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Abstract We define a set of pseudo-observables charac-
terizing the properties of Higgs decays in generic exten-
sions of the Standard Model with no new particles below
the Higgs mass. The pseudo-observables can be determined
from experimental data, providing a systematic generaliza-
tion of the “κ-framework” so far adopted by the LHC exper-
iments. The pseudo-observables are defined from on-shell
decay amplitudes, allow for a systematic inclusion of higher-
order QED and QCD corrections, and can be computed in any
Effective Field Theory (EFT) approach to Higgs physics. We
analyze the reduction of the number of independent pseudo-
observables following from the hypotheses of lepton univer-
sality, CP invariance, custodial symmetry, and linearly real-
ized electroweak symmetry breaking. We outline the impor-
tance of kinematical studies of h → 4� decays for the extrac-
tion of such parameters and present their predictions in the
linear EFT framework.
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1 Introduction

After the discovery phase [1,2], Higgs physics is entering the
era of precision measurements. Characterizing the properties
of this particle with high precision, and possibly with the
least theoretical bias, is of the utmost importance in order to
investigate the nature of physics beyond the Standard Model
(SM).

Several phenomenological analyses about the effective
couplings of the Higgs boson to SM fields have appeared after
its discovery in 2012 (see e.g. Ref. [3–9]). These analyses
were mainly based on the so-called “κ-framework” [10] or
“signal-strength” results reported by ATLAS and CMS [11,
12]: the experimental determination of a single parameter,
for each production or decay channel, characterizing the ratio
between the observed rates and those expected within the SM.
While this approach has been quite useful for a first charac-
terization of the properties of the newly discovered particle,
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and it was appropriate given the low statistics so far available,
it is insufficient in view of more precise studies, especially
for channels with non-trivial kinematical distributions. The
purpose of the present paper is to provide a systematic gen-
eralization of the “κ-framework” suitable for high-precision
studies of on-shell Higgs decays.

Motivated by present Higgs data, we work under the
hypothesis that h(125) is a spin zero particle. We also assume
that there is no new particle with mass below (or around)
mh � 125 GeV able to provide significant kinematical dis-
tortions of the Higgs decays to SM particles. In other words,
we assume to be in a regime where the Effective Field The-
ory (EFT) approach to Higgs physics is applicable. How-
ever, contrary to existing EFT studies, we keep our analy-
sis as general as possible, without specifying many details
about the underlying EFT. In particular, we do not specify
if the h(125) state is part of an SU(2)L doublet (so-called
linear EFT approach), or if h(125) is the mass eigenstate
resulting from a more complicated symmetry-breaking sec-
tor, allowing an effective decoupling ofh from the Goldstone-
boson components of the SU(2)L × U(1)Y /U(1)em symme-
try breaking (so-called non-linear EFT approach). We also
do not impose global symmetry hypotheses such as lepton
universality, CP invariance, and custodial symmetry. Rather,
we discuss how such hypotheses can be tested from Higgs
data. The only key assumption we make is to neglect terms
in the decay amplitudes that receive non-vanishing tree-level
contributions from local operators with dimension greater
than six (D > 6), as specified in detail in the following.

Under such general assumptions it is possible to define
a limited set of pseudo-observables that can be directly
determined from experimental data on Higgs physics and
that encode all possible New Physics (NP) effects. These
pseudo-observables are the natural generalization of the “κ-
framework” so far adopted by the LHC experiments [10], and
an extension of the pseudo-observables employed to charac-
terize NP effects in Z physics at LEP [13,14]. The pseudo-
observables are indeed defined at the amplitude level, allow-
ing for a systematic inclusion of higher-order QED and QCD
corrections: this leads to an accurate theoretical descrip-
tion of Higgs-decay amplitudes that recovers the best up-to-
date SM predictions in absence of NP effects. The pseudo-
observables thus determined from Higgs-physics data can be
computed in specific EFT approaches and, depending on the
EFT employed, can possibly be correlated with non-Higgs-
physics observables for specific tests of the EFT approach.

The paper is organized as follows: in Sect. 2 we present a
general discussion of Higgs-decay amplitudes and pseudo-
observables. In Sect. 3 we define the pseudo-observables
characterizing Higgs decays mediated by electroweak gauge
bosons. In Sects. 4 and 5 we discuss the SM limit, the param-
eter counting, and the reduction of the number of indepen-
dent pseudo-observables following from the hypotheses of

lepton universality, CP invariance and custodial symmetry.
In Sect. 6 we present a phenomenological analysis of the
h → 2e2μ channel, focusing on the impact and the possible
determination of the h → Z �̄� contact terms. The results
are summarized in the Conclusions. Appendix A contains
the mapping between the pseudo-observables introduced in
Sect. 3 and the Wilson coefficients of D = 6 operators in
the linear EFT approach. Appendix B contains an extended
discussion of the constraints following from custodial sym-
metry.

2 General considerations

Given the narrow width of the Higgs particle, the generic
description of NP effects in processes involving one on-shell
Higgs can be factorized into two parts: the production and
the decay. In this work we concentrate on pseudo-observables
characterizing the Higgs-decay amplitudes, and we limit the
attention to processes with at most four particles in the final
states (besides soft QED and QCD radiation). To this purpose,
we can distinguish two main categories:

I. helicity-violating decays into a pair of on-shell fermions
(b̄b, τ+τ−, . . .);

II. helicity-conserving decays to four fermions, two fermions
and a (hard) photon, and two photons (4�, 2�2ν, �+�−γ ,
γ γ , …).

The definition of pseudo-observables for the first category is
quite obvious and will be presented at the end of this section.
The rest of the paper is devoted to the second category of
decay amplitudes, whose theoretical description in generic
EFT extensions of the SM is more involved.

An early attempt to provide a general EFT-inspired
description of h → 4� decay amplitudes has been presented
in Refs. [15,16]. Our work provides a generalization of the
parametrization proposed there, taking into account also the
sub-leading effects of Zγ andγ γ intermediate states. We will
also pay particular attention to a consistent separation of the
pseudo-observables accessible in Higgs decays from those
accessible via on-shell Z or W decays, defined in Sect. 2.1.
From this point of view, our approach has some similari-
ties with the one recently proposed in Ref. [17] (see also
Ref. [18]). However, we stress two conceptual differences
with respect to Ref. [17]:

(1) our pseudo-observables are defined directly from the
on-shell decay amplitudes and, as such, are unambiguously
related to observable distributions;

(2) we make no assumptions as regards custodial symme-
try and SU(2)L properties of the h particle.

As anticipated, the only key hypothesis we employ is to
neglect contributions to Higgs-decay amplitudes correspond-
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ing to local interaction terms of D > 6 after electroweak
symmetry breaking. More precisely, we employ the follow-
ing simple power counting for each interaction term, based
on its canonical dimension: h, gauge bosons, and derivatives
(momenta) count as 1, while fermions count as 3/2. With
this counting we systematically neglect interaction terms
with dimension D > 6. This implies that our decomposi-
tion is able to accommodate all the effects generated, at tree
level, by the D = 6 effective Lagrangian in the linear EFT
framework (or the next-to-leading order terms in the expan-
sion). Similarly, in the generic non-linear EFT framework,
our decomposition is able to accommodate all the next-to-
leading order terms in the expansion (disregarding single-
Higgs interactions with D ≥ 7). Even if the predicted size of
each pseudo-observable varies depending on the specific EFT
and its UV completion, the fact that interaction terms corre-
sponding to higher-dimensional operators can be neglected
is general (assuming no light NP). Note also that while the
decomposition is able to describe the effects generated at a
given order in the EFT expansion, the pseudo-observables
are defined by the kinematical decomposition of the on-shell
decay amplitudes and, as such, they are well defined inde-
pendently of the EFT expansion.

Before proceeding, it is worth stressing that, in principle,
there are two more categories of Higgs-decay amplitudes
affected by D ≤ 6 operators in a generic EFT approach:

III. helicity-violating amplitudes resulting from effective
dipole interactions of the Higgs field to (light) fermions
and electroweak gauge bosons;

IV. four-quark final states resulting from the effective cou-
pling of the Higgs to gluons.

Even though there are no difficulties in including these in our
formalism, we opt for not doing so to keep our presentation
more concise.

The first category is expected to be suppressed by light
fermion masses in most realistic models and, independently
of that, it does not interfere with the leading SM ampli-
tudes in the limit of vanishing fermion masses. More pre-
cisely, we can neglect such amplitudes in the limit where we
assume an exact U(1) f symmetry acting on each of the light
fermion species.1 Note that such symmetry is a small sub-
set of the full U(3)5 flavor symmetry often advocated in the
EFT context: imposing such reduced symmetry group we can
allow violations of lepton universality in the h → 4� ampli-
tudes (� = e, μ), while consistently neglecting the helicity-
violating dipole amplitudes and lepton-flavor violating inter-
actions.

1 In the lepton sector f = eL , eR, μL , μR , where the U(1)�L symme-
tries (� = e, μ) act on the SU(2)L doublets (�L , ν�

L ).

The second category is hardly accessible from the experi-
mental point of view: the hgg effective coupling is essential
to determine the Higgs production cross section, but it cannot
be identified via a well-measured Higgs partial decay width.

2.1 Pseudo-observables in Z → f f̄ and W → f f̄ decays

The SM charged- and neutral-current interactions are

LJ
SM = eAμ J

μ
em + g

cw

Zμ J
μ
Z + g√

2
(W+

μ Jμ
+ + h.c.), (1)

where

Jμ
em =

∑

f = fL , fR

Q f f̄ γ
μ f,

Jμ
Z =

∑

f = fL , fR

(T f
3 − Q f s

2
w) f̄ γ μ f,

Jμ
+ =

∑

�

ν̄�Lγ μ�L +
∑

u,d

Vud ūLγ μdL ,

(2)

sw = sin θW , cw = cos θW , e = (4παem)1/2, and the Vud
denote the elements of the Cabibbo–Kobayashi–Maskawa
(CKM) mixing matrix.

