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ON THE TIGHTNESS OF THE MAXIMUM OF BRANCHING

BROWNIAN MOTION IN RANDOM ENVIRONMENT

JIŘÍ ČERNÝ, ALEXANDER DREWITZ, AND PASCAL OSWALD

Abstract. We consider one-dimensional branching Brownian motion in spa-
tially random branching environment (BBMRE) and show that for almost every
realisation of the environment, the distribution of the maximal particle of the
BBMRE re-centred around its median is tight. This result is in stark contrast
to the fact that the transition fronts in the solution to the randomised F-KPP
equation are, in general, not bounded uniformly in time. In particular, this
highlights that—when compared to the setting of homogeneous branching—the
introduction of a random environment leads to a much more intricate behaviour.

1. Introduction

The behaviour of the position of the maximally—or, equivalently, minimally—
displaced particle in various variants of branching random walk (BRW) and branch-
ing Brownian motion (BBM) has been the subject of intensive research over the
last couple of decades [Bra78, Bra83, BZ07, ABR09, HS09, Aïd13]. While initially
most of the work focused on branching systems with homogeneous branching rates,
there has recently been an increased activity in the investigation of branching ran-
dom walks with non-homogeneous branching rates that depend on either time
or space mostly in special deterministic ways, see [LS88, LS89, FZ12a, FZ12b,
BBH+15, MZ16, Mal15, BH14, BH15, ČD20, Kri21, HRS22, Kri22].

In this article we continue the study of the maximally displaced particle in the
model of branching Brownian motion with spatially random branching environ-
ment (BBMRE) which was initiated in [DS22], building on the previous work
[ČD20] on a discrete-space analogue, the branching random walk in i.i.d. ran-
dom environment (BRWRE). The techniques developed in [ČD20, DS22] also
lent themselves to obtain refined information on the front of the solution of the
randomised Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) equation [ČDS22].
Subsequently, the techniques and results of [ČD20] have been extended to the
continuum space setting of BBMRE in [HRS22].

We complement the above body of findings by addressing a seemingly simple, but
subtle problem that arises naturally, and which has also been formulated as an open
question in [ČD20]. More precisely, we show that the distributions of the position
of the maximally displaced particle of the BBMRE, when re-centred around its
median, form a tight family of distributions as time evolves. While establishing
tightness might a priori not look like an overly intricate problem, we take the
opportunity to emphasise that such a preconception is erroneous, see also [BZ09,
BZ07]. Our result is particularly interesting as it sharply contrasts the result
established in [ČDS22] that the transition fronts of the solution to the randomised
F-KPP equation are, in general, unbounded in time. In the homogeneous setting,
such a dichotomy cannot be observed since, a fortiori, there is a duality between
these two objects in that setting in that tightness of the re-centred maximum of
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BBM is equivalent to the uniform boundedness in time of the transition fronts of
the solution to F-KPP.

1.1. Homogeneous BBM and F-KPP equation. To explain this duality more
in detail, we start with recalling the model in the homogeneous situation, which will
also serve as a point of reference throughout the article. For a (binary) branching
Brownian motion with homogeneous branching rate equal to one, started from a
single particle located at the origin, we denote its maximal displacement at time t
by M(t), and write

w(t, x) = P (M(t) ≥ x), (1.1)
for the probability that this displacement exceeds x ∈ R. Then, the function
w(t, x) solves a non-linear PDE, known as the Fisher-Kolmogorov-Petrovskii-Pis-
kunov (F-KPP) equation,

∂tw(t, x) =
1

2
∂2xw(t, x) + w(t, x)(1− w(t, x)), t > 0, x ∈ R, (1.2)

with the initial datum w(0, ·) = 1(−∞,0] of Heaviside type, see [INW68, McK75].
Moreover, it is well known that as t → ∞, the solution to (1.2) approaches a
travelling wave g in the following sense: for an appropriate function m : (0,∞) →
[0,∞) one has that

w(t,m(t) + ·) → g uniformly as t→ ∞ (1.3)

for a decreasing function g satisfying limx→∞ g(x) = 0 and limx→−∞ g(x) = 1. A
critical ingredient in the proof of this convergence is that, again for m(t) being
chosen appropriately, one has

w(t, x+m(t)) is increasing in t for x < 0, and

w(t, x+m(t)) is decreasing in t for x > 0.
(1.4)

Property (1.3) immediately yields for every ε > 0 the existence of some rε ∈ (0,∞)
such that

w(t,m(t) + rε)− w(t,m(t)− rε) > 1− ε for all t ≥ 0. (1.5)

In other words, the family (M(t) −m(t))t≥0 is tight. Another, essentially trivial,
consequence of (1.3) is the uniform boundedness of the width of the transition
front of the solution to (1.2), namely that for every ε ∈ (0, 1/2),

lim sup
t→∞

diam
(
{x ∈ R : w(t, x) ∈ [ε, 1− ε]}

)
<∞. (1.6)

In this context, it is worth pointing out that the above line of reasoning implicitly
uses the reflection symmetry of Brownian motion and the homogeneity of the
branching environment. As a consequence, it breaks down in the presence of an
inhomogeneous environment, and the relationship between the solutions of the F-
KPP equation and the maximum of BBMRE becomes more intricate than that
given in (1.1) and (1.2), cf. Section 3.1.

1.2. Randomised F-KPP equation. In the inhomogeneous setting of a random
potential, as considered in the current paper, the respective randomised F-KPP
equation has been investigated in [ČDS22]. In that source it has been established
that for a canonical choice of random potentials ξ, the transition front of the
solution to the inhomogeneous F-KPP equation (which is discussed in more detail
in Section 3.1)

∂tw
ξ(t, x) =

1

2
∂2xw

ξ(t, x) + ξ(x)wξ(t, x)(1− wξ(t, x)), t > 0, x ∈ R, (1.7)
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with the initial condition wξ(0, ·) = 1(−∞,0] does not need to be uniformly bounded
in time, in the sense that the width of their transition fronts can be unbounded.
More precisely, cf. (1.6), it follows from [ČDS22, Theorem 2.3] that there are
random potentials ξ within the class of inhomogeneities considered in the current
paper, such that P-a.s., for all ε ∈ (0, 1/2),

lim sup
t→∞

diam
(
{x ∈ R : wξ(t, x) ∈ [ε, 1− ε]}

)
= +∞. (1.8)

It is hence non-trivial and might be surprising that for BBMRE in the random
potential ξ we obtain tightness for the re-centred family of maxima, and a novel
approach is required in order to address this situation adequately.

It is worthwhile to note that the PDE results of [ČDS22] have been obtained
by taking advantage of almost exclusively probabilistic techniques. In the current
article, however, the probabilistic main result is proven via a symbiosis of analytic
and probabilistic techniques.

2. Definition of the model and the main result

We work with a model of branching Brownian motion in random branching
environment (BBMRE) introduced in [ČDS22, DS22] as a continuous space version
of the branching random walk in random environment model studied in [ČD20].
The random environment is given by a stochastic process ξ = (ξ(x))x∈R defined
on some probability space (Ω,F ,P) which fulfils the following assumptions.

Assumption 1. • The sample paths of ξ are P-a.s. locally Hölder continu-
ous, that is, for almost every ξ there exists α = α(ξ) ∈ (0, 1) and for every
compact K ⊆ R a constant C = C(K, ξ) > 0 such that

|ξ(x)− ξ(y)| ≤ C|x− y|α, for all x, y ∈ K. (2.1)

• ξ is uniformly elliptic in the sense that

0 < ei := ess inf ξ(0) < ess sup ξ(0) =: es <∞. (2.2)

• ξ is stationary, that is, for every h ∈ R

(ξ(x))x∈R
(d)
= (ξ(x+ h))x∈R. (2.3)

• ξ fulfils a ψ-mixing condition: There exists a continuous non-increasing
function ψ : [0,∞) → [0,∞) satisfying

∑∞
k=1 ψ(k) < ∞ such that (using

the notation FA = σ(ξ(x) : x ∈ A) for A ⊂ R) for all Y ∈ L1(Ω,F(−∞,j],P),
and all Z ∈ L1(Ω,F[k,∞),P) we have

∣∣E
[
Y − E[Y ] | F[k,∞)

]∣∣ ≤ E[|Y |]ψ(k − j),
∣∣E

[
Z − E[Z] | F(−∞,j]

]∣∣ ≤ E[|Z|]ψ(k − j).
(2.4)

(Note that this conditions implies the ergodicity of ξ with respect to the
usual shift operator.)

In the current article we do not explicitly make use of the mixing condition.
However, in particular in the Appendix, we will employ some of the results devel-
oped in [ČDS22, DS22] which depend on this mixing assumption.

The dynamics of BBMRE started at a position x ∈ R is as follows. Given a
realisation of the environment ξ, we place one particle at x at time t = 0. As
time evolves, the particle follows the trajectory of a standard Brownian motion
(Xt)t≥0. Additionally and independently of everything else, while at position y,
the particle gets killed with rate ξ(y). Immediately after its death, the particle
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is replaced by k independent copies at the site of death, according to some fixed
offspring distribution (pk)k∈N. All k descendants evolve independently of each
other according to the same stochastic diffusion-branching dynamics.

We denote by P
ξ
x the quenched law of a BBMRE, started at x and write E

ξ
x for

the corresponding expectation. Moreover, we denote by N(t) the set of particles
alive at time t. For any particle ν ∈ N(t) we denote by (Xν

s )s∈[0,t] the spatial
trajectory of the genealogy of ancestral particles of ν up to time t. Our main focus
of interest lies in the maximally displaced particle of the BBMRE at time t,

M(t) := sup{Xν
t : ν ∈ N(t)}.

Throughout this article we deal with supercritical branching such that the off-
spring distribution has second moments and particles always have at least one
offspring.

Assumption 2. The offspring distribution (pk)k≥1 satisfies
∞∑

k=1

kpk =: µ > 1, and
∞∑

k=1

k2pk =: µ2 <∞. (2.5)

It is well known that under these assumptions the maximally displaced particle
M(t) satisfies a law or large numbers for some non-random asymptotic velocity
v0 ∈ (0,∞). The asymptotic velocity can be characterised as the unique positive
root of the Lyapunov exponent λ, which is a deterministic function λ : R → R

that admits the representation

λ(v) = lim
t→∞

1

t
ln Eξ0

[∣∣{ν ∈ N(t) : Xν
t ≥ vt}

∣∣], P-a.s. (2.6)

Under Assumptions 1 and 2, the function λ is non-increasing, concave, and there
exists a critical value vc ≥ 0 pertaining to a linear facet in the graph of λ such
that λ is strictly concave on [vc,∞), see e.g. [DS22, Proposition A.3]. As in
[ČD20, ČDS22, DS22] we make the following technical assumption.

Assumption 3. We only consider BBMREs whose asymptotic speed satisfies

v0 > vc. (2.7)

Essentially, this condition allows the introduction of a tilted probability measure,
in the ballistic phase, under which a Brownian particle (Xt)t≥0 moves on average
with speed v0 up to time t, cf. Section 4. We refer also to [DS22, Section 4.4] for
a detailed discussion on the condition (2.7), as well as for examples of potentials
ξ which do and do not satisfy (2.7).

