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Abstract
Quantum computing holds the promise of solving certain tasks faster than any classical
computer. The fundamental building block of a quantum computer is the qubit, which can
be realised in various different systems including trapped ions, superconducting circuits
or semiconductor quantum dots. The latter platform is used to host spin qubits, where
the spin state of a single electron or hole is used to encode quantum information. Spin
qubits in silicon offer distinct advantages over other materials in terms of scalability by
leveraging well-established complementary-metal-oxide-semiconductor technology from the
classical computer industry.

While spin qubits typically operate at milikelvin temperatures, classical control elec-
tronics are maintained at room temperature, leading to a wiring bottleneck and challenges
in cooling, which hinder scalability. Silicon, in this regard, presents a solution: by el-
evating the spin qubit operation temperature above 1Kelvin, where cooling power is
dramatically increased, it becomes feasible to integrate classical control electronics and
quantum hardware in the same package, paving the way for a truly scalable unit cell.
Recent advancements have demonstrated the operation of electron spin qubits in silicon
at elevated temperatures. Hole spins, an alternative to electron spins, possess unique
advantages such as fast, all-electric spin control via a strong intrinsic spin-orbit interaction,
absence of valleys and sweet spots for charge and nuclear spin noise. However, despite
their potential, hole spin qubits in silicon still lag behind their electron counterparts in
crucial aspects, including operation at elevated temperatures and the demonstration of
entangling two-qubit gates, which are essential for universal quantum computing.

This thesis explores the potential of hole spin qubits hosted in silicon fin field-effect
transistors, one of the industry’s standard transistors. The device design is optimised for
quantum applications through the introduction of a self-aligned gate layer and its ability to
host quantum dots is demonstrated. The devices are used to define hole spin qubits, which
are driven all-electrically via electric-dipole spin resonance, and their spin state is read out
using Pauli spin blockade. A driving speed exceeding 100 MHz and a qubit coherence time
T ∗
2 greater than 400 ns is observed and a single-qubit gate fidelity of ∼ 99% is reported at

1.5K. The robustness of these hole spin qubits against further increase of temperature is
demonstrated by operating the qubit even above 4 K, albeit with a reduction of coherence
and a whitening of the noise spectrum. Furthermore, the anisotropy of hole spins in silicon
is investigated by measuring and modelling the magnetic field orientation-dependence of the
effective g-factor and the qubit driving speed and coherence, showcasing sweet spots in the
qubit quality factor. Disentangling the influence of two driving mechanisms enables control
over the type of driving by applying the microwave driving tone to different gate electrodes.
Additionally, a formalism is developed to model the anisotropic nature of the exchange
interaction between two neighbouring qubits, enabling the extraction of the full exchange
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matrix. The model for anisotropic exchange allows sweet spots for fast, high-fidelity
two-qubit gates to be predicted and in a close-to-optimal configuration a CROT operation
is demonstrated in just 24 ns. Furthermore, a conceptually different drive to the standard
Rabi drive, the phase drive, is explored. By incorporating a second far-detuned driving
tone, resonant Rabi oscillations can be suppressed and reappear at tunable sidebands,
offering opportunities for global driving schemes and noise mitigation. In summary, the
interesting physics of hole spins in silicon is investigated, and key technological milestones
for hole spin qubits in silicon fin field-effect transistors are demonstrated throughout this
work.
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1
Introduction

This chapter provides an introduction to the topics of quantum computing, spin qubits and
quantum dots. Furthermore, silicon fin field-effect transistors are introduced and their
potential as a host for spin qubits is discussed.



1. Introduction

A quantum computer exploits quantum mechanical phenomena to exponentially speed
up certain computations, making it potentially more powerful than any classical computer.
However, the quantum computer’s greatest challenge is scaling up. Several decades ago,
classical computers faced the same problem and a single solution emerged: very-large-scale
integration (VLSI) using silicon. Today’s silicon chips consist of tens of billions densely
integrated metal-oxide-semiconductor field-effect transistors (MOSFETs) and provide
enormous computational power. VLSI is achieved using high-yield complementary-metal-
oxide-semiconductor (CMOS) processes, in which football-field sized cleanroom facilities
are used to pattern silicon wafers of up to 450mm diameter with transistors of a few
10s of nm [HL21]. One of the latest transistor designs is the fin field-effect transistor
(FinFET) [Aut12; Aut17], where the current flow along the fin-shaped channel is controlled
by wrap-around gates. In the quest of scaling up the transistor density, transistors are
continuously miniaturised down to the point where quantum effects start to dominate over
their classical behaviour. While this is problematic for classical computers, it provides an
attractive opportunity for quantum applications: at low temperature, a single charge can
be trapped under the gate and serve as a spin quantum bit (qubit) [LD98], the quantum
equivalent of a classical bit.

While a classical bit can take either the value of 0 (off) or 1 (on), a qubit can occupy the
states |0⟩, |1⟩ or a superposition of the two states. Unlike classical bits, multiple qubits
can be entangled, such that their properties can no longer be described independently.
The quantum phenomena of superposition and entanglement allow a quantum computer
to encode exponentially more states than a classical computer and promise an exponential
speed-up for certain algorithms [NC10]. Well-known examples for such quantum algorithms
promise high impact on real-life applications, such as prime factorisation to decipher
encrypted messages [Sho94] or molecule simulations to increase efficiency in production of
e.g. fertiliser [Rei17].

Quantum states are very sensitive to small fluctuations in the environment, which can lead
to information loss. In recent years, qubits have been optimised, achieving error rates below
1% in a wide range of systems [Hon20; Rol19; Bal16; Chr20; Shi22; Bra19; Mad22]. These
slightly noisy qubits are now available in numbers of up to hundreds, allowing quantum
algorithms for the first time to have an advantage over their classical counterparts [Aru19;
Wu21]. This regime of quantum computing is called noisy intermediate-scale quantum
computing (NISQ) [Pre18], because it still relies on qubits that are intrinsically prone to
errors. To overcome this issue and achieve universal quantum computing, researchers have
proposed quantum error correction algorithms [Sho95; Kit03; Cai21]. These algorithms use
many physical qubits with sufficiently low error rates to create a single logical qubit that is
immune to errors. The redundancy of physical qubits enables the detection and elimination
of errors, allowing for fault-tolerant quantum computing. However, a significant number
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of physical qubits is needed to form a single logical qubit, typically ranging from 1,000

to 1,000,000 [Fow12]. Hence, performing a useful quantum algorithm without errors can
easily require millions of physical qubits.

In principle any quantum mechanical two-level system can encode a qubit. Currently,
there are several advanced and commercially available qubit platforms; prime examples
are superconducting qubits by IBM [IBMa], Google [Aru19] and Rigetti [Rig] and trapped
ion qubits by IonQ [Ion] and Honeywell [Pin21]. Theses systems feature tens to hundreds
of high-quality qubits. However, scaling up these platforms to millions of qubits remains
an open challenge. Here, quantum dot spin qubits [LD98; Bur21] promise an advantage
over other technologies, even though the currently most advanced spin qubit processor
contains only six qubits [Phi22]. These qubits can be hosted in structures similar to
classical transistors, potentially allowing for dense integration on semiconductor chips by
leveraging decades of experience of the semiconductor industry [Gon21].

In a spin qubit, information is encoded onto the spin state of an electron or hole confined
to a quantum dot (QD), a potential well in a semiconductor. Initial research on spin
qubits focused on the III-V material gallium arsenide [Elz04; Pet05; Col13; Now07], where
most isotopes have a non-zero nuclear spin. The nuclear spin ensemble forms a noisy
magnetic environment that couples to the spin qubit, reducing coherence [Pet05; KNV08].
More recently, silicon (Si) and germanium (Ge) emerged as the materials of choice [Sca20;
Gon21], with a small natural abundance of non-zero nuclear spin isotopes and the option
for isotopic purification. Silicon’s compatibility with commercial CMOS processes presents
the prospect of high-yield and large-scale fabrication. Additionally, Si-based classical
control electronics can be integrated on-chip with dense arrays of interconnected spin qubits
[Van17; Vel17; Bot22], promising to overcome the challenge in wiring up large numbers of
qubit devices [Fra19]. Integrating classical electronics [Xue21] requires qubit operation
at elevated temperatures [Pet20a; Pet20b; Yan20; Cam22] to overcome heat dissipation,
since the available cooling power scales with temperature. Furthermore, Si spin qubits offer
outstanding properties such as long coherence times [Vel14], fast manipulation [Mau16;
Cam22; Fro21b] and high quality factors [Tak16; Yon17; Yan19].

Spin qubits come in two distinct flavours: electron [Vel14; Kaw14; Tak16; Yon17; Pet20a;
Yan20; Zaj18; Wat18a] and hole [BL05; Mau16; Voi15; Wat18b; Hen20b; Hen20a; Hen21;
Fro21b]. Hole spins can be manipulated all-electrically via electric-dipole spin resonance
(EDSR) [GBL06; Now07; BL07; Nad10a; Kat03; Are13; Voi15; Cri18]. The strong intrinsic
spin-orbit interaction (SOI) [Win03] in holes couples an oscillating electric field to the spin
degree of freedom. In contrast, electron spins are typically manipulated using magnetic
fields or artificial spin-orbit interaction, which requires additional components such as
microwave transmission lines [Vel14; Pet20a] or micromagnets [Kaw14; Tak16; Yon17].
These extra components increase device complexity and hinder scalability. Recently,
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1. Introduction

ways to engineer a strong SOI for all-electric spin manipulation were also explored for
electrons [Gil23]. Both electric and magnetic spin drives enable single-qubit operations
with high fidelity above 99.9% [Yon17; Phi22; Yan19; Law21; Hen21]. Hole spins in a
strong one-dimensional confinement potential are subject to an exceptionally strong and
fully tunable SOI, enabling a switchable coupling strength and a way to mitigate the
effects of charge noise [KTL11; KL13; KRL18; BHL21; Fro21b; Mic23; Pio22]. Moreover,
hole spins are better protected against nuclear spin noise than their electron counterparts
due to their weak hyperfine interaction [KLG02; Pre16; BL21] and do not posses a valley
degree of freedom [Zwa13]. In conclusion, hole spins offer advantages in terms of fast,
all-electric manipulation, sweet spots for low noise and lower device complexity.

Universal quantum computation requires both single-qubit control and two-qubit interac-
tions. Native two-qubit gates for spins such as the

√
SWAP [LD98; Pet05], the controlled

phase (CPHASE) [Vel15; Wat18a; Mil22; Xue22] or the controlled rotation (CROT) [Zaj18;
Wat18a; Hua19; Pet20a; Noi22; Phi22; Hen20a; Hen21] rely on the exchange interaction,
which arises from the wave function overlap between two adjacent QDs. For electrons
in Si, two-qubit gate fidelities have recently surpassed the minimum threshold [Fow12]
for fault-tolerance of 99% [Noi22; Xue22; Mil22]. However, the challenges in obtaining a
controllable exchange interaction [Fan23] prevented the demonstration of two-qubit logic
for holes in Si or in FinFETs until the demonstration in this work.

This thesis investigates the potential of spin qubits based on Si FinFETs [Mau16; Pio22;
Kuh18; Zwe22]. Chapter 1 provides a brief introduction to the relevant theoretical concepts.
In chapter 2, we present a fabrication process for Si FinFETs, which are adapted for qubit
integration by introduction of a self-aligned second gate layer. The multi-electrode layout
enables control of the potential along the fin, and ambipolar contacts permit both electron
and hole currents.

In chapter 3, we employ these devices to form hole double QDs (DQDs) and measure
key properties in electric transport measurements. We observe Pauli spin blockade
(PSB) [Ono02; Joh05; Li15], where the spin state of a hole or electron blocks the electric
transport through a DQD, which can be used for spin readout. The dependence of PSB
on electric and magnetic fields is explored.

In chapter 4, we demonstrate the FinFET’s ability to host two hole-spin qubits by
performing qubit initialisation, manipulation and readout. We use all-electric EDSR spin
driving for fast spin manipulation with a speed exceeding 100MHz and determine a spin
coherence T ∗

2 above 400ns. Using a temperature-robust readout scheme relying on PSB,
we are able to operate the qubit at elevated temperatures. We determine a single-qubit
gate fidelity of ∼ 99% at 1.5K. When further increasing the temperature to above 4K,
the qubit coherence is reduced, gate fidelity decreases to ∼ 98% and a whitening of the
noise colour is observed.
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1.1. Quantum dots

Chapter 5 investigates the properties of FinFET qubits as a function of magnetic field
orientation. We find a highly anisotropic effective g-factor, which is fitted by a phenomeno-
logical 3x3 g-tensor and a microscopic model. We find that a rotated confinement potential
or strain could be the cause for the misalignment between g-tensor and device axes. Qubit
driving is investigated for its magnetic field dependence, allowing us to separate EDSR
driving into two mechanisms, motional EDSR [GBL06] and g-tensor modulation [Cri18].
We find that driving a qubit with different gates allows us to choose the driving mechanism.
Finally, we investigate the qubit coherence and find sweet spots in the magnetic field
orientation with low noise and high coherence [Pio22].

In chapter 6, we turn on the exchange interaction between two neighbouring qubits
in a FinFET using electric fields. We find a strong anisotropy and develop a theoretical
model based on SOI to extract the full exchange matrix. The model allows us to predict
magnetic field configurations for fast and high-fidelity two-qubit gates. We demonstrate
the first two-qubit gate for holes in Si by performing a CROT in just ∼ 24 ns, comparing
favourable to other CROT implementations [Noi22; Hen20a; Hen21].

In chapter 7, we investigate a hole spin qubit phase drive, which is fundamentally
different from the spin-flip Rabi drive. In this method, a far-detuned oscillating field
couples to the qubit phase, resulting in highly non-trivial spin dynamics when combined
with a conventional Rabi drive. We demonstrate a controllable suppression of resonant
Rabi oscillations, and their revivals at tunable sidebands. Phase-driving further has the
potential to decouple a spin qubit from noise by exploiting a gapped Floquet spectrum,
which also opens up the possibility to investigate and engineer Floquet states [BDP15;
RL20].

Finally, in chapter 8 we summarise the current state of the project and provide an
outlook. Firstly, we discuss possible improvements to the FinFET devices and their layout.
Secondly, limitations in the measurement techniques are identified and possible ways to
overcome these restrictions are presented. Thirdly, different paths to improve the qubit
properties are discussed. Lastly, we discuss at the FinFET hole spin qubit platform’s
potential to scale up the number of qubits and their compatibility with concepts for
large-scale integration.

1.1. Quantum dots
The spin qubits investigated in this thesis are hosted by hole spins confined to semiconductor
QDs [LD98]. A QD is a potential well which confines charges in three dimensions resulting
in discrete energy levels. The spacing of these energy levels is given by the charging energy
EC = e2/2CQD, a result of the quantisation of charge, and the confinement energy (on
average Edot = ℏ2/m∗r2), resulting from the small spacial confinement. Here, e is the
electron charge, CQD is the total capacitance of the dot, ℏ is the reduced Planck’s constant,
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1. Introduction

m∗ is the effective mass and r is the length of the QD confinement. The confinement is
usually achieved by a mix of band structure engineering and design of the electric fields.
For our purposes, gate-defined QDs are the most relevant type of QDs, where metallic gate
electrodes are used to carefully shape the electrostatic environment in a semiconductor
to trap charges. The QD can reside in a sandwich of semiconductor materials (e.g. a 2D
hetero-structure or a 1D nanowire), or, alternatively, can be trapped at the interface of
a semiconductor and an insulating layer. The latter mechanism is key for metal-oxide-
semiconductor (MOS) devices such as FinFETs. More information on Si QD devices of
various structures can be found in Refs. [Zwa13; Gon21].

Once a QD is formed, tunnel-coupled source and drain reservoirs are used to probe its
spectrum. At low temperature T ≪ EC/kB and small bias voltage Vbias < EC/e, where kB
is the Boltzmann constant, charges can be transported through the QD only sequentially.
For certain energy configurations of the QD, transport is completely blocked by Coulomb
blockade [Han07] if there are no QD energy levels available in the bias window. By shifting
the potential of the QD using a plunger gate, the Coulomb blockade can be lifted and
current flows. How effective a gate G can manipulate the QD’s potential is reflected in
the lever arm α = CG/CQD, where CG is the capacitance between gate G and the QD.
Adding a second QD in series (see Fig. 1.1 a), which is tunnel-coupled to the first QD,
makes charge transport dependent also on the alignment of the energy levels of the two
QDs. At finite bias voltage triangular regions of conductance form in the plunger gate
space (see Fig. 1.1 c). These signature features of DQD, known as bias triangles, contain
characteristic information such as charging and orbital energies and gate lever arms. The
charge state of a DQD is denoted as (n1, n2), where n1/n2 is the number of charges in
the respective QD. We recommend the extensive reviews of transport signatures of QDs
provided by Refs. [Wie02; Zwa13] for further information.

a b

source QD1 QD2 drain

VG1 VG2
G1C G2C

source drain

Vbias

c

1n 2n

µ(n1)

µ(n1+1)

µ(n2)

µ(n2+1) VG1

VG2

(n1,n2) (n1,n2+1) (n1,n2+2)

(n1+1,n2) (n1+1,
n2+1)

(n1+1,
n2+2)

Fig. 1.1.: DQD charge states. a, Schematic of a tunnel-coupled DQD showcasing source and drain
reservoirs and capacitively plunger gates G1 and G2 b, Energy level diagram of a DQD in
Coulomb blockade. The transport of an electron or hole through the DQD is blocked since there
is no charge state of the second QD available in the transport window (green), defined by the
bias voltage Vbias. c, Schematic of a DQD charge stability diagram indicating bias triangles
(green) where charge transport is observed. (n1, n2) indicated the charge configuration of the
DQD in the respective cell.

The charge carriers confined to QDs can be electrons or holes. This is mostly dependent
on the type of device, band structure alignment in the valence and conduction band
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1.2. Hole spins

and the types of charge carriers available in the contacts. Some devices can host both
electron and hole QDs using ambipolar contacts and electrically reversible confinement
potentials [Kuh18; Dua21; Mue15]. Since electrons and holes have opposite charge and
different effective masses, switching between the two forms of charge carriers results in the
formation of quantum dots and tunnel barriers with distinct properties.

1.2. Hole spins
Electrons and holes do not only differ by their charge, but also by their spin properties:
whereas electrons have spin quantum number s = 1/2 resulting in z-projections with
ms = ±1/2, holes are more complex. Due to the p-type Bloch wave function in the valence
band of Si and Ge [Pre16], holes come with an additional orbital angular momentum given
by the quantum number l = 1, such that the eigenstates of the total angular momentum
operator J = L+ S have to be considered. Here, L is the orbital momentum operator and
S the spin operator. In total six states can be found: four states with quantum number
j = 3/2 and z-projections mj = ±1/2,±3/2 and two states with j = 1/2 and mj = ±1/2.
In Si, the finite intrinsic spin-orbit interaction energetically splits off the j = 1/2 states by
the spin orbit splitting ∆so = 44meV [Zwa13], which is called the spin-orbit split-off band.
The four j = 3/2 states are degenerate at zero momentum in bulk Si and are separated
into light holes (LH) with mj = ±1/2 and heavy holes (HH) with mj = ±3/2. This system
is typically described by a 6x6 Luttinger-Kohn Hamiltonian [Win03].

When taking into account strain and confinement, the degeneracy of HH and LH is
lifted. Well-known examples are the two-dimensional quantum wells in Ge, which can
either have HH-like [Sca20] or LH-like [Ass22] ground states. In a strong confinement such
as a QD or a nanowire, HH and LH start to mix, such that the eigenstates are not of pure
HH or LH character. However, a pseudospin f = 1/2 can be assigned to the two lowest
states in energy independent of their mixture of HH and LH [KTL11], such that we can
describe hole QDs in many cases using the same formalism as for electrons [Sca20]. For
example when applying an external magnetic field B, the Zeeman splitting for electrons
or holes in QDs is given by EZ = g∗µBB, where g∗ is the effective g-factor of the electron
or hole and µB is the Bohr magneton. Further information on hole spin states in Si and
Ge is provided in Refs. [Sca20; CP66; Fan23].

1.3. Pauli spin blockade
Returning to single-charge transport through a DQD, we note that spin states can also
influence the charge transport. A prime example is Pauli spin blockade (PSB) [Ono02;
Joh05], where the current through an electron or hole DQD is blocked by the spin states of
single particles. PSB occurs if the DQD is in the (1, 1) charge state and charge transport
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1. Introduction

has to go via the (0, 2) state, where only a spin singlet state |(0, 2)S⟩ is energetically allowed
(see Fig. 1.2 a). This tunnelling process is forbidden by spin conservation if the two spins in
the (1, 1) state occupy a triplet state |(1, 1)T+⟩ , |(1, 1)T0⟩ or |(1, 1)T−⟩. A difference in g∗-
factor or a gradient magnetic field can mix the unpolarised triplet |(1, 1)T0⟩ with the singlet
|(1, 1)S⟩, which lifts the blockade for these states [See21]. Other mechanisms can also mix
the polarised triplet states with the singlet state, which completely lifts PSB. The most
prominent ones are SOI, hyperfine interaction and spin-flip co-tunnelling [DN09; Nad10b].
PSB is often used as spin-to-charge conversion mechanism in qubit readout schemes [Fog18;
Zha19; Wes19; See21], due to its protection against elevated temperatures [Pet20a; Pet20b;
Yan20], compatibility with small magnetic fields and high speed [Wes19; Nur22; Hut19;
See21].

a

S(0,2)

T(0,2)

T(1,1)

S(1,1)

S(0,2)

T(0,2)

T(1,1)

S(1,1)
b

Fig. 1.2.: Schematic of PSB. a, Pauli spin blockade blocks the transport through a DQD in a specific
charge configuration as described in the main text. b, Same charge configuration but under
reverse bias, where transport is not blocked.

1.4. Spin-orbit interaction
A particle’s spin, which is a magnetic angular momentum, usually couples only to magnetic
fields. However, special relativity tells us that a particle moving through an electric field
will experience an apparent magnetic field. This effect is captured by the SOI, which
couples the particle’s spin to electric fields. In a semiconductor, the electric potential
of the nuclei gives rise to an intrinsic spin-orbit interaction, which as a rule of thumb
scales with the charge of the nuclei, i.e. is stronger for heavier elements. SOI leads to
the renormalisation of electron or hole g-factors in a semiconductor and spin splitting of
electronic bands at zero magnetic field [Win03].

Spatial inversion asymmetry gives rise to additional SOI terms such as the linear-in-
momentum Dresselhaus or Rashba SOI. Dresselhaus SOI arises either from a microscopic
inversion asymmetry of the crystal structure (bulk inversion asymmetry) or from an
anisotropy of the chemical bonds at material interfaces [Joc18; Win03]. For holes in Si
and Ge, which both have a inversion-symmetric diamond crystal lattice, this contribution
is usually small.

Rashba SOI, in contrast, originates from the macroscopic structure inversion asymmetry
of the system, which comes from e.g. layers of different materials, an inversion asymmetric
cross-section of a nanowire or applied electric fields. The effect can be described in terms
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1.4. Spin-orbit interaction

of an effective electric field E, which gives rise to the Rashba SOI Hamiltonian [Win03]

Hso,R = ασ · (k× E), (1.1)

where k is the momentum operator, σ is the spin operator and α is the Rashba spin-orbit
coefficient. The Hamiltonian is sometimes rewritten using an effective magnetic field
Bso ∝ k×E, which allows us to think about the effect of SOI in terms of an additional
magnetic field.

For holes in Si or Ge, a strong confinement to one dimension in combination with a
perpendicular electric field gives rise to an additional significant linear-in-momentum term,
the so-called direct-Rashba SOI (DRSOI) [KTL11; KRL18]. DRSOI is formally identical
to standard SOI, but is predicted to be much stronger and to exhibit a non-monotonic
electric tunability. The different electric tunability enables turning on and off SOI for
certain device geometries at finite electric fields [KRL18; BHL21]. For a SOI-driven qubit
this lets us turn on respectively off the coupling between the qubit and the environment
for fast driving and low noise, respectively [Fro21b].
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This chapter reports on the fabrication of silicon FinFET devices with a self-aligned gate
layer. First, the device layout is presented, followed by a detailed description of the
individual steps of the process flow for the silicon fin, the metallic gates and the ohmic
contacts. Finally, post-fabrication device screening is discussed.
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2. Fabrication

Classical computers are made of Si integrated circuits that consist of billions of fully oper-
ational MOSFETs. Their quantum analogue is represented by Si-MOS QD devices [Ang07;
Lim09], which, in their role as hosts for coherent and high-fidelity spin qubits [LD98; KL13;
Vel14; Pet20a; Yan20; Zaj18; Wat18a; Yon17; Mau16], are among the prime candidates
for implementing large-scale quantum processors [Vel17; Van17; VE19]. While MOSFETs
work with three terminals (source, drain, and gate), a multilayer gate stack is often required
for quantum dot devices [Ang07; Lim09; Vel14; Pet20a; Yan20; Zaj18; Wat18a; Een19;
Law20]. Consequently, tight requirements on feature size and layer-to-layer alignment
make quantum dot device fabrication highly demanding. Furthermore, the high gate count
leads to challenges in wiring up of large-scale qubit systems because of low-temperature
operation [Fra19; Vel17; Van17; Bot22]. It is, therefore, too simplistic to assume that
Si spin qubits based on industrial manufacturing processes are a priori scalable. Yet,
the current quantum dot device fabrication standards need to be adapted for scalable
integration. In order to limit device complexity, all-electrical spin control schemes [Mau16;
Wat18b; Hen20b; Hen21; Voi15; Now07; GBL06; Gil23] should be preferred over spin
manipulation relying on additional components such as transmission lines [Vel14; Pet20a]
or micromagnets [Yan20; Pio08].

In the Si industry, self-alignment techniques are used to reduce feature sizes and
to overcome alignment limitations. Here, the key idea is to make use of an existing
patterned structure on a device to define the pattern of a subsequent process, resulting in
an intrinsically perfect layer-to-layer alignment. A prime example from the electronics
industry is to employ the gate of a MOSFET as a mask for the definition of source and
drain regions by means of ion implantation [Vad69; Bow68].

In this chapter, we present a process flow to fabricate Si FinFET devices with two layers
of gates that can host multiple quantum dots for qubit applications. The second gate
layer is realised using a self-alignment technique, where the first gate layer acts as a mask
for the subsequent one. With this approach, multi-gate stack integration is facilitated,
and ultra-small gate lengths ≃ 15 nm as well as perfect layer-to-layer alignment can be
achieved. While this chapter will explain the main steps of the fabrication, details such as
process parameters are provided in Ref. [Gey19a]. Finally, device screening methods are
discussed.

2.1. Process flow
Fig. 2.1 shows the device layout. The Si mesa (red) is narrowed down in the centre
of the device to form the Si fin. Source (S) and drain (D) ohmic contacts (green) are
connected to the fin via lead gates L1 and L2 (yellow), which accumulate charge reservoirs
in the Si to either side of the fin. The nano-scale gates (G1-3) can be used to control
the current flow through the fin. At cryogenic temperatures, these gates accumulate
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2.1. Process flow

L1 L2S D

G1

G2 G3

500nm

Fig. 2.1.: Device layout showing the main lithography masks for the fin, gates and contacts as well as
the self-aligned gates G2 & G3. A close-up of the nano gates G1-3 is provided in Fig. 2.2.

quantum dots and form barriers. The fabrication process flow for these devices starts
with a natural, near-intrinsic Si substrate (ρ > 10 kΩcm, (100) surface). We define the Si
fin along the [110] crystal direction by electron-beam lithography (EBL) with negative
hydrogen silsesquioxane (HSQ) resist and a dry-etch in an inductively-coupled plasma
(ICP) etcher using hydrogen bromide (HBr). Subsequently, the fin is narrowed down to
the desired width of w = 10− 25 nm by an oxidation-etch cycle. It consists of an isotropic
dry thermal oxidation of the top few nm of Si and a wet etch using buffered hydrogen
fluoride, which dissolves only the oxidised Si. When the fin is narrowed to its final width,
a last thermal oxidation step is used to grow a thin silicon dioxide (SiO2) layer, typically
6-8 nm, which serves as a gate oxide for the first gate layer.

The fist gate layer is defined by EBL and dry etching, which allows for more uniform
gate fabrication and smaller dimensions as compared to the typically used lift-off pro-
cesses [Zwe21]. First, the SiO2 is covered with 20 nm of the metal titanium nitride (TiN)
in a uniform atomic-layer deposition (ALD). EBL using HSQ is used to define the layout
of the first gate layer, consisting of lead gates L1 and L2 and the central gate G1 (yellow
and blue in Fig. 2.1). A subsequent ICP dry etch using HBr, which is highly selective
towards TiN in comparison to SiO2, removes the metal outside of the desired area. The
HSQ on top of the gates remains and forms a low-quality Si oxide. The topography of this
gate layer is crucial for the upcoming step.

Next, the self-aligned gates are fabricated. In Fig. 2.2 (a) a scanning electron microscope
(SEM) image of a device at this stage is shown. The gaps separating the gates of the
previous gate layer create channels (turquoise highlights in Fig. 2.2 (a)) that will serve
as a template for the second gate layer. By means of ALD the gate stack, consisting of
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2. Fabrication

≃ 4.5 nm silicon oxide (SiOx) and ≃ 20 nm metallic TiN, is deposited with highly uniform
surface coverage (see Fig. 2.2 (b)). Provided the width of the gaps separating G1 from
L1/L2 is less than twice the thickness of the deposited material, the channels are almost
evenly filled with metal. The thin SiOx layer ensures electrical isolation of the two gate
layers (breakdown voltage ≳ 6V, see appendix A.1.1).

Subsequently, an anisotropic ICP dry etch using HBr is applied for a duration that
corresponds to the deposited TiN thickness of ≃ 20 nm (see Fig. 2.2 (c)). While the gate
metal is removed during etching from the flat surfaces of the device, leftovers are found at
the topography steps. The TiN residues inside the predefined channels naturally form gates
G2 and G3 of the second gate layer. The fan-out of the gates to micro-scale contact pads at
larger distance from the fin is protected during etching by a resist mask (magenta highlights
in Fig. 2.2 (c)), which is defined by means of EBL. The demands of this lithography step
with regard to resolution and alignment accuracy are lowered by moving the channel
endpoints further away from the centre of the fin.

At this stage, the gates of the second gate layer are still connected via the TiN that
remains and is marked in red in Fig. 2.2 (c&d). This short circuit is eliminated by first
protecting the gates with a resist mask, as shown in Fig. 2.2 (d), and then by selectively
removing all the unintentional TiN residues by isotropic wet etching using RCA1 echant
(see Fig. 2.2 (e)). The protective cover is defined by means of EBL.

After successful integration of the second gate layer, cross-sectional transmission electron
microscope (TEM) images along and perpendicular to the fin direction are taken (see
Fig. 2.2 (f)). These images confirm ultra-small gate lengths as well as perfect gate alignment.
The high uniformity of our devices is typically only achieved in industrial clean room
facilities [Zwe22].