The effective interactions of the Z and W bosons to
fermions are modified beyond the SM. This effect can be
taken into account by introducing appropriate effective cou-
plings to describe the on-shell couplings of Z and W to
fermions. In particular, we define the effective couplings g f

Z ,
g�
W , and gudW as follows2:

A(Z(ε) → f f̄ ) = i
∑

f = fL , fR

g f
Z εμ f̄ γ μ f,

A(W+(ε) → �+ν) = ig�
W εμ ν̄�Lγ μ�L , (3)

A(W+(ε) → ud̄) = igudW εμūLγ μdL .

These effective couplings can be unambiguously deter-
mined from data using Z -pole observables (Z -boson par-
tial decay widths, forward-backward or polarization asym-
metries, together with the information on mZ from the Z
line shape), and on-shell W decays.3 As such, they are
well-defined (basis-independent) pseudo-observables. In the
absence of rescattering effects, the Hermiticity of the under-
lying effective Lagrangian implies that the g f

Z are real cou-
plings, while g�

W and gudW can be complex.

2 In general, one could also write a right-handed coupling of W boson
to quarks; however, this is forbidden in the limit of unbroken U (1)uR ×
U (1)dR flavor symmetry.
3 In particular, LEP measurements at the Z pole allow one to set very
precise constraints on the Z couplings to each charged lepton, to neu-
trinos (summed over all possible light species), to the b, c, and u
quarks [14], and a common coupling to the s and d quarks. Also the W
couplings to each lepton flavor, and a combination of the couplings to
the light quarks can be constrained with high precision [19].
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These pseudo-observables can be computed in any EFT.
Within the SM, at tree level, one finds

g f,SM
Z = g

cw

(T f
3 − Q f s

2
w), g�,SM

W = g√
2
,

gud,SM
W = g√

2
Vud .

(4)

2.2 Pseudo-observables in h → f f̄ decays

In analogy to the effective couplings of Z and W bosons to
fermions, for each fermion species we can introduce two real
effective couplings (y f

S,P ) defined by

A(h → f f̄ )=− i√
2

[(
y f
S +iy f

P

)
f̄L fR+

(
y f
S −iy f

P

)
f̄ R fL

]
.

(5)

The “dressing” of this amplitude with soft QED and QCD
radiation is straightforward. The measurement of �(h →
f f̄ ) determines the combination |y f

S |2 + |y f
P |2, while the

y f
P/y f

S ratio can be determined only if the lepton polarization
is experimentally accessible. If CP is conserved only one of
the two effective couplings is allowed: if h is a CP-even state,
then only y f

S is allowed.
Within the SM, at the tree level, one finds

y f,SM
S =

√
2m f

vF
, y f,SM

P = 0, (6)

where vF = (
√

2GF )−1/2, and GF is the Fermi constant
extracted from the muon decay. The effective couplings y f

S,P
provide an explicit breaking of the U(1) fL × U(1) fR flavor
symmetry, which is not assumed to hold in the case of third
generation fermions.

3 Higgs decays mediated by electroweak gauge bosons

In this section we provide a unified decomposition of the
Higgs decay amplitudes into four fermions (h → 4 f ), a
fermion–antifermion pair and one hard photon (h → f f̄ γ ),
and two photons (h → γ γ ). The h → 4 f amplitudes are
particularly interesting since they allow us to investigate the
effective hW+W− and hZ Z interaction terms, which can-
not be probed on-shell. However, in order to extract such
information in a model-independent way, it is necessary to
take into account also the possible additional contributions
to h → 4 f due to contact terms and the effective couplings
of the Higgs to photons.

The purpose of our approach is to characterize, as pre-
cisely as possible, the three point function of the Higgs boson
and two fermion currents,

〈0|T {Jμ
f (x), J ν

f ′(y), h(0)}|0〉, (7)

where all the states are on-shell. This correlation function is
probed by the experiments in h → 4 f decays, but also in
Higgs associated production (pp → h+W, Z ) and in Higgs
production via vector-boson fusion. Extracting the kinemat-
ical structure of Eq. (7) from data will allow us both to deter-
mine the effective coupling of h to all the SM gauge bosons,
and also to investigate possible couplings of h to new massive
states. The former are associated to a well-defined double-
pole structure in Eq. (7), while the latter can lead to local
interactions with one or no poles.

Within a generic EFT approach, the problem is simplified
by the fact that a local interaction h Jμ

f J
ν
f ′gμν has canonical

dimension D = 7. As a result, as long as we neglect operators
of D > 6, the correlation function in Eq. (7) is non-local at the
electroweak scale, with at least one fermion pair generated by
the propagation of one electroweak gauge boson. This allows
us to decompose the h → 4 f amplitude into a sum of neutral-
and charged-current contributions, according to the charge of
fermion current in Eq. (7), and to expand around the physical
poles produced by the propagation of the SM gauge bosons
(W, Z , and γ ). These two types of contributions are discussed
separately in Sects. 3.1 and 3.2. The complete structure of a
generic h → 4 f amplitude is presented in Sect. 3.3.

3.1 h → 4 f neutral currents

Let us consider the case of two different (light) fermion
species: h → f f̄ + f ′ f̄ ′. As anticipated, we work in the
limit of an exact U(1) f × U(1) f ′ flavor symmetry. In this
limit, we can decompose the neutral-current contribution to
the amplitude in the following way:

An.c.[h → f (p1) f̄ (p2) f
′(p3) f̄

′(p4)]
= i

2m2
Z

vF

∑

f = fL , fR

∑

f ′=f ′
L , f ′

R

( f̄ γμ f )( f̄ ′γν f
′)T μν(q1, q2)

T μν(q1, q2) =
[
F f f ′

1 (q2
1 , q2

2 )gμν + F f f ′
3 (q2

1 , q2
2 )

× q1·q2 gμν −q2
μq1

ν

m2
Z

+F f f ′
4 (q2

1 , q2
2 )

εμνρσq2ρq1σ

m2
Z

]
,

(8)

where q1 = p1 + p2 and q2 = p3 + p4.
From the assumption of there being no new light states

in the EFT, and once again neglecting contributions from
D > 6 operators, we can decompose the form factors in full
generality in the following way:

F f f ′
1 (q2

1 , q2
2 ) = κZ Z

g f
Z g

f ′
Z

PZ (q2
1 )PZ (q2

2 )
+εZ f

m2
Z

g f ′
Z

PZ (q2
2 )

+ εZ f ′

m2
Z

g f
Z

PZ (q2
1 )

+�SM
1 (q2

1 , q2
2 ), (9)
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F f f ′
3 (q2

1 , q2
2 ) = εZ Z

g f
Z g

f ′
Z

PZ (q2
1 )PZ (q2

2 )

+ εZγ

(
eQ f ′g f

Z

q2
2 PZ (q2

1 )
+ eQ f g

f ′
Z

q2
1 PZ (q2

2 )

)

+ εγ γ

e2Q f Q f ′

q2
1q

2
2

+ �SM
3 (q2

1 , q2
2 ), (10)

F f f ′
4 (q2

1 , q2
2 ) = εCP

Z Z
g f
Z g

f ′
Z

PZ (q2
1 )PZ (q2

2 )

+ εCP
Zγ

(
eQ f ′g f

Z

q2
2 PZ (q2

1 )
+ eQ f g

f ′
Z

q2
1 PZ (q2

2 )

)

+ εCP
γ γ

e2Q f Q f ′

q2
1q

2
2

, (11)

where g f
Z are the effective couplings defined in Eq. (3)

and PZ (q2) = q2 − m2
Z + imZ�Z . Similarly to g f

Z , also
κZ Z and the εX are well-defined pseudo-observables that
can be extracted from data and computed in any EFT.4 All
the parameters but εZ f are flavor universal, i.e. they do not
depend on the fermion species. In the limit where we neglect
rescattering effects, both κZ Z and εX are real. The functions
�SM

1,3 (q2
1 , q2

2 ) encode non-local SM contributions generated
beyond the tree level, which cannot be described in terms of
D ≤ 6 effective operators (see Sect. 4).

Note that the fact that the g f
Z are defined from on-shell

Z amplitudes is essential for κX and εX to be well-defined
physical quantities (independent of the choice of the EFT
basis). Indeed, the decomposition in Eqs. (8–11) contains
a set of Z -pole pseudo-observables {g f

Z ,mZ , �Z }, plus the
low-energy input observables {GF , αem}, plus the set of
Higgs-pole pseudo-observables {κZ Z , εX }.

3.2 h → 4 f charged currents

Let’s consider the h → �ν̄��̄′ν�′ process.5 Employing the
same assumptions as used in the neutral-current case, we can
decompose the amplitude in the following way:

Ac.c.[h → �(p1)ν̄�(p2)ν�′(p3)�̄
′(p4)]

= i
2m2

W

vF
(�̄Lγμν�L)(ν̄�′Lγν�

′
L)T μν(q1, q2)

4 Here we generically denote by εX the parameters εZ Z ,Zγ,γ γ,Z f , and
εCP
Z Z ,Zγ,γ γ .

5 The analysis of a process involving quarks is equivalent, with the
only difference that the εW f coefficients are in this case non-diagonal
matrices in flavor space, as the gWud effective couplings.