Finally, we also define for ε ∈ (0, 1) the quenched quantiles for the distribution
of M(t) where the process is started at the origin,

mξ
ε(t) := inf

{
y ∈ R : Pξ0(M(t) ≤ y) ≥ ε

}
. (2.8)

For notational convenience, we drop the subscript when ε = 1/2 and write mξ(t)
for the median of the distribution.

With this, we can state our main result.

Theorem 2.1. Under Assumptions 1–3, for almost every realisation of the envi-
ronment ξ, the family

(
M(t)−mξ(t)

)
t≥0

is tight under P
ξ
0.

This result should be contrasted with the behaviour (1.8) of transition fronts of
solutions to the inhomogeneous F-KPP equation (1.7) discussed in the introduc-
tion. In [ČDS22, Theorem 2.3, Theorem 2.4] environments ξ were constructed,
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under the additional requirement that es/ei > 2, and which are within the frame-
work being discussed here, for which solutions wξ of the F-KPP equation are not
tight, in the sense that they have transition fronts that grow logarithmically in
time, along a subsequence. More precisely, it is shown that environments satisfy-
ing Assumption 1 exist such that for small enough ε > 0, there exist times and
positions (tn)n, (xn)n ∈ Θ(n) and a function φ ∈ Θ(lnn) such that

wξ(tn, xn) ≥ wξ(tn, xn + φ(n)) + ε. (2.9)

This also implies spatial non-monotonicity of the functions wξ(t, ·).
The existence of environments for which (1.8) holds and the non-monotonicity

of (2.9) sharply contrast the homogeneous case, as indicated by (1.4) and (1.5),
where the usual argument for tightness of BBM is by the uniform boundedness in
time of transition fronts for the corresponding homogeneous F-KPP solutions.

Questions of tightness also arise naturally and have been addressed in many
other classes of models. In [BZ09] analytic tools have been developed in order to
establish tightness for a class of discrete time models whose distribution function
satisfy certain recursive equations, analogous to the F-KPP equation in the case
of BBM. These tools are powerful and were applied and adapted to show tightness
for several models, e.g. [ABR09, BDZ11, DRZ21, FZ12a, HS09, NZ21] to name a
few. For BBM in a periodic environment [LTZ22] used an analytic result on the
F-KPP front in periodic environment [HNRR16] which directly implies tightness.

In the context of the discrete space model of [ČD20], sub-sequential tightness
along a deterministic sequence is shown for the quenched and annealed law of the
maximally displaced particle in [Kri21] using a Dekking-Host type argument. Our
method relies crucially on analytic properties of solutions to the F-KPP equation,
and differs from the approaches in the above mentioned articles.

The tightness result of Theorem 2.1 naturally suggests the question whether the
random variables Mt − mξ(t) converge in distribution as t → ∞. Supported by
the numerical simulations presented in Figure 1, we conjecture that the answer to
this question is negative.
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Figure 1. Numerical simulations suggesting that the distributions
of M(t) − mξ(t) do not converge as t → ∞. The red line shows
the dependence of the “spread” of this distribution, that is of
mξ

0.99(t) −mξ
0.01(t), on the median mξ(t). The black line shows the

corresponding potential ξ(x) as function of x. The simulations were
performed for a discrete-space model, for realisations of ξ from two
different distributions (left and right panel).
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2.1. Strategy of the proof. One of the key ideas in the proof is making use
of a powerful analytic technique from the theory of parabolic equations, which
can be called a “Sturmian principle”, see Section 3.3 for details. In virtue of the
duality between BBMRE and the F-KPP equation, the Sturmian principle will
let us translate certain comparisons of the typical behaviour of the maximally
displaced particle to comparisons of the behaviour in regions governed by large
deviation effects. In order to deal with these large deviation effects we employ a
strategy bearing similarities to the ones in [ČD20, DS22, ČDS22]. In virtue of a
“many-to-one” lemma (Feynman-Kac formula, cf. Proposition 3.3) we introduce a
family of “tilted” probability measures with appropriate tilting parameters, which
are amenable to standard techniques and under which the large deviation events
of interest become typical.

Organisation of the article. In Section 3 we state the exact variant of randomised
F-KPP equation, which is connected to our model and recall the well-known
Feynman-Kac formula for it and its linearisation, the parabolic Anderson model.
Moreover we give a spatial and temporal perturbation result for solutions of the
parabolic Anderson model and discuss a first application of the Sturmian principle
to our setting. Section 4 reviews tilted measures, which, on a technical level, will
play the role of a suitable “gauging-measure” when comparing probabilities in the
subsequent sections. Finally, Sections 5 and 6 deal with the proof of the main the-
orem. Section 5 provides the main argument and Section 6 deals with a technical
lemma which is the driving force behind the proof.

Notational conventions: We often use positive finite constants c1, c2, etc. in the
proofs. This numbering is consistent within every proof and is reset at its end. We
use c, C, c′ etc. to denote positive finite constants whose value may change during
computations.

3. Preliminaries

This section recalls two important and well known probabilistic tools which will
feature heavily in the proof of our main theorem. Furthermore, we make precise
the Sturmian principle alluded to above.

3.1. The randomised F-KPP equation and its linearisation. As already
mentioned in the introduction, there is a fundamental link between branching
Brownian motion and solutions to the homogeneous F-KPP equation. It is often
attributed to McKean [McK75], but can already be found in Skorohod [Sko64]
and Ikeda, Nagasawa and Watanabe [INW68]. Such a connection can also be
extended to the setting of random branching rates, as we now detail. For this
purpose, assume given an offspring distribution (pk) as in (2.5). We then consider
the random semilinear heat equation

∂tw(t, x) =
1

2
∂2xw(t, x) + ξ(x)F (w(t, x)), t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,
(F-KPP)

where the non-linearity F : [0, 1] → [0, 1] is given by

F (w) = (1− w)−
∞∑

k=1

pk(1− w)k, w ∈ [0, 1]. (3.1)



TIGHTNESS OF THE MAXIMUM OF BBM IN RANDOM ENVIRONMENT 7

Then the adaptation of McKean’s representation of solutions to (F-KPP) takes
the following form.

Proposition 3.1. For any function w0 : R → [0, 1] which is the pointwise limit
of an increasing sequence of continuous functions, and for any bounded, locally
Hölder continuous function ξ : R → (0,∞), there exists a solution to (F-KPP)
which is continuous on (0,∞) × R and which, for t ∈ [0,∞) and x ∈ R, can be
represented as

w(t, x) = 1− E
ξ
x

[ ∏

ν∈N(t)

(
1− w0(X

ν
t )
)]
. (3.2)

A proof of this proposition can be found e.g. in [DS22, Proposition 2.1]; the
formulation in that source is under slightly more restrictive conditions, but it
transfers verbatim to the assumptions we impose above.

A crucial consequence of Proposition 3.1 is that the solution wy of (F-KPP) with
Heaviside-like initial condition wy

0 = 1[y,∞), for y ∈ R, is linked to the distribution
function of M(t) via the identity

wy(t, x) = P
ξ
x(M(t) ≥ y). (3.3)

Remark 3.2. It is common practice in the F-KPP literature to normalise the non-
linearity F in such a way that its derivative at the origin is one. Using (2.5) it
is easy to check that in our case, F ′(0) = µ − 1. In other words, the standard
normalisation of equation (F-KPP) corresponds to a branching processes for which
the offspring distribution has mean µ = 2, as is also assumed in [DS22]. In (2.5),
we assume only that µ > 1 and do not a priori work under the usual F-KPP nor-
malisation. Nevertheless, given any such offspring distribution (pk)k∈N with mean
µ ̸= 2 and a corresponding BBMRE in environment ξ, one can always transform it
into another BBMRE in a rescaled environment, so that the transformed process
is in the usual normalisation and has the same distribution as the original process.
Indeed, the transformation defined by

ξ → (µ− 1)ξ, p1 →
µ+ p1 − 2

µ− 1
, and pk →

pk
µ− 1

for k ≥ 2,

yields a new offspring distribution with mean two. Moreover, rescaling the envi-
ronment guarantees that (F-KPP), and the law P

ξ
x are invariant under the trans-

formation. After rescaling, it holds F ′(0) = 1 and µ2 > 2; hence, in light of this
reasoning, we will from now on always assume that

µ = 2, F ′(0) = 1, and µ2 > 2. (3.4)

Observe also, that by (3.1) this implies that

F ′(w) ≤ 1, and F ′′(w) ≥ −µ2 + 2 for all w ∈ [0, 1]. (3.5)

Another PDE related to BBMRE, which we make use of later on, is the lineari-
sation of (F-KPP), known as the parabolic Anderson model (PAM),

∂tu(t, x) =
1

2
∂2xu(t, x) + ξ(x)u(t, x), t > 0, x ∈ R

u(0, x) = u0(x), x ∈ R.
(PAM)

The PAM has been the subject of intense investigation in its own right, see
e.g. [Kön16] and reference therein for a comprehensive overview; our main inter-
est, however, lies in space and time perturbation results that have been developed
for its solution in [ČDS22, DS22]. These will be considered in more detail in
Section 3.2.
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An important strategy for probabilistically investigating the solutions to the
equations (F-KPP) and (PAM) is via analysing their Feynman-Kac representa-
tions. In what comes below we denote, for arbitrary x ∈ R, by Px the probability
measure under which the process denoted by (Xt)t≥0 is a standard Brownian mo-
tion started at x. The corresponding expectation operator is denoted by Ex. We
also make repeated use of the abbreviation Ex[f ;A] for Ex[f1A].

Proposition 3.3. Under Assumptions 1 and 2, the unique non-negative solution
u of (PAM) is given by

u(t, x) = Ex

[
exp

{∫ t

0

ξ(Xr) dr
}
u0(Xt)

]
, t ≥ 0, x ∈ R, (3.6)

and the unique non-negative solution w of (F-KPP) fulfils

w(t, x) = Ex

[
exp

{∫ t

0

ξ(Xr)F̃ (w(t−r,Xr)) dr
}
w0(Xt)

]
, t ≥ 0, x ∈ R, (3.7)

where F̃ (w) = F (w)/w for w ∈ (0, 1], which can be continuously extended to

F̃ (0) = limw→0+ F̃ (w) = supw∈(0,1] F̃ (w) = 1.

See e.g. [Bra83, (1.32), (1.33)] for references to the former. Note that the
Feynman-Kac representation (3.7) for the solution of the F-KPP equation is an
implicit expression, whereas the expression in (3.6) is explicit.

Taking advantage of the above, the link between the PAM and BBMRE can
be derived by combining the Feynman-Kac representation (3.6) of the solution to
(PAM) with a many-to-one formula, see e.g. [DS22, Proposition 2.3], in order to
arrive at the representation

u(t, x) = E
ξ
x

[ ∑

ν∈N(t)

u0(X
ν
t )
]

of solutions to (PAM).

3.2. Perturbation results for the PAM. On a technical level, our primary in-
terest in the PAM comes from results on the sensitivity of its solutions regarding
respective disruptions in space and in time. A variant of these results was devel-
oped in [ČDS22, DS22] (cf. Lemmas 3.11 and 3.13 from [DS22], or Lemma 4.1
of [ČDS22]) for the study of the fronts of (F-KPP) and (PAM). These perturba-
tion results will be used together with (3.3) and the Feynman-Kac representation,
Proposition 3.3, in order to get bounds on the distribution function of the maxi-
mally displaced particle in Section 6.

