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The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest
mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a
series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach of particle
colliders. We point out that the observation of a multipeaked stochastic gravitational wave signal from a
series of cosmological phase transitions could well be a unique probe of the mechanism behind flavor
hierarchies. To illustrate this point, we show how near future ground- and space-based gravitational wave
observatories could detect up to three peaks in the recently proposed PS3 model.
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Introduction.—The first direct detection of gravitational
waves (GW) [1] was a stunning confirmation of the theory
of general relativity and marked the discovery of the only
messenger via which the universe can be probed back to the
Planck era. To take advantage of this unique window into
the universe, the next few decades will see a plethora of
ground- and space-based gravitational wave observatories
being built across twelve decades in frequency [2–9]. In
addition to what can be learned on the astrophysical front,
this experimental effort offers an immense opportunity to
probe fundamental physics in the early universe. Indeed,
many particle physics processes that produce a stochastic
gravitational wave background have already been identi-
fied, such as the primordial spectrum expected from
inflation [10–12], violent first order phase transitions
(FOPTs) [13–38], cosmic strings [39–42], nonperturbative
particle production [43–49], primordial black holes
[50–52], etc. Many of these processes are expected to
produce a GW spectrum with a single peak, with the
notable exception being the nearly scale-invariant spectrum
from inflation.
Not as frequently discussed is the possibility of observ-

ing a multipeaked gravitational wave signal, in either single
or multiple experiments, and what such a signal might tell
us about open puzzles in fundamental physics. One
intriguing possibility is that a multipeaked signal could
come from a series of sequential FOPTs. As the peak
frequency of the GW spectrum from a first order phase

transition is set by the vacuum expectation value (VEV) in
the broken phase, the observation of a multipeaked signal
could contain information about the scales of multiple
spontaneous symmetry breakings (SSBs), with the first
breaking giving the highest frequency peak and the last the
lowest.
A longstanding question within fundamental physics is

that of the flavor puzzle, which refers to why the standard
model (SM) fermion Yukawa couplings are spread over so
many orders of magnitude, with a top quark Yukawa that is
Oð1Þ but an electron Yukawa which is five orders of
magnitude smaller. Just the quark sector alone has a
hierarchy which covers four to five decades and also
contains the puzzle of why the CKM mixing matrix is
close to identity.
It has been proposed that the flavor hierarchies could be

generated via a series of hierarchical SSBs [53–63]. These
types of models typically associate flavor with a funda-
mental gauge symmetry at high energies. The SM fermion
masses and mixings are then generated via spontaneous
breaking of this gauge symmetry, usually in several steps.
The aforementioned models are compatible with the lowest
SSB occurring at the TeV scale, which is highly motivated
as it is the scale currently being probed at colliders (perhaps
also in order to explain flavor anomalies [64–72]).
Interestingly enough, if this breaking occurs via a strongly
FOPT, the resulting GW signal is in the sensitivity range of
upcoming space-based interferometers such as LISA.
Moreover, the higher breakings associated with light family
mass generation may produce GW in the range of future
ground-based interferometers such as Einstein telescope
(ET) and cosmic explorer (CE). Such a scenario would lead
to a spectacular signature involving a multipeaked GW
signal, the peak frequencies of which contain information
about the flavor hierarchies, spread across future GW
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experiments covering four decades of frequency space.
This separation in frequency can be roughly seen by taking
the geometric mean of the quark masses of each family,

ffiffiffiffiffiffiffiffiffiffiffi
mtmb

p ∶ ffiffiffiffiffiffiffiffiffiffiffi
msmc

p
; ∶ ffiffiffiffiffiffiffiffiffiffiffiffi

mumd
p

;

1 ∶ 10−2; ∶ 10−4;

f−1LISA ∶ …; ∶ f−1ET:

