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Abstract

Prediction categories in the Critical Assessment of Structure Prediction (CASP) exper-

iments change with the need to address specific problems in structure modeling. In

CASP15, four new prediction categories were introduced: RNA structure, ligand-

protein complexes, accuracy of oligomeric structures and their interfaces, and ensem-

bles of alternative conformations. This paper lists technical specifications for these

categories and describes their integration in the CASP data management system.
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1 | INTRODUCTION

Critical Assessment of Structure Prediction (CASP) is a well-

established experiment for tracking progress in computational

methods for calculating protein structure from amino acid sequence

and related challenges.1–4 While the core of CASP has remained

unchanged since its inception, the scope changes frequently, with

some categories becoming obsolete while new ones are introduced.

Following the major advances in single protein structure modeling

seen at CASP14, three categories were discontinued for round 15:

contact prediction, refinement, and third-party model accuracy esti-

mation for monomeric targets. At the same time, discussions among

the organizers and advisory board members as well as a survey of the

modeling community established interest in the new categories of
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RNA structure, protein–ligand complexes, accuracy of oligomeric

structures and their interfaces, and ensembles of alternative confor-

mations. CASP launched pilot experiments in all these areas, exploring,

where possible, collaborations with groups involved in the existing or

recently discontinued related experiments. In CASP15, the new cate-

gories have yielded interesting results, and their assessment is dis-

cussed in dedicated papers in this journal special issue.5–8 The main

goal of this paper is to address technical issues of introducing the new

categories in CASP and serve as a point of reference for format speci-

fications and details on how the experiment was conducted.

2 | METHODS

Introducing a new category into CASP requires planning data work-

flows, designing formats and technical parameters for new types of

models, and incorporating those into the existing CASP infrastructure.

Sections 2.1–2.4 describe the implementation details for four new

CASP15 categories.

2.1 | RNA structure prediction

Prediction of RNA structure from nucleic sequence is a challenging

task as RNA molecules, like proteins, can fold into a wide variety of

3D shapes. Several research groups have been actively working in this

area, and in 2010 Eric Westhof pioneered a CASP-like RNA-Puzzles

challenge9 to track the state of the art in the RNA structure prediction

and provide a forum for discussing methodological advances. Over

the course of 12 years (2010–2021) there were 22 evaluated RNA-

Puzzles challenges, which attracted the attention of around 10 return-

ing participants.10 In 2022, on the initiative of Rhiju Das, Eric Westhof

and CASP organizers, the RNA-Puzzles joined forces with CASP, and

RNA structure prediction became a prediction category in CASP15.

This helped expand the target and predictors base of the RNA-

modeling experiment (12 targets, 25 research groups in CASP15),

stimulate development of new RNA prediction methods through the

exchange of ideas and techniques with the protein prediction commu-

nity, where deep learning methods recently made a significant impact

on the modeling accuracy,11,12 increase visibility of the field, and use

CASP's standardized platform for managing predictions and evaluating

and comparing different prediction methods.

To incorporate RNA prediction into CASP, we adhered as closely

as possible to the requirements and recommendations of the RNA-

Puzzles experiments.9

2.1.1 | RNA prediction format (https://predictionce
nter.org/casp15/index.cgi?page=format#TS)

Similarly to protein structure prediction, a CASP RNA submission file

starts with the CASP header including format specification code, target

identifier, author identifier, and description of methods used for model-

ing. The file can include up to five RNA 3D models, each encompassed

by the MODEL/END keywords. Models are formatted according to the

established standards of the RNA-Puzzles community:9

• 3D coordinates are provided for the complete list of atoms for all

nucleotides from the target FASTA file;

• only natural nucleotides (A, C, G, U) are allowed;

• if present, modified monomeric units are transformed into unmodi-

fied ones by discarding atypical atoms;

• only atoms from the following sets—(C2, C4, C6, C8, N1, N2, N3,

N4, N6, N7, N9, O2, O4, O6) for nucleobases, and (C10 , C20, C30,

C40 , C50, O20 , O30 , O40, O50, OP1, OP2, P) for sugar-phosphate

backbone are allowed.

