorphisms in the interfaces of
antibody therapeutics and their respective antigen targets which may
impact antibody binding. Individual cases of natural variants preventing
epitope recognition were reported in the literature, but a comprehensive
investigation was never performed before. With more than 100 antibody
therapeutics approved and far more therapeutics undergoing clinical tri-
als, the investigation of the potential impact this phenomenon might
have on the efficacy of antibody drugs becomes pertinent. Through
the use of Var3D, it was possible to map and annotate around 25’000
human variants on over 100 structure models of drug target complexes
representing 98 therapeutics. We identified around 1’400 naturally oc-
curring polymorphisms distributed across every single epitope, showing
the phenomenon of natural polymorphisms occurring on clinically rele-
vant epitopes to be quite common. Among this variant data set, we are
planning to experimentally characterise the impact variants located on
10 prolific antibody therapeutics.

4.6 Future Outlook

The results of the Critical Assessment of Structure Prediction (CASP14)
in 2020 revolutionised the protein structure prediction field. The Al-
phaFold2 (AF2) algorithm of DeepMind performed so well in the task of
predicting protein structures that the problem for single protein chains
was considered to be solved. The high quality of the predictions made
by AF2 is especially valuable for variant interpretation where the correct
orientation of the amino acid side chains is a prerequisite for an accurate
perspective of the mutation site.

Attempts to model the effect of mutations on the 3D structures of pro-
teins were not as successful. AF2-based prediction methods do not ac-
count for changes introduced by small-scale mutations of the structure.
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But the development of a methodology which is tailored to correctly
predict molecular effects upon mutation with high accuracy was never
more in reach in the history of structural biology. Having an accurate
prediction of the effect of a mutation on protein folding, structure, and
dynamics would be a crucial technology for the study of the structural
and functional consequences of variations. We would not be relying on
indirect measurements of variant impact anymore and could directly as-
sess and analyse the structural alterations caused by a mutation.

The structure prediction revolution of AF2 opens up the discussion on the
nature of protein structures and the models we have for them. A protein
is not a rigid constellation of atoms as it is suggested by our static repre-
sentations and visualisations, they are quite dynamic and their structure
is better understood as an ensemble of different conformations. A pro-
tein is also constantly interacting with the surrounding solvents, small
molecules, nucleic acids and other proteins. The cytoplasm of a cell is
quite densely populated with biomolecules. The potential conformational
changes have a big impact if one wants to accurately investigate small-
scale mutations like single amino acid substitutions: if the full confor-
mational space is not known, important interactions between a wild-type
amino acid and its environment will not be considered. The incorpora-
tion of dynamics for variant interpretation is still a significant obstacle
in the field. But with the solution of the “static” protein structure pre-
diction problem in sight, incorporating dynamics into protein structure
bioinformatics will be a logical next step for the field to advance, a step
which will greatly benefit the interpretation of protein variants in their
structural context.

4.7 Closing Remarks

The field of variant interpretation was exciting to work in. Connecting
cutting-edge computational methods with clinically relevant projects was
very rewarding. The development in recent years in structural bioinfor-
matics presented new opportunities to automate the process of structure-
based variant interpretation. With this thesis, I brought the capabilities
of structural bioinformatics closer to a wide scientific audience through
TBvar3D and systematically analysed the variant space of clinically rel-
evant epitopes.
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