To further develop this idea, we will take the PS3 model of
Ref. [63] as a concrete example in what follows, though the
concept generalizes to many models which solve the flavor
puzzle through a series of hierarchical SSBs.
Model example: Pati-Salam cubed.—As a prototypical

example, we focus on the PS3 model first introduced
in Ref. [63], see also [73]. Here, the original Pati-Salam
gauge group [80] in higher-dimensional spacetime is
deconstructed [81] onto 3 four-dimensional sites PS3 ≡
PS1 × PS2 × PS3, where each copy acts on one family of
SM fermions. In particular, an entire SM family (including
the right-handed neutrino) fits into two left- and right-chiral

multiplets, ΨðiÞ
L ≡ ð4; 2; 1Þi and ΨðiÞ

R ≡ ð4; 1; 2Þi, which

embed quark and lepton doublets QðiÞ
L and LðiÞ

L and singlets

uðiÞR , νðiÞR , dðiÞR , and eðiÞR , respectively. The label i ¼ 1, 2, 3
denotes the corresponding gauge group PSi ≡ ½SUð4Þ×
SUð2ÞL × SUð2ÞR�i.
The model undergoes a series of SSBs occurring at

different energy scales as illustrated in Fig. 1. The first
breaking after inflation is triggered by the VEV of Σ1 in 4
of SUð4Þ1 [82]. The subsequent breakings to the diagonal
subgroups of neighboring sites are achieved by the appro-
priate scalar link fields in bifundamental representations,
ΦL;R

ij and Ωij. More specifically, Φijs are in 2 of the cor-
responding SUð2Þi and 2̄ of SUð2Þj, while similarly, Ωij is
ð4; 2; 1Þi × ð4̄; 2̄; 1Þj. Finally, the Higgs fields live at the
third site, e.g., H3 ≡ ð1; 2; 2̄Þ3.

Below the scale ΛII, the unbroken phase of the theory,
SM12 × PS3, leads to an approximate U(2) flavor symmetry
observed in the SM at low-energies [84]. The lower bound
on this scale, ΛII ≳ 103 TeV, follows from stringent limits
on flavor changing neutral currents (FCNC) induced by
the heavy gauge bosons coupling to the first two gener-
ations [85–89]. At this level, Yukawa interactions are only
allowed for the third family, L ⊃ Ψ̄ð3Þ

L H3Ψ
ð3Þ
R , predicting

vanishing light-fermion masses and a CKMmatrix equal to
identity. The smallness of neutrino masses is achieved by
the inverse seesaw mechanism [74]. The perturbation to
this picture is obtained by higher-dimensional operators
such as

L23 ¼
1

ΛIII
Ψ̄ð2Þ

L Ω23H3Ψ
ð3Þ
R þ H:c:;

L12 ¼
1

Λ2
II
Ψ̄ðkÞ

L ΦL
k3H3ΦR

3lΨ
ðlÞ
R þ H:c:; ð1Þ

after the link fields acquire VEVs. The leading Uð2Þ
breaking spurion, following from the first term, generates
the mixing of the third and light families, jVtsj∼
hΩ23i=ΛIII, where hΩ23i ∼ ΛIV. The light fermion masses
are instead due to the second term, with the largest being
yc ∼ hΦL

23ihΦR
32i=Λ2

II. Similarly, yu follows from ΛI, etc.
The UV completion of the effective operators in Eq. (1)
has been discussed in Refs. [63,74]. We assume the scales
generating the operators to coincide with the preceding
symmetry breaking scales, e.g., ΛIII ∼ hΦ23i and ΛII ∼
hΦ12i. From here it follows that the four-step breaking,
(i) 104 TeV, (ii) 103 TeV, (iii) 102 TeV, and (iv) 1 TeV, is
well compatible with the observed pattern of fermion
masses and mixings at low energies [90]. As we will show
later, the three SU(4) phase transitions naturally induce
a stochastic GW signature within the reach of next-
generation interferometers [91].
While we work in the deconstructed four-dimensional

picture, the higher-dimensional model relates the hierarchy
of quark and charged lepton masses to the stabilization
mechanism of branes in the bulk [92]. Additionally, the
higher-dimensional gauge symmetry justifies small scalar
quartic couplings [93] leading to an almost classically scale
invariant potential which is crucial to ensure strongly
FOPTs as shown later.
Gravitational wave calculation.—Effective potential: To

describe the first SSB in PS3 at the scale ΛI, we calculate in
a simplified 4 → 3 model where SU(4) is broken to SU(3)
by the VEV of a complex scalar Σ in the fundamental
representation of SU(4). The matter content includes one
set of doublets ΨL and ΨR, also in the fundamental
representation of SU(4). In the PS3 model, scalar fields
which break SU(4)s have suppressed Yukawa interactions
and scalar crossquartics [94]. As a result, the relevant part
of Lagrangian for the GW calculation depends only on a
few parameters. More explicitly,