To create contacts for the source and drain reservoirs accumulated below the lead gates,
a metallic silicide contact is used.1 A 200 nm thick bilayer resist mask consisting of methyl
methacrylate and polymethyl methacrylate-methacrylic acid is defined by EBL. After
surface cleaning through dry and wet etching, metal is deposited anisotropically using
a sputter machine. A lift-off process and subsequent removal of the resist leaves behind
a thin metallic layer only in the desired contact region (green area in Fig. 2.1). The
metal is then annealed at a low temperature of 475◦C for 10 min during which the metal
diffuses into the Si, forming a metallic silicide next to and slightly below the lead gates, as
shown in the cross-sectional TEM image in Fig. 2.3 (a). The naturally arising Schottky
tunnelling-barriers between the metallic silicide and the semiconducting silicon are made
more transparent by a strong electric field [Gey19a; Gey19b], originating from a large

1Alternatively, in-situ doped contacts have shown promising results in early tests, where the semiconduct-
ing contact region is heavily doped by thermal diffusion using deposited dopants. Using this method
suppresses the formation of Schottky barriers at the contacts, resulting in more ohmic behaviour and
lower contact resistance. Further investigation of this process is needed to determine its potential.
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Fig. 2.2.: Fabrication process flow. (a-e, left panel) Schematic device cross-section along the black
dashed line of the (a) false colour SEM image. The horizontal axes of the left and right panels are
scaled differently. (a) Device with completed first gate layer, consisting of two lead gates L1 & L2
(yellow in SEM image) and a central finger gate G1 (blue) that is wrapped around the Si fin
(magenta). EBL with HSQ resist is employed for gate definition. The gaps separating the gates
(turquoise) act as a template for the second gate layer. (b) Deposition of the gate stack by means
of ALD results in a uniform surface coverage, such that the gaps are almost evenly filled with
material. (c) TiN is removed from the flat surfaces, which are not protected by resist (magenta),
by timed dry etching. TiN residues (red) at topography steps still connect gates G2&G3 of
the second gate layer. (d, e) A protective resist mask is applied to remove all unintended TiN
residues with an isotropic wet etch. (f) Cross-sectional TEM images perpendicular (left panel)
and parallel (right panel) to the fin. Left: the quantum dot is induced at the apex of the roughly
triangular-shaped Si fin (purple). Right: Gates G2 & G3 (turquoise) are perfectly aligned relative
to the first gate layer. Good electrical isolation is ensured by a thin SiOx layer sandwiched
between the two gate layers.
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Fig. 2.3.: Ohmic contacts. (a) Cross-sectional TEM image showing the silicide-Si interface. The
Schottky-barrier forming at this interface is influenced by the strong electric field applied via
the overlapping lead gate. (b) IV characteristics of device N (see Tab. A.1) with nickel silicide
contacts in ambipolar operation at ∼ 20mK. A small total resistance in the order of ∼100 kΩ is
reached by applying strong electric fields at the Schottky barrier interface. The deviation from
ohmic behaviour at small bias is due to the rectifying behaviour of the Schottky barrier.

voltage applied to the lead gates.2 Two different metals, platinum and nickel, were used in
this process to form contacts. Platinum silicide has a Fermi energy that is close to the
valence band of Si, making it suitable to inject holes into the Si channel. Nickel silicide,
on the other hand, has an almost mid-band gap Fermi energy, leading to a larger Schottky
barrier but enabling injection of both types of charge carriers into the channel.

Fig. 2.3 (b) shows the current-voltage (IV) characteristics for an ambipolar device with
nickel silicide contacts. At low bias voltage, the curve flattens out, indicating a deviation
from ohmic IV characteristics due to the rectifying nature of the Schottky contacts. This
effect makes it difficult to define or measure the contact resistance and is pronounced when
the channel resistance is low. Hence, we define the contact resistance R as the average
resistance over the bias voltage Vsd = ±20mV. Despite this challenge, the quality of the
contacts is sufficient to measure the changes in conductance of the device channel, which
is the region of interest for our applications.

In the back end of line processing, a 100 nm thick protection layer of SiO2 is deposited
on the device by plasma-enhanced chemical vapour deposition. Vertical interconnects are
opened up and filled with tungsten (W) to connect gates and the ohmic contacts to a
metal fan-out ending in bonding pads.

After fabrication and visual inspection, a room-temperature probe station tests for
channel turn-on and gate leakage. The device yield in this first stage varied significantly
between different batches of fabrication, sometimes even for nominally identical parameters.
The reason for this could be due to the fact that the process is not fully automated,
leading to process variations due to naturally arising small differences in the manual steps.

2A more complex device design with separate gates to control the Schottky barrier transparency was
also investigated, which turned out to reduce contact resistance and make quantum dot measurements
easier. Therefore, this new method was adapted for device D (see Tab. A.1) and is included in future
designs.
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Alternatively, some process steps may depend on parameters outside of our control, such
as the history of processes prior to our fabrication. After this initial screening, promising
devices are wire-bonded and tested again at room temperature before being cooled down
to cryogenic temperatures (4K or mK) for the final test.

The low-temperature test procedure confirms the channel conductance and tests in-
dividual control from each gate. First, all gates are slowly ramped towards or slightly
above their typical operation voltage until a small bias voltage results in a measurable
source-drain current. Second, the voltage of each gate is individually ramped to zero and
the pinch-off behaviour is recorded. A good device should have a high channel conductance
and similar pinch-off voltages for each nano gate, indicating uniformity among the gates
and hence a promising device for quantum dot experiments. Appendix A.1.2 provides
an example of measurements for a well-performing device. This step could in principle
already be performed in a cryogenic probe station setup [Kru23] before wire bonding. This
would increase measurement speed and throughput as well as allowing better disentan-
glement of low-temperature failure modes originating from the fabrication process and
from post-fabrication device handling and bonding.3 At this stage of device screening, the
most common failure mode was non-pinching gates. This might come from the small gate
dimensions that push the boundaries of the EBL tool, which can lead to an interrupted
connections to the gates. Our screening method allows us to sort out failing devices, but
unfortunately, it cannot predict the device quality, especially the quantum dot properties.
As a result, the yield for high-quality quantum dots capable of hosting qubits was lower
than the bare device yield.

2.2. Conclusion & outlook
In conclusion, we have presented a novel fabrication flow for Si FinFET qubit devices with
a small footprint. Our approach relies on a self-alignment technique for gate fabrication,
which enables ultra-short gate lengths that are suitable for quantum applications. We
have demonstrated quasi-ohmic behaviour of ambipolar Schottky contacts by tuning the
Schottky-barrier transparency with electric fields.

The presented device can still be improved in various ways. The contact resistance
and the contact’s deviations from ohmic behaviour could be reduced by introducing
doped contacts [Hut16; Ang07] to replace the rectifying Schottky contacts by a doped
semiconductor-metal interface. Further device optimisations, improving various QD or
qubit properties, are discussed in chapter 8. Furthermore, more complex devices will
be required for future experiments beyond the scope of this thesis. We will discuss the

3We recommend the integration of such a cryogenic probe station into the screening procedure after
struggles in separating the errors from electrostatic discharges during device handling and bonding
and from fabrication errors.
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necessary changes in device design, layout and dimensions in chapter 8.
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This chapter presents the characterisation of a hole double quantum dot accumulated in a
FinFET with two gate layers. Pauli spin blockade is observed and its dependence on electric
field and magnetic field strength and orientation is investigated. Further, characteristic
parameters of the system are extracted, indicating a promising platform for hole spin qubits.
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3. Quantum dot characterisation

QDs in Si-MOS structures offer a promising platform for hosting spin qubits [Vel17;
Van17; Gon21] and have been studied extensively for both electrons [Ang07; Lim09; Vel14;
Pet20a; Yan20] and holes [Mau16; Lil21; Li15]. Holes are particularly interesting because
they offer a strong SOI which enables all-electric, fast qubit manipulation [GBL06; Mau16;
Voi15]. When holes are strongly confined to a one-dimensional channel, as in nanowires or
FinFETs, an especially strong and electrically controllable DRSOI is predicted [KRL18;
BHL21].

QDs can be characterised through charge transport measurements that map out the
QD’s spectrum and charge state [Wie02]. In a DQD, specific configurations of electron
or hole charge and spin states can exhibit PSB [Ono02], a blockade of charge transport
by the spin state of the charge carrier. The PSB leakage current can be utilised to probe
mechanisms that lift PSB such as SOI or hyperfine interaction [DN09; Li15; Zar17; QD22].

In this chapter, we examine the charge transport characteristics of a hole DQD hosted
in a Si FinFET. We observe PSB and identify SOI as the dominant mechanism for spin
blockade lifting. We analyse how the PSB leakage current changes with magnetic field
orientation and attempt to explain the effect with a model based on SOI. Moreover, both
the SOI coupling strength and the effective hole g-factor are obtained from an anticrossing
between singlet and triplet spin states of the DQD measured in magneto-spectroscopy.

3.1. FinFET quantum dots
We employ a FinFET device, that was fabricated according to the process flow presented
in chapter 2, for QD characterisation experiments. The device layout with the three
nano-scale gates B, P1 and P2 (in the previous chapter labelled as G1, G2 and G3) allows
for both a single- and double-dot operation mode. In this chapter we focus on DQDs
in p-type devices (see appendix A.2.1 for single-dot regime). Holes are accumulated in
source (S) and drain (D) reservoirs through platinum silicide contacts by applying a strong,
negative lead gate voltage (VL1,L2 = −4.5V). Gates P1 and P2 form dots 1 and 2 and
control their occupancy (see inset of Fig. 3.1 (a) for a simplified equivalent circuit of the
device). Gate B, which is located between P1 and P2, is used to control the inter-dot
tunnel coupling (see appendix A.2.2). In this chapter we mainly investigate device A (see
Tab. A.1) with gate lengths lB≃ 25 nm for inter-dot barrier gate and lP≃ 15 nm for the
plunger gates.

The data presented here are obtained from direct current electrical transport measure-
ments with the sample cooled to 0.55K. In Fig. 3.1 (a), a double dot charge stability
diagram [Wie02], showing the first observable pairs of bias triangles, is presented (see
appendix A.2.3 for same measurement on a second device). The two triangles of each pair
strongly overlap for a source-drain voltage of VSD = +10mV. While the lines of strong
current flow parallel to the triangle base reveal elastic tunnelling between the ground
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b) forward bias, VSD = -10mV: c) reverse bias, VSD = +10mV: 
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B = 0T B = 40mT

a)

N1 N2S D

P1 B P2

S(0,2)

T(0,2)

T(1,1)S(0,2)

T(0,2)
S(1,1) εST

d) e)

ε
εST

T(1,1)

S(1,1)

B = 
5mT

P2

P2

P1

P1 P1 P1

Fig. 3.1.: Bias triangles and Pauli spin blockade for holes. (a) Double dot charge stability diagram
measured for VSD = +10mV and VB = −770mV. The simplified equivalent circuit of the device
is depicted in the inset. While the dot occupancies N1 and N2 are separately controlled by gates
P1 and P2, the inter-dot tunnel barrier is tuned by B. The coloured circles mark the pairs of
bias triangles for which signatures of PSB are observed. A close-up of the triangles indicated by
the solid blue circle in (a) is presented for VB = −750mV in (b) for VSD = −10mV and (c)
for VSD = +10mV. While for negative VSD current can freely flow through the base of the
triangles, it is blocked for positive VSD at zero magnetic field. PSB is lifted for a detuning
ε ≥ εST or by applying a small magnetic field, here B = 40mT. The detuning axis is defined
as indicated by the white arrow. A charge transport cycle is depicted schematically in (d) for
negative and (e) for positive VSD.

or excited states of the double dot, the background current inside the triangles can be
assigned to inelastic tunnelling [Wie02]. The triangles for more negative gate voltages are
distorted by co-tunnelling processes because of the dots’ increased tunnel coupling to the
reservoirs [Fra01; Zum04].

3.2. Pauli spin blockade
In Figs. 3.1 (b), (c) a zoom-in on the pair of bias triangles, indicated by a solid blue circle
in Fig. 3.1 (a), is presented for negative and positive VSD. While current flow through
the base of the triangles is observed for VSD = −10mV, it is strongly suppressed for
positive VSD at zero magnetic field B. (For the bias triangles marked by a solid magenta
circle in Fig. 3.1 (a) current suppression is observed for the opposite bias direction, see
appendix A.2.4). This type of current rectification is a hallmark of PSB [Ono02; Joh05;
Han07; Lai11; Li15] and is due to spin-conserved tunnelling, as schematically depicted in
Figs. 3.1 (d), (e). If two hole spins reside on the same dot (here the right one), they must
occupy a spin singlet state S(0, 2) as the triplet state T(0, 2) is shifted to higher energy by
the single-dot singlet-triplet splitting εST [Han07]. Here (m,n) denotes the effective hole
occupancy of the left and right dot. While our data is consistent with observing the last
hole, more sensitive charge detection methods are required to evaluate this [Fie93; Han07].
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a)

b)

VSD = +10mV
VB = -750mV

a) c)

d)

1.8K

15K

4K
8K

Fig. 3.2.: Spin blockade leakage current. (a) Source-drain current ISD under reverse bias as a function
of detuning ε and out-of-plane magnetic field B. Some of the vertical traces are shifted along
the ε-axis to eliminate the random switching of a charge trap. The detuning correction ∆ε is
plotted in the inset (blue). (b) Cut along B at ε = 0, as indicated by the black dashed line in (a).
The data (black dots) are well fitted by a Lorentzian function (red curve) of FWHM = 32mT.
(c) FWHM of the Lorentzian dip in the leakage current (blue circles) as a function of barrier
gate voltage VB indicating an exponential dependence (black dashed fit). (d) Leakage current at
ε = 0 as a function of B for temperatures from T = 1.8K to 15K. PSB current suppression is
partially lifted by elevated temperatures but measurable up to 15 K.

For a negative VSD charge transport occurs from the S(0, 2) state to the S(1, 1) state, and
a hole can escape the left dot to the reservoir. In contrast, for a positive VSD current flow
is blocked. If one hole spin resides on each dot, they can form either a S(1, 1) or T(1, 1)

state, which are nearly degenerate in energy for weak inter-dot coupling. Once the T(1, 1)

state is occupied by loading a hole from the reservoir to the left dot, transport is blocked
by spin conservation during tunnelling.

PSB is lifted for an inter-dot energy level detuning ε exceeding εST, since the T(0, 2)

becomes accessible from the T(1, 1) state. Hence, the reappearance of current along the
detuning axis determines εST ≃ 1.85meV. This allows us to give an upper-bound estimate
of the effective dot size λx ∼ ℏ/

√
m∗εST = 9.5 nm [Fas07], which is in good agreement

with the device geometry. Here, we assume harmonic confinement and an effective hole
mass m∗ = 0.45m0, where m0 denotes the bare electron mass [KRL18].

For ε < εST spin relaxation leads to a leakage current through the spin blocked region of
the bias triangles [Pfu07; Chu09; DN09; Nad10b]. For a small magnetic field of B = 40mT

current leaks through the base of the triangles (see Fig. 3.1 (c)). For B ̸= 0 the previously
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3.2. Pauli spin blockade

forbidden T(1, 1) → S(0, 2) transition becomes allowed since hole spins in Si experience a
strong SOI [KRL18] that hybridises the T(1, 1) and S(0, 2) states [DN09; Nad10b].

The leakage current dependence on both B and ε for positive VSD is shown in Fig. 3.2 (a).
A dip in the leakage current, which is centred around zero magnetic field, is revealed
by a line-cut along B at ε = 0 in Fig. 3.2 (b). This dip has a Lorentzian line shape
with a full-width-at-half-maximum (FWHM) of 32mT and a close-to-zero minimum
value, signifying a very efficient blockade. The dip also confirms that lifting of PSB is
dominated by SOI [DN09; Li15], since hyperfine interactions [Pfu07; Nad10b] or spin-flip
co-tunnelling [QCW09; Lai11; Bie15] yield a zero-field peak. The magnetic field dependence
of the observed current suppression can be tuned by the inter-dot tunnelling rate, as
demonstrated in Fig. 3.2 (c). The interdot tunnelling rate is controlled by the barrier gate
voltage VB. We show exponential control over the FWHM of this dip in current over a
wide range of VB ∼ 100mV. This is expected as typically t ∝ exp(VB) [Ans23] and FWHM
∝ t [DN09].

Interestingly, the PSB current suppression is robust against elevated temperatures, as
shown by the measurements in Fig. 3.2 (d) performed in a variable temperature insert. We
observe a close-to-full current suppression below 4K and signatures of PSB up to 15K.
The saturation current at high magnetic fields decreases with increasing temperature T ,
which is expected as the ε = 0 transition smears out with T and its maximum conductance
is ∝ 1/T [Bee91]. A detailed discussion of the relevant energy scales that protect PSB
against temperature is provided in chapter 4 and in appendix A.3.8, where the effect was
reproduced for device B.

Next, PSB is investigated for different magnetic field orientations using a vector magnet
setup. Unlike the rest of this chapter, these data are measured on device D (see Tab. A.1)
at a cryostat base temperature of ∼10mK.1 In Fig. 3.3 (a) we fix ε = 0 and map out
the leakage current against magnetic field strength B and orientation (α, β) in three
different planes (see schematic in Fig. 3.3 (c)). A striking modulation of the PSB leakage
current by the magnetic field orientation is observed, which is expected for SOI-dominated
systems [DN09]. The saturation current at B = 50mT is shown in Fig. 3.3 (b) for each
measurement. We fit a simple model (black curve), which only includes the SOI-induced
PSB lifting mechanism, to the data. The model is described by [Zha21; DN09]

ISD = I0
B2

B2 +
(

B0

|b×nso|

)2 + Ioff , (3.1)

where I0, Ioff and B0 are fitting constants, b is a unit vector along the magnetic field
orientation and nso is a unit vector along the effective spin-orbit field. This allows us to
extract the effective SOI field orientation of αso = −17◦, βso = 91◦, which is almost aligned

1Qualitatively similar effects have been observed on device C, but are not shown here.
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Fig. 3.3.: Anisotropic PSB current suppression. (a) Leakage current ISD at ε = 0 as a function of
magnetic field strength B and orientation (α, β) for three different planes. The data shows a
strong anisotropy of PSB lifting. (b) Saturation current at B = 50mT for the different field
orientations from (a). The directional dependence of the leakage current data (points) is fitted by
eq. (3.1) based on SOI-effects (black curve). (c) The magnetic field orientation is parameterised
by (α, β), where xz is the chip plane and the fin is oriented long x. (d) Leakage current along
the main device axes x, y and z as function of B showing a different line shape as compared to
Fig. 3.2.

with x, the orientation of the fin. In the case of dominating Rashba or direct-Rashba
SOI, caused by structural inversion asymmetry of the device, we expect a spin-orbit field
orientation along k×E [Win03]. Here, k is the momentum of the holes (along x) and E

is the electric field (most likely along y due to the gate arrangement), such that Rashba
SOI is oriented along z. In contrast, Dresselhaus SOI can be induced by the microscopic
interface inversion asymmetry at the Si-SiO2 boundary [Joc18]. For Dresselhaus SOI, the
effective spin-orbit field can be aligned with the momentum vector k and hence the x-axis.
In a system with a mixture of both Dresselhaus and Rashba SOI, the effective spin-orbit
field can point along an arbitrary orientation, which is given by the ratio of strength of
the two types of SOI [Zha21]. Hence, our extracted SOI field could be explained by large
Dresselhaus SOI and small Rashba SOI, which would, however, contradict the theoretical
prediction of strong Rashba SOI in our system [BHL21] and the experimental results
presented in chapter 6. These experiments, which were performed on a similar device,
were analysed using a different extraction method yielding a spin-orbit field that is mostly
aligned with z, indicating dominating Rashba SOI. We therefore conclude that either
device-to-device variability of SOI properties is huge, resulting in dominating Dresselhaus
SOI in one device and dominating Rashba SOI in another device, or that the model
used here to extract SOI does not suffice to capture the physics in our devices. The first
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3.3. QD spectrum at high magnetic field

explanation is unlikely since the device geometry, assuming that the QDs are located inside
the fin, clearly favours DRSOI. The latter explanation is supported by the fact that some
obvious features in the data are not captured by the model, which might originate from one
of the neglected effects, such as anisotropic g-factors, a g-factor difference between the two
dots, spin-flip co-tunnelling to the reservoirs and hyperfine interactions. A more elaborate
model and analysis of the g-tensors (see chapter 5) could help to increase confidence in the
results from this method. Ultimately, we conclude that the anisotropy of the PSB leakage
current is more complex than assumed in our simple model, such that our analysis does
not allow us to extract a reliable orientation of the spin-orbit field.

In Fig. 3.3 (d), we present cuts along the magnetic field axes x, y and z of the PSB
leakage current. We find a similar leakage current suppression close to B = 0, but very
different saturation currents. The line shape deviates heavily from the textbook-like
Lorentzian current suppression that we observed in device A and is better fitted by a
combination of two dips [QD22]. Furthermore, we present other measurements of PSB
current suppression of device A in appendix A.2.5, which deviate from a Lorentzian current
suppression. These features are not yet fully understood and call for further investigation.

3.3. QD spectrum at high magnetic field
Next, we present an extension of the measurements in Fig. 3.2 (a) on device A to both larger
magnetic fields and detunings in Fig. 3.4 (a), which reveals spin-orbit mediated singlet-
triplet mixing. Resonant charge transport occurs for detunings, where (1, 1) and (0, 2)

spin states are degenerate in energy and hybridised by a finite coupling (see Fig. 3.4 (d)).
As seen in Fig. 3.4 (b), three current peaks are observed within the ε range of Fig. 3.4 (a),
showing the B-dependence of the peak positions. For weak tunnel coupling and negative
effective hole g-factor g∗, the bottom two curves in Fig. 3.4 (a) can be assigned to the
T−(1, 1) → S(0, 2) and T−(1, 1) → T−(0, 2) transitions [Li15]. Thus, the T−(1, 1) state can
be used to probe the energy splitting of the S(0, 2) and T−(0, 2) states (see Fig. 3.4 (c)).

While the central line remains at constant detuning for B ≲ 3T, signifying a spin-
conserving transition, the bottom line shifts by the Zeeman energy EZ = g∗11µBB, where
g∗11 denotes the g∗-factor of the (1, 1) triplet states and µB the Bohr magneton. From the
slope we can thus extract |g∗11| = 3.2± 0.3, corresponding to an effective hole g-factor of
|g∗| = 1.6 ± 0.2, a value similar to those reported before [Li15; Voi15]. When g∗02µBB

approaches εST, the S(0, 2) and T−(0, 2) states first begin to align in energy but then
anticross due to SOI (see Fig. 3.4 (c)) [Fas07]. This level repulsion causes the avoided
crossing of the two bottom curves in Fig. 3.4 (a) at Bc ≃ 10.9T. From the magnitude
of the anticrossing we can extract the single-dot spin orbit gap ∆SD

SO = 0.27± 0.03meV.
The spin-orbit length can be estimated to be λSO ∼ g∗µBBcλx/(

√
2∆SD

SO) = 48 nm [Fas07;
Gao20], which is roughly half the value reported for holes in planar Si quantum dot
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Fig. 3.4.: Spin state mixing by SOI. (a) Detuning energy of the three observed resonant current peaks
as a function of magnetic field. The peak positions are extracted from current traces, such as
the one presented in (b) for B = 5T (grey dashed line). The differentiated data dISD/dε is
shown in the background. The anticrossing of the two bottom curves is fitted with the standard
expression for two-level repulsion (green dashed curves). For B ≲ 3T the energy splitting of the
top and central peak cannot be resolved. (c) Magnetic field dependence of the double dot energy
levels for (0, 2) charge configuration. The degeneracy of the triplet spin states T+, T0 and T−
is lifted by the Zeeman splitting EZ . For EZ = εST the S(0, 2) and T−(0, 2) states hybridise
due to SOI and anticross. (d) Double dot energy diagram versus detuning at finite magnetic
field. Spin-conserved tunnelling induces avoided crossings between states that share the same
spin polarisation [Han07]. The blue, red and yellow dots mark the transitions denoted with the
same colours in (a). (e),(f) Singlet-triplet splitting εST respectively single-dot spin orbit gap
∆SD

SO extracted for different barrier gate voltages VB demonstrating electrical tunability following
the linear fits (dashed lines).

structures [Li15]. Using εST = 1.85meV in addition to the parameters mentioned before
we can overlay our data with the standard expression for two-level repulsion [Fas07] (green
curves in Fig. 3.4 (a)) and find good agreement.

The barrier gate voltage VB tunes εST and ∆SD
SO linearly, as indicated by the linear

fits (dashed lines) in Figs. 3.4 (e), (f). This effect is observed over a range of ∼ 100mV,
resulting in a change of almost 100%. Since λx ∼ ℏ/

√
m∗εST this tunability of εST can

be explained as a change of the confinement potential by VB: increasing VB decreases the
confinement length along the fin, resulting in an increase of εST. The control over ∆SD

SO,
on the other hand, is a result of the DRSOI, which is predicted to be strongly tunable
by electric fields [KRL18; BHL21; Fro21b]. These results demonstrate excellent electrical
control over the QDs and their properties.
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3.4. Conclusion & outlook

3.4. Conclusion & outlook
In conclusion, we employed FinFET qubit devices for reproducible formation of low-
disorder double quantum dots and study spin-dependent hole transport. We observe
PSB current rectification and identify SOI as the dominant mechanism for PSB lifting.
We observe an anisotropic PSB leakage current and try to model it to extract the SOI
orientation. Magneto-spectroscopy experiments allowed us to extract a single-dot singlet-
triplet splitting εST ≃ 1.85meV, indicating high orbital energies due to ultra-small gate
lengths. Further, an effective hole spin g-factor |g∗| = 1.6 and single-dot spin orbit gap
∆SD

SO = 0.27meV are derived by modelling a two-level anticrossing occurring at Bc = 10.9T.
We demonstrate electrical control over these QD parameters as well as the PSB leakage
current. These results demonstrate that hole spins in Si FinFETs are a promising platform
for hosting fast and electrically controllable qubits.
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Hot hole spin qubits

Parts of this chapter have been published in:

A hole spin qubit in a fin field-effect transistor above 4 kelvin
Nature Electronics 5, 178-183 (2022), doi:10.1038/s41928-022-00722-0
Leon C. Camenzind*, Simon Geyer*, Andreas Fuhrer, Richard J. Warburton, Dominik M.
Zumbühl and Andreas V. Kuhlmann

This chapter introduces a cryogenic qubit measurement setup, in which for the first time hole
spin qubits hosted in a bulk-Si FinFET were realised. Coherent operation at a temperature
above 4K is demonstrated, a necessary operation regime for large-scale integrated quantum
processors. Fast electrical control of hole spins with driving frequencies up to 150MHz
and single-qubit gate fidelities at the fault-tolerance threshold, determined by randomised
benchmarking, are achieved. The gate quality factor Q ≫ 87 already matches or exceeds
the reported values for other hole spin qubits at mK temperatures. The maximum coherence
time of 440ns is further increased by dynamical decoupling and the noise spectrum is
investigated.

https://doi.org/10.1038/s41928-022-00722-0


4. Hot hole spin qubits

QD spin qubits in Si [Zwa13; Gon21] have great potential for application in large-scale
quantum computation [Fow12], owing to their long coherence times [Vel14] and high
quality factors [Tak16; Yon17; Yan19]. Moreover, state-of-the-art CMOS manufacturing
processes [Mau16; Kuh18; Gey21; Zwe22] can be employed to engineer a dense array
of interconnected spin qubits [Van17; Vel17; Bot22]. Inspired by the great success of
conventional integrated circuits, on-chip integration of the classical control electronics with
the qubit array has been proposed to overcome the challenge in wiring up large numbers
of multi-terminal QD devices [Fra19]. Since the electronics produce heat, the amount of
control functionality that can be implemented strongly depends on the available cooling
power. Therefore, it is highly beneficial to operate qubits at temperatures greater than
1K, where cooling power is orders of magnitude higher than at mK temperatures [Pet20a;
Pet20b; Yan20]. For instance, Intel’s cryogenic control chip named Horse Ridge works at
3K [Xue21].

Recently, electron spin qubits [Vel14; Kaw14; Tak16; Yon17] operating up to 1.5 K have
been demonstrated [Pet20a; Pet20b; Yan20]. Hole spin qubits [BL05; Mau16; Wat18b;
Hen20b; Hen20a; Hen21; Fro21b] present an intriguing alternative to electrons due to
their strong SOI and weak hyperfine interaction, but have so far only been operated at
mK temperature. Here, we show hole spin qubits working at 1.5 to 5K, that is, in a
temperature range where the thermal energy is much larger than the qubit level splitting
and cryogenic control electronics can be operated [Xue21]. The spin qubits are hosted
in CMOS-compatible FinFET devices that were fabricated in a flexible process with
fast turn-around [Kuh18; Gey21]. The fin provides a one-dimensional confinement for
the holes, enabling fast and electrically tunable effective spin-1

2
qubits [KRL18; BHL21;

Fro21b]. We demonstrate EDSR-based spin control with Rabi frequencies up to 150MHz

and voltage-tunable qubit frequencies, a feature employed to implement z-rotations as fast
as 45MHz. Moreover, we show spin rotations around the x- and y-axis of the Bloch sphere
with a single-qubit gate fidelity of 98.9% at 1.5 K. A high robustness against temperature
allows for qubit operation above the boiling point of liquid 4He, albeit with a reduced
dephasing time T ∗

2 compared to 1.5K, which is consistent with an observed whitening of
the spectral noise density on increasing temperature.

4.1. Measurement setup
This section introduces a cryogenic qubit measurement setup for direct current (d.c.)
transport-based qubit readout. Over a time span of four years various small changes
to improve the setup have been implemented, but its main features remained the same.
We focus here on the final, improved setup shown in Fig. 4.1 a, detailed descriptions of
intermediate configurations can be found in the appendix of each chapter. The silicon
chiplets hosting 16 devices are attached to a printed circuit board (PCB) and wire bonded
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4.1. Measurement setup

using aluminium wires. The PCB provides RC filtering with long time constants for 37
low-frequency lines and hosts three bias-tees which allow us to mix d.c. signals with the
high-frequency pulses necessary for qubit control. Furthermore, the PCB can be equipped
with a tank circuit for RF-based readout schemes [Vig23] as demonstrated in Ref. [Egg23],
however, this feature is not used in this thesis.

The PCB is compatible with various different setups in our lab, ranging from room-
temperature test setups for checking wire bonding to dilution refrigerator setups for
detailed qubit analysis. In this chapter the measurements are performed using a variable-
temperature insert (VTI) with a temperature range of T ∼ 1.4K−50K. In chapters 5, 6
and 7 the PCB will be hosted by a Bluefors dilution refrigerator (XLD) which enables
measurements at a cryostat base temperature of T ∼ 10mK. Besides the temperature, the
main difference between the setups is the attenuation of the high-frequency lines, which is
nominally 8 dB/25-30 dB for the VTI/XLD [Cam12; Cam19]. Moreover, the VTI provides
a single-axis magnetic field up to 8T, whereas the XLD hosts a 3-axis vector magnet with
fields up to 1T for arbitrary orientations.

The room-temperature component of the measurement setup consists of a standard
transport measurement setup with additional high-frequency components. Constant
voltage signals are provided by a low-noise voltage source (DAC) SP927 from BasPI
and current is measured with a data acquisition card (DAQ) USB-6363 from National
Instruments via a current-to-voltage amplifier (IV) at gain 109 (BasPI SP983c version
LSK389A). For source-drain current measurements the signal is doubled by measuring the
current at source and drain with two separate IVs and adding the signal using a BasPI
SP944 before digitising, which, at the same time, rejects common mode noise.

The fast gate pulses are created with an arbitrary waveform generator (AWG) Tektronix
AWG5208. Furthermore, the AWG provides the amplitude and quadrature (IQ) input
signals for microwave (MW) pulse generation on a vector signal generator (VS) R&S
SGS100A with or without sideband-modulation (SB). The fast gate pulses and the
MW signal are combined using a diplexer WDKX11+10-DC-1000/1300-15000-60S3 from
Wainwright, which allows signals of two different bands (here d.c.−1GHz and 1.3−15GHz)
to be combined with minimal attenuation. Finally, the high-frequency coaxial lines
are wound around a ferrite core to improve noise performance before the signal enters
the cryostat. The resulting signal is shown in Fig. 4.1 c, which features a two-stage
trapezoid pulse with amplitude AP switching between the readout/initialisation stage
and the manipulation stage. Since the bias-tee only couples the alternating current (a.c.)
component of this signal and blocks out the d.c. component, we choose the waveform such
that the time-average is zero, i.e. the pulse is symmetric around zero and the two stages
are of equal length, to avoid charging up the bias-tee. Then, the d.c. offset is supplied by
the DAC and added to the signal via the low-frequency input of the bias-tee, allowing the
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Fig. 4.1.: Cryogenic qubit measurement setup. a, Schematic of the VTI and XLD setup with
room-temperature control electronics and PCB/device at cryogenic temperatures. b Image
(adapted from Ref. [NCC]) of the PSB hosting the device under test. c Definition of the qubit
control pulse parameters. d Low-frequency signal modulation using the lock-in amplifier for
better noise rejection.

initialisation/readout stage voltage to be fixed and AP to tune the manipulation stage
voltage. A finite ramp time is introduced to avoid high-frequency components in the fast
gate pulse, which cannot pass through the diplexer’s low-frequency input.

