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A B S T R A C T   

Mobile air quality measurements are collected typically for several seconds per road segment and in specific 
timeslots (e.g., working hours). These short-term and on-road characteristics of mobile measurements become 
the ubiquitous shortcomings of applying land use regression (LUR) models to estimate long-term concentrations 
at residential addresses. This issue was previously found to be mitigated by transferring LUR models to the long- 
term residential domain using routine long-term measurements in the studied region as the transfer target (local 
scale). However, long-term measurements are generally sparse in individual cities. For this scenario, we propose 
an alternative by taking long-term measurements collected over a larger geographical area (global scale) as the 
transfer target and local mobile measurements as the source (Global2Local model). We empirically tested na
tional, airshed countries (i.e., national plus neighboring countries) and Europe as the global scale in developing 
Global2Local models to map nitrogen dioxide (NO2) concentrations in Amsterdam. The airshed countries scale 
provided the lowest absolute errors, and the Europe-wide scale had the highest R2. Compared to a “global” LUR 
model (trained exclusively with European-wide long-term measurements), and a local mobile LUR model (using 
mobile data from Amsterdam only), the Global2Local model significantly reduced the absolute error of the local 
mobile LUR model (root-mean-square error, 6.9 vs 12.6 μg/m3) and improved the percentage explained vari
ances compared to the global model (R2, 0.43 vs 0.28, assessed by independent long-term NO2 measurements in 
Amsterdam, n = 90). The Global2Local method improves the generalizability of mobile measurements in 
mapping long-term residential concentrations with a fine spatial resolution, which is preferred in environmental 
epidemiological studies.   

1. Introduction 

Previous studies have shown that mobile monitoring campaigns, 
using vehicles equipped with high frequency monitors, are capable of 
capturing air pollution distribution patterns at a fine spatial granularity 
(Apte et al., 2017; Messier et al., 2018). However, applying land use 
regression models (LUR) developed on mobile measurements (referred 
to as the mobile LUR model) is not optimal to estimate outdoor 
long-term (e.g., annual) air pollution concentrations at residential ad
dresses, due to the fundamental differences between these two domains 
(Messier et al., 2018; Chambliss et al., 2020). Mobile monitoring vehi
cles often measure air pollution on roads repeatedly for a few seconds 

and are often conducted during specific timeslots (e.g., working hours of 
weekdays). These differences in space (on-road vs residential), time 
(short-term vs long-term; working hours vs full day) and potentially 
instruments (different monitors) challenge the mobile data to optimally 
predict long-term residential air pollution concentrations (the knowl
edge gap). (Yuan et al., 2022). 

In a previous paper, we demonstrated the possibilities of reducing 
the knowledge gap using transfer-learning LUR models by transferring 
the mobile knowledge into the local long-term domain approximated by 
long-term measurements (covering the entire period) at random subsets 
of 82 sites in the studied region (local scale) (Yuan et al., 2022). How
ever, this method is not applicable in regions where no or only a few 
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local long-term measurements are available. This is a typical setting for 
many cities, as the number of stationary monitoring sites in a city is 
often small. Instead of local long-term measurements, our hypothesis, 
investigated in this paper, is using long-term measurements from a 
larger geographical area such as the entire country or even the whole 
continent as the transfer targe. We refer to this large area as the global 
scale, distinguishing it from the study area of interest (typically a city, 
local scale). However, it is uncertain whether using global measure
ments as the transfer target, will still improve the mobile LUR models in 
estimating local long-term air pollution concentrations as the concen
tration pattern captured in larger geographical areas may not accurately 
inform the pattern at local scale. 

Another approach that has been broadly used to map air pollution 
with fine spatial resolution in cities are large-scale LUR models based 
upon long-term exposure measurements over a large geographic area, 
without specific local knowledge (Lu et al., 2020; de Hoogh et al., 2018; 
Shen et al., 2022). Targeted at fitting global measurements, global LUR 
models are optimized to capture more inter-urban variance and average 
the heterogeneity of local intra-urban variance (Lu et al., 2020; Meyer 
and Pebesma, 2022). In the ELAPSE project (Effects of Low-Level Air 
Pollution: A Study in Europe), the overall cross-validated R2 of nitrogen 
dioxide (NO2) at the European scale was about 0.49 achieved by the 
linear LUR model. The external validation R2 varied however between 
0.07 and 0.76 in different, more local, subregions (de Hoogh et al., 
2018). In Lu et al., 2020, the world-wide daytime model of NO2 achieved 
a cross-validated R2 of 0.7 with a Random Forest (RF) LUR model. 
However, validated in the selected countries with external measure
ments, the local R2 varied from 0.56 to 0.73 (Lu et al., 2020). Although 
the decrease in R2 could also be due to the reduced variance at the local 
scale as compared to the global scale, it does indicate that by exclusively 
using global measurements, the global LUR model might be limited in 
estimating the local air pollution patterns. 

