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Introduction

A part of birational geometry is devoted to the study of groups of birational
transformations. Let k be an algebraically closed field of arbitrary characteristic.
If X is a variety over k, a birational transformation of X is a rational map from
X to itself, which also admits a rational map as inverse. The group of birational
transformations of X is denoted by Bir(X). We denote by Aut(X) the group
of automorphisms of X, which is a subgroup of Bir(X).

Let G be a smooth algebraic group and denote by p1 : G × X → G the
projection onto the first factor. Assume there exists a rational map ρ : G×X 99K
X such that the following hold:

• The birational transformation α = (p1, ρ) : G×X 99K G×X is dominant;
and there exist open subsets U, V ⊂ G × X such that α|U : U → V is
an isomorphism and the morphisms p1|U : U → G and p1|V : V → G are
surjective.

• For all g, h ∈ G and x ∈ X such that α(h, x) and α(g, ρ(h, x)) are defined,
the element α(gh, x) is defined and equals α(g, α(h, x)).

The rational map ρ is called a birational action of G on X and ρ induces a group
homomorphism µG : G(k) → Bir(X), g 7→ ρ(g, ·). The image of µG is called an
algebraic subgroup of Bir(X). If moreover α is an automorphism, the image of
µG is called an algebraic subgroup of Aut(X). When µG is injective, we make
the abuse to consider G as an algebraic subgroup of Bir(X), or of Aut(X).

Let X be a projective variety. The group Aut(X) is the group of k-rational
points of a group scheme by a classical result (see [MO67]); but generally, it does
not have the structure of an algebraic group (e.g. the automorphism group of a
K3 surface can be infinite and discrete). However, the connected component of
the identity in Aut(X), which is denoted by Aut◦(X), is a normal subgroup of
Aut(X) and is equipped with the structure of an algebraic group. In particular,
Aut◦(X) is a connected algebraic subgroup of Bir(X). Assume furthermore in
this paragraph that char(k) = 0. If X is a smooth projective curve or if X is
a relatively minimal surface with non-negative Kodaira dimension, the group
Bir(X) coincides with its subgroup Aut(X) (see e.g. [Han87, §1. (1.3)]). In
general, when X is a minimal model, then Bir(X) is equipped with a structure
of a group scheme and Bir◦(X) = Aut◦(X) (see [Han87, (3.3) Theorem]). As
Hanamura explains in the introduction of [Han87], we can define “naively” a
structure of scheme on Bir(X). But generally, the scheme Bir(X) is not a group
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scheme, and in particular when X has Kodaira dimension −∞ (see also [Bla17,
Corollary 3.15]). Therefore, it is a challenging problem to describe the group of
birational transformations of such varieties.

One possible way to study Bir(X) is to classify its algebraic subgroups. Over
C, Enriques studied the maximal connected algebraic subgroups of Bir(P2) in
[Enr93]. Then, with Fano, they state a classification of maximal connected
algebraic subgroups of Bir(P3) in [EF98], which has been proven and detailed
later by Umemura in a series of four articles [Ume80, Ume82a, Ume82b, Ume85],
using analytic techniques. From the classification of Enriques and Umemura,
it follows that every connected algebraic subgroup of Bir(P2) and Bir(P3) is
contained in a maximal one. In the pioneer article [Dem70], seen as the starting
point of toric geometry, Demazure classified the algebraic subgroups of Bir(Pn)
containing a torus of dimension n. Finite subgroups of groups of birational
transformations have also been of central interest in birational geometry. The
study of finite subgroups of Bir(P2) over C has been initiated by the work of
Bertini, Kantor and Wiman (see [Ber77, Kan95, Wim97]), and pursued more
recently by numerous algebraic geometers (over algebraically closed fields, see
e.g. [Bla06, DI09]; and for non-closed fields, see e.g. [Yas22, CMYZ22]). In
higher dimension, research on finite subgroups of Bir(P3) is still ongoing (see
e.g. [Pro12, Pro13, PS14, PS16, CS19], or also [CS16] and the references therein).
When X is not rational, there are also studies on finite subgroups of Bir(X)
(see e.g. [BZ17]).

However, less is known on infinite algebraic subgroups of Bir(X) when X is a
non-rational variety of Kodaira dimension −∞, and this will be the main setting
of this thesis. A modern approach to study algebraic subgroups of Bir(X) is
the following:

(1) find a smooth projective variety Y which is G-birationally equivalent to
X and on which G acts regularly,

(2) run a G-equivariant Minimal Model Program on Y (or shortly, a G-MMP,
and see [Pro21] for a reference),

(3) study the automorphism groups of the output, that is, of the G-Mori fibre
space or of the G-minimal model (see e.g. [Pro21, Definitions 3.1.3 and
3.1.5])

The first step is achieved by the Weil regularization theorem [Wei55, Thm.
p. 355] and its refined versions. Weil showed that X is G-birational to a normal
variety Y on which the action of G is regular. In order to run a G-MMP in the
second step, one would like to assume that Y is projective. When G is affine,
this follows from a result of Sumihiro [Sum74, Sum75]. Then this result has
been extended to the case where G is assumed to be connected, without the
affineness assumption, by Brion in [Bri17, Corollary 3]. Eventually, the general
case has been very recently covered by Brion in [Bri22b, Theorems 1 and 2]. One
would also like to assume that Y is smooth (or regular in the general case, but
we assume that k is algebraically closed). In dimension two, this follows from
[Lip78, Remark B p.155]: the surface Y can be desingularizedG-equivariantly by
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successive blowups and normalizations. In higher dimension, we need to assume
furthermore that char(k) = 0 to use a G-equivariant resolution of singularities
[Kol07, Thm. 3.36, Prop. 3.9.1].

Running a G-MMP (with the additional assumption that char(k) = 0 if X
is of dimension at least 3), we get a G-Mori fibre space or a G-minimal model,
and this conjugates G to an algebraic subgroup of the automorphism group of
a G-Mori fibre space or a G-minimal model. Notice that if G is connected, then
every MMP is G-equivariant [Flo20, Lemma 2.5]. This does not hold true when
G is not connected, not even in dimension two, as we can get automorphism
groups of conic bundles over a smooth projective curve, containing a non-trivial
involution permuting the irreducible components of the singular fibres.

To classify the connected algebraic subgroups of Bir(X), the idea is to pro-
vide a family F , consisting of pairs (Z,Aut◦(Z)), where Z an output of a MMP,
for which it is possible to describe all the Aut◦(Z), and such that each connected
algebraic subgroup of Bir(X) is conjugate to an algebraic subgroup of Aut◦(Z)
for some pair (Z,Aut◦(Z)) ∈ F . A remaining work would be to study all the
algebraic subgroups of the Aut◦(Z) such that (Z,Aut◦(Z)) ∈ F . Therefore,
the notion of maximality emerges: a (connected) algebraic subgroup of Bir(X)
is maximal if it is maximal among the (connected) algebraic subgroups with
respect to the inclusion inside Bir(X). As mentioned earlier, every connected
algebraic subgroup of Bir(P2) and Bir(P3) over C is contained in a maximal one.
It is however unknown if this holds true for connected algebraic subgroups of
Bir(Pn) when n ≥ 4, but we will see in this thesis that this is false for Bir(C×Pn)
when n ≥ 1 and C is a curve of positive genus. In the non-connected case, the
classification of pairs (Z,Aut(Z)), where Z is an output of the G-MMP, fully
makes sense if Aut(Z) is equipped with a structure of algebraic group. For
example, this is true when Z is a conic bundle over a smooth curve. By the
classification of algebraic subgroups of Bir(P2) by Blanc [Bla09b], it follows
again that every algebraic subgroup of Bir(P2) is contained in a maximal one.
We will also see in this thesis that this is false for Bir(C × P1), when C is a
curve of positive genus.

The strategy presented above gave a new impetus to the study of algebraic
subgroups of groups of birational transformations. In [Bla09b], Blanc classified
the algebraic subgroups of Bir(P2) over the field of complex numbers (although
his results hold over any algebraically closed field of characteristic different than
two). In higher dimension, Blanc, Fanelli and Terpereau recovered most of the
classification of Umemura over any algebraically closed field k of characteristic
zero, using algebraic methods (see [BFT21a, BFT21b]). A first strike in di-
mension four has been initiated by Blanc and Floris (see [BF20]). On another
direction, infinite algebraic subgroups of Bir(P2) over R have been studied by
Robayo and Zimmermann in [RZ18]; then by Schneider and Zimmermann over
any perfect field in [SZ21].

Let C be a smooth projective curve of positive genus. In this thesis, through
three chapters, we study the (connected) algebraic subgroups of the group of
birational transformations of some (non-rational) varieties:
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I First, we prove the existence of increasing infinite sequences of connected
algebraic subgroups in Bir(C × P1) (see Theorem A), and in particular,
there exist connected algebraic subgroups of Bir(C×P1) of arbitrary large
dimension. Then, we classify the maximal connected algebraic subgroups
of Bir(C×P1) (see Theorem B), and it turns out that they are of dimension
at most 4, unlike maximal connected algebraic subgroups of Bir(Pn) which
can be of arbitrary large dimension.

Let Z be a projective surface. We show that there exist connected alge-
braic subgroups of Bir(Z) which are not contained in maximal ones if and
only if Z is birationally equivalent to C×P1 (Theorem C). Finally, we ob-
tain the classification of pairs (Z,Aut◦(Z)), where Aut◦(Z) is a maximal
connected algebraic subgroup of Bir(Z) for any surface Z (see Theorem
D), but this last result only holds when char(k) = 0.

II Following the techniques of [Bla09b], we classify the maximal algebraic
subgroups of Bir(C × P1) under the assumption that char(k) ̸= 2 (see
Theorem E). As in the connected case, it follows from the classification
that maximal algebraic subgroups of Bir(C × P1) are of dimension at
most 4, and we also get algebraic subgroups of Bir(C × P1) which are not
contained in a maximal one (see Corollary F).

III This is a joint work with Zikas. Under the assumption that char(k) = 0,
we prove that for each n ≥ 1, there exist connected algebraic subgroups
of Bir(C × Pn) which are not contained in a maximal one (see Theorem
G).

Theorem D obtained in the end of the first chapter can be extended in
positive characteristic, with the notion of G-normal curves developed recently
in an article of Brion [Bri22a, Proposition 5.6].

One possible future work is to classify the maximal connected algebraic sub-
groups of Bir(C × P2), in the spirit of [BFT21a, BFT21b]. Another interesting
viewpoint is to extend the classification of pairs (X,Aut◦(X)), where X is bi-
rational to C × P2 and Aut◦(X) is a maximal connected algebraic subgroup
of Bir(C × P2), to a family F of pairs (Z,Aut◦(Z)), in such a way that it is
possible to describe all these pairs, and such that each connected algebraic sub-
group of Bir(C × P2) is conjugate to an algebraic subgroup of Aut◦(Z) with
(Z,Aut◦(Z)) ∈ F .
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Connected algebraic groups acting on algebraic
surfaces

I.1 Introduction

In this text, varieties are reduced and separated schemes of finite type over an
algebraically closed field k. Unless otherwise stated, curves are also assumed to
be smooth, irreducible and projective. If X is a variety, we denote by Bir(X) the
group of birational transformations of X. A subgroup G ⊂ Bir(X) is algebraic if
there exists a structure of algebraic group (i.e. a smooth group scheme of finite
type) on G such that the action G × X 99K X induced by the inclusion of G
into Bir(X) is a rational action (see Definition I.2.1). Moreover, G is a maximal
algebraic subgroup of Bir(X) if there is no algebraic subgroup G′ of Bir(X) which
strictly contains G. If X is a projective variety, then the subgroup Aut(X) ⊂
Bir(X) of automorphisms of X is a smooth group scheme (see [MO67]); and
the connected component of the identity Aut◦(X) is an algebraic subgroup of
Bir(X). In this paper we answer in Theorem D the following question when
char(k) = 0.

