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Modelling the impact of interventions on
imported, introduced and indigenous
malaria infections in Zanzibar, Tanzania

Aatreyee M. Das 1,2 , Manuel W. Hetzel 1,2, Joshua O. Yukich 3,
Logan Stuck 3,6,7, Bakar S. Fakih1,2,4, Abdul-wahid H. Al-mafazy5,8,
Abdullah Ali5 & Nakul Chitnis 1,2

Malaria cases can be classified as imported, introduced or indigenous cases.
The World Health Organization’s definition of malaria elimination requires an
area to demonstrate that no new indigenous cases have occurred in the last
three years. Here, we present a stochastic metapopulation model of malaria
transmission that distinguishes between imported, introduced and indigenous
cases, and can be used to test the impact of new interventions in a setting with
low transmission and ongoing case importation. We use human movement
and malaria prevalence data from Zanzibar, Tanzania, to parameterise the
model. We test increasing the coverage of interventions such as reactive case
detection; implementing new interventions including reactive drug adminis-
tration and treatment of infected travellers; and consider the potential impact
of a reduction in transmission on Zanzibar and mainland Tanzania. We find
that the majority of new cases on both major islands of Zanzibar are indi-
genous cases, despite high case importation rates. Combinations of inter-
ventions that increase the number of infections treated through reactive case
detection or reactive drug administration can lead to substantial decreases in
malaria incidence, but for elimination within the next 40 years, transmission
reduction in both Zanzibar and mainland Tanzania is necessary.

Globally, the case incidence of malaria has fallen from around 81 cases
per 1000 population at risk from the year 2000 to 59 in the year 2020.
Within the same time frame, deaths per 100,000 population at risk
have halved, falling from 30 to 151. As the burden of the disease falls,
the number of countries looking to eliminatemalaria grows. TheWorld
Health Organization (WHO) defines malaria elimination as the inter-
ruption of local transmission of a specifiedmalaria parasite species in a
defined geographical area as a result of deliberate activities2. WHO

defines the interruption of local transmission as the reduction to zero
incidence of indigenous cases, where it classifies Plasmodium
falciparum malaria cases into the following categories: imported,
introduced, indigenous, and induced, as defined in Table 1. Certifica-
tion of malaria-free status by WHO requires the country to show three
years of zero indigenous cases3.

So far, WHO has certified 40 countries as having eliminated
malaria, with another 61 classified as either a country where malaria
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never existed or wheremalaria disappearedwithout specificmeasures4.
In 93 countries, malaria remains endemic, though 47 of these countries
reported fewer than 10,000 cases in 20201. As countries and regions
head towards elimination, the focus of malaria programmes typically
shifts from reducing the burden of the disease to reducing the rate of
malaria transmission,finding and treating each remaining infection, and
preventing the re-establishment of local transmission.

Since interventions do not have the same effect on the different
categories of cases, different intervention approachesmaybe required
depending on the composition of cases in a particular setting. Previous
models ofmalaria importation have examined the presence of sources
and sinks of malaria within a country5,6, the proportion of detected
infections that must be imported infections to ensure that each
infection typically leads to fewer than one subsequent infection7, and
the reproduction number in the absence of importation8. Wesolowski
et al. (2012) and Ruktanonchai et al. (2016) studied the movement of
malaria infections within Kenya and Namibia using mobile phone
usage data to infer where malaria would not be sustained without
ongoing importation of infections. Churcher et al. (2014) used
branching process theory to model the total number of infections
stemming from a single malaria infection and used this to show that
the reproductive number is likely to be below 1 in Eswatini. Le Menach
et al. (2011) used a combination of mobile phone data and ferry traffic
data to estimate the per capita malaria importation rate for Zanzibar,
Tanzania. From this, they concluded that the reproduction number for
malaria was below 1 on both major islands of Zanzibar and that typi-
cally around 1.6 cases were imported from mainland Tanzania per
1000 inhabitants per year. However, they assumed a constant impor-
tation rate and only importation from mainland Tanzania, excluding
the movement of infections between the islands.

Zanzibar is a semi-autonomous archipelago of islands in the
Indian Ocean just south of the Equator. It consists of twomain islands,
Unguja and Pemba. Unguja has a population of close to a million, is
more urban and has stronger connections and more movement with
mainland Tanzania. Pemba has less than half the population of Unguja,
is conversely more rural and has fewer connections with themainland.

Zanzibar has seen a decline in malaria transmission since the year
2000 due to the intensive use of vector control and passive surveil-
lance efforts9. However, progress has stagnated since around 2007,
with malaria persisting at a low prevalence on both main islands.
Reactive case detection (RCD), the active search for malaria infections
following the detection of a clinical index case at a health facility, was
introduced in 2012 to help find malaria infections within the commu-
nity, particularly those that may be asymptomatic and thus missed by
passive surveillance. In Zanzibar, ~35%of index cases are followedup at
their household (referred to as the index household) within 3 days.
Within the index household, everyone who consents is tested with a
rapid diagnostic test (RDT) and those found to be positive for malaria
are treated. This RDT was estimated to have a sensitivity of 34% as
compared to quantitative polymerase chain reaction (qPCR). Previous
modelling studies have highlighted that improvements to RCD and
sustaining current levels of vector control and passive surveillance are
likely insufficient for achieving elimination10, and imported infections
need to be targeted to prevent chains of transmission8,10. However, all

these studies defined elimination as zero malaria infections, irrespec-
tive of their classification, which is not realistic in areas with regular
movement of people to and from neighbouring regions with ongoing
endemic transmission. To our knowledge, no prior studies have
modelled imported, introduced, and indigenous infections explicitly
and examined the impact of interventions on these three categories of
infections; therefore no previous work has been able to model the
probability of elimination as defined by WHO.