In case of protein-RNA complexes, protein chains are designated

with letters (A, B, C, …) and RNA chains with numbers (0, 1, 2, …).

An example of RNA prediction is provided in Example 3 on the

CASP15 format page https://predictioncenter.org/casp15/index.cgi?

page=format.

2.1.2 | Preparation of targets and model templates

The CASP organizers prepare a FASTA file with the sequence of targeted

RNA. The file begins with a header containing target ID (e.g., >R1117)

and chain IDs (i.e., numbers from 0 to 9) of all strands in the target struc-

ture. The body of the file includes nucleic acid sequence(s). In addition,

the organizers generate a 3D structure template using the RNA-Puzzles

formatting tool.13 The template is a PDB file containing all the required

ATOM records with zeroed coordinate values. The information on tar-

gets is communicated to participating groups via the CASP web portal

(e.g., https://predictioncenter.org/casp15/target.cgi?id=30&view=all).

Prior to submission, predictors can verify compatibility of their

models with the provided templates by running the RNA-Puzzles tool

that checks the number and ordering of residues and atoms in the

submission.13 If a prediction file does not comply with the require-

ments, error messages are reported to a log file. Non-compliant files

can be reformatted with the rna_pdb_toolsx.py script available from

the rna-tools toolbox.13,14

2.1.3 | Setting the acceptance system

At the target release time, each target is assigned a prediction time

window, which is typically 3 days for servers and 3 weeks for expert

groups. RNA structure models are accepted within the specified pre-

diction window via email or dedicated CASP prediction submission

webform. The CASP submission system automatically checks submis-

sions for compliance with the deadlines and format requirements and

provides feedback to predictors. The prediction format is checked

with the same tools used to generate model templates (Section 2.1.2).

If a prediction is rejected, an error message is sent to the submitter,

and they have until the target deadline to fix the reported issue(s) and

resubmit. Accepted predictions are stored in the CASP system and

eventually evaluated after the target structure becomes available.
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The same submission rules apply to other prediction categories

discussed further in this paper.

2.1.4 | RNA evaluation measures

Predictions in the RNA category are assessed by checking their geometric

plausibility and comparing them with target structures. When alternative

target structures were available, we reported the best score per model.

Evaluation measures include Clashscore,15 Root Mean Square Deviation

(RMSD),16 Local Distance Difference Test (lDDT),17 Template Modeling

score (TM-score),18 and Global Distance Test-Total Score (GDT-TS).19

These are commonly used measures in protein-CASP evaluation that are

also adopted here for RNA evaluation. However, none of these measures

are suitable for assessing RNA-specific components, like canonical (G-C,

A-U, G-U), non-canonical, and stacking interactions between the nucleo-

bases that contribute to RNA folding and stabilization. Proper prediction

of only canonical interactions is usually insufficient to obtain a good

model of an RNA molecule (example in Figure 1), while prediction of non-

canonical interactions is very valuable but hard to achieve due to high

computational demands. We additionally consider an RNA-specific mea-

sure, Interaction Network Fidelity (INF),13,20 which evaluates different

types of RNA interactions in models. Calculation of these measures

requires prior determination of RNA interactions from the atomic coordi-

nates. This is done using 2D structure annotators such as RNAView,21

MC-Annotate,22 ClaRNA23 or FR3D,24 which provide base pairs and their

classification.25 Given two sets of interactions, one for the model and

another for the target, we identify true positives (correctly predicted base

pairs), false positives (unpredicted base pairs), and false negatives (incor-

rectly predicted base pairs), and then calculate the INF score as the Mat-

thews correlation coefficient.26 The score ranges from [0.0, 1.0], with

higher scores indicating better prediction of base–base interactions. The

INF score is determined for all interactions (INF_all), and separately for

canonical (Watson-Crick, INF_WC), non-canonical (non-Watson-Crick,

INF_nWC), and stacking (INF_stacking) interactions.

