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helminth vaccines?
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Soil-transmitted helminths affect approximately 1.5 billion people worldwide.

However, as no vaccine is currently available for humans, the current strategy for

elimination as a public health problem relies on preventive chemotherapy.

Despite more than 20 years of intense research effort, the development of

human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine

development focuses on peptide antigens that trigger strong humoral immunity,

with the goal of generating neutralizing antibodies against key parasite

molecules. Notably, this approach aims to reduce the pathology of infection,

not worm burden, with only partial protection observed in laboratory models. In

addition to the typical translational hurdles that vaccines struggle to overcome,

HHVs face several challenges (1): helminth infections have been associated with

poor vaccine responses in endemic countries, probably due to the strong

immunomodulation caused by these parasites, and (2) the target population

displays pre-existing type 2 immune responses to helminth products, increasing

the likelihood of adverse events such as allergy or anaphylaxis. We argue that

such traditional vaccines are unlikely to be successful on their own and that,

based on laboratory models, mucosal and cellular-based vaccines could be a

way to move forward in the fight against helminth infection. Here, we review the

evidence for the role of innate immune cells, specifically the myeloid

compartment, in controlling helminth infections. We explore how the parasite

may reprogram myeloid cells to avoid killing, notably using excretory/secretory

(ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of

tuberculosis, we will discuss how anti-helminth innate memory could be

harnessed in a mucosal-trained immunity-based vaccine.

KEYWORDS
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1 Introduction

Helminth parasites are pathogens of importance to humans and the field of

veterinary medicine. Despite its large socioeconomic burden, the mass drug

administration of anthelmintics is currently the preferred method of control.

However, with the rapid emergence of genetic resistance to anthelmintics, such as
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macrocyclic lactones in livestock, a more sustainable control

strategy for helminths is required (1, 2). Vaccination is

considered to be the most feasible strategy for the long-term

control of such pathogens. However, to date, there is no vaccine

for helminth control in human populations, and only a few have

been licensed for use against soil-transmitted helminths in

agriculture. Irradiated larval vaccines can effectively protect

against Dictyocaulus viviparus (3), the bovine lungworm, and a

native antigen vaccine is available for Haemonchus contortus (4),

the barber’s pole worm found in sheep and goats, and is in use

principally in Australia. Recombinant vaccines have also been

developed against Taenia solium in pigs and Echinococcus

granulosus in cattle. The development of these vaccines and the

challenges of translating the lessons learned from pastoral to

clinical settings have been recently reviewed (5, 6).

However, it is important to note that, despite the efficacy of

agricultural helminth vaccines, their recommended vaccination

schedule fails to meet the target product profile (TPP) of the

human helminth vaccines (HHVs) currently in development. The

TPPs for two separate HHVs, hookworm, and schistosomiasis,

include characteristics that would make them suitable for use in

endemic and resource-limited settings: a maximum of two doses

(specifically via an intramuscular route for hookworm); an

efficacy of 80% for moderate-to-severe hookworm infections

and 75% for schistosome burdens; with sustained protection

against schistosomiasis for 2 or 3 years (7–9). In striking

contrast, the sheep vaccine Barbervax, which is used against H.

contortus (also known as Wirevax in South Africa), requires three

priming doses before the prospective worm season and

continuous dosing every 6 weeks during all subsequent worm

seasons (10, 11). This intensive schedule is thought to be due to

its “hidden” antigen design (an approach shared by the human

hookworm vaccine initiative), which uses gut-derived worm

products against which no pre-existing allergic immunity exists.

The immune system is therefore not sufficiently restimulated by

hidden antigens during infection, meaning that regular booster

doses are necessary. In general, HHVs have faced considerable

challenges, as the type 2 immune response required to control

helminth infection can also induce adverse events in the form of

allergy and anaphylaxis (12), which has given rise to commercial

and ethical concerns. Although humoral immunity will likely be

important in any HHV that is developed, the current hidden

antigen strategy appears to be inadequate for the recall of

immune memory (13).

Cell-mediated immunity is often neglected in the field of

helminth vaccines, despite innate cells like eosinophils being

“textbook” anti-helminth responders, and many protective

cellular mechanisms being described in laboratory helminth

models. This is in part because of the historical focus on adaptive

immune cells in the field of vaccinology. Currently, with a new

understanding of “memory” in the form of trained immunity,

innate cell immunity could be harnessed alongside humoral

responses to develop effective HHVs. In this review, we argue for

the important, though often obscured, role of myeloid cells in the

control and killing of helminths and the importance of integrating

cell-mediated responses into vaccine design.
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2 Evidence for myeloid cell killing and
control of infection

Increased counts of eosinophils, mast cells, and basophils, both

in the blood and at infection sites, are considered a hallmark of

helminth infection. However, the protective role of myeloid cells,

especially eosinophils, is highly controversial and most likely varies

depending on the causative species of infection.
2.1 Are myeloid cells involved in
helminth control?

In this article, we provide recent evidence and information

regarding the controversies associated with myeloid cell

involvement in helminth killing and also discuss the mechanisms

that are responsible for causing parasite death.
2.1.1 Macrophages
Macrophages are one of the most well-studied effector cells in

the context of helminth infection. The type 2 cytokines interleukin 4

(IL-4) and IL-13 polarize macrophages into alternatively activated

phenotypes (AAMs; also known as type 2 or M2 macrophages),

with the hallmark expression of arginase 1 (Arg-1), resistin like

alpha (RELMa), and chitinase-like 3 (Ym1, also Chil3), to name a

few. It is well established in laboratory models that AAMs are

involved in protection against reinfection for many helminth

species, such as filariae (14), soil-transmitted helminths (15–17),

Trichinella (18, 19), and Schistosoma (20). How such macrophages

effectively kill helminths is not fully understood, but recent

discoveries have shed light on a multitude of factors that

potentiate AAM “larvicidal” or anti-helminth killing, such as

complement protein C1q, efferocytosis of apoptotic neutrophils,

and the activity of surfactant proteins (21–23). However, whether

AAMs are self-sufficient or require a persistent type 2 cytokine

milieu for the long-term maintenance and killing of secondary

infections is currently unknown. Type 2 innate lymphoid cells

(ILC2s) have been shown to maintain AAMs in the lungs after

infection with the so-called rodent “hookworm” Nippostrongylus

brasiliensis (15), but whether the “memory” is intrinsic to ILC2s or

macrophages in this model is unknown.

In recent years, it has been found that macrophages are plastic;

their phenotypes are heavily dictated by their developmental origin

and the microenvironment of their niche. For example, it has

previously been shown that interstitial macrophages can trap and

kill N. brasiliensis in the lungs during secondary infection (15).

Svedberg and colleagues have demonstrated that alveolar

macrophages are poorly polarized into AAMs as glucose

availability in the airways is limited (24). However, Chen et al.

have recently elaborated on these findings, showing that monocyte-

derived alveolar macrophages expand after N. brasiliensis infection

and polarize more efficiently into AAMs than their tissue-resident

counterparts, thus contributing to improved helminth killing (25).

In the context of filarial infections, the local proliferation of AAMs

was previously associated with infection control (14). However, this
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might be attributable to the tissue studied rather than a helminth-

specific difference, as with the same parasite, L. sigmodontis, it was

found that alveolar macrophages are expanded through monocyte

recruitment, as in the case of N. brasiliensis (26).

All in all, these examples show that, despite their apparent role

in helminth killing, not all AAMs are equally effective, and

understanding the tissue of protection and the origin of activated

cells is crucial to orchestrating protection.

2.1.2 Eosinophils
Despite their “textbook” definition, eosinophils play a

controversial role in helminth infection. Research half a century

ago established that eosinophils can kill helminths, as observed

using in vitro assays (27). Yet their role in vivo remains rather

obscure. Indeed, the depletion of eosinophils using IL-5 ablation

observed in Ddbl-GATA-1 mice or PHIL mice in various

helminth models has not confirmed the protective role of

eosinophils (28–31). In filariae, for which this question has

been studied in more detail, it has been suggested that

eosinophils are required for parasite development and impact

viability only at a later time point (i.e., the patent phase) (32, 33).

In addition, it has been proposed that they play a strong role in

repair mechanisms (34).

Pulmonary eosinophils have recently been shown to be

activated distally by infection with the rodent enteric helminths

Heligmosomoides polygyrus bakeri (Hpb) and Strongyloides

venezuelensis (35, 36). In the former, eosinophils were expanded

distally by CD4+ T cells, whereas in the latter model, type 2 innate

lymphoid cells (ILC2s) were found to activate eosinophils.

However, it was found that in both cases, eosinophils and IL-5,

the potent inducer of their effector functions, were required for

heterologous protection against infection with a second rodent

parasite, N. brasiliensis.

Overall, the role of eosinophils in protection against helminths

remains unclear. There could be many technical explanations as to

why the in vitro and in vivo data do not seem to align, such as the

tissue origin of the eosinophils used for the studies, or the side

effects of constitutive depletion of a population that is extremely

important for homeostasis (37). Another explanation could be that

helminth parasites have evolved such strong evasion strategies

against helminths in vivo that depletion of certain cells does not

impact parasite survival, as we have observed with theN. brasiliensis

evasion of neutrophil extracellular traps (see Section 2.2).