In this study, we explicitly model imported, introduced and indi-
genous cases separately to model the feasibility of achieving three
years with no indigenous cases with current and potential future
interventions to achieve the WHO standard for malaria-free certifica-
tion.Wedo not include induced cases because they are responsible for
less than 0.1% of all classified cases in Zanzibar (Abdul-wahid Al-
mafazy, personal communication). We parameterise the model with
data from 2017–18 fromZanzibar and analyse it to infer an estimate for
the proportions of each category of infections on Pemba and Unguja.
We then use this model to examine the impact of combinations of
interventions such as improvements to reactive case detection (RCD),
increasing the number of clinical cases detected in health facilities,
switching to reactive drug administration (RDA), and treatment of
imported infections.We also consider the impact of further reductions
in transmission rates, both on Zanzibar and on themainland, although
we did not explicitly model the interventions that would lead to the
reductions. The structure of this model allows us to explicitly model
the probability of achieving the WHO definition of elimination—three
years with zero new indigenous infections—as well as investigating the
resulting changes in incidence on Zanzibar.

We follow WHO terminology in defining a malaria case as anyone
infected with P. falciparum parasites, including both symptomatic and
asymptomatic infections. However, we assume that diagnosis of cases
only occurs in the patch of residence so we classify cases relative to
their patch of residence: therefore we define imported infections as
infections acquired when away from the area of residence; introduced
infections as infections stemming from an imported infection, or from
an infected visitor visiting the area of residence of the introduced
infection; and indigenous infections as infections stemming from
introduced or other indigenous infections. Thus, our definition of
imported cases differs slightly from the WHO definition, as infected
visitors are not counted as imported cases in themodel (theywould be
classified as either an imported, introduced or indigenous case in their
area of residence depending on where they acquired the infection).
Our definition of introduced and indigenous cases match the defini-
tions used byWHO, although in our simulations we have knowledge of
the position of cases in the chain of transmission, which is not always
known by elimination programmes when classifying cases.

Results
Using ourmodel, we estimate that 88% of new infections on Pemba are
indigenous infections, 8% are introduced infections, and 4% are
imported infections (Fig. 1). On Unguja, we estimate that 56% of new
malaria infections are indigenous infections, 25% are introduced
infections, and 18% are imported infections. These results are not
directly estimated from local case notification data, but rather an

Table 1 | WHO classification of malaria cases3

Term Description

Imported case Malaria case or infection in which the infection was acquired outside the area in which it is diagnosed

Introduced case A case contracted locally, with strong epidemiological evidence linking it directly to a known imported case (first-generation local transmission)

Indigenous case A case contracted locally with no evidence of importation and no direct link to transmission from an imported case

Induced case A case the origin of which can be traced to a blood transfusion or other form of parenteral inoculation of the parasite but not to transmission by a
natural mosquito-borne inoculation

Furthermore,WHOdefines a case as the occurrence ofmalaria infection in a person in whom thepresence ofmalaria parasites in theblood has been confirmed by a diagnostic test3; therefore cases
are defined on infection status and not on clinical symptoms.
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output of the model, arising from the travel history of survey
respondents and the prevalence of malaria in the areas visited.

Previously, a simpler version of this model found the calibrated
values for the effective daily transmission rate for each infected

individual (β) were 0.0048 day−1 (95% CI: 0.0044–0.0050) on Pemba
and 0.0037 day−1 (95% CI: 0.0025–0.0.047) on Unguja10. The con-
trolled reproductivenumber, givenby the transmission rate dividedby
the recovery rate, was estimated to be 0.95 (95% CI: 0.88–1.00) on
Pemba and 0.74 (95% CI: 0.50–0.94) on Unguja. These results remain
unchanged by the extension of the model.

Removing RCD entirely is expected to lead to an increase in
incidence of 10% in Pemba and 5% in Unguja. Switching from RCD to
RDA is expected to lead to the treatment of approximately three times
as many infections in the population for a given malaria prevalence,
since RDTs currently miss approximately two-thirds of qPCR-
detectable infections11. In the model, we observe 12% fewer new
infections in Pemba and 7% fewer new infections in Unguja when we
switch from RCD to RDA. In Fig. 2, we show time-series plots for the
impact of switching fromRCD to RDA at year 0 on the three categories
of infections, since this is an intervention that is currently being con-
sidered for implementation by the Zanzibar Malaria Elimination Pro-
gram (ZAMEP). The impact of switching to RDA on the incidence of
imported cases is minimal, as transmission for these cases typically
occurs on mainland Tanzania, and RDA is being implemented in Zan-
zibar. The impact on the incidenceof introduced cases is small, and the
impact on indigenous cases is substantial on both Pemba and Unguja,
as these transmission events occur on Zanzibar and so are reduced by
the shift from RCD to RDA.

