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Abstract

Background

Schistosomiasis and soil-transmitted helminth infections are among the neglected tropical

diseases (NTDs) affecting primarily marginalized communities in low- and middle-income

countries. Surveillance data for NTDs are typically sparse, and hence, geospatial predictive

modeling based on remotely sensed (RS) environmental data is widely used to characterize

disease transmission and treatment needs. However, as large-scale preventive chemother-

apy has become a widespread practice, resulting in reduced prevalence and intensity of

infection, the validity and relevance of these models should be re-assessed.

Methodology

We employed two nationally representative school-based prevalence surveys of Schisto-

soma haematobium and hookworm infections from Ghana conducted before (2008) and

after (2015) the introduction of large-scale preventive chemotherapy. We derived environ-

mental variables from fine-resolution RS data (Landsat 8) and examined a variable distance

radius (1–5 km) for aggregating these variables around point-prevalence locations in a non-

parametric random forest modeling approach. We used partial dependence and individual

conditional expectation plots to improve interpretability of results.

Principal findings

The average school-level S. haematobium prevalence decreased from 23.8% to 3.6% and

that of hookworm from 8.6% to 3.1% between 2008 and 2015. However, hotspots of high-

prevalence locations persisted for both infections. The models with environmental data

extracted from a buffer radius of 2–3 km around the school location where prevalence was
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measured had the best performance. Model performance (according to the R2 value) was

already low and declined further from approximately 0.4 in 2008 to 0.1 in 2015 for S. haema-

tobium and from approximately 0.3 to 0.2 for hookworm. According to the 2008 models, land

surface temperature (LST), modified normalized difference water index, elevation, slope,

and streams variables were associated with S. haematobium prevalence. LST, slope, and

improved water coverage were associated with hookworm prevalence. Associations with

the environment in 2015 could not be evaluated due to low model performance.

Conclusions/significance

Our study showed that in the era of preventive chemotherapy, associations between S. hae-

matobium and hookworm infections and the environment weakened, and thus predictive

power of environmental models declined. In light of these observations, it is timely to

develop new cost-effective passive surveillance methods for NTDs as an alternative to

costly surveys, and to focus on persisting hotspots of infection with additional interventions

to reduce reinfection. We further question the broad application of RS-based modeling for

environmental diseases for which large-scale pharmaceutical interventions are in place.

Author summary

Parasitic worm infections, such as schistosomiasis and soil-transmitted helminthiasis,

belong to a group of diseases collectively known as neglected tropical diseases that affect

primarily marginalized communities. Transmission of both parasitic worms is affected by

behavioral, environmental, and socioeconomic factors. In the absence of reliable surveil-

lance data, sophisticated geostatistical models that rely on environmental predictors are

commonly used to predict transmission and treatment needs. We used two nationally rep-

resentative surveys conducted in Ghana and employed a relatively simple and interpret-

able modeling approach to predict the risk of Schistosoma haematobium and hookworm

infections among school-age children before (2008) and after (2015) deworming became

a widespread practice. We found that as the proportion of infected children declined,

model performance decreased, but hotspots of high-prevalence locations persisted. This

suggests that the models may still be useful in spatial targeting of interventions, but the

broad application of the approach should be re-evaluated.

Introduction

Schistosomiasis and soil-transmitted helminth infections are among the neglected tropical dis-

eases (NTDs), affecting primarily the rural poor living in sub-Saharan Africa, Asia, Latin

America, and the Caribbean [1]. In Ghana, in the absence of large-scale interventions, the

prevalence of schistosomiasis among school-age children was estimated at 23.3% [2] and that

of soil-transmitted helminth infections at 19.8% [3]. In regard to schistosomiasis, the predomi-

nant species is Schistosoma haematobium (22.3%), whereas hookworm (14.4%) is the most fre-

quent soil-transmitted helminth species. The transmission of both diseases is governed by

social-ecological contexts, with water, sanitation, and hygiene (WASH) infrastructure and

human behaviors playing important roles [4–6].
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Due to non-specific symptoms, low treatment seeking behavior, and poor diagnostic capac-

ity in rural communities, routine health management information systems (HMIS) are ill-

equipped to detect and report representative case numbers of these helminth infections [7,8].