To avoid the dependence of various constants appearing in these perturbation
results on the speed, we assume for the rest of the article that the speeds we allow
are contained in some arbitrary but fixed compact interval V ⊂ (vc,∞) which has
v0 in its interior (in particular, we require (2.7) to hold). As we can otherwise
choose V arbitrarily large, this does not pose any further restrictions for what
follows in the subsequent sections.

Lemma 3.4. (a) For every δ > 0 and A > 0, there exist a constant c1 ∈ (1,∞)
and a P-a.s. finite random variable T1 such that for all t ≥ T1 uniformly in
0 ≤ h ≤ t1−δ, and x, y ∈ [−At,At] with x < y, y−x

t
∈ V and y−x

t+h
∈ V ,

Ex

[
e
∫ t+h

0
ξ(Xs) ds;Xt+h ≥ y

]
≤ c1e

c1hEx

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

]
.
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(b) Let δ : (0,∞) → (0,∞) be a function tending to 0 as t→ ∞, and let A > 0.
Then there exists a constant c2 ∈ (1,∞) and a P-a.s. finite random variable
T2 such that for all t ≥ T2, uniformly in 0 ≤ h ≤ tδ(t) and x, y ∈ [−At,At]
with x < y, y−x

t
∈ V and y+h−x

t
∈ V ,

Ex

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y + h

]
≤ c2e

−h/c2Ex

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

]
.

The proof of this lemma is a rather straightforward, but lengthy adaptation of
the proofs given in [DS22, ČDS22]; we will provide it in Appendix A. It involves
comparing the Feynman-Kac representation (3.6) to functionals with respect to the
same family of tilted probability measures that are discussed in Section 4 below.

3.3. Sturmian principle. In this section we present the analytic ingredient of
our proof of Theorem 2.1, which can be motivated as follows: we will later on
be interested in differences of the type W (·, ·) = wy1(·, ·) − wy2(· + T, ·) for some
T > 0, and y2 > y1, where we recall that for any y ∈ R, we denote by wy the
solution of (F-KPP) with initial condition w0 = 1[y,∞). It is immediate that for a
given T > 0, the function W satisfies the linear parabolic equation

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (x, t), t > 0, x ∈ R,

W (0, x) = 1[y1,∞)(x)− wy2(T, x), x ∈ R,
(3.8)

where G is the bounded measurable function defined by (using the convention
F ′(0) = 1, cf. Remark 3.2)

G(t, x) =

{
ξ(x) F (wy1 (t,x))−F (wy2 (t+T,x))

wy1 (t,x)−wy2 (t+T,x)
, if wy1(t, x) ̸= wy2(t+ T, x),

ξ(x), if wy1(t, x) = wy2(t+ T, x).
(3.9)

Let us state the following simple observation, which will be used at various
stages in the following: By Proposition 3.1 it follows that

0 < wy2(T, x) < 1 for all x ∈ R. (3.10)

As a consequence, the initial condition of (3.8) has exactly one zero-crossing, and
it is located at y1.

In the analysis literature, it has been known for a long time that the cardinality of
the set of zero-crossings of solutions to linear parabolic equations is monotonically
non-increasing in time, with the earliest reference dating back to at least an article
by Charles Sturm in 1836, cf. [Stu36]. Nevertheless, despite this result having been
known for almost two centuries by now, it was not until the eighties of the last
century that Sturm’s ideas really revived in the theory of linear and non-linear
parabolic equations, see, e.g., [Ang88, Ang91, DGM14, EW99, Nad15] for a non-
exhaustive list. In this list, the ideas in [EW99] stand out, as they involve a
simple and purely probabilistic proof, by interpreting the linear parabolic partial
differential equations as generators of Markov processes and reducing the study of
the zero-crossings to the study of Markovian transition operators acting on signed
measure spaces. A more complete history and a detailed discussion of the Sturmian
principle and its applications can be found in [Gal04].

Remark 3.5. In this context, it is interesting to note that already in their seminal
article on the F-KPP equation, Kolmogorov, Petrovskii and Piskunov also make
use of a Sturmian principle for equations of the form (3.8), see [KPP37, Theorem
11], which is proved using a parabolic maximum principle.
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We include a version of such results which is formulated to fit our purpose; a more
general version of this result can be found in [Nad15]. Note that the assumptions
in particular fit the setting of a single zero-crossing in the initial value.

Lemma 3.6 ([Nad15, Proposition 7.1]). For any t0 ∈ R, let G ∈ L∞((t0,∞)×R)
and assume W ∈ C((t0,∞)× R) ∩ L∞((t0,∞)× R) to be a weak solution of

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (x, t), t > t0, x ∈ R,

W (t0, x) = Wt0(x), x ∈ R,

where Wt0 ̸≡ 0 is piecewise continuous and bounded in R, such that for some
zt0 ∈ R one has

Wt0(x) ≤ 0, if x < zt0, and Wt0(x) ≥ 0, if x > zt0.

Then, for all t > t0 there exists a unique point z(t) ∈ [−∞,∞] such that

W (t, x) < 0, if x < z(t), and W (t, x) > 0, if x > z(t).

As a first application of Lemma 3.6, let us consider the effect on the solution
of (F-KPP) when the discontinuity of the Heaviside-type initial condition tends
to infinity. For this purpose, in order to obtain a non-trivial limit, we perform an
appropriate temporal shift. More precisely, we introduce for a given realisation of
the environment ξ, any y ∈ R and any ε > 0 the “temporal quantile at the origin”
as

τ εy := inf{t ≥ 0 : wy(t, 0) ≥ ε}. (3.11)

Since P-a.s. we have limt→∞wy(t, 0) = 1 (due to, e.g., [Fre85, Theorem 7.6.1]), τ εy
is finite. By the continuity of wy on (0,∞)×R, cf. Proposition 3.1, the quantity τ εy
satisfies wy(τ εy , 0) = ε. Moreover, cf. (3.3), as wy(t, 0) = P

ξ
0(M(t) ≥ y) is increasing

in y, so is τ εy , and by the law of large numbers for the maximal displacement (cf.
(2.6) and the definition of v0), it follows readily that lim

y→∞
τ εy = ∞.

The shift by τ εy allows to establish the following result, which follows already
from [Nad15, Lemma 7.3]. Nevertheless, we provide its short proof here for the
sake of completeness and as an illustration of how Lemma 3.6 can be used in this
context.

Proposition 3.7. For every ε ∈ (0, 1) and for P-a.a. ξ, the limit

w∞
ε (t, x) := lim

y→∞
wy(τ εy + t, x) (3.12)

exists locally uniformly in (t, x) ∈ R
2, and is a global-in-time (that is, for all t ∈ R)

solution to (F-KPP).

The limiting function w∞
ε plays a role comparable to that of a travelling wave

solution of the homogeneous F-KPP equation, cf. (1.3). However, unlike in the
homogeneous situation outlined in the introduction, w∞

ε does not directly provide
an argument for tightness because we lack a suitable quantitative control of the
random variables τ εy as y varies. Nonetheless, the result of Proposition 3.7 plays a
vital role in our proof of tightness. We restrict ourselves to providing a proof of
the convergence for t > 0 only, as this is sufficient for our purposes in what follows.

Proof of Proposition 3.7. Fix y1 < y2 and for t ≥ −τ εy1 = −τ εy1 ∨ −τ εy2 (recall that
the latter identity follows from the monotonicity of y 7→ τ εy observed below (3.11))
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define the function W (t, x) := wy1(t + τ εy1 , x) − wy2(t+ τ εy2 , x). Then, similarly as
for (3.8) and (3.9), it follows that

∂tW (t, x) =
1

2
∂2xW (t, x) +G(t, x)W (t, x), t > −τ εy1 , x ∈ R, (3.13)

where G is given by

G(t, x) =

{
ξ(x)

F (wy1 (t+τεy1 ,x))−F (wy2 (t+τεy2 ,x))

wy1 (t+τεy1 ,x)−wy2 (t+τεy2 ,x)
, if wy1(t+ τ εy1 , x) ̸= wy2(t+ τ εy2 , x),

ξ(x), if wy1(t+ τ εy1 , x) = wy2(t+ τ εy2 , x).

From the assumptions, it follows directly that G is a bounded measurable function.
Due to [Fre85, Theorem 7.4.1], there exists for P-a.a. ξ a unique classical solution
to (3.13). Moreover, since wy1(0, x) = 1[y1,∞)(x), it holds that

W (−τ εy1 , x) = wy1(0, x)− wy2(τ εy2 − τ εy1 , x) = 1[y1,∞)(x)− wy2(τ εy2 − τ εy1 , x). (3.14)

Together with the fact that 0 < wyi(t, x) < 1 for i = 1, 2 and for all t > 0 and
x ∈ R (cf. (3.10)), display (3.14) implies that W (−τ εy1 , x) < 0 if x < y1 and
W (−τ εy1 , x) > 0 if x > y1. By Lemma 3.6, for all t > −τ εy1 , the sets {x ∈ R :
W (t, x) > 0} and {x ∈ R : W (t, x) < 0} are intervals. But due to the continuity
of wy1 and wy2 , we also know that W (0, 0) = wy1(τ εy1 , 0)− wy2(τ εy2 , 0) = ε− ε = 0.
Therefore, the above reasoning supplies us with

wy1(τ εy1 , x) ≤ wy2(τ εy2 , x), if x < 0,

wy1(τ εy1 , x) ≥ wy2(τ εy2 , x), if x > 0.
(3.15)

That is, the function y 7→ wy(τ εy , x) is non-decreasing if x < 0 and non-increasing
on x > 0. As a consequence, the limit w∞

ε (0, x) := limy→∞wy(τ εy , x) exists point-
wise, and thus locally uniformly, for all x ∈ R, and also implies 0 ≤ w∞

ε (0, ·) ≤ 1.
As a consequence, the right-hand side of (3.12) converges locally uniformly for
t = 0. (This should be compared to (1.4) in the introduction, which describes the
“spatial stretching” of re-centred solutions to the homogeneous F-KPP equation.)

To prove that the local uniform convergence postulated in (3.12) holds true
for t > 0 also, one uses standard estimates on solutions of quasilinear parabolic
equations (see, e.g., [LSU68], Chapter V). As a consequence of these estimates, the
solutions wy(t, x) together with their derivatives are bounded locally uniformly in
(t, x), uniformly for all y sufficiently large. Hence the set {wy : y ≥ 0} is pre-
compact in C1,2

loc (R+ × R). It therefore contains converging sub-sequences, and
every limit point of such sub-sequence is a solution to (F-KPP) with the initial
condition w∞(0, ·). As the solution to (F-KPP) with that given initial condition is
unique, this implies that all subsequential limits must agree and thus (3.12) holds
for all t > 0, as well as the fact that w∞ solves (F-KPP) for t ≥ 0. We omit here
the proof for t < 0, as it will not be needed later on. □

A direct consequence of Proposition 3.7 that is going to be relevant later on,
is the following: for almost all realisations of the environment ξ, and given that
we know the value of the solution wy of (F-KPP) at the origin at a certain time,
we can find a finite time period after which we can deduce a lower bound for the
value of wy at the origin, at least for y large enough. More precisely, we obtain
the following corollary.