Figure 3 shows the incidence of indigenous infections per 10,000
population in the 15th year from the implementation of interventions.
Most RCD-related interventions have a similar impact on the incidence
of indigenous infections (Fig. 3a). Across all three categories of infec-
tions, increasing follow-up of index cases from 35% to 100% is esti-
mated to lead to an incidence reduction of 12% in Pemba and 7% in
Unguja. Similarly, the median drop in incidence from a three-fold
increase in the treatment-seeking rate is estimated to be 12% in Pemba
and8% inUnguja. Including 100neighbours inRCD is expected to have
a smaller impact than other RCD-related interventions, with a 6%
reduction in incidence in Pemba and a 4% reduction in Unguja.
Treating infected travellers has the largest impact on transmission,
with a 90% treatment proportion leading to an 85% reduction in inci-
dence on Pemba, and an 89% reduction on Unguja.

Combining interventions can have a multiplicative effect on the
reduction in incidence. Figure 3b shows the impact of adding in new
interventions on top of existing ones. Even without treating travellers,
a 59% reduction in incidence amongst Pemba residents and a 40%
reduction amongst Unguja residents can be achieved through the use
of RDA with 100% follow-up of index cases, including 100 neighbours
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in RDA, and increasing the treatment-seeking rate so that three times
as many index cases are typically found in health facilities for a given
malaria prevalence. Time-series plots of incidence for individual and
combinations of interventions can be found in Figs. S8–S12 in
the Supplementary Information.

We then considered the impact of further reducing the trans-
mission rate on Pemba and Unguja. We find a 50% reduction in the
transmission rate is expected to lead to a 89% drop in incidence on
Pemba and a 62% drop in incidence on Unguja. We additionally
investigate the likelihood of reaching zero indigenous infections over
three consecutive years. Figure 4 shows the percentage of the 500
simulations that reach zero indigenous infections over three years at
each time point, defined as reaching elimination. When there is no
transmission reduction, even when 100% of infected travellers are
treated, by the 40th year, 24% of simulations reached elimination in
Unguja and 1% of simulations reached elimination in Pemba. Even with
large reductions in transmission on Zanzibar, we see high probabilities
of elimination only when all infected travellers are treated. This is due
to the large numbers of imported infections and introduced infections
stemming from visitors to both islands, but especially Unguja. Thus,
even when 90% of travellers are treated, there are still sufficient
numbers of imported infections that lead to onward transmission and
eventually a handful of indigenous infections per year. Again, the
results of combining all previously mentioned interventions with
treatment of travellers and reductions in transmission can be found in
Fig. S13 in the Supplementary Information.We find combining treating
90% of travellers with a 90% reduction in transmission leads to a 99.5%

reduction in incidence on Pemba and a 97.9% reduction in incidence
on Unguja. The controlled reproduction number is below 1 for both
islands, and this suggests that elimination should be achieved in the
absence of importation. This is observed when the model is run for a
longer period of time than 40 years (Fig. S15 in the Supplementary
Information). Within 100 years of treating all infected travellers from
mainland Tanzania, both islands reach almost 100% probability of
reaching elimination.

As giving treatment or chemoprophylaxis to 100% of travellers is
difficult to achieve, we also considered a potential reduction inmalaria
transmission on mainland Tanzania, thus reducing the number of
imported infections arriving on Zanzibar. As shown in Fig. 5, a com-
bination of a reduction in transmission on mainland Tanzania and on
Zanzibar could lead to elimination on both Pemba and Unguja. The
results from combining all previous interventions with transmission
reduction on Zanzibar andmainland Tanzania can be found in Fig. S14
of the Supplementary Information. The probability of elimination after
40 years is estimated to be 31% on Pemba and 71% on Unguja when
there is a 30% reduction in transmission on mainland Tanzania but no
reduction in transmission on Zanzibar, and all RCD-related interven-
tions are set to the maximum value given in Table 2.

In addition, the impact of changing the intervention parameters
one at a time to see the impact on the final incidence of indigenous
infections is explored in section S2.1 of the Supplementary Informa-
tion. Increases in RCD-related interventions were found to lead to a
linear decrease in malaria incidence, while the relationship between
transmission reduction on Zanzibar and malaria incidence was found
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to be highly non-linear, with a small reduction in the transmission rate
leading to large decreases in malaria incidence.

Discussion
We developed a model for estimating the proportions of infections
observed in a region that are imported, introduced and indigenous,
based on malaria prevalence and human movement data. This model
can be applied to different settings and adapted to suit local interven-
tions in place. We used this model to examine the role of imported
infections in Zanzibar, a low-prevalence region with substantial impor-
tation of malaria infections and a well-established RCD programme.