Question. What are the maximal connected algebraic subgroups of Bir(X),
when X is an algebraic surface (or equivalently, when X is a projective surface)?

The maximal connected algebraic subgroups of Bir(P2) have been studied by
Enriques in [Enr93]: the maximal connected algebraic subgroups of Bir(P2) are
conjugate to Aut◦(P2) or to Aut◦(Fn) for some n ∈ N \ {1}, where Fn denotes
the n-th Hirzebruch surface (i.e. the P1-bundle over P1 having a section of self-
intersection −n). Furthermore, any connected algebraic subgroup of Bir(P2) is
contained in a maximal connected algebraic subgroup. We will show in Theorem
A that if S is a P1-bundle over a curve C of genus g ≥ 1, it is not always
true that Aut◦(S) is contained in a maximal connected algebraic subgroup of
Bir(S). Our approach to prove Theorem A uses elementary tools like blowups
and contractions, and a classification of automorphisms of ruled surfaces due to
Maruyama in [Mar71].

Theorem A. Let S be a non trivial P1-bundle over a curve C of genus g.
We assume that g ≥ 2, or that g = 1 and S admits a section of negative self-
intersection number. Then there exists a family (Sn)n≥1 of P1-bundles over C
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with birational maps ϕn : S 99K Sn such that:

Aut◦(S) ⊂ ϕ−1
1 Aut◦(S1)ϕ1 ⊂ ... ⊂ ϕ−1

n Aut◦(Sn)ϕn ⊂ ...

is not a stationary sequence. In particular, the connected algebraic subgroup
Aut◦(S) of Bir(S) is not maximal.

Then we study the connected algebraic subgroups of Bir(C × P1) when C
is a curve of genus 1. So assume in this paragraph that C is an elliptic curve.
We denote the Atiyah ruled surfaces by A0 and A1 (see Theorem I.2.19) and if
z1, z2 ∈ C are distinct points, we denote by Sz1,z2 the ruled surface P(OC(z1)⊕
OC(z2)). A geometrical description of these surfaces via sequences of blowups
and contractions from C × P1 is given in Section I.2.4. Then we show that
their automorphism groups are maximal connected algebraic subgroups. With
Theorem A, this leads to Theorem B:

Theorem B. Let C be a curve of genus g and G be a maximal connected
algebraic subgroup of Bir(C × P1). If g ≥ 2 then G is conjugate to the maximal
algebraic subgroup Aut◦(C×P1), and if g = 1 then G is conjugate to one of the
following:

(1) Aut◦(C × P1),
(2) Aut◦(Sz1,z2) where z1 and z2 are distinct points in C,

(3) Aut◦(A0),

(4) Aut◦(A1).

The algebraic subgroups in (1), (2), (3), (4) are all maximal and are pairwise
not conjugate. Moreover in case (2), two algebraic subgroups Aut◦(Sz1,z2) and
Aut◦(Sz′

1,z
′
2
) are conjugate if and only if there exists f ∈ Aut(C) such that

f({z1, z2}) = {z′1, z′2}.

We have Aut◦(C×P1) ≃ Aut◦(C)×PGL2, which is isomorphic to C×PGL2 if
g = 1, or isomorphic to PGL2 if g ≥ 2. Hence the structure of Aut◦(C×P1) as al-
gebraic group is simple to understand. In Theorem I.3.23, we describe the other
maximal connected algebraic groups of Theorem B as extensions of an elliptic
curve by a linear group. The structures of Aut◦(A0) and Aut◦(A1) as extensions
in Theorem I.3.23 are actually a direct consequence of Maruyama’s theorem, and
it has already been proven in a more general setting in [Lau20, Theorem 4.2,
2.(b) and 2.(c)]. However, our approach only uses elementary techniques of bi-
rational geometry to compute the kernel of the morphism Aut◦(S) → Aut◦(C)
induced by Blanchard lemma (I.2.4), when S is isomorphic to A0 or Sz1,z2 for
some z1, z2 ∈ C. Moreover, we describe Aut◦(A1) as an extension by giving an
explicit construction of the surface A1.

Combining Theorems A and B with general arguments from the theory of
algebraic groups, we show the following equivalence:

Theorem C. Let X be a surface. Then every connected algebraic subgroup
of Bir(X) is contained in a maximal one if and only if X is not birationally
equivalent to C × P1 for some curve C of genus g ≥ 1.
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Finally, we answer the question when the characteristic of k is 0, by giving
the classification of all maximal connected algebraic subgroups in dimension 2
(Theorem D). If the characteristic is positive, we have a partial classification,
see Proposition I.3.26 and remark I.3.27.

Theorem D. Let X be a surface over a field k of characteristic 0. We denote
by E the set of surfaces of the form (C × Y )/F where C is an elliptic curve, Y
is a smooth curve of general type, and F is a finite subgroup of Aut◦(C) acting
diagonally on C × Y . The pairs (X,Aut◦(X)) are classified as following:

κ(X)
Representative of the
birational class of X

Aut◦(X)

−∞

Rational surface
Maximal if and only if X is isomorphic to P2
or Fn with n ̸= 1. Else Aut◦(X) is conjugate
to an algebraic subgroup of a maximal one.

Ruled surface (over a
curve C of positive

genus)

Maximal if and only if X is isomorphic to
C × P1, or A0, or A1, or Sz1,z2 with

z1, z2 ∈ C (the three last cases happen only
when C is an elliptic curve). Else Aut◦(X)
is not maximal and fits into an infinite chain

of strict inclusions.

0

Abelian surface

Aut◦(X) ≃ X if and only if X is an abelian
surface; and in this case Aut◦(X) is

maximal. Else, Aut◦(X) is trivial and is not
maximal.

K3 surface
Aut◦(X) trivial and maximal.Enriques surface

Bielliptic surface

Aut◦(X) ≃ C is an elliptic curve if and only
if X ≃ (C × Y )/F where C, Y are elliptic

curves and F is a finite group acting on C by
translations, and acting also on Y not only
by translations (equivalently, Y/F ≃ P1 and
X is a bielliptic surface). In this case,
Aut◦(X) is maximal. Else, Aut◦(X) is

trivial and is not maximal.

1 Elliptic surface

Aut◦(X) ≃ C is an elliptic curve if and only
if X ≃ (C × Y )/F where Y is a smooth curve
of general type and F is a finite group acting
diagonally on C × Y and by translations on
C (i.e. X ∈ E). In this case, Aut◦(X) is

maximal.
If X is birational to an element of E but
X /∈ E, then Aut◦(X) is trivial and not
maximal. Else Aut◦(X) is trivial and

maximal.
2 Surface of general type Aut◦(X) trivial and maximal.
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I.2 Preliminaries

I.2.1 Equivariance and maximality

In this section we reduce the question to the maximality of the automorphism
groups of minimal surfaces, i.e. smooth projective surfaces without (−1)-curves.
The idea has already been used in the rational case to study algebraic subgroups
of Bir(P2) (e.g. see [Bla09b], and [RZ18] when k = R).

Definition I.2.1. Let G be an algebraic group, X be a variety and α : G →
Bir(X) be a group homomorphism.

(1) The map α is a rational action of G on X if there exists a non-empty open
subset U of G×X such that:

(i) The map G×X 99K X, (g, x) 7−→ α(g)(x) is regular on U ,

(ii) For all g ∈ G, the open subset Ug = {x ∈ X, (g, x) ∈ U} is dense in
X and α(g) is regular on Ug.

(2) The map α is a regular action of G on X if the map G × X → X,
(g, x) 7→ α(g)(x) is a morphism of varieties.

If G ⊂ Bir(X) is an algebraic subgroup and ϕ : X 99K Y is a birational map,
there exists a unique rational action of G on Y which is induced by ϕ and such
that the following diagram commutes:

G×X X

G× Y Y.

id×ϕ ϕ

A powerful and classical result on rational actions of algebraic groups is the
Regularization Theorem due to Weil. A modern proof has been given in [Zai95]
(see also [Kra18]).

Theorem I.2.2. [Wei55] For every rational action of an algebraic group G on
a variety X, there exists a variety Y and a birational map X 99K Y such that
the induced action of G on Y is regular.

We recall in Lemma I.2.4 the powerful Blanchard lemma.
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Definition I.2.3. Let G be an algebraic group acting regularly on varieties X
and Y . A birational map ϕ : X 99K Y is G-equivariant if the following diagram
is commutative:

G×X X

G× Y Y.

id×ϕ ϕ

Lemma I.2.4. [BSU13, Proposition 4.2.1] Let X and Y be varieties and ϕ : X →
Y be a proper morphism such that ϕ∗(OX) = OY . Let G be a connected alge-
braic group acting regularly on X. Then there exists a unique regular action of
G on Y such that ϕ is G-equivariant.

In this text, we will use Blanchard lemma in the case where X and Y are
smooth projective surfaces or smooth curves (and more precisely, ϕ will be the
contraction of (−1)-curves or the structure morphism of a P1-bundle). Then
ϕ induces a morphism of algebraic groups ϕ∗ : Aut◦(X) → Aut◦(Y ). The
following proposition is a classical result (see also [LU21, Proposition 3.11] for
a modern proof using actions on CAT(0) cubes complexes):

Proposition I.2.5. Let X be a surface and G be a connected algebraic subgroup
of Bir(X). Then G is conjugate to an algebraic subgroup of Aut◦(S), where S
is a minimal surface.

Proof. First we can apply the Regularization Theorem of Weil on X to get a
surface Y birationally equivalent to X and equipped with a regular action of
G. Replace Y by its smooth locus and from [Bri17, Theorem 1], there exists a
non empty open subset U of Y which is G-stable and quasi-projective. Then
by [Bri17, Theorem 2], the open U admits a G-equivariant completion into a
projective variety Y which can be desingularized: by [Lip78, Remark B p.155],

there exists a birational morphism δ : Ỹ → Y such that Ỹ is a smooth projective
variety and δ is obtained by successive blowups of singular points and normal-
izations. Hence the action of G on Y lifts to Ỹ so that δ is G-equivariant. The
contraction of (−1)-curves of Ỹ is G-equivariant from Blanchard lemma, so we
conclude that G is conjugate to an algebraic subgroup of Aut◦(S), where S is a
minimal surface.

Apply Proposition I.2.5 to a surface X birationally equivalent to C×P1 with
C a curve. Then from [Har77, Examples V.5.8.2, V.5.8.3 and Remark V.5.8.4],
the minimal surface S is either P2 or a ruled surface over C. The following lemma
will be useful to check if Aut◦(S) is a maximal connected algebraic subgroup of
Bir(S).