2.1.3 Mast cells
Evidence regarding the protective role of mast cells during

helminth infection is scarce, but their proteases can reportedly

damage the nematode cuticle (38). After infection with the strict

enteric murine nematode Hpb, the intestinal epithelial barrier is

breached by third-stage infective larvae (iL3), which undergo a

developmental stage in the submucosa. Mast cells lining the mucosa

of the small intestine then detect the adenosine triphosphate (ATP)

released from the damaged epithelial cells and release IL-33 to

rapidly promote the activation of type 2 innate lymphoid cells

(ILC2s). The overabundance of mast cells at this mucosal site is
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sufficient to render mice resistant to Hpb infection, demonstrating

the importance of myeloid cells in the early detection of helminth

parasites (39).

Mast cells also contribute to the elimination of adult worms. For

example, during infection with the murine whipworm Trichuris

muris, it was found that mast cells enhanced intestinal epithelial cell

permeability, which promoted the resulting “weep and sweep”

response that expels adult worms. In this model, mast cells

continue accumulating in the mucosa and actively secrete

proteases for more than 28 days after the expulsion of T. muris

from the intestine (40, 41). Mast cell-dependent expulsion has also

been reported for the rat tapeworm H. diminuta using KitW-sh-

deficient mice that displayed delayed worm expulsion (42).

Similarly, mast cells have been shown to be essential for adult

expulsion using a novel model of mast cell deficiency (in Cpa3-Cre

mice) that does not affect basophil number, contrary to c-kit-

deficient mice (43).

Mast cells’ protective activity seems to be mainly directed

against adult parasites living in the intestine. It would be

interesting to use the new genetic deficiency models to investigate

if mast cells play a role against parasites at other stages or in

other tissues.

2.1.4 Basophils
Activated basophils are robust producers of the type 2 cytokines

IL-4 and IL-13, which are central to type 2 response initiation. Their

role seems to be highly dependent on the parasite model used,

which has recently been comprehensively reviewed (44). After

Trichinella spiralis infection, basophils have been shown to be

rapidly recruited systematically by thymic stromal lymphopoietin

(TSLP)-dependent mechanisms (45). Using Bas-TRECK mice

deficient in basophils, the authors further show that basophils are

required for optimal T helper cell type 2 (Th2) activation.

Interestingly, in N. brasiliensis and Hpb, two rodent models of

hookworm infection, basophils were not shown to be required for

the control of primary infection, but their depletion or absence

compromised memory against reinfection with poor Th2 priming

or poor macrophage polarization (46, 47). Conversely, in a model of

another soil-transmitted helminth, Strongyloides ratti, basophils

were demonstrated to be crucial to the control of primary

infection but redundant in memory responses and the initiation

of downstream weep and sweep processes (48). In filarial infection,

basophil depletion did not affect outcomes in either primary or

secondary infection (49).

To our knowledge, direct helminth killing by basophils has not

been reported; however, vaccination against Nb-LSA1a, a secreted

product of N. brasiliensis, was recently found to confer protection in

a basophil-dependent manner (50).

There is limited clinical evidence showing the same in humans.

In fact, a retrospective analysis of 22 years of patient medical

records did not find an association between helminth infection

and basophilia (51), although only circulating basophils were

measured. Although morphologically similar, caution should be

taken when translating functional discoveries from mouse to

human myeloid cells.
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2.1.6 Neutrophils
Neutrophils are quickly recruited to the site of tissue damage.

Given the large size of helminths, neutrophils are often transiently

present at the site of migration. In the hookworm model N.

brasiliensis, the role of neutrophils in tissue repair has been well

established (52, 53). Neutrophils have also been shown to be

important for the efficient priming of macrophages in the lungs

of hookworm-infected mice (16, 25). Azurophilic and tertiary

granule release by neutrophils is important for the elimination of

S. ratti (54). Direct killing of helminths by neutrophils has more

recently been proposed in the context of extracellular trap

formation (Section 2.2.3 contains further details).
2.2 Mechanisms of helminth killing
mediated by myeloid cells

Three main mechanisms of helminth killing orchestrated by

myeloid cells have been described: (i) direct toxicity of released

mediators, (ii) killing by trapping in granulomas, and (iii) killing by

extracellular trap formation (Figure 1).
2.2.1 Toxicity
Many studies report the involvement of myeloid cell-derived

enzymes and cationic/cytotoxic proteins in helminth infection.
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For example, Arg-1, released by macrophages, hydrolyzes the

amino acid arginine to ornithine and putrescine, which can directly

immobilize Hpb (17) (Figure 1). Eosinophil granule proteins are

also produced and secreted, including eosinophil peroxidase (EPX),

major basic protein (MBP), eosinophil cationic protein (ECP), and

eosinophil-derived neurotoxin (EDN) (56, 57). Notably, several

older studies have shown the direct in vitro toxicity of these

compounds against helminths, such as all four main eosinophil

granule proteins against the microfilariae of Brugia malayi and

Brugia pahangi (58). Furthermore, in the 1980s, Jong and colleagues

observed that human neutrophils could attach to and kill S.

mansoni schistosomula when exogenous eosinophil peroxidase

(EPX) was added to in vitro cultures (59). However, there is little

recent literature on the cytotoxic mechanisms of helminth killing.

Other products may not be directly toxic but instead cause

damage leading to secondary effects. For example, histamine

released from mast cells has long been thought to cause an itch

that results in the physical removal of skin-penetrating parasites

(60). In the last few years, nociception has been shown to

communicate immunological stimuli from distal sites to central

lymphoid organs. Cytokines and mediators can innervate

peripheral nerves, which go on to influence dendritic cells (DCs)

function and germinal center reactions, and this function can be

inhibited by non-steroidal anti-inflammatory drugs (61). Indeed,

nociceptive neurons may drive immune responses to fungal

infections, such as Candida albicans , by secreting the
FIGURE 1

Myeloid cells kill helminths by releasing toxic compounds or by trapping them. Myeloid cells can kill helminths directly by secreting toxic
compounds. In nematodes such as Hpb, toxic compounds released by myeloid cells, such as putrescine or elastase, can act directly on the parasite

cuticle (c), increasing its permeability to viability dyes (such as trypan blue or Sytox Green™) and reducing parasite motility. In trematodes, such as S.
mansoni, the tegument structure (t) can be affected by neutrophils and eosinophils, as shown by TEM analysis (55). The appearance of dark
pigmentation and vesicles under the apical membrane (am) and before the muscle layer (m) was reported after neutrophil and eosinophil binding.
The spine area may also be affected, with a clear “bubble“ area reported around some spines (s). l, lumen; h, hypodermis; t, tegument; m, muscle
cells; am, apical membrane; Mc, membranocalyx plasma membrane; b, “bubble” area; p, pigment; v, vesicles; TEM, transmission electron
microscopy. Another key mechanism of helminth trapping is either by granuloma formation or by extracellular trap formation (ETosis). Trapping
provides a way of immobilizing parasites causing food deprivation, stress, and the formation of a potentially toxic microenvironment. Extracellular
traps have recently been reported in response to many helminths and can be formed by neutrophils, macrophages, and eosinophils, among other
cells. The proteins that decorate the traps are likely to be dependent on the cell types and activation phenotypes of the myeloid cells involved.
Physical trapping and close proximity to toxic molecules have been shown to result in larval death. Trapping can also take the form of granulomas,
the composition of which varies between helminth species. Typically, type 2 granulomas are rich in macrophages and eosinophils, and occasionally,
in neutrophils. Granulomas are usually surrounded by structural cells such as epithelial cells and fibroblasts. Their role remains poorly understood.
Figure created using BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fimmu.2023.1163364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Doolan et al. 10.3389/fimmu.2023.1163364
neuropeptide calcitonin gene-related peptide (CGRP), which

facilitates the production of IL-23 by dendritic cells; in turn, IL-

23 activates Th17 cells (62, 63). However, similar mechanisms

linked to itching, or pruritus, caused by helminths or other

parasites have, to our knowledge, not yet been explored. Instead,

much research has focused on the immobilization of infective and

adult stages of helminths.
2.2.2 Trapping of helminths: Direct adhesion and
granuloma formation

The adhesion of immune cells to the parasite surface has long

been observed, and, strikingly, immune cells can even recognize

non-parasitic helminths, as demonstrated by eosinophils binding to

Caenorhabditis elegans L3 (64). Early immunization studies

observed that N. brasiliensis larvae injected into the peritoneal

cavity of naive rats were rapidly coated by macrophages, and

although the larvae were not directly damaged by the cells,

immobilization appeared to trigger autolysis of the larvae,

followed by the death of the rats (65). Another similar study

found that the initial response to intraperitoneal injection of this

gastrointestinal nematode triggered neutrophilia for several hours,

followed by several days of eosinophilia in the peritoneal exudate

(66). Since these studies, almost five decades ago, research into

granulomatous responses to infection has increased. In general,

granulomas are rich in macrophages and eosinophils, with possible

recruitment of neutrophils depending on the parasite stage.

Granulomas are often surrounded by fibroblasts and/or epithelial

cells. Intriguingly, however, there have been few advances in the

research on how tissue-dwelling parasites actually meet their end.