Transmission and treatment needs at large spatial extents (national, regional, or continental)

are characterized primarily through modeling, using periodic school-based or community-

based prevalence surveys, coupled with remotely sensed (RS) environmental predictors [2,3,9].

Several improvements have recently been suggested to common modeling methods applied to

smaller sub-national spatial extents. These include utilizing fine resolution RS data (e.g., Land-

sat 8), employing a larger number of relevant environmental indicators derived from the spec-

tral bands (e.g., modified normalized difference water index [MNDWI]), and using a variable

distance radius to extract and aggregate environmental indicator variables around point-prev-

alence locations [10,11].

As large-scale preventive chemotherapy has become a widespread practice that reduced the

prevalence and intensity of helminth infections [3,9], the validity and relevance of these mod-

els should be re-assessed. In Ghana, school-based preventive chemotherapy with praziquantel

against schistosomiasis and albendazole against soil-transmitted helminthiasis was conducted

in 2010, 2011, 2012, 2014, and 2015, with coverage ranging between approximately 70% and

85%. In the present study, we examine the limits of the aforementioned environmental model-

ing approach previously used only in sub-national studies, focusing on the national extent of

Ghana. We employed two nationally representative school-based prevalence surveys con-

ducted before (2008) and after (2015) the launch of large-scale preventive chemotherapy, in

order to compare model performance before and after a national level intervention. The

modeling approach is intentionally relatively simple and easily interpretable, so that it might

be used by Ministries of Health to guide planning and monitoring of NTD control measures.

Methods

Ethics statement

The study involved secondary data analysis, and hence did not require specific ethical

approval. Aggregated school-level S. haematobium and hookworm prevalence data were pro-

vided by Ghana Health Service (GHS). Predictor variables used in the models were obtained

from publicly available data sources.

Study area

The study was conducted in Ghana, a coastal West African nation bordering Togo in the East,

Côte d’Ivoire in the West and Burkina Faso in the North. At the time of the study (up to 2015),

the country was sub-divided into 10 administrative regions and 216 districts (S1 Fig). Ghana

has a variable climate which tends to be hotter and drier in the North and more humid with

higher precipitation in the South (S2 Fig). In 2015, approximately 35% of the economically

active population were engaged in agriculture [12]. In recent years, Ghana has experienced

environmental degradation from deforestation and mining activities [13]. Climate change has

resulted in rising temperatures, declining rainfall totals, and periodic flooding [14]. These

changes are expected to influence agriculture and food security and environmental disease

transmission dynamics, including that of NTDs.

Data sources

The primary outcome variables were prevalence of infection by S. haematobium and hook-

worm among school-age children. The primary predictor variables were land surface
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temperature (LST), normalized difference vegetation index (NDVI), MNDWI, topographic

variables (obtained from satellite RS sources), and WASH variables (obtained from the Demo-

graphic and Health Survey [DHS]). Data processing and analysis steps are described below

and outlined in S3 Fig.

Prevalence data. Schistosomiasis and hookworm prevalence data were obtained from

GHS. The national school-based surveys were conducted in 2008 [15] and 2015 in the context

of an evaluation study of the impact of the annual national deworming campaign. The baseline

survey was conducted between March and May 2008 and included 118 schools. The evaluation

survey was conducted between October and November 2015 and included 158 schools. After

verification and cleaning (e.g., removing schools for which global positioning system [GPS]

coordinates were not accurate), a total of 116 schools remained in the 2008 dataset and 140 in

the 2015 dataset. The 2008 and 2015 nationally-representative samples of schools were derived

independently.

An average of 50 primary and junior high school students per school (aged mainly between

5 and 14 years) were included in each study. A single urine sample from each child was exam-

ined for the presence of S. haematobium eggs. A single stool sample from each child was sub-

jected to the Kato-Katz technique and tested for the presence of S. mansoni, and any of the

three soil-transmitted helminth (i.e., Ascaris lumbricoides, hookworm, and Trichuris trichiura)

eggs. Individual data for S. haematobium and hookworm (the other helminth infections were

rare) were categorized for presence or absence of parasite eggs and aggregated into school-

based percent prevalence values for analysis.

