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Abstract
Bacteria often grow into matrix-encased three-dimensional (3D) biofilm communities, 
which can be imaged at cellular resolution using confocal microscopy. From these 
3D images, measurements of single-cell properties with high spatiotemporal resolu-
tion are required to investigate cellular heterogeneity and dynamical processes inside 
biofilms. However, the required measurements rely on the automated segmentation 
of bacterial cells in 3D images, which is a technical challenge. To improve the ac-
curacy of single-cell segmentation in 3D biofilms, we first evaluated recent classical 
and deep learning segmentation algorithms. We then extended StarDist, a state-of-
the-art deep learning algorithm, by optimizing the post-processing for bacteria, which 
resulted in the most accurate segmentation results for biofilms among all investigated 
algorithms. To generate the large 3D training dataset required for deep learning, we 
developed an iterative process of automated segmentation followed by semi-manual 
correction, resulting in >18,000 annotated Vibrio cholerae cells in 3D images. We dem-
onstrate that this large training dataset and the neural network with optimized post-
processing yield accurate segmentation results for biofilms of different species and 
on biofilm images from different microscopes. Finally, we used the accurate single-cell 
segmentation results to track cell lineages in biofilms and to perform spatiotemporal 
measurements of single-cell growth rates during biofilm development.
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1  |  INTRODUC TION

Bacterial biofilms can be found in diverse environments and are 
highly abundant in the major microbial habitats on Earth (Costerton 
et al.,  1978, 1987; Flemming & Wuertz,  2019). The cells inside 
these communities are bound together via a self-produced extra-
cellular matrix, which can also protect the community from envi-
ronmental stresses, phages, and predatory bacteria (Flemming & 
Wingender,  2010). As biofilms are comprised of metabolically ac-
tive densely packed cells, resource gradients emerge, which leads 
to spatially distributed physiological heterogeneity inside biofilms 
(Ackermann,  2015; Jo et al.,  2022; Evans et al.,  2020; Stewart & 
Franklin,  2008). Additional physiological heterogeneity in biofilms 
can arise from stochastic gene expression at the single-cell level, 
and due to the presence of multiple genotypes. To investigate the 
mechanisms that contribute to or result from single-cell level hetero-
geneity in biofilms, robust methodologies for live single-cell analyses 
in situ in biofilms are required.

Advances in 3D fluorescence microscopy techniques and flu-
orescent reporter brightness have enabled the observation of in-
dividual cells in live 3D biofilms (Drescher et al.,  2016; Hartmann 
et al., 2019; Stewart et al., 2013; Yan et al., 2016; Zhang et al., 2020). 
For densely packed biofilms, single-cell resolution is currently lim-
ited to regions of biofilms that are less than approximately 40 μm 
thick along the optical axis, mostly due to intense scattering of the 
fluorescence emission light by the cells in biofilms. Fluorescence-
based single-cell imaging also requires excitation light intensities 
that may cause phototoxicity and interfere with biofilm physiology. 
Phototoxicity is particularly problematic in point scanning confo-
cal microscopes so that more gentle 3D fluorescence microscopy 
techniques, such as multi-point scanning confocal and light sheet 
microscopy techniques, are better suited for time-lapse 3D imaging 
of live biofilms (Hartmann et al., 2019; Qin et al., 2020; Yordanov 
et al., 2021; Zhang et al., 2020).

Performing measurements on the single cells that can be ob-
served in 3D microscopy images of biofilms requires the automated 
detection of each cell's boundary in the images, which is a process 
termed instance segmentation in computer vision research. Based 
on the instance segmentation results, image cytometry tools such 
as BiofilmQ (Hartmann et al., 2021) can then be used for quantify-
ing single-cell parameters in biofilms. However, achieving instance 
segmentation with high accuracy has been a difficult challenge for 
3D biofilm images because the cells are very closely spaced and the 
signal-to-background ratio is often low. Recent studies performing 
single-cell segmentation in biofilms still rely on sophisticated clas-
sical image analysis approaches based on filtering and thresholding 
(Hartmann et al., 2019; Qin et al., 2020). Such classical image anal-
ysis requires significant fine-tuning of parameters for different ex-
perimental settings, fluorescence labels, and cell shapes (Caicedo, 
Goodman, et al., 2019; Caicedo, Roth, et al., 2019), which limits their 
transferability between different labs and, therefore, their useful-
ness to the community. Furthermore, the segmentation accuracy of 
these classical segmentation approaches for biofilms has not been 

sufficient to perform measurements that rely on prolonged cell 
tracking, such as single-cell growth rate measurements. Data-driven 
segmentation approaches based on convolutional neural networks 
(CNNs) alleviate the problem of fine-tuning parameters of the anal-
ysis pipeline by ‘learning’ the segmentation task from annotated im-
ages (Çiçek et al., 2016; Stringer et al., 2021; Weigert et al., 2020; 
Wolny et al.,  2020). In addition, CNN approaches often generate 
better segmentation performance compared with classical segmen-
tation approaches (Laine et al., 2021; Moen et al., 2019; von Chamier 
et al., 2019). However, CNN segmentation methods come with a ca-
veat: a suitable amount of training data needs to be generated.

Training data for CNNs for image segmentation consist of a raw 
image file and a file in which all cell outlines are correctly annotated, 
which is used as a learning target for the network. The manual anno-
tation of single cells in 3D image stacks constitutes a serious barrier to 
the wide-spread implementation of deep learning workflows for cell 
segmentation, as manual labeling of 3D images is very time-consuming 
(Moen et al., 2019). Resources could be saved by only annotating the 
minimally required number of cells for the training of maximally accu-
rate CNN models. Quantifications of minimally required annotations 
have been reported systematically for two-dimensional (2D) but not 
for 3D problems (Falk et al., 2019; Van Valen et al., 2016). As an alter-
native to human-annotated ground truth data, generation of synthetic 
training data was suggested (Hardo et al.,  2022; Toma et al.,  2022; 
Zhang et al., 2020). Nevertheless, there is always a gap between the 
real and synthetic data, which only can be bridged with elaborate ran-
domization approaches (Tobin et al.,  2017). To speed up annotation 
processes, iterative human-in-the-loop annotation schemes have been 
adapted for eukaryotic systems (Suga et al., 2021; Chen et al., 2020; 
Wang et al., 2021; Wolny et al., 2020).

Here, we develop a human-in-the-loop annotation framework to 
generate a dataset of more than 18,000 cell annotations in three-
dimensional biofilms. Using this dataset, we determined the minimum 
number of 3D annotated cells for obtaining accurate deep learning 
segmentations. We also used this large training dataset to evaluate the 
performance of recent deep learning algorithms (Schmidt et al., 2018; 
Stringer et al., 2021; Weigert et al., 2020; Zhang et al., 2020, 2022) for 
single-cell segmentation in bacterial biofilms. For the well-performing 
StarDist algorithm, we developed a post-processing algorithm that 
optimizes the cell segmentation in biofilms, which outperforms the 
previous state-of-the-art segmentation methods for biofilms. By ap-
plying the trained segmentation algorithm to 3D images of biofilms 
of different species and microscopes, we revealed the robustness of 
our method. The accuracy of the optimized CNN-based segmentation 
method enabled us to perform spatiotemporally resolved measure-
ments of single-cell growth rates in Vibrio cholerae biofilms and to ac-
curately track cell lineages during biofilm growth.

2  |  RESULTS

Following the standard approach of deep learning workflows for 
image cytometry (Jeckel & Drescher,  2021; LeCun et al.,  2015), 
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we set up the image analysis pipeline for this study in three steps 
(Figure  1): We employed an annotation scheme to generate the 
training data used for training a CNN model (Figure 1a), as described 
in detail below. After training the CNN model, we applied the CNN 
model to volumetric images that were not used during the model 
training, to identify individual cells in 3D bacterial biofilm images 
(Figure 1b). Subsequently, the resulting instance segmentation can 
be used to extract single-cell parameters and whole-community 
parameters in an image cytometry analysis (Figure 1c). As a model 
system for improving single-cell image segmentation algorithms for 
3D biofilm images, we used V. cholerae biofilms grown in microflu-
idic flow chambers. To evaluate the final segmentation algorithm, 
we also applied it to images of biofilms formed by other species, as 
described below.

