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Abstract

Semiconductor quantum dots have been investigated in many different aspects, from
fundamental semiconductor physics to advanced quantum technologies. After many
years of growth improvements, the quantum dot emits single photons of high purity
and high indistinguishability. The noise in the semiconductor is reduced to a level
where it starts to be negligible (compared to other measurement errors). Recently
advances also have been made in controlling a single electron(hole)-spin confined by
the quantum dot. This makes the quantum dot a perfect candidate for any applica-
tion involving single photons and also a spin, for example, boson sampling and cluster
state generation, respectively.

The quantum dot can also be used to study its coupling to additional degrees of
freedom, such as for example the surrounding nuclear spins or coupling to an optical
cavity. In this thesis, two individual studies are presented. First, the interaction of
the quantum dot with the mechanical surrounding, i.e. phonons, and second, radia-
tive Auger processes due to Coulomb interactions.

The quantum dot naturally couples to its mechanical environment by deformation-
potential coupling. The interaction is exploited by engineering the mechanical envi-
ronment (density of states) by patterning a mechanical resonator (mechanical cav-
ity). The main focus lies on reaching gigahertz mechanical frequencies, the so-called
resolved-sideband regime. However, this is not trivial for two reasons. First, fabri-
cating a mechanical resonator at such high frequencies is challenging due the small
size. Second, measuring such a fast modulation of the quantum dot requires a special
measurement parameter set. Nonetheless, the coupling to mechanical resonators from
a few megahertz to more than a gigahertz mechanical frequency is shown. Further-
more, an in-depth study of the exciton-phonon interaction is presented which includes
a semi-classical master-equation description of the coupled system as well as the ob-
servation of acoustic sideband emission. The current limit, for applications such as
optomechanical cooling, is the coupling rate between the two systems. However, such
experiments are within reach with a five- to ten-fold increase in the coupling rate.

The quantum dot itself presents a coupled system if charged with an additional
electron (or hole). Then, in the excited state, three carriers (one hole and two elec-
trons) are tightly confined inside the dot which are coupled to each other via Coulomb
interactions. The effect of this coupling is studied which gives rise to the so-called
radiative Auger process. During the decay of the trion, one of the carriers (the Auger
electron) is promoted to a higher energy state inside the quantum dot (p- and d-shell)
and the emitted photon is correspondingly red-shifted. In more detail, it is found that
the wavefunction of the trion is composed of admixtures of higher shells and the emit-
ted photon projects the state of the remaining electron to the corresponding shell.
Furthermore, the radiative Auger process gives rise to an optical transition which can
be addressed with a laser. In a two-laser experiment (Λ-configuration), the radiative
Auger transition is optically driven. This leads to a coherent superposition of the
auger carrier being in two different quantum dot shells. These measurements pose a
first step toward coherent control of the orbital state of the Auger carrier.
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CHAPTER 1

Introduction



2 Introduction

Optically active semiconductor quantum dots have been part of fundamental research
for a long time and important optical observations have been made, for example, res-
onance fluorescence [1], dressed states [2–4], Rabi-oscillations [5], anti-bunching [3–5],
two-photon indistinguishability [3], and coherent scattering [6, 7]. Recently, quantum
dots are investigated in the direction of photonic quantum technologies [8, 9].
Optically active quantum dots are also part of the first quantum revolution and
can be found in quantum dot laser devices [10]. Nevertheless, there is still a lot of
room for further investigations, especially when coupling the quantum dot to other
systems. For example, when coupling the quantum dot to an optical cavity, the
light-matter interaction can be strongly enhanced [11–14]. Naturally the quantum
dot couples to its environment, such as the surrounding nuclear spins [15–18] and
mechanical vibrations in the crystal lattice, i.e., phonons [19, 20]. Furthermore, the
quantum dot itself also presents a coupled few-particle system, where the carriers
confined inside the dot couple to each other via Coulomb interactions [21–23]. In
general, if the interaction between the quantum dot and the coupled system is
strong enough, the optical interaction with the dot can be exploited to control the
state of the coupled system. For example, fluctuations in the nuclear spins can be
reduced [18], a mechanical resonator can be cooled down [24], and the orbital degree
of freedom of a confined electron can be controlled [22, 23].

The first part of the thesis (Chapter 3-6) investigates the interaction between
a solid-state quantum emitter and a mechanical resonator. The coupling of an
optical system to a mechanical system has been shown many times, from optical
cavities [25–30] to microwave resonators [31–34], and hybrid system such as super-
conducting qubits [35–37], cold atoms [38–40], defect centres [41, 42], rare-earth
emitters [43], 2D-materials [44–46], and also semiconductor quantum dots [20, 47–65].
The advantage of self-assembled semiconductor quantum dots is that they emit
single photons with almost perfect optical properties and close-to-lifetime-limited
linewidths [66]. Furthermore, they can be embedded in various types of mechanical
resonators. In recent years there have been great advances in this direction by
coupling quantum dots to cantilevers [47, 48], beams [49, 50], nanowires [51, 67],
trumpet resonators [20, 52–56, 68, 69], photonic-crystal membranes [57], and
surface-acoustic waves [58–65].

What is missing so far is a scalable mechanical platform in the gigahertz regime.
Inspired by the cavity-optomechanical community [27, 70] we introduce a mechanical-
membrane platform, suitable for combination with photonic-crystal cavities [71], and
photonic or phononic waveguides [72–75]. Besides the scalable platform, measuring
gigahertz quantum dot optomechanics without additional mechanical driving still
needs to be achieved. We approach this with a set of master equation simulations
and a step-by-step increase of the mechanical frequency from 0.5 MHz to 1.5 GHz.

Whereas for cavity optomechanics the linearised interaction (low coupling regime)
is dominated by the classical properties of the optical resonator [29], here, the
interaction is governed by the inherent non-linearity of the quantum emitter [20].
This means that only one photon at a time can scatter from the dot (elastically or
inelastically). On the one hand, this allows the deterministic generation of single
photons (and phonons) [13, 72, 76, 77]. On the other hand, it also brings a lot of
challenges. For example, the count rate is limited due to the saturation behaviour of
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the quantum dot which means that measurements can take a long time. Furthermore,
when working with high excitation powers the linewidth becomes power broadened,
transforming the system from the resolved- to the unresolved-sideband regime.
Nevertheless, in this thesis, the coupling to highly-confined GHz-mechanical modes is
achieved, only based on Brownian motion. This presents a first step in the direction
of controlling the state of the mechanical resonator using the optical interaction with
the quantum emitter [24, 55].

The second part of the thesis (Chapter 7-8) investigates the so-called radiative Auger
process using single semiconductor quantum dots [78–80]. The radiative Auger
process arises from Coulomb interactions between tightly confined carriers inside the
dot [78, 79] together with symmetry braking on a length scale smaller than the dot
size [81]. In a radiative Auger process, single carriers are promoted to higher energy
states within the quantum dot [21]. Due to energy conservation, the emitted photon
is red-shifted, compared to the elastically scattered photons.

Though radiative Auger effects are rather weak, they are still part of the emission
spectrum [21]. The measurements performed in this part are a combination of
classical spectroscopy measurements and quantum optics measurements. We show
that the Auger emission lines are also optical transitions that can be driven with
a laser [22]. This corresponds to exciting the quantum dot with a red-detuned
laser together with a carrier deexcitation. When optically addressing the radiative
Auger transition, the emission (absorption) of the quantum dot can significantly be
changed and a carrier can actively be promoted to a higher shell. This is a first
step towards coherent control of the orbital degree of freedom of the Auger carrier [23].

In general, the thesis is written such that it can be read without the background
theory part. This means the important equations from the theory chapter can also
be found throughout the thesis. Furthermore, details on the measurement setup and
finite-element simulations are also merged with the experimental chapters so that the
theory chapter can focus on the important physics and fabrication background. The
thesis is structured as follows.
Chapter 2, “Background theory and device fabrication”, introduces all rele-

vant formalisms that are found throughout the thesis. The semiconductor background
of the quantum dot is briefly summarised, including confinement, energy eigenstates,
diode structure, and charge control. This is followed by the comparison of the optical
excitation schemes. The different quantum dot excitons are collapsed into two-level
problems with ground and excited states. A semi-classical description of the inter-
action between the laser and the two-level system is introduced, including dipole
approximation and rotating wave approximation. Using the optical Bloch equations
the difference between scanning the laser over the quantum dot resonance and the
spectrally resolved emission is shown. The semi-classical optical model is extended
by a mechanical coupling term and two fundamentally different mechanical frequency
regimes are compared. Finally, the soft-mask fabrication of the devices is briefly dis-
cussed.
Chapter 3, “Quantum-dot optomechanics in the unresolved-sideband

regime”, discusses the measurements performed on the first-generation mechani-
cal devices, which are membrane-type cantilever resonators. The chapter starts with
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a discussion of the different, low-frequency, mechanical modes with frequencies in the
range of 0.5-19 MHz. These modes fall into the unresolved-sideband regime since the
mechanical frequencies are much smaller than the optical decay rate. This is followed
by a general optical and mechanical device characterisation. Using an electric-field an-
tenna the mechanical resonator is actuated which increases the coupling effect to the
quantum dot. With this, a series of resonant excitation measurements (time-averaged
and time-resolved) are performed to investigate the quantum-dot-mechanical cou-
pling. As a hallmark of this chapter, the coupling between the mechanical resonator
and the quantum dot is measured only based on displacement fluctuations from Brow-
nian motion. Finally, autocorrelation and time-trace measurements are compared in
terms of the measurement imprecision noise.
Chapter 4, “Mechanical damping in a quantum-dot optomechanical de-

vice”, presents cavity-optomechanical measurements based on the same mechanical
resonator as in Chapter 3. The optical cavity forms between the cantilever tip and the
bottom of the under-etch. The optomechanical interaction is studied with a blue- and
red-detuned laser. Exploiting optomechanical anti-damping, the effective mechanical
damping is reduced by two orders of magnitude by going to the onset of the phonon-
lasing regime. Finally, the optical cavity is used to precisely measure the damping
associated with the applied gate voltage and above-band laser power.
Chapter 5, “Quantum-dot optomechanics in the sideband regime”, in-

troduces the second-generation devices. The resonators in this chapter are used to
transition to mechanical frequencies faster than the decay rate of the quantum dot.
Compared to Chapter 3, the mechanical resonator is detached from the under-etched
membrane, enabling high-frequency in-plane breathing modes. The chapter first fo-
cuses on basic optical and mechanical characterisation and then turns to Brownian
motion measurements. Finally, using the electric-field antenna, a series of individual
measurements are performed to better understand the optomechanical interaction.
This includes the first observation of Brownian-motion acoustic sidebands and op-
tomechanical wave-mixing. Although sidebands are observed, the mechanical frequen-
cies are not larger than the quantum dot linewidth and hence, we call this frequency
regime the sideband regime.
Chapter 6, “Quantum-dot optomechanics in the resolved-sideband

regime”, presents the third-generation mechanical devices. The mechanical fre-
quency at 1.5 GHz makes the transition from the sideband to the resolved-sideband
regime. The chapter starts with in-depth mechanical simulations of the phononic-
crystal resonator. This follows a qualification of the quantum dots including charge
control, linewidth, lifetime, and single-photon purity measurements. Numerical sim-
ulations show that a different parameter set is needed for measuring the quantum-
dot-mechanical interaction. After discussing measurement difficulties due to the high
mechanical frequencies, Brownian-motion measurements are presented. Finally, the
last part gives an extensive conclusion and outlook for all optomechanical measure-
ments presented in this thesis.
Chapter 7, “Radiative Auger process in the single-photon limit”, makes

the transition from the optomechanical experiments to the radiative Auger measure-
ments. This chapter focuses on the emission produced during the radiative Auger
process. First, the radiative Auger effect is introduced in detail as a consequence
of Coulomb interactions and symmetry breaking. Second, a series of measurements
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prove that the additionally observed emission lines are originating from the same
emitter. Third, with the magnetic field dispersion of the emission lines, Auger tran-
sitions to p- and d-shells are identified. Last, single-carrier dynamics are extracted
from a cross-correlation measurement.
Chapter 8, “Optically driving the radiative Auger transition”, turns from

the emission to the excitation of the radiative Auger transition. In the strong driv-
ing limit of the fundamental quantum dot transition, an Autler-Townes splitting is
observed in the radiative Auger emission. This follows a two-laser experiment in a
Λ-configuration: a weak probe laser drives the quantum dot’s main transition while
a strong pump laser scans over the radiative Auger transition. Due to quantum in-
terference between different excitation paths, we observe an overall reduction in the
emission (absorption) due to the formation of a dark state. This forms a coherent
superposition of the Auger electron being in the s- and p-shells. The observations in
this chapter have recently led to follow-up experiments by Yan et al. [23] showing the
coherent control of the orbital state of an Auger hole.





CHAPTER 2

Background theory and device fabrication
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2.1 A solid-state artificial atom

Single-photon sources are of great need for quantum information applications, es-
pecially when involving complex networks with multiple nodes connected to each
other [8, 76]. Quantum emitters exist in different kinds, from cold atoms [82] and
trapped ions [83, 84] to solid state-based emitters. The latter are studied intensively
in recent years due to their versatility. Promising single-photon emitters in the solid
state are two-dimensional (2D) materials [85–87], colour centres in diamond [88, 89],
defects in silicon carbide [90, 91], quantum dots in nanowires [51, 92], and epitaxial
semiconductor quantum dots. [14, 77, 93].

Ideal properties of quantum emitters are unity internal quantum efficiency,
transform-limited linewidths, high single-photon purity and high indistinguishability,
and finally, fast and bright single-photon emission [76, 94]. In recent years semi-
conductor quantum dots have proven to be ideal sources for coherent single pho-
tons [9, 11, 76, 95, 96]. Furthermore, the available semiconductor nanofabrication
toolbox allows for engineering the mechanical environment of the dots [97]. Therefore,
semiconductor quantum dots are ideal for studying the coupling between a quantum
emitter and a mechanical resonator [20, 47, 50, 51, 54, 56, 98]. Note that recently
also defect centres [41, 42], rare-earth emitters [43], and 2D-materials [44–46] have
been investigated in this direction. The following paragraphs give a brief description
of the confinement as well as the excitonic properties of quantum dots.

Semiconductor quantum dots are nanometre-sized structures embedded in a host
crystal. They are epitaxially grown in a self-assembly process using molecular beam
epitaxy. In this thesis, two different quantum dots are investigated, namely Stranski-
Krastanow InAs quantum dots in GaAs [99–102] and droplet-etched GaAs quantum
dots in AlGaAs [8, 66, 103]. The latter are exclusively studied during the radiative
Auger measurements.

The quasi-zero-dimensional confinement of the quantum dot leads to quantised en-
ergy levels. For such a confined system, quantum effects become significant when the
thermal energy is smaller than the quantisation energy. This is also captured by the
thermal wavelength:

λdB =
ℏ√

2m∗kBT
, (2.1)

where m∗ is the effective mass of the confined particle and T is the temperature. If the
confinement scale is below the thermal wavelength, the system will be dominated by
quantum effects. For a single electron in a quantum dot (m∗ ≈ 0.07me, see Chapter 7)
at 4.2 K this translates into 3.7 nm. Since the quantum dot has a flat shape extending
more than 20 nm in xy-direction and about 5 nm in z-direction [104], the system can
be described by a two-dimensional quantum harmonic oscillator. Note that for GaAs
quantum dots the size is usually larger, for more details see Ref. [66]. The Hamiltonian
of the quantum harmonic oscillator is given by the momentum operator p̂ and the
confinement potential V (x⃗):

Ĥ =
p̂2

2m∗ + V (x⃗), V (x⃗) =
1

2
m∗ω2x⃗2, (2.2)

where m∗ is the effective mass inside the potential V (x⃗), and ω is the angular fre-
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Figure 2.1: Self-assembled semiconductor quantum dots. (a) Eigenenergy spectrum
obtained from solving the quantum harmonic oscillator. Each state can be filled with two
electrons (holes) with anti-parallel spins. The radial quantum number, n, and the angular
momentum quantum number, l, are displayed. (b) Heterostructure of the sample grown
with molecular-beam epitaxy. The membrane is grown on top of a sacrificial layer and the
quantum dots are tunnel coupled to the electron reservoir in the back gate. (c) Schematic
bandstructure of the heterostructure diode. By applying a forward bias, the quantum dot
can be filled with single electrons (bottom figure). Due to the thin diode of 180 nm there is
a large electric-field gradient (in z-direction) and a high forward bias is needed to charge the
quantum dot.

quency of the oscillator. The eigenenergies of the system can directly be obtained by
analytically solving the time-independent Schrödinger equation:

Ĥ |Ψ(x⃗)⟩ = E |Ψ(x⃗)⟩ , (2.3)

where |Ψ(x⃗)⟩ is the wavefunction of the confined particle. If an electric field is applied
(along z-direction), a linear correction term is added to the potential. Consequently,
the electron states shift to lower energies and the hole states shift to higher ener-
gies, known as the quantum-confined Stark effect [105–107]. The case of an applied
magnetic field is studied in Chapter 7. The eigenenergies of the system are:

Enx,ny = ℏωx

(
nx +

1

2

)
+ ℏωy

(
ny +

1

2

)
, with nx,y = 0, 1, 2, ... (2.4)

with nx, ny being the radial quantum numbers. Here, the radial symmetry is broken
due to the x/y-asymmetry of the dot. For more details see Chapter 7. Following the
nomenclature from atomic physics [108], the radial quantum number n = nx + ny

gives rise to s-, p-, d-like energy shells (n = 1, 2, 3) with in total nx + ny + 1 = n + 1
(non-) degenerate states, see Fig. 2.1(a). Every state can be filled with two electrons
(holes) with anti-parallel spin. This gives in total 2(n + 1) charge carriers per shell.

To control how many electrons (holes) are filled into the dots, they are embedded in
a doped-heterostructure diode. The diode not only allows quantum dot charge control
(see below) but also stabilises the charge noise in the surrounding host material [66,
109]. Figure 2.1(b) shows the growth structure of the InAs quantum dot sample. The
sample consists of a 180 nm thick membrane. [13] which includes the highly-doped
gate layers. The membrane is later used to fabricate the mechanical resonator, see
Chapter. 2.6. The quantum dots are capped with an AlAs monolayer to remove the
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wetting layer states [102]. Furthermore, the quantum-dot layer is tunnel-coupled to
the back gate by a 40 nm tunnel barrier. On top of the quantum dots, an AlGaAs
blocking layer is grown which limits the current to a few nanoamps at the quantum
dot operating bias voltage. The membrane is grown on top of a 1.15 µm sacrificial
layer which is selectively etched during the fabrication of the mechanical resonator,
see Chapter 2.6.

Due to the highly-doped gate layers, the heterostructure diode has a strong in-built
potential which can be lowered by applying a forward bias, see Fig. 2.1(c). This
way, the conduction band electron states can be moved into the electron Fermi sea
(back gate) and single electrons can tunnel into the quantum dot. The charge state
of the quantum dot can therefore be controlled via the applied electric field. Due to
the on-site Coulomb repulsion further electrons are hindered from tunnelling into the
quantum dot, known as Coulomb blockade [110].

2.2 Optical excitation scheme

Two different excitation schemes are used throughout the thesis: above-band excita-
tion and resonant excitation [102]. Figure 2.2 shows a schematic of the two excitation
schemes. With above-band excitation a high-energy laser (780 or 830 nm) excites lots
of charge carriers outside of the quantum dot (in bulk or in the wetting layer), see
Fig. 2.2(a). These carriers then relax via phonon-assisted processes [111] into the
lowest, non-occupied energy level of the quantum dot, followed by radiative recom-
bination. This means that the emitted photons, also called photoluminescence, have
a lower energy than the excitation laser. This technique allows the emission of all
quantum dots within the collection spot to be observed at the same time. On the one
hand, the excitation laser can be easily filtered out using a spectrometer, on the other
hand, it is difficult to interact with only a single transition of a single dot. Therefore,
this excitation technique is primarily used for initial quantum dot localisation and
pre-characterisation.

With resonant excitation, a linearly-polarised narrow-bandwidth laser (∼300 kHz)
is tuned directly in resonance with the optical transition, see Fig. 2.2(b). This al-
lows interacting directly with a specific excitonic transition of a single quantum dot
(dependent on the applied bias voltage). The emitted photons, also called resonance
fluorescence, are at the same wavelength as the excitation laser. Therefore, a cross-
polarised microscope head is used to suppress the reflected excitation laser [112]. For
more details on the measurement setup see Chapter 3.

The excitation laser creates bound electron-hole pairs, so-called excitons. The
binding energy is given by Coulomb interaction between the two particles of opposite
charge (for more details on Coulomb interactions see Chapter 7). Besides the opti-
cally created electron-hole pair, additional electrons (holes) can be charged into the
quantum dot by tuning the bias voltage applied to the diode structure (see previous
chapter). Figure 2.2(c) shows all excitons which can be resonantly addressed in a
two-level description. For the neutral exciton, X0, the ground state is empty and
the excited state is a bound electron-hole pair. For the charged excitons (trions),
X−(+), the ground state is a single electron (hole) and the excited state consists of
two electrons and one hole (one electron and two holes). Throughout this thesis,
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Figure 2.2: Optical excitation of the quantum dot. (a) With above-band excitation,
carriers are excited outside of the dot (bulk or in the wetting layer). After phonon-assisted
relaxation into the lowest, non-occupied energy state of the quantum dot, the carriers re-
combine by emitting a photon. The emitted photons, photoluminescence, are well separated
in colour from the excitation laser. (b) A narrow-bandwidth laser is tuned in resonance
with the dipole transition. The emitted photons, resonance fluorescence, are filtered from
the excitation laser using polarisation optics. (c) The three excitons that can be addressed
with a resonant laser in a two-level description: neutral exciton X0, negative and positive
trions X− and X+.

neutral excitons and negative trions are measured. For the optomechanical interac-
tion, it does not matter, in principle, which exciton is chosen. However, radiative
Auger transitions only exist for charged excitons (for more details see Chapter 7).
When described as a simple two-level system (neglecting the fine-structure splitting
and higher energy states) the three excitons presented above can be treated equally.

2.3 The optical two-level system

The following chapter gives a semi-classical description of a driven optical two-level
system, following Refs. [108, 113, 114]. The description is used throughout the full
thesis for charged and neutral excitons, as described in the previous chapter. In
Chapter 5 and 6 the model is expanded by an optomechanical coupling parameter
and in Chapter 8 it is expanded by a third level in a Λ-configuration and an additional
driving laser.

The Hamiltonian of the optical two-level system is given by a quantum dot part
and an interaction part:

Ĥ = ĤQD + Ĥint. (2.5)

The quantum dot part of the Hamiltonian is described by two levels, see Fig. 2.3(a),
a ground state |g⟩ with energy ℏωg and an excited state |e⟩ with energy ℏωe:

ĤQD = ℏωg |g⟩ ⟨g| + ℏωe |e⟩ ⟨e| . (2.6)

We now set the ground state to zero energy by subtracting ℏωg from both states:

ĤQD = ℏωe |e⟩ ⟨e| − ℏωg |e⟩ ⟨e| = ℏωgeσ̂+σ̂−, (2.7)
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where ωge = ωe − ωg is the energy difference between excited and ground state, and
σ̂+ = |e⟩ ⟨g| and σ̂− = |g⟩ ⟨e| are the raising and lowering operators with σ̂+σ̂− =
|e⟩ ⟨e|. The interaction of the quantum dot with the laser is described in the classical
picture where the laser is given by a time-dependent electric field:

E(t) = El cos(ωlt) =
1

2

(
Eleiωlt + Ele−iωlt

)
, (2.8)

where ωl/2π is the laser frequency and El the field amplitude. The interaction of the
laser with the quantum dot can be treated perturbatively and is described with the
dipole approximation [114]:

Ĥint = −d · E(t), (2.9)

where d is the dipole moment of the optical transition [115]. Assuming that the
laser is linearly polarised along x (due to the microscope head [112]), Eq. 2.9 can be
reformulated:

Ĥint = −exE(t) = −
(
|e⟩ ⟨g| + |g⟩ ⟨e|

)
µgeE(t), (2.10)

where µge = µ∗
eg = e ⟨e|x |g⟩ is the dipole matrix element for the x-polarised light.

We now define the optical Rabi frequency as ΩR = |µgeEl|/ℏ, which describes the
interaction strength of the laser with the quantum dot. Note that El scales quadrat-
ically with laser power and so does the Rabi frequency. The interaction part of the
Hamiltonian is then given by:

Ĥint = −ℏ
2

ΩR

(
|e⟩ ⟨g| + |g⟩ ⟨e|

) (
eiωlt + e−iωlt

)
, (2.11)

= −ℏ
2

ΩR (σ̂+ + σ̂−)
(
eiωlt + e−iωlt

)
.

In the Heisenberg picture, the transition operators σ̂+ and σ̂− rotate with e±iωget.
This leads to fast-varying terms e±i(ωge+ωl)t in Eq. 2.11, which are neglected via the
rotating wave approximation [114]. The full Hamiltonian in matrix form reads as
follows:

Ĥ = ĤQD + Ĥint =
ℏ
2

(
0 −ΩRe

iωlt

−ΩRe
−iωlt 2ωge

)
. (2.12)

To get rid of the time dependence in the above-presented Hamiltonian we go into
the rotating frame of the interacting laser. This is achieved by performing a unitary
transformation:

Û =

(
1 0
0 −e−iωlt

)
⇒ Ĥrot =

ℏ
2

(
0 ΩR

ΩR −2∆ωl

)
, (2.13)

where ∆ωl/2π = (ωl − ωge)/2π is the laser detuning from the excited state, see
Fig. 2.3(a). We now solve the time-independent Schrödinger equation with the density
matrix formalism. The density operator describes the quantum state of the system
including pure and mixed states:

ρ̂ =

nm∑
ij

ρij |Ψi⟩ ⟨Ψj| = ρgg |g⟩ ⟨g| + ρeg |e⟩ ⟨g| + ρge |g⟩ ⟨e| + ρee |e⟩ ⟨e| , (2.14)

where ρij are the matrix elements of the density operator. The density matrix
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Figure 2.3: Master-equation model of a two-level system. (a) Level scheme of the
optical two-level system. A near-resonant, coherent laser is driving the optical transition
|g⟩ ↔ |e⟩ with a detuning of ∆ωl from the excited state. The incoherent excited state decay
is given by ΓR. (b) Normalised excited-state population, ρee, as a function of laser detuning
and for different Rabi couplings. (c) On-resonance excited-state population, saturating
above ΩR > ΓR.

elements obey the following conditions:

ρgg + ρee = 1, ρge = ρ∗eg. (2.15)

The time evolution of the system, including coherent and incoherent processes, is
captured with the Lindblad master equation (von Neumann equation) [108]:

∂

∂t
ρ̂ = − i

ℏ
[Ĥrot, ρ̂] + L̂(ρ̂), (2.16)

L̂(ρ̂) =
1

2

(
2Lρ̂L† − ρ̂L†L− L†Lρ̂

)
(2.17)

The first term in Eq. 2.16 captures the coherent part of the system, whereas the
second term, the Lindblad operator, includes all incoherent processes via collapse
operators. Here, L =

√
ΓR|g⟩⟨e| =

√
ΓRσ̂− with ΓR being the radiative decay rate,

see Fig. 2.3(a). Note that pure dephasing of the excited state is neglected but could
be added in the same ways as the radiative decay. The equations of motions of the
density matrix elements, known as the optical Bloch equations, can then be solved for
the steady-state ∂

∂t ρ̂ = 0. This collapses the problem from a set of coupled differential
equations to a set of coupled linear equations.

The quantum dot emission is proportional to the excited-state population which
can be obtained from the steady-state solution of Eq. 2.16:

⟨σ̂+σ̂−⟩ = ρee =

(
1
2ΩR

)2
∆ω2

l + 1
2Ω2

R +
(
1
2ΓR

)2 . (2.18)

Figure 2.3(b) shows the excited state population in dependence on the laser detuning
for low and high Rabi coupling. At low excitation power, ΩR ≪ ΓR, this corresponds
to a Lorentzian lineshape with a FWHM given by ΓR. At higher powers, the linewidth
is power-broadened due to the additional Rabi term in the denominator of Eq. 2.18.
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Figure 2.4: Emission spectrum of an optical tow-level system. (a) Coherent and (b)
incoherent part of the emission spectrum at ΩR = 5ΓR. The coherent part is given by the
elastically scattered laser whereas the incoherent emission is given by the spontaneous decay
via ΓR. (c) Total, coherent, and incoherent emission in dependence of the Rabi coupling.

Figure 2.3(c) shows the excited state population in dependence on the Rabi frequency.
Due to the non-linear nature of the quantum emitter, the excited state population
saturates at high powers: when ΩR → ∞ then ρee → 0.5.

Going into more detail, the emission of the quantum dot can be separated into two
parts, a coherent and an incoherent part. The frequency-resolved emission can be
obtained by performing a Fourier transformation on the first-order coherence function:

G(1)(t, τ) = ⟨σ̂+(t)σ̂−(t + τ)⟩, (2.19)

S(t, ω) =

∫ ∞

0

G(1)(t, τ)e−iωτdτ. (2.20)

The emission spectrum can be obtained analytically, however, we use an alternative
approach by numerically simulating the spectrum using the Python quantum toolbox
Qutip [116, 117]. The advantage of Qutip is that without a lot of effort, the emission
spectrum can also be solved for a time-dependent Hamiltonian. Figure 2.4(a,b) shows
the coherent and incoherent parts of the spectrally resolved emission and figure 2.4(c)
shows the integrated coherent and incoherent emission in dependence on the Rabi
frequency. At low powers, ΩR ≪ ΓR, the laser is coherently scattered and interacts
only weakly with the quantum dot. The emission of the dot takes on the coherence
of the laser and the excited state population stays low. At high powers, ΩR ≫ ΓR,
the laser interacts strongly with the quantum dot. In quantum language, the strong
interaction is described by the dressed-state picture. The emission is dominated by
the incoherent part which is given by three peaks separated by the Rabi frequency
ΩR, known as the Mollow triplet [118], see Fig. 2.4(b). The Mollow triplet was first
observed in atomic sodium [119, 120] and later also with semiconductor quantum
dots [1, 121]. Note that the total integrated emission (see Fig. 2.4(c)) follows the
excited-state population from Eq. 2.18.

To summarise, we describe the optical two-level system using a semi-classical ap-
proach and obtain the quantum dot emission in dependence on laser detuning and
laser power. The picture above describes the perfect, unperturbed optical emitter,
however in nature, the quantum dot interacts with its environment. For example,
the excited state can couple to lattice vibrations, i.e. phonons, which give rise to a



2.4. Mechanical harmonic oscillator 15

broad LA-phonon sideband [19, 122] surrounding the zero-phonon-line of the dot (see
Chapter 7) as well as LO- and TO-phonon replica [21] (inelastic scattering). Phonons
are also known to lead to pure dephasing of the excited state, a process which does
not change the excited-state population, leading to a homogeneous broadening of the
linewdith [123, 124]. In the description above, higher energy states (p-, and d-shell)
are also neglected. As will be shown in Chapter 7, these higher energy states still
play a role (0.1 to 2 % of the emission) due to Coulomb interactions between the
tightly confined carriers of the charged excitons. Furthermore, the quantum dot also
interacts with its local charge and magnetic environment (nuclear spins), the major
sources of inhomogeneous broadening [125]. This broadening is added to the model
via a Lorentzian weighted jitter in the laser detuning.

2.4 Mechanical harmonic oscillator

The previous chapter focused on the optical description of the quantum dot. In the
following two chapters, we focus on the interaction of the emitter with a single mode
of a mechanical resonator (mechanical cavity), while in the end coming back to the
impact on the quantum dot emission. The derivation of the mechanical system follows
Refs. [29, 126, 127].

The complete three-dimensional motion of a mechanical mode can be described by
the displacement function:

u(r, t) = x(t)|u(r)|, (2.21)

where |u(r)| describes the normalised mode shape [128] and x(t) describes the time
dependence of the motion. For simple resonators, for example a cantilever or a
beam, the mode shape can be calculated analytically within the frame of the Euler-
Bernoulli beam theory [127]. For more complex resonator design as presented in
this thesis, the mode shape can be obtained by finite-element simulations. Since

the mode shape is normalised |u(r)| = u(r)
max(|u(r)|) , the function x(t) represents the

displacement amplitude of the resonator. The time evolution of the resonator is
then captured by a linear harmonic oscillator model [129, 130] with an effective mass

meff =
∫
ρ
(

u(r)2

max(|u(r)2|)

)
dr:

meff
dx2(t)

dt2
+ meffΓm

dx(t)

dt
+ meffΩ2

mx(t) = F (t), (2.22)

where Ωm/2π is the mechanical frequency, k = meffΩ2
m is the spring constant, and Γm

the energy dissipation rate which relates to the mechanical quality by Qm = Ωm/Γm.
High mechanical quality is advantageous since it increases the mechanical noise

amplitude in the power spectrum and also the intensity of acoustic sidebands. The
mechanical quality is composed of many individual damping mechanisms: medium
damping due to the collision with gas molecules [131], clamping loss to the surrounding
substrate (also called radiation loss) [132], and intrinsic damping:

1

Qm
=

1

Qmedium
+

1

Qclamping
+

1

Qintrinsic
+ ... (2.23)

Intrinsic damping describes all material-related losses in bulk and at the surface of the
mechanical resonator. This includes friction losses from material imperfections [133]
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and fundamental losses such as thermoelastic [134–136] and phonon-phonon damping
(Akhiezer damping) [137].

It is often not straightforward to pinpoint the dominant damping mechanism, es-
pecially for complex material platforms and complex resonator designs such as the
ones presented in this thesis. Nevertheless, clamping losses can be studied with finite-
element simulations, see Chapter 4. Furthermore, Chapter 4 makes an attempt to
quantify some of the losses, namely, gas damping and measurement-based losses.

A figure of merit of mechanical resonators coupled to a thermal bath is the Qm ·fm
product. It stands for how well the mechanical resonator can be decoupled from the
thermal environment: Qm · fm must be bigger than kBT

h to perform at least one co-
herent oscillation. More precisely, the number of coherent oscillations in the presence
of thermal decoherence is given by:

Ωm

nphonΓm
= Qm · fm ×

(
h

kBT

)
. (2.24)

In contrast to the classical picture (see Eq. 2.27), quantum mechanics describes the
mechanical oscillator with quantised displacement and momentum [29]:

x̂ = xzpf

(
b̂ + b̂†

)
, (2.25)

p̂ = −imeffΩmxzpf

(
b̂− b̂†

)
, (2.26)

where xzpf is the zero-point motion of the resonator and b̂†and b̂ are the phonon cre-
ation and annihilation operators. The following Hamiltonian is obtained by quantum
mechanical treatment of the mechanical harmonic oscillator:

Ĥmech = ℏΩm

(
b̂†b̂ + 1/2

)
, (2.27)

where the mechanical quantum, ℏΩm, is described by the phonon. The mean phonon
number is given by ⟨nphon⟩ = b̂†b̂ which obeys the Bose-Einstein statistics. For
kBT ≫ ℏΩm the occupation can be simplfied to ⟨nphon⟩ = kBT

ℏΩm
.

To estimate the exciton-phonon coupling strength, the vacuum fluctuation and
thermal motion of the resonator need to be determined. The vacuum fluctuation of
the mechanical resonator is given for ⟨nphon⟩ = 0. Furthermore, the mean energy of
the mechanical resonator is given by the equipartition theorem [29, 98]:

⟨E⟩ = kBT = meffΩ2
mx

2
zpf . (2.28)

By equating Eq. 2.27 and 2.28 the zero-point motion is obtained:

xzpf =

√
ℏ

2meffΩm
. (2.29)

The thermal motion (Brownian motion) [127] of the resonator can be described by
the mean-square random variation of the displacement. In other words, the effective
spring is fluctuating randomly about the mean position due to temperature:

1

2
meffΩ2

m⟨x2⟩ =
1

2
kBT. (2.30)
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Since the zero-point motion is given by half the energy of a single-phonon, the thermal
displacement scales with

√
2nphon in relation to the vacuum fluctuation:

xth = ⟨x2⟩1/2 = xzpf

√
2kBT

ℏΩm
= xzpf

√
2nphon. (2.31)

2.5 An optical two-level system coupled to a
mechanical resonator

The exciton-phonon coupling rate is described in the dispersive regime where the
excited state of the two-level system is shifted linearly in energy due to the displace-
ment of the mechanical resonator. This energy shift is due to deformation potential
coupling, meaning that displacement creates strain, strain changes the local bandgap
of semiconductor material, which in turn shifts the quantum dot transition energy.
Deformation potential couplings for hydrostatic and shear strain of GaAs [20, 98] are
a = −8.33 eV and b = −1.7 eV [138, 139]:

δE = a
(
ϵxx + ϵyy + ϵzz

)
− b

2

(
ϵxx + ϵyy − 2ϵzz

)
. (2.32)

The strain profile is obtained from finite-element simulations and normalised using
thermomechanical calibration [128]. In this way, the vacuum exciton-phonon coupling
strength can directly be obtained from Eq. 2.32 via:

gep =
∂ω

∂x
xzpf =

δE

ℏ
. (2.33)

The thermal coupling strength, which is the angular frequency shift of the dot for
⟨nphon⟩ > 1, is then gth = gep

√
2nphon [140]. If expressed in terms of the coupling

per single-phonon, gth scales with
√
nphon.

The backaction of the interacting system is given by the strain created by the exciton
inside the quantum dot [55]. Together with the mechanical motion, this creates a time-
dependent backaction force on the mechanical resonator [29]. For a laser at a fixed
frequency, the mechanical motion modulates the excited state population (and thus
the strain created by the exciton) with a specific phase delay. Dependent on whether
the quantum emitter is driven red or blue detuned, the corresponding phase delay
leads to optomechanical damping (anti-Stokes scattering) and anti-damping (Stokes
scattering), respectively [29].

The full Hamiltonian of the coupled system consists of the bare quantum dot term
(see previous chapter), the bare mechanical term, and the optomechanical coupling
term:

Ĥ = ĤQD + Ĥmech + Ĥcoupl (2.34)

Ĥ = ℏωσ̂+σ̂− + ℏΩm

(
b̂†b̂ + 1/2

)
+ ℏgepσ̂+σ̂−

(
b̂† + b̂

)
, (2.35)

with
(
b̂† + b̂

)
= x̂/xzpf . If the phonon occupation is high, ⟨nphon⟩ ≫ 1, the coupling

term can be expressed classically: Ĥcoupl = ℏ gep
xzpf

xthσ̂+σ̂− = ℏgthσ̂+σ̂−. This expres-

sion is used throughout the thesis.



18 Background theory and device fabrication

-15 -10 -5 0 5 10 15

l/ R

10-5

10-4

10-3

10-2

ee

-3 -2 -1 0 1 2 3

l/ R

0

0.005

0.01

ee

a) b)
t = 0Tm
t = 1/4Tm
t = 3/4Tm
averaged

-3 -2 -1 0 1 2 3

l/ R

0

0.005

0.01

ee

-15 -10 -5 0 5 10 15

l/ R 

m>> R

10-5

10-4

10-3

10-2

ee

m>> R

m<< R m<< R

c) d)

Figure 2.5: Numerical simulations of the exciton-phonon coupling. (a,b) Effect of
the low-frequency optomechanical coupling in linear- and log-scale. The mechanical mo-
tion periodically shifts the exciton frequency. Time-averaging the frequency modulation
(yellow-dashed line) results in a broadened linewidth. (c,d) Effect of the high-frequency
optomechanical coupling in linear- and log-scale. The frequency modulation is much faster
than the decay rate of the dot. Instead of a broadened linewidth, side peaks at ±Ωm are ob-
served. These side peaks show a time modulation due to effective-Rabi-frequency matching
with the mechanical frequency. For (a)-(d) the frequency modulation of the excited state is
gth/2π = 60MHz. For more details on the simulations see Chapter 5.