Immobilization leading to stress and starvation is a common

hypothesis for how parasites are destroyed (Figure 1).

Recently, arginine depletion in the granuloma microenvironment

was explored as a potential explanation for decreased viability due to

AAMs trapping, as helminths cannot produce their arginine. In vitro,

the supernatant of AAMs cocultured with the larvae of N. brasiliensis

is reduced in arginine. The authors also showed that arginine

supplementation can limit the reduction in viability (as measured

by ATP concentrations) seen in the parasite after co-incubation with

AAMs and that larvae cultured in the absence of arginine (without

macrophages) were less viable. Although this amino acid starvation

mechanism has not been proven in vivo, it certainly consolidates the

food deprivation hypothesis (25).

More recently, another form of parasite trapping has been

revealed as a mechanism resulting in helminth death.
2.2.3 Trapping of helminths: Extracellular traps
The previous belief that neutrophils are not involved in anti-

helminth immunity has fallen out of favor following findings that

many helminth species have instead simply evolved mechanisms to

evade neutrophil functions altogether.

A key mechanism involves the formation of neutrophil

extracellular traps (NETs), so named for being first observed to

form in neutrophils. This process involves the release of DNA in the

form of decondensed filaments in response to large multicellular

pathogens, including fungal hyphae and helminths. These
Frontiers in Immunology 05
structures are decorated with toxic compounds, including

histones and the granule contents of granulocytes, and are

derived from either genomic or mitochondrial DNA, giving rise

to “suicidal” or “vital” traps, respectively. NETs, or as we refer to

them more accurately here, extracellular traps (ETs), can also be

produced by eosinophils, basophils, and macrophages, among other

cells (67). Thus, many cells can form traps, but for helminth

infection in mammals, neutrophil and eosinophil traps (NETs

and EETs, respectively) have been mainly described (Figure 1).

ET formation has been shown to be an ancient form of pathogen

defense that predates the development of the mammalian myeloid

lineage (68). This is likely a key reason for helminths developing a

plethora of evasion strategies against ET formation (ETosis). Such

mechanisms will be discussed in a later section. The role of ETosis

in helminth infection has recently been reviewed by us (69), and

also by Ajendra (70), and, as such, we will mostly focus on the more

recent literature.

In a seminal paper, Bonne-Année established that Strongyloides

stercolaris larvae could trigger the formation of ETs from

neutrophils and macrophages in vitro (71). However, no killing

was observed in this model. Such trapping without killing has been

demonstrated for numerous helminth species, both of human and

agricultural importance, such as H. contortus (72, 73), B. malayi

(74), Dirofilaria immitis (75), Onchocerca volvulus (76), Ostertagia

ostertagi (77), Fasciola hepatica (78), Oesophagostomum

columbianum (79), and E. granulosus (80). Interestingly, it was

reported that human neutrophils do not release NETs when

stimulated by S. mansoni eggs but do when stimulated by S.

japonicum eggs (81). In 2020, we demonstrated, both in vivo and

in vitro, that hookworms can evade NETs by releasing type II

deoxyribonuclease II (DNase II), and, that when this evasion

strategy was compromised, NETs can impair parasite viability

(82). Since then, many mechanisms of ET evasion by helminths

have been described (Section 2.2). Thus, earlier publications on the

subject may have overlooked ETosis due to such evasion strategies.

Another form of ETosis has been described more recently in the

context of helminth infection. Eosinophil ETs against helminths

were recently found to form around the microfilariae (mf) of the

filarial model L. sigmodontis, although not at the L3 stage (83).

Mitochondrial markers were found to be higher than nuclear

markers in the released structure, indicative of “vital” EETs. Both

cavity thoracic and intestinal eosinophils were shown to decrease

parasite motility by EETs, and the inoculation of mf pretreated with

eosinophils accelerated their clearance in vivo. A specific killing

mechanism was not further investigated, but eosinophil traps

contained ECP, a highly basic cytotoxic RNase found in the

granules of eosinophils that have previously been established as

toxic for Brugia mfs (58).

The actual killing mechanism of helminths by ETs has not been

described in detail so far. Trapping has certainly been reported for

many species and, as described for granulomas, can impair

development and motility. Different shapes of NETs have been

reported for the canine filariae D. immitis, for example, diffused

NETs, spread NETs, and aggregated NETs, all of which were

observed after contact with D. immitis. It is unclear whether or

not those different shapes could have different impacts on worms;
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however, all of them did promote larval entrapment (75). NETs

may not be able to create food deprivation for large helminths;

however, they can certainly create a toxic microenvironment that

localizes toxic molecules to the parasite, as previously reported in

the case of EETs and ECP against mfs.

In general, the molecular triggers of ETosis continue to be

defined, but some recognition receptors have been identified. The

release of EETs in response to L. sigmodontis mfs was shown to be

dependent on the recognition receptor dectin-1 but not on either

dectin-2 or Mincle (macrophage-inducible C-type lectin) (83).

Furthermore, trap formation around Schistosoma japonicum was

reported to be driven by host-derived extracellular vesicles (EVs)

(84), possibly as a host-derived response to overcome

immunomodulation by S. japonicum through IL-10 regulation. In

addition, Ehrens and colleagues have demonstrated that antibodies

from immune animals can enhance ETosis, but are not essential for

trapping the infectious larvae of soil-transmitted helminths (54).
3 Immunomodulation of myeloid cells

During the last decades, research on helminths has shed light on

their elaborate strategies for immunomodulation and evasion,

which are required for long-lived associations with their hosts

(85). Helminths have been proposed to be a driving force in the

evolution of type 2 immunity, which balances parasite control with

wound healing (86). Because of this, research has broadly studied

numerous parasite products involved in host–helminth

interactions, particularly those that polarize DCs (and the ensuing

CD4+ T helper cell responses) and macrophages. Other myeloid

cells also appear to be targeted by ES.

Immunomodulation by ES products of helminths has already

been extensively reviewed (85), and, as such, the list provided here is

not exhaustive but targeted to highlight the importance of

understanding such evasion mechanisms for vaccine design for

different myeloid cells, either involved in type 2 polarization or

directly as effector cells. ES products are composed of a large array

of molecules, such as proteins but also lipids, glycans, other

metabolites, and larger structures that contain nucleic acids, such

as EVs. In this section, we will discuss some of the key helminth

products that mediate the immunomodulation of myeloid cells. It

should be noted that only the most recent findings are detailed

(Figure 2), notably those related to metabolites and EV modulation;

descriptions of other mechanisms are available in Table 1.
3.1 Shaping polarization: Type 2, regulatory
or type 1 responses of macrophages
and DCs

3.1.1 Helminth secreted proteins
Helminth products exert a strong influence on the immune

response and shape type 2, regulatory, and type 1 response. These

changes are well studied for both DCs and macrophages, which set

the immunological tone of response (142), both triggering a Th2
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response (88–90) and shifting the response away from type 1 and

promoting the expansion of regulatory T cells (Tregs) (87, 92).

Similar to DCs, secreted products from several helminths, notably

proteases and their inhibitors, can stimulate macrophages to

upregulate hallmark markers of AAMs and alleviate inflammatory

diseases (19, 91, 99, 101–105). For example, a range of helminths

have evolved to express cystatins, also called cysteine protease

inhibitors (CPIs), including T. spiralis (TspCstN) (93), Hpb

(HpbCPI) (100), Acanthocheilonema viteae (AvCystatin) (143), O.

volvulus (onchocystatin) (94), B. malayi (Bm-CPI-2) (95), and S.

japonicum (SjCystatin) (96). They present very similar activities

that impact both macrophage and DC polarization (85, 93, 97,

98, 100).

Antioxidants, such as glutathione S-transferases (GSTs), are

detoxification enzymes that play an important role in protection

against the free radicals generated by host immune cells, decreasing

pro-inflammatory responses both in DCs and macrophages (106–

109, 144).

Many other proteins secreted by helminths have been shown to

shape macrophage or DCs polarization, thus illustrating how ES

might inform “natural” or vaccine-induced immunity by

modulating antigen-presenting cells (110, 114, 115, 117).

Recently, several metabolic enzymes secreted by helminths have

been shown to modify host metabolism by altering eicosanoid and

prostaglandin production (113, 116).

In summary, the proteins secreted by helminths have both

demonstrable and putative influences on a variety of immune cells,

including those in the myeloid compartment that orchestrate

vaccine-induced immunity.

3.1.2 Secreted helminth metabolites
To date, most studies on the immunomodulatory products of

helminths have focused on proteins. However, recent publications

have highlighted that secreted metabolites play an important role in

host–parasite interactions. Many have been explored for their

therapeutic potential as anti-inflammatory drugs.

For example, Ancylostoma caninum metabolites have been

shown to be protective in a mouse model of colitis. Notably,

further analysis has shown that low-molecular-weight metabolites

(of ES and somatic origin) suppress inflammatory cytokine

secretion from human peripheral blood mononuclear cells,

including lipopolysaccharide (LPS)-stimulated myeloid cells (118).

Although the responsible metabolites have not yet been identified,

the metabolic characterization of various helminth products is now

well under way (145–147).