Corollary 3.8. For every ε ∈ (0, 1/2) there exists a P-a.s. finite random variable
T = T (ξ) such that for all y ∈ R large enough, and any t for which wy(t, 0) = ε,
it holds that

wy(t+ t′, 0) ≥ 1− ε/2 for all t′ ∈ [T, T + 1].
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Proof. Let y ∈ R and t ≥ 0 be such that wy(t, 0) = ε. By (3.11) and the finiteness
of τ εy deduced below that display, there exists some s0 = s0(y) ≥ 0 such that
t = τ εy + s0.

Consider w∞
ε from Proposition 3.7 and let

s1 = inf{s > s0 : w
∞
ε (s′, 0) ≥ 1− ε/4 for all s′ > s};

note that as w∞
ε solves (F-KPP), it follows by [Fre85, Theorem 7.6.1] that for

P-a.a. realisations of the environment, lims→∞w∞
ε (s, x) = 1, and hence s1 is P-a.s.

finite. Next, taking advantage of the fact that the convergence in Proposition 3.7
is locally uniform in t, due to the continuity of the functions involved and using
the compactness of [s1, s1 + 1], it holds for large enough y ∈ R that

sup
s′∈[s1,s1+1]

|wy(τ εy + s′, 0)− w∞
ε (s′, 0)| < ε/4.

Setting T = s1− s0, we thus obtain for all y large enough and for all t′ ∈ [T, T +1]
(with s′ = s0 + t′ ∈ [s1, s1 + 1]) that

wy(t+ t′, 0) = wy(τ εy + s′, 0) ≥ w∞
ε (s′, 0)− ε/4 ≥ 1− ε/2.

This completes the proof. □

This result concludes our analytic preparations on how the set of zero-crossings
of solutions to linear parabolic equations evolves, and of how it can be applied to
the difference of temporally shifted solutions of (F-KPP).

4. Tilting and exponential change of measure

The last tool that we introduce is a change of measure for Brownian paths
in the Feynman-Kac representation, which makes certain large deviation events
typical. These measures have been featured heavily in [ČD20, ČDS22, DS22]
already, including in the proof of Lemma 3.4. In the aforementioned articles this
change of measure has been employed so as to make solutions to (PAM) amenable
to the investigation by more standard probabilistic tools. Here we go a step further
and consider the stochastic processes driving the tilted path measures. This in turn
gives us even more precise control on the tilted measures and allows for comparisons
with Brownian motion with constant drift, see Proposition 4.3 below.

To define the tilted measures we set

ζ := ξ − es. (4.1)

Due to the uniform ellipticity (2.2) it follows that P-a.s. for all x ∈ R,

ζ(x) ∈ [ei− es, 0], (4.2)

and ζ is P-a.s. locally Hölder continuous with the same exponent as ξ. Moreover,
ζ also inherits the stationarity as well as the mixing property from ξ. For the
Brownian motion (Xt)t≥0 under the measure Px, as used in the Feynman-Kac
representations of Proposition 3.3, we introduce the first hitting times as

Hy := inf{t ≥ 0 : Xt = y} for y ∈ R.

Analogously to [ČD20, ČDS22, DS22], we define for x, y ∈ R with y ≥ x, as well as
η < 0, the tilted path measures characterised through events A ∈ σ(Xt∧Hy

, t ≥ 0)
via

P ζ,η
x,y (A) :=

1

Zζ,η
x,y

Ex

[
e
∫Hy
0 (ζ(Xs)+η) ds;A

]
, (4.3)
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with normalising constant

Zζ,η
x,y := Ex

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
∈ (0, 1]. (4.4)

By the strong Markov property, it follows easily that the measures are consistent in
the sense that P ζ,η

x,y′(A) = P ζ,η
x,y (A) for x ≤ y ≤ y′ and A ∈ σ(Xt∧Hy

, t ≥ 0). Hence,
for any x ∈ R, we can extend P ζ,η

x,y to a probability measure P ζ,η
x on σ(Xt, t ≥ 0)

with the help of Kolmogorov’s extension theorem. We write Eζ,η
x for the expecta-

tion with respect to the probability measure P ζ,η
x .

Finally, as in [DS22, (2.8)], we introduce the annealed logarithmic moment gen-
erating function

L(η) := E[lnZζ,η
0,1 ], (4.5)

and denote by η(v) < 0 the unique solution of the equation L′(η(v)) = 1
v

for any
v > vc; observe that the former is well-defined as by [DS22, Lemma 2.4],

η(v) exists for every v > vc; v 7→ η(v) is a continuous decreasing
function and limv→∞ η(v) = −∞. (4.6)

The strong Markov property furthermore entails that, for a fixed realization ζ and
any η < 0, the normalising constants (4.4) are multiplicative in the sense that for
any x < y < z in R,

Zζ,η
x,z = Zζ,η

x,yZ
ζ,η
y,z . (4.7)

Defining, for some arbitrary but fixed x0 ∈ R, the function

Zζ,η(x) :=

{
(Zζ,η

x0,x
)−1, if x ≥ x0,

Zζ,η
x,x0

, if x < x0,
(4.8)

the identity (4.7) thus implies that for all x < y we have

Zζ,η
x,y =

Zζ,η(x)

Zζ,η(y)
. (4.9)

The following lemma states some useful properties of the function Zζ,η.

Lemma 4.1. For every bounded Hölder continuous function ζ : R → (−∞, 0]
and η < 0, the function Zζ,η is non-decreasing, strictly positive, twice continuously
differentiable and satisfies

1

2
∆Zζ,η(x) + (ζ(x) + η)Zζ,η(x) = 0, x ∈ R. (4.10)

Furthermore, we have

bζ,η(x) :=
d

dx
lnZζ,η(x) ∈

[
v(η), v(η)

]
, (4.11)

where v(η) :=
√
2|η| and v(η) :=

√
2(es− ei+ |η|).

Remark 4.2. Let us note here that the notation v(η) and v(η) introduced in the
above lemma is suggestive of velocities. This will be made precise in Lemma 4.4
below.

Proof of Lemma 4.1. The monotonicity and the strict positivity of Zζ,η follow di-
rectly from its definition (4.8), using also (4.4).

To show (4.10), we observe that, for any interval [x1, x2], the equation 1
2
∆u(x)+

(ζ(x) + η)u(x) = 0, x ∈ [x1, x2], with boundary conditions u(xi) = Zζ,η(xi),
i = 1, 2, has a unique classical solution (see, e.g., [GT01, Corollary 6.9]). Denoting
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by T the exit time of X from [x1, x2], this solution can be represented as (see
[Bas98, Theorem II(4.1), p.48])

u(x) = Ex

[
Zζ,η(XT )e

∫ T

0
(ζ(Xs)+η) ds

]
. (4.12)

On the other hand, for x ∈ [x1, x2], taking y = x2 in (4.9), using (4.4), and the
strong Markov property at time T ,

Zζ,η(x) = Zζ,η(y)Zζ,η
x,y

= Zζ,η(y)Ex

[
e
∫ T

0
(ζ(Xs)+η) dsZζ,η

XT ,y

]

= Ex

[
Zζ,η(XT )e

∫ T

0
(ζ(Xs)+η) ds

]
.

(4.13)

Therefore, Zζ,η satisfies (4.10) on [x1, x2]. Since the interval [x1, x2] is arbitrary,
(4.10) holds for every x ∈ R.

To show (4.11), note first that bζ,η is well-defined since Zζ,η is strictly positive
and differentiable, by (4.10). Therefore, with y ≥ x, by (4.9) and the strong
Markov property again,

bζ,η(x) =
d

dx
lnZζ,η(x) =

d

dx
lnZζ,η

x,y

= lim
ε→0+

ε−1
(
lnEx

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
− lnEx−ε

[
e
∫Hy
0 (ζ(Xs)+η) ds

])

= − lim
ε→0+

ε−1 lnEx−ε

[
e
∫Hx
0

(ζ(Xs)+η) ds
]
.

(4.14)

It is a known fact that for α > 0 and z1, z2 ∈ R, it holds that

lnEz1 [e
−αHz2 ] = −

√
2α|z1 − z2| (4.15)

(cf. [BS02, (2.0.1), p. 204]). In combination with the bounds (4.2), the expectation
on the right-hand side of (4.14) thus satisfies

−ε
√

2|η| = lnEx−ε

[
eHxη

]
≥ lnEx−ε

[
e
∫Hx
0

(ζ(Xs)+η) ds
]

≥ lnEx−ε

[
eHx(ei−es+η)

]
= −ε

√
2(es− ei+ |η|),

(4.16)

which together with (4.14) implies (4.11). □

The function bζ,η(x) introduced in (4.11) is useful in describing the law of X
under the tilted measure, as it allows an interpretation of the tilted process as
a Brownian motion with an inhomogeneous drift, by constructing an appropriate
SDE as follows.

Proposition 4.3. Let x0 ∈ R, η < 0 and let ζ : R → (−∞, 0] be a locally Hölder
continuous function that is uniformly bounded from below. Furthermore, denote by
B a standard Brownian motion. Then the distribution of the solution to the SDE

dXt = dBt + bζ,η(Xt) dt, t > 0,

X0 = x0,
(4.17)

agrees with P ζ,η
x0

.

Proof. The proof is based on an exponential change of measure for diffusion pro-
cesses. For the sake of simplicity we write b for bζ,η and Z for Zζ,η if no confusion
is to arise. By (4.11) we obtain that

b′ = (lnZ)′′ =
(Z ′

Z

)′

=
∆Z

Z
−
(Z ′

Z

)2

= −2(ζ + η)− b2. (4.18)



TIGHTNESS OF THE MAXIMUM OF BBM IN RANDOM ENVIRONMENT 15

Therefore, the bounds (4.11) and (4.2) imply that b is a bounded Lipschitz function
and thus there is a strong solution to (4.17), whose distribution we denote by
Qx0

= Qζ,η
x0

. Let further, as previously, Px0
be the distribution of Brownian motion

started from x0, and let Qt
x0

and P t
x0

be the restrictions of those distributions to
the time interval [0, t], t > 0. As a consequence of the Cameron-Martin-Girsanov
theorem (see, e.g., [RW00, Theorem V.27.1] for a suitable formulation), it is well
known that

dQt
x0

dP t
x0

= exp
{∫ t

0

b(Xs) dXs −
1

2

∫ t

0

b2(Xs) ds
}
=:Mt, (4.19)

for a Px0
-martingale M . (The fact that Mt is a martingale follows, e.g., from

[RW00, Theorem IV.37.8], since b is a bounded function.)
With the aim of arriving at a comparison with (4.3), we claim that

M(t) =
Z(Xt)

Z(X0)
e
∫ t

0
(ζ(Xs)+η) ds. (4.20)

To see this, note first that applying Itô’s formula to lnZ(x) =
∫ x

x0
b(t) dt yields

Z(Xt)

Z(X0)
= exp

{
lnZ(Xt)− lnZ(X0)

}
= exp

{∫ t

0

b(Xs) dXs +
1

2

∫ t

0

b′(Xs) ds
}
.