Lemma I.2.6. Let S be a projective surface and G be a connected algebraic
subgroup of Aut(S). Then the following hold:

(1) The algebraic subgroup G is maximal if and only if for every projec-
tive surface T and G-equivariant birational map ϕ : S 99K T , we have
ϕGϕ−1 = Aut◦(T ).
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(2) For every projective surface T and G-equivariant birational map ϕ : S 99K
T , there exist β : X → S and κ : X → T compositions of blowups of fixed
points of the G-action such that ϕ = κβ−1.

(3) Assume moreover that S is a minimal surface and Aut◦(S) acts on S with-
out fixed points, then every Aut◦(S)-equivariant birational map ϕ : S 99K T
with T projective, is an isomorphism. In particular Aut◦(S) is maximal.

Proof.

(1) If ϕ : S 99K T is a G-equivariant birational map, we have ϕGϕ−1 ⊂
Aut◦(T ) (see Definition I.2.3). Since G is maximal, the inclusion is an equality.
Conversely assume by contraposition that G is not maximal, then it is strictly
contained in a connected algebraic subgroupH of Bir(S). From Proposition I.2.5
there exists a minimal surface T and a birational map ϕ : S 99K T such that H is
conjugate to a connected algebraic subgroup of Aut◦(T ), i.e. ϕGϕ−1 ⊊ Aut◦(T ).

(2) Every birational map ϕ : S 99K T can be decomposed as ϕ = κβ−1 with
β : X → S and κ : X → T compositions of blowups of smooth points, and we
can assume that κ and β do not contract the same (−1)-curves in X. Then for
all g ∈ G:

Bs(ϕ) = Bs(g−1ϕg) = Bs(ϕg) = g−1(Bs(ϕ)).

Therefore, the base points of ϕ are fixed points for the G-action, so β consists
in the blowup of fixed points of the G-action, which is G-equivariant by the uni-
versal property of the blowup. Similarly, the morphism κ is also G-equivariant.

(3) Because S is minimal, there is no contraction and since Aut◦(S) has no
fixed point, there is no Aut◦(S)-equivariant blowup. Therefore, every Aut◦(S)-
equivariant map from S to a projective surface T is an isomorphism from (2).
From (1), Aut◦(S) is maximal .

I.2.2 Generalities on ruled surfaces

First we want to classify algebraic subgroups of Bir(C×P1) as stated in Theorem
B. Then Proposition I.2.5 suggests studying the maximality of Aut◦(S) when
S is a minimal surface birationally equivalent to C × P1, i.e. a geometrically
ruled surface. Since this object will play an important role, we recall in this
subsection the definition and some basic properties.

Definition I.2.7. A geometrically ruled surface, or simply ruled surface, is a
surface S equipped with a morphism π : S → C where C is a curve, and such
that all fibers of π are isomorphic to P1. A section of S is a morphism σ : C → S
such that πσ = id. Through misuse of language, the image of σ is also called a
section.

Notice that Definition I.2.7 is equivalent to the definition of geometrically
ruled surface given in [Har77, Section V.2], since Hartshorne mentions that the
existence of a section is provided by Tsen’s theorem.

10



Definition I.2.8. A P1-bundle S over a curve C is a morphism π : S → C
endowed with an open cover (Ui)i of C with isomorphisms gi : π

−1(Ui) → Ui ×
P1, such that for all i the following diagram commutes:

π−1(Ui) Ui × P1

Ui,

gi

π p1

where p1 denotes the projection on the first factor. The morphism π is called
the structural morphism and the open cover (Ui, gi)i is called a trivializing open
cover of C. We denote by Uij the open subset Ui ∩Uj and the transition maps
are τij ∈ PGL2(OC(Uij)) so that gig

−1
j is equal to:

Uij × P1 → Uij × P1

(x, [u : v]) 7→ (x, τij(x) · [u : v]) .

Let π1 : S1 → C and π2 : S2 → C be P1-bundles over C. A C-isomorphism (or
an isomorphism of P1-bundles) f : S1 → S2 is an isomorphism of varieties such
that π1 = π2f . If moreover S1 = S2 then f is called a C-automorphism of S.
We denote by AutC(S) ⊂ Aut(S) the subgroup of C-automorphisms of S.

From Definition I.2.8, we see that a P1-bundle over C is also a ruled surface
over C. Conversely, ruled surfaces π : S → C are also P1-bundles over C (see
e.g. [Har77, Proposition V.2.2]). If V is a vector bundle of rank 2 over C, we
denote by P(V ) the P1-bundle over C obtained by projectivization of V . Recall
that all P1-bundles over C are obtained by projectivization of a vector bundle
of rank 2 over C (see e.g. [Har77, II. Exercise 7.10]).

Definition I.2.9. Let V be a vector bundle of rank 2. We say that V is de-
composable if V ≃ L1 ⊕ L2, for some L1 and L2 line subbundles of V . If V is
not decomposable, we say that V is indecomposable. We also say that P(V ) is
decomposable (resp. indecomposable) if V is decomposable (resp. indecompos-
able).

Lemma I.2.10. Let S be a P1-bundle over a curve C and let σ1, σ2, σ3 be
sections of S. The following hold:

(1) There exists a trivialization of S such that σ1 is the infinity section: i.e.
for all Ui trivializing open subsets of C we have σ1|Ui

(x) = (x, [1 : 0]) and
the transition maps of S are upper triangular matrices:

Uij → PGL2(OC(Uij))

x 7→
[
aij(x) cij(x)

0 bij(x)

]
.

(2) If σ1 and σ2 are disjoint then there exists a trivialization of S such that σ1
is the infinity section and σ2 is the zero section, i.e. for all Ui trivializing
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open subset of C we have σ2|Ui
(x) = (x, [0 : 1]). Moreover, the transition

maps of S are diagonal matrices:

Uij → PGL2(OC(Uij))

x 7→
[
aij(x) 0

0 bij(x)

]
.

(3) If σ1, σ2, σ3 are pairwise disjoint then there exists a trivialization of S such
that: σ1 is the infinity section, σ2 is the zero section, and σ3 is the section
defined on all Ui trivializing open subset of C as σ3|Ui

(x) = (x, [1 : 1]).
Moreover, S is isomorphic to C × P1.

Proof. (1) Let (Ui)i be a trivializing open cover of C. For all i, we have
σ1|Ui

(x) = (x, [u1i(x) : v1i(x)]) with u1i, v1i ∈ OC(Ui). If u1i and v1i both van-
ish at z ∈ Ui with respectively multiplicitiesmu andmv, m = min(mu,mv), and
f is a local parameter at z, then σ1Ui

(x) = (x, [u1i(x)/f(x)
m : v1i(x)/f(x)

m]).
We can assume that u1i and v1i do not vanish simultaneously and by refin-
ing the open cover (Ui)i, we can also assume that either u1i ∈ OC(Ui)

∗ or
v1i ∈ OC(Ui)

∗. Then one can compose σ1|Ui
and the charts on the left by the

automorphisms of Ui × P1:

(x, [u : v]) 7→


(
x,

[
1 0

−v1i(x) u1i(x)

]
·
[
u
v

])
if u1i(x) ̸= 0 on Ui,(

x,

[
0 1

−v1i(x) u1i(x)

]
·
[
u
v

])
if v1i(x) ̸= 0 on Ui.

Under this trivialization of S, the section σ1 is the infinity section and [1 : 0] is
preserved by the transition maps, which have to be upper triangular matrices.

(2) First apply (1) so that σ1 is the infinity section. If σ2|Ui
(x) = (x, [u2i(x) :

v2i(x)]), we also can assume v2i ∈ OC(Ui)
∗ as in (1) if needed. Then we compose

by the following automorphisms of Ui × P1:

(x, [u : v]) 7→
(
x,

[
v2i(x) −u2i(x)

0 1

]
·
[
u
v

])
.

Under this trivialization of S, the section σ1 remains the infinity section and σ2
is the zero section. Moreover, [1 : 0] and [0 : 1] are preserved by the transition
maps, which have to be diagonal matrices.

(3) First apply (2) so that σ1 is the infinity section and σ2 is the zero section.
On the trivializing open subset Ui, we can write σ3(x) = (x, [u3i(x) : v3i(x)])
with u3i, v3i ∈ OC(Ui)

∗ as in (1). Then we compose by the following automor-
phisms of Ui × P1:

(x, [u : v]) 7→
(
x,

[
1/u3i(x) 0

0 1/v3i(x)

]
·
[
u
v

])
.

Under this trivialization of S, the sections σ1 and σ2 remain respectively the
infinity section and the zero section; and σ3 is the constant section x 7→ (x, [1 :
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1]) on every trivializing open subset of C. This implies that the transition maps
of S are the identity matrices i.e. S is trivial.

Lemma I.2.11. Let P(V ) be a P1-bundle over a curve C, and σ be a section
of P(V ) given locally by:

σi : Ui → Ui × P1

x 7→ (x, [ui(x) : vi(x)]).

For all i, we define Li = {(x, (λui(x), λvi(x))) ∈ Ui × A2, λ ∈ k} ≃ Ui × A1

and the line subbundle π : L(σ) → C of V such that π−1(Ui) = Li. Then the
following hold:

(1) The map σ 7→ L(σ) is a bijection between the set of sections of P(V ) and
the set of line subbundles of V over C.

(2) Two sections σ1 and σ2 are disjoint if and only if P(V ) is C-isomorphic
to P(L(σ1)⊕ L(σ2)).

Proof. (1) If L is a line subbundle of V , we have for all i an embedding
L|Ui

↪→ V|Ui
which induces by projectivisation an embedding σi : Ui → Ui ×P1.

Since the family (L|Ui
)i glues into L, the morphisms (σi)i glue into a section σ

of P(V ). This construction is the inverse of the map σ 7→ L(σ).
(2) Let σ1 and σ2 be disjoint sections of P(V ). From Lemma I.2.10 (2), we

can assume that σ1 is the infinity section and σ2 is the zero section, and the
transition maps of P(V ) are:

Uij → PGL2(OC(Uij))

x 7→
[
aij(x) 0

0 bij(x)

]
.

The coefficients aij and bij don’t vanish on Uij , and we can choose x 7→ aij(x)
as the transition maps of L(σ1) and x 7→ bij(x) as the transition maps of L(σ2),
i.e. P(V ) ≃ P(L(σ1)⊕L(σ2)). Conversely if we have P(V ) ≃ P(L(σ1)⊕L(σ2)),
one can choose a trivializing open cover so that the transition maps are given
by diagonal matrices. Under this choice, the section σ1 is the zero section and
σ2 is the infinity section, thus they are disjoint.

I.2.3 Segre invariant

In this subsection we recall the Segre invariant and its properties. This invari-
ant has already been used by Maruyama in his classification of ruled surfaces
[Mar70]. One can also check that the Segre invariant corresponds to −e, where
e is the invariant defined in [Har77, V. Proposition 2.8]. If c and c′ are curves
in a smooth projective surface S, we denote by c · c′ their intersection number
and if c = c′, we denote it by c2.
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Definition I.2.12. Let S → C be a ruled surface. The Segre invariant S(S)
of S is defined as the quantity:

min{σ2, σ section of S}.