3.1.2.1 Lipids

Helminth lipidomics is still a nascent field (148) and many of the

lipid molecules identified by metabolomics are helminth-specific (146).

Recently, it has been identified that eicosanoids produced and released

by helminths can have immunomodulatory functions. The

prostaglandins E2 (PGE2) and D2 (PGD2) have been identified as

secreted products from schistosomes as demonstrating various non-

myeloid immunomodulation activities (122), and both have been

postulated to alter macrophage and DC polarization. Trichuris suis
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also exerts immunomodulatory effects via helminth-derived

eicosanoids. Laan et al. identified an ES compound that reduces the

secretion of tumor necrosis factor-alpha (TNF-a) in human DCs after

in vitro LPS activation. Using fractionation, the active lipid was found

to be similar in structure to mammalian PGE2. Further metabolomics

of Tsu-ES products confirmed the release of a wide range of

eicosanoids that could be involved in further host modulation and

the suppression of DC responses (123).

Lysophosphatidylcholine (LPC) from S. mansoni has recently

been shown to activate bone marrow-derived macrophages to

increase expression of the Arg-1, mannose receptor, Ym1, and

transforming growth factor beta (TGF-b) as well as production of

IL-10 and PGE2 24 h after stimulation. The authors further show

that Sm-LPC induces alternative activation of macrophages through

peroxisome proliferator-activated receptor gamma (PPAR-g)
activation (121). Lipids can also decorate proteins, as is the case

with ES-62, a filarial nematode phosphorylcholine (PC)-containing

product that has been extensively characterized and shown to be

protective in a wide range of inflammatory diseases (119).
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Mechanistically, it blocks Toll-like receptor 4 (TLR-4) signaling in

DCs and macrophages by way of its PC moieties (120).

Overall, the role of lipids in helminth modulation is still poorly

understood, but lipids might offer interesting targets once further

characterization are available.
3.1.2.2 Hemozoin

Hematophagous helminths, such as schistosomes, liver flukes,

and hookworms, can detoxify free heme that is released during

hemoglobin digestion by the formation of a polymer of heme called

hemozoin (Hz) (149–152). Hz potentiates IL-4 stimulation and

induces AAM polarization (125). Interestingly, human DCs isolated

from patients with bronchial asthma and then pulsed with LPS and

Hz released IL-10 and IL-12 instead of TNF-a and TGF-b, and no

change in DC activation markers was observed. Surprisingly, no

effect on the human DCs of healthy individuals was noted (124). It

could thus be crucial to investigate the role of Hz in DC polarization

in the presence of IL-4 or the impact of Hz presence on vaccination.
FIGURE 2

Helminths can immunomodulate myeloid cells to avoid killing. Myeloid cells are particular targets of helminth parasite evasion. Of note is that many
ES products have been shown to trigger regulatory phenotypes in DCs and in macrophages, allowing the long-term survival of helminths in their
hosts. Many of these immunomodulatory compounds are secreted and can be proteins, metabolites, nucleic acids, EVs, etc. It should be noted that
the effects of these products are always ambiguous, as they can trigger both tolerance and regulatory mechanisms, in addition to pro-killing
mechanisms (Th2 polarization induced by Sm or Nb products for example through DC activation or the hookworm factor ASP-2, which favors
neutrophil migration). Given a large number of evasion molecules, only a few will be presented. Understanding this complex immunomodulation is
required for efficient vaccine design, and this figure highlights how myeloid cells are central to this strategy. Ac, Ancylostoma caninum; Av,
Acanthocheilonema viteae; Bm, Brugia malayi; Fhe, Fasciola hepatica; Hpb, Heligmosomoides polygyrus bakeri; Na, Necator americanus; Nb,
Nippostrongylus brasiliensis; Sj, Schistosoma japonicum; Sm, Schistosoma mansoni, Of, Opisthorchis felineus, Ov, Opisthorchis viverrini; Tm,
Trichuris muris; Tp, Trichinella pseudospiralis; Tsp, Trichinella spiralis, Tsu, Trichuris suis. Ag, antigen; AIP, anti-inflammatory protein; ASP-2, aspartic
protease 2; CB1, cannabinoid receptor type 1; CkBP, chemokine-binding protein; CBP, cathepsin B-like protein; NiF, neutrophil inhibitory factor;
eCL1, extender of the chronological lifespan protein 1; ES, excretory/secretory products; EVs, extracellular vesicles; GDH, glutamate dehydrogenase;
GST, glutathione S-transferase; IL, interleukin; LEC-2, lectin 2; PGD2, prostaglandin D2; PGE2, prostaglandin E2; KI-1, Kunitz-type serine protease
inhibitor; TPX2, thioredoxin peroxidase 2; TrxR, thioredoxin reductase. Figure created using BioRender.com.
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TABLE 1 Helminths can immunomodulate myeloid cells to avoid killing.

Product Cell target Main finding Reference

Hpb-ES Intestinal DCs Decreases in surface expression of dectin-1 in vitro and in vivo (87)

Nb/Sm-ES DCs Th2 (88–90)

Tsp-/Fhe-ES Macrophages AAM activation with increased arginase-1 expression (19, 91)

Tsp-ES DCs
Impairs maturation and function: low expression of HLA-DR (Human Leukocyte Antigen – DR
isotype) , CD86, and CD83

(92)

1—Proteases and inhibitors

CPIs/Tsp-CstN BMDM
Downregulates classic activation markers after LPS stimulation in vitro by inhibiting the TLR2/
MyD88 signaling pathway

(93–98)

Fhe-CL1 and Sm-CB1 Macrophages
Protects in an LPS model by suppressing pro-inflammatory macrophage responses through
TLR-3 degradation

(99)

Hpb-CPI DCs Tolerogenic activation when stimulated in vitro with Hpb-CPI and CpG (100)

Sj-CP1412 RAW264.7 cells RNAse, induces AAM polarization (101)

DCs Inhibits LPS-stimulated DC maturation

Tsp-CBP Macrophages
Induces AAM polarization to ameliorate intestinal injury in an intestinal ischemia-reperfusion
model

(100 ,102)

Tsp-TPX2 released by
muscle larvae

RAW264.7 cells/peritoneal
macrophages

Upregulates arginase-1 and MRC-1 (103)

Tp-serpins Macrophages
Inhibits the activity of different proteases, such as human neutrophil elastase, mouse monocyte
chemoattractant protein 1, and human neutrophil cathepsin G

(104)

Tp-serpins J774A.1 macrophages In vitro upregulation of gene expression for the AAM markers IL-10 and arginase-1 (104)

Tsp-serpins intestinal Macrophages Reduces colitis inflammation by increasing AAM polarization in vivo (105)

2—Antioxidants

Fhe-GST (omega
class)

Macrophage Increases apoptosis and limits the production of pro-inflammatory cytokines (106)

Sc-TrxR Macrophages Limits the pro-inflammatory cytokine response after LPS stimulation (107, 108)

Tsp-GST DCs Decreases LPS response and increases production of regulatory cytokines IL-10 and TGF-b (109)

3—Other proteins

Ac-AIP-2 DCs Reduces allergic asthma by expanding tolerogenic CD103+ DCs (110)

Bm-LEC2 THP-1 cells Major EV protein, homologous to mammalian galectin 9, Induces AAM activation (111, 112)

Hpb-GDH
BMDM, Granulocytes and
human PBMCs

Alters the in vitro eicosanoid production (113)

Sm-29 DCs
Reduces both type 1 and type 2 inflammatory responses due to tolerogenic DC expansion in a
large variety of experimental models

Reviewed in
(114)

Tm-p43
Peritoneal and pulmonary
macrophages

IL-13-binding protein, limits AAM differentiation (115)

Tm-p43 DCs Increases in MHCII and CD86 expression following pulsing with p43 (115)

Tso-GDH/-IDH Monocytes Polarizes peripheral blood monocytes toward tolerogenicity, through regulation of host PGE2 (116)

Tsp-MIF Monocytes
Binds to and interacts with host monocytes via the surface molecule CD74, causing cell
proliferation

(117)

4—Metabolites

Ac-metabolites PBMCs Suppress the secretion of inflammatory cytokine (118)

Protect in a mouse model of colitis

4–1 Lipids

(Continued)
F
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3.1.3 Helminth EVs and their cargo
EVs are small membrane-bound packages, including both

exosomes and microvesicles (153), that are shed by virtually all

living cells into their environment, and which can be taken up by

and subsequently affect the function of distant cells. The role of EVs

in both innate and adaptive immune responses was reviewed
Frontiers in Immunology 09
recently (154). EV trafficking has emerged as a central

mechanism of intercellular communication in mammals and

appears to play an important role in host–pathogen interactions

(155). Interactions occur either through the activation of receptors

located on the surface of recipient cells, and/or through the transfer

of membrane-encapsulated cargo. EVs are enriched in molecules
TABLE 1 Continued

Product Cell target Main finding Reference

Av-Es-62 Macrophages and DCs Blocks TLR-4 signaling through its PC moieties (119, 120)

Sm-LPC BMDM
Increases expression of Arg-1 mannose receptor, Ym1, TGF-b IL.10, and PGE2
Alternative activation of macrophages through PPAR-g activation