In this paper, we explored the possibility of integrating global long- 
term measurements to supplement local mobile measurements for 
mapping hyperlocal long-term air pollution concentrations in a city. We 
chose the city of Amsterdam as our study region due to the availability of 
(i) local mobile monitoring NO2 data; (ii) long-term measurements from 
the European monitoring network acting as the global data and (iii) 
sufficient number of local independent long-term measurements as 
external validation data (Palmes tubes, passive monitors, n = 90). We 

tested three larger geographic areas (i.e., national, airshed countries, 
and continental Europe) to identify the global scale in the Global2Local 
model that can estimate the most accurate NO2 map for Amsterdam. The 
performance of Global2Local models were compared with LUR models 
trained exclusively using global long-term monitoring data or local 
mobile data. We then discussed how global measurements influence the 
local mobile LUR model. 

2. Data and models 

The training data for all NO2 LUR models used in the analyses can be 
found in Table 1 and further explained in the next subsections. For the 
global model, we used the data and methodology from Shen et al., 2022, 
where a global LUR model was developed based on long-term mea
surements across Europe. For the local model, we used the Google mo
bile monitoring data in Amsterdam from Kerckhoffs et al., 2022. The 
transfer-learning models (Global2Local models) were developed using 
both local mobile measurements in Amsterdam and global long-term 
stationary measurements from three larger geographic areas (national, 
airshed countries (i.e., national plus neighboring countries), and conti
nental EU). The selection of neighboring countries follows the concept of 
airshed which is loosely defined as part of atmosphere sharing similar 
emission and dispersion patterns (Anderson et al., 2013). Belgium, 
Luxembourg and Germany were selected as the neighboring countries. 
Paired with the NO2 measurements, global, local (excluding Mobile_
data_only) and Global2Local models shared the same categories and 
calculation scheme of predictor variables (details in section 2.1). All 
models are based upon measurements performed predominantly in 
2019. 

2.1. Global model 

The global model was implemented as a RF-based LUR model trained 
with European AirBase long-term measurements and land use covariates 
(referred to as EU_LUR) based on 25m*25m cells, following the same 
methodology and data as in Shen et al., 2022. Random forest is a 
bagging-based assemble learning algorithm which has been broadly 
used in air pollution modelling (Lu et al., 2020; de Hoogh et al., 2018; 
Shen et al., 2022). The European Environment Agency (EEA) AirBase 
routine monitoring data of NO2 measurements across Europe in 2019 

Table 1 
Summary of the models compared and NO2 monitoring data.  

Model 
category 

Training input Model name Algorithm 

Conventional models developed on a single scale (local or global) 
Global modela European Airbase long-term data (n = 3,243 sites) EU_LUR Random Forest 
Local modela Amsterdam mobile data (n = 142,950, averaged to 25m * 25m cells) Mobile_data_only N.A. (average of 

measurements) 
AMS_LUR Random Forest 

Transfer learning models 
Global2Locala Amsterdam mobile monitoring data & 

European Airbase long-term data (n = 3,243 sites) 
EU2AMS TrAdaBoost 

Amsterdam mobile data & Airbase long-term data within the Netherlands and its neighboring counties- 
Belgium, Luxemburg and Germany (n = 787 sites) 

NLBELUXDE2AMS TrAdaBoost 

Amsterdam mobile data & Airbase long-term data within the Netherlands (n = 68 sites) NL2AMS TrAdaBoost  

a The local scale refers to Amsterdam. The global scale here is an abstract concept referring to any geographic area that is spatially larger than the local scale. 

Table 2 
Overview of data locations.  

Locations Number of AirBase measurements Number of external validations Number of mobile measurements  

Europe NLBELUXDE Netherlands Palmes Mobile 
Major road 2,650 589 10 26 116,816 
Urban background 593 198 58 64 26,134  
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were averaged per site over the year (continuous monitoring in the full 
year, 24 h per day) (Air Quality e-Report, 2021). The monitoring loca
tions at background and traffic locations are all considered relevant for 
assessing exposure at residential addresses on minor and major streets 
respectively. EEA AirBase data are measured by the national regular 
routine monitors from EEA-32 member countries. The NO2 measure
ments are harmonized following the standard procedures developed 
over decades of regulatory monitoring (Guerreiro et al., 2014; Guer
reiro, 2013). 3,243 sites, where at least 75% of the entire year was 
measured, were included in the modeling (in total of 3,253 sites 
downloaded from the EEA data port and 0.33% were dropped). The 
covariates of the global model were calculated based on 25m*25m cells 
centering at the geographic location of each AirBase monitoring site in 
different buffer sizes. They include the following six groups of pre
dictors: 1) Land Use features, such as the areal ratios of CORINE land use 
classes (e.g., residential, urban green) (CORINE Land Cover, 2021), 
Copernicus impervious surfaces (Imperviousness, 2021), SRTM altitude 
information (SRTM 90m Digital Elevation Database, 2021); 2) road 
features from OpenStreetMap (OpenStreetMap Wiki, 2023) such as the 
length of major roads and residential roads; 3) population density from 
Eurostat (GEOSTAT - GISCO - Eurostat, 2021); 4) meteorological fea
tures from ECMWF ERA5 (Copernicus Climate Change Service, 2019), 
such as land temperature, wind speed and precipitation; 5) 
satellite-derived and deterministic modelling features, including the 
Ozone Monitoring Instrument (OMI) from Tropospheric (Boersma et al., 
2011; Tropospheric Emission Monitoring Internet Service, 2022), 
Chemical Transport Model (CTM) from Danish Eulerian Hemispheric 
Model (DEHM_v31102016) (Brandt et al., 2012) and MACC-II 
ENSEMBLE Model (Marécal et al., 2015); 6) climate zone features 
from European bio-geographical regions 2018 (v1.0)24. The details of 
the covariates used are explained in Appendix Table S1 and Shen et al., 
2022 (Shen et al., 2022). 