A minimal section of S is a section σ of S such that σ2 = S(S).

The Segre invariant is well-defined since all ruled surfaces are obtained from
C × P1 by finitely many elementary transformations (see e.g. [Har77, Exercise
V.5.5]) and S(C × P1) = 0 (see Lemma I.2.14).

Definition I.2.13. A line subbundle M of a rank-2 vector bundle V is maximal
if its degree is maximal among all line subbundles of V .

One can use Riemann-Roch theorem to show that the degree of line subbun-
dles is bounded above, but it follows also from Proposition I.2.15 and the fact
that the Segre invariant is well-defined.

In explicit computations, we will often use that the group of divisors up to
numerical equivalence of a ruled surface S is generated by the class of a section
σ and a fibre f , and they satisfy f2 = 0 and σ · f = 1 (see [Har77, Proposition
V.2.3]). The next lemma is partially contained in [Har77, Exercise V.2.4].

Lemma I.2.14. Let C be a curve of genus g and σ be a section of C × P1
defined as C

σ→ C × P1, x 7→ (x, gσ(x)) where gσ : C → P1 is a morphism.
Then:

σ2 = 2deg(gσ),

and in particular, each section of C × P1 has an even and non negative self-
intersection number. In particular, S(C × P1) = 0. Moreover, if g > 0 then
there is no section of self-intersection 2, and if g = 1 then there exist sections
of self-intersection 4.

Proof. Let σ be a section of C × P1, and write σ = (x 7→ (x, gσ(x))) where
gσ : C → P1 is a morphism. The section σ is numerically equivalent to aσc+ bf ,
where σc and f respectively denote the numerical class of a constant section
and of a fibre, and a, b ∈ Z ([Har77, Proposition V.2.3]). Intersecting σ with f
and with σc, one finds respectively that a = 1 and b = σc · σ. Since all constant
sections are linearly equivalent, and for a general constant section the quantity
σc · σ corresponds to deg(gσ), we get that σ ≡ σc + deg(gσ)f . Consequently,
we have σ2 = 2deg(gσ) ≥ 0. Because constant sections have self-intersection
0, it follows that S(C × P1) = 0. If moreover g > 0 then there does not exist
a morphism C → P1 of degree 1 and it implies that there is no section of self-
intersection 2 in C × P1. But if g = 1 then there exist morphisms C → P1 of
degree 2, hence there exist sections of self-intersection 4 in C × P1.

In [Mar70, Lemma 1.15] has been stated Corollary I.2.16 which provides an
alternative way to compute the Segre invariant of a ruled surface. However, it
is a consequence of the more general and useful statement given in Proposition
I.2.15, which also follows from Maruyama’s proof. We give a simple proof of
Proposition I.2.15 based on a direct computation in local charts.
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Proposition I.2.15. Let π : P(V ) → C be a P1-bundle and σ be a section.
Then the following equality holds:

σ2 = deg(V )− 2 deg(L(σ)),

where deg(V ) is the degree of the determinant line bundle of V and L(σ) is the
line subbundle associated to σ (see Lemma I.2.11).

Proof. From Lemma I.2.10 (1), we can assume that σ is the infinity section and
the transition maps of P(V ) are upper triangular matrices. Let (U0, g0) be a
trivializing open subset of V , and let σ0 and f0 be defined as below:

σ0 : U0 −→ U0 × P1 f0 : U0 × P1 99K k

x 7−→ (x, [0 : 1]), (x, [u : v]) 7−→ u

v
.

The morphism σ0 extends to a section defined over C which is disjoint from σ
on U0, and f0 extends to a rational function f over P(V ). We have:

div(f) = σ0 − σ +
∑

z∈C\U0

νπ−1(z)(f) · π−1(z),

where νπ−1(z) denotes the valuation along the fiber π−1(z). In consequence:

σ2 = σ · σ0 +
∑

z∈C\U0

νπ−1(z)(f). (I.1)

The subset C \ U0 has finitely many points and for each z ∈ C \ U0, we can
choose a trivializing open neighborhood (Uz, gz) of z and we denote by τ0z the
transition map defining g0g

−1
z :

τ0z : U0z → PGL2(OC(U0z))

x 7→
[
a0z(x) c0z(x)

0 b0z(x)

]
.

The coordinates of the section σ0 above U0z ⊂ Uz are solutions of the equation
τ0z(x) · [u(x) : v(x)] = [0 : 1], i.e. gzg

−1
0 σ0(x) = (x, [−c0z(x) : a0z(x)]). The

rational map x 7→ [−c0z(x) : a0z(x)] extends to Uz and if we denote by νz
the valuation in OC,z, then the two sections σ and σ0 intersect above z if and
only if νz(c0z) < νz(a0z). When they intersect, the intersection number equals
νz(a0z) − νz(c0z): this quantity is independent of the choice of the trivializing
open subset Uz and of the choice of a0z, b0z, c0z. This implies that:

σ · σ0 =
∑

z∈C\U0

max(νz(a0z)− νz(c0z), 0). (I.2)

Moreover, we have f|Uz
(x, [u : v]) = f0 (x, τ0z(x) · [u : v]) = a0z(x)u+c0z(x)v

b0z(x)v
since

the following diagram is commutative:

U0z × P1 U0z × P1

k.

g0g
−1
z

f|Uz f0
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Let r = min(νz(a0z), νz(c0z)) and s = νz(b0z). If t is a generator of the maximal

ideal mC,z ⊂ OC,z then there exist ã0z, b̃0z, c̃0z ∈ OC(U0z) with b̃0z ∈ O∗
C,z and

ã0z or c̃0z in O∗
C,z, such that a0z = trã0z, c0z = tr c̃0z and b0z(x) = tsb̃0z. We

obtain:

νπ−1(z)(f) = νπ−1(z)

(
a0z(x)u+ c0z(x)v

b0z(x)v

)
= (r−s)+νπ−1(z)

(
ã0z(x)u+ c̃0z(x)v

b̃0z(x)v

)
,

and νp

(
ã0z(x)u+c̃0z(x)v

b̃0z(x)v

)
= 0 for a general point p ∈ π−1(z). Therefore:

νπ−1(z)(f) = r − s = min(νz(a0z), νz(c0z))− νz(b0z), (I.3)

which is also independent of the choice of the trivializing open Uz and of the
choice of a0z, b0z, c0z. Then by substituting (I.2) and (I.3) in (I.1), we get:

σ2 =
∑

z∈C\U0

νz(a0z)− νz(b0z).

Since σ is the infinity section, the line subbundle L(σ) of V is defined by
{(x, (λ, 0)) ∈ U ×A2, λ ∈ k} on every trivializing open subset U . Hence we can
choose the transition map of L(σ) on U0z as x 7→ a0z(x) and the transition map
of V/L(σ) on U0z as x 7→ b0z(x). Let a : C → L(σ) ⊂ V and b : C → V/L(σ) be
the rational sections defined by:

a : U0 → L(σ)|U0
b : U0 → (V/L(σ))|U0

x 7→ (x, 1), x 7→ (x, 1).

Up to a multiple, we have that a−1
0z and b−1

0z are respectively the coordinates of
the sections a and b on Uz. Finally we have that σ2 =

∑
z∈C νz(b) − νz(a) =

deg (V/L(σ))−deg(L(σ)). Using the additivity of the degree on the short exact
sequence 0 → L(σ) → V → V/L(σ) → 0, we deduce that

σ2 = deg(V )− 2 deg(L(σ)).

Propositions I.2.11 (1) and I.2.15 imply that σ is a minimal section of P(V )
if and only if L(σ) is a maximal line subbundle of V . In particular, we have the
following corollary that can also be found in [Har77, Proposition V.2.9]:

Corollary I.2.16. Let S = P(V ) be a P1-bundle over a curve C and M be a
maximal line subbundle of V . Then the following equality holds:

S(S) = deg(V )− 2 deg(M),

where deg(V ) is the degree of the determinant line bundle of V .
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The main use of the Segre invariant is given in Proposition I.2.18, which is
partially stated in [Mar70, Corollary 1.17] without proof, and partially proven
in [Har77, Theorem V.2.12].

Lemma I.2.17. Let S be a P1-bundle over a curve C. Two sections of S having
the same self-intersection number are numerically equivalent.

Proof. Let σ1 and σ2 be sections of S having the same self-intersection number.
Let Num(S) be the group of divisor classes up to numerical equivalence. Then
Num(S)⊗ZQ is generated by KS and a fiber f (see [Har77, Proposition V.2.3]),
and from the arithmetic genus formula:

1

2
(KS + σ1) · σ1 + 1 = g(C) =

1

2
(KS + σ2) · σ2 + 1,

it implies that KS · σ1 = KS · σ2. In particular, the sections σ1 and σ2 are
numerically equivalent.

Proposition I.2.18. Let S = P(V ) be a P1-bundle over a curve C. The fol-
lowing assertions hold:

(1) if S(S) > 0 then S is indecomposable.

(2) if S(S) < 0 then S admits a unique minimal section.

(3) if S(S) = 0 then:

(i) any two distinct minimal sections of S are disjoint,

(ii) S is indecomposable if and only if S has a unique minimal section,

(iii) S is decomposable and not trivial if and only if S has exactly two
minimal sections,

(iv) S is trivial if and only if S has at least three minimal sections.

Proof. (1) Assume that V ≃ L1⊕L2 is decomposable and let M be a max-
imal line subbundle of V . Then deg(V ) = deg(L1) + deg(L2) ≤ 2 deg(M) and
from Corollary I.2.16: S(S) = deg(V )−2 deg(M) > 0 which is a contradiction.

(2) We assume that S admits two distinct minimal sections σ1 and σ2. From
Lemma I.2.17, the sections σ1 and σ2 are numerically equivalent and therefore
S(S) = σ2 · σ1 ≥ 0 and it is a contradiction.

(3) We assume S(S) = 0:

(i) Let σ1 and σ2 be distinct minimal sections. Since they are numerically
equivalent from Lemma I.2.17: 0 = S(S) = σ2

1 = σ1 · σ2 i.e. σ1 and σ2 are
disjoint sections.

(ii) Assume by contraposition that S has two minimal sections: since they
are disjoint from (i), it implies that S is decomposable. To prove the converse we
assume by contraposition that S is decomposable, i.e. C-isomorphic to P(L(σ1)⊕
L(σ2)) for some sections σ1 and σ2, and then we have 0 = S(S) = deg(L(σ1))+
deg(L(σ2)) − 2 deg(M). This implies that L(σ1) and L(σ2) are maximal line
subbundles i.e. σ1 and σ2 are disjoint minimal sections of S. By Lemma I.2.11,
S is decomposable.
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(iii) If S is decomposable then S admits at least two minimal sections from
(ii). Assume that S has three distinct minimal sections then they are pairwise
disjoints from (i) and it implies that S is trivial from Lemma I.2.10 (3). So
if S is decomposable and non trivial then S has exactly two minimal sections.
Conversely, assume that S has exactly two minimal sections σ1 and σ2: it follows
again from (i) and Lemma I.2.11 (2) that S is C-isomorphic to P(L(σ1)⊕L(σ2))
which is decomposable. Since the trivial bundle has infinitely many minimal
sections, S cannot be the trivial bundle.