RS environmental data. Landsat 8 data were obtained from USGS Earth Explorer (http://

earthexplorer.usgs.gov/) as level-2 data products, which had been corrected to remove the

effects of the atmosphere on the reflectance values. These products contain spectral bands (#1–

#9) to detect surface reflectance values at different wavelengths ranging from 0.44 to 2.29 μm

with spatial resolution of 30 m from the Operational Land Imager (OLI), and thermal bands

(#10 and #11) covering wavelengths between 10.6 and 12.51 μm with spatial resolution of

100 m from the Thermal InfraRed Sensor (TIRS) [16]. All available images that encompassed

the study area (a total of 17 tiles) from October through December 2015 were screened for

quality. One image per tile (path and row combination), with acquisition dates ranging

between November 20 and December 29, 2015 that was least affected by clouds (<10% of the

pixels), was downloaded (S4 Fig). As Landsat 8 images were not available for 2008, we used

2015 images for both surveys, based on the observation that rainfall and vegetation patterns

did not change significantly during this time period, visually validated using publicly available

climate data [17] (S2 Fig).

ASTER Global Digital Elevation Model (GDEM v2) data were obtained from USGS Earth

Explorer (https://earthexplorer.usgs.gov/) with a spatial resolution of 30 m. A moving window

(3x3) majority filter was applied to the elevation data to eliminate image artefacts [18,19] using

the Spatial Analyst extension in ArcGIS version 10.4.1.

Settlement data were obtained from the German Aerospace Center (http://www.dlr.de) as a

Global Urban Footprint (GUF) product. GUF is a binary raster data product of populated and

unpopulated pixels produced from 2011–2012 TerraSAR-X and TanDEM-X radar images

[20]. GUF was chosen as a source of settlement data due to its 0.4 arcsec geometric resolution,

or 12 m spatial resolution, which most closely matched the resolution of the other spatial data

used in the analysis.

WASH data. Two geospatial interpolated surface layers with a spatial resolution of 5 km

were obtained from the 2014 DHS; namely (i) population living in a household using an

improved water source (%) and (ii) population living in a household with no toilet facility (%)

[21].
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Population density data. High resolution population density data were obtained from

the Data for Good project as a raster image, created by a machine learning algorithm which

identifies buildings from satellite images, overlayed with population data from the latest

national census (2010), projected to 2020 using the intracensal population growth rate of 2%

[22]. This granular dataset with a 30 m spatial resolution represents the total number of indi-

viduals living in each 30-m grid cell.

Data processing

In the Landsat images, pixels affected by clouds or cloud shadows were masked using the qual-

ity assurance band. Spectral bands were used to compute NDVI and MNDWI. These vegeta-

tion and water indices were chosen out of several that are available due to their better

performance in prior analyses in Ghana [23]. Thermal bands were used to derive LST. Data

were processed in R software, version 3.6.1.

Elevation data were used to derive stream order and slope. Topographic drainage lines were

delineated from the GDEM based on the potential flow direction from higher to lower eleva-

tion and accumulation of surface runoff according to topographic conditions using Arc Hydro

Tools in ArcGIS, version 10.4.1. The resulting stream network was ordered according to Strah-

ler [24]. Slope of the terrain was derived from the DEM as a proxy indicator for potential flow

velocity of surface runoff with inclination calculated in degrees.

The population density data were projected and resampled to match the spatial extent and

resolution of all other analysis variables. Because the analysis concerned school-age children,

we multiplied each pixel value by 0.24, representing the approximate proportion of children

aged between 5 and 14 years among the total population in 2020 [25].

Variable extraction and aggregation

Aggregated school-based point-prevalence (% positive samples) of S. haematobium and hook-

worm were used as the outcome variables. A total of seven environmental predictor variables

and two WASH variables were resampled to a matching 30 m spatial resolution for analysis

(Table 1). While the predictor variables were represented by continuous raster data, prevalence

was represented by point data. Hence, extraction and aggregation of the raster data were neces-

sary. A variable buffer radius (1–5 km) around each point-prevalence location was used by

extracting the aggregated (i.e., mean, median, sum, and maximum) pixel value from the buffer

area to be matched to each prevalence measure. In addition to five buffer distances, two meth-

ods of variable extraction were used; namely (i) no mask (i.e., all pixels within the buffer radius

were extracted) and (ii) unpopulated mask (i.e., only unpopulated pixels as defined by the

GUF layer were included) [11,23].