2.2. Local model 

We examined two local models, namely a “model” based on the 
mobile measurements only (Mobile_data_only) and a conventional mo
bile LUR model (referred to as AMS_LUR). The mobile monitoring data 
were obtained from the Air View campaign, in which two Google Street 
View cars continuously measured NO2 at a frequency of 1 Hz in 
Amsterdam from May 25, 2019, to March 15, 2020 (stopped due to the 
COVID19 lock down policy). Most measurements were collected on 
weekdays between 08:00 and 22:00 (more details in Kerckhoffs et al., 
2022). 

Our previous mobile modelling work snapped the mobile measure
ments into 50m road segments as the basic spatial unit and made pre
dictions based on them (Kerckhoffs et al., 2022, Yuan et al., 2022). 
Differently, in this work, the spatial unit of the local model is aligned 
with that of the global model. We divided Amsterdam into 25m*25m 
grid cells (n = 574,299; the same size and extent as the global grid). The 
mobile measurement points were aggregated to the spatially over
lapping cells. A total of 142,950 cells were measured by Google Street 
View cars (25% of all 25m*25m cells in Amsterdam). The mean of 
measured mobile NO2 was used as the mobile measurement of the cor
responding cell, forming the Mobile_data_only model. These mobile 
measurements were then used to train a RF-based LUR model 
(AMS_LUR) following the implementation of the RF_LUR model in Yuan 
et al., 2022. But distinguished from Yuan et al., 2022, the AMS_LUR 
model did not contain the traffic intensity and other local predictors as 
they were not available at the global scale. Instead, the predictor vari
ables used in the AMS_LUR model shared the same categories and 
calculation schema as the global variables in the aforementioned global 
model. In addition, to test the sensitivity of model performance with and 
without traffic intensity predictors, we trained a local mobile LUR model 
following the implementation of AMS_LUR, but with the addition of 
local traffic variable from Yuan et al., 2022. 

2.3. Global2Local model 

The Global2Local model was trained by directly merging the global 
long-term measurements from stationary routine monitors (AirBase) 
and local mobile measurements collected by the Google Street View cars 
in Amsterdam as the training input. The Amsterdam mobile data are 
treated as the transfer source and the AirBase data as the transfer target 
data. A weighted loss function was optimized by the instance-based 
transfer learning algorithm - TrAdaBoost (Kouw and Loog, 2021; Dai 
et al., 2007). By setting larger weights to the transfer target instances (i. 
e., global long-term AirBase measurements), TrAdaBoost can blend 
learning towards the desired long-term knowledge making the pre
dictions more similar to the long-term measurements. The global scale 
can be any region geographically larger than the local scale. Selecting 
measurements from a larger geographic region brings more transfer 
target data but at a risk of more data deviating from the local data. 
Therefore, an empirical test is needed to identify which scale can bal
ance the trade-offs to map the most accurate local air pollution (by the 
highest performance). We tested following three Global2Local models 
with subsequently increasing the geographical area: 1) NL2AMS, using 
the Dutch subset of AirBase measurements as the transfer target data (68 
stationary long-term sites, locations provided in the map in Fig. S3.); 2) 
NLBELUXDE2AMS, considering neighboring countries within the same 
airshed as the global scale (includes AirBase measurements from the 
Netherlands, Belgium, Luxemburg and Germany, 787 sites); 3) 
EU2AMS, setting continental Europe as the global scale and using the 
full set of AirBase measurements across Europe (3,243 sites). All three 
Global2Local models shared the same categories of predictor variables 
as the global and local model. 

TrAdaBoost inherits the key idea of the classic AdaBoost algorithm 
(Freund and Schapire, 1997) which is a boosting-based ensemble 
learning algorithm where multiple base models (“weak learners”) are 
trained sequentially in an adaptive way: each base learner in the 
sequence is fitted by giving more weights to instances in the training 
dataset that caused higher errors by the previous learner in the 
sequence. Intuitively, each base learner focuses on fitting the most 
difficult instances in each boosting iteration. At the end, these weak 
learners are combined to form a “strong” model that is accurate at 
predicting all the cases learned from the training instances. 

As an adapted version of TrAdaBoost, Two_stage_TrAdaBoost was 
implemented in the Global2Local model (Pardoe and Stone, 2010). It 
has been shown to outperform other transfer learning algorithms tested 
in our earlier paper of modelling long-term NO2 concentrations using 
mobile measurements (Yuan et al., 2022). It works by directly merging 
the local mobile monitoring instances (as source instances – (Xs,Ys))

with the global long-term instances (as target instances – (Xt ,Yt)) to form 
a single training dataset and assign the same initial weights to each 
instance. Then, these weights update following the design of AdaBoost 
and take place in two stages. In the first stage, during each boosting step, 
TrAdaBoost decreases the relative weights of source instances that are 
different from the target instance during each boosting iteration. In the 
second stage, the weights of all instances are frozen while TrAdaBoost 
increases the weights of target instances that are different from source 
instances (Pardoe and Stone, 2010). This approach emphasizes the 
target instances and keeps also characteristics of the source instances. 