(iv) It follows from the equivalences of (ii) and (iii).

I.2.4 Construction of some ruled surfaces via elementary
transformations

Let C be a curve and z1, z2 ∈ C. We denote by Sz1,z2 the ruled surface
P(OC(z1) ⊕ OC(z2)). If C is an elliptic curve, we denote by A0 and A1 the
Atiyah P1-bundles defined in Theorem I.2.19. The classification of vector bun-
dles over an elliptic curve given in [Ati57] is much more general than the state-
ment we need for ruled surfaces, and the reader can also find it in [Har77,
Example V.2.11.6 and Theorem V.2.15]:

Theorem I.2.19. [Ati57, Theorems 5, 6, 7, 10 and 11] Let C be an elliptic
curve and p ∈ C. There exist two indecomposable vector bundles F0 and F1 of
rank 2 and respectively of degree 0 and 1, which fit into the exact sequences:

0 → OC → F0 → OC → 0,

0 → OC → F1 → OC(p) → 0.

Moreover, the isomorphism class of P(F1) does not depend on the choice of p,
and the Atiyah P1-bundles A0 := P(F0) and A1 := P(F1) are exactly the two
C-isomorphism classes of indecomposable P1-bundles over C.

A ruled surface S → C is birationally equivalent to C×P1. In this subsection,
we give explicitly birational maps C×P1 99K S when S is isomorphic to A0, A1

or Sz1,z2 for some z1, z2 ∈ C. We also deduce the Segre invariant of the Atiyah
P1-bundles and of Sz1,z2 for all z1, z2 ∈ C. Let S be a P1-bundle over a curve
C, let p ∈ S and fp the fiber containing p. We denote by βp : Blp(S) → S the
blowup of S at p and by Ep the exceptional divisor. The strict transform of fp
under the birational map β−1

p is a (−1)-curve and we denote by κp : Blp(S) →
T its contraction. The elementary transformation of S centered on p is the
birational map ϵp = κpβ

−1
p : S 99K T . If p1, p2 ∈ C ×P1 are distinct points such

that p1 and p2 are not on the same fiber, we denote by ϵp2,p1
the blowups of p1

and p2 followed by the contractions of their respective fibers.

Proposition I.2.20. Let C be an elliptic curve and π : C × P1 → C be the
projection on the first factor. Let p1, p2 ∈ C × P1, we denote by z1 = π(p1) and
z2 = π(p2). The following hold:

18



(1) The surface ϵp1(C×P1) is isomorphic to P(OC(z1)⊕OC) and S(P(OC(z1)⊕
OC)) = −1. Moreover, the base point q1 of ϵ−1

p1
is the unique point where

all the sections of self-intersection 1 meet.

(2) Assume moreover that p1 and p2 are not in the same fiber and not in
the same constant section. Then the surface ϵp2,p1

(C × P1) is isomorphic
to P(OC(z1) ⊕ OC(z2)) and it has exactly two disjoint sections of self-
intersection 0. We have S(P(OC(z1) ⊕ OC(z2))) = 0 and if q1, q2 are
the base points of ϵ−1

p2,p1
, then every section of self-intersection 2 passing

through q1 also passes through q2.

(1)

0

0

0
p1
•

C × P1

ϵp1 -1

1

1
q1
•

P(OC(z1)⊕OC)

(2)

0

0

p1
•

p2
•

C × P1

ϵp2,p1 0

0
q1
•

q2
•

P(OC(z1)⊕OC(z2))

Proof. (1) Up to a C-automorphism of C × P1 we can assume that p1 =
(z1, [1 : 0]) and let U1 be an open neighborhood of z1. Let f ∈ k(C)∗ which has
a zero of order 1 at z1, we can also assume that U1 does not contain any zeros
and poles of f except at z1. Let U0 = C \ z1, we define:

ϕ0 : U0 × P1 −→ U0 × P1 ϕ1 : U1 × P1 99K U1 × P1

(x, [u : v]) −→ (x, [u : v]) (x, [u : v]) −→ (x, [f(x)u : v]).

The domains of ϕ0, ϕ1 glue into C×P1 and the codomains glue into a P1-bundle
over C through the transition map:

U0 ∩ U1 → PGL2(OC(U0 ∩ U1))

x 7→
[
f(x) 0
0 1

]
.

So ϕ0 and ϕ1 glue onto a birational map ϕ : C×P1 99K P(OC(z1)⊕OC). Since ϕ
has p1 as unique base point of order 1, one can check by describing the blowups
in local charts that ϕ is the elementary transformation ϵp1 . Moreover, the strict
transform by ϵp1 of the infinity section is the unique section of self-intersection
number −1 and all the other sections in P(OC(z1)⊕OC) have self-intersection
number at least 1, so S(P(OC(z1)⊕OC)) = −1. Because C is an elliptic curve,
there is no section of self-intersection 2 in C × P1 from Lemma I.2.14 and the
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sections of self-intersection 1 in P(OC(z1)⊕OC) are exactly the strict transforms
by ϵp1 of the constant sections of C × P1, so they all pass through q1 and it is
their unique common intersection.

(2) Similarly we can assume p1 = (z1, [1 : 0]) and p2 = (z2, [0 : 1]). Let
U1 and U2 be open trivializing neighborhoods of z1 and z2. Let f, g ∈ k(C)∗

having a zero of order one respectively at z1 and at z2. We can assume that U1

does not contain z2 and any zeros or poles of f except z1, and similarly we can
assume that U2 does not contain z1 and any zeros or poles of g except z2. Let
U0 = C \ {z1, z2} then we take ϕ0 and ϕ1 as in (1) and we define:

ϕ2 : U2 × P1 99K U2 × P1

(x, [u : v]) 7−→ (x, [u : g(x)v]).

The maps ϕ0, ϕ1, ϕ2 glue into a birational map ϕ : C × P1 99K P(OC(z1) ⊕
OC(z2)). Since ϕ has exactly two base points p1 and p2 of order 1, one can check
by local equations of blowups that ϕ equals ϵp2,p1

. From Lemma I.2.14 there is
no section of self-intersection 2 in C×P1, so the strict transform by ϵp2,p1

of the
infinity section and of the zero section of C × P1 are the only sections of self-
intersection number 0 in P(OC(z1)⊕OC(z2)), and all the other sections have self-
intersection number at least 2. Therefore S(P(OC(z1)⊕OC(z2))) = 0. Finally,
a section σ of self-intersection 2 passing through q1 is the strict transform of a
constant section in C × P1 which also intersects the fiber of p2. Thus σ also
passes through q2.

Proposition I.2.21. Let C be an elliptic curve. Let p1 ∈ C × P1 such that
π(p1) = z1 and let ϵp1 : C × P1 99K P(OC(z1) ⊕ OC). We denote by q1 be the
unique base point of ϵ−1

p1
. Then the following hold:

(1) For all p2 ∈ P(OC(z1) ⊕ OC) in the same fiber as q1, such that p2 ̸= q1
and p2 does not belong to the unique (−1)-section of P(OC(z1)⊕OC), the
surface ϵp2ϵp1(C×P1) is C-isomorphic to A0. Moreover, A0 has a unique
section σ0 of self-intersection number 0 and all the other sections have
self-intersection number at least 2. In particular S(A0) = 0.

(2) For all p3 ∈ A0 \ σ0, the surface ϵp3
(A0) is C-isomorphic to A1 and

S(A1) = 1.
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-1

1

1
q1
•
p2•

P(OC(z1)⊕OC)

ϵp2

0

p3•
2

2

A0

p′3•

ϵp3

ϵp′
3

1

3

3

A1

1

3

3

Proof. We prove (1) and (2) simultaneously. Let p2 ∈ P(OC(z1)⊕OC) be as in
the statement of the proposition. Because P(OC(z1)⊕OC) has a unique (−1)-
section which does not contain p2 and all sections of self-intersection number
1 pass through q1, the strict transform under ϵp2 of the unique (−1)-section is
the unique section σ0 of self-intersection number 0 and all the other sections
have self-intersection at least 2. In particular, S(ϵp2

ϵp1
(C × P1)) = 0 and

ϵp2
ϵp1

(C × P1) is indecomposable from Proposition I.2.18 (3)(ii). Then for all
p3 ∈ ϵp2

ϵp1
(C × P1) \ σ0, we have S(ϵp3

ϵp2
ϵp1

(C × P1)) = 1 so ϵp3
ϵp2
ϵp1

(C ×
P1) is indecomposable from Proposition I.2.18 (1). At this stage, we know
that ϵp2ϵp1(C × P1) and ϵp3ϵp2ϵp1(C × P1) are the Atiyah P1-bundles defined in
Theorem I.2.19. Moreover, we know that A0 = P(F0) and the indecomposable
vector bundle F0 of rank 2 and degree 0 satisfies:

0 → OC → F0 → OC → 0.

From Corollary I.2.16, we have that S(A0) = deg(F0)−2 deg(M) = −2 deg(M)
where M is a maximal line subbundle of F0. Since OC is a line subbundle of
F0, it follows that deg(M) ≥ 0 and S(A0) ≤ 0. Therefore ϵp2

ϵp1
(C ×P1) ≃ A0

and ϵp3ϵp2ϵp1(C × P1) ≃ A1.

I.3 The classification

I.3.1 Infinite inclusion chains of automorphism groups

In this subsection, we prove Theorem A. Let S be a P1-bundle over a curve C
of genus g and AutC(S) be the subgroup of Aut(S) which induces the identity
on C. If g ≥ 2, it is known that Aut◦(C) is trivial (see e.g. [Har77, Exercise
IV.2.5]) and this implies that Aut◦(S) is a subgroup of AutC(S). When g = 1
and S(S) < 0, it is still true that Aut◦(S) is a subgroup of AutC(S) by the
following result:

Lemma I.3.1. [Mar71, Lemma 7] If S is a P1-bundle over an elliptic curve C
with S(S) < 0 then the image of Aut(S) → Aut(C) is a finite group.

21



In [Mar71, Theorem 2], the C-automorphism groups of ruled surfaces over
C are classified. We will not need the entire classification but we will use:

Lemma I.3.2. [Mar71, Theorem 2 (1) and case (b) p.92] Let S = P(V ) be a
P1-bundle over a curve C, let σ be a section of S and L(σ) be the line subbundle
of V associated to σ (see Lemma I.2.11). We choose trivializations of S such
that σ is the infinity section (Lemma I.2.10 (1)). The following holds true:

(1) If S(S) > 0, then AutC(S) is finite.

(2) If S(S) < 0 and γ ∈ Γ(C, det(V )−1⊗L(σ)2), then the local isomorphisms:

Ui × P1 → Ui × P1

(x, [u : v]) 7→
(
x,

[
1 γ|Ui

0 1

]
·
[
u
v

])
glue into a C-automorphism fγ of S.

Remark I.3.3. In the proof of Theorem A, we show that if S(S) < 0 is small
enough, then there exists a non-zero γ ∈ Γ(C,det(V )−1 ⊗ L(σ)2).