Statistical analysis

Exploratory analyses included variable summaries and correlations, followed by random forest

models. The random forest approach was chosen because it can deal with continuous outcome

data, multicollinear predictor variables, and low numbers of training samples, and hence, it is

the recommended machine learning method for generating predictions [26]. It has been suc-

cessfully applied in similar studies [10,11,23].

We conducted 10 random forest models to determine which of the five buffer distances and

two masks present the best method of variable extraction. Each model was applied to the

S. haematobium and hookworm outcomes for 2008 and 2015 study years, resulting in 40 mod-

els. Explanatory power was compared using the R2 value [27]. Relative importance of predictor

variables was assessed using the increasing node purity (‘IncNodePurity’) metric [28,29]. We
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interpreted the effect of each predictor across the range of its values using partial dependence

(PD) and individual conditional expectation (ICE) plots [30].

We applied all models back to the raster stack of predictor variables to derive continuous

predicted S. haematobium and hookworm prevalence surfaces. Although predicted values

were available for all pixels, the same masks used to extract the explanatory variables were

applied to the respective predicted prevalence surfaces. After applying the masks, the median

predicted values extracted from the relevant buffer area of the prevalence location were plotted

against observed prevalence values. The quality of the prediction was assessed using Spear-

man’s rank correlation (r value) between model-predicted and observed values, compared

with the line of equality, as well as by plotting the averages of the observed and predicted values

against their differences and assessing the proportion of predicted observations within the

95% limits of agreement (q value) [31].

Lastly, we applied the resulting spatial predictions of the best performing models to the

population density map in order to estimate the total number of children aged 5–14 years at

risk of S. haematobium and hookworm infection, respectively. For this, we multiplied the pop-

ulation density raster by the predicted prevalence raster in order to obtain the number of indi-

viduals at risk within each 30-m cell. We subsequently summed the number of individuals at

risk per district.

Results

S. haematobium and hookworm prevalence

The average school-level S. haematobium prevalence (with respective standard deviation [SD])

was estimated at 23.8% (SD 27.7%) in 2008 and 3.6% (SD 9.8%) in 2015. Hookworm preva-

lence also decreased from 8.6% (SD 9.6%) in 2008 to 3.1% (SD 6.9%). Fig 1 shows the spatial

distribution of prevalence values.

Comparison of five buffer distances and two variable extraction methods

Exploratory analyses showed limited variability in predictor variable values across the buffer

distances, except the number of pixels within the buffer area that were classified as streams. As

expected, the number of stream pixels, and hence, the amount of surface water exposure,

increased with increasing buffer distance. There were also no significant differences in predic-

tor value distributions for 2008 and 2015 surveys (S5 Fig).

Table 1. Summary of analysis variables.

Source Variable name Variable type Resolution Aggregation Value range*
OLI NDVI Continuous 30 m Median 0.16 to 0.80

OLI MNDWI Continuous 30 m Median -0.56 to 0.05

TIRS LST (˚C) Continuous 100 m Median 21.5 to 38.2

DEM Elevation (m) Continuous 30 m Median 12.0 to 537

DEM Slope (˚) Continuous 30 m Median 2.47 to 13.2

DEM Streams Binary 30 m Sum 115 to 3,656

DEM Stream order Ordinal 30 m Maximum 1 to 8

DHS Access to improved water (%) Continuous 5 km Median 29 to 99

DHS Lack of sanitation facility (%) Continuous 5 km Median 0.7 to 98

* Range represents minimum and maximum values present in the dataset (within the largest buffer radius of 5 km in the unmasked dataset).

https://doi.org/10.1371/journal.pntd.0011424.t001
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Fig 1. School-based prevalence (%) of S. haematobium and hookworm in Ghana as estimated from nationally

representative surveys conducted by Ghana Health Service in 2008 and 2015. Lakes are shown in blue. Data sources: district

boundaries [ArcGIS Hub]; lakes [RCMRD geoportal].