2.1  |  Generating 3D training data with an iterative 
semi-automated annotation scheme

Completely manual annotation of cells in 3D image datasets is a time-
consuming process: In our dataset of bacterial cells in biofilms (z-
spacing of 100 nm, xy pixel size of 63.2 × 63.2 nm2) we found that the 
manual 3D annotation of a single cell takes 5 ± 2 min by an experienced 
person, and we noticed that 3D annotation of many cells is mentally 
difficult to endure due to the slow progress and sometimes ambiguous 
fluorescence signals from cells in close proximity to each other.

We, therefore, developed a workflow to accelerate our annota-
tion procedure of bacterial cells in 3D images (Figure 2). For this, we 
first used a previously published segmentation pipeline (Hartmann 
et al.,  2019), including an algorithmic improvement published re-
cently (Jeckel et al., 2022), to perform a segmentation of a raw 3D 
biofilm image (Figure 2, step 1). This segmentation pipeline relies on 
classical image analysis methods (filtering, thresholding, watershed 

algorithm) and generates a good, but not perfect, instance segmen-
tation result. This first segmentation result was inspected visually by 
a human and segmentation errors were manually corrected, using 
the napari software (Sofroniew et al., 2022). Based on this small 3D 
training dataset, a first CNN model was trained (Figure 2, step 2). 
As the CNN for this task, we chose StarDist (Weigert et al., 2020), 
an easy-to-train, state-of-the-art single-cell segmentation approach 
with a well-written code base, albeit with a restriction on segment-
ing star-convex shapes. In step 3 of our workflow for training data 
generation (Figure 2, step 3), we then used the first CNN model to 
obtain the instance segmentation prediction for a second raw 3D 
biofilm image. Due to the small amount of training data that the first 
CNN model was trained with, the segmentation result was poor, in-
cluding many cases of over-segmentation errors. However, we ob-
served that the cases of segmentation errors involved significant 
overlaps in the volume of the predicted objects, which enabled us 
to automatically identify the regions that require corrections. With 
a simple graphical user interface (Figure S1), a human annotator was 
thus able to iterate through the segmentation errors and perform 
an automated object fusion, an automated object splitting, or mark 
the object for a manual re-annotation. This automated error iden-
tification, followed by a human in the loop for error correction re-
sulted in the corrected segmentation result for the second raw 3D 
biofilm image, which took approximately 8 h of annotation time (cor-
responding to 5 s per cell for 6077 cells, Figure S2). The corrected 
segmentation dataset was then added to the pool of training data, 
which was then used to train a new version of the network from 
scratch, that is, the second CNN model. This process was then re-
peated until n 3D raw biofilm images were correctly annotated, re-
sulting in a pool of training datasets that was then used to create the 
nth CNN model (Figure 2, step 3).

With this workflow for semi-automated annotation, we anno-
tated all individual cells in n = 5 biofilm images (Figure S2), resulting 

F I G U R E  1  Deep-learning-based 
workflow for single-cell measurements 
in three-dimensional biofilms. (a) A 
convolutional neural network (CNN) 
model is trained with volumetric 
microscope images and a corresponding 
label image in which all cells are 
individually annotated. (b) The trained 
CNN model can be used to predict 
individual cell segmentations in previously 
unseen 3D images of biofilms. (c) Based 
on the single-cell segmentation, existing 
image cytometry tools, such as BiofilmQ, 
TrackMate, or CellProfiler, can be used 
to quantify single-cell parameters and 
BiofilmQ can also be used to quantify 
whole-biofilm parameters.
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in annotations for 18,868 cells in 3D. This large training dataset is 
available for download as described in the Data and Code Availability 
section below. From this pool of manually corrected annotation 
data, four biofilms were used for training the final CNN model, and 
one biofilm was designated as the “test dataset”, which was not used 
for training and instead only used for testing the accuracy of the seg-
mentation result of the trained CNN models. This amount of training 
data saturated the average precision of the segmentation that can be 
obtained with the StarDist CNN (Figure 2, step 4).

To test the quality of the semi-manual iterative annotation 
process described in Figure  2, we generated a completely manual 
annotation for a subset of our dataset and compared the resulting 
two segmentations (Figure S3). Cell outlines in the fully-manual an-
notation were systematically drawn tighter around the cells (corre-
sponding to smaller cells) compared with the semi-manual dataset 
(Figure S3a,c). By visual inspection, we found that most significant 
differences between the fully-manual and semi-manual annotations 
were due to over-segmented or poorly annotated cells in the fully-
manual segmentation (Figure S3c–e). The fully manual segmentation 
result was, therefore, of lower quality than the semi-manual seg-
mentation result.

2.2  |  Increasing bacterial segmentation accuracy by 
optimizing the post-processing of the convolutional 
neural network output

Despite training the StarDist CNN with the manually corrected 
training dataset that is comprised of highly accurate cell shape 
annotations, the StarDist segmentation prediction on previously 
unseen 3D biofilm images contained a large number of cases of over-
segmentation (Figure S5). Even though the StarDist outputs (the 3D 
segmentation label probability maps and the 3D distance maps) 
represented the cell shapes remarkably well (Figure 3a), StarDist's 
non-maximum-suppression post-processing step was not able to 
convert these outputs into accurate segmentations. These algorith-
mic problems ultimately stem from the fact that StarDist was de-
signed for detecting star-convex shapes, and not for very elongated 
and curved cell shapes such as those of rod-shaped bacteria. To de-
velop a solution, we first required a careful diagnosis of the StarDist 
segmentation problem for bacterial cells: For many cells in our V. 
cholerae biofilms, only very few voxels in the cell can be regarded as 
the center of a star-convex object while many more voxels of the cell 
are similarly or even more distant to the edge of the cell (Figure S6). 

F I G U R E  2  Workflow employed for obtaining convolutional neural network (CNN) training data of 3D biofilms with segmented cells. Step 
(1): Raw 3D microscopy images of biofilms are segmented with the “Improved Hartmann et al.” method (see Experimental Procedures), which 
is a classical segmentation method based on filtering, as well as edge detection and watershed algorithms. The segmentation output was 
visually inspected by a human, and segmentation errors were corrected manually by re-annotation of cells. The resulting manually corrected 
segmentation data can be used to train the 1st CNN model. Step (2): The 1st CNN model is trained based on the raw image data and the 1st 
segmentation data obtained in Step 1. Step (3): Additional training data is generated by using a new, previously-unseen 3D biofilm image as 
input for the 1st CNN model, to generate a segmentation for this image. The resulting segmentation is semi-manually corrected for errors, 
using the tool described in Figure S1. The raw image and the corrected segmentation are then added to the pool of training data, which is 
then used to train the second version of the CNN model. This process of adding new training data is performed n times, ultimately resulting 
in n different pairs of 3D biofilm images and manually corrected segmentations, which are used as training data for the nth CNN model. Step 
(4): After each iteration, the nth CNN model is evaluated on a test dataset that was not included in the training data. The iteration process 
ends once the evaluation reaches saturation.

Generate more training data and improve CNN model
For CNN model iteration n = 2:

For CNN model iteration n:
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Classical segmentation
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Based on the distance to the object-edge, the StarDist neural net-
work assigns a label probability to each voxel. Hence, for some bac-
terial cells, the correct star-convex center does not get assigned the 
highest label probability (Figure S6). Since StarDist's non-maximum-
suppression algorithm reconstructs the segmented cell shape on the 
basis of the cell shape information in the voxel of highest label prob-
ability, incomplete shapes are reconstructed. In the next step, the 
voxels that should be part of the cell but were not included into the 
incomplete shape are picked up by the non-maximum-suppression 
algorithm to predict another incomplete cell shape. As a result, a sin-
gle bacterial cell is often over-segmented into two or more objects.