2.4. External validation 

We fine-tuned the global, local and Global2Local models by the full- 
gridded hyperparameter searching and selected the best combination. 
The performance of all models was validated by external long-term 
measurements collected by Palmes tubes in Amsterdam. Palmes tubes 
are passive samplers used in the routine monitoring network that mea
sure NO2 on street lanterns and building facades in Amsterdam (spatial 
locations in Fig. 4A), which differ from the on-road mobile measure
ment. They are deployed and calibrated following the standard 
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procedure by Dutch national institute for public health and the envi
ronment (RIVM) (Dijkema et al., 2011). 90 Palmes monitoring sites 
covering the complete period from May 2019 to March 2020 (repeated 
four-weeks sampling covering the full year, 24 h per day) were assigned 
to the overlapping 25m*25m cells (the same grid as used to calculate the 
covariates at the local and global scales). The sites include both major 
traffic (n = 26) and urban background locations (n = 64), covering 
Amsterdam and its surroundings. Together with the corresponding 
predictors, Palmes measurements represent the targeted local long-term 
residential knowledge. 

The squared Pearson correlation (R2) mean absolute error (MAE), 
and root mean square error (RMSE) were used to assess model perfor
mance. Accuracy metrics reflect accuracy in different aspects. R2 reflects 
the percentage of total variation in measurements that can be explained. 
MAE and RMSE reflect the level of absolute errors. In RMSE, the errors 
are squared before they are averaged giving a relatively high weight to 
extreme errors as compared to MAE. The choice of which accuracy 
metric to use largely depends on the applications. The primary objective 
of an exposure model for application in an epidemiological study is to 
rank exposures of subjects into low, medium and high categories. Hence, 
the R2 is a very important metric. The RMSE and MAE are also important 
metrics, since we also want to assign health effects to specific concen
tration values. For other applications, for example, comparison with 
legal limits, assigning the correct absolute value may be most important. 

In addition to the prediction accuracy, the training accuracy of the 
global and local models (Table 4) reflect the accuracy of the model in the 
training domain approximated by the local mobile or global stationary 
instances. Since accuracy metrics can only provide an overview of per
formance, to comprehensively understand the prediction uncertainty, 

the density and spatial distributions of model predictions were 
inspected. 

To further quantify the spatial pattern of the model accuracy, model 
performance on major traffic locations and in urban background areas 
were separated. Major roads consisted of a series of OpenStreetMap tags, 
including motorway (a restricted access major divided highway, 
freeway, autobahn etc.), trunk (the most important roads in a country’s 
traffic system that not necessarily be a divided highway) and primary 
(the second most important roads and often link larger towns) (Open
StreetMap Wiki, 2023). A major traffic location was defined as a cell that 
is within 50m of a major road (major_roads_50 > 0, n = 26). The 
remaining cells were considered as urban background locations (n =
64). 

3. Results 

3.1. Differences between global and local measurements 

Ranges of global, local and validation NO2 measurements are sum
marized in Table 3. Aggregated to 25m*25m grid cells, mobile mea
surements consisted of on average 36 s on 6 different days per cell (see 
the histogram in Appendix Fig. S1. A, B). 

The density distributions of the global Airbase long-term and local 
Google mobile data differed from the local Palmes long-term measure
ments (Fig. 1). The variability in the local mobile and global long-term 
measurements in larger geographic areas was wider than the external 
validation data, indicative of the knowledge gap problem. 

In addition, in this work, we set the mean of the GPS measurements 
within a cell as the mobile measurement. But the mean based mobile 

Table 3 
An overview of averaged NO2 measurements contributing to global, local and validation datasets.  

Data Scale Time frame Number of measured 
cells (25m * 25m) 

1st quantile 
(μg/m3) 

Median 
(μg/m3) 

3rd quantile 
(μg/m3) 

Global data EU Airbase 
data 

Europe 2019, 24 h per day 3,243 12.0 18.9 27.7 

Global data 
NLBELUXDE 
Airbase data 

The Netherlands and its neighboring 
countries - Belgium, Luxemburg and 
Germany 

2019, 24 h per day 787 16.1 24.8 34.8 

Global data NL Airbase 
data 

The Netherlands 2019, 24 h per day 68 15.4 21.7 26.7 

Local mobile data Amsterdam March 2019 to May 
2020, diurnal hours 

142,950 16.2 23.7 34.3 

Local external long-term 
validation data 

Amsterdam March 2019 to May 
2020, 24 h per day 

90 21.2 25.9 31.3 

The local scale refers to Amsterdam. The global data EU, NLBELUXDE and NL stand for the stationary AirBase data in different regions. They are defined as the global 
scale in different Global2Local models. 