Many RNA targets were derived from low-to-medium resolution

(4–7 Å) cryo-EM maps. To remove bias and modeling uncertainties

potentially present in the reference structures, we additionally

evaluated predictions by directly comparing them to maps. After

docking models into maps, predictions were scored with five different

measures: CCmask (cross-correlation masked by the area around the

model), CCpeaks (cross-correlation masked by the model and the high-

est density peaks in the map), MI (mutual information), SMOC (seg-

ment-based Mander's overlap coefficient), and AI (atomic

inclusion).27,28 It is worth noting that model-independent measures

are known to overinflate scores for compressed models with unrealis-

tic geometries. Thus, when using these scores, it is important to first

filter out models with poor topology scores or, alternatively, combine

these scores with geometric scores, such as Clashscore.

2.2 | Protein–ligand complexes

The ligand topic is not new to CASP: in CASPs 6 through 10 predicting

ligand binding sites was a sub-challenge in the function prediction

category.29–32 Given the recent advances in the accuracy of protein

modeling methods,11,12 CASP organizers decided to include prediction

of protein- and RNA-small molecule ligand complexes into the scope

of CASP15 experiment hoping to boost development of methods in

this area. Participants are provided with the sequence and stoichiome-

try of protein (or RNA) receptors, Simplified Molecular Input Line

Entry System (SMILES) codes of bound ligands, and are asked to pre-

dict structures of protein– (RNA-)ligand complexes.

2.2.1 | Macromolecule–ligand complex prediction
format (https://predictioncenter.org/casp15/index.cgi?
page=format#LG)

One important requirement for the ligand prediction format was the

need to encode atom connectivity in a robust and reliable manner, as

the correct atom connectivity is required for symmetry correction, a

necessary step in accurate ligand assessment. Unfortunately, the PDB

format, which is commonly used in CASP, is not able to reliably

encode connectivity for arbitrary ligands. The MDL molfile format33 is

a common format for ligands which was used in earlier ligand docking

F IGURE 1 Two models of PreQ1 class I type III riboswitch superimposed with the target structure (R1117, green). Model R1117TS119_3
(orange, panel B) correctly reproduces all canonical base pairs at the same time not reproducing any non-canonical interactions and having the
RMSD of 9.90 Å. Model R1117TS287_2 (blue, panel A) misses 7% of canonical base pairs but is a much better model with the RMSD of 2.25 Å
and non-canonical interactions reproduction rate of 39%. RMSD scores were computed on the 2–30 fragment.

KRYSHTAFOVYCH ET AL. 3

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26515 by U

niversitaetsbibliothek B
asel, W

iley O
nline L

ibrary on [13/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://predictioncenter.org/casp15/index.cgi?page=format#LG
https://predictioncenter.org/casp15/index.cgi?page=format#LG


challenges such as D3R.34–37 This is a text-based, fixed column format

that besides atom coordinates also encodes the bonds. Unlike the

PDB format, atoms are not named and only identified by their ele-

ment and connectivity. The format allows reporting additional proper-

ties such as charge, valence, or isotope, but those were not required

nor used here. Bonds between atoms are encoded explicitly, one by

line, together with the bond type (single, double, triple, or aromatic)

and stereochemistry. The format also includes header lines, a

COUNTS line, which can help check the integrity of the file, and an M

END line which indicates the end of the ligand data.

For CASP15, we devised a hybrid submission format where the

receptor's model (protein or RNA) and ligand model are submitted

as separate files in the same spatial frame of reference. The receptor

is submitted in the PDB format, while the ligand in MDL (see below

for details). Similarly to the regular protein structure submission, a

CASP ligand submission (LG format) starts with a CASP header

including format specification code, target identifier, author identi-

fier, and description of the modeling method. Two new keywords

are introduced: the LIGAND keyword, which defines ligand name

and the beginning of the ligand data, and the POSE keyword, which

defines the pose number for the selected ligand. Participants are

allowed to submit up to five poses of a given ligand for a selected

receptor model.

An example of LG prediction is provided in Example 6 on the

CASP15 format page.