In the manipulation stage MW bursts with amplitude An, length tn, phase ϕn and
frequency fn are added to the trapezoid gate pulse. Different frequencies for the individual
pulses can be achieved by means of SB modulation of a base tone fMW of the VS with
different control pulses from the AWG, which is useful to address multiple qubits. The
typical length of the pulse cycle is of the order of ∼ 1µs. To increase the signal-to-noise
ratio we introduce a lock-in amplifier (Zurich Instruments MFLI) to modulate the MW
signal at a frequency of 87.7Hz for better noise rejection.1 We sent a trigger signal
from the lock-in amplifier to the AWG, which switches the output waveform between
the measurement cycle and the reference cycle. Typically, a reference cycle without MW
signals is chosen, but this scheme also allows for more complex reference cycles, e.g. with
qubit projection onto opposite spin states [Hen20a].

The qubit control scheme used throughout this thesis works as follows: in the initialisation
stage, the DQD is tuned close to the (1,1)-(0,2) charge transition, where PSB [Ono02;
Joh05; Li15] occurs (see Fig. 4.2 d). In PSB hole tunnelling is forbidden by spin conservation
if the two spins, one per QD, occupy a spin-polarised triplet state (|(1, 1)T+⟩ or |(1, 1)T−⟩)
and are thus aligned parallel. The unpolarised triplet |(1, 1)T0⟩ is unblocked as a finite

1For a detailed description of the lock-in amplifier operation principle and its advantage for noise
reduction we recommend to read chapter 6 of Ref. [ZhI].
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4.2. Spin qubit operation above 4 kelvin

difference in g∗-factor mixes it with the singlet |(1, 1)S⟩, which itself is coupled to the
singlet of the |(0, 2)S⟩ such that hole transport occurs [See21]. After a possibly short time
of hole transport, eventually a blocked state will be loaded onto the DQD, initialising
the spin state of the two qubits. Next, qubit manipulation is performed deep in the (1,1)
charge configuration in the Coulomb blockade regime, where the holes cannot escape
despite applied MW pulses. The spin of each qubit can be flipped using EDSR [Now07;
Nad10a; Mau16; Wat18b; Fro21b], which is performed by applying MW bursts to gate P1
(Fig. 4.2 b). EDSR takes place under the condition that the MW frequency fMW equals the
Larmor frequency fL = |g∗|µB |Bext|/h, where g∗ denotes the effective hole g∗-factor along
the magnetic field Bext direction, µB Bohr’s magneton and h Planck’s constant. Finally,
the DQD is tuned into PSB for qubit readout. Note that initialisation and readout are
nominally identical. If the spin of either hole was successfully flipped during manipulation,
one extra hole can tunnel during readout compared to a cycle without manipulation. By
repeating this qubit control scheme at ∼MHz frequency and using the above-mentioned
lock-in amplifier we can integrate a current that is proportional to the spin-flip probability.
The fast repetition, necessary to obtain a measurable current, limits the maximum time
available for qubit initialisation, manipulation and readout to a few µs.

4.2. Spin qubit operation above 4 kelvin
In this section, we show the first measurements of a hole spin qubit in a Si bulk FinFET
qubit device, which was fabricated according to chapter 2. A SEM tilted side-view and
a TEM cross-sectional view of a co-fabricated device are shown in Figs. 4.2 a, b. Since
these FinFETs are fabricated using CMOS processes, they feature a highly uniform gate
profile [Zwe22] and ultra-small gate lengths [Gey21] resulting in an estimated effective dot
size of ∼ 7 nm (see appendix A.3.6). Here, we investigate device B whose dimensions are
provided in Tab. A.1. By negatively biasing the gate electrodes, an accumulation-mode
hole DQD, hosting two individual spin-1

2
qubits, is formed. Here, a pseudospin of ±1

2
is

assigned to the two lowest energy holes states, which for 1D-like holes systems can have
large contributions of both heavy-hole and light-hole basis states [KRL18; BHL21]. We
measure the direct current IDC through the DQD, which is combined with PSB for spin-
to-charge conversion to provides qubit readout functionality. For the device investigated,
PSB is observed for the (1, 1) → (0, 2)/(2, 0) charge state transitions and no additional
transitions are observed when further depleting the QDs. Here (m,n) denotes the effective
hole occupancy of the left/right QD, while the true hole occupancy is (m+m0, n+ n0)

with possible additional holes m0, n0.
For high-temperature operation of spin qubits [Pet20a; Pet20b; Yan20], spin-to-charge

conversion via PSB rather than energy-selective tunnelling [Elz04] is favourable, since the
single-dot singlet-triplet splitting [Gey21] is typically much larger than the Zeeman energy.
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Fig. 4.2.: Spin-orbit qubits in a FinFET. a, False-colour SEM image of an unfinished device showing
the two lead gates L1, L2 (yellow) as well as the inter-dot barrier gate B (blue, ∼ 35 nm). An
in-plane external magnetic field Bext is applied perpendicular to the fin (red). b, Cross-sectional
TEM image along the black dashed line shown in a after integration of the QDs’ plunger gates P1,
P2 (turquoise, ∼ 15 nm). In addition to a DC voltage, fast pulses and microwaves can be applied
to P1. Current flow is observed from source to drain via the fin-shaped channel. c, Measurement
of a spin-blocked pair of bias triangles. The blue square and pink triangle mark the qubit
initialisation/readout and manipulation point, respectively. d, Schematic illustration of the spin
manipulation cycle with corresponding pulse scheme. e, Rabi oscillation with fRabi = 22MHz
measured on Q1 at Bext = 123mT, fMW = 3.311GHz, AMW = 1.1mV and T = 1.5K. The
data has been corrected by removing a small constant offset, and is fitted (solid curve) to
I(tb) = A sin(2πfRabitb + θ) + B with A, B, fRabi and θ as fit parameters. f, Measurement
of the current as a function of fMW and Bext. Along the red (blue) line the spin resonance
condition is met for Q1 (Q2). For each frequency the average current has been subtracted. g,
Electrical tunability of the qubit frequency with the depth of the Coulomb pulse. Solid lines
represent linear fits to the data. h, Detuned Rabi oscillations showing a typical chevron pattern,
measured at fMW = 3.311GHz and AMW = 1.4mV. Dependence of fRabi on AMW j and Bext i.
Solid lines are linear fits to the data with zero offset.
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4.2. Spin qubit operation above 4 kelvin

Thus, the measurements can be performed at higher temperature and smaller external
magnetic field, resulting in lower and technically less demanding qubit frequencies.

Using the qubit control scheme described in section 4.1, we map our the EDSR resonances
in the fMW-Bext plane in Fig. 4.2 f, which appear as an increased current whenever
fMW = |g∗|µB |Bext|/h is satisfied. The spin resonance conditions differ slightly for the
two qubits (Q1, Q2), making them individually addressable. From the slope of the current
lines, we extract absolute values for the g∗-factor of 1.94±0.05 and 2.35±0.05, respectively.
These two different values indicate a sensitivity to the local electric fields, which also
provides an additional control knob for the g∗-factor, and thus the qubit frequency [Vel14;
Yon17; Cri18; Hen20b; Fro21b]. This is confirmed by Fig. 4.2 g, where the fL-dependence
on the square pulse amplitude Ap is shown.

When the MW drive is on resonance, the DQD current reveals Rabi oscillations as a
function of the burst duration tb. An example of a 22MHz Rabi oscillation, whose decay
time is too long to be observed within 87π rotations, corresponding to the longest applicable
tb, is given in Fig. 4.2 d. For a slightly detuned fMW the qubit rotates around a tilted
axis on the Bloch sphere, resulting in faster rotations of reduced contrast as demonstrated
by the chevron pattern seen in Fig. 4.2 h. The Rabi frequency fRabi increases linearly
not only with the MW amplitude AMW (Fig. 4.2 i), but also Bext (Fig. 4.2 j) as expected
for SOI-mediated spin rotations [GBL06; Now07; Fro21b; Are13; Voi15; Cri18]. For
these measurements, AMW is calibrated using the photon-assisted-tunnelling response (see
appendix A.3.3) [Now07]. The maximum fRabi observed is 147MHz (see appendix A.3.5),
which corresponds to a spin-flip time of just ∼ 3.4 ns. Under the assumption that EDSR
occurs due to a periodic displacement of the wave function as a whole, the g∗-factor is
not modulated [Cri18] and fRabi depends on the spin-orbit length lSO [Now07]. We can
therefore state an estimate for lSO in the range of 20 to 60 nm (see appendix A.3.7), that
is, similar values to the one reported before [Gey21] and in very good agreement with
theory predictions [KRL18].

A key parameter for the qubit controllability is the gate quality factor [SL22] defined
as Q = 2fRabiT

Rabi
2 , where TRabi

2 is the decay time of the Rabi oscillations. For the
data presented in Fig. 4.2 e no decay is observed within ∼ 2µs, that is, Q ≫ 87. In
terms of gate quality factors, our hole spin qubits therefore outperform their hot electron
counterparts [Pet20a; Yan20].

Next, we evaluate the spin coherence by performing a Ramsey experiment. Here, two
π
2
-pulses separated by a delay time τ during which the qubit can freely evolve and dephase

are applied. When fMW is detuned from the qubit resonance, the current through the device
shows coherent oscillations known as Ramsey fringes. The data of Fig. 4.3 a is measured
at a temperature of T = 4.2K, which corresponds to the boiling point of liquid 4He, and
which can be achieved in a technically non-demanding way by immersing the sample in a
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Fig. 4.3.: Hot qubit coherence. a, Ramsey-fringe experiment performed at 4.2K. Bext is fixed at
267mT. The pulse sequence, which consists of two 15 ns-long π

2 -bursts separated by the waiting
time τ , is illustrated in the bottom right inset. ϕ denotes the phase of the second pulse with
respect to the first one, here ϕ = 0. Decay of Ramsey fringes at 1.5K b and 3K c. The data were
taken on resonance with a τ -dependent phase ϕ(τ), which adds an artificial oscillation [Wat18a].
Solid curves show fits to A+B sin(ωτ + θ) exp[−(τ/T ∗

2 )
β+1] with temperature dependent β. d,

Temperature dependence of the spin dephasing time revealing a power-law decay T ∗
2 ∝ T−η,

where η = 0.46± 0.02 for Q1 and η = 0.81± 0.06 for Q2, respectively.

liquid 4He bath or at the second stage of a dry pulse-tube refrigerator. The dephasing time
T ∗
2 is determined by fitting the envelope of the fringe decay to exp(−(τ/T ∗

2 )
β(T)+1), where

β depends on temperature as discussed later. Despite the fact that our qubit readout is
protected against temperature by the large orbital energies, which exceed the thermal
energy available at 4.2K by an order of magnitude, a degradation of the signal contrast
on increasing temperature is observed (Fig. 4.3 b, c). The reasons for this are not yet
fully understood, however we speculate that this is due to spin-flip co-tunnelling (see
appendix A.3.8). The T-dependence of T ∗

2 in the range of 1.5 to 5K is presented for
both qubits in Fig. 4.3 d. While Q1 can be manipulated faster than Q2, it lags behind
in coherence. The spin dephasing time drops with increasing temperature, described by
a power-law decay ∝ T−η with η = 0.5 (0.8) for Q1 (Q2), a rather weak temperature
dependence similar to previous reports [Yan20; Pet20a]. The obtained values for T ∗

2 are
consistent with the EDSR spectral width (see appendix A.3.9), and a spin relaxation time
T1> 10µs was found at 4.2K (see appendix A.3.12). In the following the focus is on the
more coherent Q2.

Spin rotations around at least two different axes are required to reach any point on
the Bloch sphere. In Fig. 4.4 a we demonstrate two-axis qubit control at both 1.5K and
4.2K by employing a Hahn-type echo sequence. A modulation of the relative phase ϕ of
the second π

2
-pulse yields a set of Ramsey fringes that are phase-shifted by π for a πx

and πy echo pulse, which is applied to extend the coherence. The performance of the
hole spin rotations is characterised using randomised benchmarking [Kni08; Muh15] (see
Fig. 4.4 b and appendix A.3.15). At 1.5K, a single-qubit gate fidelity of Fs = 98.9± 0.2%

is obtained, which is at the fault-tolerance level [Fow12; Vel14] and very similar to the
values recently reported for hot electron spin qubits [Yan20; Pet20a]. We note that the
fidelity is lower than expected from the gate quality factor [SL22], which might be due
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V P1

t

d e

T=1.5K: Fs=98.9±0.2%
T=3.0K: Fs=98.6±1.6%
T=4.2K: Fs=97.9±1.1%

T=1.5K

T=4.2K

a

b

c

T=1.5K T=1.5K

Fig. 4.4.: X, Y and Z qubit gates. a, Demonstration of two-axis qubit control by applying a Hahn-type
echo sequence, where the relative phase ϕ of the second π

2 -pulse is varied. The measurements
at 1.5K (circles) and 4.2K (diamonds) are phase-shifted by π due to the two orthogonal echo
pulses, as shown in the right panel. b, Standard randomised benchmarking at 1.5K (circles),
3K (squares) and 4.2K (diamonds) is performed by applying a varying number of Clifford gates
m and preparing either a |↑⟩ or |↓⟩ final state. The normalised difference of currents is fitted
to a single exponential decay to extract the single-qubit gate fidelities Fs (see appendix A.3.15
for further details). The shaded regions show the one-sigma error range of the fit parameters.
The maximum m decreases with increasing temperature due to a reduced readout contrast. c,
Schematic representation of the pulse scheme used to demonstrate qubit rotations around the
z-axis of the Bloch sphere. In a modified Hahn echo sequence a square pulse of amplitude AZ

and duration tZ is applied to shift the qubit precession frequency (see Fig. 4.2 g). The resulting
phase-shift-induced oscillations are shown in d for different AZ. Solid curves represent fits to a
sinusoidal function, where the oscillation frequency is given by the induced qubit frequency shift.
Traces are offset by an increment of 0.3 for clarity. e, The speed of the z-rotations increases
linearly with AZ. The solid line represents a linear fit to the data, yielding a frequency-shift of
8.9 MHz/meV. The data presented in this figure was taken for Q2 at fMW = 8.812GHz.

to T ∗
2 limiting the fidelity via our choice of implementation of the Clifford identity gate

(see appendix A.3.15). The fidelity is reduced to Fs = 98.6± 1.6% (97.9± 1.1%) at 3K
(4.2K), revealing a similar scaling with temperature as T ∗

2 . We thus expect to be able to
enhance the gate fidelities further by improving the qubit coherence, and by optimisation
of the gate pulses [Kel14].

Besides rotations around the x- and y-axis of the Bloch sphere, z-rotations can be
realised by exploiting the electrical tunability of the qubit frequency (Fig. 4.2 g). For this
purpose a square pulse of amplitude AZ and duration tZ is added to a Hahn echo sequence
(Fig. 4.4 c) in order to rapidly detune the spin precession frequency, which leads to a phase
pick up around the z-axis of the Bloch sphere [Yon17]. As a consequence, the DQD current
oscillates as a function of tZ (Fig. 4.4 d) at a frequency that increases linearly with AZ up
to ∼ 45MHz (Fig. 4.4 e).

37



4. Hot hole spin qubits

a b c
Ramsey

CPMG

  

Fig. 4.5.: Dynamical decoupling and noise spectroscopy. a, The spin coherence time can be
enhanced by decoupling the qubit from low-frequency noise using a CPMG pulse sequence
(see bottom-right schematic). A power-law dependence of the coherence time on the number
of refocusing pulses nπ is confirmed by fitting (solid lines) the data to TCPMG

2 = T 0
2 (nπ)

β
1+β ,

where β represents the scaling exponent of a power-law noise spectrum, S(f) ∝ f−β . b, Time
trace of the qubit frequency obtained from repeated Ramsey measurements. The shaded region
indicates the frequency uncertainty due to readout noise. c, Temperature dependence of the
noise exponent β extracted from either CPMG or Ramsey measurements. The data presented
in this figure was taken for Q2 at fMW = 8.812GHz.

4.3. Noise spectrum analysis
Finally, in order to gain insight into the sources of decoherence we perform noise spec-
troscopy by employing Carr-Purcell-Meiboom-Gill (CPMG) pulse sequences [MG58], where
a series of nπ πy-pulses is applied as a spectral filter for the environmental noise [Byl11;
Med12; Mal16; Yon17]. For a power-law noise spectrum S(f) ∝ f−β, the CPMG coherence
time T CPMG

2 is expected to scale as T CPMG
2 ∝ (nπ)

β
1+β [Med12]. This dependency is

confirmed by Fig. 4.5 a, and a β of 0.88± 0.11 (0.26± 0.03) is determined for 1.5K (3K),
revealing a whitening of the noise on increasing the temperature and thus a reduced
noise-decoupling efficiency. For nπ = 32 , the maximum nπ achievable with our transport-
based readout scheme, the hole spin coherence time is extended to 5.4µs at 1.5K, which
corresponds to an increase by a factor of 27 compared to the unprotected qubit. While
our CPMG measurements are sensitive to the noise at frequencies of f∼ 105− 107Hz,
we independently probe S(f) at f∼ 10−3− 10−1Hz by tracking the Larmor frequency
fluctuations through repeated Ramsey experiments [Yon17] (Fig. 4.5 b). The temperature
dependence of β demonstrates a noise whitening in both frequency ranges, and the good
agreement of the β-values for the two frequency windows suggests a similar coloured noise
spectrum over a wide range of frequencies. In contrast, a recent study of electron spin
qubits has found a temperature-independent β for low frequency noise, but confirms our
trend of noise whitening for high frequencies [Pie23]. From the scaling of β with T we
cannot uniquely identify the underlying noise sources, such as charge or nuclear spin
fluctuations [Kuh13]. We note, however, that the longest T ∗

2 measured is ∼ 440 ns (see
appendix A.3.10), which does not only exceed the dephasing times reported so far for
hole spins in Si at mK temperatures [Hut18], but is also close to the estimated limit of
∼ 500 ns set by the hole spin hyperfine interaction (see appendix A.3.11). This sub-µs

38



4.4. Conclusion & outlook

limit is a consequence of the hole spins interacting with a relatively small number of
nuclear spins Ns ∼ 310, which increases the Overhauser field fluctuations that scale with
1/
√
Ns [Ass11], and also represents a lower bound due the anisotropy of the hole hyperfine

interaction [Pre16; BL21].

4.4. Conclusion & outlook
In conclusion, we have demonstrated hole spin qubits in Si FinFETs that operate above
4K. On the one hand, the strong SOI allows for spin rotations as fast as 147MHz, and
on the other hand, the weak hyperfine coupling ensures T ∗

2 up to 440 ns. In addition to
two-axis control, we implement fast z-rotations by employing the electrical tunability of
the g∗-factor. At 1.5K we achieve fault-tolerant single-qubit gate fidelities. These results
have been accomplished using an industry-compatible FinFET device architecture, which
is also well suited for implementing larger arrays of interacting qubits, for example a linear
chain of exchange-coupled QD spins. Connectivity beyond nearest neighbours can be
realised by coupling to a superconducting microwave resonator [Bor19] or coherent spin
shuttling [Yon21].

In the quest for a higher qubit quality factor, hyperfine-induced dephasing can be
prevented by engineering a nearly nuclear-spin-free environment [Vel14]. While a stronger
SOI results in shorter gate times, it also increases the susceptibility to charge noise. For
hole spins in Si FinFETs, however, an unusually strong and at the same time electrically
tunable SOI, allowing for on demand switching between qubit idling and manipulation
modes, has been predicted [KRL18; Fro21b; BHL21]. Furthermore, fast single-shot readout
of hole spins is required for accurate qubit measurements. At few-kelvin temperatures this
can be realised using a DQD charge sensor that exploits tunnelling between two quantised
states [Hua21]. This technique is more resilient against temperature than a single sensor
QD, and high-fidelity single-shot readout up to 8 K at a bandwidth greater than 100 kHz
was demonstrated. In addition, a read time resolution < 1µs, i.e. fast compared to our hole
spin lifetime, was demonstrated using radio frequency reflectometry of a Si DQD [Noi20].
These readout techniques can be combined with the advance reported here, a hole spin
qubit in a FinFET at temperatures of 4K and above.
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5
Hole spin qubit anisotropy

This chapter reports on the anisotropy of various properties of hole spin qubits hosted in
a Si FinFET. The qubit g∗-factor, its electric tunability, Rabi frequency and coherence
time are mapped out against the magnetic field orientation and modelled. This enables
the extraction of a g-tensor describing the anisotropic behaviour of g∗, the separation of
the Rabi drive into two driving mechanisms, the analysis of the noise environment of the
qubits and the prediction of qubit quality factor sweet spots.

(The development and fitting of the microscopic model for the g∗-factor anisotropy presented
in this chapter was lead by Peter Stano.)



5. Hole spin qubit anisotropy

Holes in Si and Ge are an interesting and versatile platform for spin experiments. What
they lack in complexity due to the absence of valleys, they make up for in terms of a p-type
Bloch symmetry, yielding three distinct sub-bands (see section 1.2). These characteristics
result into a strong intrinsic SOI and weak hyperfine interaction in the valence band. The
interplay of SOI, confinement and strain lifts the degeneracy of the hole bands and leads
to band mixing. Ground states of HH, LH or a mix of the two emerge depending on the
details of confinement of the hole [Sca20; KRL18].

These hole states exhibit strongly anisotropic properties, which have been predicted
and observed for different crystal orientations [BL21; BHL21; KRL18] or directions of
magnetic field [BL21; BHL21; HKL20; KRL18; Pio22; Li15; Wat16; Wat18b; Lil21; Cri18;
Mic23]. The most prominent effects are anisotropic mass, spin-orbit coupling, g∗-factors,
their susceptibility to electric fields and hyperfine interaction. Recently, the observation of
anisotropic exchange interaction [Gey22] has added yet another property to this list of
anisotropies. The anisotropic behaviour of hole spins has sparked interest in sweet spots for
qubit operation, which can be engineered to increase qubit speed [Bos21; Mic23; Ade22a;
Are13; Cri18; KRL18; Fro21b] and gate fidelity [Gey22; Bos22] or suppress noise [Pio22;
BHL21; BL21; Ade22a; Fro21b].

In this chapter, we investigate the anisotropy of two Si hole spin qubits in a FinFET
device by applying an external magnetic field along different orientations. We observe a
large g∗-factor anisotropy and discuss different models that reproduce the data, allowing
us to extract the shape and orientation of the QDs. Furthermore, the anisotropy of Rabi
frequency and g∗-factor susceptibility to electric fields are investigated and phenomenologi-
cally modelled. Using this data, we disentangle the influences of two different mechanisms
for spin-orbit mediated qubit driving for the two qubits. We control the contribution of the
two EDSR driving mechanisms by choosing different gate electrodes for the MW electric
qubit drive. Finally, we map out the qubit coherence time T ∗

2 and use a model to extract
charge noise and other noise contributions. The model allows us to predict magnetic field
orientations with a high qubit quality factor, i.e., fast drive and long coherence.

5.1. g∗-factor anisotropy
Throughout this chapter we present experiments on two hole spin qubits hosted by a DQD
in device C (see Tab. A.1). The measurements are conducted in the XLD setup at base
temperature of ∼ 40mK which is introduced in section 4.1. The same scheme for qubit
initialisation, manipulation and readout as in chapter 4 is used. Also, qubit characteristics
such as g∗-factor, Rabi frequency etc. are extracted in a similar way to the previous chapter
and differences are described in appendix A.4.1, which also presents standard device and
qubit metric measurements. The XLD setup features a vector magnet consisting of three
superconducting magnets oriented along x, y and z-direction, which allow us to apply an
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external magnetic field in an arbitrary orientation.
In this section, we measure the EDSR resonance frequency of Q1 and Q2 for different

magnetic field orientations. We extract the effective g-factor g∗ via fL = g∗µB|B|/h
for each magnetic field orientation to investigate its anisotropy. The g∗-factors of both
qubits are extracted at constant |B⃗| while sweeping the magnetic field orientation in three
different planes as indicated in Fig. 5.1 a and displayed as points in Fig. 5.1 b. We find
for both qubits that g∗ is strongly anisotropic and changes by a factor of two, which is
typical for holes [Cri18; Lil21], but orders of magnitude more than observed for electrons
in Si-MOS [Tan19]. Interestingly, the maximum g∗ of the two qubits shows a shift of
∼ 45◦ in the xy-plane with respect to the experimental coordinate frame, but in opposite
directions. The plane is spanned by the fin (x) and the direction perpendicular to the
substrate (y). We observe a strong hysteresis of the magnetic field1 which we estimate to
induce errors of ±5◦ and ±10mT on B. This error is propagated when calculating g∗ and
shown as error bars in Fig. 5.1 b.

The data are well described by a phenomenological model consisting of a symmetric 3x3
tensor ĝ, which is connected to the Larmor vector as follows:

fL =
µB

h
ĝB. (5.1)

Since we can experimentally measure only the Zeeman splitting EZ = |fL|/h, not the
Larmor vector, we introduce the symmetric Zeeman tensor Ĝ = tĝĝ [Cri18]:

E2
Z = µ2

B|ĝB|2 = µ2
B
tBtĝ ĝB = µ2

B
tBĜB. (5.2)

where tA is the transpose of A. Since Ĝ is symmetric, we can uniquely reconstruct it
from measurements of EZ for at least 6 different magnetic field orientations. Then, the
3x3 g-tensor ĝ can be determined up to a unitary transformation, which corresponds to a
choice of Kramer’s basis, leaving EZ = µB|ĝB| invariant. We use this formalism to fit the
g-tensor of each qubit to our data with 6 independent fitting parameters, yielding

ĝQ1 =

 2.38 0.52 −0.01

0.52 2.22 0.01

−0.01 0.01 1.58

 and ĝQ2 =

 2.03 −0.65 0.06

−0.65 2.82 −0.00

0.06 −0.00 1.40

 (5.3)

for Q1 and Q2 respectively. The three eigenvectors of ĝ are the principal magnetic axes,
along which the minimum and maximum value of g∗ can be observed.

We find a good agreement between g∗ = |ĝB|/|B| from the g-tensor model (dashed
curves) and the measured data (points) in Fig. 5.1 b. A detailed description of the fitting
procedure as well as the diagonalised matrices can be found in appendix A.4.2. While this

1We believe that a magnetic screw in the sample holder is responsible for a large part of this hysteresis.
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Fig. 5.1.: g∗-factors for different magnetic field orientations. a, Schematic of the triangular fin
(along x-axis) on top of the chip (xz plane) hosting two qubits. The magnetic field orientations
during the three sweeps are indicated by red arrows. b, g∗-factor of Q1 (orange) and Q2 (blue)
for different orientations of the magnetic field B measured at constant fL = 4.5GHz. The gaps
in the data are due to failing qubit readout for certain orientations. The g∗-factor is fitted
by two different models: The dashed curves represent a phenomenological model using a 3x3
g-tensor. The solid black curves show the microscopic model including a rotated confinement
described in the main text with the one-sigma confidence interval indicated in grey. The fitted
parameters are given in Tab. 5.1.

model describes the data well, it does not explain the origin of the g-tensors.
Therefore, we use a microscopic model developed in Ref. [Sta21] to fit the data, where

we assume a Luttinger-Kohn Hamiltonian HLK = TLK + V with harmonic confinement V .
In this model, the kinetic energy is given by

TLK = +
ℏ2

2me

γ1k
2 + 2µBκJ ·B

− ℏ2

me

γ2[k
2
z(J

2
z − J2/3) + c.p.]

− ℏ2

2me

γ3[{kx, ky}{Jx, Jy}+ c.p.]

+2µBq[BxJ
3
x + c.p.]

(5.4)

where me is the free-electron mass, k and J are the vectors of the hole momentum and
spin operators, {A,B} = AB +BA is the anti-commutator and c.p. stands for the cyclic
permutation of the Cartesian indices, x → y → z → x. The Si Luttinger parameters
γ1 = 4.285, γ2 = 0.339 and γ3 = 1.446 as well as the linear and cubic g-factor parameters
κ = −0.42 and q = 0.01 from Ref. [Win03] are used. The harmonic confinement is taken
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along three spatial directions by

V =
ℏ2

2me

(
x2

l4x
+
y2

l4y
+
z2

l4z

)
, (5.5)

and is parameterised by the confinement lengths lx, ly and lz. Crucially, the confinement
axes can be different from the device or crystallographic axes. We introduce three Euler
angles φ, ϑ and ψ to describe the Euler rotation Eφ,ϑ,ψ of the confinement axes with
respect to the device axes. We find that the volume of the QDs v = lxlylz has very little
influence on the fitted g∗-factor2 and the least-square method results in unrealistically
small length scales. Hence, we find that fixing the QDs volume to e.g. v = 20nm3 and
only fitting the ratios rin = lz/

√
lxly and rxy = lx/ly improves the reliability of the result.

The method of exact diagonalisation is used to find the eigenstates of this Hamiltonian
and extract g∗. The model is fitted to the data using the least-square method with 5
fitting parameters (3 Euler angles and 2 ratios of confinement lengths) [Sta21]. We show
the model as a solid curve in Fig. 5.1 b while the errors are indicated by the grey shaded
area. The fitting parameters are presented in Tab. 5.1. The model predicts elongated dots,
which are rotated away from the fin axis. This is in contrast to the more typically disc-like
dots observed in planar structures, that are usually aligned with the device geometry.

The most interesting feature of the data is the misalignment of the maximum g∗, and
hence the principal magnetic axes of the g-tensor, with the device geometry. Our model
explains this tilted g-tensor with respect to the device geometry as a rotation of the dot
confinement. It is unclear whether such a confinement shape is realistic within our device
geometry. The model we use here is quite limited and does not include various other effects
such as strain, strain gradients, interface roughness, interface disorder or crystal defects.
Since these neglected factors could have a similar effect on the tilt angle of the g-tensor
as the rotated confinement, we cannot rule out other explanations. In fact, a different
model [Sta21] without a rotated confinement, but including a particular type of strain, fits
the data also quite well (see appendix A.4.3). However, we find that various combinations
of the seven fitting parameters for strain and confinement lead to similar predictions of
g∗, indicating that only local minima are reached by fitting. We conclude that the model
is too complex to fit our data. Hence, more detailed knowledge from simulations of the
confinement shape [Din23] and strain environment in the FinFET devices are needed to
narrow down the number and range of fitting parameters and to quantify the contribution

2The author of Ref. [Sta21] argues that, disregarding the Zeeman energy and the orbital effects of the
magnetic field, the kinetic energy is quadratic in momentum and the confinement is quadratic in
length. Hence, an overall-scaling of the confinement lengths can be “gauged away” by rescaling the
length units accordingly and the g∗-factor does not depend on such a rescaling. When taking into
account the orbital effects of the magnetic field, this invariance no longer holds, but it is still a good
approximation for the ground state. However, the least-square method will try to find an optimum for
this length scale, resulting in unrealistically small confinement lengths.
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of the different mechanisms to the rotation of the g-tensors.
Other experiments have observed a similarly tilted g-tensor of a hole spin in a Si-MOS

QD [Lil21]. Since this experiment is conducted in a planar MOS structure, the authors
claim that a tilted confinement is unlikely. There, a model that includes a strain gradient
also predicts a tilted g-tensor. The model consists of an elaborate numerical simulation of
electrostatics, temperature-induced strain and quantum mechanical hole wave function
(including a 6x6 Luttinger-Kohn-Hamiltonian and Bir-Pikus strain term). It qualitatively
agrees with the experiment, but a quantitative disagreement might, again, point to the
fact that some relevant effects are neglected. It says an open question if this model could
also be applied to our experiments, since the 3D geometry of a FinFET device does not a
priori exclude a rotation of the confinement.