Remark I.3.4. The automorphism fγ plays a crucial role in the proof of The-
orem A, hence we recall Maruyama’s construction. First we write the transition
maps of S as sij : Uj × P1 99K Ui × P1, (x, [u : v]) 7→ (x, [aiju + cijv : bijv])
where aij are the transition maps of the line bundle L(σ). Then bij are the
transition maps of the line bundle det(V ) ⊗ L(σ)−1. The local isomorphisms
fγi : Ui × P1 → Ui × P1, (x, [u : v]) 7→ (x, [u+ γiv : v]), where γi ∈ OC(Ui), glue
into a C-automorphism of S if and only if sijfγj = fγisij , and a direct compu-

tation shows that it is equivalent to the condition aijb
−1
ij γj = γi. In particular,

(γi)i defines a section of the line bundle det(V )−1 ⊗ L(σ)2.

Proof of Theorem A. Assume first that g ≥ 2 and S(S) > 0, then it follows
from Lemma I.3.2 (1) that Aut◦(S) is trivial. If g ≥ 2 and S(S) = 0 then from
Lemma I.2.18 (3)(ii) and (iii), we know that S has at most two minimal sections
because S is not isomorphic to C × P1. Let p be a point on a minimal section,
then every automorphism of Aut◦(S) has to fix p because Aut◦(S) is connected
and Aut◦(C) is trivial. Therefore the elementary transformation ϵp : S 99K T is
Aut◦(S)-equivariant, i.e. ϵpAut◦(S)ϵ−1

p ⊂ Aut◦(T ), and we haveS(T ) = −1. So
when g ≥ 2, it suffices to prove the theorem when S(S) < 0. In the statement
of Theorem A, we suppose that g ≥ 2, or g = 1 and S(S) < 0. From now on
we assume that S(S) < 0 and g ≥ 1. Then from Lemma I.2.18 (2), the ruled
surface S has a unique minimal section σ and from Lemma I.3.1, the algebraic
group Aut◦(S) is a subgroup of AutC(S). So any point p0 of σ is fixed by the
action of Aut◦(S) and it implies that ϵp0

: S 99K S1 is Aut◦(S)-equivariant. By
induction, there exist P1-bundles Sn having a unique minimal section σn and
pn on σn such that ϵpn : Sn 99K Sn+1 is Aut◦(Sn)-equivariant. By denoting
ϕn = ϵpn−1 ...ϵp1ϵp0 , we get a sequence:

Aut◦(S) ⊆ ϕ−1
1 Aut◦(S1)ϕ1 ⊆ ... ⊆ ϕ−1

n Aut◦(Sn)ϕn ⊆ ...
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and it remains to prove that the obtained sequence is not stationary. Sup-
pose Sn+1 = P(Vn+1), we define Ln+1 = det(Vn+1)

−1 ⊗ L(σn+1)
2. Let qn be

the unique base point of ϵ−1
pn

and we can assume that qn = (z, [0 : 1]) over a
trivializing open subset. If n is large enough then deg(Ln+1) = −S(Sn+1) is
large enough, and it implies that h1(C,Ln+1) = h1(C,Ln+1 − z) = 0 by Serre
duality. From Riemann-Roch theorem: h0(C,Ln+1 − z) = deg(Ln+1) − g <
deg(Ln+1) − g + 1 = h0(C,Ln+1), and therefore z is not a base point of the
complete linear system |Ln+1|. Then there exists γ ∈ Γ(C,Ln+1) such that
γ(z) ̸= 0, i.e. fγ defines an automorphism of Sn+1 which does not fix qn. As
a consequence, the automorphism fγ defined in Lemma I.3.2 (2) does not be-
long to ϵnAut◦(Sn)ϵ

−1
n and ϵnAut◦(Sn)ϵ

−1
n ̸= Aut◦(Sn+1) when n is taken large

enough.

I.3.2 Maximal connected algebraic subgroups of Bir(C×P1)

In this subsection, we prove Theorem B. Let S be a ruled surface over a curve
C of genus g such that Aut◦(S) is a maximal connected algebraic subgroup of
Bir(C × P1). If g ≥ 2, then S is isomorphic to C × P1 by Theorem A. If g = 1,
then S(S) ≥ 0 by Theorem A. The following lemma determines the remaining
cases when g = 1:

Lemma I.3.5. Let S be a ruled surface over an elliptic curve C. If S(S) ≥ 0
then S is isomorphic to one of the following:

(1) C × P1,
(2) A0,

(3) A1,

(4) Sz1,z2 for some distinct points z1, z2 ∈ C.

Let z1, z2 ∈ C be distinct points, then the surfaces C × P1, A0, A1 and Sz1,z2

are pairwise non-isomorphic.

Proof. If S is indecomposable, it follows from Theorem I.2.19 that S is iso-
morphic to A0 or A1, and their Segre invariant is non-negative (Proposition
I.2.21). If S is decomposable and S(S) ≥ 0, it follows from Proposition I.2.18
that S(S) = 0 and S is C-isomorphic to P(L(σ1) ⊕ L(σ2)) where σ1 and σ2
are disjoint minimal sections. Tensoring L(σ1) ⊕ L(σ2) by a line bundle with
degree (−deg(L(σ1)) + 1), it follows that S is isomorphic to P(L1 ⊕L2) as P1-
bundle, and where L1 and L2 are line bundles of degree 1. Since C is an elliptic
curve, the line bundles L1 and L2 are respectively isomorphic to OC(z1) and
OC(z2) for some z1, z2 ∈ C. Indeed, a line bundle of degree 1 over C corre-
sponds to a divisor of degree 1 on C, and its complete linear system is a unique
point by Riemann-Roch formula. If z1 = z2 then S is isomorphic to C × P1,
otherwise S is isomorphic to Sz1,z2 . Finally, the Atiyah ruled surfaces are not
isomorphic to each other from Theorem I.2.19, and they cannot be isomorphic
to a decomposable P1-bundle. Since the surface Sz1,z2 has exactly two sections
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of self-intersection 0 from Proposition I.2.20 (2), it cannot be isomorphic to
C × P1.

If S is isomorphic to C × P1 with C an elliptic curve, then Aut◦(S) ≃
C × PGL2 is a maximal algebraic subgroup of Bir(C × P1). From Proposition
I.2.5, Lemma I.3.5 and Theorem A, we are left with studying the maximality of
Aut◦(S) when S is A0, A1 and Sz1,z2 for z1, z2 ∈ C.

Lemma I.3.6. Let C be a curve of genus g ≥ 1, let π : S → C and π′ : S′ → C
be ruled surfaces. Then an isomorphism from S to S′ induces an automorphism
of C. If S = S′, we have a morphism of group schemes:

π∗ : Aut(S) → Aut(C).

The restriction of π∗ to the connected components of identity coincides with the
morphism of algebraic groups Aut◦(S) → Aut◦(C) induced by Blanchard lemma
(see Lemma I.2.4).

Proof. If g : S → S′ is an isomorphism and f is a fiber in S, then π′g|f is a
morphism from f ≃ P1 to C. Hence it is constant and the image of f by g is a
fiber f ′ in S′. Then the isomorphism g induces a bijection of C. If S = S′, we get
a morphism π∗ : Aut(S) → Bij(C), where Bij(C) denotes the set of bijections
of C. Let σ be a section of π and g ∈ Aut(S). Then π∗(g) = πgσ, and in
particular π∗(g) is a morphism. Since g is an automorphism, it follows that
π∗(g) is also an automorphism and the image of π∗ is contained in Aut(C). The
restriction of π∗ induces a morphism of algebraic groups Aut◦(S) → Aut◦(C).
Then π is Aut◦(S)-equivariant, with Aut◦(S) acting on C by (g, x) 7→ π∗(g)(x).
In particular, π∗ coincides with the morphism induced by Blanchard lemma by
the unicity part of Lemma I.2.4.

The following proposition will be useful.

Proposition I.3.7. Let C be a curve and π : S → C be a P1-bundle. Then
Aut(S) is an algebraic group.

Proof. Since S is a ruled surface, the adjunction formula gives −KS · f = 2 for
all fibers f . In particular, −KS is π-ample and if A denotes an ample divisor
on C, then the divisor D = −KS +mπ∗(A) is ample for m positive and large
enough (see e.g. [Sta21, Lemma 0892 (1)], but it is also a consequence of Nakai
ampleness criterion). Moreover, the numerical class ofD is fixed by Aut(S) since
KS and π∗(A) are fixed. From [Bri19, Theorem 2.10], the group scheme Aut(S)
has finitely many connected components and thus it is an algebraic group.

We will use the following proposition to show that the automorphism groups
of the Atiyah ruled surfaces are maximal.

Proposition I.3.8. Let C be an elliptic curve and π : Ai → C be the struc-
ture morphism. For i ∈ {0, 1}, the morphism of algebraic groups induced by
Blanchard lemma (or by Lemma I.3.6):

π∗ : Aut◦(Ai) → Aut◦(C)
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is surjective.

Proof. Let g ∈ Aut(C). Then the pullback π∗ : g∗(Ai) → C is an indecom-
posable P1-bundle over C. Since the Atiyah bundles are unique up to C-
isomorphism from Theorem I.2.19, it follows that g∗(Ai) is C-isomorphic to
Ai, so the following diagram is commutative:

Ai g∗(Ai) Ai

C C.

∼

g̃

π π∗ π

g

In particular, there exists g̃ ∈ Aut(Ai) such that π∗(g̃) = g, i.e. the morphism

π∗ : Aut(Ai) → Aut(C) from Lemma I.3.6 is surjective. LetH = (π∗)
−1

(Aut◦(C)),
then we can write H =

⊔
j∈J Hj where Hj are the connected components of H

and J is finite from Proposition I.3.7. Because H contains Aut◦(Ai), we can
assume that H0 = Aut◦(Ai). Then π∗(H0) is a connected algebraic subgroup
of Aut◦(C) ≃ C and hence it has to be Aut◦(C) or a point. If π∗(H0) is a point
then π∗(Hj) is also a point because hj ·H0 = Hj for all hj ∈ Hj . Then π∗(H)
is finite and it is a contradiction because Aut◦(C) is infinite. In consequence
π∗(H0) = Aut◦(C) i.e. π∗ induces a surjective morphism of algebraic groups
Aut◦(Ai) → Aut◦(C).

We will use Proposition I.3.10 to show that for distinct points z1, z2 ∈ C,
the algebraic subgroup Aut◦(Sz1,z2) is maximal. To prove Proposition I.3.10,
we first prove the following lemma:

Lemma I.3.9. Let C be an elliptic curve and f ∈ k(C)∗ such that div(f) =
y1 + z1 − y2 − z2 with y1, y2, z1, z2 distinct points of C. We define:

ϕf : C × P1 99K C × P1

(x, [u : v]) 7−→ (x, [f(x)u : v]).

Then ϕf is the birational map consisting in the blowup of C × P1 at p1 =
(y1, [1 : 0]), q1 = (z1, [1 : 0]), p2 = (y2, [0 : 1]), q2 = (z2, [0 : 1]); followed by the
contraction of the strict transforms of their fibers.

Proof. First ϕf is birational because ϕ−1
f = ϕ1/f . The base points of ϕf are

exactly p1, q1, p2 and q2 and have all order 1, so one can check by blowups in
local charts that ϕf corresponds to the blowups at p1, p2, q1, q2 followed by the
contraction of the strict transforms of their fibers.