Fig. 1. Density plot of NO2 from global long-term (European, NLBELUXDE and Dutch AirBase data), local mobile (AirView mobile data in Amsterdam) and local 
external validation data (Palmes data in Amsterdam). 
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measurements can be affected by “high-polluting vehicles” during in
dividual mobile monitoring drives and the median value is more outlier- 
resistant. We calculated the median of the mobile measurements and 
compared it with the mean. We found typically small differences be
tween mean and median and a very high correlation (Pearson correla
tion = 0.95, density and scatter plot in Appendix Fig. S2). There are two 
reasons for this. First, extreme outliers in mobile data have been 
removed in our preprocessing (NO2 measurements larger than 500 μg/ 
m3). Second, the median is less representative, as each cell consisted of 
only a small number of observations: the median number of GPS points 
is 11 and the number of drive-pass per cell is 5 (Appendix Fig. S1). We 
preferred the mean, as air quality guidelines are all represented as 
annual means, to include peak concentrations in the exposure metrics 
associated with health effects. 

3.2. Overall performance 

The variable importance of EU_LUR, AMS_LUR and NLBE
LUXDE2AMS were recorded in Appendix Fig. S4. The variables related 
to major roads were important for all models. The R2 of EU_LUR in the 
training accuracy was the same as the cross-validated performance of 
the rf00-19 model (a RF LUR model in 2019) reported in Shen et al., 
2022. 

In terms of predicting long-term air pollution concentrations in 
Amsterdam, the AMS_LUR model had a better accuracy compared to 
Mobile_data_only (Table 4). In the additional sensitivity test, with the 
traffic predictor variables, the performance of AMS_LUR increased (R2 

0.56; MAE 6.7 μg/m3; RMSE 8.5 μg/m3). Comparing global and local 
models, with the same algorithm and categories of covariates (Appendix 
Table S1), AMS_LUR had a better R2 but EU_LUR achieved lower MAE 
and RMSE of prediction accuracy. The transfer-learning-based Glob
al2Local models had the best combination of R2, RMSE, MAE compared 
to the local and global models. 

Comparing the three Global2Local models, NLBELUXDE2AMS 

achieved the lowest absolute error but its R2 was marginally less than 
EU2AMS. The RMSE and MAE of NLBELUXDE2AMS were lower than 
that of AMS_LUR and EU_LUR. The R2 of NLBELUXDE2AMS was 0.15 
higher than the EU_LUR model. 

The density and scatter plots of the predictions at validation sites 
demonstrate that the NLBELUXDE2AMS model fits the long-term vali
dation measurements better than EU_LUR and AMS_LUR (Fig. 2). Pre
dictions of the AMS_LUR model covered a wider range than the external 
validation data, while EU_LUR predictions were concentrated between 
30 and 40 μg/m3: a narrower range compared to Palmes ground-truth 
measurements. 

3.3. Spatial distribution of predictions and variable importance 

Trained exclusively with on-road mobile measurements in Amster
dam, all top-10 important variables of the AMS_LUR model are related to 
road length in various buffer sizes (from 50m to 1000m) and a large total 
built-up area buffer (6000m, Appendix Fig. S4). This resulted in the 
highest NO2 predictions of AMS_LUR mainly distributing along roads 
(Fig. 3A). NO2 predictions from EU_LUR are highest in the city center 
and major roads, with values gradually decreasing to the suburbs 
(Fig. 3B). EU_LUR relies heavily on impervious surface areas in buffers 
between 1800m and 6000m, Chemical Transport Model (the MACC-II 
CTM model) and the small-scaled road length (i.e., major_roads_50 
and allRoads_100). Within Amsterdam the MACC-II CTM (10*10 km 
scale) does not result in sizable differences in concentrations. The 
impervious surface variables in large buffer sizes explained gradual 
changes over space. The spatial distribution of NLBELUXDE2AMS pre
dictions shows the combined properties of AMS_LUR and EU_LUR. The 
highest concentrations were predicted at major-traffic locations. The 
city center is more polluted as compared to the suburbs (Fig. 3C). The 
variable importance plot of NLBELUXDE2AMS suggests that both small- 
scaled traffic and large-scaled environmental context features jointly 
dominate the predictions, such as port, nature, industrial, residential 

Table 4 
Performance of the model tested.  

Model category Model name Training accuracyc (estimated by 10-folds cross 
validations) 

Prediction accuracy (evaluated by local external long-term measurements; GGD 
Palmes; n = 90) 

R2 MAE (μg/m3) RMSE (μg/m3) R2 MAE (μg/m3) RMSE (μg/m3) 

Local modela Mobile_data_only – – – 0.29b 11.3b 15.1b 

AMS_LUR 0.55 7.3 12.3 0.44 8.8 12.6 
Global modela EU_LUR 0.67 4.4 6.1 0.28 6.4 7.6 
Global2Locala EU2AMS – – – 0.45 5.7 7.3 

NLBELUXDE2AMS – – – 0.43 5.5 6.9 
NL2AMS – – – 0.41 6.1 7.5  

a The local model refers to models trained using local (Amsterdam) mobile information only. The Global model stands for models trained with global (Europe) 
stationary data. The Global2Local models were trained with both global and local information. Three different larger geographic areas were explored as the global 
scale such as Europe (EU2AMS), airshed countries (includes the Netherlands, Belgium, Luxemburg and Germany, NLBELUXDE2AMS) and the Netherlands (NL2AMS). 

b The accuracy of Mobile_data_only was calculated based on the 79 cells where mobile measurements and Palmes data were available concurrently. 
c The training accuracy for Global2Local models is not informative, as it is based on the weighted dataset that merges mobile and AirBase measurements. It is not 

informative to compare with models based solely on local mobile or global long-term measurements. 