https://doi.org/10.1371/journal.pntd.0011424.g001
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Results of the random forest models showed better fit for 2008 models as compared to 2015

for both S. haematobium and hookworm infections (Fig 2). According to model R2 values,

S. haematobium models outperformed hookworm models in 2008, whereas hookworm models

performed slightly better in 2015. There were no differences in model performance across the

two ways of extracting variables (i.e., no mask and unpopulated mask). However, buffer dis-

tances were important—peak model performance occurred at the 2 km buffer distance for

S. haematobium and around 3 km for hookworm (Fig 2). According to the unmasked 2 km

buffer S. haematobium model, slope was the predominating explanatory variable in 2008, with

the highest variable importance. In the 2015 model, LST and NDVI predominated. According

to the 3 km buffer unmasked hookworm model, LST and improved water access were the pre-

dominant variables with the highest variable importance. In the 2015 model, most variables

had relatively similar variable importance (Fig 2).

Fig 2. Top row shows R2 values (y-axis) across buffer distances (x-axis) for 2008 models (solid line type) and 2015 models (dashed line type) and two

masking methods: no mask (dark color) and unpopulated pixels only (light color). Second and third rows show ‘IncNodePurity’ values (y-axis) for each

predictor variable (x-axis) for unmasked (dark color) and unpopulated pixels only (light color) extracted from the best performing models.

https://doi.org/10.1371/journal.pntd.0011424.g002
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Variable interpretation

Influence of individual predictor variables on the outcome were interpreted using PD and ICE

plots (Fig 3). The teal line represents the PD average, while the gray lines represent how the

prediction for parasite prevalence changes as the given predictor variable changes for each

instance in the data. This approach helps to visualize how each individual predictor affects the

predicted prevalence and makes the prediction process of machine learning models more

interpretable [30].

S. haematobium
NDVI, water, sanitation, and stream order variables had no visible relationship with S. haema-
tobium prevalence. LST between 25˚C and 30˚C was associated with increased S. haematobium
prevalence. MNDWI values of -0.045 and above were also associated with higher prevalence.

Increasing elevation and slope decreased prevalence up to 250 m and 3˚, respectively, after

which there was no relationship. The streams variable was associated with higher prevalence

but only up to a total of 170 pixels (30 m2 in size) in a 2 km buffer radius (Fig 3).

Hookworm

NDVI, MNDWI, elevation, sanitation, streams, and stream order variables had no visible rela-

tionship with hookworm prevalence. Increasing LST was associated with decreased prevalence

up to 17˚C, after which there was no relationship. Increasing slope increased prevalence up to

approximately 4˚. Improved water coverage between 90% and 95% was associated with lower

prevalence. However, the highest prevalence was observed at 100% value, likely due to outliers

in the dataset (Fig 3).

Model prediction

Model prediction was evaluated only on the 2 km buffer radius model for S. haematobium and

3 km buffer radius model for hookworm. Spearman’s rank correlation values between

observed and predicted prevalence were higher for the 2008 survey year than 2015 and very

similar for models conducted with unmasked data versus only unpopulated pixels. For S. hae-
matobium, 2008 and 2015 r values were 0.72 and 0.34 (p<0.01), respectively. For hookworm,

the respective values were 0.73 and 0.45 (p<0.01). The mean versus difference plots for

unmasked 2008 models illustrated high deviation of predicted prevalence values from the line

of equality with actual prevalence values for both S. haematobium and hookworm (Fig 4).

However, a high percentage (>90%) of differences between the observed and predicted values

fell within the 95% limits of agreement (Fig 4). Visual assessment of predicted prevalence sur-

faces (Fig 5) showed highest S. haematobium prevalence values along the shores of lakes Volta

and Bosomtwi and along the coast. Hookworm is most prevalent in the south-western part of

Ghana and to the east of Lake Volta. These patterns are well pronounced in the 2008 maps but

not in the 2015 maps.