To overcome the limitations of the StarDist non-maximum-
suppression post-processing, we developed a new post-processing 
algorithm that reconstructs the bacterial cell shape based on multi-
ple predicted shapes (Solovyev et al., 2021), instead of considering 
only the shape information in the voxel with highest assigned label 
probability (Figure  3b). Similar to the non-maximum-suppression 
algorithm, we start with the voxel of highest label probability and 
reconstruct the object shape associated with it. Within that object 
shape, we identify the pixel of the second highest probability and 
reconstruct the object shape associated with it. Then, these two 
shapes are fused and the resulting shape is iteratively extended 

F I G U R E  3  Algorithm for optimizing post-processing of the StarDist segmentation output avoids over-segmentation. (a) When the 
StarDist convolutional neural network (CNN) model is used to generate a single-cell segmentation of a 3D raw image, the output of StarDist 
is a 3D map of the “label probability”, which quantifies the probability of each pixel to be inside a cell. In addition, StarDist generates multiple 
3D distance maps, which describe the length of the StarDist rays spanning the star-convex polyhedra that approximate the cell shapes. 
Depicted are three distance maps on top of each other, using RGB values of the three distance map values. (b) Schematic illustration of the 
strategy underlying StarDist OPP: In Step 1, the pixel with the highest label probability is chosen and the corresponding polyhedron P1 is 
constructed based on the distance map entries at that position, and P1 is assumed to be the current cell shape. In Step 2, the polyhedron 
P2 corresponding to the pixel within the current cell shape with the next highest probability is generated. In Step 3, cell shapes P1 and P2 
are fused together to yield a new cell shape P1 U P2. Steps 2 and 3 are iteratively repeated until the volume V of the cell shape reaches Vmax 
and no longer increases (see schematic graph), which yields the final fused cell segmentation label (Step 4). (c) Comparison of predictions 
by StarDist (left) and StarDist OPP (right) for the 3D region depicted in panel A. Cell labels in StarDist involve the overlap of regions with 
high label probability, which indicate segmentation problems. Colors indicate different cells, overlaps between different cell predictions are 
white, and the background is black.
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by the information associated with the pixel of highest probabil-
ity that has not yet been taken into account. This iterative process 
stops once there are no pixels left within the current shape whose 
probability exceeds a predefined cutoff value, or once the volume 
of the current shape is not extended for a predefined number of 
iterations. After completion of this iterative shape-fusion process, 
a new object is generated starting at the pixel with the next high-
est remaining probability. With this optimized post-processing al-
gorithm for StarDist, termed StarDist OPP, we obtain segmentation 
results with significantly less over-segmentation (Figures  3c and 
S5). Additionally, we noticed that StarDist overestimates the size of 
object shapes, and segmentation performance improves drastically 
when reducing the extents present in the 3D distance maps by one 
pixel. Finally, by testing StarDist OPP on synthetically generated 
training data, we ruled out any algorithmic limitations of StarDist 
OPP regarding curved, rod-like objects (Figures S8 and SI Text S1). 
We made StarDist OPP available as a python package as described in 
the Data and Code Availability section. A quantitative comparison of 
StarDist OPP with other segmentation methods is provided below.

2.3  |  Performance comparison of StarDist OPP 
relative to alternative segmentation pipelines

We quantitatively evaluated the segmentation performance of 
StarDist OPP relative to the basic StarDist network, and differ-
ent CNNs that were recently developed for bacterial cell segmen-
tation: Cellpose (Stringer et al.,  2021), a multi-class U-Net (Zhang 
et al., 2020), and BCM3D 2.0 (Zhang et al., 2022). All deep learn-
ing methods in this comparison were trained with the same ground 
truth dataset. In addition, we compared the state-of-the-art classical 
algorithms that are optimized for bacterial cell segmentation in V. 
cholerae biofilms by Hartmann et al., 2019, and an improved version 
of this algorithm based on a better watershed seed selection (Jeckel 
et al., 2022). For each of these segmentations, we computed the de-
viations from the ground truth. The performance of each segmenta-
tion result was quantified for different intersection-over-union (IoU) 
threshold values between 0 and 1. The IoU threshold determines 
how close the predicted shape and location of an object matches 
objects in the ground truth (Jeckel & Drescher,  2021; Weigert 
et al., 2020). Segmented objects were marked as true positive (TP) 
when the IoU with a single ground truth object exceeded the thresh-
old; otherwise, they were marked as false positive (FP). Ground truth 
objects that could not be assigned to a predicted object above the 
chosen IoU threshold were marked as false negatives (FNs). Based 
on these three numbers, we calculated various metrics, such as 
the average precision, corresponding to the ratio TP/(TP + FN + FP) 
(Figure 4) (Taha & Hanbury, 2015).

Based on the average precision, StarDist OPP outperforms 
other segmentation methods for all IoU thresholds (Figure  4a). In 
comparison with the multi-class U-Net, StarDist OPP has more TPs 
and less FNs, while maintaining the same amount of FPs (Figure 4b–
d). The improved performance of StarDist OPP is also visible when 

looking at the FNs and FPs in 3D renderings of biofilms (Figure 4e). 
In addition to the IoU-based performance metrics, we observed that 
StarDist OPP results in several qualitative segmentation improve-
ments. This includes the observation that the distribution of cell 
aspect ratios (the ratio of cell length to width) in the training data 
is more closely matched by StarDist OPP compared with StarDist 
and the multi-class U-Net (Figure 4f). In addition, we observe that 
StarDist OPP has less cell–cell overlaps compared with StarDist. 
While small overlapping regions (volume < 0.06 μm3) generally arise 
due to ambiguity of the exact boundary separating neighboring cells, 
large overlapping regions arise due to systematic limitations in the 
post-processing. StarDist generates more of such large overlaps, 
which are visible as a peak at around 0.15 μm3. These overlaps cor-
respond to over-segmentation errors, which are identified here in an 
IoU-independent metric as follows: To quantify the relative abun-
dance of these over-segmentation cases, we define overlaps with 
volumes higher than 0.06 μm3 as over-segmentation errors and their 
total number as NO. For each over-segmentation error, an additional 
cell was predicted, hence, we define the relative over-segmentation 
abundance as NO/(NC-NO), where NC is the total number of predicted 
cells. The relative over-segmentation abundances are 14% and 3% 
for StarDist and StarDist OPP, respectively, indicating that StarDist 
generates more systematic errors.

Compared with both StarDist variants and the multi-class U-Net, 
the Cellpose CNN did not perform well (Figure 4a–d). This low perfor-
mance likely results from the fact that Cellpose generates segmenta-
tion predictions for 2D image slices, which are then merged together 
for a 3D segmentation, whereas StarDist OPP predicts segmentation 
predictions directly for 3D images. Interestingly, the improved variant 
of the classical segmentation algorithm by Hartmann et al. (with manu-
ally fine-tuned segmentation parameters) performs only slightly worse 
than the StarDist methods and similarly good as the BCM3D 2.0 deep 
learning approach (Figure 4a). To visualize the difference in the per-
formance of the improved Hartmann et al. algorithm and the StarDist 
variants, correctly detected cells, over-segmentation errors, as well as 
undetected cells are shown in biofilms side by side in Figure 4e (Ahrens 
et al., 2005). These renderings of the FNs and FPs in the biofilm re-
veal that the Hartmann et al. algorithm has a systematic segmentation 
problem towards the top of the biofilm, likely due to the reduction of 
fluorescence signal with increasing height in the biofilm.

As StarDist and the improved Hartmann et al. algorithm were 
involved in the semi-manual generation of the training and test data-
sets (Figure 2), we suspected that the dataset itself had an intrin-
sic bias that allowed these methods to perform better. Therefore, 
we validated the different segmentation methods against a ground 
truth dataset that was obtained by completely manual annotation 
(Figure S3). Compared with the fully manually annotated segmenta-
tion, StarDist OPP and StarDist again outperformed the Hartmann 
et al. results (Figure S3b). The curve of StarDist OPP in Figure S3b is 
on par with the curve of the semi-manual annotation, suggesting our 
trained StarDist OPP model used all the information in the training 
data. In conclusion, we have no indication that an intrinsic bias of our 
dataset is responsible for the good performance of StarDist OPP.
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To further examine the quality of the segmentation results gener-
ated by StarDist OPP without relying on the semi-manual or the fully 
manually annotated datasets, we evaluated 100 segmented cells se-
lected randomly from the test dataset. These StarDist OPP segmenta-
tion predictions, together with the raw image, were presented to three 
human experts which had to decide between three options: (1) no 
human intervention is required, (2) human intervention might improve 
the result, and (3) the prediction requires human intervention. We in-
troduced option (2) because for some cases of seemingly wrong pre-
dictions the annotators were unsure how to correct the prediction due 
to ambiguity in the raw imaging volume. On average, less than 20% of 
predictions required correction and the majority (~60%) of predictions 
required no intervention (Figure 5b), which is in agreement with the 
IoU-based average precision evaluation (Figure 4a). Furthermore, for 

our dataset, we observed that human annotators perceive segmenta-
tion predictions as qualitatively good (option (1)) that on average have 
an IoU of approximately 0.8 with the underlying semi-manual ground 
truth (Figure S9a, see Figure S7a for such cases). This is in agreement 
with the steep fall-off at IoU thresholds above 0.8 in the average pre-
cision curve for synthetic microscope data (Figure S8c). Both obser-
vations suggest that for our dataset, IoU values above 0.9 cannot be 
reached and are not required to be reached. This suggestion diminishes 
the significance of the steep fall-off of the average precision curve at 
around 0.8 (Figure 4a). By closer visual inspection of predictions with 
low IoU, we found that—despite the intensive human proofreading 
efforts—the semi-manually annotated labels still comprise some seg-
mentation errors. In these cases, StarDist OPP often generates better 
segmentations than the ground truth (Figure S7b,c).