We conclude that the rich physics of holes makes it difficult to explain the origin of the
observed g∗-factors. We measure anisotropic and strongly tilted g-tensors which could be
due to an elongated dot that is rotated with respect to the device geometry, but could also
originate from strain or strain gradients. A more detailed analysis including numerical
simulations of the device strain and confinement is needed for further conclusions.

Tab. 5.1.: The 5 fitted parameters as well as the derived relative confinement lengths for our microscopic
g∗-factor model based on a rotated the confinement for Q1 and Q2.

parameter qubit Q1 qubit Q2

φ −50◦ ± 3◦ 26◦ ± 3◦

ϑ −26◦ ± 15◦ −21◦ ± 7◦

ψ −6◦ ± 3◦ 171◦ ± 2◦

rin 1.5± 46% 2.1± 81%

rxy 1.14± 13% 1.3± 10%

lx 1.14 1.3
ly 1 1
lz 1.64 2.4

5.2. Rabi drive anisotropy
Next we investigate the anisotropy of the Rabi frequency and how it relates to the Rabi
driving mechanisms. First, we map out the Rabi frequency with a MW drive on gate
P1 at constant |fL| in Fig. 5.2 a while sweeping B in the same three planes as defined
in Fig. 5.1 a. We observe a strong modulation of the Rabi frequency by magnetic field
orientation and find orientations for Q1 with close-to-zero Rabi drive. To understand the
observed effect, we must take a closer look at two conceptually different mechanisms for
EDSR qubit driving, the motional EDSR described by Refs. [GBL06; Now07] and the
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Q1

Q2

a

b

Fig. 5.2.: Rabi frequency anisotropy with MW drive on plunger P1. a We map out the Rabi
frequency and b g∗ derivative with respect to VP1 for the same magnetic field orientations as
shown in Fig. 5.1 a. While the magnetic field is swept, the qubit Larmor frequency and the MW
electric drive amplitude are kept constant at fL = 4.5GHz and VMW,P1 = 12mV, respectively.
The models (curves) are fitted to the data (markers) as described in the main text individually
for Q1/Q2 (orange/blue). The fits yield ĝ′ as reported in appendix A.4.5 and βQ1

P1 = 1.09 /
βQ2
P1 = 2.50 for Q1/Q2. The errors represent the uncertainty in magnetic field orientation b and

1MHz as measurement uncertainty of fRabi and correspond to the 1σ interval.

g-tensor modulation EDSR described in Refs. [Kat03; Are13; Cri18].

Motional EDSR is a spin driving mechanism that originates from the periodic displace-
ment of a spin by an alternating electric field E(t) = E sin(ωt). It relies on Dresselhaus
or Rashba SOI to couple the lateral motion to the spin degree of freedom. Assuming a
harmonic confinement of the QD, a homogeneous electric field induces a displacement of
the wave function without altering the confinement shape. Note that this implies that
no change in the g∗-factor or Zeeman energy is expected. Originally this driving scheme
was proposed for electrons (isotropic g∗) with a strong confinement in z, a harmonic
confinement in x and y and linear-in-momentum SOI (see Ref. [GBL06]). For our 1D fin
with strong confinement in z and y, we focus on the special case where the QD is only
moved along a single axis (E = E0ex). In our case, where Rashba SOI dominates, the
expression for the Rabi frequency can be written as [Fro21b]

fRabi =
g∗µBB

2h
2E0

em∗l4

ℏ2lso
|b× nso|, (5.6)

where e is the electron charge, m∗ is the effective mass of the hole, l is the confinement
length along the axis of motion, E0(t) = E0 sin(ωt) is the driving electric field along the
axis of motion, lso is the spin-orbit length, b = B/|B| is the magnetic field orientation
and nso is a unit vector along the direction of the effective spin-orbit field. This type of
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Rabi drive is especially strong for a relaxed confinement along the direction of motion, as
the Rabi frequency scales with l4. Furthermore, it is linear in the electric driving field, the
external magnetic field and the SOI strength. From Eq. (5.6) one can see that the Rabi
frequency is anisotropic and vanishes for B ∥ nso.

g-tensor modulation EDSR, on the other hand, describes a Rabi driving mechanism
that relies on the modulation of the g-matrix by the a.c. electric drive. The dependence
of the g-tensor on electric fields originates ultimately from SOI. More specifically, many
mechanisms can couple electric field and g-tensor, like e.g. squeezing of the confinement
or locally varying properties such as strain when displacing the QD, which can change
the mixture of HH and LH states and thus the properties of the system’s ground states.
The periodic modulation of the g-tensor ĝ′ = ∂ĝ/∂V by a gate voltage can induce Rabi
oscillations, if there is a component transverse to the Larmor vector fL, i.e. ĝ′B× fL ̸= 0.
Early works only considered a modulation of the g∗-factors along the principal magnetic
axes given by the device geometry [Kat03; Are13], but a more generalised formalism
allowing for arbitrary g-tensor modulation is provided in Ref. [Cri18]:

fRabi =
µBVMWB

2hg∗
(ĝb)× (ĝ′b) =

µBVMWB

2h

(
fL
|fL|

)
× (ĝ′b) , (5.7)

where fRabi = |fRabi| and VMW is the microwave amplitude on the driving gate. This
driving mechanism is also linear in the driving electric field E0 ∝ VMW and the external
magnetic field. Therefore, the observation of these linear dependencies does not allow
any conclusion on the underlying driving mechanism (see appendix A.4.4 for exemplary
measurement data). The dependence of the ĝ′-driven Rabi frequency on magnetic field
orientation is not straight-forwardly seen from the formula, as it strongly depends on the
shape of ĝ′. Notably, in the case considered by Refs. [Kat03; Are13], the Rabi frequency
vanishes if b is aligned with the principal magnetic axes of the g-tensor.

Ref. [Cri18] shows that the previously discussed motional EDSR driving, although
conceptually different from the g-tensor modulation EDSR driving, can be mapped onto
the same formalism.3 Hence, the g-tensor modulation EDSR formalism can be used to
describe a mixture of both driving mechanisms, if ĝ′ is chosen accordingly.

In principle, the g∗-factor derivative can be mapped out for all magnetic field orienta-
tions. One might think that this information should suffice to predict the Rabi frequency
via Eq. (5.7). However, here we run into the problem that we cannot determine ĝ′ in
the same basis as ĝ, due to the invariance of the measured g∗-factor under a unitary

3In their supplementary material the authors of Ref. [Cri18] present the necessary steps to map the
formalism of motional EDSR onto the g-tensor EDSR formalism, but only for the exact case that was
originally considered in Ref. [GBL06] where an isotropic g∗-factor was assumed. Further theoretical
work is needed to show this for a more general case, e.g. for anisotropic ĝ.
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transformation of ĝ.4 This means that we cannot simply predict the Rabi frequency based
on our measurements of g∗ and g∗′, but need a more elaborate scheme to extract the
relevant quantities. For this, we need to come back to the symmetric Zeeman tensor
Ĝ =t ĝĝ introduced in chapter 5.1, which is independent of the choice of basis.

Following Ref. [Cri18], we classify the contributions to the Rabi drive into two categories:
The first is contributions to the Rabi drive that come from a (measurable) change in Ĝ

which will be called g-TMR contributions; and the second category, that does not affect the
Zeeman splitting for any magnetic field orientation, i.e. Ĝ′ = 0, will be called iso-Zeeman
ESDR (IZR). While the g-TMR contributions can be determined by extracting Ĝ′ from
measurements of g∗ and g∗′, it is impossible to measure the changes of the g-tensor that
induce the IZR contributions by definition. Note that for IZR drive we have Ĝ′ = 0, but
ĝ′ ≠ 0. This is e.g. the case if we map a pure motional EDSR drive onto this formalism.
This comes from the fact that the lateral motion of the QD leaves the confinement shape
and hence the g∗-factor and Zeeman vector invariant, i.e. Ĝ′ = 0. However, the magnetic
vector potential breaks translational symmetry such that ĝ′ ̸= 0 [Cri18]. We can loosely
associate IZR with a motional EDSR, i.e. a displacement of the wave function, and g-TMR
with a change of g-tensors induced by deformations of the wave function.

Next, we want to find a decomposition ĝ′ = ĝ′
TMR + ĝ′

IZR of the g-tensor derivative into
contributions of our two categories of drive in the same basis as ĝ. We note that

Ĝ′ = (tĝĝ)′ = tĝĝ′ + tĝ′ĝ (5.8)

contains all the contributions to the g-TMR drive. Since Ĝ is independent of the choice of
basis, we can fully determine Ĝ and Ĝ′ from measurements. We split tĝĝ′ = Ŝ+ Â into a
symmetric Ŝ and anti-symmetric Â matrix, such that Ĝ′ = 2Ŝ. By choosing

ĝ′
TMR = tĝ−1Ŝ = tĝ−1Ĝ′/2 (5.9)

and
ĝ′
IZR = tĝ−1Â (5.10)

we achieve that ĝ′
TMR is fully determined by Ĝ′, and ĝ′

IZR is completely independent of Ĝ′.
Therefore, by mapping out g∗′ which uniquely determines Ĝ′, we can calculate ĝ′

TMR but
gain no information on ĝ′

IZR. The anti-symmetric matrix Â and hence ĝ′
IZR capture pure

rotations of the Kramer’s basis. It can be parameterised by three independent variables,

4Alternatively, we can calculate ĝ′ from two g-tensors measured at slightly different gate voltages. Again,
we end up with the same problem: we cannot determine the two g-tensors in the same basis. The
fact that we have a free choice of a Kramer’s basis was not a problem in Eq. (5.1), since we were only
interested in |fL|, not its orientation. Now, however, when the orientation of fL matters and we need ĝ
and ĝ′ in the same basis, this is a big problem.
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5. Hole spin qubit anisotropy

which can only be extracted by fitting this model to measurements of the Rabi frequency.
The technical recipe for the procedure to obtain the full ĝ′ in the same basis as ĝ is
provided in appendix A.4.5.

Now we want to apply this method to our measurements of the Rabi frequency presented
in Fig. 5.2 a. We start by determining Ĝ′ from the measured g∗′ (orange/blue points)
for Q1/Q2 presented in Fig. 5.2 b. Then, using Eq. (5.9) one obtains ĝ′

TMR and can plot
the predictions from the model for g∗′ = (|(ĝ + ĝ′

TMRδV )b| − |ĝb|)/δV for a small δV ,
since ĝ′

IZR does not contribute to changes of g∗ by definition. We show the model for
g∗′ = ∂g∗/∂VP1 (dashed curves) in Fig. 5.2 b and find a good agreement with the data.
Unsurprisingly, ∂g∗/∂VP1 is generally larger for Q1 than for Q2 by almost an order of
magnitude. This is due to the large difference in lever arms of driving gate P1 on Q1 and
Q2, since Q1 is located right below P1 in contrast to Q2, which is located much further
away (see appendix A.4.8). Next, we fit ĝ′

IZR using four independent fitting parameters,
where three parameters determine the anti-symmetric matrix Â and a correction factor β,
which is multiplied to the calibrated MW amplitude VMW, is fitted to correct for deviations
in the calibration of VMW, e.g. due to frequency dependence (see appendix A.4.5).

We show the model for fRabi = |fRabi| according to Eq. (5.7) (solid curves) in Fig. 5.2 a
for both qubits and find that the model describes the data well. We observe a very different
qualitative behaviour of fRabi for Q1 and Q2, which comes from a different composition of
our two driving mechanisms as discussed later.

Then, the MW drive was applied to the central barrier gate B instead of the plunger
gate P1. The same experiments and steps of analysis as presented above are repeated and
displayed in Fig. 5.3. Again, we find a good agreement between experiment and model.
With a more symmetrically located gate, the g∗-factor derivative g∗′ = ∂g∗/∂VB is now
of the same order of magnitude for both qubits, indicating a more symmetric driving
configuration. Strikingly, the Rabi frequency for each qubit behaves qualitatively differently
as a function of magnetic field orientation as compared to the previous configuration with
plunger gate drive. We suspect that a change of the MW electric field orientation
changed the contributions of g-TMR and IZR, inducing this qualitative change of fRabi(b).
To analyse the influence of the two Rabi driving mechanisms on the Rabi frequency
quantitatively, we will have a closer look at the two driving mechanisms individually.
g-TMR and IZR are characterised by their respective part of the decomposition of

ĝ′ = ĝ′
TMR + ĝ′

IZR. First, analogously to Ref. [Cri18], we separate fRabi = fR,TMR + fR,IZR

into its contributions of g-TMR and IZR respectively. We model the Rabi frequency
predicted for each qubit, each driving gate and each driving mechanism separately in
appendix A.4.6. This allows us to easily see the difference in magnitude of the Rabi drive
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5.2. Rabi drive anisotropy

Q1

Q2
a

b

Fig. 5.3.: Rabi frequency anisotropy with MW drive on barrier B. The experiment is performed
similar to Fig. 5.2 except microwaves are applied to the barrier gate, not the plunger gate, with
amplitude VMW,B = 13.5mV. We fit the data (points) with the model (solid curves) described
in the main text. The fits yield ĝ′ as reported in appendix A.4.5 and βQ1

B = 1.07 / βQ2
B = 1.03

for Q1/Q2. The errors are the same as in Fig. 5.2.

contributions, which add up to the total Rabi frequency as |fRabi| ≤ |fR,TMR|+ |fR,IZR|.5

Qualitatively, we can see e.g. for Q1 and plunger gate drive that the influence of the g-TMR
mechanisms is much greater than the IZR mechanism. To quantify this, we propose the
following three metrics: First, we use a Frobenius matrix norm || · ||, allowing us to easily
compare the size of the matrix elements of ĝ′

TMR and ĝ′
IZR. We can define the dimensionless

parameter r ∈ [0, 1] as the ratio of the matrix norms

r =
||ĝ′

IZR||
||ĝ′

IZR||+ ||ĝ′
TMR||

(5.11)

where a pure g-TMR drive corresponds to r = 0 and only IZR drive corresponds to r = 1.
We obtain rQ1

P1 = 0.10 for a plunger drive and Q1, confirming our previous observation
of strong g-TMR contribution. In contrast rQ2

P1 = 0.44 indicates a much stronger IZR
contribution for Q2. The simplicity of this approach comes with a caveat, namely that
we do not compare the resulting EDSR driving, but only the magnitude of the matrix
elements. In fact, only the matrix elements that result in a change perpendicular to the
Larmor vector contribute to driving. Hence, we propose a second way to compare the
two drive mechanisms: We numerically calculate the Rabi frequency average over the
surface of the sphere |fR| for IZR and g-TMR separately.6 We define another dimensionless

5Here we can see that both drives can interfere constructively or destructively, since their Rabi frequencies
are added as vectors.

6We sample fR,IZR and fR,gTMR separately for a roughly equidistant grid on the sphere generated by the
Fibonacci sphere algorithm. We continuously increase the number of samples until |fR| converges.
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5. Hole spin qubit anisotropy

parameter a ∈ [0, 1] using the average Rabi frequency as

a =
|fR,IZR|

|fR,IZR|+ |fR,TMR|
. (5.12)

We obtain values that are very close to the values of r, namely aQ1
P1 = 0.15 and aQ2

P1 = 0.57

for Q1 and Q2 respectively.
A third way of comparing the driving strength is to focus on the optimal spot for fast

manipulation, i.e. compare the maximum separate driving speeds. This allows us to define
a third dimensionless parameter m ∈ [0, 1]

m =
max(|fR,IZR|)

max(|fR,IZR|) + max(|fR,TMR|)
(5.13)

analogously to r and a. Note that these maximum speeds might not be reached in the
experiment as the Rabi frequencies are added as vectors. An overview over all values for
r, a and m is provided in Tab. 5.2, where we can see that the different methods all lead so
similar results.

Tab. 5.2.: Extracted values of r, a and m.

plunger P1 drive barrier B drive
rP1 aP1 mP1 rB aB mB

Q1 0.10 0.15 0.12 0.44 0.55 0.52

Q2 0.44 0.57 0.53 0.48 0.72 0.56

In general we identify two cases: mostly g-TMR and a strong mixing of both driving
mechanisms. When driving Q1 with plunger P1 small ratios are obtained, indicating mostly
g-TMR. This is expected, since the mostly vertical a.c. electric field7 below P1, where Q1
is located, is expected to only change the confinement shape. We expect negligible motion
of the QD wave function in vertical direction due to the strong vertical confinement at the
MOS interface and only a small lateral motion due to the small residual lateral component
of the a.c. field. These are perfect conditions for the g-TMR drive to thrive.

In all other cases we find both driving contributions IZR and g-TMR to have a con-
siderable influence. Here, all ratios are spread around 0.5.8 For the barrier drive mode
we find very similar ratios when comparing Q1 and Q2, reflecting the symmetry of this

7In Ref. [Din23] the authors simulate the electric field orientation in a device similar to the device used
in this thesis and find a strong dependence of the orientation on the number of holes in each dot. For
an increasing number of holes the electric field becomes closer aligned with the vertical axis. Assuming
that we operate the device with more than 5 holes (which might very well be the case), the electric
field is predicted to be ≤ 6° from the vertical axis at the location of Q1.

8Except for the value of aQ2
B which tells a different story. Here not an equal mixture of driving

contributions, but a strong IZR driving mechanisms is indicated. At the moment it is not fully
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5.2. Rabi drive anisotropy

drive configuration. Furthermore, we expect the horizontal component of the electric
field at the position of the qubits to be stronger in this case as compared to before, since
the driving gate is not vertically aligned with the qubit. For Q2 and a plunger drive
configuration we also find a mix of driving mechanisms. The electric field at the position
of Q2 is expected to have both vertical and horizontal contributions,9 which enables a
mixture of both driving mechanisms. Interestingly, both driving mechanism lead to similar
Rabi frequencies for Q1. However, since fRabi ∝ l4 for IZR, we expect IZR to be generally
stronger for more elongated QDs, which could be beneficial for faster qubit manipulation.

Notably, in the configuration of plunger driving Q2 a correction factor βQ2
P1 = 2.50 has

been obtained from the fit (see appendix A.4.5). The correction factor should be close
to 1 assuming only small frequency-dependence in the MW signal transmission through
the device. Here, however, we find a much larger β, calling for further investigations.
Therefore, an alternative analysis is presented in appendix A.4.7 where β = 1 is fixed,
which explains the data with dominating IZR drive. Comparing this fit to the data, we
note that, even though it generally fits worse than the fit in the main text, e.g. at ϕ ∼ 45◦

the trend of the data is captured better in this model which requires less fitting parameters.
The fit with fixed β = 1 would indicate that also the regime of predominant IZR drive
can be realised in the FinFET devices. We note that measuring fRabi over the full surface
of the sphere and not restricting ourselves to three planes might be helpful to determine
which model fits better, as our current approach might leave the orientations with large
differences between the two models unmeasured. Without microscopic simulations of the
driving electric fields in the device it is not possible to discard βQ2

P1 = 2.50 as unrealistic,
such that we have to consider both explanations.

In conclusion, we modelled the Rabi drive anisotropy using a phenomenological approach,
which described the data well. Furthermore, the model is used to separate driving into
IZR and g-TMR, which correspond roughly to displacement respectively deformation of
the wave function. We use different locations of the driving gate to select a composition
of these driving mechanisms. IZR is favoured when driving with a more lateral electric
field, while g-TMR prevails when driving perpendicular to the chip plane. Hence, we have
demonstrated control over the type of ESDR mechanism.

understood why a disagrees with r and m in this situation and further investigation of the meaning of
these ratios is required.

9In Ref. [Din23] the electric field at the presumed location of Q2 is analysed in the case of P1 drive. The
authors find the reverse trend as in the previous comment, namely that the electric field becomes more
horizontal for an increasing number of holes. Specifically, for more than 5 holes in each dot the angle
of the electric field towards the vertical axis is ≥ 15°, indicating a considerable horizontal component.
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5. Hole spin qubit anisotropy

Q1

Q2
a

b

c

Fig. 5.4.: Coherence anisotropy. a T ∗
2 measured for Q1 and Q2 (points) for the same magnetic field

orientations as defined in Fig. 5.1 a and for fL = 4.5GHz using a plunger gate drive. The
solid curves are a fit of the model in Eq. (5.14) with fitting parameters given in Tab. 5.3. b,c
Measured (points) and fitted (dashed curves) derivatives of the g∗-factor which are used in the
model in a.

5.3. Coherence anisotropy
In this section we investigate the anisotropy of qubit coherence. We present the dephasing
time T ∗

2 for both qubits in Fig. 5.4 a for the three planes of magnetic field orientations
defined in Fig. 5.1 a, using a constant fL and driving gate P1. We observe a strong
anisotropy with changes larger than a factor of 2, but the data has to be taken with a
grain of salt as not all measurements have been performed using the same integration
time.10 Furthermore, the large error bars originate from the fact that only a fraction of
the decay was observed and fitted, introducing a large uncertainty to the decay constant.
By eye we see a correlation between a long coherence and small values of |∂g∗/∂Vi| which
are presented for gates P1 and B in Figs. 5.4 b, c.

We develop a model to fit the magnetic field dependence of T ∗
2 . First, the sources of

noise are separated into charge noise T ∗
2,charge and other contributions T ∗

2,other following
Ref. [Tan19] and assuming Lorentzian noise, where the other contributions could e.g.
originate from the hyperfine interaction with nuclear spins. We assume that the coupling

10To extract T ∗
2 from the measurements according to appendix A.4.1 a sizeable fraction of the decay

should be measured. Hence, for longer T ∗
2 sometimes the length of the manipulation stage had to

be increased, which lead to a smaller signal. To balance the signal-to-noise ratio it was necessary to
integrate longer in these cases, which lowers the extracted T ∗

2 as demonstrated in Ref. [Pio22].
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5.3. Coherence anisotropy

to charge noise is dependent on the magnetic field orientation, but the other noise sources
are independent of magnetic field orientation.11 The charge noise is described by a model
developed in Ref. [Pio22], which connects the angular dependence of the measured g∗′

with decoherence. Notably, for the decoherence only the change of the g∗-factor along the
Larmor frequency vector is important, while for the previously discussed EDSR driving
only the perpendicular components are of interest [Mic23]. The full model is described by

1

T ∗
2

=
1

T ∗
2,charge

+
1

T ∗
2,other

= 2π

√
ln

(
fh
fl

)
f0

∑
i

(DGiSGi)
2 +

1

T ∗
2,other

, (5.14)

where
DGi =

∂fL
∂VGi

=
∂g∗

∂VGi

fL
g∗

(5.15)

are the angular dependent changes of the qubit splitting by gates Gi, fh and fl are
frequency cut-offs as defined in Ref. [Pio22] and SGi are the noise amplitude spectral
density. Further, SGi =

√
SPGi with noise power spectral density SPGi = SPGi(f0/f)

α, where
α defines the noise colour and f0 = 1Hz. Here, we assume α = 1 for pink noise, a
commonly observed noise spectrum for semiconductors [Pal14], which is also consistent
with previous reports on a different FinFET device [Gey22].

We fit the model to our data using three independent fitting parameters, which are
given in Tab. 5.3, and find good agreement. Interestingly, the fitted isotropic coherence
limit of both qubits is close to the predicted hyperfine coherence limit in this type of
device [Cam22]. For the noise amplitude in terms of an equivalent gate voltage we observe
an anti-correlation with the lever arms (see Tab. A.7) of the respective gate and qubit.
Here, we have to be careful with the interpretation of this model: even though we multiply
the noise power on a gate by its coupling to the qubit splitting, the physical origin of the
charge noise is not voltage noise on the gates, as this noise is typically orders of magnitude
smaller than our fitted values. The model allows us to separate the noise in the vicinity of
the qubits, most likely in the oxide layer of the device, into contributions that look like
they originate from the gates under investigation. In our case, we use the two neighbouring
gates P1 and B, which create a different mixture of horizontal and vertical electric fields
at the two qubit positions, to separate the local noise environment. For these two gates
we already have mapped out g∗′ in the previous section, allowing us to calculate DP1 and
DB. When assuming a roughly equal distribution of noise sources around the qubits, we
indeed expect larger equivalent voltage fluctuations on the gates located further away with
a smaller lever arm, which is consistent with the fitted noise amplitude.

The coherence model allows us to separate the influence of charge noise from other
noise, indicating that we might operate the qubits close to the hyperfine limit. The model

11Note that this might not be the case for noise from hyperfine interaction, as this interaction is also
predicted to be anisotropic in our system [BL21; Pio22].
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5. Hole spin qubit anisotropy

describes the data reasonably well, but there is some room for improvements. First, we
believe that T ∗

2 should be measured again with a constant integration time, such that
always the same frequency range of the noise spectrum is probed. Second, including a
larger number of gates in the vicinity of the qubits could improve the model. This might
be especially helpful to better capture the anisotropy of Q2, as the closest gate P2 was not
considered in this analysis. However, this requires further measurements, since ∂g∗/∂VP2
was not recorded.

Tab. 5.3.: Fitting parameters of the model for qubit decoherence presented in the main text.

charge noise other
SP1(µV/

√
Hz) SB(µV/

√
Hz) T ∗

2,other (ns)

Q1 79.3± 7.4 48.2± 5.8 493± 21

Q2 81.8± 20.8 28.2± 7.6 521± 24

5.4. Qubit quality factor anisotropy
An important metric to compare qubits is their quality factor [SL22], which compares
the speed of operations to the qubit coherence. The gate quality factor Q, given by the
ratio of Rabi frequency and decay of the Rabi oscillation, was found to be too large to be
observed in our system with limited readout capabilities (see chapter 4). In this section
we want to focus on the qubit quality factor Q∗ (see appendix A.3.13), which we define as

Q∗ = T ∗
2 · 2fRabi = T ∗

2 /tπ (5.16)

where tπ is the spin-flip time. Q∗ can be interpreted as the number of spin-flip operations
that can be executed while another idling qubit stays coherent and is an important metric
when e.g. operating multiple qubits sequentially. As expected, the anisotropy of fRabi and
T ∗
2 observed in the previous two sections results in a highly anisotropic Q∗. We use the

previously discussed models to predict Q∗ for arbitrary orientation in Fig. 5.5. We find
that Q1 and Q2 exhibit a very different behaviour and the sweet spots for ideal operation,
i.e. where Q∗ is maximum, do not perfectly align. However, the Q∗ sweet spot for Q1
and Q2 and barrier drive appear for very similar magnetic field orientations, such that a
close-to-optimum operation for both qubits is possible. When scaling to larger numbers
of qubits, relying on a lucky alignment of sweet spots is not a viable option. Instead,
individual electric control of the sweet spot orientation could be used to align the sweet
spots of multiple qubits, such that they can simultaneously be operated in their optimal
configuration in a global external magnetic field. We can already observe in Fig. 5.5
that the sweet spot orientations can be manipulated using different driving gates, i.e. by
choosing a different orientation of the a.c. electric field, indicating that there is some degree
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Fig. 5.5.: Prediction of Q∗ factor using the previously discussed models for T ∗
2 and fRabi showcasing

sweet spots for Q1/Q2 and driving gates P1/B.

of electrical control of the sweet spots present in this device. Here we only demonstrate
control of the Q∗ sweet spot by the a.c. electric field, but future experiments should also
investigate and could benefit from electrostatic tuning of the sweet spot orientation.

We note that the maximum Q∗ ∼ 30 presented here is rather small (even smaller than the
maximum Q∗ presented in appendix A.3.13 at 1.5 K), which comes from the fact that this
measurement series was performed at relatively low MW amplitude VMW ∼ 12− 13.5mV.
Since in theory T ∗

2 is independent of the MW power during the Ramsey π/2 pulses, a larger
VMW (up to 45 mV possible, see appendix A.4.4) and thus a faster spin-flip could result in
Q∗ ∼ 100. We also note that Q∗ is independent of fL, since fRabi ∝ B and T ∗

2 ∝ 1/B as
demonstrated in appendix A.4.4.

The prediction of optimal qubit operation points is only possible by combining the
models for qubit driving and qubit coherence. To improve the reliability of these predictions
we suggest to investigate the models discussed in the previous two sections in more detail
and implement the already mentioned improvements.

5.5. Conclusion & outlook
In conclusion, hole spin qubits are highly anisotropic objects. We have observed and
modelled the anisotropy of g∗-factors, g∗-factor derivatives, Rabi frequency and coherence
time of two hole spin qubits by probing magnetic field orientations within three distinct
planes. We have used this information to make predictions of the QD confinement,
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5. Hole spin qubit anisotropy

disentangled the influence of g-TMR and IZR drive and analysed contributions of charge
noise and other noise sources. Further, we predict sweet spots in the qubit quality factor
for fast qubit driving and long coherence.

This study is based on a large data set collected over the course of months. However,
some improvements in the measurements could increase confidence in the analysis. First, we
only measured the qubits in three magnetic field planes, but more evenly distributed grid of
measurements of the full surface of the sphere is believed to strengthen the analysis [Cri18].
Second, the vanishing PSB qubit readout for some orientations kept us from measuring the
qubits at some points of interest, where e.g. our model predicts fRabi to approach zero. To
improve qubit readout we recommend to further investigate the magnetic field dependence
of the PSB readout, which was already started in chapter 3 but requires better modelling
for a greater understanding of the underlying effects. Furthermore, we also note that the
various models used throughout this chapter show some weaknesses. First, the microscopic
model for the g-tensor requires more information than just the measurements of g∗-factors
for confident predictions of microscopic properties, as the number of fitting parameters is
too large. The analysis would greatly benefit from detailed simulations of the electrostatic
and strain environments in the device. Second, the interpretation of the phenomenological
model for the Rabi driving, which relies on the formalism of Ref. [Cri18], could be improved
by investigating the connection between motional EDSR and IZR in the presence of an
anisotropic g∗-factor. This would allow us to fully separate the driving mechanisms into a
squeezing and a displacement of the wave function. Third, the different metrics to compare
the strength of the driving mechanisms should be evaluated in more general situations
to gain a better understanding of their meaning. Finally, the model for qubit coherence
could be improved by including additional gates, allowing to better separate charge noise
and other noise contributions. With these improvements the confidence of predictions of
Q∗ sweet spots could be improved, which could be useful for quantum applications.
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6
Two-qubit gates with
anisotropic exchange

Parts of this chapter have been published in:

Two-qubit logic with anisotropic exchange in a fin field-effect transistor
arXiv (2022), doi:10.48550/arXiv.2212.02308
Simon Geyer, Bence Hetényi, Stefano Bosco, Leon C. Camenzind, Rafael S. Eggli, An-
dreas Fuhrer, Daniel Loss, Richard J. Warburton, Dominik M. Zumbühl and Andreas V.
Kuhlmann

This chapter explores the FinFET qubits’ potential for short-range two-qubit gates. Firstly,
a highly tunable exchange interaction between two neighbouring qubits is measured that can
be tuned from above 500MHz to close-to-off. Next, the full exchange matrix is mapped out
allowing us to predict magnetic field orientations for high-fidelity two-qubit gates. Finally,
we demonstrate the first two-qubit gate for holes in silicon in the form of a CROT, where
a conditional spin-flip is achieved in just 24 ns.