Population at risk

Population at risk in the age group 5–14 years was estimated using the population density data

for 2020 and aggregated at the district level (Fig 6). For S. haematobium infections, the magni-

tude of the population at risk was significantly reduced from 5,016,461 in 2008 to 744,652 in

2015 (a decline of 85.2%). For hookworm infections, the reduction was less drastic from

1,241,057 in 2008 to 631,089 in 2015 (a decline of 49.1%) (S6 Fig). Spatially, the districts with

relatively higher populations at risk persisted from 2008 and 2015 for both helminth species
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Fig 3. Partial dependence (teal) and individual conditional expectation (gray) plots show the marginal impact of each

independent predictor variables (x-axis) on the dependent outcome variable (y-axis) while holding the other variables constant.

Only the best performing models were considered: 2 km buffer distance for S. haematobium and 3 km for hookworm for 2008 survey.

https://doi.org/10.1371/journal.pntd.0011424.g003
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(Fig 6). Likewise, there was a correlation between areas at higher risk of S. haematobium and

hookworm, indicating co-infections [15].

Discussion

We analyzed publicly available environmental data in combination with topographic and

WASH variables to assess their performance in predicting S. haematobium and hookworm

prevalence before (2008) and after (2015) the launch of large-scale preventive chemotherapy

programs in Ghana. We examined two methods of environmental data extraction and a vari-

able buffer radius for environmental variable aggregation around point-prevalence locations.

We used interpretable machine learning methods to improve the understanding of which con-

text variables contributed most to the model predictions. We also demonstrated the use of a

new population density dataset in estimating the population at risk based on the model-pre-

dicted prevalence.

We found that after several rounds of preventive chemotherapy with high reported cover-

age, the average school-level prevalence of S. haematobium and hookworm declined signifi-

cantly from 23.8% to 3.6% and from 8.6% to 3.1%, respectively. The stark prevalence declines

are similar to those observed in other sub-Saharan African countries [9,32]. As expected, envi-

ronmental model performance declined for both helminth infections. At risk areas largely

maintained their geographic clusters from the 2008 to 2015 models, with the same districts

Fig 4. Top row shows a scatter plot of actual (y-axis) versus model predicted (x-axis) prevalence for the unmasked 2008 models as compared to the

diagonal line of equality; r is the correlation between observed and predicted values. Bottom row shows a scatter plot comparing the average of observed

and predicted prevalence values (x-axis) to the difference between these values (y-axis) with mean difference indicated by a solid line and 95% limits of

agreement indicated by dashed lines; q is the proportion of predicted values within the limits of agreement.

https://doi.org/10.1371/journal.pntd.0011424.g004
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Fig 5. Predicted prevalence values (%) for S. haematobium (top) and hookworm (bottom) for 2008 and 2015 surveys using

unmasked datasets and 2 km and 3 km buffers, respectively. Lakes and areas with significant cloud cover are shown in white.

Data sources: Ghana boundary [ArcGIS Hub]; lakes [RCMRD geoportal].

https://doi.org/10.1371/journal.pntd.0011424.g005
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Fig 6. Predicted population (children aged 5–14 years) at risk for S. haematobium (top) and hookworm (bottom) per district

(n = 216) generated using the four models using 2020 population estimates. Lakes are shown in white. Data sources: district

boundaries [ArcGIS Hub]; lakes [RCMRD geoportal].

https://doi.org/10.1371/journal.pntd.0011424.g006
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displaying relatively higher treatment needs over time. A recent modeling study recommended

a prevalence threshold of 5–11% among school-age children to indicate control of S. haemato-
bium in a geographic location [33]. Another study suggested that school-based preventive che-

motherapy is cost-effective for schistosomiasis at a prevalence threshold of 5% and for soil-

transmitted helminthiasis at a prevalence threshold of 20% [34]. In the 2015 survey, 17% of the

surveyed schools exceeded the 5% prevalence threshold for S. haematobium and 4% exceeded

the 20% prevalence threshold for hookworm.

Generally, higher values of MNDWI correlated with higher S. haematobium risk, as

expected. LST between 25˚C and 30˚C was associated with increased S. haematobium risk,

consistently with the documented favorable temperature range for snail and cercariae survival

[35,36]. Higher elevation and steeper slope (indicating higher stream flow velocity) decreased

risk, which is also in line with the extant literature. However, all elevations observed in the

analysis were far below the 2,000 m threshold for S. haematobium transmission [37]. In the

case of hookworm, increasing LST was generally associated with decreased risk, as has been

found in other studies [38] and increasing slope was associated with increased risk of infection.