T μν(q1, q2) =
[
G��′

1 (q2
1 , q2

2 )gμν + G��′
3 (q2

1 , q2
2 )

× q1·q2 gμν − q2
μq1

ν

m2
W

+ G��′
4 (q2

1 , q2
2 )

εμνρσq2ρq1σ

m2
W

]
,

(12)

where q1 = p1 + p2 and q2 = p3 + p4.
The EFT-inspired decomposition of the form factors is

G��′
1 (q2

1 , q2
2 ) = κWW

(g�
W )∗g�′

W

PW (q2
1 )PW (q2

2 )
+ (εW�)

∗

m2
W

g�′
W

PW (q2
2 )

+ εW�′

m2
W

(g�
W )∗

PW (q2
1 )

, (13)

G��′
3 (q2

1 , q2
2 ) = εWW

(g�
W )∗g�′

W

PW (q2
1 )PW (q2

2 )
, (14)

G��′
4 (q2

1 , q2
2 ) = εCP

WW
(g�

W )∗g�′
W

PW (q2
1 )PW (q2

2 )
, (15)

where g f
W are the effective couplings defined in Eq. (3), and

PW (q2) is the W propagator defined analogously to PZ (q2).
In absence of rescattering effects, the Hermiticity of the
underlying effective Lagrangian implies that κWW , εWW , and
εCP
WW are real couplings, while εW� can be complex.

3.3 h → 4 f complete decomposition

The complete decomposition of a generic h → 4 f amplitude
is obtained combining neutral- and charged-current contri-
butions depending on the nature of the fermions involved.
For instance h → 2e2μ and h → ��̄qq̄ decays are deter-
mined by a single neutral-current amplitude, while the case
of two identical lepton pairs is obtained from Eq. (8) taking
into account the proper symmetrization of the amplitude:

A[h → �(p1)�̄(p2)�(p3)�̄(p4)]
= An.c.[h → f (p1) f̄ (p2) f

′(p3) f̄
′(p4)] f = f ′=�

−An.c.[h → f (p1) f̄ (p4) f
′(p3) f̄

′(p2)] f = f ′=�.

(16)

The h → e±μ∓νν̄ decays receive contributions from a single
charged-current amplitude, while in the h → ��̄νν̄ case we
have to sum charged- and neutral-current contributions:

A[h → �(p1)�̄(p2)ν(p3)ν̄(p4)]
= An.c.[h → �(p1)�̄(p2)ν(p3)ν̄(p4)]

−Ac.c.[h → �(p1)ν̄(p4)ν(p3)�̄(p2)]. (17)

3.4 h → γ γ and h → f f̄ γ

The general form factor decomposition for these two chan-
nels is

A[h → γ (q, ε)γ (q ′, ε′)] = i
2

vF
ε′
μεν[Fγ γ

3 (gμν q·q ′
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− qμq ′ν) + Fγ γ
4 εμνρσqρq

′
σ ], (18)

A[h → f (p1) f̄ (p2)γ (q, ε)] = i
2

vF

∑

f = fL , fR

( f̄ γμ f )εν

×[F f γ
3 (p2)(p·qgμν −qμ pν)+F f γ

4 (p2)εμνρσqρ pσ ],
(19)

where p = p1+ p2. After employing the EFT decomposition
of the form factors, we do not need to introduce additional
parameters compared to the h → 4 f case:

F f γ
3 (p2) = εZγ

g f
Z

PZ (p2)
+ εγ γ

eQ f

p2 + �SM
3 f γ (p2),

Fγ γ
3 = εγ γ , (20)

F f γ
4 (p2) = εCP

Zγ

g f
Z

PZ (p2)
+ εCP

γ γ

eQ f

p2 ,

Fγ γ
4 = εCP

γ γ . (21)

4 SM values

Within the SM, at the tree level,

κSM-tree
Z Z = 1, κSM-tree

WW = 1, εSM-tree
X = 0. (22)

One-loop electroweak corrections can be divided into two
main categories: virtual QED corrections generated below
the electroweak scale (after integrating out W , Z , and top-
quark fields) and genuine virtual electroweak corrections
at the electroweak scale. The virtual QED corrections are
sizable in various kinematical regions of h → 4 f and
h → f f̄ γ decays and must be combined with the real radia-
tion in order to obtain infrared safe observables. Their impact
can be computed in a model-independent way for generic
values of κX and εX (see Sect. 6.2).

The genuine electroweak corrections generate: (i) small
corrections to the tree-level values of κX and εX in Eq. (22);
(ii) small non-local contributions to the form factors; (iii)
further tiny corrections that cannot be cast into the general
decomposition in Eqs. (8) and (12). These effects can be
derived, in principle, by comparing our general decomposi-
tion with the expression of the full SM next-to-leading order
h → 4 f amplitude [20]. As noted in Ref. [21], such cor-
rections are very small (below the 1 % level compared to
the tree-level terms) and practically unobservable, except
in a few notable kinematical points. In particular, the only
case where such corrections are relevant is for on-shell hard-
photon amplitudes (given that they vanish at the tree level
within the SM) or almost on-shell photon-exchange contri-
butions in neutral-current amplitudes.

These effects are taken into account by the SM one-loop
hγ γ and hZγ effective couplings [22] (see also Ref. [23]),

which in our formalism read6

εSM−1L
Zγ = − α

4πswcw

cZγ � 6.7 × 10−3,

εSM−1L
γ γ = − α

4π
cγ γ � 3.8 × 10−3, (24)

and by the non-local terms �SM
3 and �SM

3 f γ . The latter can be
decomposed as follows:

�SM
3 (q2

1 , q2
2 ) = �SM−1L

γ γ (q2
1 , q2

2 )
e2Q f Q f ′

q2
1q

2
2

+�SM−1L
Zγ (q2

1 , q2
2 )

eQ f ′g f
Z

q2
2 PZ (q2

1 )

+�SM−1L
Zγ (q2

2 , q2
1 )

eQ f g
f ′
Z

q2
1 PZ (q2

2 )
,

�SM
3 f γ (p2) = �SM−1L

γ γ (p2, 0)
eQ f

p2

+�SM−1L
Zγ (p2, 0)

g f
Z

PZ (p2)
(25)

where the expressions of �SM−1L
Zγ,γ γ in the relevant kinematical

region (i.e. with at least one photon propagator close to being
on-shell) are7

�SM−1L
Zγ (q2

Z , q2
γ ≈ 0) = εSM−1L

Zγ

[
0.19

q2
Z − m2

Z

m2
Z

+ 0.05

(
q2
Z − m2

Z

m2
Z

)2

+ · · ·
]
,

�SM−1L
γ γ (q2

1 , q2
2 ≈ 0) = εSM−1L

γ γ

[
0.16

q2
1

m2
Z

+ 0.03

(
q2

1

m2
Z

)2

+ · · ·
]
. (26)

Note that theq2-dependent terms in Eq. (26) cancel one of the
two propagators in �SM

3 (q2
1 , q2

2 ). This implies that such terms
can effectively be seen as contact interactions with a photon
(of the type hγ f f̄ ). However, contrary to the contact terms

appearing in F f f ′
1 , these contact terms receive contributions

from EFT operators of D ≥ 7 and therefore can be fixed to
their SM values.

To make contact with theκ-framework adopted by ATLAS
and CMS [11,12], we can trade the εγ γ,γ Z parameters for

6 We introduce here the couplings cZγ � −4.85 and cγ γ � −6.49
[24], defined from the effective Lagrangian

Leff = α

4π

h

v

(
cZγ

swcw

ZμνF
μν + cγ γ

2
FμνF

μν

)
, (23)

7 These approximated numerical expressions are precise at the 1 % level
for q2

1 � (95 GeV)2 in the case of �SM−1L
γ γ and (30GeV)2 � q2

Z �
(120 GeV)2 in the case of �SM−1L

Zγ .
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κγγ,Zγ , defined by

κγγ (Zγ ) = εγ γ (Zγ )

εSM−1L
γ γ (Zγ )

, (27)

such that κSM
γ γ,Zγ = 1.

5 Parameter counting and symmetry limits

We are now ready to identify the number of independent
pseudo-observables necessary to describe various sets of
Higgs-decay amplitudes, under the main assumption that
only terms arising at D ≤ 6 in a generic EFT expansion
are kept. We focus our attention on leptonic channels, which
are more interesting from the experimental point of view.

The neutral-current processes h → e+e−μ+μ−, h →
e+e−e+e−, and h → μ+μ−μ+μ−, together with the photon
channels h → γ γ and h → �+�−γ , can be described in
terms of 11 real parameters:

κZ Z , κZγ , κγ γ , εZ Z , εCP
Z Z , εCP

Zγ , εCP
γ γ , εZeL ,

εZeR , εZμL , εZμR (28)

(of which only the subset {κγγ , κZγ , εCP
γ γ , εCP

Zγ }, is necessary
to describe h → γ γ and h → �+�−γ ). The charged-current
process h → ν̄eeμ̄νμ needs seven further independent real
parameters to be completely specified:

κWW , εWW , εCP
WW (real) + εWeL , εWμL (complex). (29)

Finally, the mixed processes h → e+e−νν̄ and h →
μ+μ−νν̄ can be described by a subset of the coefficients
already introduced plus two further real contact interactions
coefficients:

εZνe , εZνμ . (30)

This brings the total number of (real) parameters to 20. In
the following subsections we introduce symmetry arguments
which allow one to reduce the number of free parameters
while remaining, at the same time, as model-independent as
possible.

5.1 Flavor universality

A first simple restriction in the number of parameters is
obtained by assuming flavor universality (i.e. enlarging the
flavor symmetry to the full U(3)5 flavor group). In our setup
this simply means assuming that the contact interactions
coefficients are independent of the generations:

εZeL = εZμL , εZeR = εZμR , εZνe = εZνμ, εWeL = εWμL .

(31)

Since the last coefficients are complex in general, these are
five relations which allow one to reduce the number of param-

eters to 15. This assumption can be tested directly from
data by comparing the extraction of the contact terms from
h → 2e2μ, h → 4e, and h → 4μ modes (see e.g. Sect. 6.3
and Fig. 3).

5.2 CP conservation

The assumption that CP is a good approximate symmetry of
the BSM sector and that the Higgs is a CP-even state, allows
us to set to zero six independent (real) coefficients:

εCP
Z Z = εCP

Zγ = εCP
γ γ = εCP

WW = ImεWeL = ImεWμL = 0. (32)

Assuming, at the same time, flavor universality, the number
of free real parameters reduces to 10.