(Bence Hetényi, Stefano Bosco and Daniel Loss lead the development of the theoretical
models presented in this chapter.)

 https://doi.org/10.48550/arXiv.2212.02308


6. Two-qubit gates with anisotropic exchange

Universal quantum computation requires both single-qubit control and two-qubit inter-
actions. Native two-qubit gates for spins such as the

√
SWAP [LD98; Pet05], the CPHASE

[Vel15; Wat18a; Mil22; Xue22] or the CROT [Zaj18; Wat18a; Hua19; Pet20a; Noi22; Phi22]
rely on the exchange interaction, which arises from the wave function overlap between two
adjacent QDs. For electrons in Si, two-qubit gate fidelities have recently surpassed the
fault-tolerance threshold of 99% [Noi22; Xue22; Mil22], but for holes in Si or FinFETs
the demonstration of two-qubit logic is still missing due to the challenges in obtaining a
controllable exchange interaction [Fan23]. Furthermore, exchange interaction in a system
with strong SOI, such as holes in a one-dimensional confinement [KRL18; Bos21; BHL21;
Fro21b; Wan22b; Cam22], is still largely unexplored.

Here, we make an important step towards a FinFET-based quantum processor by
demonstrating a CROT for holes in a Si FinFET. The strong SOI in combination with a
large and highly tunable exchange splitting enables the execution of a controlled spin-flip
in just ≃ 24 ns. While the exchange interaction is crucial for implementing high-fidelity
two-qubit gates, it is, in particular for hole spins, still largely unexplored. We measure
the dependence of the exchange splitting on the magnetic field direction and find large
values in some directions, close-to-zero values in other directions. In addition, we develop
a general theoretical framework, applicable to a wide range of devices, and identify the
SOI as the main reason for the exchange anisotropy. From our measurements we can
extract the full exchange matrix and hence accurately determine the Hamiltonian of the
two coupled spins, allowing us to predict the optimum operating points for the gates. For
holes unlike electrons, the strong exchange anisotropy facilitates CROTs with both high
fidelity and high speed for an experimental setting that is robust against device variations.

6.1. Tunable exchange splitting
Fig. 6.1a shows the device1 cross-section along the triangular-shaped fin, revealing ultrashort
lengths, highly uniform profiles and perfect alignment of the gate electrodes [Kuh18; Gey21];
Fig. 6.1b presents a 3D illustration of the device. The DQD hosting qubits Q1 and Q2 is
formed beneath plunger gates P1 and P2, and the barrier gate B provides control over
the inter-dot tunnel coupling tc [Cam22]. The distance between the QDs was chosen to
be similar to the spin-orbit length [Cam22; Gey21]. Taking advantage of the strong SOI,
all-electrical spin control is implemented by EDSR [GBL06; Now07]. For this purpose,
fast voltage pulses and MW bursts are applied to P1 and a spin-flip is detected in the
form of an increased spin blockade leakage current. The device is tuned close to the
(1,1)-(0,2) charge transition, where (n,m) denotes a state with n (m) excess holes on the
left (right) QD. In Fig. 6.1c the eigenenergies of the two-spin states (|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩)
in the (1,1) and the singlet ground state S02 in the (0,2) charge region are plotted as a

1In this chapter we use device C (see Tab. A.1).
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Fig. 6.1.: Two-qubit system in a Si FinFET. a, False-colour transmission electron microscope image
of a co-fabricated device showing the cross-section along the fin. The qubits (Q1, Q2) are
located underneath the plunger gates (P1, P2) and are manipulated by applying microwaves
to the P1-gate. The barrier gate (B) controls the inter-dot tunnelling; the lead gates (L1, L2)
accumulate the hole reservoirs. Measurements are performed on a device with ≃ 20 nm-wide
B- and P-gates. b, A 3D render of the device illustrating the triangular-shaped fin covered
by the wrap-around gates. c, Two-spin energy-level diagram close to the (1,1)-(0,2) charge
transition with (black) and without (orange) interactions. The singlet state S02 hybridises with
the antiparallel (parallel) two-spin states on account of spin-conserving tunnelling (SOI). A
finite exchange splitting J∥ lowers the energy of the antiparallel two-spin states with respect to
the parallel ones. d, Exchange spin funnel measurements for both qubits, revealing an increase
(decrease) in f1↑, f2↑ (f1↓, f2↓) at the upper (lower) branch. Data was taken at VB = −820mV
and |B| = 0.146T with orientation α = 30◦, β = 0◦.

function of the detuning ϵ, which describes the energy difference between the (1,1) and
(0,2) charge states. While spin-conserving tunnelling and a difference in g∗-factors causes
an anticrossing between the S02 and the antiparallel two-spin states, spin-non-conserving
tunnelling on account of the SOI results in an anticrossing between the S02 and the parallel
two-spin states. As a consequence of the anticrossing with the singlet state, the energy of
the antiparallel states decreases by J∥(ϵ)/2, where J∥(ϵ) is the measured exchange splitting
between the two spins (technical definition is provided in the appendix A.5.5). The energy
level structure of the two-hole system can be probed by performing MW spectroscopy
(Fig. 6.1d): at large negative ϵ, the resonance frequencies of both qubits differ due to the
individual g-tensor gi for each QD, and are independent of each other. At more positive
detunings, closer to the (0,2) region, the exchange interaction splits both resonances by
J∥/h, resulting in four conditional transitions. The corresponding EDSR frequencies are
denoted by fiσ, where i is the index of the target qubit and σ the control qubit state |↑⟩
or |↓⟩.

We map out the ϵ-dependence of J∥ that, as shown in Fig. 6.2a, is well described by

J∥ = J0 cos(2θ̃) =
2t2c

U0 − ϵ
cos(2θ̃), (6.1)

valid in the limit of tc ≪ U0 − ϵ [Ste12; Rus18; Hen20a]. Here U0 is an energy offset of

61



6. Two-qubit gates with anisotropic exchange
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Fig. 6.2.: Tunable exchange coupling. a, Detuning dependence of the exchange frequency for VB =−830,
−800 and −780mV. The solid curves represent fits to Eq. (6.1) and errors the width of the
EDSR resonance. b, J∥/h determined for ϵ = −2meV and c fitted tunnel coupling as a function
of VB. The solid lines show exponential function fits to the data. The error bars represent in b
the estimated errors due to a detuning uncertainty, and in c the standard errors for the best-fit
values.

the ϵ-axis, J0 the bare exchange, and cos(2θ̃) a SOI-induced correction factor, which is
independent of detuning and discussed later. The exchange splitting shows an exponential
dependence on the barrier gate voltage VB (Fig. 6.2b) and reaches values of up to ≃ 525MHz.
At the same time, exchange can be turned off within the resolution limit of our spectroscopy
experiment that is given by the EDSR linewidth of ≃ 2MHz [Hua19; Wat18a; Hen20a].
This means, using the two control knobs ϵ and VB, we achieve excellent control over the
exchange coupling. Since tc ∝ J

1/2
∥ the tunnel coupling is also exponentially dependent on

VB and tunable by almost one order of magnitude (Fig. 6.2c).

6.2. Anisotropic exchange interaction
In Figs. 6.3a-e the dependence of J∥ on the magnetic field orientation is shown, revealing a
striking anisotropy with vanishing splittings. The highly anisotropic exchange frequency is
mainly due to the strong SOI and can be qualitatively understood from the gap size ∆dd

so

of the anticrossing between the S02 and the parallel two-spin states. ∆dd
so is proportional

to |nso × B|, where nso is a unit vector pointing in the direction of the spin-orbit field
and B the external magnetic field [Nad12]. Therefore, ∆dd

so changes with magnetic field
orientation and so do the two-hole energy levels (see Fig. 6.1c). However, we remark that
from the dependence of ∆dd

so on B/|B| the exchange matrix J at the qubit manipulation
point cannot be extracted.

We derive an equation for J starting from a Fermi-Hubbard model and including both
the SOI as well as the anisotropic and differing hole g-factors (see appendix A.5.5). Tuned
deep into the (1,1) charge regime where spin manipulation takes place, the system is
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Fig. 6.3.: Anisotropic exchange. a-e, Exchange frequency as a function of magnetic field direction,
which is expressed with the angles α and β (see coordinate system in g), for five different planes
at ϵ = −4.03meV. For certain B-orientations the qubits could not be read out via Pauli spin
blockade and hence J∥/h (black points) could not be determined. f, Detuning dependence of
J∥/h for B applied in x-direction. The multicoloured curves in a-e and the orange one in f
represent a common fit of Eq. (6.3) to all the data presented in this figure. While the red dashed
curves in a-e visualise |J⊥|/h, the blue dashed ones illustrate the exchange modulation due to
the different and anisotropic g-tensors in the absence of SOI. g, Schematic representation of
the fin structure (black and grey lines) overlaid by a three-dimensional surface plot of |J∥|/h.
The coloured dashed rectangles indicate the planes of a-e. The data presented in this figure are
taken at VB = −820mV and the error bars account for the EDSR linewidth and uncertainties in
B-field due to magnetic flux trapping.

approximated by the Hamiltonian

H(1,1) =
1

2
µBB · g1σ1 +

1

2
µBB · g2σ2 +

1

4
σ1 · Jσ2 . (6.2)

Here µB is Bohr’s magneton and σi the vector of Pauli matrices for each QD. The exchange
matrix is given by J = J0Rso(−2d/λso), where Rso(φ) is the counterclockwise rotation
matrix around nso by an angle φ, λso the spin-orbit length, and d the inter-dot distance.
Here, we use the convention that displacing the spin by πλso/2 induces a spin rotation of
π. The experimentally observed exchange splitting is given by (see appendix A.5.5)

J∥ = n1 · Jn2 = J0n1 ·Rso(−2d/λso)n2 , (6.3)

where ni = giB/|giB| denotes the Zeeman field direction. On comparing Eqs. (6.1) and
(6.3) we find for the previously introduced correction term cos(2θ̃) = n1 ·Rso(−2d/λso)n2.
Finally, by describing the magnetic field direction using the two angles α and β (Fig. 6.3),
we obtain a fit equation J∥(α, β) with five fitting parameters, namely tc, U0, nso and λso.

Next, we apply this model to the data (black points) shown in Figs. 6.3a-f and perform
a common fit to the full data set, consisting of measurements of J∥(α, β) in five different
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6. Two-qubit gates with anisotropic exchange

planes (visualised in Fig. 6.3g) at constant detuning, and J∥(ϵ) for B pointing in x-direction.
There is excellent agreement between theory and experiment for the best-fit parameters:
λso = 31 nm, nso = (−0.06, 0.41, 0.91), tc = 5.61GHz and U0 = 1.07meV. The spin-orbit
length coincides with the values reported before [Gey21; Cam22], and corresponds to a
spin rotation angle of 2θso = 2d/λso ≃ 0.82π for a hole tunnelling from one QD to the
other over d≃ 40 nm. The direction of the spin-orbit field, represented by (αso = 93◦,
βso = 23◦), is as expected perpendicular to the long axis of the fin and thus orthogonal to
the hole momentum [KRL18; BHL21]. The small out-of-the-substrate-plane tilt can arise
on account of strain or electric fields not being perfectly aligned along the y-direction.
Using the five best-fit parameter values we can, for the first time, reconstruct the full
exchange matrix

J = J0

 −0.87 0.41 −0.28

−0.49 −0.60 0.64

0.10 0.69 0.72

 . (6.4)

Because we also find the g-tensors when measuring J∥(α, β) by means of MW spectroscopy,
the two-spin Hamiltonian (6.2) is fully characterised, thus allowing us to optimise two-qubit
gate operations as discussed later. Furthermore, we can analyse the different contributions
to the exchange anisotropy with Eq. (6.3): by setting θso to zero, we are left with the effect
of the anisotropic g-tensors. We find that the g-factor contribution to the J∥-anisotropy
was minor (dashed blue curves in Figs. 6.3a-e). Finally, we remark that the observed
rotational exchange anisotropy relies on a strong SOI and the presence of an external
magnetic field [Kav01; Kav04], as opposed to a weaker Ising-like anisotropy that can
be found in inversion symmetric hole DQDs [HKL20] or at zero magnetic field [HBL22;
Kat20].

6.3. Two-qubit gate for holes in silicon
We make use of the large exchange splitting to demonstrate a fast two-qubit gate for
holes in Si, namely a controlled rotation [Wat18a; Hua19; Hen20a; Hen21; Noi22]. This
gate operation is naturally implemented by driving just one of the four EDSR transitions
(see Fig. 6.1d), resulting in a rotation of the target qubit conditional on the state of
the control qubit. First, we initialise |Q1,Q2⟩ in the |↓↑⟩-state by pulsing from ϵ> 0,
where the spin-blockaded |↓↓⟩-state is occupied, to ϵ=−2.9meV, where J∥/h≃ 80MHz

and MW-induced state leakage is suppressed [Wat18a] (see appendix A.5.4). Subsequently,
the state of the control qubit Q2 is prepared by a MW burst of length tb2 and frequency
f2↓, and finally a controlled rotation of the target qubit Q1 is triggered by the following
pulse with tb1 and f1↑ (Fig. 6.4a). The measurement outcome is presented in Fig. 6.4b,
revealing the characteristic fading in and out of the target qubit’s Rabi oscillations as a

64



6.3. Two-qubit gate for holes in silicon
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Fig. 6.4.: Fast CROT with Si hole spin qubits. a, Pulse sequence for the CROT gate operation. A
trapezoidal waveform with a ramp time of 20 ns is used to initialise the spins in the |↓↑⟩-state and
to readout their state after applying two microwave bursts resonant with Q2 (f2↓ = 4.25GHz) and
Q1 (f1↑ = 4.66GHz). b, Parity measurement of the qubits demonstrating a conditional rotation
of Q1 controlled by the state of Q2. This data is taken at J∥/h≃ 80MHz, VB = −810mV,
|B| = 0.146T, α = 25◦, β = 0◦ and ϵ = −2.9meV. c, Numerically calculated CNOT gate
fidelity versus exchange splitting J∥ (in units of ∆EZ) for anisotropic (blue, with parameters of
b) and isotropic (orange) exchange. The shaded regions indicate the precision of the numerics.

function of tb2, that is, the spin state of the control qubit [Hen21; Hen20a]. A controlled
spin flip for Q1 is executed in ≃ 24 ns, which is short compared to other realisations with
electrons in Si [Noi22] or holes in Ge [Hen20a; Hen21]. The missing single-shot readout
or other means to get the spin-spin correlations prevent randomised benchmarking to
determine a two-qubit gate fidelity[Kni08].

Two key requirements need to be fulfilled for high-fidelity CROT gates. First, in
order to prevent a mixing of the antiparallel spin states (|↑↓⟩, |↓↑⟩), the Zeeman energy
difference between the qubits ∆EZ must be much larger than the “perpendicular” exchange
coupling J⊥ (see appendix A.5.7). Second, either J∥≫hfRabi or J∥/

√
15=hfRabi to avoid

unwanted rotations of the off-resonant states [Rus18; Noi22]. Hence, for electrons with
isotropic exchange (J∥= J⊥= J) the speed of high-fidelity CROT gates is bounded by
hfRabi≪ J≪∆EZ even in the absence of noise. However, for hole spins with highly
anisotropic exchange interaction this fundamental theoretical limit can be overcome.
In fact, J∥= J0 while J⊥=0 is possible, for instance, if the g-tensors are isotropic, for
θso = π/2 and B perpendicular to nso; we remark that the latter condition also ensures
fast single qubit rotations. Consequently, our theory predicts that for holes in comparison
to electrons a controlled-NOT (CNOT) gate (differing from a CROT by a phase factor)
with fidelity above the fault-tolerance threshold of 99% can be realised with much shorter
gate times (see Fig. 6.4c and appendix A.5.7). For the CROT experiment presented in
Fig. 6.4b the magnetic field orientation (marked by the vertical orange line in Fig. 6.3b)
was chosen such that |J∥| = 0.90 J0 and |J⊥|=0.05 J0. In Figs. 6.3a-e the red dashed
curves show the dependence of J⊥ on B/|B|, highlighting that the ideal configuration
(J∥≃ J0, J⊥≃ 0) is stretched over a wide range of directions. The CROT sweet spot is
consequently robust against device variations, making it highly suitable for large qubit
arrays (see appendix A.5.7).
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6. Two-qubit gates with anisotropic exchange

6.4. Conclusion & outlook
In summary, we investigated the exchange coupling between two hole spins in a Si FinFET
and found it to be both highly anisotropic and tunable, allowing for an interaction strength
>0.5GHz. We identify the strong SOI as the main microscopic origin of this anisotropy and
propose a simple procedure for determining the exchange matrix. This measurement and
analysis scheme applies to a wide variety of devices, for instance also to electron spin qubits
with synthetic SOI in the presence of a magnetic field gradient (see appendix A.5.6) [Noi22;
Wat18a; Phi22]. By fully characterising the Hamiltonian of the two coupled spins, the
best possible configuration for implementing two-qubit gates can be identified. A strongly
anisotropic exchange results in extended sweet spots in magnetic field orientation, where
both fast and fault-tolerant CROTs can be performed. The robustness of these sweet spots
against device variations makes CROT gate operations with anisotropic exchange highly
attractive for large-scale qubit arrays. Finally, by choosing a close-to-ideal configuration
we realise a CROT gate in just ≃ 24 ns. The advance reported here in combination with
fast readout [Hua21] and high-fidelity single-qubit operations at temperatures above 1K
[Cam22] demonstrate that industrial FinFET technology has great potential for realising
a universal quantum processor with all-around high-performance fidelities, integrated on
the same chip with the classical control electronics.
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Parts of this chapter have been published in:

Phase driving hole spin qubits
ArXiv (2023), doi:10.48550/arXiv.2303.03350
Stefano Bosco, Simon Geyer, Leon C. Camenzind, Rafael S. Eggli, Andreas Fuhrer, Richard
J. Warburton, Dominik M. Zumbühl, J. Carlos Egues, Andreas V. Kuhlmann and Daniel
Loss

In contrast to resonantly driven Rabi oscillations, this chapter explores an alternative
driving mechanism of hole spin qubits, where a far-detuned oscillating field couples to
the qubit phase. Phase driving at radio frequencies, orders of magnitude slower than the
microwave qubit frequency, induces highly non-trivial spin dynamics. We demonstrate a
controllable suppression of resonant Rabi oscillations and their revivals at tunable sidebands.
Phase driving also decouples Rabi oscillations from noise, an effect due to a gapped Floquet
spectrum.

(The theory presented in this chapter was developed by Stefano Bosco, Carlos Egues and
Daniel Loss.)

 https://doi.org/10.48550/arXiv.2303.03350


7. Phase drive for hole spin qubits

Spin qubits in hole quantum dots are emerging as top candidates to build large-scale
quantum processors [KL13; Sca20; Fan23; Hen21]. A key advantage of hole spins is
their large and tunable SOI enabling ultrafast all-electrical qubit operations [Wan22b;
Fro21b; Wat18b; Hen20b; Hen20a; Mau16; Cam22], on-demand coupling to microwave
photons [Yu23; Bos22; Mic23], even without bulky micromagnets [Phi22; Mil22; Noi22].
The large SOI of holes leads to interesting physical phenomena, such as electrically tunable
Zeeman [Fro21a; Fro21b; Lil21; Hud22; Ade22b; Bos21] and hyperfine interactions [BL21;
Fis08; Pre16], or exchange anisotropies at finite [Gey22] and zero magnetic fields [Kat20;
HBL22]. These effects can be leveraged for quantum information processing, e.g., to define
operational sweet spots against noise [BHL21; BL22; Ade22a; Pio22; Wan21; Wan22a]; to
date their potential remains largely unexplored.

Single qubit operations rely on flipping spin states on demand. A microwave pulse
drives spin rotations, resulting in the well-known Rabi oscillations. For confined holes,
these oscillations are fast and rely on either an electrically tunable and anisotropic g-
tensor [Are13; Cri18; Ven18] or periodic spin motion in a SOI field [GBL06; Now07; KTL11;
KRL18]. To date, however, these oscillations are qualitatively similar to competing qubit
architectures [Bla21; Lei03; Gil23; Pla12; Kop06], and they occur at fixed microwave GHz
frequencies determined by the qubit energy. Qubit responses to detuned frequencies are
associated to non-linearities in the coupling to the driving field [Sca15; Stu06].

In this chapter, we investigate the dynamics of a hole spin qubit hosted in a Si FinFET
under simultaneous application of longitudinal (phase) and transverse (Rabi) drives at radio
frequency ωz and microwave frequency ωx, respectively, see Fig. 7.1(a). We demonstrate
that the rich microscopic physics of hole nanostructures leads to a non-trivial response of
the qubit state to these oscillating fields even at frequencies far detuned from the qubit
energy. This anomalous response arises from a strong interplay between the phase and
Rabi electrical drives in the linear regime. More specifically, we show that by driving the
qubit phase at radio frequencies ωz in the MHz range, i.e., three orders of magnitude lower
than the microwave GHz-range Larmor frequency of the qubit ωq, we can controllably
(i) suppress the resonant Rabi oscillations at ωx = ωq and (ii) revive them at sideband
frequencies ωx = ωq ±mωz, with m ∈ N+. We observe this behaviour reproducibly on two
different devices. The suppression of Rabi frequency can be exploited to detect longitudinal
interactions between spins and microwave resonators [Bos22]. In future qubit processors
using a global high-frequency driving field, sideband oscillations can provide ways to
selectively address individual qubits by radio-frequency MHz signals, relieving demanding
technological challenges for designing large-scale high-frequency circuits. We also predict
that our two-tone drive protects Rabi oscillations from noise as the periodic phase driving
gaps the Floquet spectrum of the system similar to the Bloch bands in periodic lattices.
This noise suppression is a valuable tool for dressed spin qubit architectures [Lau16; See21;
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Fig. 7.1.: (a) Schematic of our phase driven qubit. A hole spin qubit in a Si FinFET with Zeeman field b
is simultaneously driven by a microwave Rabi drive (blue) with amplitude λx and frequency
ωx ≈ ωq = |b|/ℏ, and a radio-frequency phase drive (red) with amplitude λz and frequency
ωz ≪ ωq. (b)-(c) Phase-driving-induced slow down of Rabi oscillations in qubit 1 (Q1). The
Rabi frequency is suppressed as ωR = λxJ0(2Z), with Z = λz/ωz, and vanishes at Z = 1.2.
This prediction is experimentally confirmed in (b) by sweeping ωz and measuring the Pauli-
spin-blockaded current Inorm normalised by the maximal current, proportional to the spin flip
probability, for different burst times tb. Regular oscillations are observed for Z ≲ 0.5. For
Z ≳ 0.5 phase driving causes non-trivial features that are captured by the simulation in (c)
obtained from Eq. (7.1) with λx/2π = 29 MHz, λz/2π = 30 MHz and ωq/2π = ωx/2π = 4.5 GHz.

Han21; Han22] and for Floquet engineering high-fidelity quantum gates [Xue22; Boy19;
Pet18; Yan19; Zen19; Rim22].

7.1. Electrical manipulation of hole spins
A hole spin qubit in an external magnetic field B is described by the Zeeman Hamiltonian
Hq = b ·σσσ/2, where b = µBB · ĝ is the Zeeman vector, ĝ is the electrically-tunable g tensor
of the system, and σσσ is the vector of Pauli matrices. Quite generally, an electrical pulse
with frequency ω applied to the system gives rise to an oscillating vector field λλλ cos(ωt)
that directly couples to the qubit via Hd = ℏλλλ · σσσ cos(ωt) due to the SOI. The vector
λλλ cos(ωt) models the drive as a time-dependent Zeeman field acting on the qubit. Its
direction depends on the microscopic details of the nanostructure, and includes processes
such as g tensor modulation and electric dipole spin resonance [GBL06; KTL11; KRL18],
while its amplitude scales linearly with the applied microwave field. These processes
enable electrical manipulation of qubits with multiple driving frequencies and amplitudes.
Transitions between spin up and down states occur for λλλ ⊥ b (Rabi driving), while only
the phase of the qubit is addressed [Bos22; BTN15; RD16; RT21; RT19; Bøt22] for λλλ ∥ b
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(phase driving). Interestingly, while phase driving alone cannot induce Rabi oscillations, a
radio-frequency phase pulse can significantly alter the dynamics of the qubit when acting
together with a Rabi driving field.

We stress that all of our findings lie within the scope of linear response in the driving
field. Variations from this linear regime were detected at large driving powers [Yon17;
Fro21b; Und22]. Non-linearities in the driving field ∝ λλλ2 cos(ωt)2 induced by excited states
were also proposed as a source of higher-harmonic response in spin qubits [Sca15; Stu06].

7.2. Phase driven qubits
We consider a spin qubit with GHz-range frequency ωq = |b|/ℏ. A transverse Rabi
drive λx cos(ωxt) with amplitude λx and frequency ωx = ωq −∆ induces Rabi oscillations
when the MHz-range detuning ∆ is small. This system exhibits Rabi oscillations with
frequency ωR =

√
∆2 + λ2x and maximal spin-flip probability Pmax

R = λ2x/(∆
2 + λ2x). We

add an additional simultaneous longitudinal phase drive λz cos(ωzt), with amplitude λz
and frequency ωz ∼ MHz, that is far detuned from ωq. The two-tone Hamiltonian reads

H =
ℏωq
2
σz + ℏλxσx cos(ωxt) + ℏλzσz cos(ωzt) . (7.1)

The direction ẑ (x̂) is parallel (perpendicular) to b, Fig. 7.1(a).
By moving to the rotating frame defined by the transformation Ur(t) = e−iσz [ωxt+2Z sin(ωzt)]/2

[Bos22], which exactly accounts for the phase driving, and neglecting terms rotating at
frequencies ∼ 2ωx, we obtain

H̃ =
ℏ∆
2
σz+

ℏλx
2
J0(2Z)σx+ℏλx

∞∑
n=1

(
J2n(2Z) cos[2nωzt]σx−J2n−1(2Z) sin[(2n−1)ωzt]σy

)
,

(7.2)
with dimensionless parameter Z = λz/ωz and Bessel functions Jn. Note that without
phase drive, i.e., λz = 0 ⇒ Z = 0, and since J0(0) = 1 and Jn ̸=0(0) = 0, Eq. (7.2) reduces
to H̃ = ℏ(∆σz + λxσx)/2, i.e., the rotating frame Hamiltonian for Rabi driven qubits in
the rotating wave approximation (RWA).

Close to resonance ∆ ≲ ωz, λx, we obtain J0(2Z) = 1 − Z2 + O(Z4) and the first
correction to the qubit dynamics caused by the phase driving is ∝ Z2. Consequently, at
moderate values of λz and when ωz ∼ ωq, then Z ≪ 1, and the phase driving has no
effect. Moreover, Rabi pulses with ωx ≪ ωq are off-resonant and do not affect the qubit.
These considerations justify using the Hamiltonian H in Eq. (7.1) also in general cases
where λx [λz] has an additional component parallel [perpendicular] to b. Finally, a relative
phase difference φ between the two driving signals is relevant at comparable values of ωx
and ωz [Bos22], but can be neglected when ωz ≪ ωx. Finite φ’s become relevant in the
presence of noise, as discussed later.
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Fig. 7.2.: Sideband Rabi oscillations in qubit 2 (Q2). (a),(b),(c) Spin precession for simultaneous microwave
Rabi driving and radio-frequency phase driving against burst time tb and detuning ∆. We show
results for Z = 0, Z = 0.3, and Z = 1.2. The typical chevron pattern centred at ∆ = 0 in
(a) is modified in (b),(c) by additional sidebands at ∆/2π = ±n · ωz/2π = ±n · 40MHz and
±n · 20MHz, respectively. The ∆ = 0 oscillations are slower in (b) and completely vanish in (c).
(d),(e),(f) Simulations of the time-evolution governed by Eq. (7.1), showing excellent agreement
with experiments. We use ωq/2π = 4.95GHz, λx/2π = 10MHz for the three Z values and
λz = 0, λz/2π = 0.3ωz/2π = 12MHz, λz/2π = 1.2ωz/2π = 24MHz for (d),(e),(f), respectively.

7.3. Sideband Rabi oscillations
We study the influence of the phase drive on the oscillations for resonant (∆ = ωq−ωx = 0)
and non-resonant (∆ ̸= 0) Rabi drives. In the resonant case and when ωz ≳ λx, one
can simplify H̃ in Eq. (7.2) by the RWA. The dominant contribution to H̃ is the static
n = 0 component, yielding fully developed oscillations with frequency ωR = λxJ0(2Z),
Fig. 7.1(b), (c).

We verify this prediction experimentally in a hole spin qubit in two different Si FinFETs
described in detail in Refs. [Cam22; Gey22; Gey21]. The first (second) qubit Q1 (Q2) is
hosted in device C (D) (see Tab. A.1) and operated at ωq/2π = 4.5GHz (ωq/2π = 4.95GHz)
corresponding to a g factor g = 2.14 for B = 0.15T (g = 2.72 for B = 0.13 T); g depends
on the gate potential V with sensitivity ∂g/∂V ≈ −0.05V−1 (∂g/∂V ≈ 0.41V−1). Our
qubits are initialised and read out via Pauli spin blockade and direct current integration,
see Refs. [Cam22; Gey22]. Our system enables high-bandwidth phase driving via the
electrically tunable g tensor and Rabi driving via electric-dipole spin resonance. These
contributions are generated by applying two oscillating electrical signals at different
frequencies, Fig. 7.1(a). Generally these tones induce both Rabi and phase driving,
however, as discussed before, we discard the negligible contributions of far-detuned Rabi
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driving and nearly-resonant phase driving.
For the measurements in Fig. 7.1(b), we apply simultaneously a resonant Rabi drive with

ωx = ωq and a phase drive with variable, far-detuned frequency ωz to Q1. We measure
the qubit state after the burst time tb. The two pulses have comparable amplitudes,
λx/2π ≈ λz/2π ≈ 30MHz. Rabi oscillations can be observed along the vertical axis of
the figure, and by sweeping ωz, we map out the dependence of ωR on Z = λz/ωz. We
find good agreement between our measurement and the quantum dynamics simulated by
using H in Eq. (7.1). For Q2 we observe a similar behaviour as shown in Fig. A.31, which
especially emphasises the fact that the phase drive only affects the dynamics of the spin
for small ωz.

Remarkably, Rabi oscillations are suppressed at certain values of Z = Zj, defined by
the roots of the Bessel function J0(2Zj) = 0, where ωR vanishes. The first root Z1 ≈ 1.2

corresponds to λz ≈ 1.2ωz and can be observed in our experiment. At Z = 1.2, the higher
harmonic components in H̃ in Eq. (7.2) with n ≥ 1 dominate the dynamics.

These higher harmonics are crucial to understand the Rabi sidebands appearing in the
non-resonant case, comprising a finite detuning ∆, shown in Fig. 7.2(b),(c). At small
values of ∆ ≪ λx, the Rabi frequency increases as ωR =

√
∆2 + λ2xJ0(2Z)

2, resulting in
the typical chevron pattern, and suppressing the oscillations at large ∆. However, when
λz ≈ ωz, oscillations are revived at finite values of ∆. In particular, at ∆ = ±mωz, the
system is resonant with the mth-harmonic in Eq. (7.2) (m ∈ N+), and sideband oscillations
at frequencies ωmR = λxJm(2Z) are restored.

In Fig. 7.2, we show measurements and simulations of Rabi oscillations against ∆

at different values of Z for Q2. The Rabi chevron in (a) is modified by phase driving.
In (b), we consider Z = 0.3, and we observe the appearance of sideband resonances at
frequencies ±ωz/2π = ±40MHz. In (c), by reducing ωz to ωz/2π = 20MHz and increasing
λz, we reach Z = 1.2, where the resonant oscillations at ∆ = 0 vanish and only sideband
oscillations remain. As shown in (d)-(f), these sidebands are well explained by our model,
which is linear in the driving field amplitudes. We emphasise that in contrast to non-linear
driving, where the ∆ = 0 resonance does not disappear and sidebands oscillations appear
at fixed frequencies ωx = ωq/m with m ∈ N+, by operating our qubit at Z = 1.2 we
completely remove the ∆ = 0 oscillations and still fully control the sideband frequencies
∆ = ±mωz = mλz/1.2 by varying the amplitude λz of the radio-frequency pulse.