FIG. 1. Schematic view of the PS3 model detailed in the second
section. Phase transitions marked with red arrows correspond to
SU(4) breakings (see third section).
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L ¼ Ψ̄i=DΨ −
1

4
ðFa

μνÞ2 þ jDμΣj2 þ λv2jΣj2 − λjΣj4; ð2Þ

with Dμ ¼ ∂μ − igAa
μTa. Thus, the relevant parameters of

the model are g, λ, and v. The breaking SUð4Þ → SUð3Þ
occurs when the complex scalar Σ acquires a VEV of the
form hΣi ¼ ð0; 0; 0; v= ffiffiffi

2
p ÞT . The seven broken generators

correspond to a massive vector leptoquark Uμ and Z0 gauge
boson. The decomposition of Σ under the unbroken SU(3)
is 4 ¼ 3þ 1, with the entire complex 3 and the imaginary
part of 1 containing the leptoquark and Z0 goldstones,
respectively. The remaining degree of freedom ReΣ4 ≡
ϕ=

ffiffiffi
2

p
is a massive radial mode. The full finite-temperature

effective potential for ϕ is

Veffðg; λ; v;ϕ; TÞ ¼ V0 þ VCW þ VT≠0; ð3Þ

where tree level potential V0 is

V0ðλ; v;ϕÞ ¼ −
1

2
λv2ϕ2 þ λ

4
ϕ4: ð4Þ

The one-loop Coleman-Weinberg correction VCW is

VCWðg; λ; v;ϕÞ ¼
X
b

nb
m4

bðϕÞ
64π2

�
ln
m2

bðϕÞ
μ2R

− Ca

�
; ð5Þ

which we have written here in Landau gauge using the MS
renormalization scheme which gives Ca ¼ 3=2 (5=6) for
scalars (gauge bosons). The sum on b is over all bosons
which have a ϕ-dependent mass and nb is the total number
of degrees of freedom of the boson. The final piece VT≠0 is
the finite temperature correction to the potential

VT≠0ðg; λ; v;ϕ; TÞ ¼
T4

2π2
X
b

nbJb

�
m2

bðϕÞ þ ΠbðTÞ
T2

�
; ð6Þ

which includes a correction from resummed Daisy dia-
grams. The thermal function Jbðx2Þ, the ϕ-dependent
masses mbðϕÞ, and the Debye masses ΠbðTÞ are all given
in the Supplemental Material [94]. As we will show later, in
the PS3 model with g ∼Oð1Þ and small λ, VT≠0 naturally
induces a thermal barrier which leads to a strong FOPT.
The subsequent SU(4) transitions at the scales ΛII and

ΛIV are modeled by the more complicated breaking pattern
SUð4Þ × SUð3Þ0 → SUð3Þ, which is presented in the
Supplemental Material [94].
Numerical procedure: The GW spectrum from a FOPT

is described by four parameters [2,104–106]. These are the
nucleation temperature Tn which describes the onset of the
phase transition, the strength α, the inverse timescale β,
and the bubble wall velocity vw. While the full calculation
of the bubble wall velocity is beyond the scope of this
work, for illustration we simply assume that vw ∼ 1 [107].