F I G U R E  4  Performance evaluation of different methodologies for single-cell segmentation in 3D biofilms. (a) Average precisions of two 
classical segmentation approaches (Hartmann et al., Improved Hartmann et al.), four convolutional neural network (CNN) models (StarDist, 
multi-class U-Net, BCM3D 2.0, Cellpose), and a CNN model followed by the optimized post-processing strategy developed in this study 
(StarDist OPP). The average precision of a segmentation method is defined as the number of true positive detections divided by the sum of 
the true positive (TP), false positive (FP), and the false negative (FN) detections, that is, average precision = TP/(TP + FP + FN). The average 
precision is measured as a function of the intersection over union (IoU) between the segmentation result and the ground truth. (b) Number 
of true positive objects, corresponding to correctly identified cells, as a function of IoU. (c) Number of false positive objects, corresponding 
to incorrectly segmented (i.e., over-segmented) cells. (d) Number of false negative objects, corresponding to undetected cells. (e) 3D image 
renderings of biofilms, with colors indicating the cells that are segmented correctly (green) or incorrectly (magenta). The top row of images 
indicates over-segmentation (false positive objects) in magenta; the bottom row of images indicates undetected cells (false negative objects) 
in magenta. For illustrative purposes, a quarter of the 3D biofilm volume was removed to enable a view inside the biofilm core. (f) Probability 
distributions of cell aspect ratios (i.e., the ratio between cell length and cell width) in the training data (yellow data) and in the segmentations 
from StarDist (blue), StarDist OPP (red), and a multi-class U-Net (green). (g) Histograms of the volumes of overlaps between predicted cells 
for StarDist (blue) and StarDist OPP (red). (h) Dependence of average precision on the number of annotated cells in the training data.
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2.4  |  Identification of minimally required 
number of 3D annotated cells for training an accurate 
convolutional neural network

Given that our iterative semi-manual annotation scheme has 
provided more than 18,000 cell annotations in 3D, we sought 
to determine how many annotated cells are actually required 
for the training process of neural network approaches to yield 
accurate segmentation results in densely packed 3D microbial 
communities.

For this purpose, we trained replicate models (n = 5) of StarDist, 
StarDist OPP, and Cellpose networks on subsets of our training 
data with different amounts of annotated cells. We evaluated all 
networks against the same dataset that was not part of the train-
ing dataset and measured the average precision of the segmentation 
result (Figure  4h). Models trained on 100 annotated cells have an 
average precision (IoU threshold = 0.5) of approximately 0.5 for both 
StarDist and StarDist OPP. Increasing the number of annotated cells 
in the training data increases the average precision for both models, 
yet for more than 3000 annotated cells the average precision satu-
rates, with a better performance by StarDist OPP (Figure 4h).

2.5  |  StarDist OPP models trained on Vibrio 
cholerae dataset generate accurate single-cell 
segmentations for biofilms of other species and other 
imaging conditions

To test the transferability of StarDist OPP, we applied StarDist OPP 
models that were trained on our V. cholerae dataset to biofilm images 
of other bacterial species (Escherichia coli, Pseudomonas aeruginosa, 
and Salmonella enterica) from our lab, and to biofilm images (E. coli) 
from another research group that used a different confocal micros-
copy technique. Although we trained the StarDist OPP model with 
V. cholerae data, the segmentation predictions for different bacterial 
species worked remarkably well (Figure 5a). Due to lack of appropri-
ate ground truth labels for the different bacterial species, we quanti-
fied the prediction quality with the same visual inspection approach 
by three human experts, as described above (Figure 5b). According 
to this validation procedure, segmentation performance on P. aerugi-
nosa and S. enterica cells was comparable with the performance on 
V. cholerae cells. The segmentation performance on E. coli biofilms 
was similar for biofilms imaged in two different labs (Figure 5b), yet 
the segmentation performance on E. coli biofilms was slightly worse 

F I G U R E  5  StarDist OPP segmentations on biofilms of different bacterial species. (a) Using our StarDist OPP model trained on Vibrio 
cholerae data, we generated segmentation labels (yellow lines) for cells in biofilms of four bacterial species from two different laboratories: 
From Knut Drescher's lab, images of E. coli, P. aeruginosa, and S. enterica are shown, and from Carey Nadell's lab, images of E. coli are shown. 
Each species is shown in a cropped 3D region with xy-, xz-, and yz-slices. The scale bar is 2 μm. (b) Validation results of segmented labels for 
biofilms of different bacterial species: 100 predicted cells are selected randomly from each species and are sorted manually by 3 human 
experts into 3 categories based on the required type of human intervention. For every segmented cell, the human annotators answered 
the question “Is human intervention required?” with one of 3 options “no”, “possible”, or “yes”. Error bars are the standard deviation across 
3 human experts. (c) Distribution of cell number density extracted from one biofilm of each species. (d) Distribution of cell aspect ratios 
extracted from one biofilm of each species.
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compared with other species, likely due to the higher cell number 
density of the E. coli biofilms (Figure 5c). In summary, we conclude 
that StarDist OPP trained on our V. cholerae dataset can be trans-
ferred to single-cell segmentation tasks in biofilms of various species 
across research groups.

From the single-cell segmentation results for biofilms of differ-
ent species, we extracted the single-cell level parameters “cell den-
sity” and “cell aspect ratio” (Figure 5c,d). These two parameters have 
been shown to account for the majority of differences in biofilm ar-
chitecture between different species (Jeckel et al., 2022).

2.6  |  Accurate 3D single-cell segmentation enables 
cell lineage tracking and spatiotemporal cell growth 
rate measurements in biofilms

Based on the accurate segmentation results provided by StarDist OPP, 
we tested whether the tracking accuracy is sufficient for cell lineage 
tracking. For this, we acquired 3D images of V. cholerae biofilm growth 
every 10 min for 19 h, starting from a cluster of just a few surface-
attached cells. We segmented all cells in the 3D image of each time 
frame. Using BiofilmQ (Hartmann et al., 2021), we identified all cellular 
3D centroid coordinates and transferred them to the TrackMate soft-
ware (Ershov et al., 2022; Tinevez et al., 2017) to predict cell trajec-
tories. When performing the tracking with segmentation results from 
StarDist OPP there are less tracking errors compared with the segmen-
tation results from StarDist (Figure S10). StarDist OPP segmentations 
enabled us to obtain long cell tracks (Figure S10), and the cell trajec-
tories during biofilm growth point radially outwards from the core of 
the biofilm (Figure 6a,b), which is consistent with results from lineage 
tracking in biofilms without single-cell resolution (Qin et al., 2020).

