edoc

Strong convergence of the vorticity and conservation of the energy for the $\alpha$-Euler equations

Abbate, Stefano and Crippa, Gianluca and Spirito, Stefano. (2023) Strong convergence of the vorticity and conservation of the energy for the $\alpha$-Euler equations. Preprints Fachbereich Mathematik, 2023 (07).

[img]
Preview
PDF
319Kb

Official URL: https://edoc.unibas.ch/95013/

Downloads: Statistics Overview

Abstract

In this paper, we study the convergence of solutions of the $\alpha$-Euler equations to solutions of the Euler equations on the $2$-dimensional torus. In particular, given an initial vorticity $\omega_0$ in $L^p_x$ for $p \in (1,\infty)$, we prove strong convergence in $L^\infty_tL^p_x$ of the vorticities $q^\alpha$, solutions of the $\alpha$-Euler equations, towards a Lagrangian and energy-conserving solution of the Euler equations. Furthermore, if we consider solutions with bounded initial vorticity, we prove a quantitative rate of convergence of $q^\alpha$ to $\omega$ in $L^p$, for $p \in (1, \infty)$.
Faculties and Departments:05 Faculty of Science > Departement Mathematik und Informatik > Mathematik > Analysis (Crippa)
12 Special Collections > Preprints Fachbereich Mathematik
UniBasel Contributors:Crippa, Gianluca
Item Type:Preprint
Publisher:Universität Basel
Language:English
edoc DOI:
Last Modified:19 Jun 2023 09:07
Deposited On:19 Jun 2023 09:07

Repository Staff Only: item control page