Our driving scheme opens the possibility of dynamically shifting the qubit frequency to
higher harmonics, thus reducing frequency-crowding issues in dense large-scale quantum
processors and enabling individual qubit addressability in global microwave fields by
technologically inexpensive MHz circuits.
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Fig. 7.3.: (a) Simulated phase-driving-induced undamped Rabi oscillations at ωz = λx. Black (red) dots
denote Rabi probability averaged over N = 103 realisations of the noise Hamiltonian HN for
λz = 0 (λz = 0.3ωz) picked from a Gaussian distribution with zero mean and standard deviation
σ̄ = 0.1ωz. The results match Eq. (7.3) with TR

2 = 2
√
2ℏ/σ̄ (TR

2 → ∞). (c) Noisy Rabi oscillation
at Z = 1.2 and various λx/ωz ratios. The grey dashed line corresponds to the red line in (a).
(b),(d) Floquet spectra against λx/ωz. (b) Solid black (red) dots show numerically computed
Floquet energies ωF at λz = 0 (λz = 0.3ωz); the lines denote the approximation in Eq. (7.4).
Magenta (cyan) circles exhibit the probability |c↓|2 = |⟨↓ |0F ⟩|2 for a two-tone relative phase φ = 0
(φ = π/2). Dashed lines show Eq. (7.5). (d) Blue dots show the Floquet spectrum at Z = 1.2,
while the lines display the fitting formula ω0,1

F = ±ωz[0.084(λx/ωz)
3 − 0.022(λx/ωz)

4] mod(ωz).
We use ωq = 103ωz.

7.4. Protection of Rabi oscillations from noise
The coupling to the environment causes decoherence and damps the Rabi oscillations in a
time TR2 , see Fig. 7.3(a), black curve. The Rabi decay time TR2 is dominated by noise
at frequencies close to the driving frequency ωx. We model this phenomenologically by
the noise Hamiltonian HN = cos(ωxt)h · σσσ/2, describing the spin coupling to a stochastic
Gaussian distributed vector h, with zero mean and diagonal covariance matrix Σij = δijσ̄

2.
This model accurately describes high-frequency noise form different sources [Yan19; BL21;
CYL16; Wan21].

After ensemble averaging and focusing on the resonant case ∆ = 0, we find that for
conventional Rabi driving, HN suppresses the Rabi oscillations as

PR(t) =
1

2

[
1− e−(t/TR

2 )2 cos(ωRt)
]
, (7.3)

with TR2 = 2
√
2ℏ/σ̄. The decay time TR2 is larger than the dephasing time T ∗

2 and
determines the lifetime of dressed spin qubits [Lau16; See21; Han21; Han22], utilising
nearly-resonant always-on global microwave fields. However, when the SOI is large, TR2 is
significantly shortened, and becomes comparable to T ∗

2 [Wan22b; Fro21b], thus limiting
the advantages of these architectures.

We simulate the effect of an additional phase pulse with λz ≪ λx at frequency ωz ≈ λx.
As shown in Fig. 7.3(a), even a small phase driving (red curve) decouples Rabi oscillations
from noise and enhances TR2 by orders of magnitude. We also verified that these decay-free
oscillations are robust against noise at different frequencies.
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The origin of persistent oscillations can be understood in terms of the Floquet modes
|0F ⟩, |1F ⟩ [BDP15; RL20]. These are eigenstates of the Floquet operator U(T ) =

Ur(T )T e
[
−i

∫ T
0
H̃(τ)dτ/ℏ

]
with eigenvalues e−iω0

FT , e−iω
1
FT , respectively. Here, T e is

the time-ordered exponential, the period T = 2π/ωz, and Ur transforms the system back
to the lab frame 1.

The eigenvalues and eigenvectors of U(T ) are shown in Fig. 7.3(b). First, in contrast to
the usual Rabi driving, when a phase driving pulse is applied at frequencies comparable to
λx and is in-phase with the Rabi drive, the spin states in the lab frame coincide with the
Floquet modes, i.e. | ↑⟩ = |0F ⟩, | ↓ ⟩ = |1F ⟩ (magenta line). Second, phase driving opens
a gap of size ω1

F − ω0
F ≈ λz in the Floquet spectrum (black and red lines), that protects

the system from moderate noise sources with σ̄ ≲ λz. For λz ≪ λx ∼ ωz, the Floquet
eigenenergies are

ω0,1
F = ±1

2

[
ωz +

√
(λx − ωz)2 +

λ2x
ω2
z

λ2z

]
mod(ωz) . (7.4)

In analogy to disorder potentials in Bloch bands, when the system is initialised in an
eigenstate, transitions to other eigenstates are suppressed as long as the standard deviation
of the disorder is smaller than the energy gap. This comparison allows us to identify
the decay-free oscillations shown in red in Fig. 7.3(a) as the temporal evolution of an
individual Floquet mode.

The decay-free Rabi oscillations depend on the gapped Floquet spectrum and the
possibility of preparing a Floquet eigenmode. In Fig. 7.3(b), we show that a relative,
experimentally-tunable phase φ between the Rabi and phase tones can be used to select
arbitrary superpositions of Floquet states (magenta and cyan curves). The amplitudes
cs = ⟨s|0F ⟩ between the spin state |s =↑↓⟩ and the Floquet state |0F ⟩ are

c↑↓(φ) ≈
cos(θ)± sin(θ)eiφ√

2
, tan(2θ) =

λxλz
ωz|λx − ωz|

. (7.5)

For strong phase drivings, where λz ∼ λx, Eqs. (7.4) and (7.5) are inaccurate, but
simulations still predict decay-free oscillations and gapped Floquet spectrum. For example,
in Fig. 7.3(c),(d) we examine the oscillations and the Floquet spectrum at Z = 1.2. The
Floquet bands touch at λx = 0 mod(ωz); at λx ≳ ωz, the gap becomes significant and
decay-free oscillations persist for a wide range of parameters. Because of the strong phase
driving the oscillations are not sinusoidal. Their peculiar shape probes the temporal
structure of the Floquet mode and is shown in Fig. 7.3(d) for different values of λx.

We note that relaxation between Floquet modes is suppressed, as reflected in persistent

1To use Floquet theory, we assume that ωx = ωq is commensurate with ωz. However our results are valid
generally when ωx ≫ ωz, λx, λz, ωx and fast oscillating corrections ∝ 1/ωx are negligible.
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oscillations, but superpositions of Floquet modes are still subjected to dephasing with
characteristic time TR2 . We envision that the possibility to stabilise Floquet modes by
phase driving opens a wide range of exciting opportunities to optimise dressed qubits, and
to prepare exotic states in future Floquet metamaterials.

7.5. Conclusion & outlook
We demonstrated that radio-frequency phase driving of hole spin qubits induces collapse
and revival of Rabi oscillations, resulting in oscillations at sidebands of the qubit frequency.
These sidebands do not require non-linear coupling of the spin to the driving field. We show
theoretically that phase driving also leads to decay-free Rabi oscillations in noisy qubits.
Our two-tone driving scheme provides an alternative way of implementing individual
addressability in global microwave fields in future large-scale qubit architectures, and
Floquet engineering high-fidelity qubit gates.
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In summary, we have investigated the physics of hole spins in FinFETs and established
the bulk-Si FinFET hole spin qubit as a platform for quantum computing. First, we
presented a fabrication process flow for FinFET QD devices with a self-aligned second gate
layer. Next, a hole DQD in a FinFET was used to investigate PSB, SOI and characteristic
QD metrics. The DQD was then turned into a qubit by combining the spin readout
mechanism of PSB with electrical spin manipulation via EDSR. We demonstrated the
operation of the first hole spin qubit at elevated temperatures above 4K and achieved
fast spin manipulation >100MHz and long coherence T ∗

2 > 400ns. We use randomised
benchmarking to determine a single-qubit gate fidelity of ∼ 99% and analysed the noise
spectrum for temperatures ranging from 1.5K to 4.2K, observing a whitening of noise
for higher temperature. Furthermore, the anisotropy of hole spins was investigated by
recording and modelling the dependence of various qubit properties on the magnetic field
orientation, revealing qubit sweet spots that combine fast driving and long coherence.
After turning on the exchange interaction, we were able to demonstrate the first two-qubit
gate for hole spins in Si by performing a fast CROT gate in just 24ns. Furthermore,
a SOI-based model allowed us to extract the full exchange matrix, characterising the
anisotropic nature of the exchange interaction and allowing us to predict sweet spots for
fast and high-fidelity two-qubit gates. Finally, we investigated a new driving mechanism,
the phase drive, and its coupling to a traditional Rabi drive. The additional RF phase drive
heavily modified or completely suppressed resonant Rabi oscillations, which reappeared at
tunalbe sidebands. This driving scheme might be useful for noise mitigation or individual
qubit addressability.

The FinFET qubit devices investigated in this thesis still leave room for improvement.
For example, our measurements have shown that the device-to-device variability of QD
and qubit metrics is still significant. This can have different origins, such as variations in
device dimensions, strain, impurities, doping, work functions, interface quality or electronic
configuration in the qubit operation regime. To select a hero device with ideal properties
for qubit experiments, a large number of devices had to be fabricated and individually
tested. We conclude that, even though the device yield in terms of gate leakage is good,
we need to optimise the fabrication process to improve the qubit yield, which is essential
when increasing the device complexity and the number of qubits per device. Here, we
propose to characterise the fabrication process not by measuring single devices but by using
automated high-throughput measurements [Kru23] for a statistical analysis of characteristic
qubit parameters. While variations between different devices should be reduced, also
the uniformity within a single device is important. Our measurements indicate different
properties for QDs at different locations along the channel, a non-uniformity which should
also be addressed by the proposed statistical analysis on a large number of devices.
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The charge stability diagrams of many devices show artefacts that can be attributed
to charge states of impurities, charge traps or unwanted additional dots, which couple
to the DQD under investigation. As their locations are largely unknown, it is hard
to identify their origins and mitigate their formation. While some charge traps in the
oxide layer could be eliminated by improving the oxide quality or reduce the effect of
oxygen scavenging [Cam21; Fil19], it is harder to identify the formation mechanism of
additional dots. Dots outside of the Si fin could form due to strain, an effect that was
not investigated so far in bulk-Si FinFET devices. We propose to either mitigate strain
by introducing poly-silicon as a material for the gate stack, which has similar thermal
expansion properties as the silicon substrate and could therefore reduce strain [Cam21],
or by numerically simulating the strain environment and accounting for it in the device
design. Another possibility for the formation of additional dots are the nano-gates, which
extend to the area next to the fin and can electrically accumulate additional dots next to
the fin when applying high electric potentials. Their formation could be suppressed by the
introduction of screening gates or thicker oxides next to the fin [Zwe22]. These measures
would screen respectively reduce the accumulating electric field next to the fin, such that
a larger gate voltage parameter space is accessible without accumulation of unwanted dots.
Furthermore, defects in the silicon crystal, which can potentially create spurious dots,
could be introduced by the high-energy radiation during fabrication, e.g. during EBL or
dry-etching. Here, a fabrication relying on all-optical lithography and chemical-mechanical
polishing [Zwe22] could mitigate the creation of some of these defects, albeit at the cost
of fabrication turnaround and innovation speed [Li20]. Mitigating the interference of the
DQD with unwanted charge states is important when moving away from a transport-based
readout scheme towards other readout schemes, which usually require a more stable charge
environment for high-fidelity qubit readout.

Many of the measurements presented in this work were limited in one way or another
by our d.c. parity readout scheme. Our method comes with some disadvantages: the
lack of single-shot readout, limited manipulation time and parity readout. Therefore, we
propose to implement a fast, single-shot spin readout. This can be done e.g. by using
gate-based sensing [Col13; Wes19; Egg23] which is compatible with the current device
design in parity readout mode. If we accept an enlarged device footprint, alternatively a
RF [Sch98; Noi20] charge sensor could be added to the device. Here, we envision a second
parallel fin hosting a sensing dot, that is capacitively coupled to the fin that hosts the
qubits [Zwe22]. Alternatively, a square cross-section of the fin could be used to accumulate
two rows of dots in their corners, allowing us to use one side of the fin for qubit formation
while the other side serves as sensing dots [Cha20]. These methods can be complemented
with the introduction of additional ancilla QDs that can be used to overcome the limitation
of parity readout and realise true single spin readout [Phi22]. Using such an improved
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readout scheme would help to improve the measurements in various ways: first, longer
manipulation time would enable the execution of more complex quantum algorithms, such
as CPMG sequences with increased number of decoupling gates or interleaved randomised
benchmarking. Second, single-shot spin readout would allow us to perform gate set
tomography to better analyse qubit gate infidelites [Nie21]. Finally, single-spin readout
would enable full readout of two-qubit processes and two-qubit algorithms. One of the key
features of the FinFET qubits is their temperature resilience, which is useful for large-scale
integration. Hence, when improving the qubit readout, the temperature resilience should
be preserved. This could be realised by decoupling the qubits and the relevant parts of
the readout mechanism from temperature-broadened reservoirs [Hua21]. Single-shot spin
readout at elevated temperatures is an important ingredient for a high-temperature spin
qubit processor [Pet20a; Pet20b; Yan20].

Comparing the FinFET hole spin qubits to other qubit platforms, we can identify some
ways in which certain qubit characteristics can be improved. We have demonstrated that
the coherence of the qubits might already be limited by the hyperfine interaction of the
hole spins with the nuclei of the host material. Replacing natural silicon with isotopically
purified silicon could therefore lead to increased qubit coherence due to the absence of
hyperfine noise [Yon17]. Furthermore, qubit speed could be enhanced by optimising
the device geometry and crystal orientations to engineer an ultra-strong and electrically
switchable SOI [KRL18; Fro21b; BHL21]. Together, these improvements increase the qubit
quality factor, which would allow longer quantum algorithms to be performed. Another way
of improving the qubits is to further investigate sweet spots [Pio22; Lil21]. If simultaneous
control over sweet spots for long coherence, fast manipulation and high-fidelity two-qubit
gates can be achieved by means of local electric tuning, a qubit’s properties can be
significantly improved. However, further theoretical and experimental investigation of
the various anisotropic properties discussed throughout this thesis are needed to fully
understand the involved physics and to achieve the necessary level of electrical control over
the respective properties. Furthermore, to increase the fidelity of single- and two-qubit
gates, the currently used square envelope functions for microwave pulses could be replaced
by optimised gate pulses [Yan19]. Additionally, automatic re-calibration routines could
enable high-fidelity operation of the qubit processor over an extended period of time
without manual tuning [Phi22].

Large-scale quantum computing still lies in the distant future. The currently available
leading quantum processors using superconducting circuits or trapped ions are pushing
slowly into the NISQ regime [IBMa; Aru19; Rig; Ion; Pin21], but they mostly rely on
brute-force methods of scaling up: increasing the number of channels of the control
electronics at room temperature, the number of connections to low temperature and the
size of the refrigerator [IBMb]. Quantum processors based on semiconductor spin qubits,
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especially in Si, promise to scale up their potential in a smarter fashion. First, operation
at elevated temperatures would allow us to integrate control electronics and qubits in
the same package, circumventing the wiring bottleneck. Recent examples of cryogenic
control electronics [Xue22; Pra22] operate within the same temperature range as was
demonstrated for the FinFET hole spin qubit presented in this work. Second, dense
integration in combination with the small footprint of spin qubits promises large numbers
of qubits on a single chip.

To scale up the basics FinFET device to a larger quantum processor, a fin (which can
naturally be extended into a long one-dimensional array) has to be connected coherently
to other fins via T-junctions, floating gates [SKL17] or superconducting resonators [Har22].
In this way, a sparsely interconnected two-dimensional qubit array can be formed, which
leaves spaces in-between the qubits for on-chip control electronics [Bot19; Bot22]. Other
qubit architectures, which propose separate blocks of classical control electronics and
qubits [Van17], might also be compatible with FinFETs. To achieve this level of scaling
and build a large-scale quantum processor based on FinFETs, many challenges that are
already present in our small-scale devices have to be overcome, such as hole spin qubit
uniformity, cross-talk and initialisation, gate and readout-infidelities. Furthermore, our
visions for large-scale quantum processors leaves many points unspecified, such as the
unit cell dimensions, type of qubit readout, implementation of reservoirs, wiring and
routing, distribution of control electronics, individual qubit addressability and driving
schemes or density and connectivity of qubits. Here, a series of extensive studies and
experimental prototyping is required to find the optimal design for a quantum processor.
Similar challenges, however, also apply for competing semiconductor spin qubit platforms
and other platforms. It remains an open question which platform will win the race for
large-scale quantum computing, but hole spin qubits in FinFETs are certainly a strong
candidate.
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A.1. Fabrication

A.1. Fabrication
Parts of this appendix section have been published in the supplementary material of
S. Geyer et al., Self-aligned gates for scalable silicon quantum computing, Applied Physics
Letters 118, 104004 (2021), doi:10.1063/5.0036520

A.1.1. Electrical isolation of the two gate layers

T = 300K
tSiOx = 4.5nm

Fig. A.1.: The two gate layers are electrically isolated by a thin SiOx layer of tSiOx ≃ 4.5 nm thickness,
measured by ellipsometry. The oxide is deposited by means of atomic layer deposition, allowing
for a monolayer control of tSiOx. A typical oxide breakdown curve is presented in the above
figure, where the current flowing between the two gate layers is plotted while sweeping the
voltage difference between them. Here, oxide breakdown occurs for a voltage difference >7V,
corresponding to a breakdown field strength of 16 MV/cm. While the measurement is performed
at room temperature, impurity freeze-out at cryogenic temperatures will shift the breakdown
point to higher voltages.

A.1.2. Device characterisation measurement

2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Vgate (mV)

4

2

0

2
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)

VG1

VG2
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Fig. A.2.: Nano gate pinch-off test. For this test all nano gate voltages are chosen such that the current
through the channel is saturated, typically V ∼ 2V. Then the gates are individually ramped
down and the current at source (solid curve) and drain (dashed line) are measured to observe
pinching of the channel. In the displayed measurement all nano gates show similar pinch-off
voltages at ∼ 20mK, indicating a good device.
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A.1.3. Device overview

Tab. A.1.: Device parameters for all devices used throughout this thesis using the gate nomenclature for
DQD accumulation. The dimensions (dim.) of the devices are characterised by the barrier gate
length lB, plunger gate length lP and fin width w. They are estimated from the lithography
dimensions l, dx and w, the thickness of the gate oxide of the second gate layer and SEM/TEM
analysis of co-fabricated devices.

device estimated dim. (nm) device ID lithography dim. (nm)

lB lP w l dx w

A 25 15 20 T6A_c5C 20 30 20

B 35 15 25 T6A_c6E 30 30 25

C 20 20 10 T6A_c7A 15 35 10

D 25 15 25 T7D_c5H 20 30 25

N different gate layout T3B_c1B 10 25 10
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A.2. Quantum dot characterisation
Parts of this appendix section have been published in the supplementary material of
S. Geyer et al., Self-aligned gates for scalable silicon quantum computing, Applied Physics
Letters 118, 104004 (2021), doi:10.1063/5.0036520

A.2.1. Single- and double dot operation regimes

VL1,L2 = -4.5V
VSD=1mV

DQD

SQD

a) b)

VL1,L2 = -4.5V
VG2,G3 = +0.7V

Fig. A.3.: The device gate layout allows for a dual-mode operation as single QD (SQD) or DQD. In (a) we
present a map of source-drain current ISD as a function of VG2,G3 (same voltage applied to both
gates) and VG1 (we use the generic nomenclature G1-G3 for the nano gates in SQD operation
mode) for device A. The SQD regime is located in the bottom right corner of this map: a
positive voltage applied to gates G2 & G3 induces tunnel barriers to source and drain reservoirs,
and the voltage applied to gate G1 forms the dot and controls its occupancy. In this regime
Coulomb oscillations are observed along the VG1 axis. A single dot charge stability diagram
for VG2,G3 = +0.7V, marked by the white dashed line in (a), is shown in (b). Clear Coulomb
diamonds are observed and the their closing at zero bias suggests the formation of a SQD. The
less positive VG2,G3 the more transparent the barriers to source and drain become. In the top
left corner of (a) the device is operated as a DQD. Gates G2 & G3 are at negative voltages and
accumulate holes, while gate G1 is at more positive voltages and creates the inter-dot tunnel
barrier.
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A.2.2. Tuning of the inter-dot tunnel coupling with gate B

a) VB = -0.85V b) VB = -0.9V d) VB = -1Vc) VB = -0.95V

P1 P1 P1 P1

P2

Fig. A.4.: Charge stability diagrams of device A for different values of voltage applied to the central
nano gate B. By decreasing VB the inter-dot tunnel coupling is increased, as evident from the
transition from a double quantum dot (a) to a more single-dot-like configuration (d). Data were
taken at VSD = −5mV and VL1,L2 = −4.5V.

A.2.3. Charge stability diagram of a similar device

VL1,L2 = -3.2V,  VB = -0.93V, VSD=-10mV

P2

P1

Fig. A.5.: Double dot charge stability diagram of device B, which is similar to the one discussed for device
A in chapter 3. While the devices share a common plunger gate length of ≃ 15 nm, they differ
in the inter-dot barrier length: here ≃ 35 nm instead of ≃ 25 nm. The wider barrier leads to a
current reduction. The pairs of bias triangles are arranged in a very similar way to Fig. 3.1 (a)
of the main text. Again, signatures of Pauli spin blockade are observed for the bias triangles
indicated by the white arrows. The high degree of similarities between the data presented in
here and the main article demonstrates that reproducible double dot formation is achieved.
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A.2.4. Spin blockade for (1, 1) ↔ (2, 0) charge transition

a) b)

VL1,L2 = -4.5V  
VB = -0.8V 
VSD=-10mV

Fig. A.6.: Analogue to Fig. 3.2 of the main text for the pair of bias triangles highlighted by a solid magenta
circle in Fig. 3.1 (a) of the main article, corresponding to (1, 1) ↔ (2, 0) charge transitions. As
expected current suppression due to spin-conserved tunnelling is now observed for negative VSD,
i.e. the opposite bias direction compared to the data presented in the main article. A cut along
B at zero detuning reveals again a dip in the leakage current, indicating that spin blockade
lifting is dominated by SOI. This dip has a Lorentzian lineshape with FWHM = 270mT.

A.2.5. PSB leakage current lineshapes deviating from Lorentzian

a)

b)

c)

d)

e)

f)

ε=0

ε=0

ε=0

Fig. A.7.: PSB leakage current. Various combinations of magnetic field orientation and −730 ≤
VB ≤ −710mV lead to PSB current suppression in device A with lineshapes different from
the Lorentzians observed in the main text: a),b) two Lorentzian dips at centred at different
fields and with different amplitude and FWHM; c),d) a double peak; e),f) a asymmetric
single dip. These features might originate from hyperfine interaction or spin-flip co-tunnelling
processes [DN09] and require further investigation and modelling. Note that the offset in
magnetic field (approximately 10 mT) probably originates from trapped flux in the magnet and
might not be a real feature of the device.
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A.3. Hot hole spin qubits
Parts of this appendix section have been published in the supplementary material of
L.C.Camenzind, S.Geyer et al., A hole spin qubit in a fin field-effect transistor above
4 kelvin, Nature Electronics 5, 178-183 (2022), doi:10.1038/s41928-022-00722-0

A.3.1. Experimental setup
In this section, differences of the measurement setup in chapter 4 as compared to the
improved setup presented in section 4.1 are explained. A schematic of the circuitry to
operate and measure the qubits is shown in Fig. A.8.

We used a square-wave signal instead of a trapezoid pulse to drive the system from
Pauli spin blockade into Coulomb blockade (see Fig. 4.2 d). Further, the MW signal
was generated with a Keysight E8267D vector signal generator, which had a smaller IQ
input bandwidth compared to the SGS100A and caused ringing of the MW burst. The
square-wave and MW signals were combined with a Mini-Circuits ZC2PD-5R264-S+ signal
combiner, introducing an additional attenuation of 3db. The output of a Signal Recovery
7265 lock-in amplifier was connected to the pulse modulation (PM) input of the VSG to
chop the MW signal at a frequency of 89.17 Hz. The transport signal from the sample was
demodulated with the lock-in amplifier.

200

100

0

 I 
(fA

)

50250
t b (ns)

AWG5208
DAQ

USB-6363

Bias-tee

Signal combiner
ZC2PD-5R263-S+

Lock-in
7265

VSG
E8267DI

Q
PM

DAC
LNHR 927

IV
LSK389A

Subtr.
SP 944

IV
LSK389A

-

Device

Fig. A.8.: Experimental setup. Schematic circuit of the measurement and control electronics.

In this setup the maximum current expected upon completely lifting PSB by applying a
π-rotation pulse to either of the spins is Imax = eΓ where Γ is the repetition rate of the
pulse cycle and e the elementary charge. In the example shown in Fig. 4.2h, Imax ∼ 200 fA
was found. This agrees very well with the expectation for a total pulse cycle of ∼ 800ns
(Γ = 1.25MHz) used for this measurement. Our method of readout only allows us to
determine the statistical average of events and does not allow for single-shot readout.

This transport-based readout requires a high repetition rate (∼1MHz), such that our
signal can be distinguished from the noise. Therefore the duration of the manipulation
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stage is limited and hence the number of gate operations in a randomised benchmarking
experiment (see Fig. 4.4) or decoupling pulses in a CPMG experiment (see Fig. 4.5) is
limited. This limitation becomes more severe as temperature increases, since the readout
contrast degrades (see appendix A.3.8) and noise increases.

A.3.2. Quantum dot occupancies
Our transport-based measurement scheme does not allow us to determine the exact hole
occupation number. In Fig. A.9 a the first observable pairs of bias triangles are shown.
Even at a high source-drain voltage of VSD = 100mV no additional bias triangles appear
(see Fig. A.9 c). PSB is observed for the two pairs of bias triangles indicated by the blue
and green dot for opposite bias direction. We assign these triangles to (1,1) - (0,2)/(2,0)
charge transitions. Here, (m,n) denotes the effective number of holes in the DQD, while
the absolute number of holes in the DQD is (m+m0, n+ n0).

We were able to form and operate qubits at both transitions and found similar operation
speeds as well as coherence times. In this work, we only discuss the qubits energised and
measured at the green transition.
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Fig. A.9.: Double dot charge occupation. Charge stability diagrams of device B for VSD = 10mV
a, VSD = 50mV b and VSD = 100mV c. No additional bias triangles become visible when
increasing VSD from 10 mV to 100 mV. The line-cuts in d are taken along the indicated lines in
c. The blue and green dot in a indicate the transition showing spin blockade for opposite bias
direction. The qubits discussed in the main text were energised at the green transition.
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A.3.3. Microwave power calibration
The attenuation of the MW signal from the MW signal generator to the qubit is a function
of frequency, caused by e.g. impedance mismatches and resonances due to the PCB or
bonding wires. Therefore, the MW power that arrives at the qubit has to be calibrated.
Because the Rabi frequency fRabi depends on the MW power (see Fig. 4.2 i), this calibration
is necessary to compare the Rabi frequency at different Larmor frequencies.

To calibrate the MW power, the qubit’s response to a continuous wave excitation is
measured. In the limit of a large dot-reservoir tunnel coupling in comparison to the MW
signal frequency [Now07; Fro21b], the (1, 1)− (0, 2) charge transition at the baseline of
the bias-triangle (see inset of Fig. A.10, Fig. A.14 a and Fig. 4.2 c) is broadened by the
MW power due to photon-assisted tunnelling (PAT). The broadening ∆ε is measured
along the detuning axis and then converted into a voltage eAMW = ∆ε which drops over
the inter-dot tunnel barrier [Nad10a] (see Fig. A.10). This broadening of the transition
depends on the MW signal that effectively arrives at the qubit. Therefore, the measured
MW amplitude AMW permits a calibration and thus a comparison of the Rabi frequency
at different Larmor frequencies for the same driving strength AMW (see Fig. 4.2 i).

The calibrated voltage amplitude AMW allows us to estimate the electric field |EMW| at
the QDs, necessary in order to estimate the spin-orbit length lSO (see appendix A.3.7).
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Fig. A.10.: Example of calibrating AMW. Due to a capacitive coupling to the QD, the zero-detuning
line is broadened upon applying a MW signal on the left plunger gate P1. This broadening
2∆ε (blue) allows AMW to be calculated. AMW is the MW-induced voltage drop over the
inter-dot tunnel barrier as eAMW = ∆ε. A larger amplitude, here given as the power of the
MW signal at the signal generator output, results in an increase of the transition broadening
∆ε. The green data points are values of ∆ε extracted using a signal threshold algorithm. The
inset shows the bias triangle and the axis used to define the detuning ε (blue axis).
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A.3.4. Rabi and Ramsey experiments at different temperatures
In Fig. A.11 we show Rabi and Ramsey measurements at T = 1.5, 3 and 4.2K.
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Fig. A.11.: Coherent qubit control at different temperatures. Comparison of Rabi chevron patterns
and Ramsey fringes at a 1.5, b 3 and c 4.2 K for Q2. The FFTs show the quadratic dependence
of fRabi on the frequency detuning in the Rabi measurements and a linear dependence on the
frequency detuning in the Ramsey experiments.
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A.3.5. Fast Rabi oscillations
Hole spin qubits allow for fast all-electrical spin rotations. In our experiments, we observed
Rabi frequencies as high as fRabi = 147MHz for Q1.
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Fig. A.12.: Fast Rabi oscillations a Rabi oscillations at T = 1.5K and fL ∼ 8GHz as a function of
MW signal power. b The Rabi frequency extracted by a FFT-analysis of the data in a shows
the maximum fRabi = 147MHz at 25 dbm. fRabi follows a square-root dependence on the the
MW signal power at the VS output (red dashed line). The MW signal power is quadratically
related to the calibrated MW voltage AMW. Therefore, this dependence agrees very well with
the linear dependence of fRabi on AMW in Fig. 4.2 i. The observed saturation at higher power
could be an indication of an anharmonic confinement potential [Fro21b; Yon14; Tak16].

A.3.6. Estimate of effective dot sizes
In this section we estimate the effective dot size. We assign Q1/Q2 to the left/right QD,
i.e. Q1 is closer to the MW drive applied to the left plunger gate P1. This assignment is
based on the fact that Q1 has the higher Rabi frequency fRabi and larger g-factor tunability
with the square pulse amplitude Ap (see Fig. 4.2 g).

The effective dot size can be estimated by ldot = ℏ/
√
(m∗∆), where m∗ denotes the

effective mass and ∆ the orbital energy. Assuming a weak exchange interaction, ∆ is given
by the single-dot singlet-triplet splitting ∆ST, such that ∆Q1 = 5.3meV and ∆Q2 = 3.3meV.
Ref. [KRL18] states values for the effective mass for holes in silicon nanowires ranging
from 0.184m0 to 0.794m0, depending on the nanowire orientation. Since the exact shape
and orientation of our hole wave function is unknown, and also strain is neglected in
Ref. [KRL18], we assume an average effective mass of m∗ = 0.45m0 to extract lQ1

dot ≈ 6 nm
and lQ2

dot ≈ 7 nm. The estimated size of the QDs compare well with the plunger gate length
of ∼ 15 nm.

A.3.7. Estimate of spin-orbit length
The strength of the spin-orbit interaction can be characterised by the spin-orbit length
lSO, where πlSO/2 describes the distance a hole has to be displaced to induce a spin-orbit
mediated spin flip. We estimate lSO using the following equation for spin-orbit mediated
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EDSR [GBL06; Now07]:

lSO =
gµB

2hfRabi

(
2|Bext|

ℏ2

∆2m∗ e|EMW|
)
, (A.1)

where Bext denotes the external magnetic field, ∆ the orbital energy of the QD hosting
the qubit, |EMW| the electric field strength of the MW driving field, m∗ the effective mass
of the charge carrier and g is the Landé g-factor in the direction of Bext. Here, we assume
that EDSR is driven by a periodic displacement of the wave function as a whole without
modulating the spin splitting (sometimes referred to as iso-Zeeman EDSR [Cri18]). We
use an effective mass m∗ = 0.45m0 (see appendix A.3.6).