Proposition I.3.10. Let C be an elliptic curve, let z1, z2 ∈ C be distinct points
and t be a translation of C. Then Sz1,z2 is C-isomorphic to St(z1),t(z2) and
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moreover, the morphism of algebraic groups induced by Blanchard lemma (or by
Lemma I.3.6):

π∗ : Aut◦(Sz1,z2) → Aut◦(C)

is surjective.

Proof. As z1 − z2 is linearly equivalent to t(z1)− t(z2), there exists f ∈ k(C)∗

such that div(f) = z1+ t(z2)− t(z1)−z2. We define ϕf : C×P1 99K C×P1 as in
Lemma I.3.9, and we know that ϕf = κβ−1, where β is the blowup β : X → C×
P1 at p1 = (z1, [1 : 0]), q1 = (t(z1), [1 : 0]), p2 = (z2, [0 : 1]), q2 = (t(z2), [0 : 1])
and κ : X → C × P1 is the contraction of the strict transforms of their fibers.
Let Eq1 and Eq2 be the exceptional divisors from respectively the blowups of q1
and q2, and let f̃p1

and f̃p2
be strict transforms under β−1 of the fibers fp1

and
fp2 containing respectively p1 and p2. We denote by ξ : X → S the contraction

of Eq1 , Eq2 , f̃p1
and f̃p2

, i.e. ϵp1,p2
= ξβ−1. Denote by p̃1, p̃2, q̃1, q̃2 the base

points of ϕ−1
f , respectively from the elementary transformations centered at

p1, p2, q1, q2. Similarly, we have ϵq̃1,q̃2 = ξκ−1, and the following diagram is
commutative:

q1• p1•

q2
• p2
•

C × P1

ϵp1,p2

β

ϕf

X

ξ

κ

ϵq̃1,q̃2

q̃1
•̃
p1
•

q̃2•p̃2•

C × P1

•
• •

•
S

Therefore the surfaces S, Sz1,z2 and St(z1),t(z2) are C-isomorphic. It implies in
particular that every translation of C can be lifted to an automorphism of Sz1,z2 .
Therefore, we have a morphism of algebraic groups π∗ : Aut(Sz1,z2) → Aut(C)
such that Aut◦(C) is contained in the image of π∗. The proof ends in the

same way as the proof of Proposition I.3.8. Let H = (π∗)
−1

(Aut◦(C)), then we
can write H =

⊔
j∈J Hj where Hj are the connected components of H and J is

finite from Proposition I.3.7. The image of Aut◦(Sz1,z2) by π∗ cannot be a point
because it would imply that the image of H is finite and it is a contradiction,
therefore π∗(Aut◦(Sz1,z2)) = Aut◦(C).

Unlike the ruled surfaces A0 and A1 which are unique up to C-isomorphism,
the surfaces Sz1,z2 depend on the choice of the points z1, z2 ∈ C. In Lemma
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I.3.11, we determine the C-isomorphism classes in the family {Sz1,z2}z1,z2∈C . In
Lemma I.3.12, we determine the isomorphism classes in the family {Sz1,z2}z1,z2∈C

and the conjugacy classes in the family {Aut◦(Sz1,z2)}z1,z2∈C as algebraic sub-
groups of Bir(C × P1).

Lemma I.3.11. Let C be an elliptic curve and z1, z
′
1, z2, z

′
2 ∈ C such that

z1 ̸= z2 and z′1 ̸= z′2. Let π : Sz1,z2 → C and π′ : Sz′
1,z

′
2
→ C be the structure

morphisms. Let σ1 and σ2 be the two disjoint sections of self-intersection 0 in
Sz1,z2 ; and let σ′

1 and σ′
2 be the two disjoint sections of self-intersection 0 in

Sz′
1,z

′
2
. The following hold:

(1) Let q1 ∈ σ1. Then every section of Sz1,z2 of self-intersection 2 passing
through q1 also passes through the unique point q2 ∈ σ2 such that π(q2)−
π(q1) = z2 − z1.

(2) Let q1, q2 ∈ Sz1,z2 as in (1). If there exist q′1 ∈ σ′
1, q

′
2 ∈ σ′

2 such that
π′(q′2) − π′(q′1) = z2 − z1 and if there exists a section of Sz′

1,z
′
2
of self-

intersection 2 passing through q′1 and q′2, then Sz′
1,z

′
2
is C-isomorphic to

Sz1,z2 .

(3) The ruled surfaces Sz1,z2 and Sz′
1,z

′
2
are C-isomorphic if and only if there

exists a translation t ∈ Aut◦(C) such that t({z1, z2}) = {z′1, z′2}.

Proof. (1) Let p1 ∈ σ1, p2 ∈ σ2 such that π(p1) = z1 and π(p2) = z2. Let
q1 ∈ σ1, q2 ∈ σ2 and assume there exists a section σ of Sz1,z2 of self-intersection
2 passing through q1 and q2. The translation of C sending π(q1) to z1 lifts to
f ∈ Aut◦(Sz1,z2) (Proposition I.3.10), and since σ1 is Aut◦(Sz1,z2)-invariant, f
sends q1 to p1. Then the section f(σ) of self-intersection 2 passes through p1,
and hence it also passes through p2 from Proposition I.2.20 (2). Therefore, the
automorphism f sends q2 to p2 and π(q2) − π(q1) = z2 − z1. In particular, all
sections of self-intersection 2 passing through q1 also pass through q2.

(2) It follows from (1) that z′2 − z′1 = z2 − z1. Let t be the translation of
C by z′1 − z1. Then t(z1) = z′1 and t(z2) = z′2. From Proposition I.3.10, the
surfaces Sz1,z2 and Sz′

1,z
′
2
are C-isomorphic.

(3) Assume that Sz1,z2 is C-isomorphic to Sz′
1,z

′
2
. From Proposition I.3.10,

there exists f ∈ Aut◦(Sz′
1,z

′
2
) such that π∗(f) is the translation of C sending

z′1 to z1, and Sz′
1,z

′
2
is C-isomorphic to Sz1,z′′

2
where z′′2 = π∗(f)(z

′
2). From (1),

we have that z′′2 = z2 and this proves the direct implication. Let t ∈ Aut◦(C)
such that t({z1, z2}) = {z1, z2}. Without lost of generality, we can assume
that z′1 = t(z1) and z′2 = t(z2). Then Sz1,z2 is C-isomorphic to Sz′

1,z
′
2
from

Proposition I.3.10.

Lemma I.3.12. Let C be an elliptic curve. Denote by π1 : C × P1 → C the
projection on the first factor and let z1, z

′
1, z2, z

′
2 ∈ C such that z1 ̸= z2, z

′
1 ̸= z′2.

Let p1, p
′
1, p2, p

′
2 ∈ C × P1 with p1, p

′
1 on the zero section, p2, p

′
2 on the infinity

section and such that π1(p1) = z1, π1(p
′
1) = z′1, π1(p2) = z2, π1(p

′
2) = z′2. Then

the following assertions are equivalent:
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(1) There exists f ∈ Aut(C) such that f({z1, z2}) = {z′1, z′2}.
(2) The surfaces Sz1,z2 and Sz′

1,z
′
2
are isomorphic.

(3) The algebraic subgroups Aut◦(Sz1,z2) and Aut◦(Sz′
1,z

′
2
) are conjugate.

Proof. (1) ⇒ (2) Assume there exists f ∈ Aut(C) such that f({z1, z2}) =
{z′1, z′2} and π : Sz1,z2 → C is the structure morphism. Then the ruled surface
fπ : Sz1,z2 → C has 0 as Segre invariant and is decomposable, thus it has two
disjoint minimal sections σ1 and σ2. Let q1 ∈ σ1, q2 ∈ σ2 such that fπ(q1) = z′1
and fπ(q2) = z′2, then there is a section of self-intersection 2 passing through
q1 and q2. From Lemma I.3.11 (2), the ruled surfaces fπ : Sz1,z2 → C and
π′ : Sz′

1,z
′
2
→ C are C-isomorphic, and the following diagram is commutative:

Sz1,z2 Sz′
1,z

′
2

C C.

fπ

∼

π π′

f

Hence the surfaces Sz1,z2 and Sz′
1,z

′
2
are isomorphic.

(2) ⇒ (1) From Proposition I.3.10, there exists f ∈ Aut◦(Sz1,z2) such that
π∗(f) is the translation from z1 to z′1. We can then assume that z1 = z′1. From
Lemma I.3.6, an isomorphism from Sz1,z2 to Sz1,z′

2
induces an automorphism of

C. From Proposition I.2.20 (2), this automorphism of C sends z2 to z′2 and fixes
z1, i.e. is a group map with z1 taken as the neutral element of the elliptic curve.
Therefore, an isomorphism from Sz1,z2 to Sz′

1,z
′
2
induces an automorphism of C

sending z1 to z′1 and z2 to z′2.

(2) ⇒ (3) If ϕ : Sz1,z2 → Sz′
1,z

′
2
is an isomorphism then ϕAut◦(Sz1,z2)ϕ

−1 =
Aut◦(Sz′

1,z
′
2
).

(3) ⇒ (2) Let ϕ : Sz1,z2 → Sz′
1,z

′
2
be a birational map such that

ϕAut◦(Sz1,z2)ϕ
−1 = Aut◦(Sz′

1,z
′
2
). Because Aut◦(Sz1,z2) acts transitively on the

base curve C from Proposition I.3.10, the action of Aut◦(Sz1,z2) on Sz1,z2 has
no fixed points and it follows from Lemma I.2.6 (3) that ϕ is an isomorphism.

Proof of Theorem B. Let S be a ruled surface over C. If g(C) ≥ 2 or g(C) =
1 and S(S) < 0, Theorem A implies that every maximal connected algebraic
subgroup of Bir(S) is conjugate to Aut◦(C×P1) which is isomorphic to PGL2 if
g ≥ 2, and isomorphic to C×PGL2 is g = 1. Therefore, the algebraic subgroup
Aut◦(C×P1) is maximal from Lemma I.2.6 (3). We have proved in Lemma I.3.5
that it remains to consider the case g = 1 and show the maximality of Aut◦(S)
when S is isomorphic to A0, or A1, or Sz1,z2 for distinct points z1, z2 ∈ C.
Assume S is one of these surfaces, then from Propositions I.3.8 and I.3.10, there
is a surjective morphism of algebraic groups Aut◦(S) → Aut◦(C). Lemma I.2.6
(3) implies that Aut◦(S) is maximal. Moreover, for distinct points z1, z2 ∈ C,
the surfaces C × P1, A0, A1 and Sz1,z2 are not isomorphic to each other from
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Lemma I.3.5. Hence the algebraic groups Aut◦(C × P1), Aut◦(A0), Aut◦(A1)
and Aut◦(Sz1,z2) are not conjugate to each other from Lemma I.2.6 (3). Finally,
Lemma I.3.12 tells us that Aut◦(Sz1,z2) is conjugate to Aut◦(Sz′

1,z
′
2
) if and only

if there exists f ∈ Aut(C) such that f({z1, z2}) = {z′1, z′2}.