2.2.2 | Preparation of targets and model templates

A FASTA file of the receptor sequence is prepared by the CASP orga-

nizers. For known small molecules, SMILES are retrieved from the

PDB component dictionary. In the case of novel small molecules (not

present in the PDB component dictionary), SMILES are provided by

the experimentalists. In both cases, SMILES are compared and modi-

fied based on those derived from the PDB coordinates. If necessary,

stereochemistry is assigned using the AssignStereochemistryFrom3D

function from RDKit, and the protonation state adjusted by manually

editing the SMILES based on the visual inspection of protein-ligand

interactions.

The relevance of each small molecule is decided case by case.

Only biologically relevant small molecules are retained. Common crys-

tallographic reagents and ions are ignored if not interacting with the

small molecules or part of a structural motif (e.g., zinc binding motif).

A script to prepare prediction templates (MDL files) is provided

by the CASP organizers. It is implemented in python 3 and RDKit

python bindings (http://www.rdkit.org/). The script initially converts

the input SMILES strings to RDKit Mol objects using the rdkit.Chem.

MolFromSmiles method. At this stage, the Mol objects contain only the

information related to small molecule properties, like atom types and

bond formation. Coordinate section is added to the Mol objects using

the RDKit's ETKDG method.38 Subsequently, the Mol objects are

written to the MDL-formatted file,33 which can be used as a ligand

submission template.

2.2.3 | Setting up the acceptance system

Validation of ligand predictions is performed with scripts written in

python 2.7 and RDKit. Initial checks verify the CASP header

section (availability and correctness of PFRMAT, TARGET, AUTHOR,

and MODEL/END records). Once submissions have passed this phase,

ligand models are converted to RDKit Mol objects and compared with

the template for downstream evaluation. Each molecule in the submit-

ted file is validated by comparison with a reference Mol object gener-

ated from the corresponding SMILES string as described above. To

validate the submissions, comparisons of the following parameters are

undertaken:

• number of atoms and their types,

• number of bonds,

• bond types and atom types in bond pairs (e.g., C C Single, or C O

Double).

Additionally, to account for atom connectivity and chirality in sub-

mitted models, the maximum common substructures between the

submitted and reference ligands are calculated using the FindMCS

function in RDKit. To pass the validation, a molecule must have a

maximum common substructure equal to the number of atoms in the

reference model.

Finally, a validation report is created showing the results of the

validation process to aid in troubleshooting invalid submissions.

2.2.4 | Macromolecule–ligand complex evaluation
measures

Previous ligand docking challenges like Teach Discover Treat (TDT),39

Continuous Evaluation of Ligand Prediction Performance (CELPP)40

and Drug Discovery Data Resource (D3R)34–37 have used two main

types of metrics to assess how well participants can model receptor–

ligand complexes. These evaluated how close a predicted ligand is to

the target within the binding site in absolute terms with the RMSD

metric, and how well the native receptor–ligand interactions are

reproduced. CASP experiment brings additional assessment chal-

lenges: (1) because the receptor structure is not given but rather mod-

eled, ligands in the model and reference complexes can be bound to

different configurations of binding sites, and thus calculation of any

superposition-based scores requires preliminary alignment of binding

pockets with ligands in two complexes, which is not a trivial task;

(2) chain mapping needs to be established; (3) incomplete ligands in

some targets require partial graph matching for the symmetry correc-

tion; and (4) multiple copies of ligands in the targets and models have

to be mapped (assigned) uniquely, in order to avoid scoring target or

predicted ligands multiple times.

To address these challenges, we developed two scores, which are

described in more detail in the CASP15 Ligand Assessment paper.7

The Binding-Site Superposed, Symmetry-Corrected Pose Root Mean

Square Deviation (BiSyRMSD) score defines the binding sites and the

4 KRYSHTAFOVYCH ET AL.
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superpositions to compute RMSDs between target's and model's

ligands. The Local Distance Difference Test for Protein–Ligand Inter-

actions (lDDT-PLI) measure assesses how well native contacts

between the receptor and the ligand are reproduced in the model

with an lDDT-based metric and symmetry correction. When used in

combination, these scores give a better account of modeling

receptor–ligand complexes.