Fig. 2. Density and scatter plots of the NO2 predictions made from the model tested against the local Palmes validation data at Palmes locations (n = 90).  
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and urban green areas. 
AMS_LUR, EU_LUR and NLBELUXDE2AMS overestimated NO2 at 

both major traffic and urban background locations. The averaged re
siduals were all positive (see Fig. 4C). AMS_LUR predictions resulted in 
significantly higher residuals at major traffic than urban background 
locations. EU_LUR predictions resulted in similar residuals at both lo
cations. The residuals from NLBELUXDE2AMS were intermediate be
tween EU_LUR and AMS_LUR at major traffic locations and achieved the 
lowest residuals at urban background locations. 

4. Discussion 

The knowledge gap between the training domain and the application 
domain potentially limits the generalizability of mobile LUR models to 
predict long-term air pollution concentrations at residential addresses. 
The presented work illustrates that the long-term concentration infor
mation extracted from a larger geographical area can narrow this 
knowledge gap. The selection of the global scale in the Global2Local 
method requires empirical tunning to find a balance between the simi
larity to the local scale and the number of long-term measurements at 
the global scale. The scale of airshed countries was identified as the most 

Fig. 3. A-C. Spatial distributions of NO2 predictions (μg/m3) from the models tested. D,E. the residuals of NLBELUXDE2AMS against EU_LUR and AMS_LUR. The 
EU_LUR model was trained with European AirBase long-term measurements. The AMS_LUR model was trained with mobile AirView measurements in Amsterdam. 
The NLBELUXDE2AMS model was trained by combining the long-term and mobile measurements from the global (NLBELUXDE) and local scales. 
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appropriate global scale for the Global2Local model to estimate long- 
term concentrations in Amsterdam. 

4.1. Global measurements can narrow the knowledge gap 

In this work, the mobile data differed from the desired local long- 
term measurements in space (on-road vs residential), time (short-term 
vs long-term, working hours vs full day) and instruments (different 
sensors). Following our previous paper, these differences between 
training and prediction domains are identified as the knowledge gap 
(Yuan et al., 2022). It brings issues of mismatching between the training 
and prediction accuracy (especially validated by external long-term 
measurements), which have been broadly observed in many mobile 
monitoring studies (Chambliss et al., 2020; Kerckhoffs et al., 2019). 
Aligned with them, we found the knowledge gap in this work also 
limited the generalizability of the mobile LUR model (i.e., AMS_LUR) on 
estimating local long-term residential concentrations. Back to our pre
vious paper, this knowledge gap has been demonstrated to be mitigated 
by transferring the mobile knowledge learned from mobile measure
ments into the long-term domain approximated by local long-term 
measurements (Yuan et al., 2022). 

Instead of using long-term measurements from the studied local re
gion, in this paper, we found that using global long-term measurements 
from a larger geographic area in the transfer-learning approach also can 
narrow the knowledge gap. Instead of optimizing the loss function in the 
mobile domain (broadly used in training mobile LUR models (Messier 
et al., 2018; Kerckhoffs et al., 2019; van de Beek et al., 2020) as well as 
AMS_LUR in this work), the loss function optimized by the Global2Local 
model was weighted to represent the pattern between the land-use 
variables and global long-term measurements (the combination of mo
bile and long-term data as training inputs). This way pushed the LUR 
model to learn more from global long-term instances while simulta
neously preserving local knowledge from local mobile measurements. 
Trained solely with local mobile measurements, AMS_LUR captured 
fine-scaled spatial variations, leading to a high R2 (Table 4). However, 
compared to the targeted long-term residential air pollution, the dif
ference in space, time and instruments led to high absolute errors. The 
capability of explaining the local variations is inherited from the local 
mobile measurements, yielding the Global2Local model a high R2 (a 
similar level to AMS_LUR). 

The characteristics of the global measurements (e.g., spatially - near- 
road monitoring and temporally - 24h per day) complement short-term 
on-road mobile measurements, which reduced the discrepancy in ab
solute values between the predictions and local long-term concentra
tions. This explains the significantly lower absolute errors of the 
Global2Local models compared to the AMS_LUR model (Table 2). 
Inspecting the density curves in Fig. 2, the Global2Local model shows 
better goodness-of-fit among concentrations between 20 and 30 μg/m3, 
where the median of Palmes validation measurements is located 
(Table 2.). More importantly, NO2 at most urban background locations 
also falls within this range (Fig. 4B). 

The improved R2 of Global2Local models was significant compared 
to the long-term Europe-wide model (EU_LUR). It can be explained by 
the heterogeneous local variability in different cities. The European 
model has been optimized to explain the combination of mainly inter- 
urban variability and partly local intra-urban variability in cities. In 
terms of explaining intra-urban concentration contrasts, the perfor
mance of an Europe-wide (global scale) model varied across smaller 
areas and was generally lower than the overall performance at the global 
scale (Lu et al., 2020; de Hoogh et al., 2018). Meyer and Pebesma, 2021, 
2022 also pointed out that large-scaled models are challenging to cap
ture and assess the detailed local variability, especially at the region 
with conditions that are very different from the training data. Given the 
local variance was well captured by fine-grained mobile measurements 
collected in the studied region, incorporating detailed and specifical 
local information improved the European model. 