The coupling between the quantum emitter and the mechanical resonator is studied
in depth in Chapters 3 to 6. There are two distinct regimes where the coupling man-
ifests itself in a different effect on the emission of the quantum emitter, see Fig. 2.5.
For mechanical frequencies much slower than the quantum dot’s excited state decay
rate, Ωm ≪ ΓR (unresolved-sideband regime), the coupling leads to a frequency shift
of the quantum dot resonance, see Fig. 2.5(a,b). Time-averaged, this results in a
broadened linewidth. On the contrary, for mechanical frequencies much faster than
the quantum dot’s excited state decay rate, Ωm ≫ ΓR (resolved-sideband regime),
the resonance of the dot does not shift at all, see Fig. 2.5(c). However, the coupling
gives rise to acoustic sidebands, separated from the quantum dot resonance by the
mechanical frequency, see Fig. 2.5(d). Interestingly, these sidebands also show a time
modulation. The two regimes show a significant difference in the quantitative effect of
the coupling. More precisely, for low frequencies, the effect on the emitted photons is
solely given by the coupling rate, independent of the mechanical frequency. However,
for the high-frequency regime, the sideband intensity is given by the coupling rate
normalised to the mechanical frequency. In this thesis, we make an attempt to un-
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a) b)

Figure 2.6: Fabrication of the sample. (a) Mask file including all fabrication-relevant
steps from the markers to the contacts and the mesa, to the mechanical structures. (b)
Optical image of the fabricated sample. The sample consists of two copies of the same
mechanical structures, each with separate gates for individual charge control. Contact pads
are 1.5×1mm2.

derstand this interaction in-depth, such that the coupling can be exploited to control
the mechanical state of the resonator via the optical interaction with the quantum
emitter.

2.6 Fabrication of the mechanical resonators

As shown in Fig. 2.1(b), the optomechanical sample (wafer number #15027) consists
of a 180 nm thick membrane grown on top of a 1.15 µm AlGaAs sacrificial layer. As
previously described, the membrane contains highly-doped gate layers for quantum
dot charge control. The quantum dots are embedded in the centre of the membrane
(z = 0). The advantage of this position is that first, the dots couple strongly to
mechanical in-plane bending and breathing modes (see Chapter 3-6) and second, the
dots also couple strongly to TE-light modes confined within the membrane. The fol-
lowing gives a brief description of the fabrication process.

The wafer material is cleaved into 4×4 mm2 pieces parallel to the small-flat of the
wafer. This is crucial since the mechanical properties of GaAs are anisotropic and the
fabrication axis needs to match the finite-element simulation axis ([110]). Then, the
mesa structure is etched, followed by evaporating the contacts: Ni/Ge/Au/Ni/Au for
the back contact (which is annealed to form an ohmic contact) and Cr/Au for the top
contact.

The mechanical structures are then fabricated by means of electron-beam lithog-
raphy. A soft mask is spin-coated on the sample and after baking, the mechanical
structures are written with the electron beam. After development, the structures are
dry-etched (inductively-coupled plasma reactive ion etching) into the membrane. The
residual resist is removed and the structures are under-etched by selective-etching of
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the sacrificial layer in a wet-etch process (hydrofluoric acid). To avoid a collapse of
the structures, a final critical-point drying step is performed. More details on the
fabrication process can be found in Ref. [97].

Finally, after the full fabrication process, the sample is glued on a Ti-sample holder
and the contacts are connected (by hand) to a PCB using copper wires and silver
epoxy. For more details on this step see Chapter 5.9. Figure 2.6 shows the full mask
file compared to the fabricated structures.

The wafer material used in this thesis is grown by Sven Scholz and Julian Ritz-
mann in the group around Arne Ludwig and Andreas D. Wieck at the Lehrstuhl für
Angewandte Festkörperphysik at the Ruhr-Universität Bochum (Germany). The fab-
rication of the mechanical structures is performed by Ying Wang in the group around
Leonardo Midolo and Peter Lodahl at the Niels Bohr Institute in Copenhagen (Den-
mark).



CHAPTER 3

Quantum-dot optomechanics in the
unresolved-sideband regime
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3.1 Introduction

Coupling a single-photon emitter to a mechanical resonator is of fundamental interest
for applications involving the heralded emission or absorption of a single phonon.
Semiconductor quantum dots have excellent optical properties and can be integrated
into various mechanical resonators. However, to date, mechanical resonators hosting
optically active quantum dots lack the scalability to gigahertz mechanical frequencies
(the resolved-sideband regime). In our experiments, self-assembled InAs quantum
dots are coupled to the in-plane mechanical motion of a 180 nm thick membrane
resonator. The resonator holds three mechanical modes in the megahertz regime
with high mechanical quality factors, Qm > 2 × 104. We probe the Brownian
motion with the single photons emitted by the quantum emitter and observe a high
exciton-phonon coupling rate, gep/2π ≈ 100 kHz. The membrane resonator design
presented here, together with the nanofabrication toolbox, allows for translation to
the resolved-sideband regime (see Chapter 6).

Optomechanical systems find numerous applications from precision sensing [141–
144] to laser cooling [27] and microwave-to-optics conversion [145]. The choice of
the mechanical and optical system thereby depends on the scope of the application.
On the one hand, cavity optomechanical systems have found great success in
many areas from macroscopical resonators for gravitational wave sensing [146] to
microscopical systems probing the quantum nature of sound [36]. On the other hand,
quantum dot optomechanical systems have recently shown significant advances by
coupling to engineered mechanical resonators [20, 47–57, 68, 69] and surface acoustic
waves [50, 58–65]. The main advantage of using a quantum dot as the optical part of
the coupled hybrid system is the non-linear nature of the quantum emitter, enabling
the deterministic generation of single phonons [72]. Additionally, the quantum
dot is an excellent single-photon emitter [8, 22, 76] and can serve as a host for a
single-spin [147].

So far, optomechanical interaction without additional mechanical driving has only
been demonstrated once using quantum dots embedded in a trumpet resonator [20].
Although these measurements present a step towards single-phonon generation
(absorption), the necessary scaling to higher frequencies is not straightforward with
these systems. Additionally, the system lacks a diode structure for quantum dot
charge stabilisation resulting in reduced sensitivity to mechanical noise.

In the following chapter, we present a membrane resonator with high-quality
in-plane mechanical modes, coupling to numerous quantum dots. A mechanical
frequency in the MHz regime (doppler regime) allows us to study the dispersive
coupling between the macroscopic mechanical resonator and the microscopic quantum
dots in detail. We resolve the Brownian motion of the mechanical modes by recording
the emitted single photons with a Hanbury Brown-Twiss setup and single-photon
detectors. The mechanical noise is recorded as a function of excitation power and
laser detuning and shows the fundamental characteristics of a single-photon emitter
coupled to a mechanical resonator.
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Figure 3.1: Optomechanical coupling of a quantum dot and a mechanical res-
onator. (a) Schematics of quantum dots coupled to a cantilever-type mechanical resonator.
A displacement δx creates strain δϵ which changes the local bandgap δE. (b) The quantum
dot’s resonance frequency is shifted accordingly to the change in band gap which is then
mapped onto the statics of the emitted photons by a detuned laser. (c) Mechanical system:
scanning electron microscope image of a membrane cantilever surrounded by the remaining
under-etched membrane. (d) Optical system: a photoluminescence map of the cantilever
reveals multiple quantum dots distributed over the full mechanical resonator. The cantilever
is highlighted in green and the under-etched membrane in blue. (e) Normal bending modes
of the cantilever with the major displacement either out-of-plane (OP1) or in-plane (IP1 and
IP2).

3.2 A quantum dot coupled to a mechanical resonator

The material platform is a 180 nm thick membrane (see Chapter 2), hosting a GaAs
p-i-n diode structure for charge control of the embedded InAs quantum dots [13].
The mechanical system is a cantilever-type resonator of 15×1 µm2, fabricated with
electron-beam lithography [97], Fig. 3.1(c). The quantum dots are embedded in the
centre of the membrane (in z-direction) and can be found over the full area of the
cantilever, highlighted in green in Fig. 3.1(d). An advantage of placing the quan-
tum dots in the middle of the membrane is that they couple strongly to in-plane
mechanical modes. These modes enable higher mechanical frequencies than out-of-
plane modes (here 6-fold) for a given resonator size. We observe three mechanical
bending modes: one out-of-plane mode (OP1) at 0.5 MHz, and two in-plane modes
(IP1 and IP2) at 3.1 and 19.1 MHz, Fig. 3.1(e). A mechanical displacement δx of the
cantilever tip creates strain at the cantilever clamp, shifting the quantum dot energy
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by δE due to deformation potential couplings [98], see Fig. 3.1(a). The quantum dot
energy shift can then be imprinted on the statistics of the emitted single photons by
a detuned probe laser [20], Fig. 3.1(b). The resulting interaction is governed by the
non-linear nature of the quantum emitter [62] as described by the interaction term in
the following Hamiltonian [98]:

Ĥ = ℏωσ̂+σ̂− + ℏΩm(b̂†b̂ + 1/2) + ℏgepσ̂+σ̂−(b̂† + b̂), (3.1)

where ω/2π and Ωm/2π are the quantum dot and mechanical frequencies, b̂† and b̂
are the mechanical creation and annihilation operators, σ̂+σ̂− = |e⟩ ⟨e| is the Pauli
operator acting on the optical two-level system, and gep = ∂ω

∂x · xzpf is the vacuum
optomechanical coupling strength. Compared to cavity optomechanical systems, the
exciton-phonon coupling cannot be scaled with excitation power and is solely given
by the intrinsic strain coupling of the quantum dot. Thus, careful selection of the
mechanical resonator design is an important prerequisite.

3.3 Quantum dot localisation and mechanical mode
profile

We begin by locating the quantum dots on the mechanical resonator. The largest
strain and thus the highest coupling of the quantum dots to the mechanical motion is
at the clamping position of the cantilever. A photoluminescence map is taken where
we record a full photoluminescence spectrum for every position on the mechanical
resonator. The scanning is performed using a set of piezo steppers and scanners. Fig-
ure 3.2(b) represents the counts of the brightest quantum dot found at each position.

Since the intrinsic exciton-phonon coupling is not visible in photoluminescence, a
mechanical drive is installed. An electric-field antenna [148], consisting of an sma
cable with removed isolation, is mounted about 0.5 cm above the sample surface. The
electric field radiated by the antenna couples to the in-built electric field of the mem-
brane diode. Thus, the cantilever can be actuated by applying a microwave signal to
the antenna at the resonance frequency of the mechanical resonator. The microwave
applied to the antenna is generated using an arbitrary waveform generator. This way
of mechanical driving is less invasive than for example thermal driving. It also does
not rely on the precise positioning of the antenna with respect to the mechanical
resonator and thus, many mechanical resonators can be probed with the same setup.

After locating the cantilever clamping position, we perform a cantilever dis-
placement sweep from 0 to 35 nm, driving the first in-plane mechanical mode IP1,
Fig. 3.2(a). Due to the optomechanical interaction, the quantum dot linewidth
becomes broadened. The level of broadening is thereby given by the exciton-phonon
coupling strength. Figure 3.2(a) shows several quantum dots with different coupling
strengths at the cantilever clamping position. Because IP1 has a strain node in
the centre of the cantilever (y-direction) and since the laser spot covers the full
cantilever width, we can also see dots with close-to-zero coupling to the mechanical
displacement. The quantum dots presented throughout the following chapters are
labelled in Fig. 3.2(a).

Since the antenna driving is not affected by the position of the cantilever, we
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Figure 3.2: Quantum dot localisation on the mechanical resonator and strain pro-
file. (a) Spectrally resolved photoluminescence at the cantilever clamping position as a
function of mechanical displacement of the first in-plane mode IP1. Several quantum dots
can be seen, each with a different coupling strength to the mechanical motion. (b) Photolu-
minescence map of the cantilever. For each position, a spectrum is taken and the count rate
of the brightest quantum dot is selected. (c) Same as in (b) but for each position two spectra
are taken, with the mechanical drive on and off. Each pixel is then given by the difference
between the two spectra which represents the coupling strength and the local strain profile
probed by the quantum dots.

can also perform a photoluminescence map with the antenna drive turned on.
Subtracting a spectrum with antenna-drive on from a spectrum with antenna-drive
off reveals the quantum dot coupling strength (highest reduction in signal). In other
words, we use the quantum dot emission to probe the strain profile of the driven
mechanical mode. Figure 3.2(c) shows the measured profile for the first in-plane
mechanical mode, with the highest strain coupling at the cantilever clamp. Note
that here we probe the absolute value of the strain and thus we cannot differentiate
between strain coupling with opposite signs.

3.4 Mechanically modulated resonance fluorescence

Exploiting resonant excitation, a clear difference between the mechanical drive turned
on and off is visible. In Fig. 3.3(a) the resonant linewidth scan of the negatively
charged exciton X1− shows a broadening of 2δE/ℏ = 8.06 GHz, due to mechanical
driving of IP1. The data is fitted using a model including a sinusoidal modulation
of the quantum dot resonance (see Chapter 3.6). The magnitude of the broadening
(together with the vacuum exciton-phonon coupling rate) gives the displacement of
the driven cantilever mode, which is δx = 1.28 nm. Note that the maximum displace-
ment achieved when driving IP1 is δxmax = 34 nm, see Fig. 3.2.

An important figure of merit is the mechanical quality factor of the membrane
resonator. Compared to the previous trumpet resonator [20], the surface-to-volume
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Figure 3.3: Quantum dot resonance fluorescence modulated by the mechanical
driving of the cantilever. (a) Resonant linewidth scan of the quantum dot with the
mechanical drive turned on and off. (b) Time-averaged resonance fluorescence as a function
of mechanical drive frequency. The extracted FWHM results in a mechanical quality factor of
Qm = 2.2× 104. (c) Ring-down measurement of the cantilever driven by a 15ms microwave
burst pulse with 50% duty cycle. The lifetime of 2.2ms matches well with the measured
quality factor in (b). (d,e) Time-resolved resonance fluorescence of the first and second in-
plane modes, the two quantum dots are modulated in phase with respect to each other. (f)
Time-resolved measurement in a magnetic field of 1.1T (Voigt geometry), both quantum dots
split each into four allowed optical transitions. The signal recovering points at 317.26THz
and 317.25THz are due to ineffective spin-pumping. (a-d,f) correspond to the first in-plane
mode IP1 and (e) corresponds to the second in-plane mode IP2.

ratio of the cantilever is three times larger, making the system more prone to surface
losses [133]. Moreover, the highly doped gate layers and the applied diode bias can
add additional losses.

We probe the mechanical quality factor of IP1 in two different ways. First, we
perform a mechanical resonance frequency scan, Fig. 3.3(b). Second, the mechanical
lifetime is measured by actuating the cantilever with a burst pulse and monitoring the
ring-down time, Fig. 3.3(c). In both cases, we record the resonance fluorescence emit-
ted by the quantum dot and we perform a two-dimensional model fit, see Fig. 3.5.
The extracted FWHM and lifetime are 141.5 Hz and 2.25 ms (for more details see
Chapter 3.6). Both result in a mechanical quality factor of Qm = 2.2 × 104. Com-
pared to the first-order bending mode of the previous trumpet resonators [20], this
constitutes an increase in mechanical quality of a factor of 10, besides the already
6-fold increase in mechanical frequency.
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The mechanical quality of IP2 is extracted from a ring-down measurement, which
yields τm = 0.376 ms and Qm = 2.2×104. OP1 shows a quality of Qm = 1.5×104 ob-
tained from a quantum dot independent measurement, see Fig. 3.12. The mechanical
properties in dependence on the applied bias voltage are studied in detail in Supple-
mentary note III.

We continue with time-resolved measurements while actuating the cantilever with
the electric field antenna and extracting the phase relation of each quantum dot with
respect to the mechanical drive (displacement). This allows the relative geometrical
position of the individual quantum dots to be located. We record the resonance flu-
orescence in a histogram mode while sweeping the laser frequency. Figure 3.3(d,e)
shows the modulated emission of QD1 and QD2 while driving the two in-plane modes
IP1 and IP2, respectively. Each horizontal data line represents one measurement
step where a histogram is recorded for 20 s. The full phase relation between me-
chanical response and applied microwave field is shown in Fig. 3.4. We observe that
QD1 and QD2 react in phase with the mechanical driving for both IP1 and IP2.
The same applies to QD3. This means that all three dots are located on the same
half (in y-direction) and close to the clamp of the cantilever (less than 2.8µm, see
Supplementary note II). This matches well with the position obtained from the pho-
toluminescence map.

The dynamics in the time-resolved measurements become especially visible when
a magnetic field is applied. Figure 3.3(f) shows the same setting as in Fig. 3.3(d)
except that a magnetic field, B = 1.1 T, is applied orthogonal to the growth axis
(Voigt geometry). Note that the magnetic field adds additional phase noise to the
measurement. Whether the noise is added via the antenna driving or via a mechanical
resonance fluctuation needs further investigation. The two quantum dots each split
into four optically allowed transitions, see Fig. 3.6. The measurement is performed in
the centre of the X1− charge plateau, thus, without mechanical driving the quantum
dot emission vanishes due to effective spin pumping into a dark state [149]. However,
with mechanical driving bright recovery spots appear, see Fig. 3.3(f).

For each measurement (horizontal line) the laser is fixed, however, the mechanical
driving moves the optical transitions in and out of resonance with the laser. Thus, the
spin is pumped back and forth between the two spin states every mechanical period
and the emission is recovered. We support our argumentation with a numerical rate
equation simulation, for more details see Chapter 3.7.

3.5 Amplitude and phase of the quantum dot
modulation

The quantum dot resonance is sinusoidally modulated with a frequency given by the
mechanical mode and an amplitude given by the exciton-phonon coupling together
with the mechanical displacement. If a resonance scan is performed, the modulation
becomes time-averaged which leads to a broadening of the linewidth, as sketched in
Fig. 3.4(a). Figure 3.4(b) and (c) show the selected quantum dots from Fig. 3.2(a).
The negatively charged X1− plateau is scanned by tuning the applied bias voltage
and sweeping the excitation laser. The emitted single-photons are monitored with
single-photon detectors. The plateau scans are shown without (left) and with (right)



28 QD optomechanics in the unresolved-sideband regime

0 0.5 1
time ( s)

-0.5

0

0.5 -2

0

2

M
W

/2
 (k

H
z)

-0.5 0 0.5
0

1

2

3

0

0.5

1

ph
as

e 
(

)

MW/2  (kHz)

1.28 1.3 1.32 1.34
gate voltage (V)

317.24

317.26

317.28

1.3 1.32 1.34 1.36
0

100

200

300

kc
ou

nt
s 

(1
/s

)

1.28

antenna off antenna on

QD1

QD2

1.28 1.3 1.32 1.34
gate voltage (V)

318.44

318.46

318.48

1.28 1.3 1.32 1.34 1.36
gate voltage (V)

0

50

100

kc
ou

nt
s 

(1
/s

)

QD3

antenna off antenna on

0 0.5 1
time ( s)

-4

-2

0

2

4

a) b)

c)

d) e) f)

l/2
 (T

H
z)

l/2
 (T

H
z)

Figure 3.4: Mechanical modulation of the quantum dot and phase measurement.
(a) Model of the sinusoidal frequency shift of the quantum dot. Shown is one oscillation
period of the mechanical resonator, where each time step can be represented by a frequency-
shifted Lorentzian. Time-averaged, a broadened linewidth is observed, as shown in yellow.
(b,c) Resonant charge-plateau scan of the negatively charged exciton X1− without (left)
and with (right) mechanical driving. The broadening of the linewidth can be observed over
the full plateau width. (d-f) Time-resolved measurement of the modulated quantum dot
to extract the phase relation with respect to the mechanical driving. The quantum dot
frequency shift is measured as a function of microwave detuning (e) from which the phase
response can be extracted, shown in (f).

mechanical driving. Over the full range of the plateau, the mechanical frequency
changes only slightly. Thus, the mechanical driving is always on resonance and a
uniform broadening is observed. Since the exciton-phonon coupling is given by the
strain-mediated bandgap shift, the plateau edges are not affected by the mechanical
driving.

As discussed in the previous chapter, the sinusoidal quantum dot modulation can be
probed in a time-resolved measurement. While driving the mechanical motion with
the electric field antenna, the emitted single photons are collected in a histogram
mode. For this, the time tagging module is synchronised to a trigger signal from the
arbitrary waveform generator. Figure 3.4(d) shows a time-resolved measurement of
QD3 while mechanical driving of IP1. Each horizontal line represents a histogram
recorded for 20 s for a fixed laser frequency. Since the time tagger is synchronised
with the waveform generator, the phase response of the mechanical displacement
with respect to the drive can be measured. To determine the exact phase response for
a fixed mechanical driving frequency, the quantum dot frequency is extracted for each
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histogram time step, highlighted in red in Fig. 3.4(d). The time-resolved measurement
is then repeated while scanning the applied microwave over the mechanical resonance.

The extracted quantum dot frequency shift as a function of mechanical driving
frequency and time is shown in Fig. 3.4(e). A clear shift of the phase response can be
observed around the mechanical resonance. As a last step, each of the extracted time-
resolved quantum dot frequency shifts is fitted with a sine function to extract precise
amplitude and phase values, which can be seen in Fig. 3.4(f). The phase undergoes
the expected shift of π around the mechanical resonance. Note that the resonance
scan deviates from the data shown in the previous chapter since these measurements
were performed after swapping the sample to another cryostat. Nevertheless, with
the method described above the phase response of all three dots with respect to the
mechanical driving of IP1 and IP2 is extracted.

3.6 Model for quantum dot resonance modulation

Here, we describe the model which is used to fit the data in Fig. 3.3. We assume a
Lorentzian quantum dot line shape:

L(ωl) =
1

2
Γ′

(
1
2Γ′

(ωl − ω0)2 + ( 1
2Γ′)2

)
, (3.2)

where ωl/2π is the laser frequency and ω0/2π is the quantum dot resonance frequency,
and Γ′/2π is the inhomogeneously broadened quantum dot linewidth (FWHM). Al-
though there is residual charge noise in our system (the linewidth is about a factor
of two above the transform limit), the Lorentzian is still a good approximation, as
can be seen in Fig. 3.3. Since the mechanical drive is still in the linear regime, we
assume a sinusoidal modulation of quantum dot resonance frequency with a specific
amplitude:

ω0(t) = δE/ℏ · sin(Ωmt), (3.3)

where Ωm/2π is the mechanical frequency and δE is the quantum dot energy shift
(due to the strain coupling to the mechanical resonator). Last, we integrate Eq. 3.2
and 3.3 for one mechanical period to obtain the quantum dot resonance broadening
S(ωl) [98], which is then fitted to the data:

S(ωl) =

2π/Ωm∫
0

L(ωl, t)dt. (3.4)

Here we assume that the linewidth broadening is independent of the mechanical fre-
quency. As shown in Chapter. 2.5, this model breaks down when the mechanical
frequency approaches the quantum dot decay rate. For Fig. 3.3(a) we first fit the quan-
tum dot resonance without mechanical driving to extract the quantum dot linewidth
Γ′/2π and the quantum dot resonance ω0/2π. These parameters are then fixed when
fitting the model to the data with mechanical drive turned on. The model given by
Eq. 3.4 fits very well and allows the extraction of precise quantum dot energy shift
δE.
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Figure 3.5: Two-dimensional model fit. (a,c) Comparison of the 2D model fit and the
measured data. The model includes a sinusoidal modulation of the quantum dot resonance
together with an amplitude modulation of either the square root of a Lorentzian (a) or an
exponential decay (c). (b,d) The residuals of the fits.

For the two-dimensional measurement fits, used for extracting the mechanical qual-
ity factor, additional amplitude modulation is added to the model. In the case of the
mechanical resonance scan, the amplitude in Eq. 3.3 is modulated with a square root
of a Lorentzian:

ω0(t, ωMW) = δE/ℏ ·
√
L(ωMW) · sin(Ωmt), (3.5)

where L(ωMW ) is given by Eq. 3.2. The strain experienced by the quantum dots is
linearly proportional to the displacement of the cantilever. Thus, the quantum dot
energy shift shows a linear dependence on the mechanical amplitude and hence, the
square root dependence to the mechanical drive in Eq. 3.5. In the case of the ring-
down measurement, the amplitude in Eq. 3.3 is first fixed for a given driving time
t′ < t′0 and then modulated with an exponential decay:

ω0(t, t′) = δE/ℏ · e−t′/τm · sin(Ωmt), for t′ > t′0, (3.6)

where τm is given by the mechanical lifetime. Note that the microwave burst pulse
applied to the electric field antenna during this experiment is set long enough for
the mechanical amplitude to reach a steady state. For both, mechanical resonance
sweep and ring-down measurement, we integrate using Eq. 3.4 and perform a two-
dimensional model fit using least-square minimisation. We first fit the model to
an initial measurement with mechanical driving turned off to extract quantum dot
related parameters and finally fit the full model. Figure 3.5(a) to (d) show the model
fits compared to the data, as well as the two-dimensional residuals. The model fits
exceptionally well with the data and allows extracting the mechanical lifetime, which
is used to derive the mechanical quality factor.
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3.7 Time-resolved measurement in a magnetic field

Fig. 3.6(a) shows the negatively charged excitons of QD1 and QD2 in an in-plane
magnetic field (Voigt geometry) of B = 1.1 T. Each quantum dot splits into four
equally allowed transitions according to the level structure shown in Fig. 3.6(e). All
transitions are linearly polarised, where the highest and lowest energy transitions (ver-
tical transitions) have orthogonal polarisation to the inner two transitions (diagonal
transitions). The excitation and emission strengths thereby depend on the alignment
of the quantum dot with respect to the polarisation in the excitation and collection
arm of the microscope head. Thus, the signal strength of the different transitions
varies from dot to dot. Here, QD1 shows brighter signals on the vertical transitions
than the diagonal transitions and QD2 shows about the same intensity for the four
transitions, see Fig. 3.6(a). In the centre of the plateau, the quantum dot emission
vanishes due to spin-pumping into a dark state. Here, the spin pumping fidelity is
close to unity. At the plateau edges, spin-pumping is ineffective due to co-tunnelling
of the quantum dot electron with an electron from the Fermi-sea in the back contact.

When the mechanical drive is turned on, spin-pumping in the plateau centre be-
comes ineffective. This can be seen by the recovered intensity in the time-resolved
measurement shown in Fig. 3.6(b), which is the same data as in Fig. 3.3. Each horizon-
tal line represents one measurement, recorded in a histogram mode. The mechanical
driving moves the different transitions in and out of resonance with the fixed laser.
Two of the four transitions pump the spin to the spin-up state |↑⟩ (labelled green
in Fig. 3.6(e)) and the other two transitions pump the spin to the spin-down state
|↓⟩ (labelled red in Fig. 3.6(e)). Whenever two transitions associated with opposite
spin-pumping are moved in and out of resonance within one mechanical period, the
spin is pumped back and forth between the two states and the intensity is recovered.

We confirm our observations with a numerical rate equation model in which QD1
and QD2 are represented by individual four-level systems. First, we define the time-
modulated quantum dot energies of all transitions:

E(t) = E0 + δE · sin(Ωmt) (3.7)

Eij(t) = E(t) ± 1/2(ge ± gh)BµB, i = {1, 2}, j = {3, 4}, (3.8)

where ge and gh are the electron and hole g-factors, B is the magnetic field, and µB

is the Bohr magneton. Note that we assume fixed g-factors for the full mechanical
oscillation period [47]. We further define detuning dependent driving rates [149] for
the four optical transitions:

Rij(t) =
Ω2

ij

ΓR(
4(ωl−Eij(t)/ℏ)2

Γ2
R

+ 1)
, i = {1, 2}, j = {3, 4}, (3.9)

where Ωij/2π is the Rabi frequency of the optical transitions, ωl−Eij(t)/ℏ is the time
dependent laser detuning (in angular frequency), and ΓR is the exited state decay
rate. The latter is independent of the laser detuning and is obtained from a lifetime
measurement, ΓR/2π = 224 MHz, shown in Fig. 3.10. Note that the spin-relaxation
rate κ between the two ground states is assumed to be smaller than the mechanical
frequency. Finally, using all rates described above we can model the dynamical system
by a set of coupled rate equations:
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Figure 3.6: Time-resolved resonance fluorescence in a magnetic field. (a) Charge
plateau scan of QD1 and QD2 at B = 1.1T. Each quantum dot splits according to the level
scheme in (e), having four equally allowed optical transitions. The vanishing intensity in
the plateau centre is due to spin-pumping. (b) Time-resolved measurement which is also
shown in Fig. 3.3. The measurement is performed in the plateau centre, highlighted in red
in (a). (c) Numerical rate-equation simulation of the two independent four-level systems,
matching well with the experiment. (d) Line-cut comparison between measurement and
model. Colored arrows represent the pumping of transitions with the same spin-state in the
final state. It can be seen that spin pumping is reversed every mechanical period and thus
the intensity is recovered.

ṅ1 = +R13(t)(n3 − n1) + R14(t)(n4 − n1) + ΓR(n3 + n4) + κ(n2 − n1) (3.10)

ṅ2 = +R23(t)(n3 − n2) + R24(t)(n4 − n2) + ΓR(n3 + n4) + κ(n1 − n2)

ṅ3 = −R13(t)(n3 − n1) −R23(t)(n3 − n2) − 2ΓRn3

ṅ4 = −R14(t)(n4 − n1) −R24(t)(n4 − n2) − 2ΓRn4.

The numerical simulation begins with an equal population in the two spin ground
states n1(0) = n2(0) = 0.5 and zero population in the excited states n3(0) = n4(0) =
0. The simulation is then evolved for 10 mechanical oscillations (∼ 3µs) to reach
a time-averaged steady state, followed by the final simulation, shown in Fig. 3.6(c).
Here, we assume that the quantum dot count rate is proportional to the sum of the
excited state populations and we normalise the simulation to the count rate of the
measurement. The initial 10 mechanical oscillations are cut out since they would
not be representative for the measurement. The simulation fits very well with the
measured data and features not only the bright recovering spots but also all other
weak-intensity changes in the background.

In Fig. 3.6(d) linecuts from the measurement and the simulation are compared.
The red and green coloured arrows represent pumping of optical transitions associated
with the same final spin state. Whenever a transition with the opposite final spin
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state than the previous one is brought into resonance, the quantum dot intensity
recovers due to spin-pumping. Contrary, when two transitions with the same final
spin state are brought into resonance after each other, the intensity reduces for the
second transition, since the spin is already pumped into the dark state. Thus, our
measurement shows that the spin is pumped back and forth between the two states
due to the mechanical driving and spin pumping becomes ineffective. Since we do
not see any recovering spots between the upper and lower pair of four transitions, we
can confirm that we measure two individual quantum dots which just by chance are
very close to each other in emission frequency. Moreover, since we only see recovering
spots between the upper two and lower two transitions of each dot, we can assign the
measured g-factors to the correct charge carriers. Furthermore, from the polarisation
of the transitions, we know that the electron and hole g-factors need to have opposite
signs, thus ge ≈ −0.35 and gh ≈ 0.09.

3.8 Brownian-motion measurement with single
quantum dots

As the final hallmark of our experiments, we perform a Brownian-motion measure-
ment, which presents the first step towards creating and absorbing a single phonon
via the quantum dot. Since in the current system the mechanical frequency is smaller
than the lifetime of the quantum dot (Ωm ≪ ΓR), the optomechanical interaction
can be probed by a slightly detuned laser (∆ωl/2π ≈ 0.3×FWHM), see Fig. 3.8.
The challenging part thereby is that a weak but fast modulation is probed with low
bandwidth – the mechanical frequency is up to two orders of magnitude faster than
the single-photon count rate. Still, if enough single-photon clicks are recorded, the
mechanical noise can be resolved.

The Brownian motion is either measured by recording a time trace or by per-
forming an autocorrelation measurement and subsequent Fourier transformation.
The time trace, however, shows a high level of measurement imprecision noise
Simp
nn = 0.8 × 10−5 Hz−1, dominated by the shot noise of the low photon count

rate, see Fig. 3.9. In the autocorrelation measurement, the shot noise is diluted dur-
ing the averaging process due to a missing phase relation. As a consequence, the
measurement imprecision noise reduces exponentially with integration time down to
Simp
nn = 8.5 × 10−9 Hz−1, for more details see 3.10.
The autocorrelation measurement is performed at a Rabi frequency of ΩR = 0.6ΓR,

corresponding to 200 nW excitation power, and laser detuning of ∆ωl/2π = 180 MHz.
Quantum dot lifetime and power curve are shown in Supplementary note I. The
autocorrelation is recorded for five hours while taking care of the spectral fluctua-
tion [150] by performing a resonance scan every two minutes, see Supplementary note
I. At short time delays, the single-photon emitter shows an anti-bunching with a high
single-photon purity of 96.3 %, shown in Fig. 3.7(a). The remaining g(2)(0) is given
by the non-perfect laser suppression, mainly due to scattering at the cantilever edges.
At longer time delays, the Brownian motion of the mechanical resonator is resolved.
Fig. 3.7(b) shows the noise from the two in-plane modes IP1 and IP2, fitted with a
double sine function (together with an exponential function for blinking [125]).

The photon noise power spectrum is related to the autocorrelation by the
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Figure 3.7: Brownian motion resolved in the statistics of the emitted single pho-
tons. (a) Auto correlation measurement showing the single-photon emission of the quan-
tum dot. (b) Large time delays in the autocorrelation reveal oscillations from the Brownian
motion of the mechanical resonator, here IP1 and IP2. (c) Photon-noise power spectrum ob-
tained by a Fourier transformation of the autocorrelation measurement. The clearly distinct
peaks are stemming from the thermal noise of the mechanical modes shown in Fig. 3.1(e).
(d) Quantum dot resonance shift of the three mechanical modes obtained by the integrated
noise spectrum together with the measured quantum dot linewidth. (e) Estimated optome-
chanical coupling rate gep. (f) Quantum dot count rate, (g) measurement imprescision
noise, and (h) thermal noise of the first in-plane mode IP1 as a function of excitation power
and laser detuning. The single-photon emitter starts to saturate above ΩR = ΓR and the
linewidth increases due to power broadening. Consequently, the imprecision noise improves
initially but then also starts to saturate. In contrast, the thermal noise is highest at low
powers and small detunings. Measurements shown in (a-e) are performed at ΩR = 0.6ΓR,
red-dashed line.

Wiener–Khinchin theorem and can be obtained by performing a Fourier trans-
form [20], shown in Fig. 3.7(c). The noise power is obtained from an autocorrelation
with a maximum time delay of tdel = ±3 ms and a binning of tbin =10 ns, Supplemen-
tary note I. Thus, all three mechanical modes are well resolved. To confirm that the
measured noise arises solely from quantum dot optomechanical interaction, a refer-
ence measurement is performed with the quantum dot tuned out of resonance. As can
be seen, the noise power remains flat throughout the full spectrum. By integrating
the thermal noise for each mechanical mode, the quantum dot resonance shift due to
Brownian motion is obtained, which is shown in Fig. 3.7(d). Here, we assume that
the optomechanical damping is much smaller than the intrinsic mechanical damping
(less than 2 %). Thus, although single phonons are created, the effect of the optome-
chanical damping on the mechanical mode temperature can be neglected.

We estimate the vacuum exciton-phonon coupling rate with the measured quantum
dot resonance shift together with parameters for effective mass meff and zero-point-
motion xzpf . The parameters are obtained from finite-element simulations, shown in
Supplementary note II. As expected, the quantum dots couple well to the two in-
plane mechanical modes IP1 and IP2, see Fig. 3.7(e). The out-of-plane mode OP1
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Figure 3.8: Quantum dot resonance shift estimation via the measured linewidth.
(a) Quantum dot linewidth scan, (b) normalised count rate, and (c) derivative of the
normalised count rate as a function of laser detuning. The laser detuning of the Brownian-
motion measurement is highlighted in orange (∆ωl/2π =180MHz).

only shows residual coupling. More details on the coupling rate estimation will be
discussed in Chapter 3.9.

Going one step further, the thermal-mechanical noise of IP1 and the measurement
imprecision noise are probed in dependence of excitation power and laser detuning,
Fig. 3.7(f-h). Here, the main difference compared to other optomechanical systems
becomes visible. As an optical two-level system, the quantum dot starts to saturate
above ΩR = ΓR. Consequently, the measurement imprecision noise (dominated by
shot noise) improves initially but then starts saturating. The thermal noise, on the
contrary, is mainly given by the intrinsic exciton-phonon coupling, gep, and cannot
be increased with excitation power (which can be done with cavity-optomechanical
systems). Moreover, the thermal noise is proportional to the derivative of the quan-
tum dot’s count rate and therefore is maximal at low powers in the absence of power
broadening. The measurements in Fig. 3.7(f-h) are performed in the same way as in
Fig. 3.7(c) but with an integration time of 1 min per autocorrelation measurement.
Therefore, the imprecision noise would improve further by increasing the integration
time.

3.9 Estimation of the exciton-phonon coupling rate

A mechanical displacement δx creates strain δϵ, which shifts the quantum dot energy
δE due to deformation potential couplings. This energy shift δE (quantum dot reso-
nance shift) is mapped to the statistics of the emitted single-photons by the detuned
laser. The noise in the emission of the quantum dot is then captured in the autocor-
relation measurement and the corresponding noise power spectrum. By integrating
the thermal noise peaks in the normalised photon noise spectrum

∫
Snn(f)df , we ob-

tain the measured noise in the percentage of the normalised photon count rate. This
normalised count-rate fluctuation can then be converted to a quantum dot resonance
fluctuation by comparing it to the derivative of the quantum dot count rate as a
function of laser detuning, which is obtained as follows. First, the quantum dot count
rate is measured as a function of laser detuning n(ωl) and is fitted with a Lorentzian,
which is shown in Fig. 3.8(a). The linewidth scan takes about two minutes, thus, it
includes all quantum dot related noise within this time scale. Slower noise processes,
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e.g. spectral fluctuation, are filtered out by the locking of the quantum dot resonance.
The measurement is repeated three times for statistical error estimation. Second, the
quantum dot emission is normalised to the count rate during the autocorrelation
measurement. The normalised count rate n(ωl)/⟨n(∆ωl)⟩, shown in Fig. 3.8(b), is
obtained with parameters from the linewidth fit. Last, we take the derivative of the
normalised quantum dot count rate ṅ(ωl)/⟨n(∆ωl)⟩, shown in Fig. 3.8(c). Since we
work with a fixed laser detuning (highlighted in orange), the measured amplitude
fluctuation can be converted to a quantum dot frequency fluctuation [20]:

δE/ℏ =

√∫
Snn(f)df

ṅ(ωl)/⟨n(∆ωl)⟩
. (3.11)

The frequency shift due to Brownian motion at liquid helium temperature is then
converted to the vacuum coupling rate using zero-point motion xzpf and thermal
motion xth obtained from finite-element simulations:

gep =
∂ω

∂x
· xzpf =

δE/ℏ
xth

· xzpf . (3.12)

3.10 Time-trace and autocorrelation measurements

The photon-noise power spectral density can be obtained via a Fourier transformation
of a time-trace or autocorrelation measurement. In the case of the time trace, we
record the emitted single photons on a single detector for 60 s and then relock the
laser frequency to the quantum dot resonance. The actual time spent recording 60 s
of single photons takes much longer (about 5 min) due to the time spent transferring
data from the time tagger to the computer. In total, 300 individual time traces of
each 60 s are recorded, which gives 5 hours of emitted single photons. Three example
time traces are shown Fig. 3.9(a). The high ratio of up to two orders of magnitude
between the count rate of 250 kHz and the mechanical frequency of up to 20 MHz
becomes visible. The collected single photons are post-processed to time traces of
length tint = 6 ms with a time binning of tbin = 10 ns. Note that this post-processing
takes about 2-3 hours on a standard desktop computer. A Fourier transformation is
performed on each time trace (normalised to the average counts per binning ⟨nbin⟩)
with subsequent averaging:

Snn(f) = 2FFT

[
n(t)

⟨nbin⟩

]2
t2bin
tint

. (3.13)

The noise power spectrum obtained from the time trace as a function of averaging
time, taver, is shown in Fig. 3.9(b). Since we time-average after performing the Fourier
transformation, a high measurement imprecision noise of Simp

nn = 0.8 × 10−5 Hz−1

is observed (given by the shot noise of the low photon count rate: Sshot−noise
nn =

2/⟨n⟩). The slight variations between the measurements in Fig. 3.9(b) arise from the
uncertainty of the count rate normalisation.