(121)

Sm-PGE2/PGD2 Macrophages and DCs Alters macrophage and DC polarization (122)

Tsu-ES Human DCs
Decreases secretion of TNF-a after in vitro LPS activation,
Release of eicosanoids may be involved in further host modulation and suppression of DC
response

(123)

4–2 Hemozoin (Hz)

Of-Hz
Human DCs from
bronchial asthma patients

Causes release of IL-10 and IL-12 instead of TNF-a and TGF-b, but no change in DC activation
markers

(124)

Sm-Hz Macrophages/BMDMs Potentiates IL-4 stimulation and induces alternatively activated macrophage polarization (125)

5—Extracellular vesicles/helminth-derived extracellular vesicles (EVs)

Bm-EVs Macrophages Causes release of Bm-MIF and promotes AAM by synergizing with IL-4 (111, 112)

Hpb-TGM Fox3+ Treg cells Induces Foxp3+ Treg cells to interact with TGF-b receptor (126)

Tsp-EVs Macrophages Polarizes to AAM M2b subtype (127)

Tsp-EVs
Prevents colitis by inhibiting CAM
polarization and instead increases gut infiltration of AAM cells (128)

5–1 Evasion from extracellular traps

Nb/Na-DNase II Neutrophils Degradation of NETs (82)

Sm-KI-1 Neutrophils Binds to neutrophil elastase and impairs neutrophil migration and function (129–131)

Tsp-CRT Reduces ETs formation triggered by albumin/anti–albumin complexes in vitro (132)

Tsp-EVs Neutrophils Blocks NETosis (133)

Tsp-serpin
Neutrophils

Blocks neutrophil elastase and impairs phagocytosis and NETosis
Reduces release of pro-inflammatory cytokines and chemokines (97)

5–2 Evasion from cell recruitment and effector molecules

Ac-NiF Neutrophils Inhibits neutrophil accumulation at sites of tissue injury through CD11b/CD18 binding (134)

Ac-ASP-2 Neutrophils/monocytes Recruits neutrophils and monocytes (skin) (135)

PAS-1
Eosinophils

anti-inflammatory properties
Impairs EPX activity and reduces levels of IL-4, IL-5, IL-13 and eotaxin (136–138)

Av-ES-62 mast cells/DC regs/Tregs Inhibits mast cell degranulation via its ability to “reset” homeostatic signaling of ST2 (139)

Sm-LPC Human eosinophils Activates lipid droplet biogenesis via TLR2 in vitro (140, 141)
f

AAM, alternatively activated phenotype; BMDM, bone marrow-derived macrophage; CAM, classical activation of macrophage; DCs, dendritic cells; ETosis, ET formation; ETs, extracellular
traps; EVs, extracellular vesicles; EPX, peroxidase; IL, interleukin; miRNAs, microRNAs; LPS, lipopolysaccharides; NETs, neutrophil extracellular traps; NETosis, NET formation; PBMCs,
peripheral blood mononuclear cells; PPAR-g, peroxisome proliferator-activated receptor gamma; TGF-b, transforming growth factor beta; Tregs, T-regulatory cells; TNF-a, tumor necrosis factor
alpha; PC, phosphorylcholine.
Helminths have evolved many evasion strategies directed against myeloid cells, either by polarization or effector mechanisms. Some examples are listed in the table, which represents all major
classes of secreted products. Ac, Ancylostoma caninum, Av, Acanthocheilonema viteae; Bm, Brugia malayi; Fhe, Fasciola hepatica; Hpb,Heligmosmoides polygyrus bakeri; Na,Necator americanus;
Nb, Nippostrongylus brasiliensis; Of, Opisthorchis felineus; Sj, Schistosoma japonicum; Sm, Schistosoma mansoni; Sc, Setaria cervi; Tm, Trichuris muris; Tp, Trichinella pseudospiralis; Tso, Taenia
solium; Tsp, Trichinella spiralis; Tsu, Trichuris suis; AIP-2, anti-inflammatory protein 2; BMDM, bone marrow-derived macrophages; cystatins or CPI, cysteine protease inhibitors; FheCL1, a
major cysteine protease of Fasciola hepatica; GDH, glutamate dehydrogenase; GST, glutathione S-transferase; IDH, isocitrate dehydrogenase; MHC II, major histocompatibility complex II; MIF,
macrophage migration inhibitory factor; PGE2/PGD2, prostaglandin D2 or E2; Serpins, serine protease inhibitors; SmCB1, major cysteine proteases of S. mansoni; Ts-CBP, T. spiralis cathepsin B-
like protein; TsCstN, T. spiralis cystatin; TsTPX2, Tsp-anti-apoptotic protein thioredoxin peroxidase 2; TrxR, thioredoxin reductase; HLA-DR, Human Leukocyte Antigen – DR isotype.
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that either reflect their subcellular origin or are selectively packaged

within them. In most cases, the precise mechanisms by which EVs

exert their functions remain to be elucidated. EVs are internalized

by many cell types and by multiple pathways (156). Antigen-

presenting cells may capture EVs by phagocytosis, followed by

endocytosis. In other cells, EVs may be internalized into

endolysosomal compartments, where a fraction may escape to

release their contents into the cell cytosol by back-fusion with the

endosomal membrane (157). Under specific conditions, EVs can

fuse directly with the acceptor cell membrane (157, 158).

EVs contain a wide array of molecules, from lipids delimiting

their structure to transmembrane and intraluminal proteins and

glycoproteins, small metabolites, and nucleic acids (156, 159, 160).

Interestingly, in two different infection settings, macrophages were

the host cell type where most helminth-derived microRNAs

(miRNAs) could be detected in vivo (161, 162).

Growing evidence shows that the uptake of helminth-derived

EVs leads to the downregulation of immune responses (163). EVs

carry proteins with known immunomodulatory properties. A TGF-

b mimic (Hpb-TGM) was detected in the EVs of Hpb and can

induce Foxp3+ Treg cells upon interaction with the TGF-b receptor

(126). To date, the role of Hpb–TGM in DC and macrophage

polarization has not been investigated, but it may impact them in a

similar manner to mammalian TGF-b (164). Brugia malayi EVs

carry other homologs such as macrophage migration inhibitory

factor (MIF) (111) and galectin-2, a mammalian galectin-9

homolog (Bm-LEC-2) that promotes the alternative activation of

macrophages by synergizing with IL-4 (112). In a mouse model, it

was found that Trichinella spiralis EVs promote the polarization of

macrophages to AAM of the so-called M2b subtype (127). EVs from

the same parasite prevent colitis by inhibiting classical (M1)

macrophage polarization and increasing the gut infiltration of

AAM cells (128). Because helminth EVs have the potential to

exert important immunomodulatory effects on host cells, they are

considered a rich source of antigens for new vaccines, particularly

those based on neutralizing antibodies (163, 165) (Section 4.3.2).

Dozens of helminth ES miRNAs can be found in parasite-

infected host blood or culture and are often packaged in EVs (160).

MiRNAs are short non-coding RNA molecules that regulate the

post-transcriptional expression of a large number of genes, typically

resulting in messenger RNA (mRNA) degradation, and the

suppression of translation (166). In the past decade, the ability of

parasite-derived miRNAs to modulate both innate and adaptive

immune responses by being transferred to host cells has become

increasingly compelling (167). Both in vitro and in vivo, pivotal host

immune functions are repressed by nematode miRNAs following

exposure to miRNA mimics or internalization of parasite-derived

EVs (161, 167–176). The evidence so far implies widespread

incorporation of helminth miRNAs into a broad range of host

cells, including innate cells such as macrophages.

EVs appear to play an important role in host-parasite

communication and myeloid cells in particular, as they seem to

be a major conduit for such communication.

As we have seen, helminths have evolved a plethora of

mechanisms to affect the polarization of DCs and macrophages,

pushing the immune system away from protective responses.
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However, helminth products can also directly block protective

cellular mechanisms in various myeloid cells, such as basophils,

mast cells, neutrophils, and eosinophils.
3.2 Direct evasion from myeloid killing

3.2.1 Evasion from extracellular traps
Research is currently pointing toward an “arms race” of

neutrophil-mediated killing and immune evasion. Trap evasion

can involve either inhibiting the process of DNA decondensation

and release, i.e., inhibiting ETosis, or simply the degradation of

released DNA by DNase enzymes. Both mechanisms have now been

observed across a wide range of helminths in the last 5 years alone.

Using a live imaging approach, N. brasiliensis was shown in vivo

to have the ability to degrade NETs by the secretion of DNase II

(82). A similar evasion mechanism has been confirmed in the

human hookworm Necator americanus in vitro.

Cyst fluid from E. granulosus was found to decrease NET

formation against the parasite. At this stage, further mechanisms

have not been defined (80). Similarly, F. hepatica induced only

“weak” NET formation (NETosis) against both juveniles and

metacercariae in vitro using bovine neutrophils (78). The authors

found low reactive oxygen species (ROS) production, but this

mechanism was not investigated further. ES from Mesocestoides

corti (a model of Taenia spp.) was found to inhibit hydrogen

peroxide (H2O2)-induced NET formation both in vitro and in

vivo in a sepsis model of NETosis. The authors have further

shown that Mc-ES inhibits ROS-induced NET formation by

blocking the non-selective calcium-permeable channel TRPM2

(transient receptor potential cation channel subfamily M member

2) channel and calcium ion (Ca2+) entry (177).