(4.21)
Comparing this with (4.19) shows that

M(t) =
Z(Xt)

Z(X0)
exp

{
− 1

2

∫ t

0

(
b′(Xs) + b2(Xs)

)
ds

}
, (4.22)

which together with (4.18) implies (4.20).
We can now complete the proof of the proposition. For y ≥ x0, let Qx0,y be the

measure Qx0
restricted to the σ-algebra Hy = σ(Xs∧Hy

: s ≥ 0). To show that
Qx0

= P ζ,η
x0

, it is sufficient to show that Qx0,y = P ζ,η
x0,y

for all y > x0 (see (4.3)). For
this purpose, we observe that by Lemma 4.1, Z is a bounded function on (−∞, y]

and thus the stopped martingale MHy

t =Mt∧Hy
is uniformly bounded from above.

Therefore, by the optional stopping theorem, for any A ∈ Hy, using (4.19) for the
second equality,

Qx0,y(A) = lim
t→∞

EQx0,y [1A∩{Hy≤t}] = lim
t→∞

EPx0 [Mt1A∩{Hy≤t}]

= lim
t→∞

EPx0

[
EPx0 [Mt1A∩{Hy≤t} | Hy]

]

= lim
t→∞

EPx0

[
1A∩{Hy≤t}E

Px0 [Mt | Hy]
]

= lim
t→∞

EPx0

[
1A∩{Hy≤t}MHy

]
= EPx0 [MHy

1A].

By (4.20), MHy
= Z(y)

Z(x0)
e
∫Hy
0 (ζ(Xs)+η) ds, and thus, also by (4.9),

Qx0,y(A) = (Zζ,η
x0,y

)−1Ex0
[e

∫Hy
0 (ζ(Xs)+η) ds

1A] = P ζ,η
x0,y

(A)

as required. This completes the proof. □

We are now ready to reap the fruits of the above considerations. Proposition 4.3
together with the uniform bounds (4.11) on bζ,η allows for a comparison between
the tilted measures (4.3) and Brownian motion with constant drift. The next
lemma provides this desired control and makes it precise. For a given drift α ∈ R,
we write Pα

x for the law of Brownian motion with constant drift α started at x and
Eα

x for the corresponding expectation.
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Lemma 4.4. Let ζ : R → [−(es − ei), 0] be locally Hölder continuous and let
η < 0. Then, for any starting point x ∈ R and any bounded non-decreasing
function g : R → R,

Ev(η)
x [g(Xt)] ≤ Eζ,η

x [g(Xt)] ≤ Ev(η)
x [g(Xt)],

where v(η) and v(η) have been introduced in Lemma 4.1.

Proof. By Proposition 4.3, the process Xt driven by the tilted measure P ζ,η
x0

has
generator Lζ,η = 1

2
∆+ b(x) d

dx
. Let further Lv = 1

2
∆+ v d

dx
be the generator of the

Brownian motion with drift v. Then, for any non-decreasing g ∈ C2
b (R), if follows

from (4.11) that
Lv(η)g ≤ Lζ,ηg ≤ Lv(η)g.

Since, by Kolmogorov’s forward equation, d
dt
Eζ,η

x [g(Xt)] = Eζ,η
x [(Lζ,ηg)(Xt)] and

analogously for the measures Ev
x and Ev

x, the statement of the lemma follows
for any non-decreasing g ∈ C2

b (R). The extension to arbitrary non-decreasing
functions g follows by approximating g by a sequence of non-decreasing functions
in C2

b (R) and using the dominated convergence theorem. □

5. Proof of Theorem 2.1

Using the duality between BBMRE and (F-KPP) as well as the various results
presented in the last two sections, we are now ready to prove the main theorem.

Proof of Theorem 2.1. By contradiction, assume that the family (M(t)−mξ(t))t≥0

is not tight. Recalling the notation from (2.8), it then follows that there exists
ε ∈ (0, 1/2) such that

lim sup
t→∞

(
mξ

1−ε(t)−mξ
ε(t)

)
= ∞.

Hence, we can find a sequence (tn)n∈N ⊆ (0,∞) of times with tn → ∞ as n→ ∞,
as well as sequences (rn)n∈N, (ln)n∈N ⊆ R of positions, with rn, ln, rn − ln → ∞ as
n→ ∞, such that Pξ0(M(tn) ≥ rn) = ε and P

ξ
0(M(tn) ≥ ln) < 1− ε. By McKean’s

representation, cf. Proposition 3.1, this is equivalent to wrn(tn, 0) = ε and

wln(tn, 0) < 1− ε. (5.1)

Due to the law of large numbers for Mt (i.e. limt→∞Mt/t = v0), it also holds that

lim
n→∞

ln
tn

= lim
n→∞

rn
tn

= v0. (5.2)

Setting
∆n := rn − ln, (5.3)

by Corollary 3.8 and the validity of wln+∆n(tn, 0) = ε, there exists a P-a.s. finite
time T <∞, such that for all n large enough,

wln+∆n(tn + t′, 0) ≥ 1− ε/2 for all t′ ∈ [T, T + 1]. (5.4)

Our goal is to infer a contradiction from (5.4) and the fact that wln(tn, 0) <
1− ε. In order to do so, we want to compare the values of wln(tn, 0) with those of
wln+∆n(tn + T, 0) for large n, and argue that

wln(tn, 0) ≥ wln+∆n(tn + T, 0); (5.5)

in combination with (5.4) this would immediately yield a contradiction to (5.1).
Instead of proving (5.5) directly however, we use the Sturmian principle to relate
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ln − vtn 0 ln
rn

t = 0

ln − vtn 0 ln
rn

t = tn

Figure 2. The top figure shows the graph of the indicator function
wln(0, ·) = 1[ln,∞)(·) in black and the function wrn(T, ·) in blue. The
lower figure shows the graph of the same functions tn > 0 time
units later. By the Sturmian principle, the region where wln(tn, ·)
dominates wrn(tn + T, ·) is an interval that contains [ln − vtn,∞).

the inequality (5.5) at the origin to an inequality at some point on the negative
half-line. More precisely, recall that for every admissible n, the difference

Wn(t, x) := wln(t, x)− wln+∆n(t+ T, x)

solves a linear parabolic equation of the form (3.8). Moreover, since Wn(0, x) > 0
for x > ln and Wn(0, x) < 0 for x < ln, we know by Lemma 3.6 that the set

{x ∈ R : wln(tn, x) > wln+∆n(tn + T, x)} = {x ∈ R : Wn(tn, x) > 0}
is an open interval unbounded to the right; for an illustration of this argument see
Figure 2.

Thus, in order to prove (5.5) it suffices to find some x∗n < 0 such that for large n
it holds that Wn(tn, x

∗
n) > 0, as this implies 0 ∈ {x ∈ R : Wn(tn, x) > 0}, which in

turn implies (5.5). The following lemma ascertains that for large n, this is indeed
true and that the choice

x∗n := ln − vtn, (5.6)

where v > 0 is some large value, is adequate. To state it, we introduce two auxiliary
velocities,

v1 :=
√

2(es+ 1) and (5.7)

v2 := inf{v > v1 + 1 : |η(v)| ≥ 2v21 + 2}, (5.8)

where η(v) was defined above (4.6); note that display (4.6) also ensures that v2
is finite. Furthermore, by comparing the BBMRE with the BBM with constant
branching rate es, for which the speed of the maximum is

√
2es, we obtain

v0 < v1 < v2

Lemma 5.1. For each u > 0 and each v > v2, there exists ∆0 = ∆0(u, v) > 0
as well as a P-a.s. finite random variable T = T (u, v), such that P-a.s., for all
∆ > ∆0, y ∈ [0, vt] and t ≥ T ,

wy(t, y − vt) ≥ wy+∆(t+ u, y − vt). (5.9)
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We postpone the proof of this crucial lemma to Section 6 and complete the proof
of Theorem 2.1 first. Recall the P-a.s. finite random variable T introduced above
(5.4), and for u ∈ N define the subset Ωu = {T ∈ [u − 1, u)} of the probability
space on which ξ is defined. We now consider ξ ∈ Ωu. By (5.4), for such ξ and all
n large enough,

wln+∆n(tn + u, 0) ≥ 1− ε/2. (5.10)
Let v > v2 be as in Lemma 5.1. Since v2 > v0 and ln/tn → v0, by (5.2), it follows
that ln ∈ [0, vtn] for all n large enough. In addition, for all n large enough, we
have tn ≥ T (u, v) as well as, recalling the notation from (5.3), that ∆n ≥ ∆0(u, v).
Therefore, by Lemma 5.1, for such n we in particular deduce that wln(tn, ln−vtn) ≥
wln+∆n(tn + u, ln − vtn), which by the previous discussion and with the choice x∗n
as in (5.6) implies

1− ε > wln(tn, 0) ≥ wln+∆n(tn + u, 0). (5.11)

Combining (5.10) and (5.11), we arrive at the desired contradiction. This proves
that the family (M(t)−mξ(t))t≥0 is tight for P-a.a. ξ ∈ Ωu. As Ω = ∪u≥1Ωu, this
completes the proof. □

6. Proof of Lemma 5.1

It remains to prove Lemma 5.1 which provides the right ordering of the two so-
lutions to (F-KPP). We do so by providing a careful examination of the Feynman-
Kac representations of the respective solutions. We aim to apply the tilting of
probability measures from Section 4 with an appropriate tilting parameter, which
will make the large deviation event in the Feynman-Kac formula typical. Before
we can do so, however, we need to bring the Feynman-Kac formulas into a more
suitable form. In particular, we are going to compare the two solutions in (5.9)
by lower bounding the left-hand side of (5.9) and upper bounding the right-hand
side in a suitable way. In order to get these bounds, we apply the perturbation
result Lemma 3.4 and introduce a large deviation event which can be dealt with
by means of the tilted probability measures.

Proof of Lemma 5.1. We start with upper bounding the right-hand side of (5.9).
By the Feynman-Kac representation (3.7) and the fact that supw∈[0,1] F̃ (w) = 1,
cf. Proposition 3.3, it follows that

wy+∆(t+ u, y − vt) = Ey−vt

[
e
∫ t+u

0
ξ(Xs)F̃ (wy+∆(t+u−s,Xs)) ds;Xt+u ≥ y +∆

]

≤ Ey−vt

[
e
∫ t+u

0
ξ(Xs) ds;Xt+u ≥ y +∆

]
.

(6.1)

To the right-hand side of (6.1) we now successively apply both parts of the pertur-
bation Lemma 3.4 (with V sufficiently large, as explained before Lemma 3.4 and
A = 2v). In order to apply them, we let t ≥ u ∨ T1 ∨ T2 =: T , where T1, T2 are
the P-a.s. finite random variables occurring in the statement of the perturbation
lemma. For such t, we then obtain

wy+∆(t+ u, y − vt) ≤ c1e
c1uEy−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y +∆

]

≤ c1c2e
c1u−∆/c2Ey−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

]
.