In the autocorrelation measurement, the emitted single photons are sent to a 50:50
fibre beam splitter and recorded with two individual detectors (Hanbury Brown-Twiss
setup). Thus, the count rate per detector is reduced by a factor of two compared to
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Figure 3.9: Noise performance of the time-trace and autocorrelation measure-
ment. (a) Single-photon clicks detected during three different time traces. (b) Fourier
transformation of the time trace (tint = 6ms, tbin = 10ns) shows a high measurement im-
precision noise of about 0.8×10−5 Hz−1 given by the shot noise of the low count rate in (a).
Every individual time trace (of length tint) ends up with about the same shot noise, which is
passed on during the averaging process. Thus, the imprecision noise does not reduce when
increasing the averaging time, taver, see (d). (c) Fourier transformation of the autocorrela-
tion (tdel = ±3ms, tbin = 10ns) recorded for different averaging times. Since the shot noise
is averaged in the autocorrelation before transformation, the imprecision noise goes down
with averaging time. The obvious difference compared to the time trace is visible in (d)
where the autocorrelation outperforms the time trace even with only 1 s of averaging time.

the time-trace measurement. Although this decreases the signal-to-shot-noise ratio,
the shot noise is averaged out during the autocorrelation measurement due to the
missing phase relation. We collect coincidence clicks for 5 hours and relock the laser
frequency to the quantum dot resonance every 2 min. Since we only transfer the
coincidence counts from the time tagger to the computer (and not all single photon
clicks), the transfer only takes about 1 s which reduces the measurement time by a lot.
We perform a Fourier transformation of the normalised autocorrelation measurement
with a time delay of tdel = ±3 ms and a binning of tbin = 10 ns:

Snn(f) = 2FFT
[
g(2)(τ)

]
tbin. (3.14)

The noise power spectrum as a function of averaging time is shown in Fig. 3.9(c).
In terms of measurement imprecision noise, the autocorrelation outperforms the time
trace already with an averaging time of only 1 s. Figure 3.9(d) shows that the impre-
cision noise is diluted by the averaging process, down to Simp

nn = 8.5×10−9 Hz−1 (cor-
responding to Sshot−noise

nn = 2/(
√
taver/tdel⟨n⟩)). In summary, the main advantages

of the autocorrelation measurement compared to the time trace are: a several times
shorter measurement time (due to the lower data stream between time tagger and
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measurement computer), almost no postprocessing needed, live-view of the recorded
autocorrelation and corresponding noise spectrum, and a much lower measurement
imprecision noise.

3.11 Conclusion

The mechanical membrane resonator shown here is a step towards more scalable
quantum-dot optomechanical systems. We show that the electron-hole pair created
inside the quantum dot couples strongly with the macroscopic motion of the in-plane
mechanical modes. Although the quantum dots are embedded in a thin membrane
only 90 nm away from the surface, they still show bright signals and narrow optical
linewidths, resulting in a high sensitivity to optomechanical interaction. Due to the
introduced diode heterostructure, the charge noise in the system is highly reduced
compared to the trumpet resonators [20], further increasing the mechanical sensitiv-
ity. More importantly, the high mechanical quality factor is proof that the doped
gate layers do not have a significant impact on the mechanical properties. However,
there is still room for improvement. Especially when going to the resolved side-
band regime, it is crucial to further increase the exciton-phonon coupling rate and
reduce the mechanical losses to a minimum. Methods from the mechanical toolbox
for improvement are readily available [151]. Embedding the mechanical resonator
in a phononic shield [152–154] will not only improve the mechanical properties but
also further confine the mechanical mode, increasing the exciton-phonon coupling
strength. We estimate that by improving the resonator design and by reducing the
mechanical mode volume by a factor of three, the exciton-phonon coupling strength
gep/2π can be increased to the MHz regime.

A limiting factor in our system is the intrinsic excited state lifetime of the quantum
dot, giving an optical decay rate of 1/τ = 2π×224 MHz. Although strong coupling
seems out of reach (gep ≪ ΓR), the coupling can be increased further, eventually
enabling optomechanical induced transparency and slow light [155, 156]. Moreover,
since several quantum dots can be coupled to the same resonator, see Fig. 3.1(d),
the mutual coupling of two (or more) dots to the same mechanical resonator can be
studied. The frequency tuning capability of the optical emitters of more than 50 times
the linewidth (30 GHz) is another advantage for measurement schemes involving more
than one optomechanical system, as for example, optomechanical teleportation [70]
or entanglement [157].
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Figure 3.10: Quantum dot characterisation. (a) Resonant linewidth scan of QD1 much
below saturation power to prevent power broadening. The Lorentzian fit gives a linewidth
FWHM = 435MHz. (b) Lifetime measurement of QD1 using ps-pulse excitation. τ = 711 ps
is obtained by a single-exponential fit. (c) Resonant power dependence for calibration of
the Rabi frequency ΩR. (d) Spectral fluctuation of the quantum dot resonance during the
Brownian-motion measurement. A fluctuation with a FWHM of about 115MHz is measured,
shown in (e). (f) Autocorrelation measurement used for the estimation of the exciton-
phonon coupling rate. The bunching close to zero delay is partially due to charge noise but
also due to the onset of Rabi oscillations.

Fig. 3.10 shows the characteristics of QD1: (a) quantum dot linewidth, (b) excited-
state lifetime, (c) power saturation curve, (d) and (e) spectral fluctuation, and (f)
long-time-delay autocorrelation. These measurements are repeated for all three quan-
tum dots. The linewidth scan is performed at very low excitation powers to avoid
power broadening, here, ΩR = 0.065ΓR. The extracted linewidth is FWHM =
435 MHz, which is 1.9 times the Fourier limit 1/(2πτ). The latter is obtained from a
lifetime measurement performed with ps-pulses from a mode-locked laser. The mea-
surement shows a single exponential decay with a time constant of τ = 711 ps. Here,
we assume the same excited-state lifetime for QD1 and QD2 since the ps-pulses are
too broad to individually excite the two dots. The linewidth of QD2 and QD3 are
490 and 410 MHz, respectively. The lifetime of QD3 is τ = 916 ps. Note that the
linewidth during the autocorrelation measurements is already slightly power broad-
ened to FWHM ≈ 600 MHz. The quantum dot emission measured as a function of
excitation power shows the behaviour of an optical two-level system with saturation
above ΩR = ΓR:

ρee =
1
2Ω2

R
1
2Γ2

R + Ω2
R

, Ω2
R ∝ Plaser, (3.15)
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where ρee is the excited state population (see Chapter 1), ΩR the Rabi frequency,
and ΓR is the excited state decay rate. Note that if ΩR → ∞ using continuous
wave excitation, the excited state population is maximised to ρee = 0.5. Every data
point in the power measurement presents the peak intensity of a linewidth scan. The
measured data together with Eq. 3.15 is used to convert the excitation power to the
Rabi frequency ΩR. This calibration measurement is repeated whenever the optical
setup is changed, the quantum dot position is changed, or the cryostat is refilled
with liquid helium. As described previously, spectral fluctuation is corrected during
the Brownian-motion measurement by tracking the resonance frequency every two
minutes. During the tracking of the quantum dot resonance, the autocorrelation
measurement is paused. We assume a Gaussian fluctuation which shows a FWHM of
115 MHz. This shows the importance of the tracking technique: the small but finite
detuning of the probing laser of 180 MHz is in the same order of magnitude and is
essential for a precise measure of the exciton-phonon coupling rate. For a correct
estimation of the exciton-phonon coupling, it is also important to perform a correct
normalisation of the autocorrelation measurement. Therefore, the autocorrelation is
recorded for long time delays up to 3µs where we normalise the coincidence counts
to one. The bunching peak at short time delays is partially due to the onset of Rabi
oscillations and partially due to blinking. Note that the measurement is very sensitive
to charge noise since it is recorded with a detuned laser. For more details on the noise
performance of the dots see Chapter 5.15.
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Figure 3.11: Finite-element simulations. Displacement profile u, exciton-phonon cou-
pling rate gep, effective mass meff , and zero-point motion xzpf for the first out-of-plane, first
in-plane and second in-plane modes. The effective mass and subsequently the zero-point
motion are obtained by thermomechanical calibration. The exciton-phonon coupling rate is
then estimated using deformation potential couplings.

The mechanical resonator is designed using Comsol Multiphysics, where the equations
of motion are solved for a pre-defined mesh. The size of the mesh units is optimised
by performing a convergence test. The outcomes of the simulations are shown in
Fig. 3.11. [100] material parameters of GaAs are used together with an in-plane ro-
tated coordinate system to align the x-axis of the design to [110], which is the x-axis
of our wafer material. Eigenmode studies with fixed boundary conditions are per-
formed to find the eigenfrequencies, displacement and strain profiles of the resonator.
Using thermomechanical calibration [128], effective mass meff and zero-point motion
xzpf [29] are obtained:

meff =

∫
ρ

(
|u(x, y, z)|2

max(|u(x, y, z)|2)

)
dV (3.16)

xzpf =

√
ℏ

2meffΩm
, (3.17)
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where ρ is the material density of GaAs, and |u(x, y, z)| is the norm of the displacement
vector. The Brownian motion is then given by the equipartition theorem [98]:

xth = xzpf

√
2kBT

ℏΩm
, (3.18)

where T is the phonon-bath temperature and kB is the Boltzmann constant. The
strain profile obtained in Comsol is also normalised via thermomechanical calibra-
tion and is used to estimate the quantum dot energy shift via deformation poten-
tial couplings for hydrostatic and shear strain of GaAs [20, 98], a = −8.33 eV and
b = −1.7 eV [138, 139]:

δE = a(ϵxx + ϵyy + ϵzz) − b

2
(ϵxx + ϵyy − 2ϵzz). (3.19)

Finally, we estimate the vacuum exciton-phonon coupling rate using the zero-point
motion:

gep =
∂ω

∂x
xzpf =

δE

ℏ
. (3.20)
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Figure 3.12: Characterisation of the antenna driving as a function of the applied
bias voltage. (a,d) Measurement of the mechanical frequency at 0V bias of OP1 and IP1
by positioning the laser spot at the tip of the cantilever. The reflected laser light is detected,
amplified and send to a spectrum analyzer and for each microwave frequency a spectrum
is recorded. (b,e) The diagonal cuts in (a,d) result in mechanical resonance scans with
quality factors of 1.5 × 104 and 2.3 × 104, respectively. (c,f) Mechanical resonance scans
as a function of applied gate voltage. A clear shift of the mechanical frequency from 0V
to the quantum dot gate voltage of 1.32V is observed. Additionally, a dependence of the
mechanical amplitude on the applied bias is observed.

The mechanical driving is characterised by focusing the laser spot at the cantilever
tip, where the displacement is maximal. The reflection of the laser is changed by the
cantilever displacement, which is monitored with a fast photodiode and a spectrum
analyzer. Note that only OP1 and IP1 give a strong enough change in reflection
to be recorded with this method. A mechanical resonance scan is performed at a
gate voltage of 0 V (where the QDs are not active) by sweeping the applied antenna
microwave frequency while recording the noise power. In Fig. 3.12(a) and (d) each
horizontal line represents one spectrum recorded with the spectrum analyzer while
driving OP1 and IP1, respectively. As a function of applied microwave frequency, a
strong noise peak due to mechanical driving can be observed. The weak background
in the centre of Fig. 3.12(a) is the Brownian motion of the mechanical mode, which
is highly amplified once the driving frequency is resonant.

Fig. 3.12(b) and (e) show diagonal cuts of the data presented in Fig. 3.12(a) and
(d). The two mechanical modes show a Lorentzian mode profile with quality fac-
tors (FWHM) of 1.5 × 103 (35 Hz) and 2.3 × 103 (135 Hz). Figures 3.12(c) and (f)
show the mechanical resonance scan as a function of applied diode bias for the two
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mechanical modes. Both, OP1 and IP1, show a reduced mechanical amplitude for
forward bias. We speculate that this is due to the reduced electric field within the
p-i-n diode when forward bias is applied. The frequency dependence with respect to
the applied bias behaves differently for the two mechanical modes. For OP1 there is
a quadratic-like and for IP1 a linear dependence. However, for a detailed analysis,
further investigations are needed.
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3.15 Supplementary note IV: Measurement setup

77 K

4 K

RF laser 1
(950 nm)

PL laser
830 nm

AOM

Wavemeter
(frequency stabilisation)

Spectrometer and CCD
(photoluminescence)

SNSPDs
(resonance fluoresence and g(2))

Photodiode
(confocal measurement)Sample

LED

Camera

PID (power stabilisation)

RF laser 2
(950 nm)

Grating filter

Fast photodiode and spectrum analyzer
(mechanical noise measurement)

Mode-locked laser

Excitation
Detection

Filtering

Measurement

LP

QWP

Pellicle

Figure 3.13: Simplified optical setup. Excitation: four different lasers are used for the
various measurements including two frequency stabilised resonant (RF) lasers, a mode-locked
laser for pulsed excitation, and an above band (PL) laser. A double-pass acoustic-optic-
modulator (AOM) setup is used for power stabilisation and power control. Measurement:
the sample is held at 4.2K in a He-bath cryostat. A cross-polarisation scheme is used for
suppressing the reflected laser light. An LED and a camera are installed for imaging the
sample surface with a field of view of about 10µm. Filtering and detection: dependent on the
measurement, the collected quantum dot emission is sent to either single photon detectors
(SNSPDs), a spectrometer, a spectrum analyzer, or just a photodiode.

The sample is mounted on a set of x/y/z-piezo steppers (Attocube, ANPx101 &
ANPz101) and an x-y-scanner (Attocube, ANSxy100lr) in a home-built vacuum-tube
microscope with an optical NA = 0.65. The tube is pump-flushed several times with
helium gas before final pumping to 4× 10−6 mbar with subsequent filling of 0.2 mbar
helium exchange gas (final pressure of ≈ 2.8 × 10−3 mbar at 4.2 K). The gas pres-
sure is chosen such that gas damping is negligible, which we find below 1 mbar at
room temperature, see Chapter 4.9. The tube is precooled in liquid nitrogen (77 K)
for 2 hours and finally moved into a helium bath cryostat (Cryovac) at 4.2 K. Note
that our cryostat also holds a 3 T in-plane (9 T out-of-plane) superconducting mag-
net (Cryovac) and a liquid nitrogen shell to reduce liquid helium consumption. The
mechanical quality factor of OP1 at different temperatures is: Q300K

m = 1.3 × 103,
Q77K

m = 3.8 × 103, and Q4K
m = 1.5 × 104. The improvement at low temperatures

is typically connected with reduced intrinsic losses. For example, the coefficient of
linear expansion is lower at cold temperatures which reduces thermoelastic damping,
see Refs. [136, 151].
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The quantum dot membrane sample bias voltage is controlled with a digital-to-
analogue converter (Basel Precision Instruments, DAC SP 927) and the microwave
signal applied to the electric field antenna is generated with an arbitrary waveform
generator (Keithley, 3390). The main optical components of the setup are shown in
Fig 3.13. The optical excitation part of the setup consists of three different lasers: a
diode laser at 830 nm for photoluminescence excitation (PicoQuant, LDH-D-C-830),
a mode-locked laser for quantum dot lifetime measurements (Coherent, Mira 900-D),
and two tunable diode lasers at 950 nm for resonant excitation (Toptica, DL pro). The
resonant lasers are frequency stabilised using a wavemeter (HighFinesse) and power
stabilised using a double-pass acousto-optic modulator setup (Gooch and Housego,
AOM 3200-1113 & AODR 1200AF-AINA-2.5 HCR) with a home-built PID-controller.
All lasers are fibre-coupled (Thorlabs, SM-780HP) and sent to the cross-polarised op-
tical microscope head. At the heart of the microscope head, there are two polarising
beam splitters [112]. Together with a linear polariser and a quarter-waveplate, a
laser suppression of 10−6 is achieved. An LED (Throlabs, M940D2), a camera (Al-
lied Vision, Guppy), and a removable pellicle beamsplitter (Thorlabs, BP145B2) are
installed for imaging of the sample surface, giving a field-of-few of around 10µm.
The collected quantum dot emission is then fibre coupled and sent to the detection
setup. Dependent on the measurement, we chose between single-photon detectors
(Single Quantum, Eos) connected to a time tagging module (Swabian Instruments,
Time Tagger Ultra), a Peltier-cooled CCD connected to a spectrometer (Teledyne
Princeton Instruments, Blaze 100HRX & Acton SP2500i with 300, 1200, and 1500
grooves/mm), a fast photodiode connected to an electronic spectrum analyzer (Ro-
hde&Schwarz, FPL1007), or a photodiode connected to an IV-converter (Stanford
Research Systems, SR570) and a multimeter (Keithley, 2000).



CHAPTER 4

Mechanical damping in a quantum-dot
optomechanical device
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4.1 Introduction

Mechanical resonators find a wide range of applications; from precision sensing at the
atomic level [158] to macroscopic sensing of gravitational waves [146]. For the ma-
jority of applications, it is important to reduce the mechanical damping mechanisms
(mechanical losses), to a minimum. Therefore, mechanical losses have been studied
extensively in the past decades for various types of resonators [127, 131, 135, 159, 160].
Some of the main mechanical losses are identified to be either due to radiation to the
surrounding substrate or poor surface quality [127, 161] (including surface roughness,
surface impurities, surface oxidation, etc.).

Classifying the damping mechanisms is not always straightforward. This has re-
cently been a challenge in quantum dot optomechanical devices [20]. These devices
are made of a layer of self-assembled quantum dots and a heterostructure diode with
highly doped gate layers for quantum dot charge control [66, 109]. Moreover, measur-
ing mechanical losses via the quantum dot mechanical coupling is challenging because
of the single-photon nature of the optical two-level system. The photon count rate
can be several orders of magnitude lower than the mechanical frequency. Thus, re-
solving the mechanical linewidth (mechanical damping rate), can take up to hours of
measurement time [20, 55].

In the following chapters, we introduce a Fabry–Pérot-like optical cavity in a
quantum-dot optomechanical device. We leverage the cavity-optomechanical inter-
action to probe the mechanical damping associated with the quantum dot mechanical
device. Thanks to the classical optical resonator, the measurement time of the me-
chanical damping rate is in the order of a few seconds. Additionally, we make use
of the optomechanical interaction rate, scaling with

√
n̄cav, to greatly increase our

sensitivity by reducing the effective mechanical damping by two orders of magni-
tude [162, 163]. This is achieved by blue-detuned driving of the optical cavity. The
optical power is chosen in such a way that the mechanical amplitude is close to the
phonon lasing threshold, where the effective mechanical damping approaches zero [29].
Thus, the system is highly susceptible to any changes in the mechanical properties
of the resonator. We implement a two-laser pump-probe scheme in which we first
stabilise the system close to phonon lasing and then introduce a weak perturbation.
Damping rates due to either applying an electric field to the semiconductor diode [109]
or due to photoluminescence excitation of the quantum dots [102] are measured. The
first part of this chapter will focus on the cavity-optomechanical method to imple-
ment the increased sensitivity, followed by the second part, which will focus on the
additional damping added by the perturbations.

4.2 Optomechanical device

The hybrid system consists of a 15× 1×0.18 µm3 GaAs cantilever which is selectively
under-etched [97], see Fig. 4.1(a). The cantilever hosts self-assembled InAs quantum
dots [102] and a doped p-i-n diode for quantum dot charge control. An optical cavity
of length lcav = 970 nm forms between the cantilever and the substrate, where the
optomechanical coupling is highest at the cantilever tip. The mechanical out-of-plane
(asymmetric) bending of the cantilever results in a displacement of the top mirror
of the Fabry-Pérot cavity and shifts the cavity resonance by ∂ωcav/∂x = 270 · 2π
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Figure 4.1: Fabry–Pérot optomechanical cavity. (a) An optical cavity of 970 nm forms
between the cantilever tip and the substrate. The first-order bending mode of the cantilever
couples to the optical cavity with a rate of g0/2π = 17MHz. (b) Confocal laser reflection scan
of the 15×1 µm2 cantilever (highlighted in blue). The bright frame surrounding the cantilever
is the under-etched membrane remaining form the isotropic AlGaAs etching process. (c)
Mechanical noise power spectrum map of the cantilever in (b) at low probe laser powers. (d)
Power spectral density of the first-order bending mode with increasing probe laser power at
945 nm (blue detuned).

GHZ/nm. For more details on the coupling-rate estimation, see Chapter 4.4.
Although the optical quality of the cavity is poor, Qo ≈ 10, the single-photon
optomechanical coupling rate is very strong, g0/2π ≈ 17 MHz. Thus, only small
pump powers, 10µW at 910 nm, are required to bring the system to the phonon
lasing regime [164].

Figure 4.1(b) shows a confocal map of the cantilever structure where the reflected
laser is recorded with a photodiode. The cantilever, highlighted in blue, is surrounded
by the remaining under-etched membrane. A weak probe laser close to the cavity
resonance (∆ωprobe

l = ωprobe
l − ωcav > 0, Γom < 0) is focused at the tip of the

cantilever and the reflected signal is recorded using a fast photodiode (Thorlabs
SM05PD1A & Femto DHPCA-100) and an electronic spectrum analyzer (R&S
FPL1007). Figure 4.1(c) shows the power spectrum of the mechanical mode mapped
out as a function of the laser position on the cantilever tip. The highest response
of the optomechanical cavity is obtained in the centre at the tip of the cantilever.
Due to the classical nature of the optical cavity, the optomechanical interaction can
be scaled by the (square root) intra-cavity photon number, g = g0

√
n̄cav [29]. As a

consequence, the response of the probe laser scales with power [27], see Fig. 4.1(d).
Two effects are visible in the power spectrum. First, a higher probe power increases
the absolute mechanical noise on the photodiode and results in a higher signal-to-
noise ratio. Second, a higher optomechanical interaction increases the mechanical
amplitude, which results in a stronger noise peak in the power spectrum.
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Figure 4.2: Characterisation of the optomechanical cavity. (a) Mechanical power
spectrum as a function of probe-laser wavelength at low powers. The measurement sensitivity
depends on the cavity detuning and the collection efficiency of our setup which is optimised
at 950 nm. (b) Same as in (a) but with high probing powers. The optomechanical interaction
switches from heating to cooling at the cavity resonance of 950 nm. (c) Threshold power to
reach phonon lasing as a function of the pump-laser wavelength.

4.3 Optical cavity characterisation

The optomechanical cavity forms between the cantilever and the substrate after under-
etching. The etching step is selective to the AlGaAs sacrificial layer, which has a
thickness of 1.15 µm (see Chapter 2). Since the etching is isotropic we can confirm
by the remaining under-etched membrane of 2.7µm around the cantilever, that all
AlGaAs below the cantilever was etched away. However, we see that the cavity length
deviates slightly from the thickness of the sacrificial layer. This is because the 15µm
long cantilever tends to bend upwards or downwards. This we observe by a changing
focus when moving along the cantilever (y-direction).

Measuring the exact cavity length, however, is not straightforward, since our op-
tical setup is not optimised for such a wide wavelength range. The setup is usually
aligned on bulk around 950 nm with an outcoupling efficiency of the reflected laser
of up to 60 %. Nevertheless, we measure the mechanical noise power as a function of
laser wavelength to estimate the cavity resonance at the cantilever tip. Fig. 4.2(a) and
(b) show the power spectrum for the mechanical out-of-plane (asymmetric) bending
mode at 5 and 100µW laser power, respectively.

At low powers, Fig. 4.2(a), the optomechanical interaction is negligibly small and
no significant (anti)damping is induced. Thus, a potential resonance is found, how-
ever, this resonance is also influenced by the optical alignment and mechanical noise
sensitivity of our setup. At high powers, Fig. 4.2(b), we leverage the optomechanical
interaction to estimate the cavity resonance. For blue detuning, we introduce mechan-
ical antidamping (heating). Here, the power is chosen such that for all detunings the
optomechanical antidamping is large enough to introduce phonon lasing. For red de-
tuning, the laser induces optomechanical damping, or cooling, which highly increases
the mechanical linewidth. The transition from heating to cooling marks the resonance
of the cavity [127], which we find around 950 nm. We double-check the resonance of
the cavity at intermediate powers to make sure to not overlook any effect of cavity
length dragging due to actual heating and expansion of the cantilever [165]. Note
that if thermal expansion were happening, the optical resonance would not be much
affected, since expansion of the mechanical resonator affects mainly the xy-plane and
not the cavity length. Figure 4.2(c) shows the threshold power needed to reach the
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Figure 4.3: Transfer matrix description of the optical cavity. (a) Reflection of the
optical cavity using a transfer matrix approach. The cavity resonance of λ = 950 nm is
satisfied with a cavity length of Lcav =970 nm, highligted in red. (b) Normalised electric
field showing a slight enhancement inside the cavity.

phonon lasing regime depending on the laser wavelength. The cavity resonance is
very broad, κ ≈ 28 THz (90 nm, see Fig.4.3(a)), thus we also observe phonon lasing
for large detunings.

4.4 Optomechanical coupling rate

In the following paragraphs, we describe the optical cavity using a transfer matrix
approach, with nGaAs = 3.5. The reflection of the cavity is simulated as a function of
the cavity length and the laser wavelength, Fig. 4.3(a). When the laser is in resonance
with the cavity, the reflection is reduced. We use these simulations to estimate the
actual cavity length, which we do not know exactly due to the unknown bending of
the cantilever. To obtain an optical resonance at 950 nm the cantilever needs to bend
180 nm downwards at the tip to reach a cavity length of 970 nm, which is reasonable
given its length of 15µm. The electric field of such an optical mode is shown in
Fig. 4.3(b), where the field is slightly amplified inside the cavity.

The transfer matrix simulations can also be used to estimate the single-photon op-
tomechanical coupling rate g0 = (∂ωcav/∂x) ·xzpf . From the slope of the optical mode
in Fig. 4.3(a) we obtain ∂ωcav/∂x = 270 · 2π GHZ/nm. Together with the zero-point
motion, xzpf = 62.54×10−15 m, obtained from finite element simulations, we estimate
g0/2π = 17 MHz. A similar value is obtained when using the standard Fabry–Pérot
optomechanical cavity equation, g0/2π = (ωcav/Lcav) · xzpf = 20 MHz [127].

4.5 Pump-probe optomechanical experiments

To avoid the effect of the probe power on the mechanical sensitivity, we introduce
a two-laser pump-probe experiment, see Fig. 4.4(a). The setup consists of a weak
probe laser of Pprobe = 5µW at 945 nm and a variable pump laser at 910 nm, where
we observe the lowest phonon lasing threshold of Ppump = 10µW (see Fig. 4.2). The
frequencies of the lasers are stabilised with a wavemeter and the power of the pump
laser is stabilised using a double-pass acousto-optic modulator (AOM) setup together
with a home-built PID-loop [21, 22]. The circularly polarized lasers are focused on
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Figure 4.4: Two laser experiments and dynamical instability. (a) Schematic of the
two-laser experiment with a probe laser close to resonance and a blue detuned pump laser.
A grating filter (FWHM 150GHz) is implemented to filter out the pump and monitor the
reflected probe on a spectrum analyzer. (b) Power spectrum as a function of pump laser
power. Already at low pump powers phonon lasing can be observed. The inset at the top
shows the highly reduced mechanical linewidth (more than two orders of magnitude) above
the phonon lasing threshold. (c) Effective mechanical quality factor versus optomechanically
induced antidamping. We observe an increase of two orders of magnitude, from Qini

m =
5.8× 103 to Qeff

m = 3.5× 105. (d) Mechanical mode temperature obtained from integrating
the power spectral density. Once the optomechanically induced damping overcomes the
intrinsic loss rate, −Γpump

om > Γini, the effective mechanical loss rate goes towards zero and
phonon lasing is observed.

the cantilever tip using a polarizing microscope [125]. This design allows up to 60 %
of the reflected laser signal to be collected when focusing on bulk material. Finally,
a 150 GHz-bandwidth grating-based filter is introduced to separate the probe from
the pump laser. The sample is held in a helium-bath cryostat [8] at 4.2 K and at
≈ 2.5 × 10−3 mbar helium exchange gas.

Figure 4.4(b) shows the power spectrum measured by the reflected probe laser as
a function of the pump-laser power. Now, the mechanical noise sensitivity stays con-
stant (as can be seen by the flat noise power away from the mechanical resonance) and
we only probe the effect on the mechanical amplitude. Note that the additional peaks
around the mechanical resonance have been observed also in other systems [166], how-
ever, their origin is still unclear. The inset in Fig. 4.4(b) shows the normalised power
spectrum at a pump power of 2.9 and 11.5µW. Since the pump laser is blue detuned,
the optomechanically induced interaction leads to antidamping [162], Γpump

om < 0. The
mechanical quality factor (Qeff

m ) and the damping are modified accordingly [29]:

Qeff
m =

Ωm

Γini + Γpump
om

, (4.1)

Γini = Γint + Γprobe
om , (4.2)
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where Γini is the initial effective damping (at Ppump = 0) given by the intrisic mechan-
ical damping Γint [127] and the residual damping added by the probe laser Γprobe

om .
Figure 4.4(c) shows the extracted effective mechanical quality factor Qeff

m as a func-
tion of pump-laser power. By fitting Eq. 4.1 to the data we convert the optical pump
power to the optomechanical interaction rate. Here, we assume that Γpump

om ∝ n̄cav

and n̄cav ∝ Ppump [29]. The introduced antidamping increases the phonon number
which increases the mechanical mode temperature and amplitude. Once the effective
mechanical damping goes towards zero, any additionally added energy is converted
into mechanical displacement. However, when the displacement becomes very large,
the optomechanical cavity is no longer effective [167]. Therefore, the effective me-
chanical quality clampes [167] at Qeff

m = 3.5 × 105.
By integrating the power spectrum, the mechanical mode temperature is ex-

tracted [127], as shown in Fig. 4.4(d). Here we assume that the initial mode temper-
ature at Ppump = 0 is approximately equal to the bath temperature. The prominent
increase in mode temperature at zero effective mechanical damping is a clear fea-
ture of dynamical instability or also called phonon lasing [164, 167]. We use the fit
parameters from Fig. 4.3(c) and plot the expected mode temperature [29]:

Tmode = Tini
Γini

Γini + Γpump
om

. (4.3)

The mode temperature is slightly underestimated at large mechanical amplitudes
since we do not integrate the higher-order noise peaks.

4.6 Mechanical damping measurments

In the following measurements, we use the two-laser experiment to sensitively probe
the mechanical losses associated by either applying a voltage to the semiconductor
diode, Fig. 4.5(a), or by using a 830 nm laser for photoluminescence (PL) excitation,
Fig. 4.5(d). The measurement is performed as follows. First, the mechanical quality
factor is measured with the weak probe laser. Second, the effective mechanical loss
rate is reduced by two orders of magnitude from Γini/2π = 106 Hz to Γ0/2π ≈ 3 Hz
(corresponding to Qeff ≈ 1.8 × 105). In this regime, the mechanical resonator is
placed at the onset of phonon lasing where the system is stable enough to still create
reproducible data. Last, the system is perturbed by sweeping the gate voltage and
PL laser power. The corresponding damping rates are extracted via a measurement
of the effective mechanical quality factor [29]:

ΓVg/PL =
Ωm

Qeff
− Γ0, (4.4)

Γ0 = Γini + Γpump
om . (4.5)

Here, we assume that the optomechanical interaction is not significantly influenced
by the mechanical perturbation added to the system. Figures 4.5(b) and (e) show
the raw data of the mechanical loss measurements, where the shift of the mechanical
frequency is highlighted by the dashed line. The corresponding extracted loss rates
are shown in Fig. 4.5(c) and (f).
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Figure 4.5: Measurement of mechanical damping due to gate voltage and photo-
luminescence excitation. (a) 180 nm thick membrane structure hosting a semiconductor
diode and self-assembled quantum dots. By applying a DC voltage to the p- and n-doped
gate layers the quantum dot charge state is controlled. (b) Optical excitation scheme of
the quantum dot. Electrons are excited from the valence to the conduction band outside
the quantum dot. After relaxation to the lowest energy state inside the dot, the electron
recombines with a hole from the valence band, emitting a photon. (c,d) Mechanical power
spectrum as a function of applied gate voltage and excitation laser power. (e,f) Mechanical
damping rate extracted from (c,d), where Γ0 = Γini + Γpump

om .

When sweeping the gate voltage applied to the semiconductor diode, Fig. 4.5(c),
no additional damping is added in the range of −1 to 1 V, where the diode leakage
current stays below 20 nA (below one electron flowing through the cantilever per
mechanical oscillation period, see Supplementary note II). In the region of 1.15 to
1.5 V, single charge carriers tunnel into the quantum dots and at the same time the
leakage current starts to increase. We observe a slight increase of the damping rate to
about ΓVg/2π = 3 Hz. Above the diode turn-on voltage of 1.6 V (see Supplementary
note II), a current starts flowing through the membrane-cantilever, creating an
additional mechanical dissipation channel. We conclude that the additional damping
is not due to a change in the electric field but due to the current created by the
applied voltage.

The 830 nm laser creates additional damping already at low excitation powers, see
Fig. 4.5(f). Above 1µW of laser power, the added loss even exceeds the intrinsic
mechanical damping. Similar to the gate voltage, the 830 nm laser excites a large
number of electrons and holes which leads to additional damping. This is a problem
for optomechanical experiments based on photoluminescence excitation. For several
reasons we assume that the interaction of the 830 nm laser with the optical cavity
is negligible: (i) the laser is far detuned from the cavity resonance, (ii) the laser is
still blue-detuned which should lead to antidamping, and (iii) the focus is far from
optimal since we use chromatic optical elements centred around 950 nm. Note that
this measurement is performed at Vg = 0 V.
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4.7 Conclusion

In the damping measurements, the change in mechanical frequency (change in spring
constant since k = meffΩ2

m) is very small, below 0.2 %. Therefore, we assume that
the decreasing mechanical quality originates from additional dissipation rather than
a change in material properties. In both cases, when either a current starts flowing
or electrons are excited, free charge carriers are created. We speculate that these
charge carriers increase the mechanical damping rate by electron-phonon scatter-
ing [168, 169]. Our measurements show that the damping added by the leakage
current at the quantum dot bias voltage limits the achievable mechanical quality to
Ωm/ΓVg = 1.7× 105. So far, this has not been an obstacle for the current mechanical
resonator, which is mainly limited by the intrinsic mechanical quality. However, it
might become important for low intrinsic loss quantum dot optomechanical devices
involving soft clamping [170, 171] or dissipation dilution [172, 173]. On the contrary,
photoluminescence excitation presents a significant issue for quantum dot optome-
chanical experiments. The usual excitation power in our setup necessary to measure
quantum dot photoluminescence is around 0.1-1µW at which the mechanical damp-
ing rate is almost doubled. However, this issue can be overcome by using resonant
quantum dot excitation [20].

With the cavity-optomechanical method presented here, we are able to increase
our sensitivity to mechanical damping by two orders of magnitude. This enables pre-
cise measurements of mechanical perturbations, even if the induced damping is much
smaller than the intrinsic mechanical linewidth. However, the increase in sensitivity
(and working close to phonon lasing) automatically brings the challenge of a very sus-
ceptible system which we solve by careful stabilisation of the pump laser power. The
mechanical stability (sensitivity) of our device could be further improved by using an
injection locking scheme [167, 174].



56 Mechanical damping in a quantum-dot optomechanical device

4.8 Supplementary note I: Optomechanical cooling
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Figure 4.6: Optomechanical cooling. (a) Optomechanical interaction with a red-detuned
pump laser, where ∆ωpump

l < 0 and Γpump
om > 0. (b) The effective mechanical quality factor

is reduced due to the additional mechanical damping introduced by the optomechanical
interaction. (c) Mechanical mode temperature extracted from (a), since the optomechanical
system is in the Doppler regime, cooling below bath temperature, 4.2K, is not possible.

In chapter 4.5, we describe the optomechanical interaction in the blue detuned case.
Here, we will present the effect of a red-detuned pump laser. The induced optome-
chanical interaction introduces additional damping Γom > 0. Red detuning the laser
can also be understood as a cavity-enhanced anti-Stokes scattering rate of the laser,
whereas the Stokes scattering rate is suppressed. This creates an imbalance between
the two rates which reduces the number of phonons of the mechanical oscillator, re-
sulting in effective cooling of the mechanical mode [175]. However, since we are in the
Doppler regime (Ωm ≪ κ) and our optical cavity is very broad, the lowest phonon
number achievable with the optomechanical interaction is much above room temper-
ature, given by n̄min = κ/4Ωm [127].

Figure 4.6(a) shows the mechanical noise power for a red-detuned pump laser at
980 nm. The introduced optomechanical damping increases the mechanical linewidth,
Fig. 4.6(b). The measurement is performed in the same way as in Chapter 4.5 by
using a weak probe and a strong pump laser. The initial power of the probe laser is
increased so that we start at a slightly elevated mechanical mode temperature. At low
pump powers, the red-detuned laser cools the mechanical resonator back to the bath
temperature, Fig. 4.6(c). When increasing the optomechanical damping further, the
linewidth keeps broadening, however, the cooling is ineffective. This can be observed
by a slow but steady increase in the mode temperature due to actual heating of the
mechanical resonator.
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4.9 Supplementary note II: Device characterisation and
clamping loss
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Figure 4.7: Electrical and optical device characterisation. (a) Voltage-current prop-
erties of the heterostructure diode. The current is converted to a charge flow per unit area
and per mechanical period, plotted on the right y-axis. (b) Photoluminescence of a single
quantum dot as a function of applied diode gate voltage. The individual exciton regions are
highlighted in red. (c) Ensemble photoluminescence of about five quantum dots, showing a
similar gate voltage dependence as in (b).

Figure 4.7(a) shows the current-voltage measurement of the semiconductor diode,
with a diode turn-on voltage of 1.6 V. The leakage current below the diode turn-on
remains below 35 nA. With the diode area of 4 mm2 and assuming a homogeneous
current flow, the current is converted to a charge flow per unit area and per mechan-
ical oscillation. Figure 4.7(b) shows the photoluminescence of a single quantum dot
located on the cantilever. The exciton charging voltage is found between 1.15 - 1.5 V.
Individual excitons are highlighted in red, from the single positively charged exciton
X1+ to the double negatively charged exciton, X2−. Ensemble photoluminescence
recorded on bulk material shows a charging behaviour similar to that of the single
quantum dot, Fig. 4.7(c). The collected counts are averaged over the full wavelength
range of 920-940 nm.

Figure 4.8(a) shows the mechanical quality factor of a 10 and 15µm2 long can-
tilever. The measurement is performed at room temperature in dependence on the
helium-gas pressure inside the measurement chamber. The dashed line indicates the
transition from the fluidic to the ballistic regime. The transition is defined by the
Knudsen number, Kn = 1, which is given by the ratio of the mean free path of the gas
and the representative physical length scale of the mechanical resonator (cantilever
width [127]). The dashed lines show the sum of the intrinsic quality, Qint, and the
gas damping in the ballistic regime, Qbal. The latter is a linear function of the gas
pressure p and is fitted using a free fit parameter, Q−1

bal = c1p [127]:

Q−1
m = Q−1

int + c1p. (4.6)

Note that in the fluidic regime, Kn < 1, where the dimension of the mechanical res-
onator is greater than the mean free path of the gas, the mechanical quality starts to
deviate from the ballistic damping. The pressure that was finally selected for cooling
down the measurement chamber is 20 Pa which gives a final pressure of 0.28 Pa at
4.2 K.
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Figure 4.8: Mechanical device characterisation. (a) Mechanical quality factor in de-
pendence of pressure (gas damping), for a 10 and 15µm cantilever. (b) Displacement norm
of a finite element simulation with a mirror symmetry in the xz-plane. Here, the distance
from the cantilever to the boundary in each direction is 5µm. (c) Simulated mechanical
quality of the finite element simulation in dependence on the distance from the cantilever to
the boundary layers.

In Chapter 4.5 we observe that the intrinsic mechanical damping is relatively
high, compared to standard cantilever devices[133]. A major source could be surface
friction losses [127], due to the high surface-to-volume ratio [161] [176]. Clamping
losses are usually at low levels in long and thin cantilevers, which we estimate here
Qclamp ≈ 2×109, assuming a semi-infinite elastic substrate [127]. A similar behaviour
is observed in finite element simulations; see Fig. 4.8(b) and (c). We apply a lossy
(low-reflecting) boundary condition to all four side walls and the bottom. The me-
chanical quality initially increases as a function of the distance between the cantilever
and the boundary layers and in the end, converges towards Qclamp ≈ 2.6× 109. Note
that in this simulation no material loss is added.