5.3 Custodial symmetry

We now present the relations among the pseudo-observables
introduced in Sect. 3 following from the assumption that the
BSM sector is invariant under the custodial-symmetry group
G = SU(2)L × SU(2)R × U(1)X , spontaneously broken to
the diagonal H = SU(2)L+R × U(1)X . This symmetry is
explicitly broken by the fact that only the subgroup GSM =
SU(2)L × U(1)Y is gauged and by the fact that SM fermions
are not in complete G representations.8 In the following we
assume that these are the only two sources of breaking of
custodial symmetry. In order to determine the structure of
the contact interactions, we need to specify the embedding
of the SM fermions into representations of G. Focussing on
leptons, we consider two minimal cases: (A) Li

L ∈ (2, 1)− 1
2
,

eiR ∈ (1, 2)− 1
2
, and (B) Li

L ∈ (2, 2)−1, eiR ∈ (1, 1)−1.9

Under these assumptions, we derive the following
custodial-symmetry relations among the pseudo-observables
relevant to Higgs decays to four leptons:

εWW = c2
wεZ Z + 2cwswεZγ + s2

wεγγ , (33)

εCP
WW = c2

wεCP
Z Z + 2cwswεCP

Zγ + s2
wεCP

γ γ , (34)

κWW − κZ Z = − 2

g

(√
2εWeiL

+ 2cwεZeiL

)
, (35)

εWeiL
= cw√

2

(
εZνiL

− εZeiL

)
, (36)

εZeiR
= εZνiL

+ εZeiL
(embedding B only). (37)

The first two relations have been derived first in Ref. [30];
the complete derivation of all the relations can be found in
Appendix B. The first four are independent of the choice
of the fermion embedding, while the last one is specific
only for the embedding B. We stress that κWW �= κZ Z

8 The U(1)X factor is needed only to assign the correct hypercharge
Y = T 3

R + X to the SM fermions.
9 Here and in the following we label by the index i = 1 . . . 3 the three
lepton generations and we denote by Li

L the lepton doublet (eiL , νiL )T .
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Table 1 Summary of the pseudo-observables relevant to describe Higgs
leptonic (and γ γ ) decay modes. In the second column (“Maximal Sym-
metry”) we show the independent pseudo-observables needed for a
given set of decay modes, assuming both CP invariance and flavor uni-
versality. The additional variables needed if we relax these symmetry

hypotheses are reported in the third and fourth columns. In the bottom
row we show the independent pseudo-observables needed for a com-
bined description of charged and neutral modes, under the hypothesis
of custodial symmetry

h decay modes Maximal Symmetry Flavor Non Univ. CPV
h → γγ, 2eγ, 2μγ κZZ , κZγ, κγγ

ZμL ZμR
CP
ZZ

CP
Zγ

CP
γγ4e, 4μ, 2e2μ ZZ ZeL ZeR

h → 2e2ν, 2μ2ν, eνμν
κWW Zνµ , Re( WμL

) CP
WW , Im( WeL)

WW , Zνe , Re( WeL) Im( WμL
)

h → γγ, 2eγ, 2μγ, 4e, 4μ,
2e2μ, 2e2ν, 2μ2ν, eνμν

κZZ , κZγ, κγγ
ZμL ZμR

CP
ZZ

CP
Zγ

CP
γγZZ ZeL ZeR

[with custodial symm.] Re( WeL)

is consistent with custodial symmetry, given Eq. (35). The
latter must be satisfied for any i and implies three inde-
pendent relations in the case of flavor non-universality.
Assuming both flavor universality and CP invariance, the
embedding-independent custodial-symmetry relations lead
to three independent constraints and allows us to decrease to
seven the number of free real parameters relevant to lep-
tonic channels. The latter can be conveniently chosen as
κγγ , κZγ , κZ Z , εZ Z , εZeL , εZeR , Re(εWeL ), as indicated in
Table 1.

5.4 Linear vs. non-linear EFT

In the SM the Higgs boson is part of an SU(2)L doublet
H and the electroweak gauge symmetry is linearly realized.
The linear effective theory is built following this assump-
tion: higher-dimensional operators are constructed in terms
of the H field [25–29]. This implies that the physical Higgs
(h) appears in operators contributing also to non-Higgs pro-
cesses, and in particular to electroweak observables measured
at LEP. In this context it is thus possible to provide strong
bounds on some Higgs observables using LEP data [17,30–
36]. A complete model-independent analysis of these (non-
Higgs) constraints for the Higgs pseudo-observables is still
missing, and we postpone it to a future work.

Assuming a linearly realized electroweak gauge symme-
try provides also some relations among the Higgs pseudo-
observables. These are due to an accidental custodial sym-
metry present in some of the D = 6 operators. In particular,
by matching our pseudo-observables with the coefficients
of the D = 6 operators, it turns out that the relations of
Eqs. (33), (34) and (36) are always exactly satisfied [30]. This
result implies that, independently of any symmetry assump-
tion, the dynamical hypothesis of an underlying linear EFT
reduces the number of relevant leptonic pseudo-observables

from 20 to 14 (from 15 to 11 if flavor universality is further
assumed). In Appendix A we derive these relations by an
explicit matching with the operator basis of Ref. [31]. Since
the relations derived involve only pseudo-observables, the
result is independent of the operator basis adopted. The other
two custodial-symmetry relations, Eqs. (35) and (37), are not
satisfied in general in the linear EFT and turn out to be vio-
lated by non-vanishing coefficients of custodial-symmetry
violating operators (see Appendix A.1).

A more general approach to Higgs physics is to build
an EFT allowing an effective decoupling of h from the
Goldstone-boson components of the SU(2)L × U(1)Y /U(1)em

symmetry breaking. In this case the electroweak symmetry
is non-linearly realized and the effective theory is built as
a derivative expansion over the cutoff [26,27,37–45]. Given
that the Higgs and the symmetry-breaking vev are indepen-
dent, in this EFT it is not possible to connect electroweak
observables (Higgs-less processes) with Higgs observables.
Moreover, since the Goldstone bosons are encoded in a
dimensionless field, it is possible to write many more inde-
pendent D ≤ 6 operators than in the linear case. It is easy
to verify that in this context each pseudo-observable of our
parameterization receives a non-vanishing tree-level contri-
bution from an independent combination of effective opera-
tors. In particular, it is possible to build custodially violating
operators [42–45] that violate all the relations in Eqs. (33)–
(37).

Even though electroweak precision tests and early Higgs
data set strong constraints on the non-linear construction,
favoring the linearly realized EFT, it is still early to draw a
definite conclusion about this point. As shown in Ref. [16],
h → 4� decays prove a very useful tool for settling this issue
from data: if a violation of the electroweak bounds on the
contact terms is measured, this will be a strong hint toward the
non-linear realization. Given the above discussion, a similar
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conclusion could be derived in presence of a violation of the
custodial-symmetry relations in Eqs. (33), (34) and (36).

6 Differential distributions for h → e+e−µ+µ−

In this section we illustrate the importance of studying
differential decay distributions for extracting the pseudo-
observables defined in Sect. 2. We concentrate on the Higgs-
boson decay to pairs of muons and electrons, which is par-
ticularly clean and possesses non-trivial kinematics. As a
first step, we calculate the modification of the total decay
rate to e+e−μ+μ− keeping only terms linear in εX and
δκZ Z ≡ κZ Z − 1. We find

�e+e−μ+μ−

�SM
e+e−μ+μ−

= 1 + 2δκZ Z − 2.5εZeR + 2.9εZeL − 2.5εZμR

+ 2.9εZμL + 0.5εZ Z − 0.9εZγ + 0.01εγ γ .

(38)

Obviously, the measurement of the total rate is not enough
to extract the pseudo-observables and one should exploit the
full kinematics of the process.

6.1 Analytic invariant mass distributions

In the following we derive fully analytic expressions for the
double differential decay distribution in each lepton pair’s
invariant mass. Starting with Eq. (8), we calculate the matrix
element squared and summed over the final lepton spins,

∑

s

AA∗ =
(

2m2
Z

vF

)2 ∑

f, f ′
tr(/p1γμP

f
/p2γμ1)

× tr(/p3γνP
f ′

/p4γν1)

× T μν

f f ′ (q1, q2)T μ1ν1∗
f f ′ (q1, q2), (39)

where q1 = p1 + p2, q2 = p3 + p4, f = eL , eR ,
f ′ = μL , μR and P f , and P f ′

are the corresponding chi-
rality projection operators. After integrating over the angular
variables, we obtain an analytic formula for the double dif-
ferential decay distribution in q2

1 and q2
2 ,

d�

dq2
1 dq2

2

= �4l

∫
d�

∑

s

AA∗, (40)

where �4l is the final state four body phase space factor.
The CP-conserving part of the double differential distri-

bution can then be decomposed as

d�

dq2
1 dq2

2

= d�11

dq2
1 dq2

2

+ d�13

dq2
1 dq2

2

+ d�33

dq2
1 dq2

2

, (41)

where

d�11

dq2
1 dq2

2

= λp

210(2π)7mh

(
2m2

Z

vF

)2
128π2

9

× q2
1q

2
2

3 + 2β1β2 − 2(β2
1 + β2

2 ) + 3β2
1β2

2

(1 − β2
1 )(1 − β2

2 )

×
∑

f, f ′

∣∣∣F f f ′
1

∣∣∣
2
, (42)

d�13

dq2
1 dq2

2

= λp

210(2π)7mh

(
2mZ

vF

)2 128π2

3

× (q2
1q

2
2 )3/2 1 + β1β2√

(1 − β2
1 )(1 − β2

2 )

×2
∑

f, f ′
Re[F f f ′

1 F f f ′∗
3 ], (43)

d�33

dq2
1 dq2

2

= λp

210(2π)7mh

(
2

vF

)2 128π2

9

×(q2
1q

2
2 )2 3 + 4β1β2 − (β2

1 + β2
2 ) + 3β2

1β2
2

(1 − β2
1 )(1 − β2

2 )

×
∑

f, f ′

∣∣∣F f f ′
3

∣∣∣
2
, (44)

and

λp =
√√√√1 +

(
q2

1 − q2
2

m2
h

)2

− 2
q2

1 + q2
2

m2
h

,

β1(2) =
√√√√1 − 4q2

1(2)m
2
h

(q2
1(2) − q2

2(1) + m2
h)

2
.