From the cell trajectories, we calculated the cell division rates, which 
we mapped to all spatiotemporal locations during biofilm development 
using BiofilmQ (Figure 6c, d). Figure 6c depicts the cell division rate at 
different times during biofilm development at different spatial positions 
in the biofilm. At the very early stage of biofilm development (Ncell < 10) 
the cell division rates are below 0.75 h−1. For Ncell > 10, the majority of 
the biofilm remains at a division rate below 0.75 h−1, yet the cells in the 
outer periphery of the biofilm (where the fresh medium flows by) have a 
division rate of up to 1.5 h−1. For biofilms with Ncell > 1000, the cell divi-
sion rate in the core of the biofilm approaches 0 h−1 (Figure 6c). The spa-
tial profile of the cell division rate is radially symmetric, and cells with a 
similar distance from the surface have a similar division rate (Figure 6d). 
These spatiotemporal cell division rates match the expectation of nu-
trient- or oxygen-deprived slow-growing cells in the biofilm core, and 
faster-growing cells in the nutrient-rich biofilm periphery (Díaz-Pascual 
et al., 2021; Stewart & Franklin, 2008).

3  |  DISCUSSION

Recent improvements in bacterial image cytometry tools have 
greatly advanced the analysis of single cells in microbiology research 

(Ducret et al.,  2016; Hartmann et al.,  2020, 2021; Mountcastle 
et al., 2021; Paintdakhi et al., 2016; Stirling et al., 2021), yet the key 
step in image cytometry for biofilms remains a challenge: the ac-
curate segmentation of cells in 3D images of biofilms. In the analy-
sis of time-lapse images of mother machines and other 2D systems, 
the most recent advances in segmentation relied on deep learning 
approaches (Hardo et al.,  2022; Lugagne et al.,  2020; O'Connor 
et al., 2022). These new methods enable the investigation of single-
cell behavior over time, ultimately shedding light on the physiologi-
cal heterogeneity in bacterial populations (Bakshi et al., 2021). As it 
is a longstanding paradigm that biofilms harbor bacterial cells of di-
verse physiological states, such analysis tools are required in biofilm 
research. However, a major barrier in applying new deep learning 
segmentation methods to 3D biofilm images has been the lack of 
sufficient training datasets, as the annotation of volumetric images 
is time-consuming and difficult to endure. With this study, we pro-
vide an extensive dataset of 18,868 cells annotated in 3D V. cholerae 
biofilm images to overcome this barrier.

The iterative semi-manual annotation scheme we presented in 
Figure  2 resulted in an approximately 60× faster annotation than 
fully-manual annotation (from 5 ± 2 min per cell for manual anno-
tation to approximately 5 s per cell for semi-manual annotation). 
The semi-manual annotations differ from fully-manual annotations 
by resulting in slightly larger cells. Furthermore, visual inspection 
suggests that our semi-manual annotation scheme generates fewer 
errors than the fully-manual annotation. Yet despite our efforts to 
ensure a very high quality of the 3D annotation dataset we gener-
ated, there are still limitations to this dataset (Figure  S7c). As our 
randomized visual inspection showed, opinions of expert human 
annotators differ strongly (Figure S9b), likely due to the optical reso-
lution limitations and signal-to-background limitations, as described 
in the methods section on manual segmentation. These differences 
in the opinion of expert human annotators could lead to ambiguities 
during the manual curation step. To significantly improve the train-
ing dataset, these ambiguities have to be resolved by enhancing the 
information present in the microscope images, for example, by in-
creasing the optical resolution, by additionally staining the cell mem-
brane, or by random expression of two or more fluorescent proteins 
such that neighboring cells can be distinguished by their differing 
fluorescence properties.

Performing CNN-based segmentation of single cells in biofilms 
requires a suitable large amount of training data. Our data show that 
the segmentation performance of the trained CNNs did not sub-
stantially increase for more than 3000 annotated cells. This number 
is comparable with the 1500–3000 cells used per training run by 
Zhang et al., 2020. Systematic investigations of minimal amounts of 
training data for 2D systems report 10 to 1000 minimally required 
annotated cells and suggest that fewer cells are required for transfer 
learning (Falk et al., 2019; Van Valen et al., 2016). Unfortunately, the 
required number of annotated cells for 3D biofilms is significantly 
higher than for 2D systems. However, our evaluation of the perfor-
mance of the V. cholerae-trained StarDist OPP model on biofilms of 
different species and from another lab suggests that our trained 
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model can readily be applied by other research groups. In case the 
performance of the pre-trained StarDist OPP is not sufficient, our 
trained models should be improved iteratively by semi-manually cu-
rating imperfect predictions.

While some deep learning methods rely on classical algorithms, 
for example, connected components and watershed, to separate 
individual touching cells in an instance segmentation task (Zhang 
et al., 2020, 2022), deep learning methods also allow developing of 
new instance segmentation methods that have an intrinsic represen-
tation for individual objects (Cutler et al., 2022; Schmidt et al., 2018; 
Stringer et al.,  2021; Weigert et al.,  2020). In these methods, 
boundaries between two cells are not enhanced for better post-
processing; rather the methods directly predict two individual cells. 
In this work, we used StarDist as it uses an intrinsic representation 
of individual 3D cells (Weigert et al.,  2020), which is beneficial in 
densely populated microbial communities. StarDist uses a 3D U-Net 

backend (Çiçek et al., 2016) to predict object probabilities as well as 
distance maps (Figure 3a), which together contain the information 
to calculate single object segmentations with a sophisticated post-
processing approach. StarDist was a major improvement over the 
previously available 3D U-Nets, which relied on accurate cell–cell 
boundary predictions for correct object separations.

As the standard post-processing of StarDist generated systematic 
over-segmentation errors on our dataset, we developed an optimized 
post-processing algorithm for bacterial cell shapes that iteratively 
fuses together proposed objects, which we termed StarDist OPP. One 
advantage of the StarDist CNN, which is used in StarDist OPP, is that 
its outputs enable the automatic identification of areas of ambiguous 
segmentation results, by searching for overlapping objects. Visual 
inspection of these areas and the results on synthetic microscope 
images (Figure  S8b, SI Text  S1) suggest that ambiguous and wrong 
segmentation results stem either from flawed training data or from 

F I G U R E  6  Based on accurate single-cell segmentation in biofilms, all individual cells can be tracked and cellular growth rates can be 
measured. (a, b) Tracked trajectories of cells during Vibrio cholerae biofilm formation are shown in light gray. A few example trajectories are 
indicated by dark gray and black lines. Panel (a) shows the trajectories in xyz-space. Panel (b) shows the trajectories in the xy-plane and time. 
(c) Spatiotemporal cell division rate during biofilm formation. The number of cells in the biofilm (Ncell) indicates the time of development. 
The y-axis shows the distance between the cell center and the center of the biofilm at the bottom of the biofilm (in the z = 0 plane). Inset: 
Schematic figure illustrates the coordinates used in panels (c) and (d). (d) Spatial distribution of cell division events in a Vibrio cholerae biofilm 
that grew from 2074 cells to 5190 cells during the measurement interval. The horizontal axis shows the distance between the xy-projected 
cell centroid and the bottom center of the biofilm. The vertical axis shows the z-position of the cell centroid.
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insufficient information in the microscope images to determine the 
exact boundaries of cells—these are also regions where expert human 
annotators cannot clearly decide where boundaries between two ob-
jects should be drawn. The training data contains similar errors due to 
the same limitations, as discussed above.

To circumvent the time-consuming annotation process a recent 
study trained their deep learning models with synthetic training data 
and achieved an average precision of ~50% at IoU = 0.5 on experi-
mental images (Zhang et al., 2020). With the StarDist OPP, an average 
precision of ~80% at IoU = 0.5 is achieved for experimental images. 
Interestingly, M. Zhang et al., 2020 observed that their network per-
formed less well on experimental test data compared with synthetic 
test data. This suggests that generating synthetic images that ac-
curately mimic experimental data might require as much time as is 
needed for fine-tuning a classical segmentation algorithm, or for gen-
erating a manual or semi-manual annotation. Furthermore, even for 
an approach with synthetic training data, some manual annotation of 
experimental data is required to validate the segmentation. However, 
image segmentation efforts in other fields suggest that training on a 
combination of synthetic and experimental data could decrease the 
time spent on manual annotations while maintaining high segmenta-
tion performance (Cuéllar et al., 2022; Poucin et al., 2021).