CHAPTER 5

Quantum-dot optomechanics in the sideband
regime
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5.1 Introduction

Quantum dot optomechanics in the unresolved-sideband regime was shown in Chap-
ter 3, with mechanical frequencies as high as 19 MHz. In this regime, the coupling
between the two systems is measured by detuning the laser from the quantum dot
resonance such that the derivative of the count rate (with respect to the laser de-
tuning) is maximised. With this, highest mechanical noise sensitivity is achieved
and the mechanical modulation of the quantum dot transition energy is imprinted
on the emission count rate. From another perspective, the interaction of the laser
with the quantum dot, more specifically the Rabi frequency and the excited-state
population, are also modulated (however with a slight delay). This, in turn, gives a
time-dependent back-action force on the mechanical system, since the presence of an
exciton in the quantum dot leads to strain [55].

This chapter presents an optimised mechanical resonator design and gives a first in-
sight into quantum dot optomechanics in the regime where the mechanical frequency
is larger than the quantum dot decay rate. The mechanical resonator is designed such
that there is a series of mechanical modes with frequencies lower (Ωm/2π < 150 MHz)
and higher than the excited-state decay rate (Ωm/2π > 150 MHz). This allows us
to study the coupling of the hybrid system in both frequency regimes with the same
device. An additional feature compared to the cantilever structure is that the new
design also hosts in-plane breathing modes (longitudinal modes) [177]. These modes
have a higher spring constant and thus also a higher vibrational frequency compared
to in-plane bending modes (lateral modes), see Fig 5.1 and Tab.5.1. This allows a
larger resonator size at high mechanical frequencies which facilitates quantum dot
localisation.

Chapter 5.2-5.4 will focus on the general optical and mechanical device charac-
terisation, Chapter 5.5-5.6 on the detection of Brownian motion using the coupling
between the two systems, and Chapter 5.7.1-5.7.7 on the modulation of the quan-
tum dot resonance by additional mechanical actuation using a classical but coherent
drive. Note that from now on the quantum dot frequency shift at 4.2 K, δE/ℏ (see
Chapter 3), is replaced by the thermal coupling rate gth.

5.2 Optimised mechanical resonator design

The mechanical resonator is similar to the cantilever shown in Fig. 3.1: both res-
onators consist of a beam of roughly equal dimensions. Here, a simple yet highly
effective change is made to the design which is that the resonator is detached from
the surrounding under-etched substrate [151, 178]. This is achieved by freely suspend-
ing the beam using four 200 nm wide and 2.8 µm long tethers. Though this minimises
the contact with the under-etched substrate, there is still a finite coupling, especially
for higher-order in-plane bending modes.

A major advantage of this resonator design is that longitudinal breathing modes
can be observed. With the cantilever resonator, these modes hybridised with the
under-etched substrate, resulting in a highly increased mode volume and a highly re-
duced mechanical quality factor and thus they were not observed in the experiments.
With the optimised design, these in-plane breathing modes are observed, even up to
the 3rd-order.
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Figure 5.1: Finite-element simulations of the mechanical resonator. (a) Scanning
electron microscope image of the suspended beam resonator. (b-i) Mode profile (shown as
displacement) and quantum-dot mechanical coupling profile (normalised colour scale) of all
modes which are observed in the experiments. The resonance frequencies obtained from
the measurements are displayed for every mode. (b-f) 1st- to 5th-order in-plane (symmet-
ric/even) bending modes, showing a clear asymmetry in the coupling profile. Quantum dots
need to be displaced from y = 0 to couple to these modes. (g-i) 1st- to 3rd-order in-plane
breathing modes showing a very homogenous coupling profile. This facilitates quantum-dot-
mechanical coupling and limits the search for a good quantum dot to a single geometrical
axis (x-axis).

The design of the freely suspended beam is optimised using finite-element simula-
tions (COMSOL Multiphysics), see Fig. 5.1(b-i). The resonator is optimised for two
different beam lengths: 12 µm which is shown in the following chapters, and 25 µm
which is shown in Supplementary note VI. The width of the beam is also optimised
such that the outcoupling of the emission of the quantum dots is maximised, see
Chapter 6. Fig. 5.1(a) shows a scanning electron microscope image of the 12 µm long
freely suspended beam. The length and position of the tethers are also optimised.
First, the distance from the resonator to the substrate is chosen to be roughly similar
to the one of the cantilever resonator (3 µm). This is several times larger than the fo-
cus spot diameter and thus not only locating the resonator in y-direction is facilitated
(see Fig. 5.3) but also the laser suppression is improved. Second, a fine adjustment
of the tether length is done by minimising the mode volume and the leakage to the
under-etched substrate as well as the tether deformation. The fine adjustment be-
comes increasingly important for higher mode numbers. Going one step further, also
the tether attachment position is optimised by minimising the loss to the substrate.
Especially for the 3rd-order in plane mode, this plays an important role – if optimised
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Figure 5.2: QD-mechanical coupling rate. Finite-element simulations are used to esti-
mate the exciton-phonon coupling rate. For this, the effective mass, meff , and mechanical
vacuum fluctuation, xzpf , are obtained via thermomechanical calibration. (a) Estimated
vacuum exciton-phonon coupling rate, gep, of the measured quantum dots, for each mechan-
ical mode shown in Fig. 5.1. (b) Thermal exciton-phonon coupling rate, gth, for the same
modes as shown in (a).

correctly, the displacement profile shows a node at the attachment position and thus
leakage to the substrate is highly minimised [178], see Fig. 5.1(i).

Besides the optimisation of the displacement profile, we are also highly interested
in the exciton-phonon coupling profile, shown by the colour scale in Fig. 5.1. The
coupling rate is estimated via the zero-point motion and effective mass of the indi-
vidual modes. For more details see Chapter 3.13. As can be seen in Fig. 5.1(b-f), the
in-plane bending modes all show an odd y-symmetry with a node in the beam centre.
Thus, to observe quantum dot mechanical coupling the dots need to be located away
from the centre of the beam. The more the quantum dot is displaced from the y-axis
the higher the coupling rate, since strain is maximised at the sidewalls of the beam.
This places a constraint on finding a quantum dot with a high coupling rate for these
modes. This limitation is highly relaxed when working with an in-plane breathing
mode, see Fig. 5.1(g-i). The coupling profile is highly homogenous in y-direction and
the quantum dots found in the laser spot roughly all show the same coupling strength
(see Fig. 5.10). Therefore, for locating a quantum dot with a high coupling rate, only
the x-position needs to be considered. This is straightforward due to the relatively
large resonator size in the x-direction, which is about 12 times the laser spot diameter
(see also Fig. 5.4). Note that due to the large size mismatch in all three dimensions,
l ≈ 12 × w ≈ 65 × h, there is no hybridisation of the mechanical modes.

Figure 5.2 shows the estimated vacuum and thermal exciton-phonon coupling rates,
gep and gth (see Chapter 2), evaluated at two different positions on the mechanical
resonator [54]: QD2 is located in the centre of the resonator slightly displaced from
y = 0, and QD7 is located close to the tether attachment position also displaced
from y = 0. Therefore, both quantum dots show individual coupling strengths for
the mechanical modes. Interestingly, although the vacuum coupling rate increases
for higher mechanical modes, the thermal coupling rate stays roughly constant. The
reason is the decreasing phonon number (at bath temperature) for increasing me-
chanical frequency. Thus, the higher the mechanical frequency the higher the vacuum
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Figure 5.3: Out-of-plane bending mode characterisation. (a) Mechanical mode pro-
file (shown as displacement) and z-displacement (shown in colour) of the 1st-order out-of-
plane (asymmetric/odd) mechanical mode which is used to pre-characterise the mechanical
resonator. (b) Brownian-motion mechanical quality factor, Qm, measured via the cavity
between the beam and the substrate. (c) Electric-field-antenna actuation of the mechanical
mode: the applied microwave frequency (y-axis) is swept through the mechanical resonance
while the power spectrum is recorded (x-axis/colour scale). (d) The diagonal cut of (c)
shows the driven mode spectrum with a similar mechanical quality factor as in (b). (e,f)
Confocal and mechanical mode profile scans of the resonator: the microscope head is oper-
ated in the bright-field mode and the intensity (e) and the noise power (f) of the reflected
laser are recorded.

optomechanical coupling rate must be for observing optomechanical coupling (given
by Brownian motion). Simulation parameters for eigenfrequency, effective mass, zero-
point motion, thermal motion, spring constant, and phonon number can be found in
Tab. 5.1 in Supplementary note II.
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5.3 Mechanical pre-characterisation

For an initial mechanical device characterisation we make use of the under-etch cavity,
presented in Chapter 4. The freely suspended beam also has an out-of-plane bending
mode with maximal displacement in the beam centre, see Fig. 5.3(a). Measuring the
mechanical vibration via the under-etch cavity is much faster than using the single-
quantum dot emission, therefore, it is a perfect tool to probe the mechanical quality
factor before turning to extensive single-quantum dot measurements. Fig. 5.3(b)
shows the noise power from a reflected laser, measured with a fast photodiode and a
spectrum analyser (for more details see Chapter 4). The Brownian motion noise peak
of the out-of-plane bending mode at Ωm/2π ≈ 4.3 MHz shows a mechanical quality
factor of Qm = 5000. This is lower than what was measured for the cantilever (shown
in Fig. 3.3). We speculate that this is due to the different mechanical resonator de-
signs and the different mode shapes. Note that the out-of-plane mechanical quality
factor of the 25 µm beam is comparable to the ones of the cantilever, see Supplemen-
tary note VI.

The mechanical quality factor can also be measured by driving the resonator with
the electric-field antenna, shown in Fig. 5.3(c,d). For this measurement, the frequency
applied to the electric-field antenna is swept through the mechanical resonance (y-
axis) while for every frequency step, a noise power spectrum is recorded (x-axis and
colour scale). The constant signal independent of the mechanical drive in Fig. 5.3(c)
is the thermal motion of the resonator. The narrow diagonal feature is the signal
from the coherent drive. A linecut of the drive is presented in Fig. 5.3(d), with a
mechanical quality factor similar to the Brownian-motion measurement.

By driving the mechanical mode at the resonance frequency, the motion is highly
increased which we can use to image the displacement profile of the mechanical mode.
For this, the reflected laser power and the mechanical noise power are recorded si-
multaneously as a function of the laser position on the mechanical resonator (using
the x-y-piezo scanner, see Supplementary note I). The reflected laser power is shown
in Fig. 5.3(e) and the noise power is shown in Fig. 5.3(f). Although the recorded
mechanical noise power is influenced by the collection efficiency of the reflected laser
(which depends on the laser position on the mechanical resonator), a similar mode
profile as in the simulation is observed. Since the electric-field antenna is much larger
than the mechanical resonator and since the antenna is installed far away from the
resonator, we assume that moving the sample around does not affect the driving effi-
ciency.

With the measurement presented above we identify resonators with high mechan-
ical quality factor and continue with the quantum dot characterisation, presented in
the following chapter

5.4 Quantum dot characterisation

The first step for single-quantum-dot measurements is locating suitable dots on the
mechanical resonator. A similar measurement as the one presented in the previous
chapter is performed by recording the quantum dot photoluminescence as a function
of the position. The gate voltage is set to 1.37 V, which corresponds to the emission
of the negative trion transition. Due to the high quantum dot density of more than
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Figure 5.4: Photoluminescence characterisation of the mechanical resonator (a)
Confocal scan of the mechanical resonator. (b) Photoluminescence map of the same mechan-
ical resonator as shown in (a). Photoluminescence spectra are recorded while an xy-piezo
scanner moves that sample around the laser spot. For each data point, the maximum in-
tensity peak of each spectrum is shown. Several quantum dots can be found distributed
over the full resonator. (c,d) Single-wavelength evaluation of the photoluminescence map at
950.44 nm (QD2) and 938.83 nm (QD7). The QD luminescence is well localised (highlighted
in blue) and no strong waveguiding is observed.

ten dots per µm2, plenty can be found on the mechanical resonator, see Fig. 5.4(a,b).
Note that this becomes even more important when further reducing the resonator size
as in Chapter 6. In general, the emission collection is higher on the resonator and the
under-etched substrate due to the additional reflection from the hollow space below
the structure. Furthermore, as mentioned before, the width of the beam is optimised
to maximise the outcoupling to the top (see Chapter 6.9). We also observe that at
the two ends of the beam, there is a further enhancement, however, this does not
directly translate to what we see with resonant excitation and further investigations
are needed.

In the measurement shown in Fig. 5.4(b) for every data point a full emission
spectrum is recorded of which the maximum intensity is shown. Though this gives
a rough estimate of the general quantum dot distribution, this type of evaluation
is not enough to locate individual dots. Therefore, the recorded spectra are evalu-
ated for single wavelengths. Figure 5.4(c,d) shows the emission evaluated for QD2 at
950.44 nm and for QD7 at 928.83 nm. The emission of an individual quantum dot is
well localised, at least in the x-direction, which allows quantum dots to be selected
with different coupling strengths to the individual mechanical modes (see Fig. 5.2).
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Figure 5.5: Quantum dot charge plateau characterisation. (a) Voltage scan of the
quantum dot’s photoluminescence: by applying a gate voltage, the quantum dot’s charge
state can be changed from the positive trion, X+, to the negative trion, X1−. (b-d) Reso-
nance fluorescence charge plateau scans of neutral and charged excitons of QD2 and QD7.
Excitons from multiple quantum dots can be observed due to the high quantum dot density.
The measurements are performed in a way such that for each laser frequency the full gate
voltage range is scanned and the QD emission is recorded using single-photon detectors.

All the following measurements on the freely suspended beam are based on the two
quantum dots presented here.

A major challenge with structures with small footprints is the gate functionality.
The membrane resonators rely on good conductance of the doped gate layers at the
top and the bottom of the membrane. For the suspended beam, the smallest connec-
tion to the surrounding membrane and to the electrical contacts are the 200 nm-wide
tethers. The four tethers combined result in good conductance to the surrounding
membrane and there is no degradation of the gate quality on the mechanical resonator.
Fig. 5.5 shows a photoluminescence scan of QD2 as a function of applied bias voltage
revealing the transitions of the charge plateaus from X+ to X2−. The wavelength
separation between the neutral exciton, X0, and the trion, X1−, is approximately
4 nm, a typical value for InAs quantum dots [109].

Besides quantum dot charge control, also the semiconductor noise depends on the
diode quality. This can be probed with resonant quantum dot excitation. For the
cantilever resonator, the inhomogeneously broadened linewidth was a factor of two
larger than the transform limit, see Fig. 3.10. Here, this ratio is slightly higher with
a linewidth approximately three times larger than the transform limit (see Supple-
mentary note III). To what extent the inhomogeneous broadening is limited by the
tether width or fabrication imperfections requires further investigation.



5.5. Master-equation simulations of the exciton-phonon coupling 67

Figure 5.5 (b-d) shows the resonant charge plateaus of the exciton and trion of QD2
and QD7. The excitation power is chosen close to saturation such that ΩR ≈ ΓR,
which corresponds to roughly 200 nW of laser power reaching the sample. The mea-
surement is performed in a way that first the laser spot position is optimised using
the photoluminescence signal and second, laser frequency and gate voltage are swept
while recording the emission with a single-photon detector. Even though the laser
suppression becomes worse for small mechanical structures, it is still stable enough
so that when tuning the laser in a range of more than 100 GHz, the change in laser
suppression is negligibly small. However, the laser suppression also depends highly
on the excitation power and worsens when the power increases due to the emission
saturation of the quantum dot.

Correlating the emission intensities of non-resonant and resonant excitation it can
be seen that QD7 shows an increased count rate compared to QD2, about a factor
of three with resonant excitation. This might be an effect of the lateral quantum dot
position and the beam width optimisation. However, there is no significant reduction
of the radiative lifetime and thus the higher count rate is not due to Purcell enhance-
ment but due to a better collection efficiency for QD7. In addition, we also observe
a better excitation efficiency for QD7 (lower power needed to reach a specific Rabi
frequency).

5.5 Master-equation simulations of the exciton-phonon
coupling

In Chapter 3, it was shown that measuring the Brownian motion can be very time-
consuming, especially if non-optimal measurement parameters, i.e., excitation power
and laser detuning, are used. Therefore, this chapter focuses on modelling the in-
teraction between the mechanical resonator and the single-photon emitter such that
optimal parameters can be estimated prior to the measurement. The method used to
describe the hybrid system follows the approach in Ref. [61, 62].

Theoretically describing an isolated two-level system driven by a single close-to-
resonance laser is relatively straightforward using the Lindblad master equation ap-
proach. However, modelling a quantum dot coupled to a mechanical resonator whose
displacement fluctuations are coupled to a thermal bath is not so simple. Furthermore,
estimating the impact of the optical interaction with the dot on the mechanical res-
onator requires a quantum mechanical description of the phononic states. Although
this has been described in Ref. [179, 180], we follow a simpler approach of describing
the hybrid system with a classical coherent mechanical drive [61, 62].

We start by describing the quantum dot by a driven optical two-level system with
a semi-classical approach. For more details see Chapter 2. The coupling between the
mechanical and the optical system is then added by a term which includes the mod-
ulation of the quantum dot transition energy based on the thermal exciton-phonon
coupling strength and the mechanical frequency. When going to the rotating frame
of the interacting laser, the Hamiltonian looks as follows:

Ĥ =
ℏ
2

[
ΩR (σ̂+ + σ̂−) + 2

(
gthsin(Ωmt) − ∆ωl

)
σ̂+σ̂−

]
, (5.1)
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Figure 5.6: Numerical master equation simulations of the optomechanical inter-
action. (a) Excited-state population (for a detuned laser) as a function of time using
the time-dependent Hamiltonian shown in Eq. 5.1. The simulations are performed over
200 mechanical oscillations. At short times (< 10 ns) large changes in population due to
Rabi-oscillations can be observed. At large times, the noise is given by the mechanical mod-
ulation of the quantum dot energy. (b) Fast Fourier transform of the data shown in (a). The
transformation is performed without Rabi oscillations by skipping the first 50 mechanical os-
cillations. (c,d) Numerical simulations in dependence of laser detuning and Rabi frequency,
ΩR (∝

√
laser power). The excited-state population in (c) is the average population at later

time in (a). The expected amplitude noise in the quantum dot emission, only given by the
derivative of the quantum dot count rate, is shown in (d). For every simulation point, the
normalised derivative of the quantum dot count rate with respect to the laser detuning,
ρ̇ee(∆ωl)/⟨ρee(∆ωl)⟩, is multiplied by the quantum dot frequency modulation given by ther-
mal motion, gth.

where ΩR is the optical Rabi frequency, ∆ωl/2π is the laser detuning from the
quantum dot resonance, Ωm/2π the mechanical frequency, and gth the thermal
exciton-phonon coupling rate. The latter is obtained from the finite-element simu-
lations presented in Chapter 5.2. The exciton-phonon coupling as described in the
Hamiltonian above can also be understood as a sinusoidal time-dependent detuning
between the laser and the quantum dot resonance. Finally, the incoherent excited-
state decay rate is added via a Lindblad collapse operator, L =

√
ΓR|g⟩⟨e|, and the

system evolution is described by a set of coupled differential master equations, see
Chapter. 2

Since the Hamiltonian in Eq. 5.1 is time-dependent, there is no steady state and
it is solved numerically. The numerical simulation is performed in total over 200
mechanical periods and an inhomogeneous broadening (estimated from the mea-



5.5. Master-equation simulations of the exciton-phonon coupling 69

0 2 4

R/ R

-1

-0.5

0

0.5

1

la
se

r d
et

un
in

g 
(G

H
z)

-0.5

0

0.5

ph
as

e 
(

)

0 2 4

R/ R

-1

-0.5

0

0.5

1

la
se

r d
et

un
in

g 
(G

H
z)

-0.5

0

0.5

ph
as

e 
(

)

-1

-0.5

0

0.5

1

0 2 4

R/ R

la
se

r d
et

un
in

g 
(G

H
z)

2

4

6

8

 s
nnth

 d
f

10-4

-1

-0.5

0

0.5

1

0 2 4

R/ R

la
se

r d
et

un
in

g 
(G

H
z)

2
4
6
8
10
12
14

 s
nnth

 d
f

10-4

c) d)

a) b)29 MHz (      <      )m R 584 MHz (      >      )m R

Figure 5.7: Simulated mechanical noise for low- and high-frequency modes. (a,b)
Numerical simulations of the mechanical noise power for the 29MHz (Ωm < ΓR) and 584MHz
(Ωm > ΓR) modes. The noise power is obtained by integration of the resonance peak in
Fig. 5.6(b). (c,d) Extracted phase of the noise shown in (a, b). The noise profile of the
low-frequency mode matches the expected noise given by the derivative of the quantum dot
count rate, see Fig. 5.6(d). For the high-frequency mode, however, the magnitude and phase
of the noise deviate strongly from the expectation of Fig. 5.6(d).

surements) is added with a Lorentzian weighted distribution of 300 MHz (FHWM).
In general, we observe that inhomogeneous broadening is rather Lorentzian than
Gaussian, hinting at an interaction with only a few charge traps [125]. The quantum
dot emission rate is proportional to the excited-state population, ρee, which is
shown in Fig. 5.6(a) for an off-resonant laser. For times much larger than the
Rabi oscillations, the excited-state population oscillates due to the time-dependent
detuning between dot and laser, see Fig. 5.6(a). The numerical simulation is analysed
for the time-averaged excited-state population and for the noise power from the
mechanical interaction. The excited-state population is averaged over the last 100
mechanical oscillations, Fig. 5.6(c), and the noise power is obtained by a fast Fourier
transformation (also of the last 100 mechanical oscillations), Fig. 5.6(b).

For mechanical frequencies that are much lower than the excited-state decay rate
(unresolved-sideband regime) the noise which is imprinted on the quantum dot
emission depends on the derivative of the linewidth, see Chapter 3. Therefore we
take the derivative of the excited-state population as a function of laser detuning,
which corresponds to the expected noise power in the unresolved-sideband regime.
This is shown in Fig. 5.6(d).

To continue, we compare the expected noise power between the cases where the
mechanical frequency is slower and faster than the excited-state decay rate. The
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numerical simulations are performed for the 1st-order bending mode at 29 MHz
and for the 3rd-order breathing mode at 584 MHz. The thermal exciton-phonon
coupling rates are taken from the finite-element simulations, see Fig. 5.2. The power
and the phase of the noise are extracted, shown in Fig. 5.7. As expected, for the
low-frequency mechanical mode, the highest noise sensitivity is at low excitation
power and small detunings. In fact, the sensitivity in Fig. 5.7(a) matches remarkably
well with the expectation from the derivative analysis of the linewidth in Fig. 5.6(d).
Note that Fig. 5.7(a) is the noise power of the normalised excited-state population,
see Chapter 3. Thus, the noise sensitivity is highest at low power, however, the
emission count rate is also low (increasing the measurement time).

When comparing the noise sensitivity of the high-frequency to the low-frequency
mechanical mode, a significant difference is visible, Fig. 5.7(b). The highest noise
sensitivity is now at elevated excitation power and at a detuning which does not
directly correspond to the maximum slope of the quantum dot count rate (see
Fig. 5.6(d)). The phase also shows a significant difference. There are not one but
three transitions of π, see Fig. 5.7(c,d).

To summarise, this comparison shows that the noise sensitivity is not the same for
mechanical frequencies slower and faster than the decay rate. Consequently, different
laser powers and detunings need to be chosen as in the previous measurements
with the cantilever resonator. Further discussion on this topic will follow in Chapter 6.

5.6 Brownian-motion measurement

The Brownian-motion measurement is performed in the same way as in Chapter 3,
however, with an optimised parameter set, chosen from the analysis in the previous
chapter. The autocorrelation measurement is performed at ΩR ≈ 3ΓR and with a
laser detuning of ∆ωl/2π = 300 MHz. Since this corresponds to a relatively high exci-
tation power where the quantum dot emission is close to saturation, laser suppression
is difficult. Therefore, it is even more important to automatically suppress the laser
during the course of the measurement. Nevertheless, there is still a finite leakage of
the laser which increases the g(2)(0), as can be seen in Fig. 5.8(a). Note that at low
laser powers a g(2)(0) = 0.03 is obtained, see Supplementary note III.

A zoom-in of the autocorrelation measurement (at large time delays) reveals mul-
tiple oscillations with different coupling strengths, Fig. 5.8(b). As in Chapter 3, a
Fourier transformation is performed to obtain the noise power spectrum, which is
shown in Fig. 5.8(c,d) for QD2 and QD7, respectively. In total eight noise peaks are
observed, corresponding to the mechanical modes presented in Fig. 5.1. The height
of the noise peaks depends not only on the exciton-phonon coupling strength but
also on the mechanical quality factor, or more precisely the frequency width in the
noise spectrum. Thus, the coupling strengths of the modes cannot be compared by
just judging from the intensity of the individual noise peaks. Since the noise does
not directly depend on the derivative of the linewidth, it is not straightforward to di-
rectly convert the observed noise to a coupling rate, especially for the high-frequency
modes. Nevertheless, we can compare the measured noise to the noise obtained from
the numerical simulations, for which we use the expected coupling rates from the
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Figure 5.8: Brownian-motion measurement with a single quantum dot. (a,b) Brow-
nian motion autocorrelation measurement of QD2 with a Rabi frequency of ΩR ≈ 3ΓR and a
laser detuning of ∆ωl/2π = 300MHz, which is 1/3 of the quantum dot linewidth at the cor-
responding laser power. (c,d) Power spectrum of the autocorrelation measurement showing
multiple noise peaks from, in total, eight mechanical modes. The strengths of the individ-
ual noise peaks depend not only on the mechanical quality factor but also on the quantum
dot position and the mechanical mode shape (see Fig. 5.1 and Fig. 5.4). (e,f) Zoom-in of
the power spectrum (grey shaded area in (c, d)) revealing the Lorentzian lineshape of the
mechanical modes. Mechanical quality factors of 1.05× 104 and 3.94× 103 are obtained for
the 1st-order in-plane bending and 1st-order in-plane breathing modes, respectively. The
mechanical quality factors of the remaining modes can be found in Tab. 5.1.

finite-element simulations. Focusing on the 587 MHz mechanical mode, we obtain an
integrated noise power of about 6 × 10−4 which is comparable to the noise expected
from Fig. 5.7(b), considering the power and detuning parameters from the measure-
ment. Also for all other modes, we see a similar (same order of magnitude) noise
power in the measurement as we would expect from the simulations and thus, the
coupling rates should be comparable to the ones presented in Fig. 5.2.

The mechanical quality factors can directly be obtained from the noise power spec-
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trum. Two examples are shown in Fig. 5.8(e,f), and the extracted quality factors
are listed in Tab. 5.1. For the bending modes, the mechanical quality factor reduces
from an initial Qm = 1.05 × 104 for the 1st-order mode down to Qm = 8.1 × 102 for
the 5th-order mode. This corresponds to a decrease of more than an order of magni-
tude which we attribute to the leakage to the surrounding under-etched substrate (see
Chapter 5.2) as well as an increase of intrinsic losses. A similar effect is observed for
the breathing modes where the quality factor reduces from 3.8×103 to 2.0×103. More
importantly, the 3rd-order breathing mode does not show any sign of an increased
mechanical quality factor due to a reduced clamping loss [151, 177]. Therefore, the
degradation of the mechanical quality factor for higher frequency modes is strongly
influenced by an increase in intrinsic losses.

So far, the single-quantum dot noise measurements are based on the displacement
obtained from Brownian motion. The following chapters will focus on quantum dot
optomechanics under driving of the mechanical modes using the electric-field antenna.

5.7 Mechanical actuation

Controlling the state of the mechanical resonator via the optical interaction with the
quantum dot is one of the big pictures of this work. The Brownian-motion measure-
ment presents a first step in this direction. However, the interaction between the
quantum emitter and the mechanical resonator is rather complex due to the non-
linear nature of the quantum dot. The following subchapters present a collection of
individual measurements where the resonator displacement is enhanced by a classical,
yet coherent, drive. These experiments help to better understand the interaction of
the coupled hybrid system. The magnitude of quantum dot resonance modulation at
a specific driving power will be referred to as gdriveth .

5.7.1 Plateau broadening

The exciton-phonon coupling is based on deformation potential [24] (see Cahpter 2
and 3). Therefore, the neutral exciton and the charged trion should be equally af-
fected. To investigate this, resonant charge plateau maps are performed for both, the
exciton and the trion of the same quantum dot. In addition, the transition frequency
shift due to the quantum dot mechanical coupling is highly enhanced by driving the
mechanical 1st-order bending mode. Assuming that the mechanical amplitude stays
the same when going from the exciton to the trion gate voltage (for more details see
Chapter 3.14), there should be an equally strong linewidth broadening for both of
them.

Figure 5.9(a,b) shows the exciton and trion charge plateaus of QD2 measured with
resonant excitation. The measurement is performed in the following way: first, the
laser is frequency locked and the gate voltage is scanned while recording the emis-
sion with a single-photon detector, and second, this process is repeated for all laser
frequencies. Note that the single-photon clicks are counted with a time tagger which
is operated in the network-time-tagger mode where the single-photon tags are for-
warded to the experimental computer for evaluation. With his method, the delay due



5.7. Mechanical actuation 73

a) b)

1.28 1.3 1.32 1.34 1.36 1.38
gate voltage (V)

315.3

315.32

315.34

la
se

r f
re

qu
en

cy
 (T

H
z)

0

50

100

150

200

kc
ou

nt
s 

(1
/s

)

1.28 1.3 1.32 1.34 1.36 1.38
gate voltage (V)

315.3

315.32

315.34

la
se

r f
re

qu
en

cy
 (T

H
z)

0

50

100

150

200

kc
ou

nt
s 

(1
/s

)

1.2 1.25 1.3
gate voltage (V)

316.65

316.7

316.75

la
se

r f
re

qu
en

cy
 (T

H
z)

0

100

200

300

kc
ou

nt
s 

(1
/s

)

1.2 1.25 1.3
gate voltage (V)

316.65

316.7

316.75

la
se

r f
re

qu
en

cy
 (T

H
z)

0

100

200

300

kc
ou

nt
s 

(1
/s

)

c) d)

QD2

QD2

X0

X1-

QD2

X0

QD2

X1-
40 GHz

40 GHz

Figure 5.9: Charge-plateau broadening due to mechanical quantum dot resonance
modulation. (a,b) Resonant charge plateau scans of the neutral exciton, X0, and charged
exciton, X1−, of QD2 as a function of laser frequency and gate voltage. Additional plateaus
can be seen which originate from different quantum dots. (c,d) Broadening of the quan-
tum dot resonance under strong driving of the 1st-order in-plane bending mode at 29MHz.
As expected from deformation potential coupling, both excitons show the same amount of
broadening of 2gdriveth /2π = 40GHz, highlighted in green.

to the communication with the time tagger is highly minimised, resulting in short
measurement times.

Once the electric-field antenna is turned on, the quantum dot linewidth broadens,
with a linear dependence on the field amplitude (applied voltage). As expected, both,
exciton and trion, show the same charge plateau broadening, Fig. 5.9(c,d). Since for
these experiments, an in-plane bending mode is mechanically driven, the additional
quantum dots in Fig. 5.9(c,d) show different coupling strengths due to a different
y-position on the resonator (for more details see the following chapter).

5.7.2 Phase response to individual modes

The in-plane bending and in-plane breathing modes show a fundamentally different
coupling profile, see Fig. 5.10(a,b). All bending modes show an odd y-symmetry of
the coupling profile, with compressive stress on one side, tensile stress on the other
side, and zero stress in the centre of the beam. Consequently, dots with different
y-positions can show different coupling strengths. Furthermore, quantum dots with
different signs of coupling can be found if the dots are located on opposite sides of
the beam.

Figure 5.10 shows a time-resolved measurement of the neutral exciton of QD2.
Every horizontal row corresponds to a single measurement where the laser is locked
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Figure 5.10: Time resolved mechanical driving of breathing and bending modes.
(c,d) Time-resolved resonance fluorescence of the neutral excitons of three different quan-
tum dots (see Fig. 5.9(a)) under mechanical driving of the 1st-order in-plane bending (a,c)
and in-plane breathing (b,d) mode. In-plane bending modes have an odd y-axis symmetry
of the coupling profile which is visible by the two π-out-of-phase excitons in (c). In contrast,
in-plane breathing modes show an even symmetry along y, therefore, all quantum dots are
modulated in phase with respect to the mechanical driving. Further, due to the homoge-
neous coupling profile of the breathing mode all quantum dots show the same amount of
modulation.

at a specific frequency and the quantum dot emission is recorded in a histogram
mode, for which the time tagger is synchronised to the driving field. By repeating the
histogram measurements for a series of laser frequencies, the time-resolved resonance
shift of the quantum dot is made visible. Besides QD2 (lowest two emission lines),
there are two more quantum dots visible in Fig. 5.10(c). The three dots do not all
react in phase to the mechanical displacement. Thus we infer that they are located
on opposite sides of the beam (in y-direction). Also, they show individual coupling
strengths which are again determined by the dot position. QD2 shows the highest
frequency shift, hinting that it is located furthest from the centre (y = 0) of the
resonator. Note that each exciton shows two emission lines due to the fine-structure
splitting [66].

In contrast to the bending modes, the breathing modes all show a homogenous
coupling profile with an even y-symmetry [177]. This is also reflected in the time-
resolved measurement in Fig. 5.10(d), which shows the same dots as in Fig. 5.10(c).
All three dots are now synchronised in time and show the same amount of frequency
shift. We conclude that the high-frequency modes are breathing modes (and not
higher-order bending modes). This is also supported by the change in mechanical
quality factor when going from the 5th to the 6th mode that we observe.

The reduced frequency shift when driving the breathing mode compared to the
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bending mode is not due to a reduced coupling strength (see Fig 5.2) but due to
less efficient mechanical driving. For the mechanical modes above 150 MHz the AC-
voltage is not applied with the arbitrary waveform generator (see Chapter 3) but with
an RF-source (National instruments, FSW-0020) in combination with an amplifier
(Mini-circuits, ZFL-2500VH+). For better actuation, the shield of the antenna is
disconnected from the RF-source so that the electric field forms between the antenna
and the sample ground, resulting in a magnitude higher mechanical amplitude.

5.7.3 Quantum dot lifetime

The current wafer material has a high quantum dot density (10 µm−2) and as a con-
sequence, there are additional quantum dots close to QD2 and QD7, see Fig. 5.5.
The issue with close-by quantum dots is that it is not possible to individually ex-
cite them with a mode-locked laser due to the large optical bandwidth of the short
pulses. Thus, the lifetime of the dots cannot easily be determined individually. In
the following paragraphs, we leverage the optomechanical interaction to create an
effective-pulsed measurement which enables individual lifetime measurements, even
of close-by quantum dots.

Figure 5.11(a) shows a time-resolved measurement of QD2 (same as in the previous
chapter) with strong mechanical driving. The frequency shift of the quantum dot is
30 GHz. The two emission lines are a zoom-in of the sinusoidal quantum dot reso-
nance shift, where the left one corresponds to QD2. For each experiment (horizontal
row), the laser is at a fixed frequency and the mechanical motion moves the quantum
dot in and out of resonance.

When the mechanical displacement becomes very large, the quantum dot moves
very fast through the laser which creates an effective pulsed excitation of FWHM =
200 ps, see Fig. 5.11(b). This leads to a shadowing effect in the time-resolved mea-
surement due to spontaneous emission, shown in the line cut in Fig. 5.11(b). The
response of the effective laser pulse is shown in red, followed by the spontaneous ra-
diative decay of the dot. After subtracting the pulse response, a single exponential
function is used to extract the excited-state lifetime of τ =1.16 ns. Note that we find
a similar lifetime for QD7, see Supplementary note III.

The very fast interaction with the laser is even stronger visible with the second
emission line in Fig. 5.11(a). This quantum dot has a relatively small fine-structure
splitting of 1 GHz and both emission lines move through the laser within the lifetime of
the dot. Thus, the fine-structure splitting manifests itself in a time-dependent quan-
tum beating. At the maximum displacement point (21 ns) the quantum dot spends
more time in resonance with the laser than the lifetime of the dot and therefore the
fine-structure splitting can be observed.

The measurement presented above resembles a rapid adiabatic passage-type exper-
iment where the population can be inverted in a regime independent of the excitation
power [181, 182]. In such an experiment, a chirped pulse is used to excite the quan-
tum dot. Here, the time-dependent detuning between the laser and the quantum dot
creates an effective chirp. In the frame of the quantum dot, the laser moves quickly
through resonance either from blue to red or vice-versa. The magnitude of the effec-
tive chirp thereby depends on the mechanical amplitude and the sign of the effective
chirp depends on the movement direction.
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Figure 5.11: Quantum dot lifetime measurement using strong mechanical driv-
ing. (a) Time resolved resonance fluoresence of the neutral exciton (X0) of QD2 under
strong mechanical driving (2gdriveth /2π ≈ 60GHz) of the 29MHz mechanical mode. Due to
the strong driving, the quantum dot resonance is accompanied by a spontaneous emission
tail. (b) Line-cut of (a) corresponding to a single experiment where the laser is at a fixed
frequency and the QD moves fastly through the laser by mechanical driving. This leads to an
effective pulsed excitation of 200 ps duration. (c) After subtraction of the effective pulse re-
sponse, the lifetime is extracted via a single-exponential fit. (d) Numerical simulation of the
excited-state population for zero mechanical drive (blue) and a drive amplitude comparable
to the measurement (orange). Dashed lines are without and solid lines with inhomogeneous
broadening. (e) Numerical simulation in dependence of both, excitation power and mechan-
ical drive amplitude.

Figure 5.11(a) shows numerical simulations of the excited-state population with
the mechanical drive off and on. The simulations are performed over ten mechanical
oscillations and the highest excited-state population during the effective pulse is ex-
tracted. Without mechanical driving, the quantum dot interacts with a CW-laser and
the highest population is given by ρee = 0.5. In contrast, with mechanical driving,
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Figure 5.12: Resonant autocorrelation measurement with fast mechanical modu-
lation. (a) Resonant autocorrelation measurement of QD7 with increasing driving strength
of the 2nd-order in-plane breathing mode. Due to the fast mechanical driving at 387MHz
(Ωm = 2.6ΓR) the autocorrelation shows a modulation even in the anti-bunching region.
(b) Numerical simulation of the 2nd-order coherence function, using the Hamiltonian in
Eq. 5.1, with increasing modulation amplitude of the quantum dot resonance. The simula-
tion matches well with the experiment.

the population can go above 0.5. Figure 5.11(e) shows the excited-state population
in dependence on both, the optical power and the mechanical driving amplitude. The
higher the modulation, the more power is needed to reach the maximum popula-
tion. The highest excited-state population that is obtained from the simulations is
ρee = 0.87, which is limited by the finite effective pulse length. For very large opti-
cal powers, the population goes back towards the steady-state population, since the
linewidth is power broadened, highly increasing the effective pulse width. Whether
in the experiment enough CW-laser power can be reached to invert the population
remains an open question. With the current experimental parameters ρee = 0.05,
highlighted in orange in Fig. 5.11(e).

5.7.4 Autocorrelation measurement

Since all in-plane breathing modes have a higher mechanical frequency than the
excited-state decay rate, there should also be an effect on the anti-bunching in the
autocorrelation measurement, especially with additional mechanical driving. This is
investigated with the 2nd-order breathing mode at 387 MHz which is more than twice
as large as the excited-state decay rate. We cannot drive the 3rd-order breathing
mode efficiently enough for performing this measurement (partially due to the high
spring constant and partially due to the mode shape).

Figure 5.12(a) shows a series of resonant autocorrelation measurements at low exci-
tation powers and with increasing mechanical driving amplitude. Also here, the laser
is automatically suppressed every minute and the quantum dot resonance is locked to
the laser frequency using the applied gate voltage. The normalisation of the autocor-
relation is performed via the average count rate on the detectors, for more details see
Chapter 7.7. The bunching to g(2)(τ) = 1.45 is due to blinking with a corresponding
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on-off ratio [183] of 69%. For all measurements, the single-photon purity remains at
a high level of 94%.

The mechanical driving results in a periodic modulation of the emission count rate,
which is reflected in the autocorrelation measurement. The mechanical modulation
in the autocorrelation is given by a cosine function (with a π phase) with respect to
zero delays. On the contrary, Rabi oscillations are described by a sinusoidal function
(for more information see Fig. 6.9). Due to the short mechanical period of 2.6 ns the
anti-bunching broadens for high mechanical amplitudes, however, at very short delays
(below 0.8 ns), the anti-bunching seems not to be influenced.