(45)

Using the explicit expressions of F f f ′
1 and F f f ′

3 in Eqs. (9)
and (10) leads to a second order polynomial in κX and εX
for each value of q2

1 and q2
2 . Under the hypothesis of an

underlying EFT, only the interference terms of NP with the
SM amplitude are expected to be relevant in a large fraction
of the phase pace. If this were not the case, the approxima-
tion of neglecting terms in the amplitudes corresponding to
higher-dimensional operators would not be justified. How-
ever, we stress that our parameterization is equivalent to a
kinematical expansion of the amplitude around the physi-
cal poles of the SM gauge bosons. Sufficiently close to such
poles it is possible to disregard the non-pole enhanced terms
simply by kinematical arguments and organize a different
power-counting for the momentum expansion of the rate.
For instance, requiring the μ+μ− pair to be close the Z peak
allows us to consistently keep quadratic terms in δκZ Z , εZ Z ,
εZeL ,R , and εZγ , while neglecting all other quadratic terms as
well as the effect of D > 6 interaction terms. This fact could
allow, in the future, to perform consistency checks about the
validity of the EFT expansion.
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The tensor structure associated with F4 of Eq. (11) does
not interfere with the SM in the double differential distri-
bution in q2

1 and q2
2 . In the rest of the paper we focus on

the effects due to δκZ Z and the contact terms εZ f , leaving
a more detailed phenomenological study of the other coef-
ficients, which should involve also the analysis of angular
distributions, to a future work.

Further kinematical studies on the h → 4� modes can
be found in Ref. [46–50]. CMS performed a comprehensive
study of h → 4� decays with present data, in the context of
hV V anomalous couplings [50]. The main differences of the
latter approach with respect to our proposal is the fact that
we consider as final states the on-shell leptons, and we do not
assume the effective interaction of these leptons to the Higgs
and other SM fields to be necessarily mediated by the SM
gauge bosons. This leads to a more general decomposition
of the h → 4� amplitude.

6.2 Higher-order SM corrections

We have validated the analytic formula for the tree-level SM
prediction with the Prophecy4F Monte Carlo generator [20].
In Fig. 1, we present the normalized differential distribution

inm12 ≡
√
q2

1 . The solid black line corresponds to the results

obtained after integrating Eq. (42) over q2
2 for κZ Z = 1

and εX = 0, while lowest order Prophecy4F predictions are
shown with blue dots. The two predictions are in perfect
agreement. Full O(α) electroweak corrections obtained with
Prophecy4F are shown with red dots. Prophecy4F results
are obtained after generating 108 weighted events using
the dipole subtraction formalism for photon radiation and
switching on the photon recombination which ensures suffi-
cient inclusiveness [20]. More specifically, photons and lep-

Fig. 1 Normalized differential h → e+e−μ+μ− decay distribution in

m12 ≡
√
q2

1 in the SM. Tree-level predictions and fullO(α) electroweak
corrections with Prophecy4F Monte Carlo generator [20] are shown
with blue and red dots, respectively. The solid black line is obtained
after integrating the analytic formula (Eq. 42) over q2

2 for κZ Z = 1 and
εX = 0

tons are recombined if their invariant mass is less than 5 GeV.
We impose no cuts on the decay products.

As shown in Fig. 1, the next-to-leading order electroweak
corrections lead to a significant (up to 10 %) deviation from
the tree-level result in the region below the Z peak. This effect
can well be understood in terms of photon emission from the
charged leptons legs: radiative events where m�+�−γ ≈ mZ

(close-to-on-shell Z -boson events) are enhanced by the Z
pole but are reconstructed in the m�+�− distribution as off-
peak events (m�+�− < mZ ) providing a sizable distortion
to the region below the Z peak. This effect can be cor-
rected in general terms (for general values of the pseudo-
observables) convoluting the non-radiative distribution with
the O(α) radiation function describing the probability of
emitting a photon (similarly to the initial-state radiation in
e+e− → μ+μ− close to the Z peak; see e.g. Ref. [51]). We
have explicitly checked that the inclusion of these correc-
tions leads to a qualitatively good agreement of our results
(in the SM limit) with the full O(α) electroweak corrections
obtained with Prophecy4F. The detailed implementation of
these corrections, which depends on the specific infrared
cuts implemented in Prophecy4F, is beyond the scope of the
present paper and will be discussed elsewhere.

6.3 Measuring contact terms

In order to probe the contact terms εZ f and εZ f ′ it is manda-
tory to exploit the differential decay distributions in q2

1 and
q2

2 . As an illustration, let us consider first the case of siz-
able deviations in one of the εZ fR and in κZ Z , while keeping
other couplings SM-like. The ratio of the total Higgs-decay
rate to e+e−μ+μ− with respect to the SM prediction as a
function of the couplings is shown in Fig. 2a. As can be seen,
a measurement of the total rate alone is not capable of resolv-
ing the contribution from the contact terms. On the contrary,
in Fig. 2b we show the deviations from the SM in the nor-

malized single differential distributions in m12 ≡
√
q2

1 and

m34 ≡
√
q2

2 in solid-blue line and dashed-red line, respec-
tively. These are obtained after fully integrating Eq. (42) over
the corresponding invariant mass. As a benchmark, we set
(κZ Z , εZ fR ) = (0.88,−0.10), for which the total decay rate
remains as in the SM. A good discriminating variable would
be the difference between the two distributions. This mea-
surement would mainly probe εZ fR and provide a comple-
mentary information to the one sketched in Fig. 2a. Finally,
the ratio of the double differential distribution with the SM
prediction is shown in Fig. 2c.

Qualitatively, the same discussion holds if both εZ fL and
εZ fR are present, except for a trivial rescaling in the magni-
tude of the effects. For instance, if εZ fR = εZ fL the differ-
ence in the differential distributions is rescaled by the factor
g f
V /g f

R .
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Fig. 2 a Total decay rate for h → e+e−μ+μ− as a function of
κZ Z and εZ fR in units of the SM-predicted rate. b Deviations in the

normalized single differential distributions in m12 ≡
√
q2

1 (solid-

blue line) and m34 ≡
√
q2

2 (dashed-red line) from the SM expecta-

tions for the benchmark point (κZ Z , εZ fR ) = (0.88,−0.10). c Ratio
of the double differential distribution with the SM prediction for the
same benchmark point. No cuts are applied on the Higgs-decay prod-
ucts

Somewhat different signatures are obtained if both εZ fR
and εZ f ′

R
are sizable. As an example, in Fig. 3 we consider the

case εZ fR = εZ f ′
R

which corresponds to the relation imposed
by flavor universality (see Sect. 5). Similarly to case analyzed
in Fig. 2, the deviations from the SM predictions are reported.
As can be seen, the overall size of the effect is much smaller.
As expected, in this case the single differential distributions
in m12 and m34 are the same, and the double differential
distribution is symmetric under m12 ↔ m34.

7 Conclusions

The experimental precision on the Higgs-decay distributions,
especially those into four light leptons, is expected to signif-
icantly improve in the next few years. This will allow us to
investigate in depth a wide class of possible extensions of
the SM. However, to reach this goal, an accurate and suf-
ficiently general parameterization of possible NP effects in
such distributions is needed.
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Fig. 3 The same plots as in Fig. 2 for the case εZ fR = εZ f ′
R

. The benchmark point in the plots b and c is (κZ Z , εZ fR , εZ f ′
R
) = (0.88,−0.05,−0.05)

In this paper we have identified the complete set of
pseudo-observables appearing in on-shell Higgs-decay dis-
tributions in the limit of heavy NP. More precisely, we only
assumed that contributions to the decay amplitudes gener-
ated by effective operators of D > 6 in a generic EFT
approach can be neglected. The pseudo-observables we have
introduced are defined by the momentum expansion of the
on-shell Higgs-decay amplitudes. As such, they are well-
defined physical parameters that can be directly extracted
from data, providing a natural generalization of the so-
called “κ-framework”. They indeed consist of four universal
“κ-like” pseudo-observables (κZ Z , κZγ , κγγ , κWW ), whose
expectation is 1 within the SM, and a series of εX param-
eters, whose SM expectation is zero for all practical pur-

poses (i.e. it is well below the experimental sensitivity even
in the HL-LHC era). The “κ-like” observables differ from the
signal strength measurements currently reported by ATLAS
and CMS, being associated to a well-defined (SM-like) kine-
matical distribution: they describe the (channel-independent)
effective couplings of the Higgs boson to the SM gauge fields.
The εX terms encode possible non-SM effects in the kine-
matical distributions as well as violations of the accidental
SM symmetries. The complete list of the pseudo-observables
for the Higgs decays to four leptons is reported in Table 1: it
ranges from a maximum of 20 independent terms, if no addi-
tional symmetry assumption is made, to a minimum of seven
terms under the hypotheses of CP invariance, lepton-flavor
universality and custodial symmetry.
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As outlined in Sect. 3, this formalism is well suited to
describe all h → 4 f decay modes: the only difference
between leptonic, hadronic, and semi-leptonic modes (such
as h → 2�2q), is the list of εV f parameters (V = W, Z ) con-
tributing to the given set of decay channels. In principle, the
same formalism (and the same set of pseudo-observables)
can also describe in general terms NP effects (with non-
trivial kinematical distortions) in the Higgs production cross-
sections controlled by the correlation function in Eq. (7),
namely σ(pp → hV ) and the vector-boson fusion pro-
cess. However, in this case more dynamical assumptions are
needed due to the possible break-down of the momentum
expansion at large energies (see e.g. Ref. [52]). This prob-
lem is absent in the Higgs-decay amplitudes discussed in this
work, where the energy scale is set by mh .