The malaria situation is quite different between the two major
islands of Zanzibar, and so the intervention effects also differ across
the two islands. In Unguja, and to a lesser extent on Pemba, repeated
importation of infections and local transmission from infected visitors
is driving malaria persistence. Improvements in RCD, coupled with
treatment of travellers, could lead to substantial reductions in the
incidence of malaria infections, including indigenous infections. In
addition to this, RCD is a useful surveillance tool that can be used for
confirming the lack of indigenous infections and allowing for certifi-
cation of malaria elimination. However, the large number of imported
and introduced infections estimated in themodelmeans that unless all
infections coming frommainland Tanzania to Zanzibar can be treated
or prevented, elimination is unlikely to be reached in Zanzibar, even
though very low incidence levels can be reached. Instead, our results
suggest that the pursuit of malaria elimination must be a coordinated
effort on a national scale. Simulated decreases in the transmission
rates on both Zanzibar and mainland Tanzania led to the largest
reduction in malaria incidence and the highest likelihood of achieving
malaria elimination on Zanzibar. Given that insecticide-treated nets
and indoor residual spraying are already widely deployed in Zanzibar,
further decreases in transmission rates may be difficult, but could
potentially be achieved through novel supplementary vector control
interventions such as volatile pyrethroid spatial repellents, odour-
baited traps, and attractive targeted sugar baits. Transmission reduc-
tion could also be achieved with reactive vector control, which has
shown promise in a field study in Namibia, especially when used in
combination with RDA, and could be considered for deployment in a
setting like Zanzibar12.

Furthermore, these results assume all passive surveillance and
vector control measures that are already in place are maintained, and
that there is no significant malaria importation from outside of main-
land Tanzania. Given that elimination is not currently certified byWHO
at sub-national level, Zanzibar could only become certified by WHO
when mainland Tanzania also has no community transmission and an
application for elimination certification could be made for the entire
United Republic of Tanzania13.

Within the results, we observe that while RCD-related parameter
values are higher inUnguja (e.g. a higher treatment-seeking rate, larger
targeting ratio), and so the total rate of removal of infections (φ) is
higher on Unguja, removing RCD (modelled as a counterfactual sce-
nario) would lead to a larger relative increase in malaria incidence on

Pemba than on Unguja. We expect this is due to the higher transmis-
sion rate on Pemba than on Unguja. This highlights that even if RCD
does not necessarily find and remove many cases, the effects of RCD
compound over time and it can still have a substantial effect, parti-
cularly in higher transmission settings. However, the larger proportion
of imported infections and smaller proportion of indigenous infec-
tions on Unguja suggests importation plays a larger role in sustaining
transmission on Unguja than on Pemba. Treating infections in tra-
vellers is expected to have a large effect on malaria incidence, but
theremay be challenges in implementing border screening, as infected
travellerswith short trip lengthsmaynot haveRDT-detectable levels of
parasite density upon entry to Zanzibar. In addition, treating 75% to
100% of infected travellers is likely not feasible without more drastic
measures such as mass drug administration to travellers. Targeting
interventions such as chemoprophylaxis or awareness campaigns
towards travellers to or from high-risk areas withinmainland Tanzania
maybemore feasible and cost-effective. Further research in this area is
needed to better quantify what these effects may be.

In general, we see that combinations of interventions have a
compounding effect on incidence. For example, improvements toRCD
suchas a combination of switching toRDA, following up all index cases
promptly, and increasing the rate at which infected individuals seek
treatment, can lead to large declines in malaria incidence on both
islands (50% reduction on Pemba and 33% reduction on Unguja). We
see that including neighbours leads to relatively small gains as the
frequency of infections amongst neighbours was found to be very low
in the RADZEC survey data, similar to the general population
prevalence11. Including 100 neighbours in RCD would require a large
amount of extra effort on the part of surveillance officers as many
neighbouring houses would need to be visited and many more tests
would need to be conducted. This result is in line with a previous
modelling study that used an individual-based model for malaria to
investigate the relationship between the search radius and the ento-
mological inoculation rate (EIR)14. Reiker et al. (2019) found that at low
EIR, increasing the search radius (i.e. the number of neighbours tested
and treated) made no difference to the time to elimination14.

The results shownhere only consider stochastic uncertainty in the
model.Whenuncertainty in theparameter values used is also included,
the median final prevalence reached in each of the intervention sce-
narios remains the same but the confidence intervals widen, with
substantial overlap. Nonetheless, the probability of reaching elimina-
tion does not change substantially. Details on how parameter uncer-
tainty was included and the results from this analysis can be found in
section S2.2 of the Supplementary Information.

RDA would likely confer some kind of a prophylactic effect in
individuals given presumptive treatment, andmay thus lead to a larger
impact than that modelled here. On the other hand, since our model
does not include acquired immunity, we assume that all malaria
infections are equally likely to transmit malaria, regardless of parasite
density. There is some evidence to suggest that individuals with lower
parasitemia, who are more likely to show up as negative on an RDT,
have lower gametocytemia and thus are less infective to mosquitoes

Table 2 | Baseline and intervention values for interventions simulated

Intervention Baseline value Intervention values

RCD follow-up η = 35.3% η = [0%, 100%]

Increase in treatment-seeking rate No increase 100% increase, 200% increase

RCD including follow-up of ν neighbours ν = 0 neighbours ν = [20 neighbours, 100 neighbours]

Switching from RCD to RDA (modelled as change in test sensitivity, ρ) ρ = 34% ρ = 100%

Treating a proportion of infections brought on to Zanzibar Prop. treated = 0 Prop. treated = [0.25, 0.50, 0.75, 0.90, 1]

Reductions in the malaria transmission rate on Zanzibar rZanzibar = 0 rZanzibar = [0.25, 0.50, 0.75, 0.90, 1]

Reductions in the malaria transmission rate on mainland Tanzania rMainland = 0 rMainland = [0.10, 0.15, 0.20, 0.25, 0.30]

‘Zanzibar’ refers to both Pemba and Unguja.
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than RDT-positive individuals15,16. In this case, the impact of RCD may
be underestimated by the model and the impact of a switch to RDA
may be overestimated.