We support our observations with a numerical simulation of the second-order co-
herence function:

g(2)(t, τ) =
⟨σ̂+(t)σ̂+(t + τ)σ̂−(t + τ)σ̂−(t)⟩

⟨σ̂+(t)σ̂−(t)⟩2
. (5.2)

Using the Hamiltonian from Eq. 5.1, the correlation function is simulated using the
Python quantum toolbox Qutip [116, 117]. The correlation function is time-averaged
over 20 mechanical oscillation periods, similar to what is described in Chapter 5.5.
The inhomogeneous broadening is included by assuming a Lorentzian weighted laser
detuning. Figure 5.12(b) shows numerical simulations of the second-order coherence
function with increasing mechanical driving amplitude. Measurement and simulation
match well, including all details discussed above.

5.7.5 Resonant linewidth scan

In Chapter 5.5 it was shown that there is a fundamental difference between the in-
teraction of the quantum dot with low- and high-frequency mechanical modes. Here,
this relationship is explored further by performing resonant linewidth scans while in-
creasing the mechanical driving amplitude. As already shown in Chapter 5.7.1, when
the mechanical frequency is lower than the excited-state decay rate of the dot, the
quantum dot transition energy shift is a linear function of the displacement which,
time-averaged, results in a broadened linewidth. Fig. 5.13(a) shows in more detail
the linewidth broadening when driving the 1st-order bending mode at 29 MHz. The
laser detuning (x-axis) is normalised to the mechanical frequency. The measurement
is performed at low excitation power such that power broadening of the linewidth is
absent (FWHM =450 MHz). Since the electric-field antenna heats the sample, espe-
cially for high frequencies, there are a lot of drifts during the linewidth measurement.
To overcome this issue, every line scan is composed of 20 individual fast line scans
where in between the laser is automatically suppressed and the quantum dot reso-
nance is locked to the laser frequency. In addition, instead of scanning the laser, the
gate voltage is scanned (and converted to frequency using the slope from the charge
plateau) which speeds up the measurement 10-fold.

A similar measurement as in Fig 5.13(a) is also shown in Chapter 3, where the
broadened lineshape is fitted with a model which describes a time-averaged sinusoidal
modulation of the Lorentzian lineshape. Here, the measurement is overlayed with a
numerical simulation of the Hamiltonian in Eq. 5.1. The simulations are performed
in the same way as in Chapter 5.5, solving for the time-averaged excited-state pop-
ulation as a function of laser detuning. Also here, the inhomogeneous broadening is
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Figure 5.13: Resonant linewidth broadening due to fast mechanical driving. (a-c)
Resonant linewidth scans of the neutral exciton of QD7 at low excitation powers (ΩR ≪ ΓR)
under mechanical driving at: (a) 29MHz (Ωm = 0.2ΓR), (b) 190MHz (Ωm = 1.3ΓR), and
(c) 387MHz (Ωm = 2.6ΓR). Black curves are numerical simulations using Eq. 5.1 where we
solve for the excited-state population. The simulations include a homogenous linewidth of
150MHz and an inhomogeneous linewidth broadening of 300MHz, resulting in an effective
linewidth of 450MHz. There is a clear difference between mechanical modes which are slower
and faster than the quantum dot decay rate. For the modes faster than the quantum dot
decay rate we observe an increased intensity at laser detunings of multiples of the mechanical
frequency. (d) Intensity comparison of the measurement (circles) shown in (c) and the
numerical simulations (dashed line) for integer detunings of Ωm.

an important part of the simulations. As expected from previous measurements, the
data match very well with the simulations.

The interaction of the quantum dot with a driven mechanical mode which is faster
than the excited-state decay rate is shown in Fig 5.13(b,c) for the 1st- and 2nd-order
in-plane breathing modes, respectively. The quantum dot transition frequency shift
is not a linear function of the displacement anymore and an increased intensity at
laser detunings of multiples of the mechanical frequency is observed. This is es-
pecially prominent in the 387 MHz experiments where for the first four mechanical
amplitudes the intensity bunches at a laser detuning of ±Ωm/2. For a resonance mod-
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ulation larger than gdriveth > 2.5Ωm the intensity bunches at a detuning of ±2Ωm and
±3Ωm. Similar behaviour is observed for driving the 190 MHz mode, however, the
mechanical frequency is too small in relation to the quantum dot linewidth and the
increased-intensity peaks are washed out. Note that without inhomogeneous broad-
ening, fully-resolved peaks appear at multiple detunings of ±Ωm.

Finally, the emission intensity at detunings of integer values of Ωm is extracted in
dependence of the mechanical driving, Fig. 5.13(d), which matches well to the expec-
tation from the numerical simulations.

With the measurements shown in Fig. 5.13(c), it seems as if sidebands are created
due to the strong mechanical driving, however, the count rates present the fully inte-
grated emission spectrum. It will be shown in Chapter 5.7.7 that at the mechanical
driving powers used here, many actual sidebands are already visible in the emission
spectrum.

5.7.6 Time-resolved measurement

The measurements and simulations presented in the previous chapter are time-
averaged. Time-resolved measurements can give more insight into the mechanism
behind the appearing increased intensity at multiple detunings of Ωm. However,
there is only a certain range of mechanical frequencies for which both, frequency-
resolved and time-resolved modulation, can be measured. The quantum dot lifetime
(τ) is the fundamental limit meaning that first, the mechanical frequency needs to be
higher than the Fourier limit of the linewidth, Ωm/(2π) > 1/(2πτ), and second, the
mechanical period needs to be longer than the lifetime, (2π)/Ωm > τ . The additional
factor of 2π from the conversion of the lifetime to the decay rate enables a range of
frequencies, 1/τ < Ωm < (2π)/τ , for which both modulations can be observed. Here,
150 < Ωm/(2π) < 930 MHz which includes all breathing modes of the suspended beam
resonator. The lower limit is in fact washed out due to the inhomogeneous broaden-
ing. The following measurements present time-resolved resonance fluorescence using
the exact same parameters as in the previous chapter.

The heating effect of the electric-field antenna has a much stronger impact on the
time-resolved than on the time-averaged measurements. Due to the heating, there is
a time-dependent frequency shift of the mechanical resonator. Though it is relatively
small, it imprints a phase instability on the measurements. This means that the mea-
surement needs to be performed much faster than the quantum dot drift (also due to
heating) and the phase drift, which is less than 1 min. Therefore, the measurement
is repeated 120 times with an integration time of 0.25 s per single histogram. After
determining the phase of each measurement an averaging is performed which gives a
total integration of 30 s for each histogram (horizontal data row in Fig. 5.14). The
issue is that with 0.25 s integration per single measurement, for the 2nd-order breath-
ing mode, there is an average photon click of 1.3× 10−5 per mechanical oscillation on
the detectors. Thus, precisely determining the phase of each measurement requires
additional data stitching and averaging, for more details see Supplementary note IV.

Figure 5.14(a,c,e) shows the time-resolved resonance fluorescence under strong driv-
ing of the three mechanical modes which are also presented in the previous section.
Figure 5.14(b,d,f) shows the same numerical simulations as in Fig. 5.13, however not
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Figure 5.14: Time-resolved resonance fluorescence with fast mechanical driving.
(a,c,e) Low-power (ΩR ≪ ΓR) time-resolved resonance fluorescence as a function of laser
detuning width mechanical driving of the same three mechanical modes as shown in Fig. 5.13:
(a) 29MHz, (b) 190MHz, and (c) 387MHz. For each frequency, three mechanical periods
are shown. For mechanical modes slower than the quantum dot decay rate ΓR (see (a)), a
sinusoidal quantum dot resonance modulation is observed. When the mechanical mode is
faster than ΓR (see (c,e)), there is a time modulation of the increased intensity observed in
Fig. 5.13(b, c). The delayed response of ρee to the mechanical modulation manifests in a
phase delay, especially visible for high frequencies. In addition, there is a blurring effect due
to the short mechanical period which is only a factor of two larger than the excited-state
lifetime: Tm ≈ 2τ . (b,d,f) Numerical simulations (without time averaging as in Fig. 5.13),
matching well with the measurements shown on the left-hand side. A full set of data with
various driving amplitudes is shown in Supplementary note IV.

time-averaged. For the 1st-order bending mode at 29 MHz, which is much slower than
the decay rate of the dot, a sinusoidal modulation of the quantum dot resonance is
measured. The same is observed in the numerical simulations.

A clear difference is observable when driving at frequencies higher than the decay
rate of the dot, Fig. 5.14(c-f). The increased intensity at multiples of ±Ωm shows a
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sinusoidal-like time modulation with a region in between the increased-intensity peaks
where the interaction with the dot is highly reduced. More importantly, there is a
phase delay in the time modulation of the increased intensity (due to the delayed re-
sponse of the dot), which increases for higher frequencies. The numerical simulations
are matching well with the data. Note, without inhomogeneous broadening, also here
clearly resolved peaks would be observable at multiple detunings of ±Ωm.

5.7.7 Emission spectrum

In the previous two chapters, an increased intensity at detunings of multiples of the
mechanical frequency is observed. However, for these measurements, the count rate
on the detector represents the fully integrated emission spectrum. Here, we investi-
gate to what extent this increased intensity corresponds to optomechanical sidebands
by resolving the emission spectrum using a narrow optical filter.

A standard piezo-tunable Fabry-Pérot etalon with 8.5 MHz FWHM is installed free-
space. The quality of the etalon is poor with a transmission efficiency of 10% (5%
fibre-to-fibre) and large frequency drifts. When measuring at low excitation powers,
the etalon and the spectral fluctuation of the dot are locked to the fixed laser and the
measurement is averaged over many individual runs, for more details see Supplemen-
tary note V.

To test the etalon, the quantum dot emission is measured with increasing excitation
power, Fig. 5.15(a). Although the etalon has a suppression of four orders of magni-
tude, at low powers, the background level (of the normalised emission) is at 2× 10−3,
due to the broad incoherent emission of the dot and the LA-phonon sideband. At
high excitation powers, the laser interacts strongly with the two-level system and the
Mollow-triplet appears [4, 5, 118]. The higher the power the lower the coherently scat-
tered laser and the higher the incoherent emission of the Mollow-triplet. As expected,
the separation of the Mollow peaks increases linearly with the Rabi-frequency. The
measurements presented in Fig. 5.15(a) match well with the numerical simulations of
the emission spectrum which are shown in Fig. 5.15(c).

The emission spectrum with additional weak mechanical driving of the first two
breathing modes is shown in Fig. 5.15(b). The excitation power is chosen around
saturation (ΩR ≈ ΓR) so that the coherent emission still dominates and the total
emission count rate is not too low. A series of sidebands shows up. Also here, the
measurements match well with the numerical simulations shown in Fig. 5.15(d).

The numerical simulations in Fig. 5.15(c,d) are performed using the Hamiltonian
from Eq. 5.1. The time-dependent emission spectrum is obtained by solving the
first-order coherence function using the quantum toolbox Qutip [116, 117] and by
performing a Fourier transformation of the coherence function:

G(1)(t, τ) = ⟨σ̂+(t)σ̂−(t + τ)⟩, (5.3)

S(t, ω) =

∫ ∞

0

G(1)(t, τ)e−iωτdτ.

Finally, the emission spectrum is time-averaged over 20 mechanical periods and a
Lorentzian filter function is applied. The inhomogeneous broadening is included in
the same way as for the second-order coherence function in Chapter 5.7.4.

When the mechanical drive is turned on, the quantum dot resonance is modulated
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Figure 5.15: Emission spectrum of an optical two-level system. (a) Emission spec-
trum of QD7 using the etalon from Fig. 5.24(b). The spectra are offset by 0.01 in y-direction
for better visibility. Due to stability reasons, every data set corresponds to 20 individual
scans, see Supplementary note V. At low excitation powers the spectrum is dominated by the
coherently scattered laser, whereas at high power spontaneous emission starts to dominate
and we observe the Mollow triplet. (b) QD7 emission spectrum at medium excitation powers
(ΩR ≈ ΓR) while driving the in-plane mechanical breathing modes at 190 and 387MHz. The
side peaks at ±Ωm are due to the interaction of the fixed laser and the mechanical modula-
tion of the quantum dot resonance. (c,d) Numerical simulations using the same parameters
as in the experiments in (a, b). The simulations include an inhomogeneous broadening of
300MHz.

in time with respect to the fixed laser. As shown in Fig. 5.16(a,b) this leads to a
series of sidebands at integer detunings of the mechanical frequency. In the classical
picture, the quantum dot sees a detuning-modulated electric field [184]. This results
in a time-modulated excited-state population. In frequency space, this corresponds
to a carrier signal surrounded by side peaks which will be imprinted on the emission
of the quantum dot. The conversion of the CW-laser (at a fixed frequency) to an
amplitude-modulated emission requires energy, which does not come from the dot
itself but from the mechanical drive (via the QD-mechanical coupling). Overall, the
quantum dot converts light from a single frequency to a series of frequencies using the
energy from the mechanical drive, which is a very similar description to a classical
electro-optic modulator. The description above does not include the lifetime of the
dot which means that even for frequencies much slower than the decay rate of the
dot, sideband should appear. This is exactly what we observe even for the 29 MHz
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mode (thanks to the narrow filter).
In quantum language, light is not described by a field but by photons. The quan-

tum dot is inherently non-linear and absorbs and emits single photons. This means
that the emitted photon is, compared to the input photon, frequency shifted by ±Ωm.
As for the classical picture, the quantum dot cannot do this on its own and additional
energy is required from the quantised mechanical field. The mechanical quantum –
the phonon – is defined as ℏΩm. In this picture, a photon emission in the blue side-
band corresponds to the absorption of a phonon and the emission in the red sideband
corresponds to the emission of a phonon [62]. Also with this description, sidebands
can be observed in the emission spectrum even for Ωm < ΓR.

In our model, the mechanical part is described classically (see Eq. 5.1). Still, the
quantum effects in the measurements (single-phonon absorption/emission) are de-
scribed well by the model. This is in analogy to the classical description of the optical
driving field (see Chpater 2). Our optical simulations reproduce the anti-bunching,
although this is an effect of the quantumness of the light. This is possible since the
non-linear optical two-level system renders the classical input to a quantum output.
Therefore we argue that it is enough to model quantum effects (optical and mechan-
ical), with a classical drive as long as the emitter is modelled quantum mechanically.
Of course, this model breaks down for low phonon numbers and for backaction effects
on the mechanical resonator.

Figure 5.16(a,b) shows the emission at low excitation powers with mechanical driv-
ing of the first two breathing modes at 190 and 387 MHz, respectively. For these
measurements, we exploit the poor quality of the etalon such that a FSR−9dB =
2.9 GHz is obtained, see Supplementary note V. The higher the mechanical driving
amplitude, the more sidebands are visible. The width of the coherently scattered
laser peak, as well as the sideband width, is given by the bandwidth of the spectral
filter (8.5 MHz) which is much broader than the spectral properties of the laser (≈
300 kHz). The antenna driving powers used here (gdriveth /Ωm < 1) are substantially
less than in Chpater 5.7.5.

In general, the intensities of the sidebands depend on the ratio of quantum dot
modulation and mechanical frequency [185], gth/Ωm, which is sometimes referred
to as the modulation index [64, 65]. This also counts for the resolved-sideband
regime, where the single-phonon scattering Rabi frequency (∆ωl = ±Ωm) is given
by Ω′

R = gthΩR/Ωm [64, 180]. The normalised coupling strength is relatively simple
to understand: to maximise the absolute intensity of the first sideband (assuming
no inhomogeneous broadening), the resonance shift of the quantum dot needs to be
∼ Ωm, thus gth/Ωm = 1. This intensity behaviour is also captured by the Bessel
function of 1st kind [61]. This means that if the mechanical frequency is doubled, the
thermal coupling rate should also be doubled to observe the same sideband intensity.
Since the phonon occupation also decreases when going to higher frequencies, the vac-
uum coupling rate actually needs to be more than doubled. This is rather challenging
as can be seen in the finite-element simulations in Chapter 5.2. This shows the im-
portance of careful design optimisation, especially for GHz mechanical resonators.

Resolving the sidebands in the emission spectrum does not necessarily mean that
the system is in the resolved-sideband regime. The definition of the resolved-sideband
regime is that the mechanical frequency must be (much) larger than the decay rate
of the optical system. Though this is enough for cavity optomechanical systems, for
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Figure 5.16: Mechanically modulated emission spectrum of a single quantum dot.
(a,b) Emission spectrum of QD2 with medium excitation powers, ΩR ≈ ΓR, in dependence
of the mechanical driving amplitude at (a) 190MHz and (b) 387MHz. The spectra are offset
in x- and y-direction for better visibility. The spectrum is dominated by the coherently
scattered laser, which is resonant with the quantum dot transition. A series of emission
side peaks can be observed at multiple detunings of ±Ωm. (c) Mechanically modulated
emission spectrum at low optical excitation powers, ΩR ≈ 0.2ΓR and laser detungs of 0
and ±Ωm, respectively. Due to the narrow optical linewidth, ≈ 500MHz, and the low
mechanical driving amplitude, the emission spectrum is highly asymmetric when the laser is
detuned. (d) Brownian-motion measurement of the acoustic sidebands with a laser detuning
of ∆l = −0.5GHz. Acousitc sidebands of the 2nd- and 3rd-order in-plane breathing modes
can be seen.

a quantum dot optomechanical system, where the inhomogeneous broadening plays
a big role, an additional definition is needed: the mechanical frequency also needs to
be (much) larger than the inhomogeneously broadened linewidth. This means that
the laser can be tuned to either the red or blue sideband with a negligible interaction
with the main resonance. This is especially important for optomechanical cooling
experiments. Here, the mechanical frequencies of the first two breathing modes are
still smaller than the measured linewidth of 450 MHz.

Figure 5.16(c) shows the emission for blue- and red-detuned optical driving at
∆ωl/2π = ±Ωm/2π. The optical power is chosen such that the linewidth does not
show power broadening. Therefore, the detuned emission spectra are highly asym-
metric. For the first time, we also observe acoustic sidebands even without mechanical
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Figure 5.17: Optomechanical wave mixing. (a,b) Acoustic sidebands of the 3rd-order
bending and the 2nd-order breathing modes, labeled as Ωm3 and Ωm7, respectively. (c)
Emission spectrum when driving both modes simultaneously. Additional sidebands due to
optomechanical wave-mixing appear at±Ωm7±(2)Ωm3. (d-f) Autocorrelation measurements
of the exact same conditions as in (a-c), g(2)(0) remains below 6 %. When driving both
mechanical modes, additional time modulation due to mixed frequencies appears.

driving, see Fig. 5.16(d). In this experiment, we are mainly limited by the quality of
our measurement method. The broad background is partially due to finite incoherent
scattering and partially due to the LA-phonon sideband, spanning over many free
spectral ranges. Note that during all the measurements presented above the laser
suppression is below 2% of the total emission.

The final measurements of this chapter present a wave-mixing type experiment.
Without going into much detail, the quantum dot performs a wave mixing of a
laser photon and the coherent fields of two different mechanical modes [62]. Fig-
ure 5.17(a,b) shows the emission spectrum of the quantum dot when driving the 3rd
and 7th mechanical modes separately. Sidebands at ±Ωm3 and ±Ωm7 appear due
to the absorption and emission of phonons of the two modes. When driving both
mechanical modes simultaneously, see Fig. 5.17(c), additional peaks at ±Ωm7 ± Ωm3

show up due to optomechanical wave-mixing [62]. The driving of the two mechanical
modes is achieved by frequency mixing a carrier signal of (Ωm7 −Ωm3)/2 + Ωm3 with
a modulation signal of (Ωm7 − Ωm3)/2. The signal is then amplified and sent to the
electric field antenna.

To argue that one photon interacts with multiple phonons at a time, it is important
to show single-photon emission even with strong mechanical driving. Figure 5.17(d-f)
shows autocorrelation measurements of the exact same measurement configuration as
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in Figure 5.17(a-c), where the coincidence counts are normalised using the detector
count rates. For all measurements, g(2)(0) remains below 6 %. Also here, additional
frequency components appear in the time modulation when both mechanical modes
are driven at the same time.

5.8 Conclusion

The optimised resonator design of the freely suspended beam enables the observation
of up to eight mechanical modes in a frequency range of tens of MHZ to hundreds of
MHz. This frequency range is ideal to study the difference in the exciton-phonon cou-
pling between mechanical modes which are slower and faster than the excited-state
decay rate of the quantum dot. It is observed that the optimal detuning and excita-
tion power, in terms of noise sensitivity, are not the same in these two regimes. The
linewidth scans with mechanical driving also show significantly different behaviour
in the two regimes, from a basic linewidth broadening to an increased intensity at
integer laser detunings of the mechanical frequency. On the contrary, the emission
spectrum does not show a substantial difference between the two regimes unless the
laser is also detuned to the blue or red sideband. More importantly, for reaching the
resolved-sideband regime, it is not enough that the mechanical frequency is faster
than the decay rate of the dot, but it also needs to be (much) larger than the inho-
mogeneously broadened linewidth.

Due to the reduced phonon population, the higher the mechanical frequency, the
higher needs to be the vacuum exciton-phonon coupling rate to observe the same
amount of interaction (at 4.2 K). Reaching a higher-coupling rate is important for
experiments such as optomechanical cooling where the sideband-scattering rate is the
limiting factor for the temperature that can be reached. For the suspended beam
resonator the sideband scattering rate at low excitation powers is still lower than the
mechanical loss rate to the substrate. Thus the resonator design needs to be modified
further to reach higher mechanical frequencies with higher exciton-phonon coupling
rates.

Nevertheless, the suspended beam is a good testbed since it not only has a wide
range of mechanical frequencies but also since the mechanical modes can still be actu-
ated well with the electric field antenna. Furthermore, the quantum dot localisation
on the mechanical resonator is straightforward, and also the general optical excitation
works well with a high level of laser suppression.
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5.9 Supplementary note I: Electric-field antenna and
sample setup
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Figure 5.18: Electric-field antenna characterisation and sample setup. (a) Reflection
spectrum measurement of the electric-field antenna using a vector network analyzer. A
series of resonances can be observed, however, the antenna is not optimised for any of
the mechanical modes. (b) Top view of the sample holder. The sample is glued on the
sample holder using a non-conductive two-component epoxy. The top- and back-contact
are connected by hand to the contact pads using a copper wire and a conductive epoxy.
Below the sample holder, a resistive heater is installed, which is used during the warmup
of the sample to avoid condensation on the sample. (c) Cage setup including a focusing
lens with a working distance of about 2mm (NA = 0.65), xy-piezo scanners (Attocube,
ANSxy100std), x/y/z-piezo steppers (Attocube, ANPx101 & ANPz101), and the electric-
field antenna consisting of a ≈ 8 cm unisolated coaxial cable wrapped in Teflon tape. For
further datils on the measurements setup see Chapter 3.15.

For many of the presented experiments, the electric field antenna is indispensable.
Though it is a very simple scheme, it is yet very effective. The antenna consists of a
coaxial cable (LakeShore, CC-SC-25) where the isolation is removed at the end of the
cable for about 8 cm. The antenna is installed approximately with 5 mm distance to
the sample surface, see Fig. 5.18(c). The orientation is chosen such that there is a 45◦

angle between the antenna and the sample design axis such that a force acts in both,
x- and y-direction. The advantage of this antenna design is a broad field distribution
and that all resonators can be actuated at the same time. Furthermore, we assume
that the sample position relative to the antenna (within ±100 µm) does not have an
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impact on the actuation efficiency. The dependence of the mechanical amplitude on
the applied AC-voltage is linear (see. Fig. 3.2) and we do not see any improvement
by additional combination with a DC offset [56, 186].

To briefly characterise the antenna, a reflection spectrum is recorded using a vector
network analyzer (Keysight, N5230A PNA-L), Fig. 5.18(a). The frequencies of the
breathing modes (as well as the ones of the resonator of Chapter 6) are highlighted.
Though there are a few resonances where power is efficiently radiated, none of the
mechanical modes coincides with them. The radiation efficiency of the antenna varies
slightly for the individual modes. We assume that this is negligible for the actuation
efficiency of the mechanical modes. The more important factor is the mechanical mode
profile. It is clear that a left-right mechanical bending mode (as for the cantilever),
can be much better actuated as the 3rd-order breathing mode of the suspended beam.

Figure 5.18(b) shows the sample top-view. The sample is glued to the sample holder
using non-conductive two-component epoxy (UHU, endfest 300). The evaporated
contacts are 1×1.5 mm in size and are connected to the contact pads by hand, using a
copper wire and a conductive epoxy (EPO-TEK, E4110). The sample is then mounted
in a cage on top of a piezo stack, see Fig. 5.18(c). For more details on the measurement
setup see Chapter 3.15.
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5.10 Supplementary note II: Mechanical parameters

Table 5.1 shows the full set of parameters extracted from the Brownian-motion mea-
surements and the finite-element simulations. For more details on the finite-element
simulations see Chapter 5.2 and 3.13.

Table 5.1: Measurement and simulation parameters of the mechanical
modes. The first two rows show the measured mechanical resonances, Ωmeas

m , and
mechanical quality factor, Qmeas

m . The remaining rows show parameters for mechani-
cal eigenfrequency, Ωsim

m , effective mass, meff , spring constant, k, vacuum fluctuation,
xzpf , thermal displacement at 4.2 K, xth, and thermal phonon occupation, nphon,
obtained from finite-element simulations (COMSOL Multiphysics).

1 2 3 4 5 6 7 8
Ωmeas

m /2π (MHz) 28.7 63.9 76.1 112 180 190 387 584
Qmeas

m 10500 11100 1600 2700 815 3800 3900 2000
Ωsim

m /2π (MHz) 29 68 80 114 185 194 396 596
meff (10−15 kg) 4.8 1.6 2.0 5.0 5.2 6.2 5.7 5.6
k (103 N/m) 0.16 0.30 0.52 2.5 6.9 9.2 35 78
xzpf (10−15 m) 7.7 8.7 7.0 3.8 2.9 2.6 1.9 1.6
xth (10−13 m) 5.9 4.3 3.2 1.4 0.9 0.8 0.4 0.3
nphon 3050 1370 1150 781 486 460 226 150
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5.11 Supplementary note III: Quantum dot
characterisation
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Figure 5.19: Quantum dot characterisation. (a,b) Resonant linewidth scans of QD2
and QD7 with corresponding minimal linewidths of 408 and 455MHz, respectively. The
linewidth is fitted with a Lorentzian function. (c,d) Lifetime measurements of QD2 and
QD7 as described in Fig. 5.11. The corresponding transformation limits for the quantum
dot linewidths are given by 1/2πτ = 137 and 149MHz, respectively. (e) Low power auto-
correlation showing high level of anti-bunching with g(2)(0) ≈ 0.03. The fit curve is given by
Eq. 5.4. For this measurement, every minute the laser is automatically suppressed and the
quantum dot resonance is locked to the laser frequency using the gate voltage.

The inhomogeneous broadening of the quantum dot emission can be probed by a low-
power resonant linewidth scan, where power broadening is absent. Figure 5.19(a,b)
shows linewidth scans at 1 nW excitation power (ΩR ≪ ΓR) for QD2 and QD7. Both
dots show a similar linewidth of 408 and 455 MHz, extracted with a Lorentzian fit.
For an ensemble of charge traps, a Gaussian or Voigt profile would be expected. Due
to the low excitation power, the laser suppression is at a high level. Note that if the
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laser suppression is not optimised, Fano lineshapes are often observed. The measure-
ments are performed on the neutral exciton.

The lifetime of the two dots is extracted as described in Chapter 5.7.3. the decay is
fitted with a single exponential curve and the lifetime is extracted τQD2 = 1.16 ns and
τQD7 = 1.07 ns, see Fig. 5.19(c,d). The corresponding Fourier limit of the linewidth
is FWHMQD2 = 137 MHz and FWHMQD7 = 149 MHz. Therefore, the measured
linewidths of QD2 and QD7 are a factor of 2.98 and 3.05 above the Fourier limit. As
discussed in the main chapters, this reduces the noise sensitivity and also leads to a
reduced frequency resolution.

Figure 5.19(e) shows a low-power resonant autocorrelation measurement. The
counts are split 50:50 with a fibre-base beamsplitter and sent to individual single-
photon detectors. A high single-photon purity of 97% is obtained, mainly also due to
the automated laser suppression which is performed every minute. The autocorrela-
tion is fitted with the standard autocorrelation function of a two-level system [183]:

g
(2)
TLS(τ) = 1 − exp

(
1

4
(3ΓR + 2γ∗)τ

)
·
(

cos(λτ) +
3ΓR + 2γ∗

4λ
+ sin(λτ)

)
, (5.4)

λ =

√
Ω2

R − 1

16
(ΓR − 2γ∗)

2
, (5.5)

where ΓR is the spontaneous decay rate, ΩR the Rabi frequency of the optical drive,
and γ∗ the pure dephasing rate of the excited state.
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5.12 Supplementary note IV: Time-resolved
measurements
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Figure 5.20: Time resolved measurement method. (a) Single time-histogram of the
387MHz mechanical mode. Due to the high mechanical frequency and the low count rate
on the detector of ≈ 1 kHz, the modulation is highly undersampled and no modulation is
visible. (b) Due to the time synchronisation of the time tagger and the microwave source
we can fold back the data of a 150 ns measurement so that we obtain an average over 10
times 15 s of the histogram. Consequently, time dynamics become visible. (c) Average over
the orange highlighted region in (b) fitted with a sine function to obtain phase information.
This phase information is used in (d) to average over 100 individual measurement runs.

In Chapter 5.7.6 time-resolved resonant linewidth measurements are shown for various
mechanical frequencies. In the following, it is explained how the data is analysed to
produce the final 2D-color plots. As already mention in Chapter 5.7.6 the mechanical
frequency is almost four orders of magnitude higher than the single-photon count rate
on our detectors. Furthermore, due to the large drifts in the experiments, spectral
wandering and heating from the electric field antenna, the measurement time for a
single run needs to be below 1 min. This means that for a single histogram (horizontal
data row in Fig. 5.20(a)) the integration time is only 0.25s. Thus, the histogram is
recorded with a time axis of 154 ns which is folded back to a range of 15 ns to obtain
an effective averaging of ten, see Fig. 5.20(b). Now a slight count rate modulation can
already be observed. Note that the folding back is only possible by introducing a time
binning which is an exact multiple of the applied mechanical drive. The measurement
is repeated over 120 times and averaged again. For this averaging, the phase of each
individual measurement needs to be determined. Otherwise, due to the phase drift
in the measurements, the outcome would be completely washed out. To extract the
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phase, the orange-highlighted region in Fig. 5.20(b) is averaged in y-direction and
fitted with a sine function, see Fig. 5.20(c). this phase information is then used for
the final averaging process, shown in Fig. 5.20(d).

The following three figures, Fig. 5.21,. 5.22, and. 5.21, present the full data and
simulation set for three different mechanical driving amplitudes for the mechanical
modes already presented in Chapter 5.7.6.
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Figure 5.21: Time resolved measurement set of the 1st-order in-plane bending
mode. Comparison of the time resolve measurement and the numerical simulation for
different mechanical driving amplitudes at 29MHz: (a,c,e) measurement, and (b,d,f) sim-
ulation.
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Figure 5.22: Time resolved measurement set of the 1st-order in-plane breathing
mode. Comparison of the time resolve measurement and the numerical simulation for
different mechanical driving amplitudes at 190MHz: (a,c,e) measurement, and (b,d,f)
simulation.
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Figure 5.23: Time resolved measurement set of the 2nd-order in-plane breathing
mode. Comparison of the time resolve measurement and the numerical simulation for
different mechanical driving amplitudes at 387MHz: (a,c,e) measurement, and (b,d,f)
simulation.
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5.13 Supplementary note V: Emission spectrum
measurements
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Figure 5.24: Piezo-tunable Fabry-Pérot etalon. (a) Record of the etalon transmission
(Thorlabs, SA200-8B) while sweeping the voltage applied to the cavity piezo-element as well
as the laser frequency. The etalon has a natural free spectral range of FSR = 1.45GHz and
a Finess of F = 170 which corresponds to a transmission window of ∆v = 8.5MHz. (b) The
etalon is set up free-space and coupled back into a fibre. For some experiments, we leverage
the low quality of the etalon to reduce the transmission of every second transmission peak
by an order of magnitude, which gives an effective FSR−9dB = 2.9GHz. (c) Stability of the
etalon over time, with a mean drift of 0.06 ∆v/min and a maximum drift of 0.4 ∆v/min.

The emission spectra in Chapter 5.7.7 are performed with a standard piezo tunable
confocal Fabry-Pérot etalon (Thorlabs, SA200-8B). The etalon is set up in free space
with two mirrors for each, in and out-coupling. During the alignment process, it is
made sure that the beam is perfectly parallel to the cavity to maximise the transmis-
sion as well as minimise the etalon transmission width. The alignment is performed
optically by continuously scanning the cavity around the resonance using an arbitrary
waveform generator and imaging the mode profile on a camera. The etalon transmis-
sion at resonance is 10% (same as in specifications). The transmission is limited by
the etalon quality (which can also be seen by the poor lateral profile of the optical
modes).

Fig. 5.24(a) shows the transmission scan of the etalon in dependence of the applied
piezo voltage (Basel Precision Instruments, DAC SP 927 & Attocube, ANC300) and
the laser frequency. Three optical modes with a transmission width of ∆v = 8.5 MHz
are shown separated by a confocal free-spectral range of FSR = 1.45 GHz. Due to
the overlap of the FSR with the higher order side peaks of the 387 MHz mechanical
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Figure 5.25: Emission spectrum measurement method. Measurement method for
the emission spectrum of the quantum dot using the Fabry-Pérot etalon (see Fig. 5.16):
automatic laser suppression (channel 1), locking the quantum dot resonance to the laser
frequency (channel 1), locking of the etalon transmission window to the laser frequency
(channel 2), and measurement (channel 2). For high measurement quality, the full sequence
needs to be several times faster than the etalon drift as well as the quantum dot resonance
drift.

mode, we exploit the poor quality of the etalon to obtain an effective free spectral
range of FSR−9dB = 2.9 GHz. Since the etalon is a confocal filter, every second mode
is a higher-order mode. The alignment can be changed such that the transmission
efficiency of the higher-order modes is reduced 10-fold, see Fig. 5.24(b).

Besides the low transmission, the etalon also shows a very unstable resonance con-
dition. Figure 5.24(c) shows the drift of the cavity resonance over the course of ten
hours. The mean drift of the etalon is 0.06 ∆v/min and the maximal drift observed is
0.4 ∆v/min. Thus the experiments need to be performed faster than the drift (faster
than a minute). However, since the count rate is low, due to the low excitation to
omit power broadening, the measurement needs to be repeated many times to achieve
a satisfying signal-to-noise ratio.

Figure 5.25 shows a time stream of a single quantum dot emission measurement.
The collected emission is sent to a 20:80 fibre beam splitter. The stronger fibre out-
put is connected to the etalon whereas the weaker arm is directly connected to the
single-photon detectors. The measurement is performed as follows. First, the unfil-
tered channel is used to correct for spectral fluctuation by locking the quantum dot to
the fixed laser using the applied gate voltage. Second, using the filtered channel, the
cavity resonance drift is corrected by locking it also to the laser frequency. Finally,
the mechanical drive is turned on and the cavity is slowly scanned and the filtered
emission is recorded. The full sequence takes about a minute, see Fig. 5.25, and is
averaged over 20 individual scans. Though the technique described above enables a
clean emission spectrum to be recorded, the stability of the etalon could be optimised
using a temperature stabiliser.
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5.14 Supplementary note VI: 25 µm mechanical
resonator
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Figure 5.26: 25 µm freely-suspended beam. (a) Laser reflection, mechanical mode shape
of the out-of-plane bending mode, and photoluminescence map of a 25×0.96µm2 beam.
(b) Mechanical quality factor measurement by driving the resonator with the electric-field
antenna and recording the power spectrum on a spectrum analyzer. (c) Resonant power
spectral density of a single quantum dot which is located in the centre of the resonator. The
1st-order in-plane bending and breathing modes are labelled. (d) Resonant autocorrelation
while driving the breathing mode at low amplitude.

A larger version of the freely suspended beam is also measured in the same way as
described in the main chapters. The resonator length is 25 µm which facilitates the
search for quantum dots on the mechanical resonator, see Fig. 5.26(a). We observe
that the mechanical quality factor of the 1st-order out-of-plane bending mode is higher
than the one of the 12 µm resonator, Qm = 9.1× 103 (see Fig. 5.26(b)). We attribute
this to a better mode profile with less leakage to the surrounding under-etched sub-
strate. We observe the same mechanical in-plane bending and breathing modes as for
the smaller resonator. Since the resonator is about twice the size of the smaller one,
the mechanical frequencies are also shifted down by a factor of two. A noise power
spectrum of a single quantum dot measurement in the centre of the beam is shown
in Fig. 5.26(c). Furthermore, the autocorrelation of the same dot under mechanical
driving of the ≈100 MHz mode is shown in Fig. 5.26(d). Note that there was also a
6 µm long resonator fabricated, however, it was not possible to observe any mechan-
ical modes, most likely due to a too-high coupling to the surrounding under-etched
substrate.
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Figure 5.27: Charge and spin noise measurement. (a,b) Power spectrum measurements
of the neutral exciton, X0, and the charged exciton, X1−, of QD2. For both excitons, the
measurement is performed on resonance with the quantum dot (blue) and detuned by half
a linewidth (orange). Besides a 1/f noise, charge noise is present by the low-frequency noise
(1 − 102 Hz), whereas spin noise is present at high frequencies (102 − 104 Hz). The power
spectrum is obtained from a fast Fourier transform of a time trace measurement.

The inhomogeneous broadening of the quantum dot resonance leads to an increased
linewidth of a factor of ∼ 3. Previously it was seen that this broadening is not just
due to charge noise but also to a large extent due to spin noise [125]. Therefore,
a low-frequency noise measurement is performed on the exciton and trion of QD2,
Fig. 5.27(a,b). The measurement is performed in the same way as in Ref. [125]
by recording a time trace of the quantum dot emission on resonance with the dot
and also half a linewidth detuned (blue detuned). According to Ref. [125] the slow
noise (1 − 102 Hz) is given by charge noise and the fast noise (102 − 104 Hz) is
given by spin noise. This is also reflected in our experiments. The high-frequency
noise increases for the trion where the ground state is given by a single-electron
spin (whereas the ground state of the exciton is empty). Further, when detuning
the laser, the low-frequency noise increases for both, exciton and trion, which would
correspond to charge noise. Although both excitons show different amounts of noise,
the inhomogeneous broadening is about the same (as also observed in Ref. [125]).
To summarise, we observe that both, spin and charge noise are present, however,
for quantification further investigation is needed. Note that the weak peaks around
50-80 Hz come from noise in the instrumental setup (ground loops).





CHAPTER 6

Quantum-dot optomechanics in the
resolved-sideband regime
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6.1 Introduction

Coupling a single-photon emitter to a mechanical resonator is of high interest, espe-
cially at high mechanical frequencies, i.e., GHz frequencies, where motional sidebands
can be observed. These mechanical sidebands can be used to deterministically create
or annihilate single-phonons which can be used, for example, to cool a mechanical
resonator to its motional ground state [24, 27, 187]. Similar to cavity optomechanics,
phonons can be created in a heralded manner [72, 188] and stored in a mechanical
resonator mode [189, 190] for much longer than the quantum dot lifetime due to the
long lifetime of the mechanical vibration (here 2π/Γm = 1.41 µs, see Chapter 6.6).

So far, quantum-dot optomechanics in the resolved-sideband regime has only been
observed with additional mechanical driving of the resonator. Though this makes a
lot of measurements much less time-consuming (see Chapter 5), it also overshadows
the true coherent interaction between the quantum dot and the mechanical resonator,
which is necessary, for example, to observe cooling of a mechanical mode.

As shown in the previous chapter, the interaction between the two systems based on
Brownian motion (especially in the resolved-sideband regime) is not yet fully under-
stood. The observations from the previous chapter suggest that there is a fundamental
difference in the interaction between the two systems if the mechanical frequency is
slower or faster than the quantum dot decay rate. Here, the beam resonator design
is optimised further to push the mechanical frequency far into the resolved-sideband
regime. This chapter presents a combination of simulations and optomechanical mea-
surements to investigate if first, a mechanical resonator with sufficient quality can
be achieved, second, if quantum dots can be located on the resonator and excited
resonantly, and third, if exciton-phonon coupling can be observed without additional
mechanical driving.

6.2 Finite-element simulations

For both – cantilever and suspended beam resonators – the coupling to the sur-
rounding under-etched membrane is a limiting factor for high-frequency mechanical
modes. Furthermore, suspended beam resonators smaller than 12 µm showed no high-
frequency mechanical modes due to the strong coupling to the surrounding membrane.
Therefore, a phononic-crystal structure is introduced to decouple the mechanical res-
onator from the surrounding substrate [152–154].