Comparing to existing experimental and phenomenolog-
ical analyses of h → 4� decays, the main difference due to
the use of the complete set of pseudo-observables is related
to the εV f terms, which encode the contributions generated
by hV f f̄ effective contact interactions [15]. As pointed out
in Ref. [16], such terms are particularly interesting in order to
discriminate from data the hypotheses of linear vs. non-linear
EFT expansion. This is so because the linear approach pre-
dicts relations between electroweak observables and hV f f̄
contact terms, leading to strong (and potentially falsifiable)
bounds on the latter. As we have shown by means of the
explicit calculation of the Higgs pseudo-observables in terms
of EFT Wilson coefficients, the linear EFT approach also pre-
dicts definite relations among Higgs pseudo-observables, so
that not all of them are independent. An experimental check
of these relations, which involves only Higgs-physics data,
would therefore offer an independent tool to possibly dis-
criminate between the linear and the non-linear EFT expan-
sions.

A further interesting aspect of the contact terms (or the εV f

pseudo-observables) is their potential flavor non-universal
nature. Their experimental determination is therefore an
interesting way to test, from data, the assumption of flavor-
universality in the Higgs sector (which is often assumed to
hold, up to small breaking terms related to fermion masses).
As we have illustrated with a few examples in the h →
e+e−μ+μ− case, the extraction of such terms from data
require non-trivial kinematical studies, but significant bounds
could be obtained in the future with high-statistics data.

Summarizing, the framework of Higgs pseudo-observables
provided in this work can capture all the physics accessible
in Higgs decays if no new light state is coupled to the h(125)

boson; it can be systematically improved with higher-order
QCD and QED corrections, recovering the best up-to-date
SM predictions in absence of new physics; it can be gen-
eralized in a simple way in order to describe any on-shell
Higgs decay; it can be efficiently used to test the symmetries
of the new-physics sector without specifying the details of

the underlying Lagrangian. We advocate the use of such for-
malism in the era of precise Higgs-boson physics, in order to
shed light in a systematic and unbiased way on the structure
and symmetries of possible extensions of the SM.
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A Matching to the linear EFT

In this appendix we present the expressions of the pseudo-
observables defined in Sect. 3 in terms of the Wilson coef-
ficients of the so-called linear EFT, employing the basis of
Ref. [31]. Although most of the details as regards the EFT
can be found in that work, it is worth clarifying a few points

• Since our flavor symmetry (U(1) f for each light fermion)
is smaller than the U(3)5 symmetry of Ref. [31], we need
to keep fermion indices in the Wilson coefficients. More-
over, we need to keep O�

L and O(3)�
L in the basis.10

• Both these flavor symmetries imply that the eight dipole
operators and Oud

R should be suppressed by the Yukawa
couplings, and therefore can be safely neglected.

• Following Ref. [31] we define the Wilson coefficients of
the 18 operators relevant for us as follows:

L(D=6)
EFT =

∑

a

ca
v2 Oa +

∑

b

κb

m2
W

Ob +
∑

V=B,W

cV
m2

W

OV ,

(46)

where ca = cT , cH , cu,d,e
R , cq,�

L , c(3)q,�
L , c3�

LL , and κb =
κHB,HW,BB,H B̃,HW̃ ,B B̃ . The definition of the operators

themselves can be found in Ref. [31].11

• Including 24 additional four-fermion operators and
O6,yu,d,e,GG,3W,3G,GG̃,3W̃ ,3G̃ one recovers the complete
list of 62 flavor-dependent operator structures, which

10 One flavor component of each of these operators is redundant. We
choose [c(3)�

L ]ee = [c�
L ]ee = 0.

11 Under our flavor symmetry assumptions, the coefficient c3�
LL con-

tains two allowed flavor structures. Instead, we will follow the usual
convention of keeping both O3�

LL and O�
LL but allowing only for one

flavor structure, namely ci jkl = αikδi j δkl .

123



128 Page 14 of 19 Eur. Phys. J. C (2015) 75 :128

reduces to 59 independent terms in the one-family case
(see Ref. [53] for more details).

Working at tree level and at linear order in the NP correc-
tions, we find the following results12:

κZ Z = 1 − cH
2

− 2cT − δGF

2GF
− δm2

Z

m2
Z

+2s2
w(cW + cB) + 2εZ∂Z , (47)

κWW = 1 − cH
2

− δGF

2GF
− δm2

W

m2
W

+ 2εW∂W , (48)

εZ f iL
= 2mZ

v

(
T 3
L [c(3) f

L ]i i − 1

2
[c f

L ]i i
)

+ gZfL εZ∂Z

+eQ fL εZ∂γ ( f = e, ν, d), (49)

ε
Zui jL

= 2mZ

v

(
T 3
L (Vik[c(3)q

L ]kkV †
k j ) − 1

2
(Vik[cqL ]kkV †

k j )

)

+gZuL εZ∂Z + eQuL εZ∂γ , (50)

εZ f iR
= −mZ

v
[c f

R]i i + gZfRεZ∂Z + eQ fRεZ∂γ

( f = e, u, d), (51)

εWei =
√

2mW

v
[c(3)�

L ]i i + g�
W εW∂W , (52)

ε
WuiLd

j
L

=
√

2mW

v
(Vi j [c(3)q

L ] j j ) + gudW εW∂W , (53)

ε
WuiRd

j
R

= 0, (54)

εZ Z = 4cZ Z , εCP
Z Z = 4cZ Z̃ , (55)

εZγ = −4twκPR
Zγ , εCP

Zγ = −4twκZ γ̃ , (56)

εγ γ = −8s2
wκBB, εCP

γ γ = −8s2
wκB B̃, (57)

εWW = 2κHW , εCP
WW = 2κHW̃ . (58)

where V is the CKM matrix13 (also notice that [c(3)�
L ]ee =

[c�
L ]ee = 0 in our basis) and where the εV ∂V coefficients,

introduced in Eq. (81), are given by

εZ∂Z = ĉZ , εZ∂γ = tw(ĉW − ĉB), εW∂W = ĉW .

(59)

12 Notice that Ref. [31] use gZf for a different quantity, namely gZ ,SM
f /2

in our notation, and that δm2
W is defined in that work with the opposite

sign.
13 We define our flavor symmetry in the basis where the down-quark
and charged lepton Yukawa matrices are diagonal, whereas the up-quark
Yukawa matrix has the form YU = V †Y diag

U . We neglect the breaking
of the symmetry induced by the Yukawa matrices but for its effect on
fermion masses. See Ref. [54, (Section 3)] for a more detailed discus-
sion.

Also, κPR
Zγ , cZ Z , and ĉZ/W/B are the combination of Wilson

coefficients defined in Ref. [31], namely

ĉZ = ĉW + ĉB t
2
w, ĉW = cW + κHW , ĉB = cB + κHB,

(60)

cZ Z = 1

2
(κHW + κHBt

2
w) − 2

s4
w

c2
w

κBB, (61)

κPR
Zγ = −1

4
(κHW − κHB) − 2s2

wκBB, (62)

and likewise for the CP-odd terms. The contributions to the
pseudo-observables proportional to the εZ∂Z , εW∂W , and
εZ∂γ coefficients are due to the redefinition of Eqs. (84),
(85), which are necessary in order to match with our pseudo-
observables.

The κZ Z and κWW parameters are the only ones already
present in the SM at tree level. For this reason they can receive
contributions from the EFT either directly from D = 6
operators, such as the terms proportional to cH and cT in
Eqs. (47), (48), or via a rescaling in the kinetic term (like
the contribution proportional to cW + cB = Ŝ), or finally
through a variation of the SM input parameters. In partic-
ular, the terms δm2

Z ,W and δGF contain the NP contribu-
tions that contaminate the determination of the SM parame-
ters (g, g′, v) from the measurement of some input observ-
ables, and indirectly affect the pseudo-observables κZ Z ,WW

through the m2
Z ,W /vF term of Eqs. (8) and (12). A com-

mon set of input observables used to fix the SM parameters
includes the Z -boson mass, the low-energy fine-structure
constant, αem(0), and GF extracted from the muon life-
time. The experimental value of the Z -boson mass and
αem are modified by the following D = 6 effective oper-
ators:

δm2
Z

m2
Z

= −cT + 2s2
w(cW + cB),

δαem

αem
= −2s2

w(cW + cB), (63)

whereas the GF determination from the muon lifetime is
changed by [54]

δGF

GF
= −2[c(3)�

LL ]eeμμ + [c(3)�
L ]μμ, (64)

where we have used the fact that [c(3)�
L ]ee = 0 in our basis.

For this choice of input observables, the variation of the W
mass is given by

δm2
W

m2
W

= 1

c2w

[
s2
w

(
2cW + 2cB + δGF

GF

)
− c2

wcT

]
. (65)

If, instead of GF from the muon lifetime (or of αem(0)), we
use the experimental measurement ofmW as an input observ-
able, then δm2

W vanishes.
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A.1 Checking custodial-symmetry relations (Eqs. 33–37)

From the results presented above it is straightforward to
check that the following three relations are satisfied:

c2
W εZ Z + 2cW sW εZγ + s2

W εγ γ − εWW = 0, (66)

c2
W εCP

Z Z + 2cW sW εCP
Zγ + s2

W εCP
γ γ − εCP

WW = 0, (67)

εWei − cW√
2
(εZνiL

− εZeL ) = 0. (68)

As explained in the text, this is the consequence of an acciden-
tal custodial symmetry in the corresponding D = 6 operators
in the linear EFT case. Concerning the relation (35) we find

κWW − κZ Z + 2

g

(√
2εWeiL

+ 2cW εZeiL

)

= −2[c�
L ]i i + cT − δm2

W

m2
W

= −2[c�
L ]i i + cT

2 − 3s2
w

c2w
− s2

w

c2w

δGF

GF
− 2s2

w

c2w

(cW + cB)

g′→0→ − 2[c�
L ]i i + 2cT . (69)

Both operatorsOT andO�
L ,i i break custodial symmetry [53].