The remaining parameters we compute from the effective
potential in Eq. (3) using the COSMOTRANSITIONS [108]
package, the results of which we have confirmed using
our own code based on the method of Ref. [109]. Thus, for
a given set of model parameters g, λ, v we compute the
corresponding GW parameters α; β; Tn which allows us
to obtain the GW spectrum from a template function
extracted from lattice simulation [110–112]. We then are
able to perform a standard signal-to-noise ratio (SNR)
analysis to determine the detectability of the signal, see,
e.g.. Ref. [113]. More details can be found in the
Supplemental Material [94].
Results: We show in Fig. 2 a benchmark multipeaked

GW signal where the first two transitions would be
detectable in ET/CE and the final TeV scale phase
transition would be detectable in LISA. Remarkably, the
predicted PS3 symmetry breaking scales (Fig. 1) corre-
spond to peak frequencies in the optimal range for experi-
ments. The solid black line is the total signal which is the
combination of the individual spectra and corresponds to
the nominal LISA recommendation for modeling GW
formation and propagation [2]. The gray bands correspond
to a conservative treatment of the sound wave contribution
which illustrates the amount of theoretical uncertainty.
In the benchmark signal of Fig. 2, different peaks

are obtained by appropriately varying the VEVs
(1; 103; 104 TeV), as well as the effective relativistic
degrees of freedom in the plasma. The renormalization
group evolution of PS3 unambiguously determines the
values of all gauge couplings at the relevant scales starting
from the benchmark input g4;3ðΛIVÞ ¼ 2, g4;2ðΛIIÞ ¼

ffiffiffi
2

p
,

and matching to the strong coupling at the scale ΛIV [114].
The SU(4) coupling at the third site g4;3ðΛIVÞ is com-
patible with the current flavor anomalies as discussed in
the Supplemental Material [94]. Finally, the three quartic
couplings are set to λðΛIVÞ ¼ 10−2, λðΛIIÞ ¼ 10−2, and
λðΛIÞ ¼ 0.5 × 10−2.
To assess how generic GW signatures are in PS3, we

show as an example in Fig. 3 the detectability of the GW

FIG. 2. Complete GW spectrum, which we term the “Triglav
signature,” following from three FOPTs in the PS3 model. See the
third section for details.

PHYSICAL REVIEW LETTERS 124, 171802 (2020)

171802-3



spectrum computed in ET and CE, as a function of g and λ
for a fixed VEV of 103 TeV. These regions were com-
puted using our simplified 4 → 3 model to calculate the
GW parameters and spectrum, after which a detectability
analysis is performed where we require an SNR of 5 to
obtain the boundaries. One can see immediately from
Fig. 3 that significant parameter space exists which allows
for a FOPT producing an observable GW signal without
tuning [115]. Furthermore, the best GW signatures are
given for (i) gauge couplings of Oð1Þ and (ii) small quartic
coupling.
Interestingly enough as discussed in the second section,

both of these conditions are generic predictions of PS3

because (i) it embeds the strong gauge group and (ii) the
natural size of the quartic is set by the one-loop Coleman-
Weinberg correction from the gauge sector. Indeed, the
solid black line of Fig. 3 which falls nicely into the
detectable region shows the expected size of λ ≈
g4=16π2 as would be generated from renormalization group
flow. We have verified that SUð4Þ × SUð3Þ0 → SUð3Þ
breaking pattern leads to qualitatively similar results.
Conclusions.—The peculiar pattern of hierarchical fer-

mion masses which span many orders of magnitude is one
of the longest standing puzzles in fundamental physics, the
solution of which might require radical new approaches
beyond colliders. In this Letter we propose for the first time
that a multipeaked stochastic gravitational wave signature
(where the ratios of peak frequencies follow the flavor
hierarchies) could provide such a probe.
This idea is best illustrated in the context of the recently

proposed PS3 model for flavor hierarchies [63], motivated
also in part by the current B-meson anomalies. Here, the
successful quark-lepton unification of the original Pati-
Salam model is made compatible with flavor data by
dimensional deconstruction onto three sites, one for each
generation of SM fermions.

We show that the parameters of the PS3 model generi-
cally yield strongly first-order phase transitions as the
gauge symmetry is sequentially broken down to the SM
in hierarchical steps. Remarkably, the peak frequencies of
the resulting GW spectra as determined by the VEVs fall
precisely into the projected sensitivity range of future
experiments. As we have argued, these are nearly inevitable
predictions of the model as constructed. Such a spectacular
signal, if observed, would offer a unique opportunity to
probe the origins of the flavor hierarchies at energy scales
which are currently inaccessible to colliders.
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