(6.2)

Let us now turn our focus to bounding the left-hand side of (5.9) from below.
We start by considering again the non-linearity F of (F-KPP). It is a direct
consequence of (3.1) and the normalisation (3.4) of Remark 3.2 that F (0) = 0
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x
y − vt y

t

t−K

s

βy,t

Figure 3. Sketch of a trajectory of the Brownian motion (Xs)s≥0,
started at y − vt, up until the hitting time Hy of y, which realises
the good event G. This trajectory does not hit the moving barrier
βy,t(s) (thick solid line) in the time interval [0, t−K] and thus avoids
the dashed region. The function wy(t− s, ·) is close to 1 in the grey
region, close to 0 in its complement, and changes its value from 0 to
1 in the vicinity of the thick dashed line whose slope is v0.

and F ′(0) = 1. In addition, recall that by (3.5) we have F ′′ ≥ −µ2 + 2 on [0, 1].
Therefore, by a first order Taylor approximation with Lagrange remainder,

F (w) ≥ w +
1

2
inf

w∗∈[0,1]
F ′′(w∗)w2 = w − 1

2
(µ2 − 2)w2.

In particular this implies that F̃ (w) = F (w)/w ≥ 1− 1
2
(µ2 − 2)w.

Plugging this into the left-hand side of (5.9), and using the Feynman-Kac rep-
resentation (3.7) as well as the uniform ellipticity (2.2) from Assumption 1, we
arrive at

wy(t, y − vt) ≥ Ey−vt

[
e
∫ t

0
ξ(Xs) ds e−

es

2
(µ2−2)

∫ t

0
wy(t−s,Xs) ds;Xt ≥ y

]
. (6.3)

In order to obtain a suitable control of the second exponential factor in (6.3),
we construct an event restricted to which the second exponential is bounded from
below in a suitable way. For this purpose, we recall the definition of v1 from (5.7),
and introduce for given t, y the moving boundary

βy,t(s) := y − v1(t− s), s ∈ [0, t]. (6.4)

By Ty,t := inf{s ≥ 0 : Xs = βy,t(s)} we denote the first hitting time of βy,t by a
Brownian motion started at y − vt. We claim that for K > 1 ∨ v−2

1 to be fixed
later, on the good event G := {Ty,t ∈ [t−K, t]}, it holds that

∫ t−K

0

wy(t− s,Xs) ds ≤ 1, (6.5)

see Figure 3 for an illustration. Indeed, note that using again the Feynman-Kac
representation (3.7) as well as the uniform ellipticity (2.2) of Assumption 1, in
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combination with the fact that supw∈[0,1] F̃ (w) = 1 once more, it holds that

wy(t− s,Xs) ≤ EXs

[
e
∫ t−s

0
ξ(X̃r) dr; X̃t−s ≥ y

]

≤ ees(t−s)PXs

(
X̃t−s ≥ y

)
,

where we write X̃ for an independent Brownian motion started at Xs in order to
avoid confusion of the two processes. On G one has that Xs ≤ y − v1(t − s) for
s ∈ [0, t−K]. Hence, by a straightforward coupling argument, on G we have

PXs

(
X̃t−s ≥ y

)
≤ P0

(
X̃t−s ≥ v1(t− s)

)
= P (Z ≥ v1

√
t− s),

where Z is a standard Gaussian random variable. Using this in combination with
a standard Gaussian bound (see e.g. [AT07, (1.2.2)]) and taking advantage of the
fact that by assumption v1

√
(t− s) ≥ v1

√
K ≥ 1, it follows that on G we can

upper bound
∫ t−K

0

wy(t− s,Xs) ds ≤
∫ t−K

0

ees(t−s)P
(
Z ≥ v1

√
t− s

)
ds

≤ 1√
2π

∫ t−K

0

e−(v21/2−es)(t−s) ds =
1√
2π

∫ t

K

e−(v21/2−es)z dz

≤ 1√
2π(v21/2− es)

e−K(v21/2−es) ≤ 1,

(6.6)

where in the last inequality we used v21/2 − es = 1, which holds by (5.7). This
proves (6.5).

Coming back to the task of finding a lower bound for the right-hand side of
(6.3), we infer by the above discussion that on G we can use (6.5) to bound the
second exponential factor on the right-hand side of (6.3) by

e−
es

2
(µ2−2)

∫ t

0
wy(t−s,Xs) ds ≥ e−

es

2
(µ2−2)

(
1+

∫ t

t−K
wy(t−s,Xs) ds

)

≥ e−
es

2
(µ2−2)(1+K),

(6.7)

where in the last inequality we used that 0 ≤ wy(s, y) ≤ 1 uniformly for all
(s, y) ∈ [0,∞)×R. Consequently, by restricting the expectation on the right-hand
side of (6.3) to G, it follows by (6.7) that whenever v > v1, then

wy(t, y − vt) ≥ e−
es

2
(µ2−2)(1+K)Ey−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y, G

]
. (6.8)

In order to finish the proof of (5.9), we need to compare the expectations on the
right-hand side of (6.2) and on the right-hand side of (6.8). This is the purpose of
the following lemma.

Lemma 6.1. Let v2 be as in (5.8). Then for every v > v2 there exists constants

K = K(v), C̃ = C̃(v) ∈ (0,∞) such that for P-a.a. ξ, for all t large enough and
all y ∈ [0, vt], one has

Ey−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

]
≤ C̃Ey−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y, G

]
. (6.9)

We postpone the proof of Lemma 6.1 and complete the proof of Lemma 5.1 first.
By combining the lower bound (6.8), the upper bound (6.2) and Lemma 6.1, we
obtain.

wy(t, y − vt)− wy+∆(t+ u, y − vt)

≥
(
e−

es

2
(µ2−2)(K+1) − C̃c1c2e

c1u−∆/c2
)
Ey−vt

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y,G

]
.
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For every ∆ satisfying

∆ ≥ ∆0 := c2

(
c1u+

es

2
(µ2 − 2)(K + 1) + ln(C̃c1c2)

)
,

the right-hand side is positive, which proves (5.9) and thus the lemma. □

Proof of Lemma 6.1. To prove the lemma, we use the machinery of tilted measures
as introduced in Section 4. We recall the notation ζ = ξ−es from (4.1) and observe
that, by multiplying both sides of (6.9) by e−es t, it is sufficient to show (6.9) with
ζ in place of ξ.

We start by proving an upper bound for the left-hand side of (6.9) in terms of
tilted measures. By Lemma A.4 there exist constants C,L <∞ such that for any
η < 0, for t large enough uniformly in y ∈ [0, vt] it holds that

Ey−vt

[
e
∫ t

0
ζ(Xs) ds;Xt ≥ y

]
≤ CEy−vt

[
e
∫Hy
0 ζ(Xs) ds ;Hy ∈ [t− L, t]

]

≤ Ce−ηtZζ,η
y−vt,yP

ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
.

(6.10)

In the next step, we bound the expression appearing on the right-hand side
of (6.9) from below. To this end, let pζ,ηy (t) := P ζ,η

y (Xt ≥ y). Using the strong
Markov property we obtain

Ey−vt

[
e
∫ t

0
ζ(Xs) ds;Xt ≥ y, Ty,t ≥ t−K

]

≥ e−(es−ei)KEy−vt

[
e
∫Hy
0 ζ(Xs) ds;Hy ∈ [t−K, t], Xt ≥ y, Ty,t ≥ t−K

]

≥ e−(es−ei−η)Ke−ηtEy−vt

[
e
∫Hy
0 (ζ(Xs)+η) ds;Hy ∈ [t−K, t], Xt ≥ y, Ty,t ≥ t−K

]

= e−(es−ei−η)Ke−ηtZζ,η
y−vt,yE

ζ,η
y−vt

[
pζ,ηy (t−Hy), Hy ∈ [t−K, t], Ty,t ≥ t−K

]

≥ 1

2
e−(es−ei−η)Ke−ηtZζ,η

y−vt,yP
ζ,η
y−vt

(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)
,

(6.11)

where in the last inequality we used Lemma 4.4 to infer that for any η < 0 and

s ≥ 0 one has pζ,ηy (s) ≥ P

√
2|η|

0 (Xs ≥ 0) ≥ 1/2.
In view of (6.10) and (6.11), in order to complete the proof of Lemma 6.1, it is

sufficient to show that

P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
≤ CP ζ,η

y−vt

(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)
, (6.12)

for some suitably chosen parameter η and constants C,K,L, P-a.s. for all t large,
uniformly in y ∈ [0, vt].

To this end we will need two further auxiliary lemmas. The first one will be
used to upper bound the probability appearing on the right-hand side of (6.12),
and also specifies the range of suitable η’s.

Lemma 6.2. Let η < 0 be such that
√
2|η| > v1(1 +

2L
K
), and let 0 < L < K be

such that L/K ≤ 1/3. Then, P-a.s. for every y ∈ R and v > v1,

P ζ,η
y−vt

(
Hy ≤ t, Ty,t ≤ t−K

)
≤ 2P ζ,η

y−vt(Hy < t− L). (6.13)

The second auxiliary lemma is a quantitative extension of a part of Proposition
3.5 of [DS22]. It states that under the tilted measure, if the tilting is not too strong,
the probabilities to cross a large interval in t or t− L time units are comparable.
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Lemma 6.3. For every v > vc there is c = c(v) < ∞ such that for all L large
enough and η ∈ (η(v) + c

L
, 0), P-a.s. for all t large enough and |y| ≤ 2vt,

P ζ,η
y−vt(Hy ≤ t− L) ≤ 1

4
P ζ,η
y−vt(Hy ≤ t),

and as a consequence,

P ζ,η
y−vt(Hy ≤ t− L) ≤ 1

3
P ζ,η
y−vt

(
Hy ∈ (t− L, t]

)
.

In order not to hinder the flow or reading, we postpone the proofs of these
two lemmas to the end of the current section. We now come back to the proof
of Lemma 6.1 and complete it by showing (6.12). To this end we choose the
parameters η, K, and L in such a way that the previous two lemmas can be used
simultaneously. More precisely, for a given v ≥ v2 we fix arbitrary η so that

|η(v)| − 1 > |η| > 2v21, (6.14)

which is possible by the definition of v2 in (5.8). Then we fix L as large as required
in Lemma 6.3. As consequence, due to (6.14), the required assumptions on η are
satisfied in our setting. Finally, we fix K ≥ 3L and observe that, in combina-
tion with (6.14), we infer

√
2|η| > 2v1 ≥ v1(1 +

2L
K
), so that the assumptions of

Lemma 6.2 are satisfied as well.
With this choice of constants, noting that {Hy ∈ [t − K, t], Ty,t ≥ t − K} =

{Hy ≤ t, Ty,t ≥ t−K} (cf. Figure 3 also), the right-hand side of (6.12) satisfies

P ζ,η
y−vt

(
Hy ∈ [t−K, t], Ty,t ≥ t−K

)

= P ζ,η
y−vt

(
Hy ≤ t

)
− P ζ,η

y−vt

(
Hy ≤ t, Ty,t < t−K

)

≥ P ζ,η
y−vt

(
Hy ≤ t

)
− 2P ζ,η

y−vt

(
Hy ≤ t− L

)
,

(6.15)

where the last inequality follows from Lemma 6.2. This can be written as

P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
− P ζ,η

y−vt

(
Hy ≤ t− L

)
≥ 2

3
P ζ,η
y−vt

(
Hy ∈ [t− L, t]

)
, (6.16)

where the last inequality is a direct consequence of Lemma 6.3. Now combining
(6.15) and (6.16) we obtain (6.12), which completes the proof. □

It remains to provide the proofs of Lemmas 6.2 and 6.3.