Figure 6.1(a) shows the mechanical displacement profile of the ∼ 1.5×1 µm2 res-
onator, embedded in a phononic-crystal structure. The design of the mechanical
resonator is inspired by the devices used in the cavity-optomechanics community [27].
Note that the width of the phononic-crystal beam is exactly the same as for the
suspended beam from the previous chapter. The mode of interest is the fundamen-
tal in-plane (longitudinal) breathing mode at 1.466 GHz. The high mechanical fre-
quency puts us far into the resolved-sideband regime: the mechanical frequency is
not only higher than the decay rate of the dot, here Ωm = 10ΓR, but also larger
than the inhomogeneously broadened linewidth, here Ωm = 3FWHM. The high
confinement of the mechanical mode shown in Fig. 6.1(a) is due to a gap in the den-
sity of states of the phononic-crystal structure. As a consequence, a mode volume
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Figure 6.1: Finite-element simulations of the phononic-crystal beam. (a) Dis-
placement profile of the mechanical in-plane breathing mode (z-symmetric/even) at Ωm =
1.466GHz, where most of the displacement is in x-direction (along [110]). The width of the
beam is 960 nm, the height is 180 nm (including the diode structure), and the phononic shield
consists of seven equally-spaced etched ellipses (see Fig. 6.2). The mechanical mode is highly
confined, resulting in a mechanical mode volume as small as 3× 10−3λ3 (with λ = 3.6µm).
(b) Vacuum exciton-phonon coupling rate (at z = 0) obtained from thermomechanical cal-
ibration. As for the resonator in Chapter 5, the in-plane breathing mode shows a highly
homogeneous coupling profile in the centre of the resonator where we expect a maximum
coupling of gep/2π = 3.2MHz.

Vm =
∫ |u(x,y,z)|2

max(|u(x,y,z)|2) dV as small as 3 × 10−3λ3 is achieved [65]. This is substan-

tially smaller than the mode volume of recent quantum-dot surface-acoustic-wave
cavities [64, 65], showing the large potential of the membrane-type resonator.

The in-plane breathing mode is selected due to the homogeneous displacement and
strain profile. Figure 6.1(b) shows the vacuum exciton-phonon coupling profile (which
is directly related to the strain profile, see Chapter 3) of the fundamental breathing
mode. The profile shows a very homogeneous distribution, especially along the y-axis.
A maximum coupling of gep/2π = 3.2 MHz is achieved if the quantum dot is located
exactly in the centre of the resonator. This is comparable, also slightly higher, than
what was recently observed with surface acoustic wave cavities [64, 65].

The displacement profile, as well as the coupling profile, are extracted from finite-
element simulations. The displacement profile is integrated to obtain the effec-
tive mass, meff = 7.4 × 10−16 kg, which is used to estimate the spring constant,
k = 63 × 103 N/m, the zero-point motion, xzpf = 2.7 × 10−15 m, and the exciton-
phonon coupling rate, gep/2π. Compared to the previous resonators, here, the thermal
phonon population has reduced another three-fold to nphon = 58. The thermal dis-
placement is xth = 3.0×10−14 m and the thermal coupling rate is gth/2π = 34.5 MHz.

Figure 6.2(a) shows the unit cell of the phononic crystal [152–154], consisting of
an ellipse airhole with a size of we = 270 nm and he = 775 nm. The lattice con-
stant is l = 970 nm. The nanostructuring of the unit-cell leads to modulation of the
mass and when periodic conditions are applied, a gap opens up in the band diagram
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Figure 6.2: Phononic bandgap simulations. (a) Side-view and top-view of the geometri-
cal unit cell of the structure shown in Fig. 6.1 with length scales of: l = 970 (lattice constant),
w = 960, h = 180, he = 775, and we = 270 nm. (b) Band diagram of the phononic-shield
unit cell. The simulation is performed twice, for mechanical modes with z-asymmetry (grey)
and z-symmetry (blue). Additionally, band broadening due to fabrication imperfections is
studied (shaded area around the bands) by introducing size fluctuations of the air-hole by up
to ±20 nm in both directions. The mechanical mode at Ωm/2π = 1.466GHz is highlighted in
orange. (c) Phonon density of states (DOS) obtained from integration of the band diagram
in (a), normalised to the unit-cell length. (d) Mechanical quality study in dependence of the
number of etched holes. The loss in the study is given by two low-reflecting boundaries at
the clamping edges of the phononic-crystal beam (left and right edges). The quality factor
increases rapidly and flattens above 12 holes. The current device with seven holes is high-
lighted in orange.

(similar to a diatomic chain), see Fig. 6.2(b). The mechanical mode frequency is
highlighted in orange. The band diagram is obtained from an eigenmode study where
periodic conditions are applied in x-direction and the k-vector is swept in the range of
kx = [0, π/l] (irreducible Brillouin zone in the reciprocal lattice). The simulations are
performed for in-plane (even/symmetric) and out-of-plane (odd/asymmetric) modes.
The phononic gap for in-plane modes is very large, 0.65 GHz ≈ 45% of fm, whereas
the one for out-of-plane modes is rather small, 0.11 GHz ≈ 7% of fm. The latter can
have an impact on the confinement of the mechanical mode if there are fabrication
imperfections which introduce a hybridisation of in- and out-of-plane modes. As an
estimate of the bandgap dependence on fabrication imperfections, an additional study
is performed where the ellipse parameters are swept by ± 20 nm. We assume that
the ellipse etching is the major source of fabrication imperfection (compared to the
lattice constant and the beam width). The effect of fabrication imperfections is a
broadening of the acoustic bands, shown by the shaded areas in Fig. 6.2, whereas
the centre of the gap is not much affected. Therefore, the current design should be
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Figure 6.3: Photoluminescence map of the optomechanical device. (a) Scanning
electron microscope image of the phononic-crystal beam. The residues which are visible
around the beam are remainings of the photoresist after the etching step. (b) Photolumi-
nescence map of the phononic-crystal beam, showing a bright luminescence from many dots
at the location of the mechanical resonator. (c,d) Single-wavelength evaluation of the pho-
toluminescence map at 953.4 nm (QD1) and 945.5 nm (QD2). The emission of both quantum
dots is well localised without any apparent waveguiding.

relatively robust and we assume that the fabrication imperfections which we observe
in the SEM pictures are negligible (see Fig. 6.3(a)). Figure 6.2(c) shows the density of
states (DOS) normalised to the unit-cell length [75], obtained from an integration of
the band diagram. Close to the bandgap edges a high increase is observed, described
by the Van Hove singularity [191].

The de-coupling of the mechanical resonator from the substrate depends on the
number of shield elements. Figure 6.2(d) shows a study of the mechanical quality
(limited by clamping loss) in dependence on the number of etched airholes. Due
to the exponential decay of the displacement profile, already three air holes result
in strong suppression of the leakage to the substrate. To be on the safe side, also
considering potential fabrication imperfections, seven air holes are chosen for the cur-
rent device. Note that axis orientation plays a crucial role in the resonator described
above. For a rotation of ±45◦ (from [110] to [100]/[010]) and keeping the design the
same, the mechanical mode would not exist anymore.

6.3 Optical device characterisation

Two very important factors of mechanical resonators with feature sizes in the nanome-
tre regime are the localisation of a quantum dot on the resonator and the local semi-
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Figure 6.4: Quantum dot characterisation. (a) Resonant charge plateau scan of the
single-negatively charged exciton, X1−, of QD1. The doped gate layers still work well and
there is no issue with charging the quantum dots, although the smallest connection of the
phononic-crystal beam is only 90 nm in width. (b) Low-power resonant linewidth scan in
the centre of the plateau shown in (a). There is a slightly larger inhomogeneous broadening
than for the previous mechanical resonators (see Chapter 3 and 5), though the lineshape
remains close to a Lorentzian. (c) Lifetime measurement of QD1. There is no evidence of
Purcell enhancement and thus our optical optimisation does not affect the intrinsic linewidth.
The measurement is performed using picosecond pulses from a mode-locked laser. (d) Low-
power autocorrelation measurement showing a high level of single-photon purity of 98%, even
though the laser suppression on small structures is usually challenging. The fit function is
given by Eq. 5.4

conductor diode quality. Quantum dot localisation was found to be a major issue with
previous mechanical resonator designs (not shown in this Thesis). Often, quantum
dots were much brighter on the phononic shield compared to the resonator and due
to optical waveguiding via straight connections, it was impossible to precisely locate
individual dots. We overcome these issues via careful design optimisation. We opti-
mise the mechanical resonator dimensions for maximum outcoupling to the top, see
Supplementary note II. Furthermore, we avoid straight connections from the centre
position on the resonator to the surrounding phononic shield which suppresses optical
waveguiding, see Fig. 6.3(a).

The result of the optical optimisation can be seen in the photoluminescent map in
Fig. 6.3(b). The quantum dots on the phononic-crystal beam are brighter than on
the bulk but more importantly, the dots on the mechanical resonator itself are even
brighter and the emission is well localised. The same is observed when evaluating the
photoluminescence map for single wavelengths, at 953.4 nm for QD1 and 945.5 nm,
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see Fig. 6.3(c,d). There is some slight waveguiding of the luminescence but at a neg-
ligible level and the quantum dot position on the resonator can be well determined.
Note that some of the dots show an increased level of optical waveguiding due to the
non-centred location on the resonator.

The quality of the diode structure depends on how well the doped gate layers con-
duct through the narrow connections in the phononic-crystal structure. The smallest
connection is as thin as 80-90 nm. The quality of the gates is probed via resonance flu-
orescence. We not only observe a good tunability of the charge plateau, see Fig. 6.4(a),
but also narrow optical linewidths, see Fig. 6.4(b). For excitation powers much below
saturation, the minimal linewidth is ≈ 540 MHz. Although there is an enhancement
in collection counts (compared to the dots on the suspended beam), there is no sig-
nificant change in the quantum dot lifetime with τ = 1.18 ns, see Fig. 6.4. Therefore,
there is no effect of Purcell enhancement (which would broaden the linewidth), and
there is slightly more semiconductor noise on this structure with FWHM = 4ΓR.
Here, the lifetime is measured with a mode-locked laser (ps-pulses).

The performance of the laser suppression is worse than on the resonators presented
in Chapter 3 and 5. We observe a lower suppression level as well as large drifts on a
timescale of tens of seconds. At low powers, it is still possible to compensate for these
drifts, however, at high powers, laser suppression becomes an inevitable problem, see
Chapter 6.5. Furthermore, laser suppression depends highly on the laser spot posi-
tion and sometimes it is worth sacrificing count rates for better laser suppression by
changing the laser position with single piezo steps.

Figure 6.4(d) shows a low-power autocorrelation measurement of QD1 fitted by
Eq. 5.4. The high single-photon purity of 98% (g(2)(0) = 0.02) is proof of a high level
of laser suppression at the corresponding laser power.

6.4 Numerical master-equation simulations

The mechanical frequency of the phononic-crystal beam of 1.466 GHz is three times
higher than of the suspended beam (2nd-order breathing mode). Therefore, numer-
ical master-equation simulations of the mechanical noise sensitivity are performed
in the same way as in Chapter 5.5 but with three times higher Rabi frequencies.
For the simulations, the thermal quantum dot resonance modulation, gth, is taken
from the finite-element simulations in Chapter 6.2. Figure 6.5(a) shows the average
excited-state population in dependence on Rabi frequency and laser detuning. The
inhomogeneous broadening is included as described previously, which leads to faster
dampening of the Rabi oscillations (broadening in frequency space, see Supplemen-
tary note I) and a lower excited-state population.

Figure 6.5(b) shows the noise sensitivity of the 1.466 GHz mode. Now the differ-
ence compared to the derivative of the quantum dot linewidth is more obvious as in
Fig. 5.7. In dependence on the laser detuning, the sensitivity is highest, whenever the
effective Rabi frequency matches the mechanical frequency:

Ωeff =
√

Ω2
R + ∆ω2

l
!
= Ωm, (6.1)

where ΩR is the bare Rabi frequency, ∆ωl/2π the laser detuning, and Ωm/2π the
mechanical frquency. The condition of Eq. 6.1 is shown in orange in Fig. 6.5(b).
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Figure 6.5: Numerical master equation simulations in the resolved-sideband
regime. (a-c) Numerical master equation simulation using the Hamiltonian in Eq. 5.1
evaluated for (a) the mean excited-state population, (b) the noise power, and (c) the corre-
sponding phase. The noise profile is intriguingly different compared to mechanical frequencies
much lower than the quantum dot decay rate, see Chapter 5.5 Fig. 5.7. The observation
of the mechanical noise in the quantum dot count rate is most efficient whenever the effec-
tive Rabi frequency, Ωeff

R , is equal to the mechanical frequency (highlighted in orange). The
corresponding phase shows a similar behaviour with a π-phase shift not only at zero laser
detuning but also at detunings when Ωeff

R = Ωm. (d) Numerical simulations of the emission
spectrum at different detunings show that at the optimal detuning not only the noise in the
count rate is enhanced but also the sideband intensity (see (b)).

Strikingly, there is a low-power low-detuning regime where the sensitivity to low-
frequency modes would be very high but there would not be any signal from the
1.466 GHz mode.

Figure 6.5(c) shows the extracted phase of the noise in Fig. 6.5(b). Overall, there are
three transitions of π. First, when the laser is in resonance with the dot, ∆ωl/2π = 0.
Second, when the laser detuning satisfies Eq. 6.1. This shows that there is not only
an increased sensitivity at Ωeff

R = Ωm but in fact, some sort of a transition.
In addition to the excited-state population, numerical simulations of the emission

spectrum are performed in the same way as described in Chapter 5.7.7 but without
applying a filter function. Figure 6.5(b) shows three emission spectra with the same
Rabi frequency but different laser detunings. We assume that although the interaction
is modelled with a classical mechanical drive, the model is a good estimate for the
interaction since the mechanical linewidth is three orders of magnitude smaller than
the optical linewidth. If the laser is in resonance with the quantum dot, the sideband
intensity is about 5 × 10−4 of the normalised emission (independent of excitation
power), see Fig. 6.5(b). In the detuned case, one would assume that when the laser
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is detuned by ∆ωl = Ωm, the emission into the sideband should be highest. Whereas
this is true for low excitation power, at high powers, the numerical simulations show
that the sideband intensity is maximal when the laser detuning satisfies Eq. 6.1. The
normalised intensity of the sidebands in the detuned case is 1.8 × 10−2 for ∆ωl =√

Ω2
m + Ω2

R and 6 × 10−3 for ∆ωl = Ωm. Note that the inhomogeneous broadening
affects the sideband intensity mainly at low powers. At high powers, the quantum
dot is less affected by the inhomogeneous broadening due to power broadening. Thus,
without inhomogeneous broadening, the noise sensitivity would be maximal at low
Rabi frequencies.

To summarise, for measuring optomechanical interaction in the GHz-regime, based
on Brownian motion, high excitation powers and very specific laser detunings are
needed. The mechanism behind the increased sensitivity at the condition of Eq. 6.1 is
not yet fully understood. One explanation could be that in the dressed state picture,
the splitting between the two states matches the mechanical frequency. Another
explanation could be bandwidth matching – the mechanical modulation of the excited-
state population works best if it matches the excited-state modulation of the driving
laser.

6.5 High-power resonant excitation

As discussed in the previous chapter, high excitation powers are needed to observe
quantum dot mechanical interaction at high mechanical frequencies. This, however, is
an issue for the phononic-crystal resonator. Figure 6.6(a,b) shows resonant linewidth
scans of QD1 and QD2 at an optical Rabi frequency of ΩR ≈ 8ΓR. Besides the
power broadened linewidth of FWHM ≈ 2 GHz, there is an increased background,
especially for QD2.

The contribution of the unsuppressed laser is measured by turning the gate
voltage to zero, highlighted by the orange shaded area. The unsuppressed laser
contributes about 50 % to the background (for both dots). The remaining 50% of the
background is likely due to phonon-assisted excitation of the same dot. We exclude
phonon-assisted excitation of close-by quantum dots by introducing a 150 GHz
grating filter before the detectors.

The almost five times higher background for QD2 compared to QD1 is due to a
lower excitation efficiency. To reach the same Rabi frequency for QD2 as for QD1,
about five times higher laser power is used. The quantum dot emission saturates
but the unsuppressed laser increases linearly with laser power. Therefore, the
relative background changes for the same amount as the increased laser power. The
relative background plays an even bigger role in detuned measurements. The optimal
detuning for a Brownian-motion measurement (see Fig. 6.5) is here 1 GHz. For QD1
this still gives an acceptable signal-to-background ratio of 3.2:1. In contrast, for QD2
the signal-to-background ratio is 0.5:1 which makes autocorrelation measurements
very challenging (at these high excitation powers).

The laser suppression is not only at a high level but also very unstable. Thus,
automatic laser suppression is an important part of our measurements. Figure 6.6(c)
shows two individual time traces of a typical autocorrelation measurement. First,
the laser is automatically suppressed. Second, spectral wandering is corrected by
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Figure 6.6: High-power resonant-excitation. (a,b) High power, ΩR ≈ 8Γm, resonant
linewidth scans of QD1 and QD2. Due to the high power, the laser suppression is not
optimal, highlighted by the orange shaded area. In addition, when the laser is detuned from
the quantum dot resonance, additional emission is observed likely from phonon sideband
excitation of close-by quantum dots (highlighted in blue). For QD2, an almost five times
higher laser power is needed to reach the same Rabi coupling and thus the background
increases. (c) Two individual time traces of an autocorrelation measurement at high power:
(1) automatic laser suppression, (2) locking the quantum dot transition to the laser frequency,
and (3) detuned autocorrelation measurement for 60 s. At these high excitation powers, the
laser suppression level is not only far from optimum but also highly unstable (see orange
curve). This leads to an increased g(2)(0), see Fig. 6.7(b).

locking the quantum dot to the laser frequency. Third, the laser is detuned and the
autocorrelation measurement is performed for 1 min. These three steps are repeated
until enough photon statistics are recorded, usually up to five hours. As can be
seen in Fig. 6.6(c), even with automatic laser suppression, large drifts can occur
during the measurement. This is a result of an unstable laser spot position due
to vibrational noise from the environment and also due to pressure changes in the
helium recovery line. All sensitive measurements are therefore carried out during the
night and during weekends.

6.6 Brownian-motion measurement

The Brownian-motion noise-power measurements presented in the following chap-
ter are performed on QD1. The measurements are performed in the same way as in
Chapter 5.6 by doing a Fourier transformation of an autocorrelation measurement. To
confirm that the mechanical noise peak can only be measured when fulfilling Eq. 6.1,
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Figure 6.7: High-power Brwonian-motion autocorrelation measurement. (a)
Linewidth scan of QD7 with ΩR ≈ 4.5ΓR. Two detunings are highlighted for which each
an autocorrelation measurement is performed, ∆ωl/2π = 0.5GHz and ∆ωl/2π = 1.4GHz.
The larger detuning is chosen such that the effective Rabi frequency, Ωeff

R , is equal to the
mechanical frequency, Ωm. (b) Autocorrelation measurements at the detunings highlighted
in (a). Both measurements show a g(2)(0) much higher than at low powers due to the unsup-
pressed laser. (c) Fourier transformation of the autocorrelation measurements. Although
the measurement at smaller detuning has a higher count rate and thus a lower noise floor
in the power spectrum, the mechanical noise peak is only visible for the higher detuning
measurement, where Ωeff

R = Ωm. (d) The power spectrum measurement is performed for
six different combinations of Rabi frequencies and laser detunings. Whenever the optimal
detuning condition is matched, the mechanical noise peak is observed (highlighted in green),
otherwise, the noise peak is not observed (highlighted in orange). The measurements from
(c) are labelled with a ∗. (d) The mechanical quality factor is extracted from the power
spectrum via a Lorentzian fit, Qm = 2× 103.

the autocorrelation measurement is performed for different laser detunings.
Figure 6.7(a) shows a resonant linewidth scan of QD1 at ΩR ≈ 4.5ΓR. The de-

tunings where the autocorrelation measurements are performed are highlighted: 0.5
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Figure 6.8: Detuning series of the noise power spectrum. (a) Power spectrum mea-
sured in dependence of the laser detuning. The Rabi frequency of ΩR = 8ΓR (1 µW optical
power) is chosen such that at the optimum detuning, here ±1GHz, the count rate is not
too low. Nevertheless, at large detunings, the count rate increases the noise floor, highly
reducing the signal-to-noise ratio in the power spectrum. (b) Integrated noise power around
the mechanical resonance in (a) overlayed with the corresponding line-cut from the numeri-
cal simulation in Fig. 6.5(d). This comparison shows that in the measurements the exciton-
phonon coupling rate is slightly lower than the coupling rate obtained from the finite-element
simulations, gep/2π = 3.2MHz.

and 1.4 GHz. The first one represents the highest noise sensitivity expected by the
derivative of the count rate (see Chapter 5.5) and the latter one is the optimal detun-
ing satisfying Eq. 6.1. The corresponding autocorrelation measurements are shown in
Fig. 6.7(b). The higher the laser detuning the bigger the effect of the unsuppressed
laser, which manifests itself in a reduced single-photon purity (increased g(2)(0)).
Note that for a signal-to-background of 1:1 we estimate a g(2)(0) = 0.75 (assuming
a negligible correlation between quantum dot photons and laser photons) which is
comparable to what is observed in the measurements. This confirms the observations
of the numerical simulations.

Figure 6.7(c) shows the noise power spectra of the autocorrelation measurements
from Fig. 6.7(b). For more details on the Fourier transformation see Supplementary
note I. The mechanical noise peak of the in-plane breathing mode is only visible for
the larger detuning measurement, even though there is a much higher count rate and
a lower measurement imprecision noise (noise floor) for the laser detuning of 0.5 GHz.
Overall, six autocorrelation measurements are performed, each with an individual
combination of laser power and laser detuning, see Fig. 6.7(d). When the combina-
tion of laser power and laser detuning is set according to Eq. 6.1, the mechanical noise
peak is observed (highlighted in green in Fig. 6.7(d)). If Eq. 6.1 is not fulfilled, the
mechanical noise peak is not observed (highlighted in orange in Fig. 6.7(d)).

Figure 6.7(d) shows a zoom-in of the power spectral density. A mechanical quality
of Qm = 2 × 103 is extracted from the measurement via a Lorentzian fit. Compared
to the highest mechanical mode of the suspended beam resonator, the mechanical
frequency increased by a factor of 2.5 while the mechanical quality stayed the same.
Furthermore, only one mechanical mode is observed although there are many more
mechanical modes, however, outside the phononic bandgap. Therefore we conclude
that the mechanical mode at 1.466 GHz is well confined by the phononic shield. The
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remaining mechanical damping is most likely due to intrinsic material losses.
Finally, to quantify the observed mechanical coupling, a laser detuning series of the

noise power measurement is performed, see Fig. 6.8(a). Each noise power (horizontal
data row) represents the Fourier transform of a 1 h autocorrelation measurement.
Also for this measurement, every minute the laser is automatically suppressed and
spectral wandering is corrected (see Chapter 6.5). As expected from the simulations
in Fig. 6.5, the noise peaks appear for a laser detuning of ±1 GHz. Note that at large
detunings the count rate reduces which increases the noise floor. Fig. 6.8(b) shows
the integrated noise power overlayed with the results from the numerical simulations.
Both show a comparable noise power, meaning the actual exciton-phonon coupling
rate is only slightly smaller than the one obtained from the finite-element simulations,
gep/2π = 3.2 MHz. However, for direct extraction of the coupling rate from the mea-
surements, the mechanical displacement would need to be calibrated, which is not
possible with the current setup.

6.7 Conclusion and future directions

Measuring the coupling of a single-photon emitter to a mechanical resonator in the
GHz regime is not trivial. In the unresolved-sideband regime, the parameter space of
laser power and detuning is independent of the mechanical frequency. In contrast, in
the resolved-sideband regime, the effective Rabi frequency must be matched to the
mechanical frequency. More specifically, high excitation powers are required, which
in turn result in a high level of unsuppressed laser. Without additional mechanical
driving, this puts an upper limit on the observable mechanical frequency, since at
some point, the signal-to-background simply becomes too high.

Due to the mechanical and optical optimisation of the GHz-resonator it is straight-
forward to locate a dot on the mechanical resonator which shows a large coupling
rate to the mechanical displacement. Thanks to the phononic crystal, the mechanical
mode at 1.466 GHz is well isolated from all other modes and shows a high mechanical
quality. Consequently, a high exciton-phonon coupling rate is obtained, which might
be enough to observe optomechanical sidebands even without mechanical driving.
The high Q · f product of 2.9 × 1012 is proof of the low phase noise which enables
34 mechanical oscillations before coherence is lost to the bath. Furthermore, for the
sideband scattering rate (see Chapter 5.7.7) to exceed the mechanical dissipation rate,
the (on-resonance) Rabi frequency only needs to be ΩR > ΩmΓm/gth = 0.2ΓR (taking
gth from finite-element simulations). Nevertheless, the mechanical quality factor re-
lated to intrinsic losses could be improved further by introducing a surface passivation
treatment [192–194].

Future directions for design improvements could be to increase the exciton-phonon
coupling rate by optimising the mechanical-coupling profile. A tapering of the air
holes might reduce the areas of enhanced strain around the first air hole. This would
not only improve the strain in the centre of the resonator but also the mechanical
quality due to soft clamping [170]. Another approach could be to use a resonator
with the same x- and y-dimensions. Such a resonator would have a degenerate x/y-
breathing mode which would increase the coupling strength about two-fold. We want
to emphasise that it is important to improve gep/Ωm rather than gep. We estimate
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for the current resonator that with a five to ten-fold increase in the coupling rate,
cooling of the mechanical resonator [24] and transparency due to coherent population
oscillations would be within reach [195, 196]. As proposed in Ref. [197] the coupled
hybrid system could then be used to create a single-photon router or an all-optical
Kerr switch. In terms of the inhomogeneous broadening in our system, the InAs
quantum dots could be replaced by the droplet-etched GaAs quantum dots where
recently lifetime-limited linewidths were observed [66]. Whether this would actually
increase the sensitivity to mechanical noise remains an open question since these dots
have a relatively large natural linewidth of around 600 MHz.

For on-chip applications, such as quantum transduction [198], the mechanical res-
onator could be combined with a photonic-crystal cavity [71] and an optical or me-
chanical waveguide [72–75, 199]. It was already shown that the membrane platform
used in this work is highly suitable for on-chip applications [9, 13, 200–203]. If addi-
tional mechanical actuation is still needed, the electric field antenna can be converted
to an on-chip antenna, highly increasing the coupling efficiency to the mechanical
resonator [56, 186, 202]. Another option could be to integrate a piezo-optomechanical
transducer [145, 204]. Overall, the three mechanical resonators (cantilever, suspended
beam, and phononic-crystal beam) show that the membrane design has a large po-
tential for a wide range of applications.

The measurements on the GHz resonator show that the phononic shield is work-
ing properly, otherwise many more mechanical modes would be observed. In future,
the shield could not only be used to confine mechanical modes but also to reduce
phonon-assisted relaxation processes of the quantum dot electron spin. By tuning
the Zeeman energy of the dot into resonance with the phononic gap, single-phonon-
assisted relaxation processes could be highly reduced. However, these effects mainly
limit the T1 time at high magnetic fields [205–207] and a phononic band gap at tens
of GHz would be needed. This means that the mechanical structures need to be much
smaller which might eventually be limited by the fabrication process. Furthermore,
the current sample has a characteristic spin T1 time of few µs, which suggests that
the spin lifetime is currently limited by other factors (for example co-tunnelling).

Finally, we propose to prove that single phonons are emitted and absorbed by mea-
suring the single-photon nature of the Stokes and anti-Stokes sidebands [188] with a
Hanbury Brown-Twiss setup.
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6.8 Supplementary note I: From autocorrelation to
power spectral density
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Figure 6.9: Fast Fourier transformation method. (a) Autocorrelation measurement at
ΩR = 8ΓR and optimum detuning. (b) Fast Fourier transformation of the full autocorre-
lation. The broad feature comes from the Rabi oscillations and the narrow feature is from
the mechanical modulation. Since there is a π-phase shift between them, the mechanical
modulation appears as a dip in the broad Rabi feature. (c) Fast Fourier transformation
without Rabi oscillations, showing the true mechanical noise peak. (d-f) Numerical simula-
tions of the second-order coherence function without and with inhomogeneous broadening.
The Fourier transformations with and without Rabi oscillations show the same behaviour as
in (b, c).

The following paragraphs explain how the Fourier transform of the autocorrelation
is performed and compares the results to numerical simulations of the second-order
coherence function. Figure 6.9(a) shows an autocorrelation measurement after back-
ground correction. For this, we assume that there is a negligible correlation between
the quantum dot photons and the laser photons. This means that the unsuppressed
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laser results in a flat background in the autocorrelation. This might be true at high
powers when the incoherent part dominates the quantum dot emission. However,
at low powers (coherent-scattering regime), the unsuppressed laser together with the
quantum dot signal can lead to photon bunching in the autocorrelation measurement
(close to zero delays) and the above assumption is not valid anymore. In Chapter 6.6
the autocorrelation is shown as measured, however, for obtaining the true noise power,
the background is corrected [5]. The numerical simulation of the second-order coher-
ence function (Eq. 5.2), Fig. 6.9(b), shows that the inhomogeneous broadening not
only changes the Rabi frequency but also leads to a fast damping of the Rabi oscilla-
tions.

Figure 6.9(b-f) shows the comparison between a Fourier transformation with and
without Rabi oscillations for measurement and simulation. The Rabi oscillations
can be described with a damped cosine function whereas the mechanical noise is
described by a damped cosine with a π-phase shift. Due to the π-phase shift be-
tween the two, the mechanical noise appears as a sharp dip in a broad Rabi peak.
This is also observed in the numerical simulations. To obtain the true mechanical
noise peak, the Fourier transformation is performed without Rabi oscillations. The
broad Rabi feature disappears and the mechanical noise peak appears on a flat noise
floor. Since the Rabi oscillations dampen much faster than the mechanical oscilla-
tions (Qm ≈ 2000 × QRabi), the procedure described above does not influence the
mechanical noise power significantly.
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Figure 6.10: Far-field simulations. (a) Geometrical structure of the finite-element sim-
ulation where the beam is surrounded by an airbox. The simulation is performed with a
z-symmetry for the electric field (TE mode). A scattering-boundary condition is applied to
all four sidewalls and the top surface. An electric dipole (20 nm, along x-axis) is placed in the
centre of the beam and a frequency-domain study is performed. (b) Far-field obtained from
a Fourier transformation of the electric field in real space (evaluated just above the beam).
The light-line (|k| < ω/c) is highlighted by the dashed green line and the lens collection
(|k| < NAω/c) is highlighted by the solid green line. (c) Integrated far-field (|k| < NAω/c)
in dependence of the wavelength and the beam width. The structure is optimised for an opti-
cal wavelength of 945 nm (quantum dot emission wavelength), for which we find a maximum
in collection for a beam width of around 960 nm. This can be understood by a standing wave
being formed between the two horizontal sidewalls of the beam, which boosts the emission
to the top. (d) Integrated far-field at a wavelength of 945 nm in dependence of the dipole
position (in y-direction) and the beam width. The simulation shows that independent of
the dipole position, for a given wavelength there is a certain beam width which results in a
reduced collection, for example, 816-915 nm and 1020-1100 nm.

In the photoluminescence maps of the cantilever resonator, we observe that there is
an intensity dependence on the width of the beam. Therefore, far-field simulations
are performed to optimise the outcoupling efficiency of the quantum dot emission. A
short piece of the nanobeam is surrounded by an airbox and a 20 nm long electric
dipole is placed in the beam centre, see Fig. 6.10(a). Scattering boundary conditions
are applied to all sides and a z-symmetry for the electric field is applied to obtain TE-
modes. Finite-element simulations are performed in the frequency domain to obtain
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the electric field emitted from the dipole. The electric field is evaluated just above the
beam and a two-dimensional Fourier transformation is performed, see Fig. 6.10(b).
To obtain the lens collection, the far field is integrated for |k| < NAω/c.

Figure 6.10(c) shows the integrated far-field in dependence on the beam width and
the studied wavelength. For a dipole in the centre of the beam, an optimal beam
diameter for an emission wavelength of around 945 nm (centre of ensemble emission
of the current wafer) is found. To determine whether there is a dependence of the
dipole position on beam width, an additional study is performed at 945 nm where
the dipole position is swept from the centre to the edge of the beam, Fig. 6.10(d).
As can be seen, the outcoupling to the top is optimised due to a standing wave
that is formed inside the beam. Therefore, the beam width needs to be multiples
of λ/2. Furthermore, in the region of 915 nm and 1020-1100 nm the outcoupling
efficiency is reduced independent of the dipole position. Note that changing the
emission wavelength does not change the outcome significantly and only leads to a
slight shift in the optimal beam width. The optical quality of the standing-wave
mode is probably not high and the enhancement observed in the simulations will not
be observed at the same level in the experiment. Nevertheless, we observe that the
optimisations described above have a significant impact on quantum dot localisation.
Finally, for the phononic-crystal resonator also the y-length scale of the resonator
matters. This can be seen by the very dark dots in the phononic shield compared to
the bright dots on the resonator.



CHAPTER 7

Radiative Auger process in the single-photon
limit

The content of this chapter is adapted from:
M. C. Löbl, C. Spinnler, A. Javadi, L. Zhai, G. N. Nguyen, J. Ritzmann, L. Midolo,
P. Lodahl, A. D. Wieck, A. Ludwig, and R. J. Warburton,
“Radiative Auger Process in the Single-Photon Limit”, Nature Nanotech-
nology 15, 558–562 (2020).
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7.1 Introduction

In a multi-electron atom, an excited electron can decay by emitting a photon. Typ-
ically, the remaining electrons are left in their ground state. In a radiative Auger
process, the leftover electrons are promoted to an excited state and a red-shifted
photon is created due to energy conservation [78, 79, 208, 209]. In a quantum dot,
radiative Auger is predicted for charged excitons [80]. Here, we report the observation
of radiative Auger emission on trions in single quantum dots.

For a trion, a photon is created by electron-hole recombination, leaving behind a
single electron in the conduction band s-shell. The radiative Auger process promotes
this additional (Auger) electron to a higher shell of the quantum dot. We show that
the radiative Auger effect is a powerful probe: the energy separation between the
resonance fluorescence and the radiative Auger emission directly measures the single-
particle splitting of the electronic states in the quantum dot with high precision. In
semiconductors, these single-particle splittings are otherwise hard to access by op-
tical means as particles are typically excited in pairs (as excitons). The radiative
Auger transition is followed by a carrier relaxation of the Auger electron back to the
ground state (s-shell). Going beyond the original theoretical proposals, we show how
applying quantum optics techniques to the radiative Auger photons gives access to
the single-electron dynamics, notably relaxation and tunnelling. This is also hard
to access by optical means: even for quasi-resonant p-shell excitation, electron re-
laxation takes place in the presence of a hole, complicating the relaxation dynamics.
We propose that the radiative Auger effect can be exploited in other semiconductor
nanostructures and quantum emitters in the solid state for studying the energy level
arrangement and the dynamics of single carriers.

Auger processes are a well-known phenomenon in atoms [210, 211]. Nonradiative
Auger processes involving continuum states have been observed in several solid-state
systems: quantum dots [212], two-dimensional materials [213], colour centers [214],
and semiconductor lasers [215]. As originally predicted for atoms, an Auger process
can also take place in connection with a radiative transition [78, 79]. The radiative
Auger process has been observed in X-ray spectra [208, 209]. The so-called elec-
tron shake-off process has a similar physical origin [216]. At optical frequencies, the
radiative Auger process has been described in ensembles of donors [217] and as a
so-called shake-up process in the Fermi-sea (a many-particle effect) [218–220]. So far,
the radiative Auger process has not been observed with a single-photon emitter or a
few-electron configuration.

7.2 The radiative Auger process

We observe the radiative Auger process on two different systems: first, a self-
assembled InGaAs quantum dot (QD) in GaAs grown in the Stranski-Krastanov
mode [80] and second, a GaAs quantum dot in AlGaAs grown by infilling of droplet-
etched nano-holes [221]. We resonantly excite the negative trion (X1−) of a dot with
a narrow-bandwidth laser. In both quantum dot systems, the charge state of the dot
is precisely controlled via Coulomb blockade [110]. We collect the emission of the
dot and resolve it spectrally, as schematically shown in Fig. 7.1(a). Fig. 7.1(b) is the
result of such a measurement for an InGaAs quantum dot. The main peak at photon
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Figure 7.1: Observation of a radiative Auger process on a single quantum dot. (a)
Schematic of the experimental setup: the quantum dot (QD) is resonantly excited with a
narrow-bandwidth laser, and its emission is spectrally resolved. (b) Upper panel, emission
spectrum of the negative trion (X1−) in an InGaAs quantum dot under resonant excitation
(T = 4.2 K). The strong peak at E ≃ 1.321 eV is the resonance fluorescence, surrounded by a
broad LA-phonon sideband. Red-shifted by ℏω0 ∼ 18 meV there are two additional emission
lines, stemming from the radiative Auger process. Lower panel, the dot can be tuned in and
out of the resonance with the laser by exploiting the dc Stark effect. The shown spectrum is
measured at zero detuning, ∆, between dot and laser (dashed line). Resonance fluorescence
and radiative Auger are maximised when the laser is in resonance(∆ = 0). (c) Mechanism of
the radiative Auger process: with a probability close to one, the trion recombination results
in an emission of a resonant photon and leaves the remaining electron in the ground state
(s-shell). With small probabilities |ϵ1|2 and |ϵ2|2, the remaining electron is promoted into
one of the p-shells, and the photon is consequently red-shifted. (d) Setup for the cross-
correlation between the radiative Auger emission and the resonance fluorescence. The delay
τ corresponds to the duration between the arrival of a resonant photon on detector 2 after
detecting an Auger photon on detector 1. (e) Cross-correlation measurement between the
radiative Auger emission and the resonance fluorescence. The strong anti-bunching at zero
time delay proves that both emission lines originate from the same emitter.

energy ∼ 1.321 eV is the resonance fluorescence of the trion. This spectrally narrow
emission is accompanied by an LA-phonon sideband on the red (blue) side [222–224].
In addition, we observe two weak emission lines, red-shifted by ∼ 18 meV from the
main fluorescence peak. In the following measurements, we show that these emission
lines originate from a radiative Auger process as illustrated in Fig. 7.1(c): an electron
and a hole recombine optically and with a small probability, the second electron is
promoted to an excited state, the p-shell of the dot. In the case of resonance flu-
orescence, in contrast, the optical recombination of the trion leaves behind a single
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(     )

Figure 7.2: Comparison of neutral and charged excitons. Emission spectrum of the
InGaAs quantum dot shown in Fig. 7.3(a). The s-to-s transition of the quantum dot is
resonantly excited. The emission is shown for the neutral exciton (blue) and the singly
charged trion (red). For better comparability, the neutral exciton (X0) is shifted in energy
such that its resonance fluorescence peak overlaps with the charged exciton (X1−). In both
cases, the resonance fluorescence (at E ≃ 1.321 eV) dominates. Emission at lower energies
is caused by an energy transfer to either an LO-phonon or an additional carrier via the
radiative Auger process. The radiative Auger process is only possible for the trion, not for
the neutral exciton.

electron in the ground state (s-shell of the dot).
Several observations substantiate the interpretation that the two red-shifted lines

originate from a radiative Auger process. First, the Auger lines disappear on removing
the additional electron – they are absent in the emission spectrum of the neutral
exciton, X0, see Fig. 7.2. Second, the red-shifted emission lines only appear when
the laser is in resonance with the quantum dot (Fig. 7.1(b)). Third, the time-resolved
cross-correlation between the radiative Auger emission and the resonance fluorescence,
Fig. 7.1(d,e), shows a pronounced anti-bunching at zero time delay. This measurement
demonstrates that the different emission lines originate from the same dot. The
emitter produces either a resonance-fluorescence photon or a radiative-Auger photon,
but never two photons at the same time. Finally, to prove that the radiative Auger
process leaves an electron in a higher shell, we measure the optical emission as a
function of the magnetic field (Faraday geometry). The magnetic field dispersion
of the radiative Auger emission is shown in Fig. 7.3(a,b) for an InGaAs dot and
in Fig. 7.3(c,d) for a GaAs dot, respectively. At high magnetic fields, the two red-
shifted emission lines, which are closest in energy to the resonance-fluorescence, have a
dispersion of ± 1

2ℏωc (cyclotron frequency: ωc = eB
m∗ , electron effective mass m∗). This

type of magnetic field dispersion shows that the emission is connected to an energy
transfer to the p-shells. More generally, the strong magnetic field dispersion of the
radiative Auger emission arises because the magnetic field creates additional orbital
confinement, which leads to a strong magnetic field dependence of higher quantum dot
shells [225–227]. The magnetic field dependence is important to distinguish radiative
Auger emission from phonon-related features.
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Figure 7.3: Magnetic field dispersion of the radiative Auger emission. (a) Emission
spectrum under resonant excitation as a function of the magnetic field measured on an
InGaAs quantum dot (QD). The two green lines indicate the radiative Auger emission where
one electron is promoted into the p-shells. This emission follows a dispersion of ∼ ± 1

2
ℏωc,

with m∗ ≃ 0.071 me (s-to-p-splitting: ℏω0 ≃ 17.7 meV, further parameters in Tab. 7.1).
(b) Magnetic field dispersion of the radiative Auger emission. The emission lines above
the s-shell can be well described by the Fock-Darwin spectrum. The red lines represent a
fit of our analytical model of the radiative Auger emission. (c) Radiative Auger emission
as a function of the magnetic field measured on a GaAs quantum dot (m∗ ≃ 0.076 me,
ℏω0 ≃ 13.8 meV). (d) Magnetic field dispersion of the radiative Auger emission for the
GaAs dot. (e) Schematics of the radiative Auger process involving both p- and d-shells.
(f) Optical recombination involving the creation of an LO- or a TO-phonon. We note that
this process is observed for the trion and the neutral exciton (see Fig. 7.4). |ϵp|2 labels the
probability for the process involving the LO phonon. (g) Schematics of the radiative Auger
process involving both carrier excitation to the p-shell and the creation of a phonon.