To estimate the electric field strength |EMW| at the location of the qubits, the MW
amplitude AMW extracted from PAT measurements is used (see appendix A.3.3). AMW

drops across the inter-dot tunnel barrier, which we estimate by the distance between the
two QDs ddd ∼ 45− 60 nm (see Fig. 4.2 b) [Nad10a]. Consequently, |EQ1

MW| = AMW/ddd is
the electric field in Q1, the qubit below gate P1. We assume that |EQ2

MW| is smaller than
|EQ1

MW| by a factor of 4 (for ddd = 45 nm) to 6 (for ddd = 60 nm) due to its larger distance
to P1 (∼ 45− 60 nm for Q2 in comparison to ∼ 10 nm for Q1).

In Fig. A.13 a, b we show lSO extracted for different MW signal amplitudes AMW for Q1
(red) and Q2 (blue) using the data from Fig. 4.2 i. From this data we estimate an average
lSO ∼ 20 − 60nm. Using ESO = ℏ2/(2m∗l2SO), lSO can be converted into a spin-orbit
energy ESO ∼ 30− 150µeV (see Fig. A.13 c, d) which is in good agreement with theoretical
predictions for a Si nanowire with rectangular cross section of diameter 4− 10 nm (green
box) [KRL18].

a b

c d

Q1 Q2

Fig. A.13.: Spin-orbit length. Estimated spin-orbit length lSO using the data from Fig. 4.2 i for a Q1
(red) and b Q2 (blue). A distance ddd = 45 nm (60 nm) and a ratio of EQ1

MW/EQ2
MW = 4 (6) was

used for the data depicted as diamonds (circles). c,d Spin-orbit energy ESO corresponding
to lSO from a and b. The data is in good agreement with the theoretical prediction (green
box) [KRL18].
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A.3. Hot hole spin qubits

A.3.8. Temperature dependence of Pauli spin blockade
In this section we discuss the temperature dependence of the Pauli spin blockade, which
is closely linked to the temperature dependence of our qubit readout. Spin blockade
is revealed by a suppression of current flow through the base of the bias triangles at
Bext = 0T, as shown in Fig. A.14 a. A finite magnetic field Bext lifts PSB and a leakage
current is observed (see Fig. A.14 b). The presence of a zero-field dip is an indication that
lifting of PSB is dominated by spin-orbit interaction [DN09]. Note that the dip is offset
from Bext = 0T due to trapped flux in the magnet.

Fig. A.14 c shows line-cuts of the leakage current along Bext at ε = 0 for temperatures
in the range of 1.5 to 14K. The dips, that can be observed up to ∼ 12K, are well fitted
by a Lorentzian function [DN09]. To characterise the efficiency of PSB we plot the dip
amplitude APSB as a function of temperature T in Fig. A.14 d (left axis, purple data). We
find that APSB shows a Gaussian decay with T.
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Fig. A.14.: Spin blockade temperature dependence. a Pair of bias triangles with detuning axis (pink
arrow) at VSD = 12mV. b Spin blockade leakage current as a function of magnetic field and
detuning. Close to zero magnetic field the current is strongly suppressed, indicating Pauli
spin blockade. In presence of spin-orbit interaction, spin blockade is lifted by applying a finite
magnetic field. The dip offset from Bext = 0T is due to trapped flux in our magnet. c Line
cuts along Bext at ε = 0 at T = 1.5 to 14K. The spin blockade efficiency decreases with
increasing temperature, which is seen from the decay of the dip amplitude. d T-dependence of
PSB efficiency APSB extracted from Lorentzian fits from the cuts in c (left axis, purple points).
The data fit well to a Gaussian function APSB ∝ exp

(
−(T/TA)

2
)

with width TA ≈ 6.9± 0.2K.
The decay of the Rabi signals in both qubits (yellow/red symbols), on the other hand, shows a
stronger temperature dependence and fits well to I ∝ exp (−(T/TI)

γ) with γ ≈ 4± 0.2 and
TI ≈ 4.1± 0.1.
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Since our qubit readout scheme relies on PSB, we compare the PSB efficiency with our
temperature-dependent qubit readout signal. In Fig. A.14 d the qubit readout current
I(tb = tπ) after applying a π-pulse is shown for temperatures from 1.5 to 6.5K (right
axis, yellow and red data). I shows a stronger exponential decay with temperature than
the Gaussian decay observed for APSB, such that the qubit readout only works up to
∼6 K. When comparing the decay of APSB and I, one has to take into account that EDSR
experiments were performed at Bext > 50mT. Therefore, APSB and I might have a different
sensitivity to T.

PSB is protected against temperature by the single dot singlet-triplet splitting ∆Q1 =

5.3meV and ∆Q2 = 3.3meV. Spin-flip co-tunnelling experiences a strong thermal smearing
of 5.4 kBT [Kog04], such that the extracted orbital energies correspond to temperatures
of 11K and 7K. This analysis suggests that the suppression of PSB with increasing
temperature is in good agreement with spin-flip co-tunnelling.

A.3.9. EDSR spectral linewidth
We confirm the T ∗

2 temperature dependence presented in Fig. 4.3 d by measuring the EDSR
linewidth in a continuous-wave experiment using low MW power to avoid power-broadening.
A set of data for Q2 at fL ∼ 8.8GHz is shown Fig. A.15 for temperatures up to 6K. A
Gaussian function is fitted to the resonance to determine the full width at half maximum
∆fFWHM. The coherence time T ∗

2 is related to ∆fFWHM by [Han07; Kaw14]

T ∗
2 =

2
√
ln 2

π ·∆fFWHM
. (A.2)

In Fig. A.15 b the extracted temperature dependence of T ∗
2 is presented. The results

from this continuous-wave experiment are in agreement with the pulsed experiments shown
in Fig. 4.3 b-d.
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Fig. A.15.: T ∗
2 temperature dependence extracted from EDSR linewidth measurements. a

Response of Q2 to a continuous-wave excitation at fL ∼ 8.8GHz for different temperatures.
Close to the spin resonance condition, spin blockade is lifted and a current is detected. The
width of the peak is related to the coherence time T ∗

2 by Eq. A.2. b Extracted T ∗
2 from the

data shown in a.
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A.3. Hot hole spin qubits

A.3.10. Longest dephasing time T ∗
2

In Fig. A.16 we show Ramsey fringes of Q2 with a decay time of T ∗
2 = 441± 34 ns.
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Fig. A.16.: Ramsey experiment demonstrating a long coherence time. A T ∗
2 = 441± 34ns was

obtained at fL = 5.85GHz and T = 1.5K for Q2. The data were taken on resonance with a
τ -dependent phase ϕ(τ), which adds an artificial oscillation [Wat18a]. The solid curve shows a
fit to A+B sin(ωτ + θ) exp[−(τ/T ∗

2 )
β+1] using β = 0.88 from Fig. 4.5 c.

A.3.11. Hyperfine limit of T ∗
2

In natural silicon there are 4.7% 29Si spin-carrying isotopes present which will lead to
dephasing of the qubit. In this section, we give an estimation of the dephasing time T ∗

2

limited by the finite hyperfine interaction due to the presence of these nuclear spins in the
Si host material.

The maximum Overhauser field A experienced by an electron (e) in natural silicon is
Ae = 1.85mT [Ass11]. Here, A corresponds to the field if all nuclear spins are polarised.
For holes, the hyperfine interaction has been found to be about an order of magnitude
weaker [Pri13; Pre16; FYI10; Voi15]. Thus, we assume Ah ∼ 0.185mT. The random
Overhauser field fluctuations δAh are given by

δAh = Ah/
√
NS, (A.3)

where NS is the number of non-zero nuclear spins inside the wave function of the
QD [KLG02]. The spin coherence time is then

T ∗
2 =

ℏ
√
NS

gµBAh
. (A.4)

where g is the hole spin g-factor, µB is the Bohr magneton and ℏ is the reduced Planck
constant.

In order to estimate NS, we need to calculate the volume of the QD. We assume a
cylindrical hole wave function, elongated along the fin and with a diameter of d ∼ 5 nm.
For the dimension along the fin, we use the dimensions extracted from the singlet-triplet
splitting: lQ1 = 5.7 nm and lQ2 = 7.1 nm (see also appendix A.3.7). For the density of
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silicon ∼ 50 atoms/nm3 and 4.7% spin carrying 29Si atoms, we find NS ∼ 280 (NS ∼ 350)
in the left (right) QD.

Using the g-factors extracted from EDSR measurements (see Fig. 4.2 f), we find T ∗
2 ∼

520 ns for Q1 and T ∗
2 ∼ 490 ns for Q2. The expected increase in coherence for holes in

comparison to electron spin qubits [Kaw14] due to a smaller Ah is counteracted by our
much smaller silicon hole spin qubits and thus a lower NS. However, while for electrons in
Si the hyperfine interaction is isotropic, it is anisotropic for holes. Therefore, we note that
the estimated limit for T ∗

2 corresponds to the worst case scenario in terms of magnetic
field orientation [Pre16].

Strikingly, these estimates match rather well with the longest T ∗
2 found in our experiments,

see appendix A.3.10. This indicates that the residual nuclear spins of the host material may
play an important role in limiting the coherence also for hole spin qubits. Furthermore,
we estimate an increase to T ∗

2 ∼ 11µs (∼ 4µs) when the qubit is hosted in an isotopically
purified 28Si layer with 100 ppm (800 ppm) residual nuclear spins. These coherence times
are comparable to the coherence of state-of-the-art electron spin qubits in isotopically
enriched Si using micromagnets [Yon17], but the electron spin qubits still lack behind in
operation speed in comparison to their hole counterparts.

A.3.12. Spin relaxation time T1

I

I Rtwait

z

y
x

πx
T1

a b

Fig. A.17.: Spin relaxation. a Qubit manipulation scheme to measure spin relaxation: after initialisation
in the spin ground state |↓⟩, a πx pulse brings the qubit into the spin excited state |↑⟩. On a
timescale given by the spin relaxation time T1, the spin polarisation decays from |↑⟩ to |↓⟩.
After a waiting time twait, the residual polarisation P|↑⟩ is measured. This polarisation is
expected to show an exponential decay according to P|↑⟩ ∝ e−twait/T1 . b Orange data points
shows the measurement results for Q2 at T = 4K and fL = 7.7GHz. No T1-decay is observed
for the maximum waiting time of twait = 1µs. Guides to the eye, showing the decay curves
for T1 = 1, 3, 6 and 10µs, indicate T1 > 10µs. The yellow shaded region shows the two-sigma
uncertainty of the measured data. A control measurement with a 2πx pulse (red data) instead
of the πx-gate shows that the current after a full 2π spin rotation becomes minimal as expected.
The larger noise on the red data is due to a shorter integration time.
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In Fig. A.17 we present an attempt to measure T1 for Q2 at T = 4K and fL = 7.7GHz.
The longest waiting time that could be applied was 1µs. Guides to the eye show the
expected decay curves for T1 = 1, 3, 6 and 10µs. The data suggest a spin relaxation time
T1 longer than 10µs. Since T1 is much longer than our measurement cycles, spin relaxation
has no influence on our results. The observed relaxation rate is in good agreement with
other experiments and theory [Cri19; Li20].

A.3.13. Qubit quality factor
We show the dependence of the qubit quality on the MW signal power at 1.5 and 4.2K.
Because of limits on the maximal pulsing time impose by our read-out method, we could
not observe TRabi

2 in this experiment. Instead of the gate quality factor Q = TRabi
2 · 2fRabi,

we therefore investigate a coherence-limited quality factor or qubit quality factor Q∗ which
we define as

Q∗ = T ∗
2 · 2fRabi = T ∗

2 /tπ (A.5)

where tπ is the spin-flip time.
The data in Fig. A.18 were taken for Q2 at fL = 8.8GHz, the same configuration as

discussed in Fig. 4.3. As expected for a power-independent T ∗
2 , Q∗ shows a roughly linear

dependence on AMW (see appendix A.3.3) due to a linear increase of fRabi on AMW (see
Fig. 4.2 i).
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Fig. A.18.: Qubit quality factor Q∗ = T ∗
2 · 2fRabi as a function of power at 1.5 and 4.2K. These data

were recorded on Q2 at fL = 8.8GHz. The increase of Q∗ with driving amplitude AMW is due
to faster Rabi oscillations and thus a shorter spin-flip time tπ.

A.3.14. Dynamical decoupling
In this section, we compare the extended coherence time from dynamical decoupling
of Q2 for different numbers of decoupling pulses and temperatures. The measurements
presented in Fig. A.19 show the normalised difference ∆I of the readout current measured
after a projection of the qubit into |↑⟩ and |↓⟩. Ideally, if there is no free evolution of
the qubit (τ = 0), ∆I(normalised) = 1 because the normalised current after projecting
into |↓⟩ = 0 and |↑⟩ = 1. Due to decoherence, the signal decays with increasing τ on
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a time scale given by the coherence time T ∗
2 (Ramsey), THahn

2 (Hahn-echo), or TCPMG
2

(CPMG), depending on the pulsing scheme applied. We investigate the free induction decay
(Ramsey), one decoupling pulse n = 1 (Hahn-echo) and n = 2, 4, 8, 16 and 32 decoupling
pulses (CPMG-n). Schematics of the pulse sequences are shown at the top of Fig. A.19.
Note that τ is defined as the free evolution time and thus equals the total time no gate is
applied to the qubit. The generally observed decrease of the readout signal with higher
temperatures (see Fig. A.14) was partially compensated by using shorter pulse cycles (and
thus shorter maximal τ). As a consequence, the maximal τ differs for the different traces.
In particular for the 4.2K data, the signal was only measurable for a comparably short
maximal τ ∼ 1µs.

For the Ramsey and Hahn-echo experiment, the signal of the full rotation of the second
πϕ/2 pulse was measured (from ϕ = 0 to 2π) [Mau16]. The CPMG signal amplitude ∆I

was obtained by measuring the difference in current between ϕ = 0 and ϕ = π, which
corresponds to projection onto |↑⟩ and |↓⟩, respectively. These data are used to extract
CPMG-n coherence times in Fig. 4.5 a and β in Fig. 4.5 c for 1.5 and 3K.
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Fig. A.19.: Active noise decoupling. Decoupling of Q2 at fL = 8.8GHz from low-frequency noise using
Hahn-echo and CPMG-n decoupling schemes for 1.5K (blue), 3K (orange) and 4.2K (red).
This data was fitted to ∝ exp

(
− (τ/T2)

β+1
)

(dashed curves) as discussed in the main text. β

was obtained by iteratively fitting the decays to extract TCPMG-n
2 and fitting a power-law to

the TCPMG-n
2 to extract β [Med12], as described in Fig. 4.5 a. The obtained CPMG coherence

times are summarised in Fig. 4.5 a and the extracted β in Fig. 4.5 c for 1.5 and 3 K. Due to low
signal-to-noise which only allowed for a short τ ∼ 1µs, it was not possible to reliably extract β
from the data set at T = 4.2K.
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A.3.15. Clifford benchmarking protocol.
Randomised benchmarking is performed by applying a randomised sequence of a varying
number of Clifford gates m before the spin state is rotated such that the final state ideally
becomes either the |↑⟩ or |↓⟩ state. Each of the 24 gates in the Clifford group is constructed
from the set {I,±X,±Y,±X/2,±Y/2} [Muh15]. The gate I is implemented as idle time
for the duration of an X gate, which can limit the fidelity due to a finite T ∗

2 . Assuming that
the qubit initial state is |↓⟩, a current flow is only observed when spin blockade is lifted for a
final |↑⟩ state. Thus, the difference in current between sequences designed to output either
a |↑⟩ or |↓⟩ state, ∆I = I|↑⟩ − I|↓⟩, is proportional to p|↑⟩↑ − p

|↓⟩
↑ . For each m we average over

10 randomised sequences and the average Clifford-gate fidelity Fc is obtained from fitting
the normalised current difference to (2Fc − 1)m. Since a Clifford gate consists of on aver-
age 1.875 gates, the average single-qubit gate fidelity Fs is derived by Fs = 1−(1−Fc)/1.875.
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A.4. Holes spin qubit anisotropy
A.4.1. Qubit characteristics of Q1/Q2 in device C
Fig. A.20 shows characteristic measurements of the DQD as well as Q1/Q2 in Device C.
The measurements in b-f are performed in the same way as described in chapter 4. A
different method was used to extract qubit coherence [Mau16]: The Ramsey experiment is
performed on resonance with the qubit frequency while we vary the waiting time τRamsey

of the Ramsey sequence and the phase ϕRamsey of the second Ramsey pulse independently.
The resulting data in Fig. A.20 g shows a signal that decays along the time axis and is
sinusoidally modulated along the phase axis. Next, line cuts along ϕRamsey for each τRamsey

are fitted by a cosine function (see inset of Fig. A.20 h) to extract the amplitude A. The
decay of A as a function of τRamsey is then fitted by A(τ) = A0 exp (−(τ/T ∗

2 )
1.6) to extract

the qubit coherence time T ∗
2 . We choose a decay exponent of 1.6, corresponding to a noise

power spectral density scaling with f−0.6, which is consistent with previous measurements
(see chapter 4). The method is found particularly robust against small detunings or drifts
of fL compared to the Rabi frequency, since the additional rotation around the z-axis of
the Bloch sphere adds to the phase ϕRamsey, which is irrelevant for the extraction of A.1
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Fig. A.20.: Device and qubit characteristics. a, Device schematic indicating the expected location
of Q1 and Q2. b, Charge stability map in the qubit operation regime for VB = −0.75V and
VSD = 10mV indicating configurations for qubit initialisation/readout (I/R) and manipulation
(M) point. c, EDSR resonance of Q1 and Q2 as function of magnetic field Bx orientated
along x-axis when applying a MW burst to gate P1. d, Shift of qubit Larmor frequency when
Coulomb pulse amplitude AP is varied, i.e. the qubit manipulation point M is moved to I/R for
AP → 0. e,f, Rabi chevron measurement for Q1 and Q2 respectively. g, Ramsey experiment
using the method of Ref. [Mau16] described in the text. h, Fitting of the Ramsey measurement
data from g using A(τ) = A0 exp

(
−(τ/T ∗

2 )
1.6

)
, which yields T ∗

2 = 305± 11 ns.

1We highly recommend this method over other methods to extract T ∗
2 . The downside is the amount of

wave forms that have to be stored on the AWG, which can be tricky when using a Tektronix AWG5208.
If memory is a limiting factor, the next best method was found to be an on-resonance 1D Ramsey
measurement using an artificial oscillation. See chapter 4 for more details.
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A.4.2. Fitting procedure for g-tensors
We follow the fitting procedure described by Ref. [Cri18]. We define the effective g-tensor
ĝ via the Zeeman splitting EZ = µB|ĝB|, where µB is Bohr’s magneton and B is the
magnetic field. We define the unit vector b = (cosφ sin θ, sinφ sin θ, cos θ) in direction of
B. From measurements we determine the absolute value of the magnetic field Babs = |B|
for each orientation (φ, θ) of the magnetic field, at which the qubit Larmor frequency
fL = 4.5GHz. Then, we fit the symmetric Zeeman tensor Ĝ using the relation

tbĜb = tb(tĝ · ĝ)b =
E2
Z

µ2
BB

2
abs

=
h2f 2

L

µ2
BB

2
abs

, (A.6)

where h is Planck’s constant. Since the tensor Ĝ has to be symmetric, we have 6 degrees
of freedom in this fit. This procedure is very stable and converges always to the same
minimum. As a starting parameter we use the identity matrix.

Next, we exploit the fact that the principal axes of Ĝ and ĝ are the same. We extract
the eigenvalues ei and eigenvectors vi of Ĝ. The entries on the main diagonal of the
g-tensor in its eigenbasis ĝe are now given by ge,i =

√
ei. We obtain for Q1/Q2:

ĝQ1
e = diag (2.68, 1.68, 1.46) , ĝQ2

e = diag (3.04, 1.62, 1.42) . (A.7)

The g-tensor in the standard basis is obtained by the coordinate transformation up to a
unitary transformation

ĝ = ŜĝeŜ
−1, (A.8)

where Ŝ = (v1,v2,v3). By following this procedure individually for both qubits we obtain
the g-tensors reported in the main text.

A.4.3. Microscopic model for g-tensor anisotropy based on

strain
This model is based on the microscopic models for g-tensor anisotropy described in the
main text in section 5.1 and was also developed by the authors of Ref. [Sta21]. Here, the
confinement orientation is constrained to the device geometry, but we add a strain term
to the Hamiltonian HLK:

HS =
2

3

[
DuϵxxJ

2
x +D′

uϵxy
JxJy + JyJx

2
+ c.p.

]
. (A.9)

Here, ϵij are the elements of the symmetric 3x3 strain tensor and Du and D′
u are material

constants from Ref. [Win03]. For easier handling of the strain tensor, we parameterise it as
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ϵ = Eα,β,γ · ϵ0 · Eα,β,γ , where Eα,β,γ is the Euler matrix parameterised by three angles and

ϵ0 = ϵ10−|ϵ|

 1 + sinh(δ/2) 0 0

0 1 + sinh(δ/2) 0

0 0 −2

 . (A.10)

The scalar parameters ϵ determines the strength of strain and is typically on the order
of 4, whereas δ induces the asymmetry between the x and y axis in the eigenbasis of the
strain tensor. Again, we parameterise the confinement by introducing rin and rxy analogue
to the main text.

In Fig. A.21 we present the resulting fit of this model with 7 independent fitting
parameters. We find three different local minima with different sets of starting parameters,
which can be roughly described as a spherical dot (Fig. A.21 a, d and Tab. A.2), an
elongated dot (Fig. A.21 b, e and Tab. A.3) and a disc-like dot (Fig. A.21 c, f and Tab. A.4).
All three scenarios result ins similar residuals and seem to reproduce the data equally
well. At the same time, some parameters reported in Tabs. A.2- A.4 show huge error bars.
Therefore, we conclude that the fits of this model are not reliable, but a strain tensor can
in principle reproduce the tilted g-tensor that is observed in the experiment.
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Fig. A.21.: Fitting results of the strain model for different starting conditions. Fit (lines) of
measured g∗-factors (points) of Q1. Green, black and red correspond to the sweeps of ϕ at
θ = 90◦, θ at ϕ = 0◦ and θ for ϕ = 90◦ respectively. a, Fit for Q1 with initial parameters of
a spherical dot. b, Fit for Q1 with initial parameters of an elongated, cigar-like dot. c, Fit
for Q1 with initial parameters of a disk-like dot. d,e,f, same analysis for Q2. The figure is
adapted from Ref. [Sta21].
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Tab. A.2.: Fitting parameters corresponding to the fits shown in Fig. A.21 a,d with a spherical dot as
initial parameters.

parameter fit value error

ϵ 5.3 ±4.4

δ −27 ±unknown
α 12◦ ±189◦

β 102◦ ±60◦

γ −33◦ ±564◦

rin 1.08 ±63%

rxy 1.07 ±101%

lx : ly : lz 2.73 : 2.56 : 2.85

parameter fit value error

ϵ 5.8 ±24

δ −8.8 ±512

α −76◦ ±44◦

β 86◦ ±10◦

γ 72◦ ±81◦

rin 1.005 ±15%

rxy 1 ±10%

lx : ly : lz 2.71 : 2.71 : 2.72

Tab. A.3.: Fitting parameters corresponding to the fits shown in Fig. A.21 b,e with an elongated dot as
initial parameters.

parameter fit value error

ϵ 5.3 ±3.9

δ −34 ±unknown
α 12.5◦ ±202

β 102◦ ±67◦

γ −33◦ ±600◦

rin 1.09 ±63%

rxy 1.08 ±101%

lx : ly : lz 2.73 : 2.53 : 2.88

parameter fit value error

ϵ 4.4 ±0.9

δ −8.4 ±124

α 19◦ ±8◦

β 1◦ ±12◦

γ −20◦ ±7◦

rin 2.4 ±148%

rxy 1.3 ±21%

lx : ly : lz 2.3 : 1.7 : 4.9

Tab. A.4.: Fitting parameters corresponding to the fits shown in Fig. A.21 c,f with a disk-like dot as initial
parameters.

parameter fit value error

ϵ 5.2 ±3.6

δ 40 ±unknown
α 12.4◦ ±207

β 79◦ ±70◦

γ −57◦ ±626◦

rin 1.1 ±60%

rxy 1.09 ±113%

lx : ly : lz 2.74 : 2.52 : 2.90

parameter fit value error

ϵ 3.5 ±6.5

δ 23 ±unknown
α −79◦ ±15◦

β 86◦ ±2◦

γ −59◦ ±42◦

rin 25 ±1900%

rxy 0.93 ±40%

lx : ly : lz 0.88 : 0.96 : 24
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A.4.4. Qubit dependence on field amplitude
In Fig. A.22 we present measurements of the linear dependence of Rabi frequency fRabi on
field amplitudes. Further, we observe and anti-proportional relation between the coherence
time T ∗

2 and magnetic field amplitude.

a b
Q1

Q2

c

Fig. A.22.: Qubit drive and coherence dependence on field amplitudes. For both Q1 (orange)
and Q2 (blue) we find a linear dependence of the Rabi frequency fR on a the magnetic field
amplitude B and b the electric driving field amplitude VMW,P1 as indicated by linear fits. c,
We measure the qubit coherence time T ∗

2 for different magnetic field amplitudes B, which is
fitted well by T ∗

2 ∝ 1/B.

A.4.5. Fitting procedure for g-tensor derivative
In this section we will describe the details of the fitting procedure to extract the full ĝ′,
following the recipe of Ref. [Cri18]. This elaborate fitting procedure is necessary since we
cannot determine ĝ and ĝ′ directly in the same Kramer’s basis, as explained in the chapter 5.
For this analysis to work we have to measure g∗, ∂g∗/∂V and fRabi for a few magnetic field
orientations. The measurement data of g∗ = g∗(V0), taken at a specific gate voltage V0,
is used to fit ĝ at V0 with 6 independent fitting parameters according to appendix A.4.2
and is determined up to a unitary transformation (choice of spin basis). In this process,
we also determined the symmetric Zeeman tensor Ĝ = Ĝ(V0) at V0. Next, we use the
measured ∂g∗/∂V and calculate g∗(V1) = g∗(V0)+ δV ∂g

∗/∂V for a small voltage difference
δV = V1 − V0. Then, again following the method in appendix A.4.2, we extract Ĝ(V1)

using 6 independent fitting parameters. We determine Ĝ′(V0) ≈ [Ĝ(V1)− Ĝ(V0)]/δV valid
for small δV . The contribution to ĝ′ due to gTMR is now given by ĝ′

TMR = tĝ−1Ĝ′/2.
To determine the contribution to ĝ′ that is responsible for IZR we write ĝ′

IZR = tĝ−1Â

with antisymmetric matrix Â = [[0, a1, a2], [−a1, 0, a3], [−a2,−a3, 0]]. Then, we use the
measured data of fRabi to fit the four independent parameters a1, a2,a3 and the correction
factor β using the formula

fRabi = |fRabi| =
µBVMWβB

2hg∗
|(ĝb)× ([ĝ′

IZR + ĝ′
TMR]b)| . (A.11)

We introduce β to account for miss-calibrations of VMW or a frequency dependence of
the lever arm between the high-frequency calibration of VMW and the low-frequency
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measurements of g∗′, which could be due to a frequency-dependent dielectric constant in
the gate stack [Esr16] resulting in a frequency-dependence of the lever arm. Finally, we
have determined ĝ′ = ĝ′

IZR + ĝ′
TMR in the same basis as ĝ.

The resulting ĝ′ for both qubits and both driving gates are

ĝ′Q1
P1 =

 −0.36 1.51 0.25

1.56 −0.70 −0.18

0.40 −0.59 −0.87

V−1, (A.12)

ĝ′Q2
P1 =

 0.17 0.30 0.19

0.22 0.54 0.12

−0.20 −0.15 0.12

V−1, (A.13)

ĝ′Q1
B =

 0.61 −0.89 0.32

−1.10 0.67 −0.41

−1.30 0.88 0.25

V−1 and (A.14)

ĝ′Q2
B =

 0.63 −0.47 1.02

−0.48 −1.40 0.24

−1.55 1.54 −0.48

V−1. (A.15)

A.4.6. Rabi frequency model separated into IZR and g-TMR

contributions
We present the Rabi frequency obtained from only IZR or only g-TMR drive, disentangled
as explained in the main text. Even though theoretical work is needed to connect the
formalism of Ref. [GBL06] and Ref. [Cri18] in the case of an anisotropic g∗, we attempt
to extract a rough estimate of the orientation of the spin-orbit orientation nso. In our
approximation we assume b ∥ ĝb, which is considerably violated since the orientation of the
two vectors can disagree up to ∼ 23◦ (determined by numerically sampling the orientation
of ĝb). The model according to Ref. [Cri18] allows us to plot only the IZR contribution. To
find nso in the formalism of Ref. [GBL06], we realise that fR ∝ |b× nso| = 0 when b ∥ nso.
Thus, the orientation of minimum Rabi frequency is extracted for the IZR drive model
for both qubits and both driving mechanisms and marked by a red circle in Figs. A.23
and A.24. The extracted orientations of nso are displayed in Tab. A.5. We observe a
large spread of these values for different driving scenarios, but the y-axis (out-of-plane
direction) given by θ = 90◦, ϕ = 90◦ can be roughly identified as centre with deviations of
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up to ∼ 40◦. This is consistent with Rashba SOI which is perpendicular to the momentum
vector, which we assume is along x. However, eq.(1.1) would indicate that the electric
field in the device has to be along z, which is the in-plane orientation, to have nso along y.
This is not expected, since the device exhibits a mirror symmetry along the z axis and
the electric field is usually assumed to be within the xy plane. The differences between
nso for Q1 and Q2 could be due to probing the SOI at different locations in the device,
but the differences between the plunger drive and barrier drive case are likely due to the
approximative character of this method.

The extracted orientation of the SOI vector disagrees with both the orientation obtained
from the Pauli spin blockade leakage current measurement in chapter 3 and with the
orientation obtained by mapping out exchange splitting in chapter 6. Due to the previously
state concerns about the rough approximations made in this estimation, we conclude that
this method might not be suitable in our device which exhibits a strong anisotropy in the
g-tensor and the results might not be reliable.
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Fig. A.23.: Q1 drive separated into IZR and g-TMR contributions. We show the model prediction
for |fRabi|, |fR,IZR| and |fR,TMR| for both driving gates P1 and B. The red dots mark the
extracted orientations of nso.
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Fig. A.24.: Q2 drive separated into IZR and g-TMR contributions. We show the model prediction
for |fRabi|, |fR,IZR| and |fR,TMR| for both driving gates P1 and B. The red dots mark the
extracted orientations of nso.