A previous study from Zambia found that the targeting ratio, the
ratio of malaria prevalence in those tested and treated in RCD as com-
pared to the general population, increases with decreasing prevalence,
i.e. the clustering of infections increases as prevalence falls17. In this
study, since we had no data on the impact of changing prevalence on
the targeting ratio, we assumed a constant targeting ratio. In sec-
tion S2.4 of the Supplementary Information, we compare the impact of
a fixed targeting ratio to one that varies according to the function fitted
in Chitnis et al. (2019). We find a minor improvement in the impact of
RCD with a targeting ratio that increases with decreasing prevalence.

We define the term imported infection as relative to the patch of
residence, where patch refers to either Pemba, Unguja or mainland
Tanzania. Thus, only residents of Pemba or Unguja who are infected
while away from their patch of residence are counted as imported
infections on Zanzibar in the model. In terms of reporting, it is likely
that a resident of mainland Tanzania who experiences malaria symp-
toms and seeks treatmentwhile they are in Zanzibarwould be classified
and recorded as an imported infection in Zanzibar. Thus, we do not
expect our model’s estimates of imported infections to necessarily
match with local records. Indeed, in the ZAMEP 2019–2020 Annual
Report, it is estimated that 43% of cases are imported cases within the
Malaria Case Notification database18. In comparison, we estimate that
~13% of new malaria infections amongst Zanzibari residents were
acquired outside of Zanzibar in 2017–18. This discrepancy may arise
due to a number of reasons, such as a change in travel patterns or
malaria transmission rates from 2017 to 2020, or because casesmay be
acquired locally but still reported as imported if there is a history of
travel, or because of a large number of mainland Tanzania residents
seeking treatment for malaria while on Zanzibar. Such infected visitors
would not be counted as imported cases within our model. However,
transmission from such infected visitors is included as leading to
introduced infections if they infect a local resident on the patch they
are visiting, and so our estimates of introduced and indigenous infec-
tions match WHO definitions3. At any given time, the number of
imported infections and the number of infected visitors on each of the
three patches were estimated to be similar, so they contribute similarly
to new infections (see Table S3 in the Supplementary Information).
Therefore, roughly half of the introduced infections can be attributed
to transmission from imported infections andhalf to transmission from
infected visitors. In addition, as infected visitors contribute to the force
of infection in the area that they are visiting, they can infect a suscep-
tible traveller from the same area of residence as themselves. For
example, two travellers frompatch k, one susceptible andone infected,
may travel together and transmission may occur between them when
on patch j. In the model, the newly infected person would be counted
as an imported case on patch k. This follows from the fact that trans-
missionoccurredvia vectors onpatch j, and imported cases aredefined
as cases arising from transmission away from the area of interest.

In these simulations, we assume that transmission restarts upon
the incidence of a single indigenous infection. However, WHO allows
for the presence of some indigenous infections after certification of
elimination, as long as there are not more than three indigenous
infections in one focus per year over 3 consecutive years2. As of yet, no
country that has been certified malaria free has lost this status, sug-
gesting that once elimination is reached, community transmission
rarely restarts. A comparison of a transient and a cumulative prob-
ability of elimination is included in section S2.5 of the Supplementary
Information.

This model assumes homogeneous mixing in each patch, with all
individuals in a patch equally likely to become infected or to transmit
an infection. However, heterogeneous biting rates would lead to a
variation of the reproduction number within each patch19,20. Including

such heterogeneity is likely to make elimination even more difficult
than our analysis suggests. However, heterogeneity in travel risk may
make it easier to target travellers fromhigh endemicity areas and allow
for a larger impact on transmission with lower coverage.

In conclusion, the results of this study suggest that the largest
group of infections on both major islands of Zanzibar are indigenous
infections despite each infection typically leading to fewer than one
new infection onboth islands (i.e. the controlled reproduction number
is estimated to be below 1 on both islands). The malaria burden on
Zanzibar can be reduced substantially through a combination of
interventions such as improvements to RCD and targeting treatment,
chemoprophylaxis and bite avoidance measures towards travellers
importing infections from mainland Tanzania. However, malaria
elimination on Zanzibar will be difficult to achieve without a reduction
in malaria prevalence onmainland Tanzania, highlighting the need for
a coordinated effort within the United Republic of Tanzania to achieve
elimination.