Recently, T. spiralis ES products were shown to block NETosis.

The decondensation of DNA and citrullination of histones took

place regardless of the stimuli used [C. albicans, phorbol myristate

acetate (PMA), Staphylococcus aureus], but no external NET

structure could be observed. The ES could not degrade already-

formed NETs, indicating a blockade downstream of ROS

production but prior to the physical release of NETs from the

cell. The mechanism of this blockade is currently unknown, but it

may involve inhibition, for example, of the pore-forming protein

gasdermin D, which is involved in the release of DNA across the

nuclear and cellular membranes (133). The authors also show that

other functions of neutrophils, such as chemotaxis and

phagocytosis, are not impacted by T. spiralis ES products (178).

Neutrophil elastase is a key molecule that acts early on in the

formation of extracellular traps and leads to DNA decondensation.

Interestingly, proteomic studies in helminths, chiefly schistosomes,

have identified inhibitors of neutrophil elastase (129–131). In S.

mansoni, for example, SmKI-1, a secreted serpin, has been shown to

bind neutrophil elastase and impair neutrophil migration and

function in murine models of inflammatory disease. The

involvement of SmKI-1 in NETosis has not been studied to date.

In T. spiralis, another serpin was recently shown to block neutrophil

elastase, and also impair phagocytosis and NETosis, and reduce the
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release of pro-inflammatory cytokines and chemokines (97).

Trichinella spiralis also secretes calreticulin (TspCRT) that can

bind the complement component 1q (C1q). This binding in turn

was found to reduce extracellular trap formation triggered by

albumin/anti–albumin complexes (in a C1q-dependent manner)

in vitro (132).

Despite the description of eosinophil traps against helminths,

to date, no specific helminth evasion mechanisms for EETs

have been described, but they are likely to exist and warrant

further exploration.

3.2.2 Evasion from cell recruitment and effector
molecules

A few mechanisms for evading direct killing by myeloid cells

have also been reported.

3.2.2.1 Eosinophils

The so-called Protein 1 from Ascaris suum (As-PAS-1), secreted

at both larval and adult stages, has been shown to have anti-

inflammatory properties. Notably, it abrogates both the

inflammatory responses induced in vitro by LPS (136) and in vivo

in the ovalbumin (OVA)-induced allergic airway mouse model

(137). The mechanism underlying PAS-1 is dependent on IL-10 and

T-regulatory cells (Tregs), but intriguingly, PAS-1 also directly

impaired eosinophil peroxidase activity and reduced levels of IL-

4, IL-5, IL-13, and eotaxin (138), demonstrating both direct and

indirect mechanisms of immune evasion.

Interestingly, total schistosomal lipids or the schistosomal-

derived lysophosphatidylcholine (Sm-LPC) fraction not only

activate DC and macrophage polarization, as mentioned above

but have also been shown to activate lipid droplet biogenesis in

human eosinophils via TLR2 in vitro (140, 141). The authors

further showed that this mechanism was dependent on the

eicosanoid receptor DP1 (recognizing PGD2) for total

schistosomal lipids. Interestingly, the mechanism was not DP1

dependent for the Sm-LPC fraction alone, indicating that it is S.

mansoni-derived PGD2 that is responsible for this eosinophil

activation phenotype (and specifically the release of three active

molecules, namely EXC4, LTC4, and TGF-b).

3.2.2.2 Neutrophils

Helminth ES products contain many products with redox

activity, such as thioredoxins, peroxiredoxins, and superoxide

dismutase (179). It has been hypothesized that these enzymes can

evade or detoxify the reactive oxygen- and nitrogen-based species

utilized by granulocytes. In addition, it has been shown that

peroxiredoxin-1, a secreted product from S. japonicum, can use

RNA interference (RNAi) knockdown to be protective against H2O2

exposure but not against nitric oxide (NO) exposure (180).

Two hookworm products, neutrophil inhibitory factor (NIF)

from A. caninum and Na-ASP-2 from N. americanus, have been

shown to have opposing impacts on neutrophil chemotaxis, with

NIF inhibiting neutrophil accumulation at sites of tissue injury

through CD11b/CD18 binding (134), and Na-ASP-2 recruiting

neutrophils and monocytes to the skin (135).
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3.2.2.3 Mast cells and basophils

Histamine release is another hallmark of helminth infection,

and, although it is unclear whether or not histamine is required for

killing helminths, worm products can either increase or decrease

histamine release from mast cells and basophils.

For example, the aforementioned ES-62 from A. viteae has been

shown to inhibit mast cell degranulation (139) via its ability to

“reset” the homeostatic signaling of ST2, the IL-33 receptor. Using

peritoneal-derived serosal mast cells, this mechanism involves the

sequestration of MyD88 to ST2, which in turn limits crosstalk with

macrophages and the inflammatory cytokine cascade (181). In

contrast, a translationally controlled tumor protein (TCTP)

homolog from S. mansoni can induce histamine release from a

basophil/mast cell line (182).

It is quite clear that many helminth evasion mechanisms are

directed toward myeloid cells, highlighting the high risks that those

cells pose to the parasites. An efficient therapy against helminths

thus needs to circumvent this evasion/immunomodulation, both to

restore efficient antibody production and empower myeloid cells to

conduct cellular killing.
4 Alternatives to humoral immunity as
a vaccine strategy

Epidemiological and experimental evidence does not support a

strong role for humoral immunity to helminths. In this section, we

discuss the correlates of immunity to helminths in the context of

vaccine design.

Research in endemic settings indicates that T-cell responses to

some helminths are particularly poor. In hookworm-infected patients

cured with chemotherapy in China and Brazil, peripheral blood

mononuclear cells (PBMCs) from individuals older than 40 years

remained hyporesponsive to restimulation with hookworm antigen

for up to 12 months (183). The effects of immunomodulation,

therefore, worsen with age, or more likely, with chronic exposure

to parasites. Furthermore, Loukas et al. (183) have observed that

patients with mixed infections by schistosomes and hookworm had

reduced cellular responsiveness to schistosome antigens compared to

age-matched controls with single-infection schistosomiasis. Thus,

hookworm in particular compromises T-cell responses directed

against itself and other pathogens. Phase 2 clinical trial results for

the two lead hookworm vaccine candidates have presented additional

challenges to traditional vaccine design (13). The trial used mass

cytometry from participants’ PBMCs in the endemic setting of Gabon

to measure cellular responses to the Na-GST-1 antigen. Surprisingly,

vaccination-induced cognate T cells expressed high levels of CTLA-4

and CD40-L, checkpoint molecules typically associated with Tregs. It

is likely that these “regulatory” cells compromised immunity and led

to low antibody titer results, even after three doses of the vaccine

candidate. As illustrated here in the case of hookworms (but also

likely for other helminths), traditional vaccines may struggle to

override existing immunomodulation. Instead, antigen-specific

immunity may need to be “rewired” or de-tolerized, and protection

by innate cells might be preferable to a humoral response.
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Lessons learned from vaccine research in agricultural and

laboratory models highlight that innate cell immunity may be

central to protection. Interestingly, an agricultural vaccine study

against H. contortus demonstrates the importance of cellular

responses for protection. While studying the effect of different

adjuvants in an experimental L3 surface antigen vaccine,

Piedrafita et al. (184) found no correlation between antibody

titers and protection (as measured by fecal egg output). Instead,

using an intradermal challenge model, skin immune responses and,

notably, eosinophils were shown to be strongly correlated with

protection (184).

Similarly, with the commercial Barbervax vaccine against H.

contortus, antibody titers (antigen-specific and non-specific) do not

necessarily correlate with vaccine-induced protection. Furthermore,

this has been reported in studies of natural exposure (where sheep

may have been previously exposed to the parasite) (185). A weak

correlation has been observed in naive flocks (186) and even in

studies where the antigen dose was 20 times higher than that of the

commercial vaccine (187). Together, these findings suggest that

humoral immunity alone does not mediate or predict protection

against this gastrointestinal nematode.

In another agricultural vaccine against Ostertagia ostertagi, the

number of natural killer (NK) cells, rather than antibody titers,

was correlated with protection (188). Similarly, vaccination

against O. volvulus ASP-1 has been shown to induce a dominant

interferon-gamma (IFN-g) response, which is likely linked to the

abundance of activated NK cells and neutrophils (189). Finally, a

recent vaccine against T. spiralis based on a recombinant galectin

was shown to be protective and cause high levels of intestinal

histamine release (190).

Altogether, this suggests that despite the immunomodulation of

the adaptive immune system, innate cell-mediated responses can

support helminth vaccinations. We propose in the following section

that the trained immunity of myeloid cells could be harnessed for

efficient vaccination against helminths. We first introduce the

concept of trained immunity, review the current evidence of

trained immunity in helminth infection, and then speculate on

helminth products that could cause such myeloid cell memory.