In summary, we have presented an efficient strategy for obtain-
ing the key ingredient for the application of CNNs to segment 3D 
bacterial biofilm images: large training datasets of 3D single-cell 
annotations. The 18,868 annotated 3D cells we generated are now 
available as a community resource for training neural networks. 
From this dataset, we identified the minimal number of cell annota-
tions that are needed to obtain accurate segmentation results. Using 
our large training dataset, we also evaluated the performance of dif-
ferent methods for single-cell segmentation in biofilms, and we ex-
tended the StarDist CNN by optimizing the post-processing step for 
bacterial cell shapes, resulting in StarDist OPP, which generated the 
most accurate segmentation results across all algorithms. StarDist 
OPP models trained on our training dataset performed well on bio-
films of different species across research groups. Finally, we demon-
strated that the segmentation results provided by StarDist OPP are 
sufficient for accurate cell lineage tracking and single-cell growth 
rate measurements. The availability of our large training dataset, the 
StarDist OPP code and pre-trained models, in conjunction with easy-
to-use CNN training and deployment tools like ZeroCostDL4Mic 
(von Chamier et al.,  2021), will enable a more broad adoption of 
CNN-based segmentation in biofilm research.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Bacterial cultivation and biofilm growth

The strain used in this study was derived from the V. cholerae N16961 
wild type, by introducing the vpvCW240R allele conferring rugosity, 
and by introducing the ∆crvA (VCA1075) mutation that abolishes the 
typical comma-shape of V. cholerae to confer a straight cell shape. 

The strain also harbors a plasmid (pNUT542) carrying a gentamicin 
resistance and a Ptac-sfgfp expression system without lacO, result-
ing in the constitutive production of sfGFP. The resulting strain, 
which was used for all experiments in this study, is termed KDV613 
(Hartmann et al., 2019). Biofilm experiments with V. cholerae were 
performed in M9 minimal medium, supplemented with 2 mM 
MgSO4, 100 mM CaCl2, MEM vitamins (Sigma), 0.5% (w/v) glucose 
and 15 mM triethanolamine (pH 7.1). Gentamicin (30 μg/mL) was also 
added to LB and M9 media, to maintain the plasmid pNUT542.

The E. coli strain used in this study is derived from the AR3110 
wild type (Serra et al., 2013) with a point mutation that upregulates 
biofilm formation (Grantcharova et al., 2010). For imaging on a spin-
ning disk confocal microscope, a derivative of this strain harboring 
a plasmid that leads to the Ptac-controlled production of sfGFP was 
used. For imaging on a point scanning confocal microscope, the 
AR3110 wild type with a chromosomal Ptac-controlled expression of 
mKate2 was used. The S. enterica strain used in this study is derived 
from the UMR1 wild type (Römling, Bian, et al., 1998) and also car-
ries a point mutation that upregulates biofilm formation (Römling, 
Sierralta, et al., 1998), and also harbors a plasmid that leads to the 
Ptac controlled production of sfGFP. The P. aeruginosa strain used in 
this study (KDP63) is a derivative of the PAO1 wild type, harboring 
a plasmid producing the pX2 promoter-controlled production of the 
YPet fluorescent protein.

Biofilms of V. cholerae, E. coli, P. aeruginosa, and S. enterica were 
grown in microfluidic flow chambers (chamber dimensions: [width; 
height; length] = [500; 70; 7000] μm). Flow chambers were con-
structed from poly(dimethylsiloxane) bonded to glass coverslips 
using oxygen plasma. The microfluidic design included four inde-
pendent channels on each coverslip. The manufacturing process for 
these microfluidic channels guarantees highly reproducible channel 
dimensions and surface properties.

For biofilm growth of E. coli, S. enterica, and P. aeruginosa, the cul-
ture conditions, media, and flow rates described in a previous study 
(Jeckel et al., 2022) were used. For biofilm growth of V. cholerae, each 
channel was inoculated with a culture of the V. cholerae strain, which 
was prepared as follows. Cultures were grown overnight at 28°C in 
liquid LB medium under shaking conditions, back-diluted 1:200 in LB 
medium in the morning, and grown to an optical density at 600 nm 
of 0.5. This culture was used for inoculating the flow channels. After 
inoculation of the channels, the cells were given 1 h to attach to the 
glass surface of the channel without flow, followed by the applica-
tion of a flow of 100 μL min−1 for 45 s, with M9 medium, to wash away 
non-adherent cells and to remove LB growth medium from the chan-
nels. The flow rate was then set to 0.5 μL min−1, to continuously supply 
fresh M9 medium into the channel. Flow rates were controlled using a 
high-precision syringe pump (Pico Plus, Harvard Apparatus).

4.2  |  Microscopy and image acquisition

Most 3D biofilms used in this study (except the E. coli biofilm im-
ages obtained in Carey Nadell's lab, see description below) were 
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imaged using spinning disk confocal microscopy with a 50 μm 
pinhole disk (Yokogawa CSU) mounted on a Nikon Ti-E inverted 
microscope, using an Olympus 100× silicone oil immersion (refrac-
tive index = 1.406) objective with NA 1.35. By using this silicon 
oil objective, distortions at z-positions >10 μm into the biofilm 
are minimized. Fluorescence was excited using a 488 nm laser 
(Coherent OBIS), and the emission was imaged using an Andor 
iXon Ultra electron-multiplying charge-coupled device (EMCCD) 
camera with 90 ms exposure time per z-slice. The measured 
resolution of the optical system is xy-resolution of ~235 nm and 
z-resolution of ~710 nm (Yordanov et al.,  2021). The theoretical 
limit of the resolution of our optical system was calculated as xy-
resolution ~220.14 nm and z-resolution ~625 nm, using the Nikon 
Resolution Calculator (https://www.micro​scope.healt​hcare.nikon.
com/micro​tools/​resol​ution​-calcu​lator/). As is common when im-
aging into a thick specimen, the fluorescence intensity decreases 
with increasing depth into the specimen (Figure S4a). In our case, 
this is caused by scattering of the excitation light as it penetrates 
the biofilm, and further by scattering of the emission light as it 
exits the biofilm towards the objective. The Olympus 100× objec-
tive resulted in an image on the camera with 63.2 nm per xy-pixel, 
and we used 100 nm spacing in the axial z-direction for all ex-
periments, except for experiments in which the cell lineages were 
tracked. In cell lineage tracking experiments we used a 400 nm 
spacing in the z-direction and a 30 ms exposure time per z-slice, 
to reduce photodamage and to enable biofilm growth that is un-
perturbed by excitation light exposure. Very-low-excitation light 
intensities were used for all experiments to reduce photodam-
age as much as possible. Focus drift was prevented using a Nikon 
hardware autofocus system. The hardware was controlled using 
μManager (Edelstein et al., 2014), and a feedback between image 
acquisition and live image analysis ensured that z-stacks were only 
imaged up to the z-height at which the biofilm ends, to further 
reduce light exposure of the biofilm. For the cell lineage tracking 
experiments, each biofilm was imaged every 10 min.

For the E. coli biofilm images obtained in Carey Nadell's lab, a 
Zeiss LSM 980 point-scanning confocal with a 40×/1.2NA water im-
mersion objective was used. Pixel scaling was set to 52 × 52 nm and 
a z-spacing of 200 nm was used. A 594 nm excitation line was used 
to excite the mKate2 fluorescent protein. The pixel dwell time was 
1.31 μs, and 4× line averaging was used. The spectral window for 
fluorescence emission collection was 604–682 nm and the detector 
gain was set to 600 V.

4.3  |  Training data generation

Initially, a deconvolved volume of 716 × 476 × 100 voxels was seg-
mented using a classical instance segmentation approach we termed 
“Improved Hartmann et al.” This technique was based on a seg-
mentation procedure introduced for single-cell segmentation in V. 
cholerae biofilms (Hartmann et al., 2019), which employed filters to 
reduce noise and to enhance the signal-to-background ratio, edge 

detection for semantic segmentation, and watershed for instance 
segmentation, followed by a few post-processing steps to remove 
detected objects that are not cells. This “Hartmann et al.” proce-
dure was improved recently (Jeckel et al.,  2022) to result in what 
we term “Improved Hartmann et al.” This resulted in a reduced over-
segmentation by the watershed segmentation (Figure 4a).

We inspected the segmentation output from the Improved 
Hartmann et al. method for the 716 × 476 × 100 voxels for segmen-
tation errors, and we manually corrected each visible error in 3D 
with napari (Sofroniew et al.,  2022). This step took approximately 
one week for a skilled and trained human annotator. The volume 
was then split into training, validation, and testing sub-volumes and 
a first StarDist network was trained on the available training data.