Proof of Lemma 6.2. Using the tower property for conditional expectations we ob-
tain

P ζ,η
y−vt(Hy < t− L) ≥ P ζ,η

y−vt(Hy < t− L, Ty,t ≤ t−K)

= Eζ,η
y−vt

[
1{Ty,t≤t−K}P

ζ,η
y−vt(Hy < t− L | FTy,t)

]
,

(6.17)

where FTy,t is the canonical stopped σ-algebra associated to Ty,t. It follows from
Lemma 4.4 that the drift of X under the tilted measure P ζ,η

y−vt is always larger than√
2|η|. On the event {0 ≤ Ty,t ≤ t −K}, by the strong Markov property at time

Ty,t and using that XTy,t = βy,t(Ty,t), it holds that

P ζ,η
y−vt

(
Hy < t− L | FTy,t

)
= P ζ,η

XTy,t

(
Hy < t− L− Ty,t

)

≥ inf
0≤u≤t−K

P ζ,η
βy,t(u)

(Hy ≤ t− u− L)

≥ inf
0≤u≤t−K

P

√
2|η|

βy,t(u)
(Hy ≤ t− u− L).

(6.18)
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Recalling the assumptions of the lemma, for u ∈ [0, t−K] we have that

E

√
2|η|

βy,t(u)
(Xt−u−L) = βy,t(u) +

√
2|η|(t− u− L)

≥ y − v1(t− u) + v1
(
1 + 2L

K

)
(t− u− L)

≥ y − v1L+ v1
2L
K
(K − L) ≥ y + 1

3
v1L ≥ y,

(6.19)

where for the penultimate inequality we used K − L ≥ 2
3
K, by assumption. In

combination with the fact that X is Brownian motion with drift under P
√

2|η|

βy,t(u)
,

it follows that the probability on the right-hand side of (6.18) is at least 1/2.
Plugging this back into (6.17) we arrive at

P ζ,η
y−vt(Hy < t− L) ≥ 1

2
P ζ,η
y−vt

(
Ty,t ≤ t−K

)

≥ 1

2
P ζ,η
y−vt

(
Ty,t ≤ t−K,Hy ≤ t

)
,

as claimed. □

Next we give the proof of Lemma 6.3.

Proof of Lemma 6.3. The first part of the proof of this lemma follows the same
steps as the proof of Proposition 3.5 of [DS22] (see also the proof of Lemma A.3 in
the appendix.) By Lemma A.1(a), P-a.s. for all t large enough, and all |y| ≤ 2vt,
there exist constants ηζy−vt,y(v) so that

E
ζ,ηζy−vt,y(v)

y−vt [Hy] = t. (6.20)

To simplify the notation we write η̃ = ηζy−vt,y(v). Using Lemma A.1(b), we can
assume that η̃ < η(v) + c

2L
, and thus, by the hypothesis of the lemma,

η − η̃ >
c

2L
. (6.21)

By definition of tilted measures (4.3),

P ζ,η
y−vt(Hy ≤ t− L) =

1

Zζ,η
y−vt,y

Ey−vt

[
e
∫Hy
0 (ζ(Xs)+η) ds;Hy ≤ t− L

]

=
Zζ,η̃

y−vt,y

Zζ,η
y−vt,y

1

Zζ,η̃
y−vt,y

Ey−vt

[
e
∫Hy
0 (ζ(Xs)+η̃) dse−Hy(η̃−η);Hy ≤ t− L

]
.

=
Zζ,η̃

y−vt,y

Zζ,η
y−vt,y

Eζ,η̃
y−vt

[
e−Hy(η̃−η);Hy ≤ t− L

]
.

(6.22)

Define random variables τi = Hy−vt+i − Hy−vt+i−1, i = 1, . . . , ⌊vt⌋, and τvt =

Hy − Hy−vt+⌊vt⌋, so that
∑⌊vt⌋

i=1 τi + τvt = Hy, and their re-centred versions τ̂i =
τi − Eζ,η̃

y−vt[τi] for i = 1, . . . , ⌊vt⌋, and τ̂vt = τvt − Eζ,η̃
y−vt[τvt]. Further, let

Y ζ
y−vt,y :=

(η̃−η)
σ̃

( ⌊vt⌋∑

i=1

τ̂i + τ̂vt
)
, (6.23)

where
σ̃ = σ̃ζ

y−vt,y(v) = |η̃ − η|
√
Var

P ζ,η̃
y−vt

(Hy). (6.24)



TIGHTNESS OF THE MAXIMUM OF BBM IN RANDOM ENVIRONMENT 24

is chosen so that the variance of Y ζ
y−vt,y is one. Denoting by µζ

y−vt,y the distribution
of Y ζ

y−vt,y under P ζ,η̃
y−vt,y, using also the fact that E η̃

y−vt,y[Hy] = t, by the definition
of η̃, (6.22) can be rewritten as

P ζ,η̃
y−vt(Hy ≤ t− L)

=
Zζ,η̃

y−vt,y

Zζ,η
y−vt,y

e(η−η̃)tEζ,η̃
y−vt

[
e−σ̃Y ζ

y−vt,y ;Y ζ
y−vt,y ∈

[L(η − η̃)

σ̃
,∞

)]

=
Zζ,η̃

y−vt,y

Zζ,η
y−vt,y

e(η−η̃)t

∫ ∞

L(η−η̃)/σ̃

e−σ̃uµζ
y−vt,y(du).

(6.25)

Setting L = 0 in the above formula we further obtain

P ζ,η
y−vt(Hy ≤ t) =

Zζ,η̃
y−vt,y

Zζ,η
y−vt,y

e(η−η̃)t

∫ ∞

0

e−σ̃uµζ
y−vt,y(du), (6.26)

Hence, to finish the proof of the lemma, it suffices to show that the integral on
the right-hand side of (6.25) is at most 1/4 of the integral on the right-hand side
of (6.26).

To see this we proceed as in the proof of Lemma 3.6 of [DS22]. By the strong
Markov property the random variables τ̂i, i = 1, . . . , ⌊vt⌋, and τ̂vt are independent
under P ζ,η̃

y−vt. Further, it is a straightforward consequence of the definitions of
the logarithmic moment generating functions in [DS22, (2.7)] and their being well
defined for η < 0 that those random variables have uniform exponential moments.
Moreover, recall that σ̃ was chosen such that the variance of µζ

y−vt,y is one. This
allows the application of a local central limit theorem for independent normalised
sequences [BR10, Theorem 13.3], which infers that

sup
B

|µζ
y−vt,y(B)− Φ(B)| ≤ c1(⌈vt⌉)−1/2, (6.27)

where the supremum is taken over all intervals B in R and Φ denotes the standard
Gaussian measure. Note that the constant c1 in the last display depends only
on the uniform bound of the exponential moments of the τ̂i’s. Without loss of
generality, we can assume that c1 > 4. We also note that by [DS22, (3.8)] (see also
(A.8)) the variance σ̃2 defined in (6.24) satisfies for P-a.a. ζ and t large enough

c−1
2

√
⌈vt⌉ ≤ σ̃ ≤ c2

√
⌈vt⌉. (6.28)

We now have all ingredients to finish the proof. For that purpose, we assume
that the constant c from the statement of the lemma satisfies the inequality

ℓ :=
L(η − η̃)

σ̃
≥ c

2c2
√
vt

≥ 20c1√
vt
. (6.29)

To bound the integral in (6.25) from above, we observe that for any interval (a, b)
of length ℓ we have Φ((a, b)) ≤ ℓ/

√
2π and thus µζ

y−vt,y((a, b)) ≤ (ℓ+c1/
√
vt) ≤ 2ℓ,

by (6.29). Therefore, using (6.28) in the last step,
∫ ∞

L(η−η̃)/σ̃

e−σ̃uµζ
y−vt,y(du) ≤

∞∑

i=1

e−σ̃iℓµζ
y−vt,y((iℓ, (i+ 1)ℓ))

≤ 2ℓe−σ̃ℓ

1− e−σ̃ℓ
≤ 2σ̃ℓe−σ̃ℓ

1− e−σ̃ℓ
· c2√

vt
.

(6.30)
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On the other hand, using the rough bound Φ((0, x)) ≥ x/5 which holds for small
enough x, and (6.29),

∫ ∞

0

e−σ̃uµζ
y−vt,y(du) ≥

∫ L(η−η̃)/2σ̃

0

e−σ̃uµζ
y−vt,y(du)

≥ e−σ̃ℓ/2µζ
y−vt,y((0, ℓ/2)) ≥ e−σ̃ℓ/2

(
Φ((0, ℓ/2))− c1√

vt

)

≥ e−σ̃ℓ/2 c1√
vt
.

(6.31)

By increasing the value of the constant c and thus of σ̃ℓ ≥ c/2, the right-hand side
of (6.30) can be made at most 1/4 as large as the right-hand side of (6.31). This
completes the proof of the lemma. □

Appendix A. Perturbation estimates

The goal of this appendix is to show perturbation Lemma 3.4. Its proof strongly
resembles the proofs of Lemma 3.11(b) of [DS22] and Lemma 4.1(b) of [ČDS22].
However, compared to the proofs of these two lemmas, we should take care of two
key differences:

(A) Lemma 3.4 requires that its estimates hold uniformly over the “starting
point” x and the “target point” y in an interval growing linearly with time
t. In the original statements, the target point is always the origin and the
starting point satisfies x = vt.

(B) Lemma 3.4(b) involves a perturbation by the end point (that is, y changes
to y + h), while the starting point is perturbed in the original statement.

Proving Lemma 3.4 thus requires checking that these two differences can be
dealt with by the original arguments. We will not reproduce the lengthy argument
in completeness here, but describe key locations where the arguments of [ČDS22,
DS22] have to be adapted.

We start by recalling the definition of the tilted measure P ζ,η
x from below (4.4).

Similarly to [DS22, (2.13)], we are interested in the tilting parameter ηζx,y(v) such
that the mean speed on the way from x to y under the tilted measure is v, that is

Eζ,ηζx,y(v)
x [Hy] =

y − x

v
, v > 0, x < y. (A.1)

(If ηζx,y(v) does not exist, we set ηζx,y(v) = 0.) We also recall the definitions of
η(v) < 0 from below (4.5) (see also [DS22, (2.10)]), and of the compact interval
V ⊂ (vc,∞) containing v0 in its interior from above Lemma 3.4. By [DS22,
Lemma 2.4], there is a compact interval △ ⊂ (−∞, 0) which contains η(V ) in its
interior. In particular,

∞ < inf
v∈V

η(v) ≤ sup
v∈V

η(v) < 0. (A.2)

The next lemma shows that ηζx,y(v) exists with hight probability and is close to
η. It is an extension of Lemma 2.5 of [DS22] and the first step on the way to deal
with the difference (A) in the above list.