Finally, we detail the concept of a combined antigen/trained

immunity vaccine against helminths.
4.1 Immunological basis of
trained immunity

The concept of innate immune memory is little more than a

decade old, with the adaptive features of NK cells first reported in

mice (191, 192). When “memory” NK cells were adoptively

transferred from mice previously infected with cytomegalovirus

into naive animals, they still conferred protective immunity typical

of reinfection (193). Following this study on NK memory,

Kleinnijenhuis and colleagues (194) observed epigenetic

reprogramming of human monocytes after bacillus Calmette–

Guérin (BCG) vaccination, which enhanced cytokine production

in response to restimulation (194). In contrast to adaptive memory,
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responses, “trained immunity” amplifies non-specific responses

(Figure 3). Furthermore, circulating monocytes collected before

and up to 3 months after BCG vaccination were found to be

hyperresponsive not only to secondary mycobacterial stimuli but

also to unrelated pathogens such as C. albicans and S. aureus (194).

This sensitization is T and B cell-independent and maintained by

epigenetic modifications, such as methylation of histone 3 at lysine

4 (H3K4), in regions associated with pro-inflammatory

cytokine expression.

The rewiring associated with trained immunity has been shown

not only on an epigenetic level but also on a metabolic level. For

example, aerobic glycolysis has been identified as a basis for trained

immunity in macrophages, similar to the Warburg effect observed

in activated T-cells (195). Blocking H3 methylation via the

inhibition of cyclic AMP signaling at the same time that

monocytes encounter a primary stimulus (i.e., the initial

“training”) abrogates trained memory responses to a secondary

stimulus (196). Trained immunity can also be licensed by crosstalk

with adaptive cells. In the case of trained immunity against

protozoan parasites, adherent peripheral blood mononuclear cells

(i.e., monocytes and DCs) stimulated with Plasmodium falciparum-

infected red blood cells (iRBCs) are trained to hyperproduce

cytokines following a secondary TLR2 stimulus (197). The

authors have shown in vitro that this training is dependent on the

presence of T-cells during the initial exposure, which is most likely

to provide IFN-g and induce programmed death ligand 1 (PD-L1)

expression in monocytes and DCs. Importantly, similar epigenetic

modifications have been found in the circulating monocytes and

DCs of malaria patients.

Myeloid cells are typically not long-lived, and due to this, there

have been doubts as to the usefulness of this short-term trained

immunity for vaccination purposes. However, it has recently been

shown that trained immunity can affect some longer-lived cells,

such as fibroblasts (198) and hematopoietic stem cells (HSCs) (199).

HSC training has been proposed to be a form of “centrally

trained immunity”.

Niche-specific mucosal training has also recently been

demonstrated and may be of particular importance for an

anthelmintic vaccine in these tissues. For example, using

fluorescent tracking, it has been shown that alveolar macrophages

are primed by BCG exposure independently of circulating

monocytes and HSCs. Interestingly, the authors also showed that

this priming was only weakly inhibited in the presence of

methylation inhibitors, indicating that a circulating metabolite

underpins the observed priming (200). They further

characterized the metabolites as the microbiome-derived short-

chain fatty acids deoxycarnitine and butyrate and proved that

supplementation of those metabolites in drinking water can

mimic macrophage training to protect mice from Mycobacterium

tuberculosis infection, raising the very interesting possibility of

metabolic supplementation to induce trained immunity (200).

The field of trained immunity is still young, but it is already

quite apparent that mucosal, distal, or centrally trained immunity

can all be harnessed to fight helminth infection.
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4.2 Helminth evidence of trained
immunity: Myeloid cells and beyond
In recent years, a few studies have described the trained

immunity induced by both nematode and trematode infections.

Given that this is an emerging field with a limited number of

studies, we report all of them here rather than those only pertaining

to myeloid cells and argue that if trained immunity is present in

some innate cells, it may be present in others.

Two studies have focused on the innate training of

macrophages. Quinn et al. (201) use F. hepatica ES products to

train bone marrow-derived macrophages in vitro (201). After a rest

period, macrophages were restimulated with various pro-

inflammatory triggers, such as LPS and Pam3CSK. Interestingly,

the inflammatory response of Fh-ES-trained macrophages was

lower than that of naive macrophages. In fact, after LPS

stimulation, IL-10 release was increased. The authors then

showed that treatment with a methyltransferase was able to

reverse this Fh-ES-induced training, demonstrating an epigenetic

basis for this macrophage profile (201). Similarly, the soluble

fraction of the crude extract of T. suis was shown to suppress

pro-inflammatory cytokines released by bone marrow-derived

macrophages stimulated with LPS (202). Training macrophages
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with T. suis extract compromised inflammatory responses to a wide

range of triggers (e.g., CpG, LPS, and Pam3CSK) but, interestingly,

enhanced IL-4 polarization, as measured by increases in CD200 and

CD206. The authors further showed that this training had a

metabolic basis , with a shift toward higher levels of

oxidative phosphorylation.

Those studies show trained immunity in the context of

tolerance induction, but others have also shown a more

traditional trained immunity response which induces protection

against the parasite. Pionnier et al. described Nkp46+ NK cells as the

major innate lymphoid population recruited at the site of infection

with B. malayi (203). In Rag2 knockout mice, the depletion of

NKp46+ cells increased susceptibility to infection. The authors

further showed that the long-term activation of NKp46+ cells

plays a protective role during secondary infection in Rag2

knockout mice, proving that memory is intrinsic to the innate

compartment (203).

Interestingly, and probably of utmost importance for vaccine

design, innate training by helminths is not limited to short-term

impacts. Indeed, it was recently shown that treating mice with Fh-

ES also imprints a long-lasting memory on hematopoietic stem cells

(HSCs) in the bone marrow through metabolic and transcriptional

rewiring (204). Mice treated with Fh-ES had enhanced proliferation

and expansion of myeloid-committed precursors, resulting in the
FIGURE 3

Next-generation anthelmintic vaccine: A combination of a trained immunity vaccine and a traditional antigen-based vaccine. Traditional vaccines based on
parenteral antigen administration cause the development of humoral immune responses that are highly specific to the pathogen targeted (in blue). In the
context of helminth infection, low T-cell activation and proliferation is a cause of concern for poor antibody responses. Trained immunity-based vaccines are
based on the “education” of innate immune cells that would trigger a quick response to the same or a heterologous infection (in red). This response is
however unspecific. In the context of helminth infections, the right “priming” of myeloid cells could lead to (i) an increase in effector mechanisms mediated
by myeloid cells, and (ii) a “rewiring” of antigen-presenting cells (APCs) and restoration of a T-cell balance in favor of Th2 (by decreasing Treg counts), which
would ultimately enhance antibody production if used in combination with a traditional vaccine approach. Figure created using BioRender.com.
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expansion of anti-inflammatory monocytes. This helminth-induced

anti-inflammatory trained immunity rendered the mice less

susceptible to the induction of experimental autoimmune

encephalomyelitis, a mouse model of multiple sclerosis. Another

long-term effect was seen in maternal schistosome exposure during

the perinatal period, which has been shown to confer protection

against asthma in the next generation, but also a reduced capability

of infants to respond to vaccination. Lacorcia et al. investigated the

mechanisms behind such epidemiological observations in mice and

associated them with a persistent change in the activation profile of

antigen-presenting cells (205). Furthermore, they showed higher

CD86 expression in both conventional DC subsets 1 and 2, and also

in F4/80+ cells, whereas isolated splenic DCs from maternally

exposed mice were less able to cause T-cell proliferation.

The gut–lung axis is crucial to immunity during intestinal

helminth infection. In line with the recent finding of distal

training of alveolar macrophages, it was recently reported that

prior exposure to S. venezuelensis can confer heterologous

protection against N. brasiliensis 3 months later (36). Using

ILC2-deficient Rorasg/sg bone marrow chimera mice, the authors

further demonstrated that pulmonary ILC2s were required for this

protective mechanism. CD4+ T-cell depletion before N. brasiliensis

infection did not affect protection, nor did it alter the number of

ILC2s present in the lungs. Overall, this paper proves the

reprogramming of ILC2s by helminths and their potential for

cross-protection against other helminth species. Of note is that

the effector cells seem to be eosinophils and not ILC2s, as IL-5

blockade completely abrogated protection.

All in all, recent studies clearly illustrate that, as in allergic

disease (206), helminth infection induces reprogramming of the

innate compartment that participates in the fine-tuning of the type

2 immune response, with both protection and tolerance induction.

In the context of vaccine design, this means trained type 2 immune

responses could be harnessed, or at the very least, trained regulatory

immunity must be understood and overcome.
4.3 Other potential trained immunity
inducers in helminth infection

Even if not investigated to date, several key components of

helminth biology could trigger innate, trained immunity and should

be studied further.

4.3.1 Pathogen-associated molecular patterns
and damage-associated molecular patterns

Pathogen-associated molecular patterns and damage-associated

molecular patterns (PAMPs and DAMPs, respectively) are inducers

of trained immunity [as reviewed in Jentho and Weis (207)].

The most well-characterized PAMPs associated with trained

immunity are b-glucans, a heterogeneous component of many

pathogens such as yeast, bacteria, and fungi that are not produced

by mammalian cells (208–211).