The separation between resonance fluorescence and radiative Auger emission corre-
sponds to the single-particle splittings. Thus, the radiative Auger emission allows for
determining the single-particle spectrum of a quantum dot with high precision. At
zero magnetic field (B = 0 T), there is a splitting between the two p-shell-related
Auger lines, revealing an asymmetry of the dot. This asymmetry lifts the four-fold
degeneracy of the p-shells into two doublets at zero magnetic fields. For both types
of quantum dots, we also observe radiative Auger emission at even lower energies, see
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Fig. 7.3(a,c). These emission lines correspond to a radiative Auger process involving
the d-shells (sketched in Fig. 7.3(e)). At high magnetic fields, the upper p-shell (p−)
shows an anti-crossing with the lowest d-shell (d+). For the GaAs quantum dot, we
even observe radiative Auger emission involving all three d-shells. For the InGaAs
quantum dot, the d+-shell is only visible in the radiative Auger emission when it
is coupled to the p−-shell. For both types of dots, we model the dispersion of the
emission lines by the Fock-Darwin spectrum [226, 227] (details can be found in Chap-
ter 7.4). The model assumes a harmonic confinement potential and matches well with
the lower quantum dot shells, see Fig. 7.3(a,c). Differences between model and data
(e.g. for the d-shells) reveal the deviation from a harmonic confinement potential
towards higher single-particle energy.

For a rotationally symmetric confinement potential, angular momentum is a good
quantum number such that promotion of the Auger electron to the d0-shell is possible,
but promotion to the other p- and d-shells is forbidden. In practice, we find that the
radiative Auger involving the p-shells is relatively strong and that the intensity of
these processes is not strongly dependent on the magnetic field. Besides, the p-shells
are not degenerate at zero magnetic fields. These observations show that angular
momentum is not a good quantum number. We do not observe Zeeman splittings in
the radiative Auger lines, which shows that the processes are spin-conserving. Spin
is a good quantum number; equivalently, spin-orbit interactions of the electron states
are weak.

There are several additional red-shifted emission lines that are not related to elec-
tron shells or continuum states, see Fig. 7.3(a,b): An emission red-shifted by ∼ 36 meV
(labelled LO in Fig. 7.3(b,d)) which corresponds to optical recombination along with
the creation of an LO-phonon (sketched in Fig. 7.3(f)). The magnetic field dispersion
is weak and follows the s-shell – no higher shells are involved. At lower photon ener-
gies, even the LO-phonon replica of the radiative Auger emission is visible (labelled
LO + p± in Fig. 7.3(b), schematic illustration in Fig. 7.3(g)). In this case, Auger
carrier excitation into the p-shell and LO-phonon creation occur simultaneously with
the optical recombination.

7.4 Modelling the magnetic field dispersion

The radiative Auger emission appears on resonantly exciting the trion. The final states
after the optical recombination of the trion are single-particle states. Therefore, the
separations between the different emission lines are precise single-particle splittings.
Shown in Fig. 7.4(c,d) is the single-particle dispersion for the two dots also shown
in Fig. 7.3. Fig. 7.4(a,b) is the magnetic field dispersion of the extracted single-
particle splittings for two additional dots. At zero magnetic field, we measure an
s-to-p-splitting of 17.7 meV and 21.0 meV for the InGaAs dots; and 13.8 meV amd
17.6 meV for the GaAs dots. Further parameters of the single-particle spectrum
are obtained by fitting the data to a model which assumes states of an asymmetric
harmonic confinement potential. The red lines in Fig. 7.4(b-e) represent the model
that is developed in this section.

For a symmetric, two-dimensional harmonic confinement potential, the mag-
netic field dependence of the single-particle states forms the Fock-Darwin spec-
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Figure 7.4: Magnetic field dependence compared to an assymetric Fock-Darwin
model. (a) Single-particle magnetic field dispersion for an additional InGaAs quantum dot.
To obtain the single-particle splittings, the s-shell energy is subtracted from the energies of
the radiative Auger lines. (b) Single-particle magnetic field dispersion for an additional
GaAs quantum dot embedded in AlGaAs. (c) Single-particle splittings for the dot shown in
Fig. 7.3(a). (d) Single-particle splittings for the dot shown in Fig. 7.3(c).

trum [226, 227]. The eigenergies En,l depend on two quantum numbers, the ra-
dial quantum number, n, and the angular momentum quantum number, l [225].
In this model, the two p-shells are degenerate at zero magnetic fields. This is
clearly not the case in our experiments. Thus, to describe the single-particle dis-
persions, we assume an asymmetric harmonic confinement potential of the form

V (x, y) = 1
2m

∗
e

(
ω2
xx

2 + ω2
yy

2
)

. When the radial symmetry is broken, angular mo-

mentum is no longer a good quantum number, and the eigenenergies are Enx,ny
=

ℏωx

(
nx + 1

2

)
+ ℏωy

(
ny + 1

2

)
, with the two quantum numbers nx and ny (also see

Chaprt 2). The eigenenergies of such asymmetric harmonic confinement as a function
of the magnetic field are given in Ref. [228].

The absolute energies of the emission lines correspond to the energy differences
between the initial state (Etrion) and the final states (Ef). To fit the dispersions
of the emission, we compute the energy of the initial trion state as the sum of its
single-particle energies plus the corresponding Coulomb and exchange terms. For
the Coulomb energy terms, we assume symmetric confinement as the corresponding
energy terms can be easily computed analytically [102, 229, 230]. Coupling terms
admixing higher shells are not considered in this estimation [229, 230].

At a magnetic field of B ≃ 8 T, the p−- and the d+-shells anticross. This is not
a feature of the energy spectrum of an asymmetric harmonic oscillator. The anti-
crossing is included by a phenomenological coupling ∆pd between p−- and d+-shell.
We speculate that the coupling between both shells arises due to the deviation from
the harmonic confinement. When part of the energy is transferred to an LO-phonon,
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Table 7.1: Fit results for the magnetic field dispersion shown in Fig. 7.4 and Fig. 7.3.
The effective mass is given in units of the electron mass and difference energies ∆i

are given in meV.

E0 (eV) m∗
e gh − ge ℏω0 (meV) ∆p ∆pd ∆LO ∆TO

InGaAs
Fig. 7.3(b) 1.3214 0.0712 1.505 17.67 1.26 1.12 36.1 –
Fig. 7.3(b) 1.3152 0.0762 1.968 20.98 1.08 – – –
GaAs
Fig. 7.3(d) 1.5925 0.0757 1.135 13.84 1.90 0.25 36.3 33.5
Fig. 7.3(c) 1.5757 0.0737 1.1 17.59 2.61 1.37 36.5 –

the corresponding photon energy is given by, Etrion −Es
f − ∆LO. Thus, the emission

has the same weak magnetic field dependence as the resonance fluorescence (s-shell
emission).

The results of the model fits are shown in Fig. 7.4 and Fig. 7.3. A list of definitions
is given in Tab. 7.3 in Supplementary note II, and the fit parameters are given in
Tab. 7.1. For all measured dots, the strong magnetic field dispersion of the radiative
Auger emission lines is well reproduced. In the case of the InGaAs quantum dot
shown in Fig. 7.3(a), we fit the energies of the s-shell emission and the radiative
Auger emission into both p-shells simultaneously. The coupling term ∆pd is included
as a fit parameter. The exciton g-factor is measured independently by mapping out
the charge plateau of the trion in a magnetic field. The fit reproduces the data very
well and gives a good description of the radiative Auger excitation into some of the
d-shells. The LO-phonon replica of the radiative Auger excitation into the p-shells is
also excellently reproduced by the fit.

To fit the magnetic field dispersion of the InGaAs quantum dot shown in Fig. 7.4(a),
we also make a simultaneous fit to the energies of the s-shell emission and the radiative
Auger emission into both p-shells. The coupling term ∆pd is not included as there
is no hint of an anticrossing with the d+-shell. For the GaAs quantum dot shown in
Fig. 7.3(c), we again fit the energies of the s-shell emission and the radiative Auger
emission into both p-shells simultaneously. The coupling term ∆pd is included as a fit
parameter. The exciton g-factor is measured independently and not fitted. For the
GaAs quantum dot shown in Fig. 7.4(b), we also fit the energies of the s-shell emission
and the radiative Auger emission into both p-shells simultaneously. The exciton g-
factor is fixed to a value typical for GaAs dots. When observable, all phonon-related
features are included in the fit with a single fit parameter for the phonon energy.

7.5 Time-dynamics of the radiative Auger process

We turn to the dynamics of the radiative Auger process, that is, the dynamics of the
electron left in an excited state after a radiative Auger process. Detecting a photon
from a radiative Auger process projects the Auger electron into one of the excited
electron states. The dynamics of this single electron can be investigated by deter-
mining the time of subsequent emission events. The experiment involves measuring
the g(2)(τ) correlation function with high precision in the delay τ . We compare the
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Figure 7.5: Time-resolved correlation measurements. (a) Schematic of the measure-
ment to determine the auto-correlation of the resonance fluorescence from a quantum dot.
The signal is split by a 50:50 beamsplitter; photon arrival times are recorded on two single-
photon detectors (g(2)-measurement). (b) Schematic of the cross-correlation measurement
between resonance fluorescence and radiative Auger emission. The Auger emission is spec-
trally filtered to remove all resonant photons. (c) Cross-correlation between the resonance
fluorescence and the radiative Auger emission (green), measured on the InGaAs quantum
dot shown in Fig. 7.1. An auto-correlation of the resonance fluorescence (blue) is shown for
comparison. (d) Fits to the auto- and cross-correlation measurements. (Parameters listed
in Tab. 7.2) (e) Model for the dynamics connected to the radiative Auger process. After
the radiative Auger excitation, the second electron occupies the p-shell of the quantum dot.
When the electron occupies the p- rather than the s-shell, the Coulomb interactions are
different, tuning the s-to-s transition out of resonance with the laser. The dot cannot be
re-excited until the electron has relaxed to the s-shell. There are two relaxation channels:
a direct relaxation to the s-shell on a time scale τp; and ionisation of the quantum dot by
tunnelling from the p-shell to the Fermi-reservoir (EF , Fermi energy) of the back gate (τout)
followed by slower tunnelling from the Fermi reservoir to the s-shell (τin). (f) Schematic
setup for the auto-correlation measurement of the radiative Auger emission. The radiative
Auger signal is split and sent to two single-photon detectors. (g) Auto-correlation of the
radiative Auger process involving the lower energy p-shell.

auto-correlation of the resonance fluorescence (Fig. 7.5(a)) to the cross-correlation be-
tween the radiative Auger emission and the resonance fluorescence (Fig. 7.5(b)). This
comparison provides immediate insight into the carrier relaxation mechanism follow-
ing the radiative Auger process. The corresponding g(2)-measurements are shown in
Fig. 7.5(c).

The auto-correlation (blue curve) shows a very pronounced anti-bunching (g(2) ≪
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1) at zero time delay, proving the single-photon nature of the resonance fluorescence.
The anti-bunching is surrounded by a bunching (g(2) > 1) at a non-zero time delay.
This effect is caused by the onset of Rabi oscillations under strong resonant driving.
The cross-correlation (green curve) differs from the auto-correlation in two aspects:
The g(2)(τ) is a slightly asymmetric function of τ and has a time-offset towards pos-
itive τ . We can explain these features (see fit in Fig. 7.5(d)) with the mechanism
shown in Fig. 7.5(e): After the emission of a radiative Auger photon, the second elec-
tron is located in a higher shell. Before re-excitation of the trion can take place, this
electron has to relax down to the s-shell – in contrast to the resonance fluorescence
where re-excitation is immediately possible.

By comparing auto- and cross-correlation, we determine the relaxation time for an
isolated electron to be τp ≃ 85 ps. The time scale of the electron relaxation is compa-
rable to numbers reported for weak nonresonant excitation [231, 232]. The relaxation
is probably caused by a multi-phonon emission process [111]. We stress the advantage
of the present method: the radiative Auger process leaves only a single electron in
a higher shell. In contrast to nonresonant excitation, all other carriers have disap-
peared and the relaxation of the electron can be investigated independently of other
relaxation mechanisms.

The asymmetry of the cross-correlation measurement can be explained by ionisa-
tion of the quantum dot following the radiative Auger emission. In a higher shell,
the electron has an enhanced tunnelling rate out of the quantum dot [233]. Follow-
ing very fast relaxation down to the Fermi energy, tunnelling back into the s-shell
of the dot takes about ten times longer, and the quantum dot is ionised for a finite
time. We estimate the corresponding tunnelling times by modelling the auto- and
cross-correlation measurements. The full model and the fit results are given in Chap-
ter 7.6; the fits describe the experimental data well, see Fig. 7.5(d).

Finally, we perform the first auto-correlation measurement of the radiative Auger
emission itself. For this measurement, the resonance fluorescence is filtered out with
a grating basel filter (see schematic in Fig. 7.5(f)). To maximise the count rate of the
weak radiative Auger emission, we use a higher excitation power (Rabi frequency)
compared to the cross-correlation measurement. The auto-correlation measurement
is shown in Fig. 7.5(g). At zero time delay, there is a clear anti-bunching in the g(2)-
measurement, which proves the single-photon nature of the emission connected to the
radiative Auger process. At non-zero time delay, the onset of Rabi oscillations (of
the s-to-s transition) is visible as a photon bunching of the radiative Auger emission.
Both features are well described by our model (see Chapter 7.6).

7.6 Cross-correlation theory

The g(2)-measurements are modelled with the formalism introduced in Chapter 2 and
using the level scheme shown in Fig. 7.6. There are four different states which are
taken into account for our simulation: the ground state, |g⟩, with a single electron in
the quantum dot; the excited state, |e⟩, a trion with two s-shell electrons; the state
after radiative Auger emission, |p⟩, where a single electron occupies the p-shell of the
dot; and the ionised quantum dot state, |b⟩, where the electron has tunnelled out. We
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Figure 7.6: Dynamics of the radiative Auger process. Model used for the simulation
of the auto-correlation measurement of the resonance fluorescence together with the cross-
correlation between the resonance fluorescence and the radiative Auger emission.

simulate the system by assuming the following Hamiltonian in the rotating frame of
the laser (ℏ = 1):

Ĥint =
ΩR

2

(
|g⟩ ⟨e| + |e⟩ ⟨g|

)
. (7.1)

All decay channels are modelled following the scheme shown in Fig. 7.6. The Lindblad
operator is:

L̂ =
√

ΓR |g⟩ ⟨e| +
√

ΓA |p⟩ ⟨e| +
√

Γp |g⟩ ⟨p| (7.2)

+
√

Γout |b⟩ ⟨p| +
√

Γin |g⟩ ⟨b| . (7.3)

We compute the steady-state density matrix, ρs, and obtain the auto- and cross-
correlation by using the Python quantum toolbox Qutip [116, 117]. The operator for
the resonant decay is â = |g⟩ ⟨e|, and the operator for the radiative Auger decay is
âA = |p⟩ ⟨e|. Auto- and cross-correlations are computed numerically by applying the
quantum regression theorem. The auto-correlation of the resonance fluorescence is
given by:

g(2)(τ) =
⟨â†(t)â†(t + τ)â(t + τ)â(t)⟩

⟨â†(t)â(t)⟩2
. (7.4)

The cross-correlation is given by:

g(2)(τ) =
⟨â†A(t)â†(t + τ)â(t + τ)âA(t)⟩

⟨â†(t)â(t)⟩⟨â†A(t)âA(t)⟩
. (7.5)

The auto-correlation of the radiative Auger emission is:

g(2)(τ) =
⟨â†A(t)â†A(t + τ)âA(t + τ)âA(t)⟩

⟨â†A(t)âA(t)⟩2
. (7.6)
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Figure 7.7: Comparison of auto- and cross-correlation measurements. Fits to the
g(2)-measurements shown in Fig. 7.5(c). Simultaneous fitting of Eqs. 8.3 and 8.4 to the
corresponding auto- and cross-correlation data is performed. In the following sub-figures,
the black lines correspond to the fit result. (a) Red line: cross-correlation measurement
between resonance fluorescence and the radiative Auger emission where the second electron
is transferred into the p+-shell of the quantum dot. (b) Cross-correlation measurement from
(a) on a shorter time scale. (c) Blue line: auto-correlation measurement of the resonance
fluorescence. (d) Auto-correlation measurement from (c) on a shorter time scale. (e) Com-
parison of the auto- and the cross-correlation measurement together with the corresponding
fits. (f) Comparison of the auto- and the cross-correlation measurement, plotted on a short
time-scale.

We multiply the result of this simulation by 1 + c1 · exp
(
−|τ | /tbl

)
to take into

account a weak blinking on short time-scales [183]. The blinking might be caused by
electron spin pumping enabled by a weak nuclear magnetic field [234]. Additionally,
the model function is multiplied with a global prefactor c0, which takes into account
a weak blinking on long time scales of ∼ 0.1 ms, probably caused by charge noise.
For the resonance fluorescence, a small fraction cl of reflected laser in the resonant
emission is taken into account via g(2) → g(2) ·(1−cl)+cl. We perform a simultaneous
fit of this model to the auto-correlation of the resonance fluorescence and the cross-
correlation between the resonance fluorescence and the radiative Auger emission. The
result of this fit is shown in Fig. 7.7. The obtained fit parameters can be found in
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Tab. 7.2. These parameters also give a good fit to the auto-correlation of the radiative
Auger emission, which is shown in Fig. 7.5(g). For this, the fit parameters are kept
the same, and only the Rabi frequency is increased (ΩR = 5.4 GHz), taking into
account that the auto-correlation of the radiative Auger emission has been measured
at higher power. The following chapter explains in detail how the correlation data is
obtained from the raw time clicks on our detectors.

Table 7.2: Parameters obtained from simultaneously fitting the auto- and cross-
correlation measurements shown in Fig. 7.7. The radiative decay rate, ΓR, is obtained
from a separate lifetime measurement and is not included in the fit. ΓA is estimated
from the intensity ratio between radiative Auger emission and resonance fluorescence
and is also not included in the fit. Decay rate units are in GHz.

ΩR (GHz) ΓR ΓA Γp Γout Γin tbl (ns) c0 c1 cl
1.85 1.22 0.001 11.7 0.82 0.07 7.2 1.143 0.153 0.126

7.7 Evaluation of correlation measurements

All g(2)-measurements are performed in a time-tagged, time-resolved mode. The
arrival times of all photons are recorded over the full integration time, T , on two single-
photon detectors. All data analysis is carried out post-measurement. We compute
the cross-correlation (g(2)) between both signals by counting the coincidence events
between the two detectors as a function of a time delay, τ , between the signals.

Let x1, x2 be the count rates on detectors 1 and 2, respectively. We divide the full
integration time into time intervals of length, tbin. The value for tbin is chosen to be
small enough such that the probability of a photon in the corresponding time-interval
is very small: tbin ·x1/2 ≪ 1. For each detector, we determine the number of detection
events for all time intervals. This number is either 0 for no photon or 1 for one photon
since the probability of having more than one photon in an interval is negligibly small
(for tbin ·x1/2 ≪ 1). When there is one detection event on detector 1 in an interval at
time t and another detection event on detector 2 in an interval at time t+τ , we call it
a coincidence event for time delay τ . For different time delays, we count the number of
coincidence events, #c, over the full integration time. The cross-correlation between
both detectors is obtained by dividing #c(τ) by its expectation value for the case
of two uncorrelated detection channels: ⟨#c⟩ = T · tbin · x1 · x2. This expression for
⟨#c⟩ is obtained by the following consideration: the probability of finding a detection
event in a certain time interval is tbin · x1 and tbin · x2. If both detection channels
are uncorrelated, the probability of finding a detection event for the first detector at
time t and a detection event for the second detector in the time-interval at t + τ is
pc = t2bin · x1 · x2. For T ≫ τ , the probability density distribution of #c is thus a
binomial distribution:

P (#c) =

(
T/tbin

#c

)
· (1 − pc)

T/tbin−#c · p#c
c (7.7)
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Figure 7.8: Power dependence of the radiative Auger emission. (a) Resonance
fluorescence and radiative Auger emission. The excitation laser is fixed (E ≃ 1.321 meV),
and the quantum dot is swept through the resonance by tuning the gate voltage, Vg. (b)
Dependence of resonance fluorescence and radiative Auger emission on the power of the
resonant laser. For the power dependence, the laser is kept in resonance with the trion (X1−).
When normalised, the resonance fluorescence and the radiative Auger emission intensity
depend equally on the excitation power. Both are proportional to the trion occupation of a
resonantly driven two-level system (Eq. 7.8).

The expectation value of this distribution is the corresponding normalisation factor:
⟨#c⟩ = T · tbin · x1 · x2.

7.8 Power dependent excitation and radiative Auger
linewidth

We measure the intensity of the radiative Auger emission as a function of resonant
excitation power and laser detuning. This measurement is shown in Fig. 7.8. In a
first measurement, we keep the narrow-band laser at a fixed frequency and sweep the
detuning between trion transition and laser by applying a gate voltage, Vg. The gate
voltage shifts the trion energy via the quantum-confined Stark effect. The intensity
and the energy of the emission are recorded with a spectrometer. This measurement
is shown in Fig. 7.8(a). When laser and trion energy are on resonance, there is a
bright emission at ∼ 1.321 eV, the resonance fluorescence. This emission is spectrally
asymmetric due to the LA-phonon sideband around the resonant peak. At lower en-
ergy, ∼ 18 meV below the resonance fluorescence, there is the emission corresponding
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Figure 7.9: Linewidth measurement of the radiative Auger emission. (a) Radiative
Auger emission at ΩR = 0.73 GHz transmitted trough a 0.41 GHz Fabry-Perot cavity. (b)
Linewidth of the radiative Auger emission as a function of the resonant Rabi frequency.

to the radiative Auger excitation into the p-shells. This emission is strongest when
also the resonance fluorescence is at its maximum, indicating that the intensity of
the radiative Auger emission is proportional to the excited state population of the
quantum dot. Our model of the radiative Auger process implies this proportionality
since the process only takes place in the excited state (trion) of the dot.

To investigate this dependence further, we keep the laser on resonance with the
trion and measure the emission intensities as a function of power. This measurement
is shown in Fig. 7.8(b). The power dependence of the resonance fluorescence and the
radiative Auger emission follows the power saturation curve of a two-level system very
well. This result also confirms that the radiative Auger process is entirely related
to the trion. Its rate is proportional to the trion occupation, ρ22, under resonant
excitation [235]:

ρ22 =
1

2

Ω2
R

2Γ2
R + Ω2

R

. (7.8)

We expect that the ratio of the radiative Auger and the resonance fluorescence inten-
sities roughly reflects the ratio ΓA/ΓR. This way, we estimate the value for ΓA to be
on the order of ∼ 1 MHz.

Finally, we measure the linewidth of the radiative Auger emission. We pass the
emission through a Fabry-Perot cavity (15.2 GHz free spectral range, 0.41 GHz
linewidth) and sweep the cavity length. The result of this measurement on the p+-
emission is shown in Fig. 7.9(a). We determine the linewidth of the radiative Auger
emission by fitting a multi-Lorentzian which is convoluted with the cavity linewidth.
At low power, we measure a minimum linewidth of 4.19 GHz. For comparison, the
lifetime limited linewidth is estimated by the decay rate of the p+-state after the

radiative Auger process:
Γp

2π = 1.99 GHz. We repeat the linewidth measurement for
different excitation Rabi frequencies. This measurement is shown in Fig. 7.9(b) and
shows a linear increase of the linewidth as a function of the excitation power. The
reason for the additional contribution to the linewidth and its linear broadening with
the excitation power requires further investigations.
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7.9 Conclusion

The radiative Auger process takes place because the interactions between the carriers
(of the trion) change the eigenfunctions of the system (see Chapter 7.12). In a single-
particle basis, the initial state contains admixtures of Slater determinants [236, 237]
of higher single-particle shells. The optical recombination removes an electron-hole
pair from the initial trion state, leading to a final state which is a superposition of
single-electron single-particle states. Every state in that superposition consists of
an electron in a particular shell along with a photon of a certain energy. Since the
initial state is always the same, the energy separations between the different emission
lines correspond to precise single-particle splittings. The ratio of radiative Auger
emission and resonance fluorescence reflects the expansion of the trion state in single-
particle states. Compared to the resonance fluorescence, the radiative Auger emission
is weaker, by about two to three orders of magnitude, for both types of dots. It is
slightly stronger for the larger GaAs dots. The trion wavefunctions are close, yet not
equal to, single-particle states.

In conclusion, we experimentally studied negatively-charged trions in two different
types of semiconductor quantum dots and observed a radiative Auger process in the
optical recombination spectrum. We employ the radiative Auger process to determine
the properties of a single electron in the quantum dot – the energy quantisation and
its relaxation and tunnelling dynamics – using the precise, sensitive and fast tools
of quantum optics. The radiative Auger process only requires significant Coulomb
interactions within the trion, a very general feature. Therefore, this process should
also occur for the positively-charged trion and other quantum emitters in the solid
state.
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7.10 Supplementary note I: Methods

The samples are grown by molecular beam epitaxy. Sample A contains InGaAs quan-
tum dots embedded in a p-i-n-i-n-diode structure [101, 238–240]. Sample B contains
GaAs quantum dots in AlGaAs, which are grown by GaAs-infilling of Al-droplet
etched nano-holes [103, 221]. The photon out-coupling is enhanced by a distributed
Bragg mirror below the dots. For both samples, the dots are placed between a p-doped
top gate and an n-type doped back gate. The quantum dots are tunnel-coupled to
the back gate. This configuration stabilises the charge environment of the dots and
enables tuning the quantum dot charge state by applying a voltage between top and
back gate [241, 242]. For the InGaAs dots, the back gate has a distance of 40 nm to
the dots, 30 nm for the GaAs dots. In a magnetic field, there is optical spin-pumping
in the centre of the trion charge plateau [205, 243] (see Chapter 7.13). Therefore,
we perform all experiments at the plateau edges, where co-tunnelling randomises the
electron spin [244].

All time-resolved measurements are performed by using superconducting single-
photon detectors. The overall timing resolution for the g(2)-measurements is IRF ≃
35 ps (full width at half maximum). Optical measurements are carried out at 4.2 K in
a helium bath cryostat. Resonant excitation of the quantum dots is performed with
a narrow-bandwidth (∼ 1 MHz) tunable diode laser (Toptica DLpro), which is addi-
tionally filtered with a home-built grating setup in order to remove any background
from the gain medium of the laser. The resonance fluorescence of individual dots is
measured by suppressing the reflected laser light with a cross-polarisation technique.
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7.11 Supplementary note II: List of definitions

Table 7.3: List of definitions. HO: Harmonic oscillator.

Label Description
ℏ reduced Planck constant
µB Bohr magneton
ϵ0, ϵr permittivity of vacuum, relative permittivity
ge, gh electron and hole g-factor
E0 bandgap of the QD-material
m∗

e , m∗
h electron, hole effective mass

ℏωc = ℏeB
m∗

e
electron cyclotron energy

ℏωx, ℏωy confinement energies of the asymmetric HO
ℏω0 ≡ ℏωx + ∆p ≡ ℏωp − ∆p confinement energy of the symmetric HO
n,L quantum numbers for the symmetric HO
nx, ny quantum numbers for the asymmetric HO
En,l eigenenergies of the symmetric HO
∆pd coupling between p−- and the d+-shell
ΩR Rabi frequency
ΓR = τ−1

r radiative decay rate
ΓA = τ−1

A radiative Auger decay rate
Γp = τ−1

p relaxation rate from p- to s-shell

Γout = τ−1
out tunnel rate out of the QD

Γin = τ−1
in tunnel rate into the ionised QD

E
p±
f , E

d±
f , and Ed0

f final state energies after Auger excitation
∆LO,∆TO energies of LO and TO phonons
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7.12 Supplementary note III: Radiative Auger process
theory

To explain the radiative Auger process, we consider the interactions between the three
particles forming the trion. We determine the multi-particle eigenstates, Ψ, for several
carriers in the same dot by numerically solving the time-independent Schrödinger
equation, ĤΨ = EΨ, via exact diagonalisation. The Hamiltonian, Ĥ, of the system
is:

Ĥ =

N∑
i=1

[
−ℏ2

2m∗
i

∆i + V (x⃗)

]
+ Ĉ. (7.9)

Ĉ is the Coulomb operator, which is given by:

Ĉ =
1

4πϵ0ϵr

N∑
i, j, i<j

ci · cj∣∣ri − rj
∣∣ . (7.10)

The term ci = ±e is the charge of a particle (electron or hole). As we are considering
fermionic particles, the overall wavefunction is antisymmetric under particle exchange.
Therefore, we consider Ĥ in a basis, {Ψn}, of antisymmetrised Slater determinants:

Ψn = Â
N∏
i=1

ϕni
(xi, σi) . (7.11)

The Slater determinants are constructed from the single-particle solutions, ϕni
(xi, σi),

of Eq. 7.9. The index n represents the quantum numbers required to describe all
particles. The asymmetrisation operator, Â, constructs a Slater-determinant, which
is asymmetric under the exchange of identical particles. To express Ĥ in the basis
{Ψn}, the matrix elements ⟨Ψn| Ĥ |Ψm⟩ are computed. The Slater-Condon rules [236,
245] transform these multi-particle matrix elements into two-particle Coulomb matrix
elements. The Slater-Condon rules for the two-particle Coulomb operator, Ĉ, are:

⟨Ψn| Ĉ |Ψn⟩ =
1

2

N∑
i, j, i̸=j

[
Vijij − Vijji

]
(7.12)

⟨Ψn| Ĉ |Ψn(h,k)⟩ =

N∑
i=1

[Vhiki − Vhiik] (7.13)

⟨Ψn| Ĉ |Ψn(h,k,l,m)⟩ = Vhlkm − Vhlmk. (7.14)

The index n (h, k) indicates that this wavefunction is obtained from Ψn by replac-
ing the single-particle wavefunction ϕh of particle number h by ϕk. The index
n (h, k, l,m) means that two wavefunctions are changed correspondingly. The two-
particle Coulomb matrix elements, Vhklm, are given by the following integral:

Vhklm = ⟨ϕhϕk| Ĉ |ϕlϕm⟩

≡ e2

4πϵ0ϵr

∫ ∫
ϕh (r1)

∗
ϕk (r2)

∗
ϕl (r1)ϕm (r2)

|r1 − r2|
dr1 dr2. (7.15)
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Depending on the order of the indices, these integrals include the direct Coulomb
and the Coulomb exchange terms. For a symmetric harmonic confinement potential,
analytic solutions for the Coulomb integrals can be found e.g. in Refs. [229, 230].

The eigenfunctions of Eq. 7.9 are obtained by diagonalising Ĥ in the basis {Ψn}.
The trion ground state has a small admixture of higher single-particle shells, which is
the origin of the radiative Auger process. Upon optical recombination of one electron
and a hole, the remaining electron of the trion is in a superposition including these
higher shells. Detection of the frequency of the emitted photon projects the state
of the remaining electron to the corresponding shell. For the trion, it is sufficient
to carry out exact diagonalisation for the initial state only since the final states are
single-particle states.

In the dipole approximation, the emission spectrum can be computed with Fermi’s
golden rule [80, 246]:

I(ω) ∝
∑
f

∣∣∣⟨Ψ(f)| P̂ |Ψ(i)⟩
∣∣∣2 · δ(Ei − Ef − ℏω) ·D(ω), (7.16)

where Ψ(i) is the initial state, Ψ(f) are the possible final states, and D(ω) is the density

of states for an emitted photon. P̂ =
∑

dij ĥi,σ êj,−σ adds up all dipole-matrix (dij)
allowed electron-hole recombinations, where i, j sum over orbital and σ over spin
degrees of freedom [80, 246].

With the presented formalism, we estimate that the intensity of the radiative Auger
transition from s- to the d0-shell is about a hundred times weaker than the resonance
fluorescence. However, this intensity is tendentially overestimated compared to the
experimentally obtained values. The issue could be that the exact diagonalisation only
converges when taking into account very high single-particle shells. In reality, not all
of these states exist due to close-by continuum states. Furthermore, the envelope
wave approximation is a simplification compared to a fully atomistic treatment [247].
Finally, this approach assumes that angular momentum is a good quantum number,
allowing radiative Auger with the d0-shell but not with p-shells. In the experiment,
radiative Auger with the p-shells is clearly observed, also in the limit of high magnetic
field, suggesting that angular momentum is not a good quantum number.
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7.13 Supplementary note IV: Spin pumping and Rabi
oscillations

Figure 7.10: Additional quantum dot characterisation. (a) The charge plateau of the
resonantly excited trion at a magnetic field of 0.6 T. This measurement is carried out on
the InGaAs quantum dot (QD) shown in Fig. 7.1(b). At the edges of the charge plateau, a
strong resonance fluorescence is detected. In the plateau center, the resonance fluorescence
intensity is strongly reduced due to electron spin pumping. All radiative Auger measurements
are performed at the plateau edges. (b) Power dependent g(2)-measurement on the negative
trion of the same dot.

Fig. 7.10(a) shows a measurement of the resonance fluorescence of the negative trion
as a function of the gate voltage and the laser wavelength. This measurement is per-
formed on the quantum dot which is presented in Fig. 7.1(b). The trion is stable in
the gate voltage range between Vg = −0.52 V and Vg = −0.48 V. This charge plateau
splits into two due to the electron spin Zeeman energy. We perform the measure-
ments of the radiative Auger emission on one Zeeman branch. No Zeeman splitting
is observed in the emission spectrum, which shows that the radiative Auger process
is spin-conserving. In the center of the charge plateau, the resonance fluorescence
disappears due to optical spin pumping. At the edges of the charge plateau, the res-
onance fluorescence is strong due to spin co-tunnelling with the back gate [205, 244].
For this reason, we perform all measurements in the co-tunnelling regime.

Fig. 7.10(b) shows resonantly driven Rabi oscillations as a function of the excitation
power. The measurement is performed on the trion state of the same dot. These co-
herent oscillations in the auto-correlation (g(2)) measurement show that the quantum
dot can be approximately described by a two-level system [5]. However, radiative
Auger is a fundamental process that limits this two-level approximation in the case
of a trion.





CHAPTER 8

Optically driving the radiative Auger transition

The content of this chapter is adapted from:
C. Spinnler, L. Zhai, G. N. Nguyen, J. Ritzmann, A. D. Wieck, A. Ludwig, A. Javadi,
D. E. Reiter, P. Machnikowski, R. J. Warburton, and M. C. Löbl,
“Optically driving the radiative Auger transition”, Nature Communications
12, 6575 (2021).



144 Optically driving the radiative Auger transition

8.1 Introduction

As discussed in detail in the previous chapter, the radiative Auger process promotes
carriers to an excited state, resulting in weak red-shifted satellite peaks in the emis-
sion spectrum. The appearance of radiative Auger in the emission directly leads to
the question if the process can be inverted: simultaneous photon absorption and elec-
tronic demotion. However, resonant excitation of the radiative Auger transition has
not been shown, neither on atoms nor on solid-state quantum emitters. Here, we
demonstrate the optical driving of the radiative Auger transition, linking few-body
Coulomb interactions and quantum optics. We perform our experiments on a trion
in a semiconductor quantum dot, where the radiative Auger and the fundamental
transition form a Λ-system. On driving both transitions simultaneously, we observe
a reduction of the fluorescence signal by up to 70%. Our results suggest that ra-
diative Auger could be used as a resonance fluorescence switch as well as for THz
spectroscopy (using optics close to the visible regime).

Non-radiative Auger processes have been observed in both atoms [210] and solid-
state quantum emitters [212, 248]. They play an important role in determining the
efficiency of semiconductor light-emitting diodes and lasers [249]. In the non-radiative
Auger process, one electron reduces its energy by transferring it to a second electron
that is promoted to a high-energy state. In the radiative Auger process (shake-up), in
contrast, one electron makes an optical decay, creating a photon. Part of the photon
energy is transferred to a second electron such that the radiative Auger emission is
red-shifted with respect to the main emission line. Both radiative and non-radiative
Auger processes arise as a consequence of the Coulomb interactions between electrons
in close proximity [79, 250, 251]. Non-radiative Auger is a purely Coulomb scattering
process. In contrast, radiative Auger involves both Coulomb scattering and electron-
photon interactions. It can either be viewed as a higher-order scattering process or
interpreted in terms of Coulomb-induced admixtures of higher single-particle states to
the multi-electron wave function [251, 252]. What appears to be an optical relaxation
of one electron in the single-particle picture involves in fact a sudden change of the
many-particle configuration.

Radiative Auger emission has been observed over a large spectral range: in the
X-ray emission of atoms [208]; close to visible frequencies on donors in semiconduc-
tors [217] and quantum emitters [253, 254]; and at infrared frequencies as shake-up
lines in two-dimensional systems [218, 219, 255–257]. Furthermore, radiative Auger
connects carrier dynamics to the quantum optical properties of the emitted pho-
tons [253], making it a powerful probe of multi-particle systems. Driving the funda-
mental transition between the electron ground state and an optically excited state is
an important technique in quantum optics [1, 5]. In contrast, driving the radiative
Auger transition would significantly increase the number of quantum optics techniques
that can be employed. However, this has not been achieved, neither with atoms nor
with solid-state systems.