Tab. A.5.: Extracted orientations of nso from IZR component of the Rabi drive. Note that this is only a
rough approximation since the model does not account for an anisotropic g∗.

nso P1 drive nso B drive
θso ϕso θso ϕso

Q1 83 86 96 50
Q2 92 125 109 61

A.4.7. Alternative fit for Q2
In this section we want to present an alternative fit for the plunger P1-driven Q2 Rabi
frequency data. In contrast to the best fit in the main thesis, here we want to limit the
parameter β, which is a correction factor for a frequency-dependence of the lever arm. In
formula (A.11) we multiply VMW and ĝ′, which ideally cancels out the lever arm between
the gate P1 and Q2, as both quantities are measured in terms of the gate voltage. However,
these two quantities are recorded at different frequencies, such that a frequency-dependence
of the lever arm has to be accounted for. When fitting this quantity we obtain a correction
on the order of a few % for all configurations, except for β = 2.5 for P1-driven qubit
Q2. Here we want to present a fit of ĝ′ while assuming β = 1 similar to the three other
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scenarios (analogue to in appendix section A.4.5). We obtain

ĝ′Q2

P1 =

 −1.29 10.05 9.75

−6.28 2.17 5.37

−11.33 −7.19 −0.54

V−1 (A.16)

and see that the model also agrees quite well with the data (see Fig. A.25). Note that
the matrix entries are now larger, as β is “absorbed” into the ĝ′ matrix. Furthermore, we
can again separate ĝ′ into the driving contributions from IZR and g-TMR (see Fig. A.25)
and extract the ratio of IZR and g-TMR (see Tab. A.6). From this analysis we can
conclude that we are in the regime of predominant IZR driving, which we assume to be
the case for strong electric fields along the fin, the weakest dimension of confinement. This
might be the case, as P1 is far away from Q2 and is also discussed in Ref. [Din23]. The
corresponding fit presented in the main text, where also β was fitted, showed an overall
smaller residue, but involved one more fitting parameter. Our current data set, which only
involves measurements of fRabi along three specific axes, might not be enough to precisely
distinguish these two interpretations. Even though the fits both roughly fit within the
three planes presented here, we note that visually their difference is larger in the plots
where fRabi was predicted for the full surface of the sphere. Hence, we suggest that further
measurements scanning the whole sphere could help to distinguish whether the model
with fitted β or the model with β = 1 describe the setup more precisely. Furthermore, an
analysis of the MW amplitude calibration uncertainty and an experimental investigation
of the frequency dependence of lever arms could help to set boundaries for the fit of β.

Tab. A.6.: Extracted values of r, a and m for Q2 in the alternative fit using β = 1.

plunger P1 drive
rP1 aP1 mP1

Q2 0.740 0.809 0.788
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Fig. A.25.: Alternative fit of Q2 using β = 1 resulting in a spin-orbit orientation θso = 133◦, ϕso = 120◦

and ratios of IZR and g-TMR presented in Tab. A.6.

A.4.8. Lever arms of device C
In Tab. A.7 we report the lever arms of device C extracted following the method provided
in Ref. [Wie02].

Tab. A.7.: Lever arms α of device C for different gates acting on Q1/Q2.

αP1 αB αP2

Q1 0.125± 0.002 0.208± 0.005 0.007± 0.002

Q2 0.006± 0.002 0.214± 0.005 0.062± 0.002
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A.5. Two-qubit gates with anisotropic exchange
Parts of this appendix section have been published in the supplementary material of
S.Geyer et al., Two-qubit logic with anisotropic exchange in a fin field-effect transistor,
arXiv (2022), doi:10.48550/arXiv.2212.02308

A.5.1. Setup
This section describes the difference between the setup for the experiments in chapter 6
from the setup presented in section 4.1: a Signal Recovery 7265 lock-in amplifier was used
to chop the MW signal of the VS via pulse modulation (PM) to create a reference cycle
for the measurement (see Fig. A.26 a). A typical Rabi chevron is shown in Fig. A.26 c,
where an increase in background current is observed. The origin of this effect is not yet
fully understood, but might be due to photon-assisted PSB leakage current.
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WDKX11

Lock-in
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 f1= fMW + fSB1  f2= fMW - fSB2

tramptramp

Fig. A.26.: a, Schematic of the setup of chapter 6. b, Typical pulse scheme to drive multiple qubits at
different frequencies. c, Typical Rabi chevron measurement recorded around fL = 4.5GHz of
Q1 showing Rabi oscillations of fRabi ∼ 20MHz.

A.5.2. Spectroscopy data for qubit anisotropy characterisa-

tion
In Fig. A.27, we present the raw data of the qubit spectroscopy experiments that were
used to extract the g-tensors of Q1 and Q2 and the exchange matrix J . Furthermore, we
observe correlations between the qubit readout signal in the lock-in current and the DC
current measured at the base line of the bias triangle. Further investigation is required to
fully understand this correlation.

Moreover, we observe an apparently frequency-independent increase of current whenever
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the two qubit frequency are close to degeneracy, as e.g. for (α, β) ≈ (70◦, 90◦) or (90◦, 170◦).
This is yet another interesting feature of this data set, that is not yet fully understood
and calls for further research.

a b c

d e f

Fig. A.27.: Qubit spectroscopy data. a-e, Spectroscopy measurement as a function of magnetic
field orientation (α, β) for sweeping B along 5 different planes with VB = −820mV and
ϵ = −4.025meV. For a fixed magnetic field orientation 4 transitions can be identified as
described in Fig. 1, which allows to extract EZ,i and J∥ for each configuration. The gaps in the
data come from a vanishing qubit readout signal for certain magnetic field orientations. Note
that for some orientations only 1-3 transitions are vanishing. For a-c we additionally show
the direct current IDC of the zero detuning transition of the DQD as a function of magnetic
field orientation at |B| = 0.1T. A correlation between a large current and a vanishing qubit
visibility is observed. f Coordinate system and definition of the sweep parameters α and β.

A.5.3. g-tensors for Q1 and Q2
The g-tensors were extracted according to A.4.2 and Ref. [Cri18] by measuring EZ,i by
MW spectroscopy in at least 6 different orientations. The extraction was performed on
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the data presented in Fig. A.27.

g1 =

 2.31 0.50 −0.06

0.50 2.00 0.06

−0.06 0.06 1.50

 , g2 =

 1.86 −0.57 0.09

−0.57 2.76 −0.01

0.09 −0.01 1.46

 (A.17)

The g-tensors can be diagonalised, such that the effective g-factors along the principal
axes can be easily read off:

gdiag
1 = diag (2.68, 1.68, 1.46) , gdiag

2 = diag (3.04, 1.62, 1.42) . (A.18)

A.5.4. 2-qubit initialisation
The qubits are initialised by pulsing from the spin-blocked region to the (1,1) manipulation
point with a linear ramp within the time tramp. By varying tramp and observing the allowed
qubit transitions in a spectroscopy experiment (see Fig. A.28), we identify the necessary
ramp time of ∼ 20 ns to initialise into the |↓↑⟩ state. The background of the measurement
shows an interference pattern. This could be explained by Landau-Zener-Stückelberg
interference due to repeatedly pulsing the system across an anticrossing [SAN10].

Fig. A.28.: Qubit initialisation. MW spectroscopy measurement as a function of ramp time tramp for a
trapezoid initialisation and readout pulse (see section A.5.1). The vanishing contrast of the
inner two transitions indicates an initialisation into the |↓↑⟩ state, which only allows transitions
with the highest and lowest frequency. This experiment was used to calibrate tramp ∼ 20 ns for
the CROT experiment in the main paper (see Fig. 6.4).

A.5.5. Derivation of the fit function for the exchange matrix.
Using a Fermi-Hubbard model with a single orbital state |i⟩ per site i = {1, 2}, our DQD
system is described by the Hamiltonian

HFH =
∑

i,j∈{1,2}

∑
ss′∈{↑,↓}

H̃ss′

ij a
†
isajs′ + U

∑
i∈{1,2}

ni↑ni↓ . (A.19)
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Here a†is (ais) creates (removes) a hole on site i and spin s = {|↑⟩ , |↓⟩}, nis = a†isais

is the occupation number operator, and U is the charging energy. The single-particle
Hamiltonian H̃ is given by

H̃ =
ϵ̃

2
τz + tc cos(θso)τx + tc sin(θso)τynso · σ +

1

2
µBB ·

[
1 + τz

2
g1σ +

1− τz
2

g2σ

]
, (A.20)

and contains spin-conserving inter-dot tunnelling tc cos(θso)τx and a SOI-induced spin-flip
hopping term tc sin(θso)τynso · σ. Here (τx, τy, τz) are the Pauli matrices for the orbital
degree of freedom, e.g. τz = |1⟩⟨1| − |2⟩⟨2| and σ is the vector of Pauli matrices acting
on the spin degree of freedom. In the lab frame, as defined in Fig. 6.1, the g-tensors g1
and g2 are symmetric (see appendix A.5.3). Finally, ϵ̃ is the energy difference for a hole
occupying the left or the right QD, and is expressed in terms of the detuning energy ϵ

between the (1,1) and (0,2) charge states by ϵ̃ = ϵ+ U − U0.
We perform a transformation from the lab frame to the so-called “spin-orbit frame” and

find

H̃so = U †
soH̃Uso =

ϵ̃

2
τz + tcτx +

1

2
µBB ·

[
1 + τz

2
gso
1 σ +

1− τz
2

gso
2 σ

]
. (A.21)

In the spin-orbit frame non-spin-conserving tunnelling is gauged away by the unitary
transformation Uso = exp(−iθsoτznso ·σ/2), and the g-tensors are given by gso

1 = g1Rso(θso)

and gso
2 = g2Rso(−θso). Here Rso(φ) denotes a counterclockwise rotation around nso by

an angle φ. Since our DQD system is operated close to the |S02⟩-|S⟩ anticrossing, the
Hamiltonian HFH can be represented in the basis {|S02⟩ , |S⟩ , |T−⟩ , |T+⟩ , |T0⟩}

H5×5 =



U0 − ϵ
√
2tc 0 0 0√

2tc 0 − δbx+iδby√
2

δbx−iδby√
2

δbz
0 − δbx−iδby√

2
b̄z 0 b̄x−ib̄y√

2

0 δbx+iδby√
2

0 −b̄z b̄x+ib̄y√
2

0 δbz
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0


, (A.22)

where the average and gradient Zeeman fields b̄ = µBB(gso
1 + gso

2 )/2 and δb = µBB(gso
1 −

gso
2 )/2 were introduced. In the spin-orbit frame, the singlet subspace {|S02⟩ , |S⟩} is coupled

by the total tunnel coupling tc and the hybridised singlets S± have energies ES+ = U0−ϵ+J0
and ES− = −J0 with J0 =

√
2 tan(γ/2) = −(U0− ϵ)[1−

√
1 + 8t2c/(U0 − ϵ)2]/2 and mixing

angle γ = arctan[
√
8tc/(U0 − ϵ)]. Furthermore, we remark that J0 ≃ 2t2c/(U0 − ϵ) in the

limit of tc/(U0− ϵ) ≪ 1. Because S+ couples only weakly to the triplet states, our Hilbert
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space can be restricted to the four levels {|S−⟩ , |T−⟩ , |T+⟩ , |T0⟩} and we obtain

H4×4 =


−J0 − δbx+iδby√

2
cos(γ

2
) δbx−iδby√

2
cos(γ

2
) δbz cos(γ2 )

− δbx−iδby√
2

cos(γ
2
) b̄z 0 b̄x−ib̄y√

2
δbx+iδby√

2
cos(γ

2
) 0 −b̄z b̄x+ib̄y√

2

δbz cos(γ2 )
b̄x+ib̄y√

2

b̄x−ib̄y√
2

0

 . (A.23)

Hole spin manipulation is performed deep in the (1,1) charge stability region, allowing us
to introduce the localised spin operators σso

1 and σso
2 . The Hamiltonian (A.23) can then

be written as

Hso
(1,1) =

1

2
µBB · gso

1 σso
1 +

1

2
µBB · gso

2 σso
2 +

1

4
J0σ

so
1 · σso

2 , (A.24)

revealing that the exchange interaction is isotropic in the spin-orbit frame. To find an
expression for the experimentally measured values, we first rewrite Eq. (A.24) in the lab
frame

H lab
(1,1) =

1

2
µBB · g1σ1 +

1

2
µBB · g2σ2 +

1

4
σ1 · Jσ2 . (A.25)

Here J = J0Rso(−2θso) represents the exchange matrix in the lab frame, σ1 = Rso(−θso)σ
so
1

and σ2 = Rso(θso)σ
so
2 . In addition, independent rotations R1 and R2 are applied to Q1

and Q2, such that the single particle terms of the Hamiltonian (A.25) become diagonal:

HQ
(1,1) =

1

2
EZ,1σ

Q
z,1 +

1

2
EZ,2σ

Q
z,2 +

1

4
σQ

1 · J QσQ
2 , (A.26)

where EZ,ieQ
z = µBRigiB is the i-th site’s Zeeman splitting, eQ

z the spin quantisation
axis and J Q = J0R1Rso(−2θso)R

T
2 the exchange matrix in the so-called “qubit frame”,

wherein the exchange splitting J∥ is experimentally observed. To obtain an expression
for J∥ we rewrite the Hamiltonian of Eq. (A.26) in matrix form using the two-qubit basis
{|↑↑⟩ , |↑↓⟩ , |↓↑⟩ , |↓↓⟩}

HQ
(1,1) =


EZ + 1

4
JQ
zz 0 0 0

0 1
2
∆EZ − 1

4
JQ
zz

1
2
J⊥ 0

0 1
2
(J⊥)

∗ −1
2
∆EZ − 1

4
JQ
zz 0

0 0 0 −EZ + 1
4
JQ
zz

 . (A.27)

Here we neglect every coupling that would contribute to the eigenvalues in O(J2
0/EZ) and

introduce J⊥ = [JQ
xx+ JQ

yy + i(JQ
xy − JQ

yx)]/2, EZ = (EZ,1 +EZ,2)/2 and ∆EZ = EZ,1 −EZ,2.
The eigenenergies of Eq. (A.27) are

E↑↑ = EZ +
1

4
JQ
zz , E↓↓ = −EZ +

1

4
JQ
zz , (A.28a)
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E↑̃↓ =
1

2
∆ẼZ − 1

4
JQ
zz , E↓̃↑ = −1

2
∆ẼZ − 1

4
JQ
zz , (A.28b)

with ∆ẼZ =
√

∆E2
Z + |J⊥|2. We thus find for the exchange splitting, which is defined as

the energy difference between the two transitions flipping the same spin, J∥ = E↑↑ −E↑̃↓ −
(E↓̃↑ − E↓↓) = JQ

zz. The matrix element JQ
zz in turn is given by

JQ
zz = J∥ = eQ

z · J QeQ
z = n1 · Jn2 = J0 n1 ·Rso(−2θso)n2 . (A.29)

Eq. (A.29) is the fit function employed to describe the observed exchange anisotropy, where
the effect of both spin-orbit interaction and the anisotropy of the g-tensors is accounted
for. We note that an explicit dependence on the magnetic field direction arises from
ni = giB/|giB|. Further details of the derivation are found in Ref. [Gey22].

A.5.6. Exchange matrix for electron QDs in silicon
Our analysis can be straightforwardly extended to the case of electron QDs in silicon where
the SOI is induced by the gradient field of a micromagnet [Pio08; Noi22; Xue22]. The
inhomogeneous magnetic field induced by the magnet is fixed in the lab frame as opposed
to the external magnetic field, the direction of which needs to be changed in order to map
out the g-tensors and the exchange matrix. The low-energy Hamiltonian of such a double
QD system with two-electron occupation in the (1, 1) charge configuration is similar to
Eq. (A.25) but needs to be extended by the magnetic field of the micromagnets as

H(1,1) =
1

2
µB(B+M1) · g1σ1 +

1

2
µB(B+M2) · g2σ2 +

1

4
σ1 · Jσ2 , (A.30)

where Mi is the magnetic field induced by the micromagnet on site i, and the exchange
matrix is still anisotropic due to the spin-flip tunnelling process induced by the spatially
inhomogeneous magnetic field between the two QDs. In analogy with the case of SOI, the
spin rotation angle can be estimated as tan(θso) ∼ µB|M1 −M2|/ℏω0, where ℏω0 is the
orbital splitting of the QD. Because this angle is typically small, the exchange interaction
is roughly isotropic, in agreement with the fact that no exchange anisotropy was reported
in recent works with micromagnets [Noi22; Xue22]. The strong exchange anisotropy to
date is unique to hole systems with strong SOI. As it will be presented in the next section,
this anisotropy can be the key to achieve fast and high-fidelity two-qubit gates for holes
that keep up with the exceptionally fast single-qubit gates in these systems.

In the case of electrons, fitting the parameters of the model in Eq. (A.30) involves
an additional step due to the field of the micromagnet. This field can be mapped
out component by component, by changing the strength of the magnetic field along
a given direction and determining the offset of the minimum of the Zeeman splitting
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with respect to B = 0. Accounting for this fixed magnetic field on each QD, one could
proceed to fit the g tensors and the exchange matrix as presented in appendix A.5.5 using
nj = gj(B+Mj)/|gj(B+Mj)|.

A.5.7. Theoretical limit of the CNOT gate fidelity
In this section we calculate numerically the fidelity of a CNOT gate, implemented via a
CROT and additional correction gates. For this purpose, we extend the qubit Hamiltonian
including anisotropic exchange with a driving term. Using the rotating wave approximation
(RWA), we show that Rabi oscillations for Q1 can be controlled by the state of Q2. We
find sequences of single- and two-qubit gates to transform a CROT into a CNOT and
simulate CNOT fidelities for anisotropic and isotropic exchange interaction. We show that
for anisotropic exchange and certain magnetic field orientations, the CNOT gate errors are
strongly reduced in comparison to isotropic exchange and faster gate speeds are possible.
Further, we show that the CNOT gate fidelity for isotropic exchange is strongly limited by
J⊥.

Starting from Eq. (A.27) we add the drive HMW = νR sin(ωMWt)σx,1 to Q1, where
νR = hfR is the strength of the drive for zero frequency detuning and ωMW is the frequency
of the drive, and obtain

HQ
(1,1)(t) =


EZ + 1

4
J∥ 0 νR sin(ωMWt) 0

0 1
2
∆EZ − 1

4
J∥

1
2
J⊥ νR sin(ωMWt)

νR sin(ωMWt)
1
2
(J⊥)

∗ −1
2
∆EZ − 1

4
J∥ 0

0 νR sin(ωMWt) 0 −EZ + 1
4
J∥

 . (A.31)

The gate operation that is applied to the qubits in the experiment is found by numerically
calculating the time evolution of the Hamiltonian in Eq. (A.31)

CROTnum = T exp
[
− i

ℏ

tπ∫
0

dtHQ
(1,1)(t)

]
, (A.32)

where tπ is the time needed to perform a spin-flip on the target qubit and T indicates the
time-ordered exponential. Next, we want to compare the numerically computed CROT
gate operation to a perfect CNOT gate. For this purpose, we need to apply a sequence of
correction gates that turn a CROT into a CNOT, which can be identified by analysing
the Hamiltonian (A.31) analytically.

First, we move to a rotating frame to eliminate the time-dependence in HQ
(1,1)(t), in

which the Hamiltonian is given by

Hrot = −iℏU †
rotU̇rot + U †

rotH
Q
(1,1)(t)Urot , (A.33)
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where Urot(t) = diag[exp(−iωMWt), 1, 1, exp(iωMWt)] is the transformation between the
rotating frame and the qubit frame. Using the RWA we drop the rapidly oscillating terms,
e.g., ∝ exp(−i2ωMWt), and find

HRWA =


EZ + 1

4
J∥ − ℏωMW 0 i

2
νR 0

0 1
2
∆EZ − 1

4
J∥

1
2
J⊥

i
2
νR

− i
2
νR

1
2
(J⊥)

∗ −1
2
∆EZ − 1

4
J∥ 0

0 − i
2
νR 0 −EZ + 1

4
J∥ + ℏωMW

 .

(A.34)
Then, we transform to the eigenbasis of the Hamiltonian (A.27). This transformation
accounts for the mixing of |↑↓⟩ and |↓↑⟩ basis states by J⊥ and is defined as H̃RWA =

U †
ϕ,ξHRWAUϕ,ξ, where the transformation matrix is given by

Uϕ,ξ =


1 0 0 0

0 cos ϕ
2

−e−iξ sin ϕ
2

0

0 eiξ sin ϕ
2

cos ϕ
2

0

0 0 0 1

 , (A.35)

with exp(iξ) = J⊥/|J⊥| and the mixing angle ϕ = arctan(|J⊥|/∆EZ). Note that this
transformation commutes with Urot(t). We obtain

H̃RWA =


−1

2
∆ẼZ − 1

4
J∥

i
2
eiξνR sin ϕ

2
i
2
νR cos ϕ

2
0

− i
2
eiξνR sin ϕ

2
1
2
∆ẼZ − 1

4
J∥ 0 i

2
νR cos ϕ

2

− i
2
νR cos ϕ

2
0 −1

2
∆ẼZ − 1

4
J∥ − i

2
e−iξνR sin ϕ

2

0 − i
2
νR cos ϕ

2
i
2
e−iξνR sin ϕ

2
1
2
∆ẼZ + 3

4
J∥

 , (A.36)

where we substituted the resonance condition for the transition that we want to drive, i.e.
|↓↑⟩ → |↑↑⟩, as ℏωMW = EZ + 1

2
∆ẼZ + 1

2
J∥. We note that, depending on the sign of J∥, we

obtain a CROT or a not-controlled rotation (NCROT). In the RWA Hamiltonian we call
the off-diagonal terms that connect degenerate states resonant transitions, i.e. |↓↑⟩ → |↑↑⟩,
whereas terms connecting two states that are not degenerate are the off-resonant transitions.
Off-resonant transitions are highly suppressed by the energy mismatch, hence we neglect all
off-resonant terms. Note that off-resonant terms that include sin(ϕ/2) vanish completely
for ϕ = 0, i.e. J⊥ = 0, reducing the error introduced by the approximation for this specific
case.

Next, we calculate the complete time evolution of the qubit states. Within the rotating
frame and the RWA, the time evolution of a state in the qubit frame is given by |ψ(t)⟩ =
Urot(t)URWA(t) |ψ(0)⟩, where URWA(t) is the free time evolution according to the RWA
Hamiltonian (A.34). Because Uϕ,ξ commutes with the rotating frame transformation Urot,
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one may write Urot(t)URWA(t) = Uϕ,ξUrot(t) exp(−i/ℏH̃RWAt)U
†
ϕ,ξ = Uϕ,ξUrot(t)ŨRWA(t)U

†
ϕ,ξ.

The full time evolution under the Hamiltonian in the mixed basis is then

C̃ROT =Urot(tπ)ŨRWA(tπ) =

0 0 e
iπκ

(
−EZ

J∥
− 1

4

)
0

0 e
iπκ

(
−∆ẼZ

2J∥
+ 1

4

)
0 0

−e
iπκ

(
∆ẼZ
2J∥

+ 1
4

)
0 0 0

0 0 0 e
iπκ

(
EZ
J∥

− 1
4

)


,

(A.37)

where the operation time for a π-rotation is tπ = h/(2νR cos(ϕ/2)) and we imposed
νR cos(ϕ/2) = J∥/κ with κ =

√
16k2 − 1 and k is an integer as in Ref. [Rus18]. These

conditions restrict the maximal driving strength to νR = J∥/
√
15, but ensure that no net

spin rotation of Q1 occurs for the |↓⟩-state of the control qubit Q2. This is standard
practise to reduce fidelity loss due to off-resonant driving effects [Noi22].

The controlled rotation in the mixed basis in Eq. (A.37) is now compared to an ideal
CNOT, which is controlled by Q2 and targeted on Q1, in the basis {↑↑, ↑↓, ↓↑, ↓↓}

CNOT =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 . (A.38)

This allows us to find a sequence of elementary single-qubit gates such that

C̃ROT = eiπ(∆EZ/2νR+J∥/4νR+1)X1 Z
EZ,2/νR+1/2
2 Z

−EZ,1/νR+1/2
1 CNOTZ−J∥/2νR+1/2

1 . (A.39)

Here, Zi is the Z-gate with the convention (−1)a = eiπa and Xi is the X-gate acting on
the ith qubit. We consider the gate Za

i = (Zi)
a as directly accessible for spin qubits, since

arbitrary Z-rotations can be implemented e.g. by an arbitrary detuning pulse [Cam22;
Yon17] or by virtual phase gates [Noi22]. Note that the decomposition into correction
gates is not unique.

If Uϕ,ξ = 1 at ϕ = 0, hence the mixed basis is equal to the qubit basis, the CNOT
gate can be constructed from the CROT gate using Eq. (A.39). However, having a finite
mixing angle ϕ, i.e. J⊥ ̸= 0, we also have to account for the additional transformation
CROT = Uϕ,ξ C̃ROTU †

ϕ,ξ. Hence, we have to decompose Uϕ,ξ into elementary gates

Uϕ,ξ = Z
−ξ/π−1/2
1 X1 (CZ)ϕ/2πX1X2 (CZ)ϕ/2πX2 (SWAP)−ϕ/π Zξ/π+1/2

1 , (A.40)
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where the controlled-Z gate (CZ) is controlled by Q1 and targeted on Q2. Note that
this decomposition contains in addition to elementary single-qubit gates also multiple
two-qubit gates. Introducing additional two-qubit gates creates new sources for errors,
that can lower the overall-fidelity of the CNOT gate. Additionally, this creates a large
overhead of correction gates, making it desirable to work in the regime of ∆EZ ≫ J⊥,
where Uϕ,ξ ≈ 1. Further, since SWAP and CZ gates typically require opposite regimes
of ∆E ≪ J∥ and ∆E ≫ J∥, these correction gates are not practical in any experimental
realisation and will only be considered here to investigate the sources of errors.

Finally, we define CNOTnum as the numerically simulated CROT gate from Eq. (A.32)
after applying single-qubit correction gates as described in Eq. (A.39). The fidelity of this
two-qubit gate is then calculated by comparing it to the ideal CNOT gate:

F =
1

4
Tr

[
CNOTnumCNOT†] , (A.41)

Analogously, we define CNOTϕ,ξ
num as the numerically simulated CROT gate from Eq. (A.32)

after applying both the single-qubit correction gates from Eq. (A.39) as well as the single-
and two-qubit correction gates from eq. (A.40) and calculate the fidelity analogously.

We present the numerical simulations of the fidelity (see Fig. A.29) for four different
cases, which differ by the exchange interaction (isotropic vs anisotropic exchange) and
the correction gates that are applied (only single-qubit corrections or both correction
sequences). The simulation is performed by calculating the time evolution operator U with
the full time-dependence of Eq. (A.32). Due to discretisation of time, a small numerical
error caused by the numerical precision is added in every time step. This contribution is
not unitary and leads to |Tr[U †U ]/4| ≲ 1. Therefore, we associate 1− |Tr[U †U ]/4| with
the precision of our calculations and plot it as error bar in Fig. A.29. We present the
CNOT fidelity as a function of J∥/∆EZ . Since J∥ =

√
15νR was fixed for maximal driving

strength without inducing unwanted off-resonant driving, this can be seen as evaluating
the fidelity as a function of gate speed. We note that for a small gate speed, requiring
more time steps, the error bars are increased. Overall, we see a drop of fidelity with gate
speed, which is much more pronounced for isotropic than anisotropic exchange. For the
case of isotropic exchange, the fidelity drops rapidly for large J∥/∆EZ , even when applying
all correction gates (CNOTϕ,ξ

num). This loss of fidelity can be understood as the effect of
the off-resonant terms that were neglected in eq. (A.36), which become relevant at large
driving strength. When looking at isotropic exchange and only single-qubit correction
gates (CNOTnum), we see a further reduction of fidelity, which originates from the strong
mixing of qubit basis states due to large J⊥ = J∥. This is the dominant effect for the
loss of fidelity of the CNOT gate at small driving speeds J∥/∆EZ < 0.5. Note that the
wiggle features in the fidelity probably originate from an interplay of the single-qubit
correction gates and the unwanted effects of Uϕ,ξ that are not corrected here. Comparing
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Fig. A.29.: CNOT gate fidelities as a function of J∥ and driving strength (νR = J∥/
√
15) using (i)

anisotropic exchange interaction (green) for the configuration used in Fig. 6.4; (ii) and isotropic
exchange interaction (orange) e.g. for electrons in silicon. CNOT gates obtained using
single-qubit correction gates only (CNOTnum) are shown as solid lines, while CNOT gates
also corrected for basis mixing errors (CNOTϕ,ξ

num) are shown as dashed lines. Red line and
blue points indicate the working point of the present experiment and fidelities measured
in Ref. [Noi22], respectively. The horizontal grey line marks the fault tolerance threshold
(F = 99%). The shaded regions indicate the precision of the numerics.

the theoretical fidelity to current experimental realisations of CROT gates with isotropic
exchange, e.g. Noiri et al. [Noi22], we find that the fidelity seem to be limited mainly
by the experimental implementation. Further, these experiments are performed at very
small driving strength, where the maximum theoretical CNOT fidelity is not significantly
limiting the fidelity of the implemented gate.

In the anisotropic case, the fidelity depends on the magnetic field orientation, since
it determines J⊥. Here, we look at the case of the magnetic field orientation and J of
the CROT experiment in Fig. 6.4 of the main text. In Fig. A.30 we show J∥ and J⊥

as a function of magnetic field orientation and indicate the orientation that was used
with a red star, showing a large |J∥| = 0.902J0 and small |J⊥| = 0.049J0. We note that
there is a large range of orientations, where such a combination of |J∥|/|J⊥| ≫ 1 can be
found. In this case, the fidelity stays above the threshold for error correction of 99% up
to strong driving of J∥/∆EZ ∼ 1. There is almost no difference between CNOTnum and
CNOTϕ,ξ

num, indicating that the basis mixing by Uϕ,ξ is not limiting the fidelity. This is
expected, since for the chosen magnetic field orientation |J⊥| ≪ ∆EZ and thus Uϕ,ξ ∼ 1.
The main reduction in fidelity originates from neglecting the off-resonant terms and the
rapidly oscillating terms in the RWA. Hence, two-qubit correction gates, which are relevant
in the isotropic case already at small driving strength, are not needed here. For much
stronger driving J∥/∆EZ ≳ 0.5 the benefits for fidelity of anisotropic exchange become
even stronger: In this regime, even when using the impractical two-qubit correction gates,
the fidelity for isotropic exchange is limited to much smaller values than for anisotropic
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★ ★

Fig. A.30.: Exchange interaction |J∥| and |J⊥| as a function of magnetic field orientation (α, β), using the
experimental g-tensors, spin rotation angle θso and SOI orientation nso. Red stars denote the
magnetic field direction used for the implementation of the CROT gate in the main paper and
for calculating the gate fidelity in Fig. A.29.

exchange.
The red dashed line in Fig. A.29 indicates the value of J∥/∆EZ ∼ 0.2 that was used in

this experiment, showing that the fidelity of our CROT implementation is not significantly
limited by the maximum theoretical fidelity. However, for isotropic exchange this diving
strength would already induce a significant reduction of fidelity, unless the very hard
to realise and computationally demanding two-qubit correction gates are implemented.
Hence, this experiment already benefits from the anisotropic exchange interaction.
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A.6. Phase drive for hole spin qubits
Parts of this appendix section have been published in the supplementary material of
S. Bosco et al., Phase driving hole spin qubits, arXiv (2023), doi:10.48550/arXiv.2303.03350

A.6.1. Additional measurements of our first and second de-

vice

(a) (b)

Fig. A.31.: Phase-driving-induced slowing down of Rabi oscillations in qubit 2 (Q2). Measurements (a)
and simulations (b) match well, and this trend is analogous to the one reported in chapter 7
for Q1, see Fig. 7.1(b),(c). Here, we used ωx/2π = ωq/2π = 3.115GHz, λx/2π = 11 MHz, and
λz/2π = 6.1 MHz.

(a) (b)

Fig. A.32.: Phase-driving-induced sideband Rabi oscillations in qubit 1 (Q1). Measurements (a) and
simulations (b) are in good agreement, and these sidebands are analogous to the ones reported
in the main text for Q2, see Fig. 2(b),(e). Here, we used ωq/2π = 4.5GHz, λx/2π = λz/2π =
30 MHz, and ωz/2π = 90.5 MHz, corresponding to Z = 0.33.

We present here additional data from our two qubits, Q1 and Q2, encoded in two different
devices. In Fig. 7.1, we show the slowing down of Rabi oscillations by phase driving
Q2. Compared to Figs. 1(b),(c) in the main text, we observe a similar trend, with a
lower Rabi and phase driving amplitudes. The measurement in Fig. 7.1(a) matches well
the numerical simulation in Fig. 7.1(b). In Fig. A.32, we show phase-driving-induced
sideband oscillations appearing at finite detuning in Q1. These results are comparable to
the ones obtained for Q2 and shown in Figs. 7.2(b),(e). Also in this case, we observe a
good agreement between measurements (a) and simulations (b).
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