This first trained StarDist network was then used to predict in-
stance segmentations for additional microscope image data. During 
the manual inspection of the newly predicted segmentation volume, 
we realized that the segmentation errors of the StarDist network 
coincide with overlapping cell predictions. To facilitate the review 
process, we used the StarDist overlap labeling feature to mark all 
overlaps and created a graphical user interface in Matlab (Figure S1c), 
which iterates over all marked overlap positions. Instead of manually 
correcting the positions one-by-one, we manually classified each 
overlap into one of three categories (Figure S1d): Overlapping ob-
jects are separate cells (“split”), overlapping objects are parts of the 
same cell (“merge”), or the overlapping objects require manual cor-
rection (“manual”). As most of the objects were part of the first two 
classes (“split” or “merge”), the use of this graphical user interface 
significantly improved our turnover time for the manual correction 
of the segmentation result to approximately one day for a single bio-
film, by a skilled and trained human. After the semi-manual correc-
tion of the segmentation prediction, we incorporated the image data 
into our training process and trained a new generation of StarDist 
model from scratch. This approach of iterative StarDist training and 
manual correction of the segmentation output was iteratively ap-
plied to obtain a manually corrected dataset of single-cell segmen-
tations for five biofilms (Figure S2). One of these biofilm images was 
used only for testing purposes and never for training, whereas the 
other four biofilm images were used for CNN training (Figure S2).

After loading the 16-bit images, we converted the 16-bit integer 
values to double-precision numbers and rescaled their intensities 
such that the 1%-percentile was at 0.0 and the 99.8%-percentile 
was at 1.0. To augment the available training data, we generated ad-
ditional online flips along the x and y image axes (probability = 0.5 
each) and intensity transformations with factors drawn from a uni-
form distribution between [0.6, 2) and an additional intensity offset 
uniformly drawn from [−0.2, 0.2).

The visual perception of cell boundaries by the human annotator 
was facilitated by applying a 3D image deconvolution. For deconvo-
lution, we used the software Huygens (Scientific Volume Imaging). 
The raw image and the deconvolved image are compared in Figure S4. 
While the cell signals in the raw image decrease for higher z-slices, 
the cell signals in the deconvolved image are relatively homogeneous 
(Figure  S4a). The cell boundaries in the deconvolved image have a 
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better contrast than the ones in the raw image. Particularly in higher 
z-slices, cell signals that are visible in the raw image cannot be iden-
tified in the deconvolved image (Figure S4b,c). For the CNN training, 
however, we noticed that deconvolved input images degrade the 
segmentation performance. Therefore, deconvolved images were not 
used for training of the CNN, and all CNN trainings reported here were 
performed with raw microscopy images as input data.

4.4  |  Artifacts and limitations of the semi-manually 
generated training dataset

When generating the training dataset, we made two deliberate 
choices that lead to the artifact of seemingly missing annotations for 
some regions with visible fluorescence signals. First, fluorescence 
signals that are visible only in one z-slice were not annotated. These 
signals stem from cells that are not attached to the biofilm and float 
freely in the microfluidic channel. Second, we chose that annotations 
should resemble the deconvolved cell shapes which are tighter than 
the visible fluorescence signal. Both choices explain seemingly missing 
annotations of visible fluorescence signals in 2D slices of our 3D im-
ages. If the fluorescence signal is not present in the previous and next 
z-slice, the signal stems from a floating cell. If the fluorescence signal 
is present also in a neighboring z-slice, there is also an annotation in 
this z-slice that is just drawn tighter around the fluorescence signal 
(Figure S4). We encountered the same phenomenon of recessed cell 
outlines also in our synthetic microscope images (Figure S8b).

While errors are present in our training dataset (Figures  S3 
and S7), during our visual inspections of the dataset, we did not 
encounter a generic class of segmentation errors other than over-
segmentations and occasional under-segmentations. Therefore, we 
were not able to systematically investigate and correct other kinds 
of errors. The alternative, visual inspection and manual correction 
of each annotation would have been detrimental to our goal to 
speed-up generation of a training dataset with a semi-manual ap-
proach. Using visual inspection by three expert humans, we con-
cluded that the majority of predictions based on the training dataset 
do not require human intervention, whereas for ~20% of predictions 
human annotators have problems to correct predictions (Figure 5b). 
Although we cannot rule out the possibility that the errors still con-
tained in the dataset pose a significant limitation for our method, for 
our use cases, the method is sufficient.

We attribute the occasional under-segmentation errors to 
signal-to-background and optical resolution limitations. We did not 
systematically search for and correct under-segmentation errors as 
often correction of these errors was undecidable for human experts 
due to insufficient information in the raw image.

4.5  |  Manual segmentation of cells in 3D biofilms

Since the training data generation depended on a StarDist pre-
diction, we needed an additional image dataset with a completely 

manual annotation without a computational segmentation predic-
tion. The complete manual annotation was performed using the 
napari interface (Sofroniew et al., 2022). The 3D volume that was 
annotated was a densely packed region of the raw image of “Biofilm 
1” from Figure  S2, with a volume of 257 × 257 × 129 voxels. The 
manual annotation of this region resulted in 1644 cells.

4.6  |  Challenges in manual annotation and visual 
inspection of segmentations in 3D biofilms

During our efforts to visually inspect, manually annotate, or manu-
ally correct 3D single-cell segmentations in our imaging data we en-
countered several challenges that we describe below.

As the optical resolution in the z-direction is higher than the op-
tical resolution in the xy-direction, the appearance of cell outlines 
compared with the underlying raw fluorescence signal differs de-
pending on whether the xy-plane or the xz- or yz-planes are visu-
alized. This feature of differing resolutions makes it more difficult 
to identify cell outlines in the z-direction compared with the xy-
direction. This is especially true for horizontally aligned cells lying 
above each other. Here, the border between such cells can some-
times be inferred by the fact that a horizontally aligned object span-
ning more than five z-slices must be under-segmented as otherwise 
it would be too wide. Alternatively, it is sometimes possible to iden-
tify under-segmentation for horizontally aligned cells above each 
other by carefully observing the cell outlines in the xy-direction for 
several z-slices, and finding a z-slice where the cell extents are min-
imal in comparison with the extents in the previous and next z-slice.

The fall-off in fluorescence intensity with increasing z-depth into 
the biofilm results in lower signal-to-background ratio in higher z-
slices (Figure S4a), which exacerbates the identification of individual 
cells in two distinct ways. First, separation of closely neighboring 
cells in higher z-slices gets more complicated. Second, cells in high 
z-slices with dim fluorescence might not be identified at all. It should 
be mentioned that this fall-off in fluorescence might influence the 
size of cell annotations. Although we observe that the decrease in 
mean cell brightness for higher z-depth in the biofilm correlates with 
a decrease in cell volumes (Figure S11), we cannot rule out a biologi-
cal explanation for decreasing cell volumes.

The manual identification of object boundaries of cells with sizes 
close to the optical resolution limit is often difficult for annotators 
to endure for extended periods, as a decision has to be made based 
on insufficient information from the imaging data. The information 
in the imaging data is insufficient for this task, especially in areas 
deep into the tissue where cells are densely packed and where the 
signal-to-background ratio is diminished due to scattered light. From 
our manual accuracy quantification, we estimate that approximately 
20% of cells fall into the category where human annotators cannot 
decide on how to improve an annotation (Figure 5b). Furthermore, 
there is biological uncertainty during cell division when it is visu-
ally difficult to determine with our cytoplasmic fluorescence signal 
whether the division septum is closed.
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4.7  |  Generation of synthetic training data

To generate synthetic training data, the cell-shaped objects were 
created by brute-force random placement: We started with an 
empty cube with an edge size of 256 pixels and a pixel size of 50 nm. 
Curved objects where generated by randomly sampling tori with a 
radius in the range of 24 to 36 pixels, a width in the range of 12 to 20 
pixels, and an arc length in the range of 32 to 64 pixels. The ends of 
the torus were covered with semi-spheres with a radius according to 
the torus width. A total of 3500 objects were generated, randomly 
orientated, and placed inside the cube such that they do not overlap 
with previously sampled objects. If no placement could be found for 
a single object after 30 iterations of random orientation and place-
ment, the object was discarded. After generation, only every sec-
ond slice in the z-direction was used, resulting in a final pixel size of 
100 nm in the z-direction and 50 nm in the xy-direction (Figure S8a).