Thus the r.h.s. of Eq. (69) vanishes if the new physics is cus-
todially invariant, confirming Eq. (35). Here we have used
Eq. (65) for δmW . Notice that by using instead the exper-
imental value of mW as an input, the limit g′ → 0 is not
necessary in order for Eq. (36) to be satisfied since in this
case δm2

W = 0. Finally, for the relation (37) we find

εZeiR
− εZνiL

− εZeiL
= 2mZ

v
[c�

L ]i i − mZ

v
[ceR]i i . (70)

Once again [c�
L ]i i vanishes if custodial symmetry is imposed,

whereas the behavior of the second coefficient, [ceR]i i ,
depends on the embedding of the right-handed electron. In
the case (A), in which eR ∼ (1, 2)− 1

2
, Eq. (37) is not expected

to be satisfied; in fact it is not, since the operator Oe
R does not

break the symmetry, transforming as a singlet. In the case of
the embedding (B), where eR ∼ (1, 1)−1, Oe

R transforms as
a triplet of the custodial symmetry [53] and therefore ceR �= 0
is an explicit breaking, so that in the custodially symmetric
limit one indeed recovers Eq. (37).

B Custodial symmetry

In this appendix we provide an extended discussion of the
custodial symmetry relations among the pseudo-observables
in Higgs decays. We are assuming that the new-physics sec-
tor enjoys a global symmetry G = SU(2)L × SU(2)R ×
U(1)X , spontaneously broken to the custodial subgroup H =
SU(2)L+R × U(1)X by the vev of some field U ∼ (2, 2)0,
〈U 〉 = 12. Since the hypercharge gauge boson and the SM

fermions are not in complete representations of G, their cou-
plings with the BSM sector (i.e. g′ and the Yukawa couplings)
break the symmetry explicitly. An efficient way to keep track
of the effects of these breaking terms is to promote SM mul-
tiplets to complete representations of G by introducing spu-
rion (unphysical) fields which are then set to zero in physical
processes. In the gauge sector, we introduce spurion gauge
bosons, so that the whole group G is gauged. We thus intro-
duce the gauge fields La

μ, Ra
μ, Xμ, and couplings g, g̃, gX ,

respectively, for the factors SU(2)L , SU(2)R, U(1)X (note
that in general the two SU(2) factors can have different cou-
pling). The SM gauging is obtained by setting La

μ = Wa
μ,

Ra
μ = δa3cX Bμ, and Xμ = sX Bμ, where

cX = gX√
g̃2 + g2

X

= g′

g̃
< 1, sX = g̃√

g̃2 + g2
X

= g′

gX
< 1.

(71)

Since the fields R3
μ and Xμ enter in interactions always with

the combinations g̃R3
μ = g′Bμ and gX Xμ = g′Bμ, we are

free to choose any values of g̃, gX , provided Eq. (71) is sat-
isfied. In particular it is possible to choose g̃ = g, such that
gX = g′g/

√
g2 − g′2 as in Ref. [30]. The hypercharge is

given by Y = T 3
R + X and the electromagnetic charge is then

given by Q = T 3
L + Y (where T 3

L ,R = σ 3/2).

B.1 Fermion embedding

We also assume that all SM fields couple only to one BSM
operator each, so that we can assign them univocal TL ,R

and T 3
L ,R quantum numbers depending on the operator they

couple to [55]. This fixes the representation of G in which we
embed the SM fermions. We focus on leptons and consider
only two simple embeddings; see Appendix C of Ref. [53].
The first one is

(A)

SU(2)L SU(2)R U(1)X

LL = (νL , eL)t 2 1 −1/2
LR = (0, eR)t 1 2 −1/2

, (72)

The second embedding we consider is14

(B)

SU(2)L SU(2)R U(1)X

EL 2 2 −1
eR 1 1 −1

, (73)

Let us also introduce the fermionic currents which couple to
the spurion custodial gauge bosons:

L ⊃ gJμa
L La

μ + g̃ Jμa
R Ra

μ + gX (Jμ
LX + Jμ

RX )Xμ. (74)

14 The embedding of LL in the bidoublet can be explicitly realized in
a basis of 2 × 2 matrices as EL = σαEα

L . In particular we have EL =
σ+νL + σ 0−eL , where σ± = (σ 1 ± σ 2)/2 and σ 0± = (12 ± σ 3)/2,
such that T 3

L (νL ) = −T 3
R(νL ) = T 3

L (eL ) = T 3
R(eL ) = 1/2.
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where, considering for simplicity the case of one generation
only, we have

Jμ
LX = X�L L̄ Lγ μLL ,

Jμ
RX = XeR ēRγ μeR,

(A) Jμa
L = L̄ L

σ a

2
γ μLL , Jμa

R = L̄ R
σ a

2
γ μLR,

(B) Jμa
L = Tr

[
ĒL

σ a

2
γ μEL

]
, Jμa

R = 0. (75)

In the rest of this section we obtain the most generic form
of 1PI Green functions of a Higgs coupling with two gauge
bosons and with one gauge boson and one fermonic current.
Of course, this classification is not physical since, by using
the equations of motion, it is possible to exchange some hV V
interactions for some contact terms hV J , and vice versa, as
we show below.

B.2 hV V interactions

We first review here the derivation of the custodial-symmetry
relation for the interactions of a Higgs with two EW gauge
fields, Eq. (80), following Ref. [30]. Given the symmetry-
breaking pattern G → H , the hV V interactions are fully
characterized by four form factors:

〈h|Laμ(q1)L
aν(q2)〉 = i�μν

LL(q1, q2),

〈h|Laμ(q1)R
aν(q2)〉 = i�μν

LR(q1, q2),

〈h|Raμ(q1)R
aν(q2)〉 = i�μν

RR(q1, q2),

〈h|Xμ(q1)X
ν(q2)〉 = i�μν

XX (q1, q2),

(76)

or, in other words, by the effective Lagrangian (in momentum
space)

LhV V
eff = h

(
1

2
La

μ(q1)L
a
ν(q2)�

μν
LL(q1, q2)

+ La
μ(q1)R

a
ν (q2)�

μν
LR(q1, q2)

+ 1

2
Ra

μ(q1)R
a
ν (q2)�

μν
RR(q1, q2)

+ 1

2
Xμ(q1)Xν(q2)�

μν
XX (q1, q2)

)
. (77)

By switching off the unphysical fields we get three inde-
pendent form factors for the Higgs interactions with the SM
gauge bosons:

〈h|Waμ(q1)W
aν(q2)〉 = i�μν

LL(q1, q2),

〈h|W 3μ(q1)B
ν(q2)〉 = icX�

μν
LR(q1, q2),

〈h|Bμ(q1)B
ν(q2)〉 = ic2

X�
μν
RR(q1, q2) + is2

X�
μν
XX (q1, q2)

≡ i�μν
BB(q1, q2). (78)

In particular, the distinction between the XX and the RR
form factors is not physical. Let us note that, while imposing
only U(1)em invariance the 〈h|W 3

μW
3
ν 〉 and 〈h|W+

μ W−
ν 〉 form

factors are independent, custodial symmetry relates both of

them to the 〈h|Wa
μW

a
ν 〉 one. In fact, the generic U(1)em-

invariant 1PI Green functions describing the couplings of
a Higgs with two SM EW gauge bosons are:

〈h|W+μ(q1)W
−ν(q2)〉 = i�μν

WW (q1, q2),

〈h|Zμ(q1)Z
ν(q2)〉 = i�μν

Z Z (q1, q2),

〈h|Zμ(q1)A
ν(q2)〉 = i�μν

Zγ (q1, q2),

〈h|Aμ(q1)A
ν(q2)〉 = i�μν

γ γ (q1, q2).

(79)

Since in a custodially invariant theory these form factors arise
from the three in Eq. (78), they are not independent [30]:

�
μν
WW (q1, q2) = c2

w�
μν
Z Z (q1, q2) + cwsw(�

μν
Zγ (q1, q2)

+�
νμ
Zγ (q2, q1)) + s2

w�μν
γ γ (q1, q2). (80)

By expanding the form factors in powers of momenta over
the cutoff of the EFT up to D = 6 terms one has

�
μν
VV (q1, q2) = 2m2

V

vF

(
κ0
VV g

μν + εVV

m2
V

Pμν
T (q1, q2)

+εCP
VV

m2
V

εμνρσq2ρq1σ

)

+ 2

vF
εV ∂V (Pμν

D (q1)+Pμν
D (q2)),(V = W, Z)

�
μν
Zγ (q1, q2) = 2

vF
εZγ P

μν
T (q1, q2) + 2εCP

Zγ

vF
εμνρσq2ρq1σ

+ 2

vF
εZ∂γ P

μν
D (q2),

�μν
γ γ (q1, q2) = 2

vF
εγ γ P

μν
T (q1, q2) + 2εCP

γ γ

vF
εμνρσq2ρq1σ ,

(81)

where Pμν
T (q1, q2) = q1 · q2gμν − qμ

2 q
ν
1 and Pμν

D (q) =
gμνq2 − qμqν . From this expansion, by equating terms in
Eq. (80) with the same momentum dependence, one gets the
relations:

κ0
WW = κ0

Z Z ,

εW∂W = c2
wεZ∂Z + cwswεZ∂γ ,

εWW = c2
wεZ Z + 2cwswεZγ + s2

wεγγ ,

εCP
WW = c2

wεCP
Z Z + 2cwswεCP

Zγ + s2
wεCP

γ γ .