4.2. The choice of global scale 

The core point of selecting the optimal global scale is to maximize the 
representability of global measurements to represent the true local long- 
term concentrations. A balance is needed between two factors, namely 
the similarity to local long-term concentrations and the number of 
global long-term measurements. 

Increasing the global scale, more diverse instances are included in 
training, which complexes the instance space resulted in capturing more 
variances and a larger range of measurements. This approach increased 
the R2 of Global2Local models (R2 of EU2AMS > NLBELUXDE2AMS >
NL2AMS). Meanwhile, the similarity is decreasing as more sites outside 
of the studied region are included. NO2 was previously found to vary 

Fig. 4. A. The spatial distribution of Palmes validation sites at major traffic locations and in urban background areas. B. Scatter plot between Palmes data and the 
corresponding predictions (NO2) from the tested models at Palmes locations. Black line is the 1:1 line. C. Boxplot of the residuals between model predictions and 
Palmes data at Palmes locations (calculated by Predictions - Palmes). Median values are marked. 
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strongly in space (McAdam et al., 2011; Karner et al., 2010). Areas 
nearby tend to reflect a similar mix of emission sources (e.g., car fleets, 
fuel types etc) and a similar dispersion pattern such as similar meteo
rology and topography. Involving more sites that are not similar to the 
local measurements increased the absolute error (the MAE and RMSE of 
NLBELUXDE2AMS < EU2AMS). 

However, decreasing the global scale may suffer from a lower 
number of long-term monitoring sites. Several studies explored the 
minimal number of stationary sites for developing LUR models to cap
ture the distribution patterns of air pollution (Wang et al., 2012; 
Basagaña et al., 2012). Model robustness increased substantially until 
about 40–80 sites were used and more modestly with further increase in 
number of training sites (Basagaña et al., 2012). However, they were 
conducted at the same scale where the highest similarity applied. Higher 
similarity requires a smaller number of sites. In our previous 
transfer-learning work, the idea of Local2Local was implemented where 
82 local long-term measurements within the study area were divided 
into a training (as the transfer target) and a validation set (50/50 
random split). With 41 local long-term measurements as the transfer 
target, our previous work reported a good performance (R2 = 0.54), 
although different spatial units and covariates were used (Yuan et al., 
2022). When using long-term measurements from a larger geographic 
area as the transfer target, the decreased similarity demands more sites. 
For example, the absolute error of NL2AMS predictions was expected to 
be the lowest. But in our result, the absolute error was higher than that 
of the NLBELUXDE2AMS model. This is because the Dutch long-term 
measurements consist only out of 68 sites, limiting its representability 
(3,243 and 878 sites for EU2AMS and NLBELUXDE2AMS respectively). 
Empirical tuning of global scale thus is necessary to find the balance 
between the number of sites and the similarity when applying the 
Global2Local method to other regions. 

For estimating air pollution concentrations in Amsterdam, NLBE
LUXDE2AMS met the balanced point and achieved the lowest RMSE and 
MAE (Table 4). Meanwhile, the R2 remained at a similar level to 
AMS_LUR. We thus recommend using NLBELUXDE2AMS to map long- 
term air pollution in Amsterdam. Using sites from the Netherlands and 
its neighboring countries, the Global2Local model benefits from a large 
number of long-term measurements. In addition, the selected neigh
boring countries are part of the same airshed where similar emission 
sources and dispersion patterns are expected (Anderson et al., 2013), 
which further increases the similarity. 

4.3. Model performance at major traffic and urban background locations 

The mobile LUR model predicted higher concentrations than long- 
term validation measurements, especially for the major traffic loca
tions (Fig. 4C.). The overestimation is mainly related to the on-road 
monitoring, while the validation sites are located at road-side or 
building façade (spatial differences) which has been previously docu
mented by several studies (Kerckhoffs et al., 2022; McAdam et al., 2011; 
Karner et al., 2010; Richmond-Bryant et al., 2017). The used 
outlier-sensitive aggregation value (the mean based mobile measure
ments) may also contribute to the overprediction as the mean value is 
sensitive to a random high value. The median value was on average 2 
μg/m3 lower than the mean aggregated mobile measurements. Howev
er, previous studies did not find that the overpredictions of the mobile 
LUR model is significantly higher at major traffic than urban back
ground locations (12.6 vs 1.6 μg/m3 in Fig. 4C., overpredicted 38.8% 
and 6.5% to the mean of Palmes measurements respectively). The higher 
level of overprediction at traffic locations than urban background lo
cations can be explained by the fact that at major traffic locations, the 
traffic volume, acting as the major emission source, decreased more 
dramatically from daytime to nighttime than at urban background lo
cations. But the mobile campaign was performed only during the 
working hours. 

The reduced residuals at major traffic locations can be attributed to 

the combined efforts of narrowing differences in space and time. Adding 
in the global long-term information, NLBELUXDE2AMS substantially 
reduced the residuals at major traffic locations compared to AMS_LUR 
(5.7 vs 12.6 μg/m3 in Fig. 4C.). Meanwhile, low prediction errors at 
background sites were maintained (0.6 μg/m3). This suggests that the 
proposed Global2Local model can inherit the detailed spatial informa
tion from local mobile measurements and simultaneously capture the 
pattern of temporal variations by leveraging temporally rigorous global 
measurements. 