Methods
We extend a stochastic metapopulation model described in ref. 10 to
include separate compartments for imported, introduced and indi-
genous malaria infections. The model is parameterised to malaria
prevalence and travel history data from the Reactive Case Detection:
SystemEffectiveness andCost (RADZEC) study conducted onZanzibar
andMalaria Atlas Project estimates ofmalaria prevalence formainland
Tanzania11,21,22. Data from a cross-sectional survey conducted during
RCD, and extended to neighbours and a transect of households
extending from the index household, inform the estimates of the
population prevalence and increase in prevalence in index households
and neighbouring households11. Results from a data audit conducted
on the Malaria Case Notification register of Zanzibar inform estimates
of the number of clinical cases typically reported at health facilities and
the proportion of cases followed up21. The population prevalence at
baseline for Pemba andUnguja is estimatedby the prevalence of qPCR-
detectable infections in neighbouring and transect households. The
results fromMicheweni, Pemba, from this datasetwas compared to the
PCR-detectable prevalence in a random sample in Micheweni in
another study, and was found to be comparable9–11. Malaria Atlas
Project estimates ofmalaria prevalence in 2–10-year-olds for thewhole
of Tanzaniawas used as the baseline prevalence onmainlandTanzania,
as the RADZEC data on travel to mainland Tanzania suggested that
residents of Zanzibar travel tomany parts ofmainland Tanzania, so the
overall prevalence for Tanzaniawas taken in order to not assume travel
to specifically high or low prevalence areas11,22. Further details of data
collection can be found in Stuck et al. (2020) and van der Horst et al.
(2020), and details of parameterisation can be found in Das et al.
(2022)10,11,21.

Themodel is based on a system of ordinary differential equations
that include susceptible and infected humans in three patches,
representing the islands of Pemba andUnguja, andmainland Tanzania.
We include short-term human movement between the patches.
Amongst infected humans, there are separate compartments for
imported, introduced and indigenous infections on each patch. A
schematic of the model is shown in Fig. 6.

Movement model
If we first consider that there is just one patch and no human move-
ment, but rather a constant rate of imported infections, the rate of
change of imported infections can be described by:

dP
dt

= δ � μP, ð1Þ

where P is the number of imported infections, δ is the rate of impor-
tation per unit time, and μ is the recovery rate.
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If these imported infections then transmit the infection to other
susceptible residents, the new infections would be classified as intro-
duced infections according toWHO. The rate of change of introduced
infections can be described by:

dT
dt

= βP
S
N
� μT , ð2Þ

where T is the number of introduced infections, β is the malaria
transmission rate, S is the number of susceptible residents, andN is the
total number of residents.

Further transmissions from these introduced infections lead to
the second generation of infections from the original imported infec-
tions and are classified as indigenous infections by WHO. Similarly,
further transmissions from indigenous infections lead to more indi-
genous infections. Thus, the rate of change of indigenous infections
can be described by:

dD
dt

=βðT +DÞ S
N
� μD, ð3Þ

where D is the number of indigenous infections.
We then combine this framework for classifying infections into

separate categories depending on where they are acquired and their
position in the chain of transmission with a model for describing the
movement of infection between patches10. Human mobility can be
modelled with either an Eulerian perspective (where hosts explicitly
move between patches) or a Lagrangian perspective (where hosts
are fixed to their patch but can transmit infection between patches)23.

In this model, we use a Lagrangian approach and label individuals by
their patch, but allow them to contribute to transmission in other
patches. The force of infection in any patch is therefore dependent on
the malaria prevalence in all patches. This model is better suited to
consider the short-term movement of people, which is expected to
increasingly play a significant role in malaria persistence in low trans-
mission areas5–8,24. As the median trip length in the Reactive Case
Detection in Zanzibar: System Effectiveness and Cost (RADZEC) study
was 6 days, we assume the majority of travel takes the form of short
trips, and individuals retain the properties of their home patch11.

We define a resident as someone who has lived in that patch for
over 60 days, as the RADZEC travel data comes from questions
regarding travel in the last 60days.Wedefine a visitor as someonewho
is temporarily visiting a patch other than their patch of residence. This
is captured in the parameter θij, which gives the proportion of time the
average resident of patch j spends on patch i. Imported infections are
defined as those where someone travelled away from their patch of
residence, became infectedwithmalariawhile away, and then returned
to their home patch infected. The rate of susceptible residents
becoming imported infections is given by the proportion of the force
of infection that they are exposed to when away from their home
patch. Thus, the force of infection leading to imported infections in
patch k, λPk , is given by:

λðtÞPk =
Xn

i≠k

βi

Pn
j = 1 Njθij IðtÞjPn

j = 1 Njθij

 !
θik

 !
: ð4Þ

We sum over all i ≠ k to get a total exposure away from home. In the
context of Zanzibar and mainland Tanzania, the number of patches is
set to 3, i.e. n = 3.

This is then combined with a recovery term that accounts for the
natural clearance of infections and clearance due to reactive case
detection to give:

dPk

dt
=
Xn

i≠k

βi

Pn
j = 1 Njθij IjPn
j = 1 Njθij

 !
θik

 !
Sk � ðμ+φkÞPk : ð5Þ

Introduced infections in patch k have either been infected from
imported infections onpatch k (residents of k), or fromvisitingmalaria
infections who are residents of one of the other patches (who may be
classified as an imported, introduced or indigenous infection on their
patch of residence). Thus, the force of infection leading to introduced
infections is given by the sum of the exposure of susceptible residents
of k to imported infections residing in patch k, and the exposure to
infected individuals from other patches visiting patch k:

λðtÞTk = βk

θkkPðtÞk +
Pn

j≠k Njθkj IðtÞjPn
j = 1 Njθkj

 !
: ð6Þ

The first term within the brackets is the contribution to the force of
infection from imported infections amongst residents of patch k, and
the second term is the contribution to the force of infection from all
infected visitors who are visiting patch k (hence, we sum over j ≠ k).