8.2 Driving the radiative Auger transition

We demonstrate driving the radiative Auger transition on an epitaxial GaAs quantum
dot embedded in AlGaAs [66, 103]. Quantum dot forms a potential minimum which
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Figure 8.1: Radiative Auger emission and excitation of the radiative Auger tran-
sition. (a) Schematic illustration of the fundamental transition and the radiative Auger
process. The trion state |t⟩ optically decays by recombination of one electron in the con-
duction band (cb) with a hole in the valence band (vb). The second electron either stays
in its ground state |s⟩ (fundamental transition), or is left in a higher shell |p⟩ (radiative
Auger). The radiative Auger photon is red-shifted from the fundamental transition by the
energy transferred to the Auger electron. (b) Emission spectrum from a negatively charged
quantum dot upon optical excitation at the fundamental transition. In addition to the fun-
damental transition (highlighted in blue), there is a red-shifted satellite line (highlighted in
red). This emission arises from the radiative Auger process where the trion state |t⟩ decays
to the excited electron state |p⟩. (c) Two possible absorption channels in the presence of
one confined conduction band electron. When the electron is in the ground state |s⟩, a laser
resonant with the fundamental transition (blue, frequency ω1, Rabi frequency Ω1) excites a
valence band electron and brings the system to the trion state, |t⟩. When the conduction
band electron is in an excited state |p⟩, a red-shifted laser (frequency ω2, Rabi frequency Ω2)
can excite the system to the same trion state |t⟩. In this inverted radiative Auger process,
the missing energy is provided by the excited electron. (d) Resonance fluorescence from the
fundamental transition in the presence of a strong second laser. When the second laser (ω2)
is on resonance with the radiative Auger transition (∆2 = 0), the resonance fluorescence
intensity is strongly reduced.

confines charge carriers (see Chapter 2), resulting in discrete energy levels (similar to
atoms). Without optical illumination, a single electron is trapped in the conduction
band of the quantum dot and occupies the lowest possible shell (the s-shell, |s⟩). Upon
resonant excitation of the fundamental transition, a second electron is promoted from
the filled valence band to the conduction band and a negative trion X1− (|t⟩) is
formed. This trion consists of two electrons in the conduction band and one electron
vacancy (hole) in the valence band. Fig. 8.1(a) shows the possible optical decay
paths: in a fundamental transition, one electron decays, removing the valence band
hole, while the other electron remains in the conduction band ground state |s⟩; in a
radiative Auger process, the remaining electron is left in an excited state |p⟩. The
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emitted photon is red-shifted by the energy separation between |p⟩ and |s⟩ [79, 253].
Fig. 8.1(b) shows a typical emission spectrum from the trion decay. This spectrum
is measured on resonantly driving the fundamental transition |s⟩–|t⟩ at 384.7 THz
(1.591 eV) with a narrow-bandwidth laser [253]. Red-shifted by 3.2 THz (13.2 meV)
from the fundamental transition a weak satellite line arises from the radiative Auger
process.

Photons at the radiative Auger frequency have insufficient energy to excite the
fundamental transition |s⟩–|t⟩. Figure 8.1(c) shows how the trion state |t⟩ still can
be excited with a laser at the Auger transition. The missing energy is provided
by the electron which initially occupies the excited state |p⟩. However, driving the
radiative Auger transition is experimentally challenging for two main reasons: first,
there is a fast non-radiative relaxation from the excited single-electron state |p⟩ back
to |s⟩ [253, 258], and the state |p⟩ is not occupied at thermal equilibrium. Second,
the dipole moment of the radiative Auger transition is small. Therefore, it is difficult
to achieve high Rabi frequencies on driving the transition, plus the radiative Auger
emission is very weak and hard to distinguish from the back-reflected laser light.

We perform a two-laser experiment revealing optical driving of the radiative Auger
transition. The fundamental transition |s⟩–|t⟩ (at ∼ 1.591 eV) is driven with one laser
(labelled by ω1) while the radiative Auger transition (at ∼ 1.578 eV) is simultaneously
driven with a second laser (labelled by ω2). This Λ-configuration has the following
advantages: First, on driving |s⟩–|t⟩ with ω1, there is a small chance of initialising the
system in state |p⟩ via the radiative Auger emission. Additionally, driving the |p⟩–|t⟩-
transition with ω2, while transferring population to |t⟩ with ω1, also leads to a finite
occupation of |p⟩. Second, the small dipole matrix element of the radiative Auger
transition is compensated by using high power for ω2. The high power causes a high
laser background when detecting the fluorescence from the radiative Auger transition.
Instead, we tune the second laser over the Auger transition while measuring just the
fluorescence originating from the fundamental transition |s⟩–|t⟩. Fig. 8.1(d) shows
the result of this two-laser experiment. We observe a strong reduction in fluorescence
on addressing the transition |p⟩–|t⟩ which is characteristic of two-colour excitation of
a Λ-configuration. Our approach has a conceptual similarity to the driving of weak
phonon sidebands of mechanical resonators resulting in optomechanically induced
transparency [155, 156].

8.3 Autler-Townes splitting in single-laser experiments

We consider initially the situation where the fundamental transition (|s⟩–|t⟩) is
strongly driven by a single laser. If radiative Auger and fundamental transition form
a Λ-system, one would expect an Autler-Townes splitting in the radiative Auger
emission. Fig. 8.2(a) shows the corresponding level scheme including the dressed
states 1√

2
(|N + 1, s⟩ ± |N, t⟩) and 1√

2
(|N, s⟩ ± |N − 1, t⟩), where N is the photon

number. The dressed-state splitting leads to the Mollow triplet in the resonance fluo-
rescence [4, 5, 118]. For a decay into a third level, the Autler-Townes splitting [2, 259]
in the emission is expected to be Ω1. Fig. 8.2(b) shows the radiative Auger emis-
sion of a quantum dot (QD1). In this measurement, the laser is in resonance with
the fundamental transition. The Rabi frequency (Ω1 = 2π × 31.9 GHz, red bar in



8.3. Autler-Townes splitting in single-laser experiments 147

�1

��

�r

|s   

|t

|p

�1

�1

a

|N+1, s   + |N, t

|N+1, s   |N, t-

|N, s   +   |N-1, t

|N, s   |N-1, t-

�p

�1

b

c

( (

( (

(

(

/ 2

/ 2

/ 2

/ 2

(

(

381.2 381.3 381.4 381.5
0

4

8

kc
o
u
n
ts
/3
s

381.1 381.2 381.3 381.4 381.5 381.6

-0.1

0

0.1

0

5

femission (THz)

0

10

kc
ou

n
ts

/s

kc
ou

n
ts

/s
�V
g
S
s 
(T

H
z)

�1

QD1

QD2

femission (THz)

�1

Figure 8.2: Autler-Townes splitting in the radiative Auger emission. (a) Level
scheme under strong resonant driving of the fundamental transition (|s⟩–|t⟩). The energy
levels of the transition are split into dressed states. The splitting between the dressed states
is given by the Rabi frequency, Ω1. In the radiative Auger emission (red arrows), the dressed-
state splitting creates two decay paths leading to an Autler-Townes splitting. (b) Radiative
Auger emission from the main quantum dot (QD1) on driving the transition |s⟩–|t⟩ with ω1.
The Rabi frequency of Ω1 = 2π× 31.9 GHz (red bar) is determined from a power saturation
curve. The measured Autler-Townes splitting in the emission matches the Rabi frequency.
(c) Emission spectrum from a second quantum dot (QD2), measured for a set of different
detunings (∆1 = ∆Vg · Ss) between fundamental transition and laser frequency. The upper
part of the plot is a line cut along the dashed green line at zero detuning (∆1 = 0). In this
case, the measured Autler-Townes splitting agrees with the independently determined Rabi
frequency (Ω1 = 2π × 67.7 GHz).

Fig. 8.2(b)) is estimated independently by measuring the fluorescence intensity as a
function of laser power, see Fig. 8.6(b). We observe an Autler-Townes splitting that
agrees well with this Rabi frequency. For this quantum dot, we also observe an ad-
ditional weak emission appearing on the low energy side of the spectrum when using
high Rabi frequencies (see Supplementary note II). We speculate that this emission
is connected to optical coupling between |p⟩ and an excited trion state, |t∗⟩. Figure
8.2(c) shows radiative Auger emission from a second quantum dot (QD2). For this
quantum dot, we measure the radiative Auger emission as a function of detuning be-
tween the quantum dot transition and the laser (see Supplementary note II, Fig. 8.2
for the corresponding measurement on QD1). On applying a gate voltage ∆Vg, the
quantum dot transition |s⟩–|t⟩ is detuned from the fixed laser by ∆1 = ∆Vg ·Ss via the
quantum-confined Stark shift. Ss parameterises the Stark shift of the fundamental
transition. At zero detuning, the observed Autler-Townes splitting again agrees with
the Rabi frequency obtained from a power saturation curve (Ω1 = 2π × 67.7 GHz).
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8.4 Two-laser experiments in a Λ-configuration

We now consider the experiments with the second laser (labelled as ω2) at the radiative
Auger transition. Fig. 8.3(a) shows the corresponding level scheme. We set ω1 to a
modest Rabi frequency (Ω1 = 2π×0.08 GHz) compared to the decay rate of the trion
(ΓR = 2π × 0.50 GHz). The frequency of the radiative Auger transition is estimated
from the trion emission spectrum (Fig. 8.1(b)). We sweep the frequency ω2 and
simultaneously monitor the resonance fluorescence intensity from the fundamental
transition. Fig. 8.3(b) shows this measurement for different powers of the laser on the
Auger transition. On increasing the power of ω2 to several orders of magnitude higher
than the power of ω1, there is a pronounced dip in the fluorescence intensity. This
intensity dip appears precisely when the laser frequency ω2 matches the radiative
Auger transition (|p⟩–|t⟩) and is characteristic for a Λ-system that is driven with
two lasers. We estimate the Rabi frequency Ω2 driving |p⟩–|t⟩ by simulating the
resonance fluorescence intensity as a function of ∆2 (see Chapter 8.5 for the quantum
optics simulation). In this simulation we keep the decay rate from |p⟩ to |s⟩ (γp ∼
2π × 9.3 GHz) fixed to the value that we determine from independent auto- and
cross-correlation measurements [253] (see Fig. 8.5). The value for Ω2 can then be
determined by a corresponding fit to the two-laser experiment. Additionally, we fit a
constant pure dephasing, γp, for the state |p⟩ which leads to an additional broadening
of the fluorescence dip. We estimate γp ∼ 2π × 8.8 GHz from the fit and a Rabi
frequency of Ω2 = 2π × 3.2 GHz (ω2) for the strongest fluorescence dip. Note that
additional excitation-induced dephasing via phonons is expected to be weak for such
Rabi-frequencies [122, 260].

In Fig. 8.3(c), we plot the minimum of the resonance fluorescence dip as a function of
Ω2. The Λ-system model with two driving lasers fits this data set well. For the highest
value of Ω2, we achieve a reduction of the resonance fluorescence intensity by up to
70%. The intensity reduction is limited by the power that we can reach in our optical
setup. The measurement shows that resonance fluorescence can be switched on and
off by using the radiative Auger transition. In our system, part of the fluorescence dip
is due to the reduction of the overall absorption via the formation of a dark state. This
effect is related to electromagnetically induced transparency (EIT) [261] and coherent
population trapping (CPT) [16, 262]. An additional reduction of the signal comes from
the fact that there is a fast decay rate γp from state |p⟩ to |s⟩. Thus, after the laser-
induced transition from state |t⟩ to |p⟩, the system quickly decays to the ground state
|s⟩. This de-excitation channel reduces the population of the trion state and therefore
the fluorescence intensity. We can distinguish the contributions of the two mechanisms
by our quantum optics simulation. The density matrix element ρtt (occupation of state
|t⟩) is proportional to the overall fluorescence intensity. The term Im(ρst) (coherence
between the states |s⟩ and |t⟩) is proportional to the absorption and reflects the
coherent part of the intensity reduction. The contribution of both mechanisms is
comparable for the parameter regime in which we operate (see Fig. 8.4(b)).

The measurements so far were performed with ω1 on resonance (∆1 = 0). We re-
peat the two-laser experiments while detuning of ω1 from the fundamental transition.
Fig. 8.3(d) shows the fluorescence intensity for positive, zero, and negative detuning
∆1. For non-zero detuning, the fluorescence dip is asymmetric as a function of ∆2.
The asymmetry is an important result as it cannot be explained by a rate equation
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Figure 8.3: Optically driving the radiative Auger transition. (a) The level scheme
where one laser (ω1) with Rabi frequency Ω1 drives the fundamental transition (|s⟩–|t⟩) while
a second laser (ω2) drives the radiative Auger transition (|p⟩–|t⟩) with Rabi frequency Ω2.
(b) Resonance fluorescence (Ω1 = 2π×0.08 GHz) as a function of detuning ∆2 (detuning of
ω2). At low values of Ω2, the resonance fluorescence intensity is almost constant for different
values of ∆2. For the highest value of Ω2, the resonance fluorescence drops by up to ∼ 70%
on bringing ω2 into resonance with the radiative Auger transition. The strong fluorescence
dip at a particular frequency is a characteristic feature of a Λ-system driven with two lasers
that are detuned in frequency by the ground state splitting. (c) Resonance fluorescence at
∆2 = 0 as a function of Ω2. The resonance fluorescence intensity (blue dots) drops with
increasing Ω2, fitting well to the theoretical model (black line). (d) Fluorescence intensity as
a function of detuning ∆2. The Rabi frequencies are Ω1 = 2π×0.27 GHz, Ω2 = 2π×2.1 GHz.
The same measurement is repeated for a series of fixed detunings ∆1 (detuning of ω1 from
the fundamental transition). Detuning ω1 leads to an asymmetric fluorescence dip. This
asymmetry is well captured by our quantum optics simulations (black lines) based on the
level scheme shown in (a). (e) Fluorescence intensity as a function of laser detunings ∆1,
∆2. (f) Simulation of the fluorescence intensity as a function of the laser detunings.

description, but depends on the quantum coherences in the master equation model
(see Chapter 8.5). The full dependence of the resonance fluorescence intensity as a
function of ∆1 and ∆2 is plotted in Fig. 8.3(e). This data set matches well to the
corresponding quantum optics simulation in Fig. 8.3(f) using the parameters from
the previous measurements. The following chapter will discuss the quantum optics
simulations in detail.

8.5 Modelling the Λ-system

The level scheme to describe the two-laser experiments is shown in Fig. 8.4. It consists
of the electron ground state |s⟩, an excited electron state |p⟩, and the trion state |t⟩.
The laser driving the fundamental transition is labelled as ω1 and the laser driving the
radiative Auger transition is labelled as ω2. The corresponding Rabi frequencies are
given by Ω1, Ω2 and the detunings of the lasers from the corresponding transitions
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Figure 8.4: Level scheme and quantum optics simulation. (a) Fundamental transition
and radiative Auger transition form a Λ-system where both transitions can be driven by two
independent lasers. The Rabi-frequency of the laser on the fundamental transition (ω1) is
given by Ω1, the Rabi frequency of the laser on the radiative Auger transition (ω2) is given by
Ω2. The corresponding laser detunings are ∆1 and ∆2, the corresponding spontaneous decay
rates from the trion state |t⟩ are ΓR (fundamental transition), ΓA (radiative Auger). The
parameter γp is the relaxation rate from the electron excited state |p⟩ to the electron ground
state |s⟩. (b) Comparison of the density matrix elements ρtt and Im(ρst) as a function of ∆2.
The parameters are identical to those used to describe the deepest fluorescence dip shown
in Fig. 8.3(b).

are ∆1, ∆2. The spontaneous decay rates are the decay rate via the fundamental
transition (ΓR), the decay rate via radiative Auger (ΓA), and the p-to-s decay rate
(γp). We simulate the system with a standard quantum optics approach, following the
formalism from Chapter 2. Making the dipole and the rotating-wave approximations,
the Hamiltonian of the system is given by [16, 261]:

Ĥ =
ℏ
2

[2(∆2 − ∆1) |p⟩ ⟨p| − 2∆1 |t⟩ ⟨t|

+Ω1 |t⟩ ⟨s| + Ω2 |t⟩ ⟨p| + Ω1 |s⟩ ⟨t| + Ω2 |p⟩ ⟨t|]. (8.1)

The Hamiltonian describes the coherent evolution of the system. The incoherent decay
paths are taken into account by the Lindblad collapse operators for the spontaneous
emission from the fundamental transition (L1 =

√
ΓR |s⟩ ⟨t|), the spontaneous radia-

tive Auger emission (L2 =
√

ΓA |p⟩ ⟨t|)), the p-to-s relaxation (L3 =
√
γp |s⟩ ⟨p|)), and

the p-shell dephasing (L4 =
√
γp |p⟩ ⟨p|)). The dynamics of the system are described
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by the following master equation:

iℏ
dρ

dt
= [Ĥ, ρ] + iℏ

∑
i

(
LiρL

†
i −

1

2
{L†

iLi, ρ}
)
, (8.2)

where ρ is the density matrix, see Chpater 2. Using this equation, we determine the
steady state of the system (dρ

dt = 0). The steady state occupation of the trion state is
used for simulating the experiments as it is proportional to the fluorescence intensity.

This simulation fits well to our experimental results in Fig. 8.3. We also use it
to estimate the Rabi frequency Ω2 and the dephasing γp: when ∆2 is close to zero,
the resonance fluorescence depends on Ω2. Due to the small dipole moment of the
radiative Auger transition, strong laser powers are required to achieve high values of
Ω2. For the strongest laser power of ω2 (increasing the power of ω1 by a factor of ∼
8×103), we estimate Ω2 = 2π×3.2 GHz from the simulation. Alternatively, one could
estimate the ratio of the corresponding dipole moments by using the intensity ratio
between resonance fluorescence and radiative Auger emission (∼ 50 : 1). Ω2 could
then be obtained by using this estimation together with the power saturation curve of
the resonance fluorescence. We find that this method underestimates Ω2 compared to
the simulation. Since effects such as chromatic aberration make this second approach
more prone to systematic errors, we always use the two-laser experiment and the
corresponding simulation to determine Ω2. The dephasing term γp is also estimated
by simulating the two-laser experiment. We find that it mainly affects the width of
the fluorescence dip. ΓR, γp, and Ω1 are determined from independent measurements
and kept fixed in the simulation.

There are two mechanisms that contribute to the fluorescence reduction when driv-
ing the Auger transition with ω2: a coherent part related to EIT/CPT and dark state
formation [261], an incoherent part due to a fast de-excitation channel from |t⟩ to |p⟩
via radiative Auger and from |p⟩ to |s⟩ by two-phonon emission [258]. The incoherent
decay path is irrelevant in systems where the ground state lifetime is long [261]. To
distinguish these two mechanisms we compare the density matrix element ρtt (propor-
tional to the overall fluorescence signal) to Im(ρst) (proportional to the susceptibility).
The susceptibility determines the system’s absorption [261] and is associated with the
coherent contribution of the fluorescence reduction. In Fig. 8.4(b) we plot ρtt and
Im(ρst) as a function of ∆2. This comparison shows that the coherent contribution
to the fluorescence reduction (EIT/CPT mechanism) is only part of the overall fluo-
rescence reduction.

8.6 Cross-correlation measurements

Time-resolved correlation measurements (g(2)-measurements) are used to determine
the relaxation time τp = 1/γp, as explained in detail in Chapter 7. The corresponding
setups are shown in Fig. 8.5(a-c). An auto-correlation of the resonance fluorescence
from the fundamental transition and a cross-correlation between emission from the
fundamental transition and radiative Auger emission are shown in Fig. 8.5(d). As
shown in Fig. 8.5(e), the theoretical model fits well with the data. In these mea-
surements, only a single laser at ω1 is used. The system is described by Eqs. 8.1
and 8.2, with the parameter Ω2 set to zero. We use the Python quantum toolbox



152 Optically driving the radiative Auger transition

50:50

~1
�

a

g(2)

50:50

g(2)

b

50:50

g(2)

c

~1
�

~1
�

f

auto-correlation

cross-correlation

d

-1.5 -1 -0.5 0 0.5 1 1.5
(ns)

0

0.5

1

1.5

g
(2
)

auto-correlation
(radiative Auger)

0

0.5

1

1.5

g
(2
)

�p

e

0

0.5

1

1.5

g
(2
)

�p

simulation

auto-correlation

cross-correlation

Figure 8.5: Time-resolved correlation measurements. (a) Schematic measurement
setup for the auto-correlation of resonance fluorescence from the fundamental transition.
(b) Schematic setup for the cross-correlation between resonance fluorescence and radiative
Auger emission. (c) Schematic setup for the auto-correlation of the radiative Auger emission.
(d) Comparison between the auto-correlation of the resonance fluorescence (blue) and the
cross-correlation between resonance fluorescence and radiative Auger emission (red, data
from QD1). Both correlation-measurements (g(2)) are performed with a single laser on the
fundamental transition and show Rabi oscillations due to the strong driving (Ω1). The cross-
correlation has a small offset given by the |p⟩-to-|s⟩ relaxation time (τp = 1/γp = 17 ps).
This offset measures the finite time for which the Auger electron remains in the excited state
after a radiative Auger process has occurred [253]. The origin of the relaxation γp is probably
a phonon-assisted decay [258] but further investigations are needed. (e) Simulation of the
measurements shown in (d). (f) Auto-correlation of the radiative Auger emission. Since the
radiative Auger emission is relatively weak (count rates: 630 Hz on the first, 530 Hz on the
second detector), a long integration time (∼ 50 h) is needed to resolve the Rabi oscillations
in this measurement. The excitation power and Rabi frequency are slightly different with
respect to the auto- and cross-correlation shown in (d).

Qutip [116, 117] to compute the steady-state density matrix. With the resulting den-
sity matrix, we then compute the auto- and the cross-correlation. The auto-correlation
is:

g(2)(τ) =
⟨â†(t)â†(t + τ)â(t + τ)â(t)⟩

⟨â†(t)â(t)⟩2
, (8.3)
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Figure 8.6: Magnetic field dependence of the different emission lines. (a) Resonance
fluorescence from the fundamental transition and radiative Auger emission as a function of
the magnetic field B (data from QD1). The strong magnetic field dispersion of the radiative
Auger lines enables direct identification of the final electron states of the Auger electron.
(b) Normalised fluorescence intensity of the different emission lines as a function of Rabi
frequency Ω1. ω2 is turned off for this measurement (Ω2 = 0). The power dependence
of the radiative Auger intensity coincides with that of the resonance fluorescence from the
fundamental transition and matches the power curve of a two-level system. From a fit to
the power curve we determine Ω1 in our measurements. For fitting, the radiative decay
is fixed to a value that we determine from an independent lifetime measurement (ΓR =
2π × 0.50 GHz) [66].

and the cross-correlation is:

g(2)(τ) =
⟨â†A(t)â†(t + τ)â(t + τ)âA(t)⟩

⟨â†(t)â(t)⟩⟨â†A(t)âA(t)⟩
. (8.4)

In both cases, t → ∞ for the steady-state solution and τ is the time delay between
two subsequently detected photons. â† describes the creation of a photon via decay
into the s-shell (fundamental transition), and â†A describes the creation of a photon
via radiative Auger decay into the excited electron state, |p⟩.

8.7 Magnetic field dispersion

The magnetic field dispersion of the radiative Auger emission is significantly stronger
than that of the emission from the fundamental transition (see Fig. 8.6). The reason is
the different final state after the optical decay: the electron ground state |s⟩ (s-shell)
has a weak magnetic field dispersion and, in contrast, higher shells such as the excited
state |p⟩ (p-shell) have a much stronger dependence on the magnetic field. Since the
optical emission energy is given by the energy of the trion minus the energy of the final
state, the strong magnetic field dispersion is transferred to the radiative Auger lines.
The strong dispersion of the radiative Auger emission is an important feature allowing
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it to be distinguished unambiguously from phonon replicas. For a two-dimensional
harmonic confinement potential, the magnetic field dispersions of the different shells
form the Fock-Darwin spectrum [225]. The dispersion of the radiative Auger emission
is, therefore, typically close to an inverted Fock-Darwin spectrum [253]. A detailed
discussion of the magnetic field dispersion (inlcuding the model) can be found in
Chapter 7.

8.8 Conclusion and future directions

Upon the optical transition of a carrier, radiative Auger leaves other carriers in an
excited orbital state, and the emitted photon is red-shifted. We show here that this
process can be inverted: radiative Auger exists in absorption and the corresponding
transition can be optically driven. In both emission and absorption, the process
has conceptual similarities to phonon scattering. For radiative Auger emission, the
electronic configuration is left in an excited state, for the phonon sideband, the lattice
configuration [224, 263]. We demonstrate that the resonance fluorescence can be
strongly reduced by addressing the radiative Auger transition: a modulated laser on
the radiative Auger transition could be used for fast optical gating of the emitter’s
absorption. As an outlook, we suggest that an effective coupling between orbital
states, split by frequencies in the THz band, can be created by two lasers at optical
frequencies. The idea here is to establish a Raman-like process: the lasers are equally
detuned from their resonances and an exciton is not created. This scheme facilitates
control of the orbital degree of freedom with techniques that have been developed
for manipulating spin-states [16, 264]. Further quantum optics experiments with
radiative Auger photons are conceivable: by using a two-colour Raman-scheme [265],
it might be possible to create deterministically highly excited shake-up states that are
also subject of recent theoretical [266] and experimental [23] investigations. Adding
a third laser with a THz-frequency at the transition |s⟩–|p⟩ [258] might even allow
close-contour driving schemes [267]. In analogy to experiments on spins [268], the
radiative Auger process could lead to an entanglement between the frequency of the
emitted photon and the orbital state of the Auger electron.



8.9. Supplementary note I: Methods 155

8.9 Supplementary note I: Methods

For all our measurements, the quantum dot sample is kept in a liquid helium bath
cryostat at 4.2 K. The quantum dots used in this work are GaAs quantum dots
in AlGaAs grown by molecular beam epitaxy. Their decay rates ΓR (typically in
the range 2π × (0.5 − 0.6) GHz) were determined by lifetime measurements using
pulsed resonant excitation [66]. The decay rate of the radiative Auger transition,
ΓA ∼ ΓR/100, is estimated by comparing its emission intensity to the fundamental
transition. QD1 is identical to the second quantum dot in Ref. [66]. The quantum
dots presented in this work have a strong radiative Auger emission compared to other
III-V quantum dots [253] indicating a stronger dipole-moment of the radiative Auger
transition. We use radiative Auger lines where the final state of the Auger electron,
|p⟩, is a quantum dot p-shell. In particular, we investigate the transition associated
with the lower p-shell (p+) for QD1 and the higher p-shell (p−) for QD2. We can
assign further emission lines to the corresponding higher electronic shells by measuring
the magnetic field dispersion of the emission spectrum [253] (see Fig. 8.6(a)).

To excite the quantum dots, we use a tunable diode laser with a narrow band-
width (∼ 100 kHz) far below the quantum dot linewidth. Resonant excitation is
not necessary to observe the radiative Auger emission: above-band excitation is also
sufficient [251, 254]. It is also possible to observe radiative Auger on systems that
suffer from much more charge noise than ours [254]. However, resonant excitation
has the advantage that no continuum states are excited making it easier to identify
all emission lines. Fuerthermore, low charge noise makes resonant excitation a lot
easier to perform. For this work, resonant excitation is crucial to optically address a
single radiative Auger transition. To suppress the reflected excitation laser, we use a
cross-polarisation scheme [112].

To determine the relaxation rate γp (∼ 2π× 9.3 GHz) from |p⟩ to |s⟩, we make use
of a technique developed in Ref. [253]: on driving |s⟩–|t⟩ (Ω2 = 0), we measure an
auto-correlation of the resonance fluorescence from the fundamental transition and
compare it to the cross-correlation between resonance fluorescence from the funda-
mental transition and radiative Auger emission. The corresponding measurement
setups are shown in Fig. 8.5(a,b). To resolve the auto- and cross-correlations with
high time resolution, we use two superconducting nanowire single-photon detectors
(SingleQuantum) with a timing jitter below 20 ps (FWHM) in combination with
correlation hardware (Swabian Instruments).

Compared to the auto-correlation, the cross-correlation has a small time offset when
a radiative Auger photon is followed by a photon from the fundamental transition
(see Fig. 8.5(d,e)). This time scale corresponds to the relaxation time, τp = 1/γp,
describing the relaxation from |p⟩ to |s⟩. The relaxation time appears in the cross-
correlation: when a radiative Auger event is detected by the first detector, there is an
additional waiting time of τp before the excited Auger electron relaxes to the ground
state and the system can be optically re-excited. Therefore, it takes longer before a
second photon is detected. The additional waiting time is only present for the cross-
correlation. For the auto-correlation, the system decays directly to the ground state
|s⟩ and there is no additional waiting time.

Finally, we also measure the auto-correlation of the radiative Auger emission (see
Fig. 8.5(c) for the setup). The measurement is shown in Fig. 8.5(e). We observe
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a pronounced anti-bunching at zero delay proving the single-photon nature of the
radiative Auger photons. Going beyond the results in Ref. [253], we observe the Rabi
oscillation from strongly driving the transition |s⟩–|t⟩ in the photon-statistics of the
radiative Auger photons from the transition |p⟩–|t⟩.
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8.10 Supplementary note II: Additional Autler-Townes
splitting
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Figure 8.7: Radiative Auger emission upon excitation of the fundamental transi-
tion. (a) Radiative Auger emission from QD1 (see also Fig. 8.2(b)). The emission frequency
(x-axis) is plotted as a function of detuning between laser and the |s⟩−|t⟩ transition (y-axis).
In the measurements shown here, the Autler-Townes splitting is not resolved since the Rabi
frequency is too small (Ω1 = 2π × 5.5 GHz). (b, c) The same measurements as before
performed at higher Rabi frequencies (Ω1 = 2π× 31.9 GHz, Ω1 = 2π× 43.2 GHz) where the
Autler-Townes splittings are resolved.

In Fig. 8.7 we show additional measurements of the Autler-Townes splitting on QD1.
The measurements are performed for different Rabi frequencies Ω1 and the detuning
∆1 between laser and fundamental transition is varied. The quantum dot transitions
are detuned from the fixed laser by applying a gate voltage, Vg. The detuning from
the fundamental transition is ∆V · Ss, where Ss is the Stark-shift of the fundamental
transition and ∆Vg the difference in gate voltage. The Rabi frequencies at zero laser
detuning are independently determined from a power saturation curve (red bars in
Fig. 8.7). They match the measured Autler-Townes splittings in the emission spectra.
Furthermore, on detuning the quantum dot resonance from the laser (∆Vg ̸= 0), there
is a small probability to excite the trion via the phonon sideband giving rise to a weak
“diagonal” emission line. In the case of a red-detuned quantum dot (∆Vg < 0), the
laser has more energy than the quantum dot transition and the additional energy can
be transferred to LA-phonons. In the case of a blue-detuned quantum dot, the laser
energy is too small and the missing energy can be provided by phonon absorption.
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Summary
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The four optomechanical chapters (Chapter 3-6) showed an in-depth characterisation
of the mechanical-membrane platform. Three different mechanical resonator designs
were presented. Starting with a cantilever resonator with up to 20 MHz mechanical
frequencies, the exciton-phonon coupling in the unresolved-sideband regime was inves-
tigated. The resonator was then detached from the under-etch and suspended freely
with four tethers. This minor change to the mechanical design enabled frequencies
of up to 600 MHz. This is higher than the decay rate of the quantum dot, yet still
smaller than the inhomogeneously-broadened linewidth. The final mechanical design
presented was a phononic-crystal resonator with a highly confined mode at 1.5 GHz.
This is not only ten times higher than the decay rate of the quantum dot but also
more than double its linewidth. More importantly, the mechanical quality factor stays
at a high level of ∼ 2000, even though there are a lot of potential mechanical loss
channels. Therefore, we claim to have developed a high-quality mechanical resonator
with frequencies in the sideband-resolved regime [64, 65].

The coupling to the mechanical resonators is measured using the emission of single
quantum dots. A hallmark of this thesis presents the Brownian motion measure-
ment [20]. This is achieved for all three mechanical resonators. However, we also
showed that these measurements can get very difficult for small mechanical resonators
due to unstable laser suppression. Using the electric-field antenna the mechanical res-
onators are mechanically driven which is used for a series of optical and mechanical
characterisation measurements. This includes the observation of acoustic sidebands
in the emission spectrum of the quantum dot.

The interesting part, compared to other optomechanical systems, is the non-linear
response of the quantum dot to the optical field. If a red or blue shifted photon
is detected in the emission (at ±Ωm) it directly means that simultaneously a single
phonon was emitted or absorbed by the dot. To prove this point we confirmed the
single-photon emission of the quantum dots for all mechanical resonators, even under
strong mechanical driving. A further interesting aspect of quantum dots is that many
of them can be coupled to the same mechanical mode. Furthermore, the quantum dot
emission frequency can be tuned over many linewidths which is not straightforward
with other optical systems, for example, optical cavities. This is advantageous for
experiments involving more than one optomechanical system, such as optomechanical
teleportation [70] or entanglement [157].

We stress that it is important to further increase the exciton-phonon coupling rate
(at least five- to ten-fold) while keeping the mechanical frequency roughly the same.
Then, effects due to optomechanical cooling could become visible. However, this is
not trivial. The current mechanical mode of the phononic-crystal beam shows small
areas (around the first air holes) of enhanced strain, up to three-fold compared to
the centre of the resonator. This means that the limit of the deformation potential
is not yet reached and with careful design optimisation, the exciton-phonon coupling
can be increased further. If, however, enough coupling can be reached to observe
optomechanical cooling remains an open question.

Another improvement in this direction could be to reduce the inhomogeneous broad-
ening by optimising the heterostructure design. This would highly increase the sensi-
tivity to the mechanical interaction. Finally, the membrane platform is highly suitable
for on-chip applications and could be combined with photonic-crystal cavities [71] and
waveguides [72–75, 199].
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With the two radiative Auger chapters of this thesis (Chapter 3-6) the radiative
Auger process was studied in detail. The measurements present the first observation
of radiative Auger on a single quantum emitter. We showed that the radiative Auger
process is present for different species of quantum dots. Furthermore, the strength
of the radiative Auger emission varied from dot to dot. This gives an insight into
the quantum dot composition and geometry [81]. Moreover, we showed that radiative
Auger can be used to study single-carrier dynamics inside the dot, which was so far
inaccessible [21]. It is not only possible to measure the emission of such processes
but also to optically drive the radiative Auger transition. By doing so, a dark state
was generated: a coherent superposition of the Auger electron being in the s- and p-
shell [22]. This opens up the path to coherent control of the orbital degree of freedom
of the auger carrier [23].

Overall, this thesis showed two examples of how the quantum dot can be used
to study coupled systems. The optomechanical and the radiative Auger parts both
showed that a large coupling rate is needed to control the state of the coupled sys-
tem. If the coupling rate is high enough, both of the systems can be studied in a
similar way, namely, in a Λ-type configuration. Whereas this was already possible
for the radiative Auger experiments, it is not yet the case for the optomechanical
system. Nevertheless, it shows that the quantum dot is a versatile tool and that with
some clever tricks, a weak spot (unwanted interaction) can be turned into a strength
(controlled coupled system).
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[72] I. Söllner, L. Midolo, and P. Lodahl, Deterministic single-phonon source triggered by a single
photon, Phys. Rev. Lett. 116, 234301 (2016). [Cited on page: 2, 22, 104, 116, 160]

[73] A. Zivari, N. Fiaschi, R. Burgwal, E. Verhagen, R. Stockill, and S. Gröblacher, On-chip distri-
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[97] L. Midolo, T. Pregnolato, G. Kiršanskè, and S. Stobbe, Soft-mask fabrication of gallium ar-
senide nanomembranes for integrated quantum photonics, Nanotechnology 26 (2015). [Cited
on page: 8, 20, 23, 48]

[98] I. Yeo, P.-L. de Assis, A. Gloppe, E. Dupont-Ferrier, P. Verlot, N. S. Malik, E. Dupuy,
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[110] R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoen-
feld, and P. M. Petroff, Optical emission from a charge-tunable quantum ring, Nature 405,
926 (2000). [Cited on page: 10, 122]

[111] X.-Q. Li, H. Nakayama, and Y. Arakawa, Phonon bottleneck in quantum dots: Role of lifetime
of the confined optical phonons, Phys. Rev. B 59, 5069 (1999). [Cited on page: 10, 130]

[112] A. V. Kuhlmann, J. Houel, D. Brunner, A. Ludwig, D. Reuter, A. D. Wieck, and R. J.
Warburton, A dark-field microscope for background-free detection of resonance fluorescence
from single semiconductor quantum dots operating in a set-and-forget mode, Rev. Sci. Instrum.
84, 073905 (2013). [Cited on page: 10, 12, 46, 155]

[113] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press) (1997). [Cited
on page: 11]

[114] M. Fox and M. Fox, Quantum Optics: An Introduction, Oxford Master Series in Physics
(Oxford University Press, Oxford, New York) (2006). [Cited on page: 11, 12]

[115] K. Karrai and R. J. Warburton, Optical transmission and reflection spectroscopy of single
quantum dots, Superlattices and Microstructures 33, 311 (2003). [Cited on page: 12]

[116] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP: An open-source Python framework for
the dynamics of open quantum systems, Comput. Phys. Commun. 183, 1760 (2012). [Cited
on page: 14, 78, 82, 131, 152]

[117] J. R. Johansson, P. D. Nation, and F. Nori, Qutip 2: A python framework for the dynamics
of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013). [Cited on page: 14, 78,
82, 131, 152]

[118] B. R. Mollow, Power spectrum of light scattered by two-level systems, Phys. Rev. 188, 1969
(1969). [Cited on page: 14, 82, 146]

[119] F. Schuda, C. R. S. Jr, and M. Hercher, Observation of the resonant Stark effect at optical
frequencies, J. Phys. B: At. Mol. Opt. Phys. 7, L198 (1974). [Cited on page: 14]

[120] F. Y. Wu, R. E. Grove, and S. Ezekiel, Investigation of the Spectrum of Resonance Fluorescence
Induced by a Monochromatic Field, Phys. Rev. Lett. 35, 1426 (1975). [Cited on page: 14]

[121] A. N. Vamivakas, Y. Zhao, C.-Y. Lu, and M. Atatüre, Spin-resolved quantum-dot resonance
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H. El-Ella, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Deterministic photon–emitter
coupling in chiral photonic circuits, Nat. Nanotechnol. 10, 775 (2015). [Cited on page: 116]

[202] C. Papon, X. Zhou, H. Thyrrestrup, Z. Liu, S. Stobbe, R. Schott, A. D. Wieck, A. Ludwig,
P. Lodahl, and L. Midolo, Nanomechanical single-photon routing, Optica 6, 524 (2019). [Cited
on page: 116]

[203] C. Papon, Y. Wang, R. Uppu, S. Scholz, A. D. Wieck, A. Ludwig, P. Lodahl, and L. Midolo,
Independent operation of two waveguide-integrated single-photon sources, arXiv:2210.09826
(2022). [Cited on page: 116]

[204] M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter, Superconducting qubit to optical
photon transduction, Nature 588, 599 (2020). [Cited on page: 116]
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Ribeiro, P. M. Petroff, and S. Huant, Coulomb interactions in small charge-tunable quantum
dots: A simple model, Phys. Rev. B 58, 16221 (1998). [Cited on page: 127, 140]

[230] S.-J. Cheng, W. Sheng, and P. Hawrylak, Theory of excitonic artificial atoms: InGaAs/GaAs
quantum dots in strong magnetic fields, Phys. Rev. B 68, 235330 (2003). [Cited on page: 127,
140]

https://mmm.edpsciences.org/articles/mmm/abs/1995/03/mmm_1995__6_3_253_0/mmm_1995__6_3_253_0.html
http://dx.doi.org/10.1021/acs.nanolett.6b01082
http://dx.doi.org/10.1103/PhysRevX.8.031073
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.167402
https://journals.aps.org/pr/abstract/10.1103/PhysRev.130.2361
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.18.122
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.18.122
http://dx.doi.org/10.1016/0038-1101(94)90306-9
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.57.R9467
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.57.R9467
https://www.nature.com/articles/nphys1673
http://dx.doi.org/10.1063/1.4802088
https://pubs.aip.org/aip/apl/article/105/17/172107/1022662/Frequency-stabilization-of-the-zero-phonon-line-of
https://pubs.aip.org/aip/apl/article/105/17/172107/1022662/Frequency-stabilization-of-the-zero-phonon-line-of
http://dx.doi.org/10.1103/PhysRevLett.123.167402
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.167403
https://iopscience.iop.org/article/10.1088/0034-4885/64/6/201/meta
https://iopscience.iop.org/article/10.1088/0034-4885/64/6/201/meta
https://doi.org/10.1007/BF01390750
https://doi.org/10.1007/BF01390750
https://doi.org/10.1017/S0305004100009373
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.49.8163
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.16221
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.68.235330


Bibliography 175

[231] B. Ohnesorge, M. Albrecht, J. Oshinowo, A. Forchel, and Y. Arakawa, Rapid carrier relaxation
in self-assembled InxGa1−xAs/GaAs quantum dots, Phys. Rev. B 54, 11532 (1996). [Cited
on page: 130]

[232] H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and
F. Jahnke, Carrier relaxation dynamics in self-assembled semiconductor quantum dots, Phys.
Rev. B 80, 235319 (2009). [Cited on page: 130]

[233] K. Müller, A. Bechtold, C. Ruppert, T. Kaldewey, M. Zecherle, J. S. Wildmann, M. Bichler,
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T. Pregnolato, S. Stobbe, L. Midolo, T. Schröder, A. D. Wieck, A. Ludwig, R. J. Warburton,
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