4.4. Strength and limitations 

An advantage of our proposed Global2Local model is that it extends 
the application boundary of transfer-learning LUR models to regions 
with sparse local long-term measurements. This is a very common sit
uation, as the number of long-term monitoring sites per city is generally 
small. Our previous paper indicates that with 41 sites at the local scale, 
transfer learning models can achieve a good performance on estimating 
Amsterdam concentrations (Yuan et al., 2022). While quantifying the 
required number of global sites is challenging due to the complex in
teractions with the forehead-mentioned similarity as well as the size of 
the studies region. Two basic rules of application are 1) sufficient global 
long-term measurements must be available; 2) global knowledge must 
contain a certain level of local knowledge. In Europe and North America, 
regulated pollutants such as NO2 are general intensively monitored. 
However, for unregulated pollutants such as Ultra Fine Particles (UFP) 
and Black Carbon (BC), long-term measurements are not readily avail
able at a national or continental scale. For these pollutants, specific 
cohort studies may provide some global data (Saha et al., 2021). 
Furthermore, within Europe, routine monitoring of UFP is increasing, 
suggesting more future possibilities of applying the transfer learning 
approach. For the second rule, the European AirBase measurements 
cover many different regions with different climatic, socioeconomic and 
demographic situations. This diverse information provides the Glob
al2Local model the potential to be applied in other European regions 
with local mobile monitoring data. 

Unlike on-road mobile measurements, AirBase monitors spread over 
more diverse locations, including on-road and off-road residential lo
cations (e.g., parks) and industrial sites (Air Quality e-Reporting, 2021). 
The diversity in AirBase locations increases the generalization and 
robustness of the Global2Local model to estimate air pollution at all 
locations covering the whole city. Note that although the AirBase 
measurements primarily include traffic locations, both background and 
major traffic monitoring locations provide useful information for resi
dential exposures, for example, in minor and major streets respectively. 
The 24-h measured Global AirBase data also complements diurnal mo
bile data in terms of narrowing the temporal difference. Narrowing these 
gaps in space and time, the Global2Local model outperforms the other 
LUR models based solely on measurements from a single geographic 
scale. 

Our Global2Local model resulted in an R2 of 0.45 indicating a 
moderate performance in explaining variability, taking into account that 
the validation was performed at external validation points and not based 
on cross-validation in the same monitoring domain. In Amsterdam, the 
state-of-the-art external validated accuracy reported in several previous 
studies were R2 = 0.45–0.5, nMAE = 0.10–0.20, nRMSE = 0.20–0.30 
(Yuan et al., 2022; Kerckhoffs et al., 2022). The NLBELUXDE2AMS in 
this work achieved a similar level: R2 = 0.43, MAE = 5.5, nMAE = 0.21, 
RMSE = 6.9 and nRMSE = 0.27. Moreover, quite a few models have been 
applied in epidemiological studies and reported robust associations with 
health effects that have similar R2 values (de Hoogh et al., 2018; Chen 
et al., 2020). We acknowledge that applying a model that explains only a 
moderate proportion of the true variability could lead to some 
misclassification of air pollution exposure. When applied in epidemio
logical studies, the most common consequence is that health risks may 
be underestimated. 
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Two main factors limit the performance of Global2Local. First, global 
long-term measurements are still biased to represent the local long-term 
measurements (limited similarity). Measurements from other regions 
outside the studied region partially introduce additional noise (see the 
difference to Palmes validation data in Fig. 1). Additionally, the 
different instruments between global AirBase and local Palmes mea
surements also contributed to the dissimilarity, although the differences 
between the instruments are probably small because they are all care
fully calibrated. Second, the predictors used in the Global2Local model 
must be consistent with the global model. The algorithm of TrAdaBoost 
precludes adding additional features. For example, the traffic density 
covariates involved in our previous paper were found as the most 
important variable to delineate the spatial distribution patterns of NO2 
concentrations (Kerckhoffs et al., 2022; Yuan et al., 2022) . But these 
traffic related covariates were not available at the global scale in this 
study. Therefore, they were not added in the Global2Local model. In our 
sensitivity test, we found that if including traffic variables, the R2 of the 
local mobile LUR model increased from 0.44 to 0.56, consistent with an 
earlier study from Beelen et al., 2013, where the difference of LUR 
model performance for NO2 was about 0.1 in R2 comparing LUR models 
with and without traffic density variables ). Further improvement of 
performance is expected by adding global traffic variables to Global2
Local models. 

5. Conclusion 

The presented work demonstrates that integrating global long-term 
measurements with local mobile data, the Global2Local method miti
gates the ubiquitous shortcomings of applying mobile measurements to 
estimate long-term concentrations at residential addresses. Our pro
posed Global2Local model can inherit the advantages of data instances 
from both scales and outperform traditional LUR models trained with 
measurements exclusively at the global or local scale. Given the 
increasing demand for hyperlocal air pollution mapping, more mobile 
monitoring campaigns are planned globally. Our proposed Global2Local 
model can be widely used to transfer mobile measurements to optimize 
long-term estimation of residential concentrations with fine spatial 
resolution, which is preferred in environmental epidemiological studies. 
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