Finally, when there is further transmission from introduced
infections or indigenous infections that are residents of patch k while
they are in patch k, these lead to new indigenous infections. If they are
not on patch k during the time of transmission, they would lead to
introduced infections in another patch if they infect a resident of that
patch, or an imported infection if they infected another visitor to that
patch. Thus, the force of infection term leading to indigenous infec-
tions is:

λðtÞDk =βk
θkkðTðtÞk +DðtÞkÞPn

j = 1 Njθkj

 !
: ð7Þ

Mainland
Suscep�ble

Infected

Suscep�ble

Pemba

Infected

Suscep�ble

Infected

Unguja

Infected

Imported (P)
Infec�ons brought 

onto patch by 
residents of that 

patch

Introduced (T)
Infec�ons stemming 

from imported 
cases or from 

infected visitors to 
that patch

Indigenous (D)
Infec�ons stemming 
from introduced or 
other indigenous 

cases

a

b

Zanzibar

Fig. 6 | Description of model patches and compartments, including sub-
compartments for different categories of infections. a A schematic diagram of
the model with two disease states in each patch. Solid arrows represent transitions
between disease states, and dashed arrows represent transmission. b A diagram of
how the infected compartment is further divided into three sub-compartments
comprising of imported, introduced and infected infections. Letters in brackets
indicate state variable name in equations. These sub-compartments exist for all
three patches.
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When the transmission terms for introduced and indigenous
infections are also combined with recovery terms, the full sets of
equations becomes:

dPk

dt
=
Xn

i≠k

βi

Pn
j = 1 Njθij IjPn
j = 1 Njθij

 !
θik

 !
Sk � ðμ+φkÞPk , ð8Þ

dTk

dt
=βk

θkkPk +
Pn

j≠k Njθkj IjPn
j = 1 Njθkj

 !
θkkSk � ðμ+φkÞTk , ð9Þ

dDk

dt
=βk

θkkðTk +DkÞPn
j = 1 Njθkj

 !
θkkSk � ðμ+φkÞDk , ð10Þ

where Ik = (Pk + Tk +Dk)/Nk for k∈ {1, 2, 3}, i.e. the proportion of infec-
ted residents on each patch k, n = 3, and φk represents the clearance
rate due to RCD (this is described in more detail in Eq. (11)). State
variable and parameter descriptions for Eqs. (8)–(10) can be found in
Table 3.

The effective transmission rate, β, is estimated from the malaria
prevalence, movement rates and RCD activities present on each of the
three patches10. At equilibrium, the system of ordinary differential
equations can be rearranged to a set of simultaneous equations, which
can then be solved for β when I, N, θ and φ are known10. The trans-
missionparameter,β, incorporates thebaseline transmissionpotential,
ongoing vector control activities, and ongoing passive surveillance.

Reactive case detection
RCD is a form of contact tracing where, due to the mosquito-borne
nature ofmalaria, the focus isongeographically nearby contacts. Thus,
nearby contacts of a known malaria case are followed up, tested for
malaria, and treated if found to be positive. In Zanzibar, this involves
following up index cases and testing and treating their household

members. The per capita rate of treatment due to RCD is:

φkðtÞ= ξkηνðhÞk τðhÞk IkðtÞρ, ð11Þ

where ξk is the rate at which infected individuals seek treatment at a
health facility, η is the proportion of index cases that are investigated
at the index household level21, νðhÞk is the size of the index household,
τðhÞk Ik is the inflated prevalence amongst index household members,
and ρ is the rapid diagnostic test (RDT) sensitivity11. ξk was derived
from health facility data on the median number of malaria cases
recorded per month per district on Pemba and Unguja, which was
scaled by the number of districts on each island and 30 days in a
month21. νðhÞk was estimated by calculating the mean index household
size from RADZEC data11. τðhÞk was calculated by taking the mean
number of infections found in an index household, dividing by the
index household size, and taking the ratio of the prevalence in the
index household to the malaria prevalence in the general population11.
The baseline values for these parameters can be found in Table 4.

When neighbours are also included in RCD, the rate of treatment
due to RCD is modified to the following:

φkðtÞ= ξkηðνðhÞk τðhÞk + νðnÞk τðnÞk ÞIkðtÞρ, ð12Þ

where the superscripts (h) refer to the index household and (n) refers
to the neighbouring households.

The daily number of malaria cases recorded in health facilities is:

ιk = ξk IkNk , ð13Þ

where IkNk is the total number of infected people on patch k and ξk is
the rate at which each infected person seeks treatment at a health
facility and is diagnosed with malaria, as described earlier. We note
that this rate is relatively low since many infections are likely to be
asymptomatic and may never seek treatment in the course of the
infection. The daily number of malaria cases recorded at a health
facility is estimated fromdata on themediannumber of cases reported
per district permonth on Pemba and Unguja21. By assuming that this is

Table 3 | Descriptions of state variables, parameters, and derived parameters used in the model

State variable or parameter Description and units

State variables

Pk Number of imported infections in patch k. Humans.

Tk Number of introduced infections in patch k. Humans.

Dk Number of indigenous infections in patch k. Humans.

Parameters

Nk Total number of people in patch k (assumed to be constant). Humans.