We visually distorted the synthetic label data to mimic exper-
imental microscope data (Figure  S8b). The biological fluctuations 
in object signal intensity and gradient where enforced by randomly 
sampling the intensity from a Gaussian distribution (mean μ = 3000, 
standard deviation σ = 500) and application of a Euclidian distance 
transformation. Then, the resulting volume was convolved with a 
synthetically created point-spread-function. Poisson noise (rate 
parameter λ = 40) was added to imitate the shot noise in a photon-
counting detector, and Gaussian noise (μ = 500, σ = 10) was added to 
account for intra-specimen scattering.

The synthetic point-spread-function (PSF) was created with the 
Fiji PSF Generator (version 1.1.1.2) (Griffa et al.,  2010; Kirshner 
et al.,  2013) using the Richards & Wolf 3D optical model with re-
fractive index 1.405 in the immersion medium and accuracy compu-
tation “best” for a wavelength of 525 nm. An objective NA of 1.35 
was used and the PSF was saved as a 32-bit image of 65 × 256 × 256 
pixels (ZYX) and a pixel size of 50 nm in the xy-direction and 100 nm 
in the z-direction.

4.8  |  Training convolutional neural network models 
for cell segmentation

The 3D images in the available training dataset were divided into 
smaller sub-volumes (64 × 64 × 128 voxels) for the neural network 
training. The set of available sub-volumes was then divided into sub-
volumes used for training, validation, and testing. We tested four 
CNN architectures for the final cell segmentation, StarDist (Weigert 
et al.,  2020), Cellpose (Stringer et al.,  2021), a multi-class U-Net 
(Zhang et al., 2020), and BCM3D 2.0 (Zhang et al., 2022).

The StarDist segmentation accuracy depends on the ray num-
ber to approximate the shape of the star-convex objects. By mod-
eling all labels in the validation data as star-convex objects and 
comparing the model accuracy with respect to the input labels, we 
observed that 192 rays are sufficient to achieve a mean IoU value 
of 0.8 for the used training data in the anisotropic training data re-
gime (Figure S12a). All StarDist models used in this study, therefore, 

used 192 rays (except for Figure S8, where 96 rays were used). The 
remaining StarDist parameters were based on default values: The 
U-Net backbone used two resolution levels. At each level, 2 convo-
lutions with a 3 × 3 × 3 voxel kernel size were used in the encoder 
and decoder, respectively. The filter size in the first convolution was 
set to 32. The filter size was doubled after each max-pooling step 
with a 2 × 2 × 2 voxel field of view and correspondingly halved after 
each upsampling layer. The extra convolution layer in the network 
head contained 128 filters. The mini-batches contained 2 patches 
with 96 × 96 × 48 voxels in x, y, z. The sampling algorithm enforced 
that 90% of all patches contain foreground voxels. The Adam opti-
mizer was initialized with default parameters and a learning rate of 
0.0003. A learning rate scheduler halved the learning rate if the loss 
did not change for 40 consecutive epochs. The mean absolute error 
was used for the distance loss and weighted in a 0.2 to 1 ratio with 
respect to the probability loss. The background regularization in the 
distance loss was set to 0.0001.

CellPose relies on a 2D training regime so that the sub-volumes 
(128 × 128 × 64 voxels) were sliced into 2D data along the x,y, and z 
axis respectively. As a result, the training time increased such that 
a full-scale hyperparameter scan on a single GPU was extremely 
time-consuming. Thus, an implementation with a data-parallelized 
training regime was implemented based on the MXNet support of 
Horovod (Chen et al., 2015; Sergeev & Del Balso, 2018). The train-
ing was performed on 8 nodes with 2 NVIDIA Quadro RTX 5000 
each. After the hyperparameter optimization, the best parameter 
(learning rate = 0.00625, weight decay = 10−4, momentum = 0.5) of 
a subset of the training data (5%) was verified in a two-week-long 
iterative training session on the CellPose reference implementation 
on a single GPU (Figure S12b). Since the single-GPU and multi-GPU 
implementations of CellPose training were identical with respect to 
the segmentation accuracy, we trained a multi-GPU implementation 
of CellPose with the determined hyperparameters on the complete 
training dataset and used it for our comparisons.

For the multi-class U-Net, we followed Zhang et al., 2020: The 
ground truth label images were transformed into semantic images 
where each pixel belongs to one of three classes: cell interior, cell 
boundary, or background. The CNN was trained to predict the cor-
rect class for each pixel. To predict single instances of cells based on 
the multi-class U-Net, first, a binary image was generated by thresh-
olding on the predicted cell interior class. Then, by detecting con-
nected components in the binary image, a label image was generated 
(Zhang et al., 2020).

For BCM3D 2.0, we implemented the code following the original 
paper (Zhang et al.,  2022). In brief, two CARE networks (Weigert 
et al., 2018) were trained to predict the Euclidean distance transform 
of each cell and to predict boundaries between cells. The predicted 
Euclidean distance transform was used in the first step to generate 
a label map by thresholding and detecting connected components. 
In a second step, too big or too convex objects were detected and 
separated into smaller cells based on a watershed algorithm that 
used the information from the Euclidean distance transform and the 
predicted boundaries between cells.
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4.9  |  Quantification of segmentation accuracy 
without ground truth

Images of E. coli, P. aeruginosa, and S. enterica were acquired with a 
step size in the z-direction of 400 nm. To segment these volumes 
with our trained models, the volumes were interpolated with a cubic 
spline to match the 100 nm step size in the z-direction of the V. chol-
erae dataset. Images of E. coli biofilms acquired in Carey Nadell's lab 
with a point scanning confocal microscope were acquired with a step 
size in the z-direction of 200 nm. These images were also interpo-
lated to a z-spacing of 100 nm with a cubic spline.

For each species, a biofilm image was predicted with our StarDist 
OPP model. From each of the resulting predictions, 100 predicted ob-
jects (i.e., cells) were randomly picked for evaluation by three human 
experts. Each annotator classified the same 100 predicted objects 
with a custom napari plugin (link to repository given in Data and Code 
Availability section) based on the question “Is human intervention re-
quired” into the categories “no,” “possible,” and “yes.” The annotators 
knew the origin of the current labels with respect to species and lab. 
Each predicted object was presented with a context of the surrounding 
region extended by 18 pixels in all directions, the predicted object was 
highlighted, and all other objects in the field of view were visualized.

4.10  |  Cell lineage tracking during biofilm 
development

For single-cell segmentation of 3D images in the biofilm growth time 
series, we employed a CNN-based content-aware image restoration 
step (Weigert et al., 2018) to boost the signal-to-noise ratio of the 
raw images. The image restoration network was used to boost the 
signal on 9 newly semi-manually annotated image/label pairs, which 
were then used to train a new StarDist network. At each time point, 
the 3D biofilm image was then segmented with the newly trained 
StarDist OPP. The training data was generated with 100 nm spacing 
between the stack levels to facilitate the semi-manual annotation, 
but the time series was captured with 400 nm spacing. Thus, a cubic 
interpolation was used to account for the missing layers. The cell 
centroid information was extracted from the volumetric segmen-
tation and directly saved in XML format such that it can be used 
as a configuration for TrackMate 7.5.1 (Ershov et al., 2022; Tinevez 
et al.,  2017) released as a Fiji 2.3.0/1.53f51 plugin (Schindelin 
et al., 2012). For the tracking process, the default settings for the 
LAP tracker (linking max distance = 0.948 μm with 15 pixels; track 
segment gap closing = 0.948 μm with 15 pixels and 5 frames; not al-
lowing track segment splitting and merging) in TrackMate were used 
to follow the cells over time. In the tracking data, a new tracking 
ID was recognized as a cell division. The spatial cell division rate in 
Figure 6 was computed as the average of the number of cell divisions 
divided by the time between image frames (10 min). The tracks were 
analyzed with code based on Numpy (Harris et al., 2020) and Pandas 
(McKinney,  2010; The Pandas Development Team,  2023) and the 
tracking results were plotted with Matlab.
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