2.3 | Estimation of model accuracy for oligomeric
targets

The estimation of model accuracy (EMA) category has been an inte-

gral part of every CASP experiment starting with CASP7.41–48 It has

attracted the attention of many developers, with over 70 methods

tested in the previous CASP experiment.48 An emphasis on the impor-

tance of this category led to very positive developments in protein

structure prediction as modelers now routinely integrate quality esti-

mates into their modeling pipelines. In particular, the CASP14-winning

AlphaFold2 method offers reliable estimates of global and local accu-

racy of their models.10,11

In CASP15, the focus of the EMA category shifted from predict-

ing accuracy of single-sequence proteins to multi-molecular

complexes.

2.3.1 | Model accuracy prediction format (https://pre
dictioncenter.org/casp15/index.cgi?page=format#QA)

For global (whole model) accuracy prediction (QMODE1), participants

are asked to submit a fold similarity score (SCORE, in 0–1 range),

which estimates the similarity of model's overall fold to the target's

one, and an interface similarity score (QSCORE, also in 0-1 range),

which evaluates reliability of quaternary structure interfaces. Submit-

ting the QSCORE is optional, and predictors can skip it by putting ‘X’
symbol in the corresponding place of a QA prediction (see the link

above). In QMODE2 (local accuracy), in addition to the QMODE1

scores, the predictors are asked to assign confidence scores to the

interface residues of the model, indicating their likelihood of being

present in the native structure's interface. Interface residues are iden-

tified as having contact with at least one residue from a different

chain, with a Cβ–Cβ distance not exceeding 8 Å (or Cα, if the residue

is glycine).

Examples of EMA predictions in QMODE1 and QMODE2 are

provided in Example 5 on the CASP15 format page.

2.3.2 | Submission collecting process

EMA predictions in CASP15 are requested for all (and only) multimeric

targets. In contrast with previous CASPs, EMA targets are released

after all models (and not only server models) are collected on the cor-

responding structure prediction target. A tarball with assembly

predictions from all CASP groups is created the next day after the TS

target closure, and a link to the tarball file is pushed to the EMA

servers and posted at the CASP15 website. All EMA groups, regard-

less of their type (i.e., ‘server’ or ‘human’) have 2 days to return accu-

racy estimates for TS models included in the tarball file. The

predictions are checked with the verification scripts, and successful

predictions are saved for subsequent evaluation.

2.3.3 | EMA evaluation measures

Global predictions were compared with established evaluation metrics

possessing the desired attributes. This is the oligomeric Template

Modeling score (TM-score)49 for overall topology (SCORE) and the

contact based QS-score50 which is interface centric (QSCORE). To

ensure a comprehensive evaluation, these metrics were supplemented

with additional measures. An oligomeric GDT-like score, referred to as

oligo-GDTTS, was employed for overall topology analysis, and a vari-

ant of the interface centric DockQ score.51 Notably, DockQ evaluates

pairwise interfaces, necessitating the introduction of a weighted aver-

age metric—termed DockQ-wave—to effectively score higher-order

complexes. Local predictions were compared against the per-residue

lDDT17 and CAD (AA-variant)52 scores, which assess the accuracy of

relative atom positions in the neighborhood, including neighboring

chains. Conceptually the scores are contact-based, but do not penalize

for added contacts, which is relevant in case of incorrect interfaces.

To address this limitation, two novel local variants of the QS-score

and DockQ have been introduced: PatchQS and PatchDockQ. All

evaluation metrics are described in detail in the CASP15 EMA Assess-

ment paper.6

2.4 | Ensembles of alternative conformations

Following the success of deep-learning methods for single struc-

tures, it is increasingly important to assess methods for predicting

ensembles of alternative conformations. While deep learning and

other methods have the potential to generate ensembles in some

circumstances, these abilities have never been rigorously tested. In

CASP15, we made a first attempt to include this category. For CASP

purposes, we categorize ensembles8 as: (1) Cases where a macro-

molecule populates multiple conformations under the same environ-

mental and chemical conditions (including intrinsically disordered

proteins or parts of proteins; vibrational motion; local alternative

conformations; ‘ghost’ conformations which are present at low level

but are dominant in other conditions; and folding intermediates.).