Water and sanitation failed to predict either infection, potentially due to highly generalized

coarse spatial resolution (5 km) of the DHS dataset and the fact that data of 2015 are likely not

representative of conditions in 2008.

We found that buffer distance is worthy of consideration in modeling. The 2 km buffer

radius resulted in best model performance for S. haematobium and the 3 km radius performed

best in the hookworm models. The methods of data extraction, or masks, however, did not

make a difference in this analysis, consistent with our prior work at a smaller sub-national spa-

tial extent. The preceding study demonstrated that extracting environmental data only from

known water bodies or water contact locations results in improved model performance, as

compared to unmasked or unpopulated pixels, which had similar model performance [23].

We conclude that the use of masking is only relevant if specific water contact locations are

known. We do recommend the use of the variable buffer radius when using RS datasets with

fine spatial resolution. With coarse spatial resolution datasets, the use of the buffer radius is

less relevant.

Overall, the models had relatively low predictive power and predicted prevalence values devi-

ated substantially from the observed values, indicating over prediction in the low-prevalence

range and under prediction in the high-prevalence range. This has implications for the success

of these modeling approaches in the era of widespread preventive chemotherapy. The study was

limited by Landsat 8 data availability—data were not available for 2008; hence, 2015 data were

used in both models after validation against another free dataset that confirmed that there were

no significant climatic changes during this period. However, some regions did experience more

significant change in their climate than others, which could have affected the analysis.

Another significant challenge to our analysis was posed by cloud cover in RS data acquisi-

tion. For countries like Ghana, cloud-free images are typically only available during the dry

season. This limitation especially affects variables such as LST, which unlike vegetation or

water indices, experiences shorter-term changes, making a single image less reliable. This is

especially difficult in the case of NTD modeling, where the timing of prevalence data acquisi-

tion, the most likely timing of exposure, and the links to environmental conditions must be

considered. In our analysis, LST represented by images extracted during November and

December represents the higher range of annual temperatures, close to the maximum, which

is most relevant in our case. In other use-cases, this approach may not be relevant and possible

implications on the validity of the conclusions should be carefully examined.

Despite these limitations, our study contributed to a growing body of modeling studies for

spatiotemporal risk profiling of S. haematobium and hookworm transmission. First, we
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justified the use of a variable buffer radius for extracting environmental variables to link with

point-prevalence data. In Ghana, the radius of 2–3 km resulted in the best model performance.

Second, our analysis further supported the use of MNDWI as the preferred water index in

S. haematobium modeling, corroborating our previous findings [23]. Third, we improved on

the black-box random forest modeling approach by incorporating visual interpretation of the

results. This relatively simple and interpretable approach could be utilized by public health

agencies for risk profiling of environmental diseases. We do advise to use the approach with

caution, and to be mindful of the R2 values and model prediction error. We provide the meth-

odology to do so (Fig 4). The use of RS data in the modeling approach is likely more relevant

for diseases that are affected by changes in the environment (e.g., deforestation, drought,

flooding) but for which no concurrent large-scale pharmaceutical interventions are taking

place. Alternatively, RS data can be used to monitor the change in environmental conditions

(e.g., changes in waterbodies in the case of schistosomiasis risk), rather than disease preva-

lence, as an endpoint.

In conclusion, most current modeling approaches for NTD risk profiling continue to rely

on environmental variables. However, with declining prevalence in the face of large-scale con-

trol programs emphasizing a pharmaceutical intervention (i.e., annual deworming), associa-

tions with the environment weaken and predictive power of the models also declines. Despite

falling prevalence, hotspots of infections persist, as treatment programs may be incomplete

(e.g., not reaching out-of-school children or adults) and water-related risk factors are not miti-

gated with persisting high rates of reinfection. In light of these trends, it is timely to develop

new cost-effective passive surveillance methods (e.g., improving diagnosis and reporting at pri-

mary care level) for NTDs. Further, we recommend re-evaluating the use of RS data for model-

ing of environmental diseases as endpoints, for which pharmaceutical interventions are in

place.
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