Lemma A.1. (a) For every A > 1 there exists a finite random variable N =
N (A) such that for all v ∈ V and x < y ∈ R such that y − x ≥ N
and |x|, |y| ≤ A(y − x), the solution ηζx,y(v) to (A.1) exists and satisfies

ηζx,y(v) ∈ △.
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(b) For each q ∈ N, and each compact interval V ⊂ (vc,∞), there exists C =
C(V, q) ∈ (0,∞) such that, for all n ∈ N,

P

(
sup
v∈V

sup
x∈[−n,−n+1]

sup
y∈[0,1]

|ηζx,y(v)− η(v)| ≥ C

√
lnn

n

)
≤ Cn−q. (A.3)

Proof. As in [DS22], (a) follows directly from (b), using the Borel-Cantelli lemma
and (A.2) (with the help of the stationarity and an additional union bound to take
care over the uniformity in y). Part (b) looks essentially the same as in [DS22],
with the additional supremum over y ∈ [0, 1]. Due to (2.3), the proof of this part
runs exactly as the proofs of Lemmas 2.5, 2.6 of [DS22], the modifications due to
the additional supremum essentially require notational changes only. □

We can further adapt Lemma 2.7 of [DS22], which is used in the proof of
Lemma 4.1 in [ČDS22]. Besides [DS22, Lemma 2.5] which we already adapted
to our setting in Lemma A.1, its proof only uses steps that are uniform in the
potential ξ, and thus requires only notational changes.

Lemma A.2. There exists a constant c > 0 and for every A > 1 there exists a
finite random variable N ′ = N ′(A) such that for all x, y ∈ R with y− x ≥ N ′ and
|x|, |y| ≤ A(y − x), v ∈ V , and h ∈ [0, y − x], we have

∣∣ηζx,y(v)− ηζx,y+h(v)
∣∣ ≤ ch

y − x
. (A.4)

Next, we need to extend the second part of Proposition 3.5 in [DS22]. To this
end, for x ≤ y ∈ R and v > 0, we introduce the quantities (cf. [DS22, (3.7)])

Y ≈
v (x, y) := Ex

[
e
∫Hy
0 ζ(Xs) ds;Hy ∈

[y − x

v
−K,

y − x

v

]]
,

Y >
v (x, y) := Ex

[
e
∫Hy
0 ζ(Xs) ds;Hy <

y − x

v
−K

]
,

(A.5)

where K is a large constant fixed as in [DS22, (3.17)]. It turns out that Y ≈
v (x, y)

and Y <
v (x, y) are comparable uniformly in the admissible choices of x and y.

Lemma A.3. For A > 1, let N = N (A) be as in Lemma A.1. Then there exists a
constant C ∈ (1,∞) such that for all v ∈ V and all x < y ∈ R such that y−x ≥ N
as well as |x|, |y| ≤ A(y − x), we have

Y ≈
v (x, y)

Y <
v (x, y)

∈ [C−1, C]. (A.6)

Proof. The proof of this lemma contains a computation that is also at the heart
of the proof of Lemma 6.3, so we include it here. We assume that x, y satisfy
the assumptions of the lemma, and, in order to keep the notation simple, we in
addition assume that x, y ∈ Z (cf. [DS22, Section 1.9]). We write η := ηζx,y(v) and
define

σ = σζ
x,y(v) := |η|

√
VarP ζ,η

x
(Hy), (A.7)

where the variance is with respect of P ζ,η
x . As in [DS22, (3.8)], uniformly in ζ and

v ∈ V ,
c−1

√
y − x ≤ σζ

x,y(v) ≤ c
√
y − x (A.8)

for some c ∈ (1,∞). Let further τz = Hz − Hz−1, z ∈ [x + 1, y] ∩ Z, and let
τ̂z := τz −Eζ,η

x [τz]. Then, by the definition of η, for x, y satisfying the assumptions
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of Lemma A.1, we have
∑y

z=x+1E
ζ,η
x [Hy] =

y−x
v

. With this notation, as in [DS22,
(3.12)],

Y ≈
v (x, y) = Ex

[
e
∫Hy
0 (ζ(Bs)+η) ds e−η

∑y
z=x+1 τ̂z ;

y∑

i=x+1

τ̂z ∈ [−K, 0]
]
e−xη/v

= Eζ,η
x

[
e−σ η

σ

∑y
z=x+1 τ̂z ;

η

σ

y∑

z=x+1

τ̂z ∈
[
0,−Kη

σ

]]
e−(y−x)( η

v
−L

ζ
x,y(η)),

(A.9)

where (cf. [DS22, (2.7)])

L
ζ

x,y(η) := (y − x)−1

y∑

z=x+1

lnEz−1

[
e
∫Hz
0

(ζ(Xs)+η) ds
]

= (y − x)−1Ex

[
e
∫Hy
0 (ζ(Xs)+η) ds

]
.

(A.10)

Defining µζ,η
x,y to be the distribution of η

σ

∑y
z=x+1 τ̂z under P ζ,η

x , this implies

Y ≈
v (x, y) = e−(y−x)( η

v
−L

ζ
x,y(η))

∫ −Kη
σ

0

e−σuµζ,η
x,y(du). (A.11)

Similarly,

Y <
v (x, y) = e−(y−x)( η

v
−L

ζ
x,y(η))

∫ ∞

−Kη
σ

e−σuµζ,η
x,y(du). (A.12)

The upshot of this computation is that under P ζ,η
x , the random variables τ̂z, z =

x + 1, . . . , y are centred, independent, have uniform exponential moments, and
µζ,η
x,y has unit variance. This allows, as in the proof of [DS22, Lemma 3.6], to

(uniformly) approximate µζ,η
x,y by the standard Gaussian measure, and to show

that the integrals appearing on the right-hand side of (A.11) and (A.12) are both
comparable to (σζ

x,y(v))
−1 and thus, by (A.8), to (y−x)−1/2, uniformly in the ζ and

v ∈ V under consideration and for all x, y satisfying the assumptions of Lemma
A.1. With this the claim of the lemma follows. □

Lemma A.3 has an important corollary allowing to approximate the Feynman-
Kac formula for the PAM by expressions involving Y ≈

v (x, y). This approximation
is used in (6.10), and also in the proof of Lemma 3.4 below.

Lemma A.4. (cf. [DS22, Lemma 3.7]) For each A > 1, there exists a constant
C ∈ (1,∞) such that for all t ∈ (0,∞) and all x < y ∈ R such that y − x ≥ N ,
|x|, |y| ≤ A(y − x) and y−x

t
∈ V ,

C−1Y ≈
v (x, y) ≤ Ex

[
e
∫ t

0
ζ(Xs) ds;Xt ≥ y

]
≤ CY ≈

v (x, y). (A.13)

Proof. The proof of the corresponding Lemma 3.7 of [DS22] only uses estimates
that are uniform in ζ and the starting/target position, as well as the part of
Proposition 3.5 therein which we already extended in Lemma A.3. It can thus
directly be adapted to the current setting. □

We can now finally show Lemma 3.4.

Proof of Lemma 3.4. The proof of part (a) involving the perturbation in time fol-
lows exactly the same lines as the proof of Lemma 3.11(b) in [DS22]: We denote
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v := (y − x)/t, v′ := (y − x)/(t + h) and observe that by Lemma A.4, for x, y, t
and h as in the statement, by choosing T1 sufficiently large so that y − x ≥ N ,

Ex

[
e
∫ t+h

0
ξ(Xs) ds;Xt+h ≥ y

]

Ex

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

] ≤ C
Y ≈
v′ (x, y)

Y ≈
v (x, y)

. (A.14)

The fraction on the right-hand side can be rewritten with help of (A.11). Using
also the fact that the integral in (A.11) is of order

√
y − x, as explained at the end

of the proof of Lemma A.3, we obtain (cf. [DS22, (3.36)])

Y ≈
v′ (x, y)

Y ≈
v (x, y)

≤ exp
{
− (y − x)

(ηζx,y(v
′)

v′
− L

ζ

x,y(η
ζ
x,y(v

′))
)}

exp
{
− (y − x)

(ηζx,y(v)

v
− L

ζ

x,y(η
ζ
x,y(v))

)} . (A.15)

Now—cf. [DS22, (3.4)]—denoting

Sζ,v
x,y(η) := (y − x)

(η
v
− L

ζ

x,y(η)
)
, (A.16)

the logarithm of the right-hand side of (A.15) can be written as

(
Sζ,v
x,y(η

ζ
x,y(v))− Sζ,v

x,y(η
ζ
x,y(v

′))
)
+
(
Sζ,v
x,y(η

ζ
x,y(v

′))− Sζ,v′

x,y (η
ζ
x,y(v

′))
)

(A.17)

Recalling the definitions of v and v′, the second summand in (A.17) satisfies

(
Sζ,v
x,y(η

ζ
x,y(v

′))− Sζ,v′

x,y (η
ζ
x,y(v

′))
)
= −hηζx,y(v′) ≤ ch, (A.18)

since 1
c′

≤ ηζx,y(v
′) ≤ c′ < 0 for the considered x, y, v′, due to Lemma A.1(a).

Moreover, the absolute value of the first summand in (A.17) can be upper bounded
by ch2/t ≪ h uniformly for x, y, t and h under consideration, exactly as in the
paragraph containing [DS22, (3.39)] (this proof uses again only estimates that are
uniform in ζ). This completes the proof of part (a).

The proof of part (b) follows the lines of the proof of Lemma 4.1 in [ČDS22], but
it should accommodate for the difference (B), as explained above at the beginning
of Appendix A. Using the same reasoning as in (A.14)–(A.17), now with the choices
v := (y − x)/t and v′ := (y + h− x)/t, we infer that

Ex

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y + h

]

Ex

[
e
∫ t

0
ξ(Xs) ds;Xt ≥ y

] ≤ C
Y ≈
v′ (x, y + h)

Y ≈
v (x, y)

(A.19)

as well as

ln
Y ≈
v′ (x, y + h)

Y ≈
v (x, y)

≤
(
Sζ,v
x,y(η

ζ
x,y(v))− Sζ,v′

x,y+h(η
ζ
x,y(v))

)

+
(
Sζ,v′

x,y+h(η
ζ
x,y(v))− Sζ,v′

x,y+h(η
ζ
x,y+h(v

′))
)
.

(A.20)

By (A.16), the first summand on the right-hand side of (A.20) (which differs
slightly from the one in [ČDS22], due to the difference (B)) satisfies (with η :=
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ηζx,y(v))
∣∣∣Sζ,v

x,y(η
ζ
x,y(v))− Sζ,v′

x,y+h(η
ζ
x,y(v))

∣∣∣

=
∣∣∣ lnEx

[
e
∫Hy+h
0 (ζ(Xs)+ηζx,y(v)) ds

]
− lnEx

[
e
∫Hy
0 (ζ(Xs)+ηζx,y(v)) ds

]∣∣∣

=
∣∣∣ lnEy

[
e
∫Hy+h
0 (ζ(Xs)+ηζx,y(v)) ds

]∣∣∣

≤ h

√
2(es− ei+ |ηζx,y(v)|) ≤ ch,

(A.21)

where in the second equality we applied the strong Markov property at time Hy,
and used (4.16) for the inequality.

The second summand on the right-hand side of (A.20) is bounded by ch2/t≪ h
and is thus negligible. This can be proved exactly as in [ČDS22, (4.13)–(4.16)].
Besides [DS22, Lemma 2.7], which we already extended in Lemma A.2, this proof
again only uses uniform estimates and thus does not require any modification.
This completes the proof of the lemma. □
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