(82)

In order to make a connection between these unphysical
coefficients and our pseudo-observables, it is necessary to
calculate the amplitude for a physical process involving on-
shell particles and match it with Eqs. (8–11). By doing so
one recognizes that the εWW,Z Z ,Zγ,γ γ coefficients and their
CP-odd counterparts are identical to the analogous pseudo-
observables, while some combinations of the coefficients
εW∂W,Z∂Z ,Z∂γ and κ0

WW,Z Z describe contact interactions of
the type hV J . This redundancy is easily understood by com-
puting the amplitude for the physical process h → Jμ

f J
ν
f ′
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arising from these couplings:

A(h → J+μ
�L

(q1)J
−ν
�L

(q2))

= 2i

vF
((q2

1 + q2
2 )εW∂Wg f

W g f ′
W + m2

Wκ0
WWg f

W g f ′
W )

× gμν

PW (q2
1 )PW (q2

2 )
J+μ
�L

J−ν
�L

,

A(h → Jμ
f (q1)J

ν
f ′(q2))

= 2i

vF

[
((q2

1 + q2
2 )εZ∂Z g

f
Z g

f ′
Z

+m2
Zκ0

Z Z g
f
Z g

f ′
Z )

1

PZ (q2
1 )PZ (q2

2 )
+ q2

1εZ∂γ

eQ f g
f ′
Z

q2
1 PZ (q2

2 )

+ q2
2εZ∂γ

eQ f ′g f
Z

q2
2 PZ (q2

1 )

]
gμν J

μ
f J

ν
f ′ . (83)

For κ0
WW = −2εW∂W and κ0

Z Z = −2εZ∂Z the amplitude
has exactly the same structure as the contact interactions in
Eq. (9).15 In order to match with our parametrization, we thus
redefine κ0

WW,Z Z as follows:

κ0
WW = κWW − 2εW∂W , κ0

Z Z = κZ Z − 2εZ∂Z . (84)

Therefore, the contact interactions receive two separate con-
tributions: the direct ones from D ≤ 6 operators contributing
to 〈h|Jμ

f V
ν〉1PI, εDV f , and the indirect ones due to the match-

ing described above:

εWeiL
= εD

WeiL
+ g√

2
εW∂W ,

εZeiL
= εD

ZeiL
+ g

cw

(
−1

2
+ s2

w

)
εZ∂Z − gswεZ∂γ ,

εZνiL
= εD

ZνiL
+ g

2cw

εZ∂Z ,

εZeiR
= εD

ZeiR
+ g

cw

s2
wεZ∂Z − gswεZ∂γ .

(85)

The division between direct and indirect contributions is not
physical; only their sum is a physical and observable quan-
tity. The indirect contributions above satisfy two independent
relations, one due to the fact that we have three coefficients
εV ∂V describing four contact terms, and a second one due to
the custodial-symmetry relation of Eq. (82). It is then conve-
nient to parametrize the observable κ coefficients as

κWW = 1 + δκ + δκWZ , κZ Z = 1 + δκ, (86)

so that after the redefinition of Eq. (84) we can rewrite
the custodial-symmetry relation κ0

WW = κ0
Z Z as δκWZ =

2(εW∂W − εZ∂Z ).

15 In terms of EFT operators, this redundancy is a consequence of
the fact that, by using the equations of motion, one can rewrite the
hVμDνVμν operators, responsible for the εV ∂V terms, as a combination
of hVμ f̄ γ μ f ′ contact interactions and m2

V hV
μVμ terms.

B.3 hV J interactions

Let us now turn to the direct contribution to contact inter-
actions. Such terms arise from 1PI Green functions of the
type 〈h|Jμ

f V
ν〉. Let us study these interactions for the two

embeddings introduced above.

Embedding A

We start by considering the embedding A of Eq. (72). We
define the possible 1PI Green functions in a custodially
invariant theory in terms of form factors as:

〈h|Jaμ
L (q1)L

aν(q2)〉 = i Fμν
LL (q1, q2),

〈h|Jaμ
L (q1)R

aν(q2)〉 = i Fμν
LR(q1, q2),

〈h|Jaμ
R (q1)R

aν(q2)〉 = i Fμν
RR(q1, q2),

〈h|Jaμ
R (q1)L

aν(q2)〉 = i Fμν
RL(q1, q2),

〈h|Jμ
LX (q1)X

ν(q2)〉 = i Fμν
LX (q1, q2),

〈h|Jμ
RX (q1)X

ν(q2)〉 = i Fμν
RX (q1, q2).

(87)

By switching off the unphysical fields we get the following
contact interactions of the Higgs with one fermion current
and a SM EW gauge boson:

〈h|Jaμ
�L

Waν〉 = i Fμν
LL ,

〈h|Jaμ
eL Bν〉 = i

(
−1

2
cX F

μν
LR + X�L sX F

μν
LX

)
≡ i Fμν

eL B
,

〈h|Jaμ
νL

Bν〉 = i

(
1

2
cX F

μν
LR + X�L sX F

μν
LX

)
≡ i Fμν

νL B
,

〈h|Jμ
eRW

3ν〉 = −1

2
Fμν
RL ≡ i Fμν

eRW
,

〈h|Jμ
eR B

ν〉 = i

(
−1

2
cX F

μν
RR + XeR sX F

μν
RX

)
≡ i Fμν

eR B
,

(88)

where

Ja�Lμ = L̄ L
σ a

2
γμLL , JeL ,Rμ = ēL ,RγμeL ,R

and JνLμ = ν̄LγμνL . (89)

In terms of the mass eigenstates there are seven possible
contact terms:

〈h|J+μ
� W+ν〉 = i Fμν

W� = 2i

vF
εDW�g

μν,

〈h|Jμ
eL Z

ν〉 = i Fμν
ZeL

= 2i

vF
εDZeL g

μν,

〈h|Jμ
eL A

ν〉 = i Fμν
γ eL = 0,

〈h|Jμ
νL
Zν〉 = i Fμν

ZνL
= 2i

vF
εDZνL

gμν,

〈h|Jμ
νL
Aν〉 = i Fμν

γ νL
= 0,

〈h|Jμ
eR Z

ν〉 = i Fμν
ZeR

= 2i

vF
εDZeR g

μν,

〈h|Jμ
eR A

ν〉 = i Fμν
γ eR = 0, (90)
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where we also provide the EFT expansion up to D = 6
terms. Note that the vertices of a current with a photon are
not present at D ≤ 6 due to the U (1)em invariance, they
appear only at D > 6. Independently of the EFT expansion,
since only five form factors are independent, one has two
relations from custodial symmetry:

Fμν
W�(q1, q2) = −√

2(swFμν
γ eL (q1, q2) + cwFμν

ZeL
(q1, q2)),

Fμν
W�(q1, q2) = √

2(swFμν
γ νL

(q1, q2) + cwFμν
ZνL

(q1, q2)).

(91)

In terms of the EFT coefficients these relations read

εDW� = −√
2cwεDZeL , εDZνL

= −εDZeL . (92)

One can notice that in this case custodial symmetry simply
implies that the form factors of 〈h|Jμ

eL W
3ν〉, 〈h|Jμ

νLW
3ν〉, and

〈h|Jμ+
�L

W+ν〉 all arise from a single term 〈h|Jaμ
�L

Waν〉. These
conditions are independent of the embedding of the left-
handed doublet, in particular they apply also to the embed-
ding (B). The dependence on the embedding shows up only
in the couplings of the right-handed fermions, which in this
case remain arbitrary.

Embedding B

Let us study now the embedding B of Eq. (73). In this case
we can write the following two-point functions of a gauge
boson and a fermionic current:

〈h|Jaμ
L (q1)L

aν(q2)〉 = i Fμν
LL (q1, q2),

〈h|Jaμ
L (q1)R

aν(q2)〉 = i Fμν
LR(q1, q2),

〈h|Jμ
LX (q1)X

ν(q2)〉 = i Fμν
LX (q1, q2),

〈h|Jμ
RX (q1)X

ν(q2)〉 = i Fμν
RX (q1, q2).

(93)

Note that, contrary to the previous case, since eR is a complete
singlet of G we cannot construct a current Jaμ

R to couple
with La

μ or Ra
μ. This is the only difference with respect to the

previous case, implying a vanishing Fμν
eRW

:

〈h|Jaμ
�L

Waν〉 = i Fμν
LL ,

〈h|Jμ
eL B

ν〉 = i

(
−1

2
cX F

μν
LR + X�L sX F

μν
LX

)
≡ i Fμν

eL B
,

〈h|Jμ
νL
Bν〉 = i

(
1

2
cX F

μν
LR + X�L sX F

μν
LX

)
≡ i Fμν

νL B
,

〈h|Jμ
eRW

3ν〉 = 0 ≡ i Fμν
eRW

,

〈h|Jμ
eR B

ν〉 = i XeR sX F
μν
RX ≡ i Fμν

eR B
. (94)

In terms of the physical form factors of Eq. (90) this setup
implies three relations: the two of Eq. (91) and

cwFμν
ZeR

= −swFμν
γ eR . (95)

In the EFT expansion up to D = 6 terms, Eq. (91), this
simply becomes

εDZeR = 0. (96)

Summary

Let us recap the expressions of the contact terms obtained
in a custodially invariant BSM theory. For example, one can
use the first two relations in Eq. (82) to trade εW∂W and εZ∂γ

for δκWZ and εZ∂Z , and one can rewrite Eq. (85) for the two
embeddings as

εW�iL
= −√

2cwεD
ZeiL

+ g√
2
εZ∂Z + g

2
√

2
δκWZ ,

εZeiL
= εD

ZeiL
− g

2cW
εZ∂Z − g

2cw

δκWZ ,

εZνiL
= −εD

ZeiL
+ g

2cw

εZ∂Z ,

εZeiR
= εD

ZeiR
− g

2cw

δκWZ (embedding A),

εZeiR
= − g

2cw

δκWZ (embedding B).

(97)

From these expressions, and from Eq. (82), one easily derives
Eqs. (33–37).
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