(2) Cases where a macromolecule adopts different conformations in

response to environment or chemical change (ligand binding; macro-

molecular complex formation; post-translational modification; muta-

tions; and crystal, pH and other environmental changes). A third

category of ensembles we consider is the set of conformations con-

sistent with the experimental data. The latter is an increasingly

important category both because of the now common high accuracy

KRYSHTAFOVYCH ET AL. 5
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of the computed structures and the inclusion of lower resolution

data in CASP.

Targets for alternative conformers do not require separate predic-

tion formats as they are 3D structures routinely processed in CASP,

but they do require a mechanism for submitting multiple models. In

CASP15, this need was handled in two different ways. In some cases,

different alternative conformations were treated as separate targets.

In particular,

• two targets were assigned for modeling an isocyanide hydratase

represented by a wild-type structure (target T1110) and its one-

point mutant T1109, where amino acid D183 was changed

to A183,

• two targets (R1107 and R1108) were assigned for modeling human

and chimpanzee CPEB3 ribozymes, which differ by a single nucleic

acid A30 (human) ! G30 (chimpanzee),

• two pairs of targets (TR1189 and TR1190) were assigned for

modeling complexes of the metabolite repressor protein (RsmA)

and a non-coding RNA (RsmZ). Both complexes contain one RNA

molecule but different number of protein molecules (six in TR1189

and four in TR1190),

• five targets (T1158v0-v4) were assigned for modeling a type IV

ABC transporter, where five different conformations have been

observed, depending on environmental conditions (ligand binding).

In other cases, participants were encouraged to submit multiple

conformers using the standard CASP five models target format. This

approach was used for

• three kinases (CASP targets T1195–T1197), each of which has two

to three sets of experimental coordinates representing different

conformations,

• the Holliday Junction complexes (targets T1170, H1171, H1172),

some subunits of which are deformed due to the contact with

DNA and other protein molecules in the complex,

• RNA origami target R1138, which was solved in a kinetically

trapped young state and the mature state,

• SL5 domain of the RNA betacoronavirus structure BtCoV-HKU

(CASP target R1156), where one of the helices accepted multiple

relative conformations with respect to the remainder of the

structure.

3 | CONCLUSION

This paper summarizes the technical aspects of new prediction cate-

gories in CASP15 and can serve as a reference point for future predic-

tors. The systems for handling RNA/ligand/multimer-EMA predictions

in CASP15 were implemented shortly before the start of the experi-

ment and, as such, were not extensively tested. Based on the feed-

back from CASP15 assessors and predictors, we plan to improve the

system by further automating the process of verifying RNA and ligand

submissions and ensuring better compliance of models with the

required format. This investment of time and effort should pay off at

the assessment stage with a more seamless evaluation of predictions.

Since the PDB format is becoming obsolete, we will motivate predic-

tors and developers of the evaluation measures used in CASP to sup-

port the PDBx/mmCIF format in their tools and methods. For the

RNA category, we will work to further incorporate and standardize

evaluation measures which assess the base–base interaction network.

This will require setting community-accepted standards in identifica-

tion and annotation of RNA interactions.22 Further, we will work to

improve measures comparing predictions to raw data to assess low-

resolution targets. For the ligand prediction category, we need to

improve the set of targets with more interesting ligand modeling chal-

lenges, possibly by tapping into unreleased structures from pharma-

ceutical companies. We will also improve the acceptance system by

validating the identity of submitted ligands in a more robust manner,

and we would like to consider introducing metrics for self-assessment

of the accuracy of ligand poses within the receptor. For evaluating

ensembles of alternative conformations, we will explore acceptance

of multi-model entities, with optional probability weights, as

submissions.
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