βk The effective malaria transmission rate from humans to other humans in patch k. Day−1.

θij The proportion of time the average resident of patch j spends in patch i. ∑iθij = 1 ∀ j. Dimensionless.

μ Natural infection clearance rate. Day−1.

τðhÞk Ratio of malaria prevalence in the index household tested in RCD as compared to the general population in patch k.

τðnÞk Ratio of malaria prevalence in neighbouring households tested in RCD as compared to the general population in patch k.

ν
ðhÞ
k Number of people tested in the index household during follow-up per index case in patch k. Dimensionless.

ν
ðnÞ
k Number of people tested in neighbouring households during follow-up per index case in patch k. Dimensionless.

ρ Rapid diagnostic test sensitivity. Dimensionless.

η The proportion of cases arriving at the health facility that are followed up. Dimensionless.

ξk The daily rate at which an infected individual seeks treatment in patch k. Day−1.

Derived parameters

Sk Number of susceptible humans in patch k, i.e. Sk =Nk − Pk − Tk −Dk. Humans.

Ik Proportion of humans who are infectious in patch k, i.e. (Pk + Tk +Dk)/Nk. Dimensionless.

φk Treatment rate due to RCD programme in patch k. Day−1.

ιk Total number of cases arriving at a health facility in patch k. Humans per day.
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the value of ι*k at baseline and assuming equilibrium prevalence, we
estimate that the treatment-seeking rate is:

ξk =
ι*k

I*kNk

, ð14Þ

where an asterisk indicates the value of that parameter at baseline.

Model simulations
Equations (8)–(10) were simulated using a binomial tau-leap adapta-
tion of the Gillespie algorithm25. The initial conditions were set such
that all infections were indigenous infections, and then the model was
run for ten years to allow it to reach an equilibrium of imported,
introduced and indigenous infections. After this, interventions were
introduced and simulationswere run for another 40 years. Simulations
were repeated 500 times to account for stochastic variation. In all
figures, interventions are introduced in year 0, which is calibrated to
data from 2017–18. Note, in some figures, results are displayed for the
first 20 years from the start of interventions. Simulations were run
using Python version 3.6.6 and Numba version 0.39.0. Figures were
plotted in R version 4.1.2, using ggplot2 version 3.3.5.

Model with interventions
The baseline model was expanded to include the following
interventions:
1. RCD at a range of levels of case follow-up. At baseline, 35% of

malaria cases diagnosed at a health facility are followed up at the
index household level within 3 days21.

2. RCD with follow-up of neighbouring households. Currently,
neighbours are not generally included in RCD in Zanzibar. We test
the impact of including individuals in neighbouring households in
testing and treatment upon investigation of the index case.

3. Switching from RCD to RDA. Currently, an RDT is used to diag-
nose malaria in those followed up by RCD. This RDT is estimated
to have a sensitivity of 34% as compared to qPCR due to a high
frequency of low parasite density infections11. Switching to RDA
means that the RDT is no longer used during follow-up and all
members of the household are given presumptive treatment.

4. RCD at a range of levels of treatment seeking. At baseline, the rate
of seeking treatment is 2.9 × 10−4 per day in Pemba and 6.1 × 10−4

per day in Unguja.We test the impact of increasing the treatment-
seeking rate of infected individuals. For example, this could be
due to waning immunity and thus a higher proportion of

symptomatic infections in the population, broader screening
measures in health facilities, or including pharmacies or drug
stores in the case notification system.

5. Treatment andpreventionof aproportionof infectionsbrought on
to Zanzibar by travelling humans (either residents or visitors). This
could be through prevention measures such as chemoprophylaxis
or bite avoidance measures for Zanzibari residents when visiting
mainlandTanzania or treatmentofmainlandTanzania residents on
arrival at Zanzibar. In order to be concise, this intervention is
referred to as treatment of travellers.

6. Reductions in themalaria transmission rate on each of the islands
of Zanzibar, potentially through intensified vector control, i.e.
βintervention
Zanzibar =βZanzibarð1� rZanzibarÞ, where r refers to the reduction

in vectorial capacity, and the subscript Zanzibar refers to either
Pemba or Unguja.

7. Reductions in themalaria transmission rate onmainland Tanzania
potentially through intensified vector control,
i.e. βintervention

Mainland =βMainlandð1� rMainlandÞ.

Interventions 1 to 6 were applied simultaneously to the Pemba
and Unguja patches. Interventions 1 to 4 are collectively referred to as
RCD-related interventions. Baseline and intervention values simulated
can be found in Table 2.

Details of how the interventions were included in the model are
described in Section S1.1 of the Supplementary Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data and code needed to run this model are available on GitHub
and deposited in the Zenodo database under accession code https://
doi.org/10.5281/zenodo.7782511. Publicly available data from the
Malaria Atlas Project was also used to parameterise the model. This
data can be found at https://data.malariaatlas.org. No data was speci-
fically collected for this study.

Code availability
The data and code needed to run this model are available on GitHub
and deposited in the Zenodo database under accession code https://
doi.org/10.5281/zenodo.7782511. Modelling, data analysis and plotting
were conducted using Python version 3.6.6, numba version 0.39.0, R
version 4.1.2 and ggplot2 version 3.3.5.
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