There are no clear PAMPs associated with helminth

recognition; instead, DAMPs have been shown to play a
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primordial role in the initiation of anti-helminth type 2

responses. However, helminth parasites are rich in glycans, and

many glycoproteins are involved in immunomodulation [ (212);

Section 3]. Whether or not b-glucans are specifically, which have

been shown to induce trained immunity, produced by helminths is

not formally proven. However, we have recently demonstrated that

laminarin supplementation competitively inhibits the binding of

macrophages to N. brasiliensis larvae in a pathway dependent on

CD11b or the b-glucan receptor Eph2A (213). Another b-glucan
receptor, dectin-1, has also been shown to be important for the

recognition of egg antigens from S. mansoni and triggers the release

of ETs in response to microfilariae. Dectin-1 is also a target for

immunomodulation mediated by Hpb and F. hepatica (83, 91, 113,

214, 215). Altogether, this suggests that b-glucans on helminths, or

in close association with them (i.e., fungal or bacterial b-glucans
from the helminth microbiome), could play a role in training the

innate immune system. Of note is that other PAMPs of bacterial or

fungal origin from microbiome-associated or endosymbiotic

bacteria/fungi could also potentially be part of the helminth-

induced trained immunity.

Heme, along with the detoxification molecule hemozoin

released by Plasmodium, is one of the DAMPs that have been

shown to trigger trained immunity (216). Owing to their large size,

helminths can cause hemorrhages, and several helminth blood

feeders detoxify heme through hemozoin (S. mansoni and N.

brasiliensis). As such, heme and its derivatives could be a

potential trigger for innate immune training in the context of

helminth infection. In the context of allergy, it has recently been

shown that IL-33 was participating in the training of ILC2s (217,

218). As IL-33 is central to helminth infection control (219), it

would be extremely interesting to determine if IL-33 is participating

in the training of ILC2s and macrophages for the control of

helminth infection.

4.3.2 EVs in trained immunity
Because they convey various molecules and are taken up by host

cells in the immediate vicinity, parasite EVs appear as logical players

in trained immunity. However, evidence that EVs can indeed

induce trained immunity is limited, although it has recently been

shown that EVs from intestinal bacteria can cause trained immunity

in bone marrow-derived macrophages in vitro, and also decrease

the IL-10 and TNF responses to LPS Stimulation (220). EVs from

monocytes containing the HIV component Nef (negative factor)

were also shown to cause long-term hyperactivity in monocytes in

an epigenetic and metabolic rewiring-dependent mechanism (221).

Although trained immunity has not directly been investigated

in this study, Coakley et al. observed that the vaccination of mice

with Hpb EVs and alum decreased worm burdens. Most strikingly,

this protection was not antibody-mediated, as ST2 knockout mice

were not protected by vaccination, despite having elevated IgM,

IgA, and IgG1 titer results (170). The authors further show thatHpb

EVs could block the differentiation of bone marrow-derived

macrophages into AAMs, with EV–macrophage cocultures having

lower gene expression levels of Ym1, RELMa, and arginase-1, and

CCL17. Anti-EV antibodies increased the uptake of EVs into cells
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but diverted them to the lysosome and protected cells from

immunosuppression, suggesting that neutralizing antibodies

against EVs are capable of blocking immune evasion, allowing

natural innate immunity to clear a primary helminth infection.

However, in different helminth infection models, EV-based

vaccination has differing degrees of success at reducing worm

burden, as reviewed by Drurey et al. (163).

EVs have been demonstrated to be taken up by many different

myeloid cells. For instance, ES miRNAs from L. sigmodontis were

preferentially detected in macrophages in vivo (162), similar to EV-

encased miRNAs from S. japonicum (161). The latter was shown to

have the ability to regulate host macrophage functions via

incorporation into mouse argonaute 2 (Ago2, a component of the

RNA-induced silencing complex) in vitro, a prerequisite for them to

exert their silencing function. Overall, EVs from S. japonicum

induce an M1-type immune profile in macrophages in vitro (222),

as was observed with B. malayi EVs (102).

Eosinophils, too, accumulate at the site of infection and are

exposed to large amounts of helminth EVs. In vitro, human

eosinophils exposed to S. mansoni adult lipid extracts were

directly activated, eliciting the syntheses of leukotriene C4 and

eoxin C4 and also the secretion of preformed TGF-b. The main

eosinophil-activating components within S. mansoni lipids were

identified as schistosomal lysophosphatidylcholine and PGD2,

directly acting on eosinophil TLR2 and DP1 (141). Similarly,

macrophages exposed to schistosomal lysophosphatidylcholine

polarized toward the AAM phenotype and produced IL-10, TGF-

b, and PGE2 through a PPARg-dependent mechanism (121).

Similarly, schistosomal lysophosphatidylserine stimulated DC

maturation via TLR2 and induced IL-10-producing Tregs (223).

Overall, S. mansoni EV lipid components were proposed to not only

confer structural packaging properties to EVs but also mediate

immunomodulation directly (122, 224).

Altogether, this suggests that helminth EVs could be involved in

the long-term immunomodulation of myeloid cells, potentially

through innate training mechanisms.
4.4 Trained immunity in helminth infection:
a path to long-term control?

The current vaccine design against helminths focuses on the

adaptive immune system; however, helminths induce low levels of

T-cell proliferation and an overall dampening of immunity. Recent

studies have shown that anthelmintic treatment can abrogate

tolerance mechanisms; however, in a similar process to trained

immunity, helminths can induce long-term “tolerance” and

immunomodulation that persists after parasite clearance. We thus

propose that the new generation of vaccines against helminths

should integrate innate and adaptive immune memory (Figure 3).

The antigen-based part of the vaccine would confer long-lasting

and specific memory, whereas the trained immunity part of the

vaccine would focus on (i) abrogating tolerance by re-educating

antigen-presenting cells, thus allowing for efficient T-cell expansion,
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immune-based memory in a non-specific but “tailored” manner.

Combined vaccines (e.g., those with multiple antigens) present a

considerable regulatory challenge, which often hampers the

development of medicines that will primarily be used in low- and

middle-income countries. This is in part because costly safety and

dose-finding studies must assess each antigen separately and in

combination. However, as trained immunity has recently been

shown to be mediated by metabolites and other non-antigenic

compounds, we suggest an approach in which “trained

immunity” adjuvants, such as b-glucans, are combined with

existing helminth antigens.

Of note is that complications and problems linked to the design

of trained immunity-based vaccines are not well defined as yet due

to the relatively recent emergence of this field. One limitation of the

trained immunity-based vaccines currently used for humans is their

partial effectiveness. For example, approximately only half of

individuals who receive the BCG vaccine respond with strong

trained immunity (225, 226). In addition, most collected data are

epidemiological in nature rather than coming from a controlled

clinical trial, and, as such, could suffer from intrinsic bias. Another

potential limitation is the impact of bystander antigens or

infections. Indeed, BCG or measle vaccination, are now well

accepted to confer nonspecific protection against infantile

infections, especially in low income and middle-income countries

(227). However, whether an anti-helminth-trained immunity would

also be advantageous or would at least not interfere with current

protection against childhood diseases will need to be investigated,

and advancements in this field should be made cautiously.

Further exploration of the immune training caused by

helminths may thus offer new opportunities for the control of

these parasites. In particular, it may be possible [as it is currently

proposed for allergy (206) and other non-communicable diseases

(228)] to overcome the epigenetic and metabolic rewiring that

helminth immunomodulation imposes on the host.
5 Conclusions

Considerable global achievements have been made in controlling

helminth infections using chemotherapeutic interventions and

poverty-reduction measures such as improved water, sanitation,

and hygiene services. However, mass drug administration programs

do not protect against reinfection, and thus are not a long-term

solution to helminth infection and require continuous public health

efforts, even in low-transmission settings to maintain adequate levels

of coverage and compliance (229, 230). Developing an HHV has

therefore been an important global research goal of the last two

decades. Here, we have reviewed a large number of recent findings

that implicate non-humoral and innate immunity as key components

in the control of helminth infection, both in experimental models and

in agricultural trials. While current HHVs aim to reduce morbidity

(and not necessarily reduce worm burden), we believe that better

harnessing of myeloid cells in future vaccines could improve their
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efficacy and in turn help to break the cycle of transmission. Trained

immunity offers an exciting approach to achieving this for several

reasons. First, it has a demonstrated ability to activate immune cells at

mucosal sites, such as the lung, where sterilizing immunity to some

soil-transmitted helminths occurs in animal models. Second, despite

its non-specific nature, different metabolic and epigenetic

mechanisms underpin different types of trained immunity,

potentially allowing a trained immunity vaccine to be targeted in

its design. Third, while not always referenced in the literature, trained

immunity has in fact been demonstrated to occur during helminth

infection, and several models of vaccination with ES products and

EVs protect mice from infection. Given that trained immunity can be

induced by metabolites and other products, the use of these unrelated

biomolecules would be more technically feasible than vaccines that

require scarce worm-derived products (as is the case with Barbervax),

which in some cases makes it impossible to meet Good

Manufacturing Practice standards. All in all, we have made a case

for trained immunity to be considered in ongoing research efforts

for HHVs.
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