I.3.3 Description of the maximal connected algebraic sub-
groups of Bir(C × P1) as extensions

In this subsection, the curve C always denotes an elliptic curve and we prove
Theorem I.3.23.

The algebraic groups Aut◦(Sz1,z2)

Proposition I.3.13. Let C be an elliptic curve and z1, z2 be distinct points
in C. The group homomorphism π∗ of Lemma I.3.10 gives rise to an exact
sequence of algebraic groups:

1 → Gm → Aut◦(Sz1,z2)
π∗→ Aut◦(C) → 1.

Proof. From Proposition I.3.10, it suffices to prove that ker(π∗) ≃ Gm. Let
p1, p2 ∈ C × P1 respectively on the fibers of z1 and z2 such that p1 is on the
zero section and p2 is on the infinity section; and let ϵp1,p2

: C × P1 99K Sz1,z2

be the blowups of p1, p2 followed by the contractions of their fibers. We denote
respectively by q1 and q2 the base points of ϵ−1

p1,p2
which belong to the fibers of

z1 and z2. The automorphisms ϕα with α ̸= 0 defined by:

ϕα : C × P1 → C × P1

(x, [u : v]) 7→ (x, [αu : v]) ,

form a subgroup of Aut(C × P1) which we denote by Aut0,∞. Since p1 and
p2 are fixed by Aut0,∞, the birational map ϵp1,p2 is Aut0,∞-equivariant i.e.
Gm ⊂ ker(π∗). Conversely, let f ∈ Aut◦(Sz1,z2) be such that π∗(f) = id. Then
f fixes q1 and q2 because they belong to one of the two minimal sections. Hence
ϵ−1
p1,p2

fϵp1,p2
is a C-automorphism of C × P1 which fixes p1 and p2, so it equals

ϕα for some α ∈ Gm. Therefore ker(π∗) ≃ Gm.

The algebraic group Aut◦(A0)

Lemma I.3.14. Let C be an elliptic curve, π1 : C × P1 → C be the projection
on the first factor and σ∞ be the infinity section in C × P1. For all p, p′ ∈ σ∞,
there exists a section σ such that σ2 = 4, σ ∩ σ∞ = {p, p′} and they intersect
transversely at p and p′. Suppose σ is such a section, then a section σ′ satisfies
the same properties if and only if there exist α ∈ Gm and γ ∈ Ga such that σ′

is the image of σ by the automorphism:

ϕα,γ : C × P1 → C × P1

(x, [u : v]) 7→ (x, [αu+ γv : v]) .

Moreover ϕα,γ is the unique C-automorphism of C × P1 which sends σ to σ′.
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Proof. Let z = π1(p), z
′ = π1(p

′) and D = z+z′. From Riemann-Roch theorem
and Serre duality, we have dim(Γ(C,D)) = 2. Because 1 ∈ Γ(C,D), there is
a section σ ∈ Γ(C,D) with exactly two poles of order 1 at z and z′, i.e. σ
intersect transversely σ∞ at p and p′, and {1, σ} is a basis for Γ(C,D). Since
σ is given by a morphism gσ : C → P1, we know from Lemma I.2.14 that
σ2 = 2deg(gσ) = 4. Let ϕα,γ be an automorphism of C × P1 defined as in
the statement, then the section ϕα,γ(σ) intersects transversely σ∞ at exactly p
and p′, and ϕα,γ(σ)

2 = 4. Conversely if σ′ is a section which satisfies the same
properties, then σ′ ∈ Γ(C,D). In particular if σ : x 7→ (x, [u(x) : v(x)]), then
there exist α, γ ∈ k such that σ′(x) = (x, [αu(x) + γv(x) : v(x)]) = ϕα,γ (σ(x)).
Finally, the C-automorphisms of C×P1 fixing the infinity section are of the form
ϕα,γ for some α ∈ Gm and γ ∈ Ga, and the image of σ uniquely determines α
and γ. Therefore ϕα,γ is the unique C-automorphism of C × P1 sending σ to
σ′.

The group of all automorphisms ϕα,γ is denoted Aut∞ and it is isomorphic
to Ga ⋊Gm. In particular, Aut∞ is connected.

Lemma I.3.15. Let C be an elliptic curve, σ∞ be the infinity section in C×P1
and βp : Blp(C × P1) → C × P1 be the blowup of p = (z, [1 : 0]). Let σ̃∞ and f̃p
be the strict transforms under β−1

p of respectively σ∞ and the fiber fp containing
p in C × P1. Then β−1

p is Aut∞-equivariant and β−1
p Aut∞βp induces a simply

transitive action of Gm on Ep \ {σ̃∞, f̃p}. More precisely, the following hold for
all b ∈ σ̃∞ \ Ep:

(1) There exists e ∈ Ep \ {f̃p, σ̃∞} and a section σ ⊂ Blp(C × P1) of self-
intersection 3 passing through b and e.

(2) For all e′ ∈ Ep \ {f̃p, σ̃∞} there exists a unique α ∈ Gm such that the
sections of self-intersection 3 and passing through b and e′ are the image
of σ by the automorphism β−1

p ϕα,γβp for some γ ∈ Ga.

0

0

σ∞

fp

p•c•
4

4

C × P1

βp σ̃∞
b•

Ep

f̃p

0

0

3
3

Blp(C × P1)

e•
e′•

Proof. (1) Let c = βp(b) and from Lemma I.3.14, there exists a section s
of self-intersection 4 passing with multiplicity 1 through c and p. Then σ be
the strict transform of s under β−1

p , it is a section of self-intersection 3 passing

through b and some point e ∈ Ep \ {f̃p, σ̃∞}.
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(2) Let U be an open neighborhood of z and V = U× (P1 \ [0 : 1]) ⊂ C×P1.
For all α ∈ Gm and γ ∈ Ga, the automorphisms ϕα,γ restricted on V gives
an isomorphism V → ϕα,γ(V ), (x, t) 7→ (x, t/(α+ γt)); which extends to an

isomorphism ϕ̃α,γ = β−1
p ϕα,γβp defined on BlpV = {(x, t), [u : v] ∈ V × P1 :

tu = vf(x)}, with f a local parameter of OC,z, as:

ϕ̃α,γ : BlpV → Blp(ϕα,γ(V ))

((x, t), [u : v]) 7→
((

x,
t

α+ γt

)
, [u(α+ γt) : v]

)
.

In particular, the restriction of ϕ̃α,γ on Ep is obtained by substituting (x, t) by
(z, 0) and we get:

Ep → Ep

[u : v] 7→ [uα : v].

The automorphisms ϕα,γ induce an action of Gm on the exceptional divisor Ep,
with only fixed points [0 : 1] and [1 : 0] which correspond to the intersection of Ep

with f̃p and σ̃∞. So Gm acts simply transitively on Ep \{f̃p, σ̃∞}. In particular

if σ′ is a section of self-intersection 3 passing through e′ ∈ Ep \ {f̃p, σ̃∞} and b,
then there exists a unique α ∈ Gm and there exists γ ∈ Ga such that σ′ is the
image of σ by ϕ̃α,γ .

Lemma I.3.16. Under the same notations as in Lemma I.3.15, let p1 ∈ Ep \
{f̃p, σ̃∞}, βp1

: Blp1
(Blp(C × P1)) → Blp(C × P1) be the blowup of Blp(C × P1)

at p1 and β = βp1
βp. Let Ep1

be the exceptional divisor of βp1
, let Êp and σ̂∞

be the strict transforms under β−1
p1

of respectively Ep and σ̃∞. Then we have a

simply transitive action of Ga on Ep1 \Êp and more precisely for all d ∈ σ̂∞\Êp:

(1) There exists e ∈ Ep1 \ Êp and a unique section σ of self-intersection 2
passing through d and e.

(2) For all e′ ∈ Ep1 \ Êp, there exists a unique γ ∈ Ga such that β−1ϕ1,γβ(σ)
is the unique section of self-intersection 2 passing through d and e′.

σ̃∞
b•

p1•

Epf̃p

3

3

Blp(C × P1)

βp1
σ̂∞

Êp

Ep1

d•

2 2

Blp1
(Blp(C × P1))

Proof. (1) Let b = βp1(d) and from Lemma I.3.15 (1), there exists a section
s of self-intersection 3 passing through b and p1. Then the strict transform σ
of s under β−1

p1
is a section of self-intersection 2 passing through d and a point

e ∈ Ep1
\ Êp.

31



(2) From Lemma I.3.15, we know Gm acts transitively on Ep \ {f̃p, σ̃∞} so
we can assume p1 has coordinates ((z, 0), [1 : 1]) in Blp(V ). We choose an open
subset W of Blp(V ) = {(x, t), [u : v] ∈ V × P1 : tu = vf(x)} containing p1 and
such that u ̸= 0. By the change of variable v 7→ v/u, we have t = vf(x) and the
isomorphism ϕ̃1,γ restricted on W gives:

W → ϕ̃1,γ(W )

((x, vf(x)), [1 : v]) 7→
((

x,
vf(x)

1 + γvf(x)

)
,

[
1 :

v

1 + γvf(x)

])
. (I.4)

Since W is isomorphic to an open subset of A2 by the map

(x, v) 7→ ((x, (v + 1)f(x)), [1 : v + 1])

which sends (z, 0) to p1, we can rewrite (I.4) as:

(x, v) 7→
(
x,

v + 1

1 + γf(x)(v + 1)
− 1

)
,

which sends (z, 0) to (z, 0). The isomorphism ϕ̃1,γ extends to Bl(z,0)(W ) by:

((x, v), [u1 : u2]) 7−→
((

x,
v − γf(x)(v + 1)

1 + γf(x)(v + 1)

)
,

[
u1 :

u2 − u1γ(v + 1)

1 + γf(x)(v + 1)

])
,

and restricted on E(z,0) one gets: [u1 : u2] 7→ [u1 : u2 − u1γ]. In particular Ga

acts on the exceptional divisor E(z,0) and the action has a unique fixed point

[0 : 1] which is the intersection of Ep1
with Êp. Therefore the action of Ga on

Ep1 \Êp is simply transitive. As a consequence, if e′ ∈ Ep1 \Êp then there exists
a unique γ ∈ Ga such that β−1ϕ1,γβ(σ) is the unique section of self-intersection
2 passing through d and e′.

Lemma I.3.17. Let C be an elliptic curve and σ0 be the unique minimal section
of A0. For all a ∈ σ0, b ∈ A0 \ σ0 with a and b not in the same fiber, there
exists a unique section σ passing through a and b such that σ2 = 2. Moreover
the subgroup {ϕ1,γ}γ∈Ga of Aut∞ induces a simply transitive action of Ga on
f \ σ0, where f is any fiber of A0.

Proof. Let q = σ0(π(b)) and ϵq : A0 99K P(OC(π(q)) ⊕ OC) be an elementary
transformation centered on a. From Proposition I.2.20 (1), there is a unique
point q1 ∈ P(OC(π(q)) ⊕ OC) where all the sections of self-intersection 1 meet
and we have ϵq1 : P(OC(π(q))⊕OC) 99K C × P1. Let ψ = ϵq1ϵq, then p = ψ(b)
belongs to the same constant section as c = ψ(a). Up to an automorphism of
C×P1 we can assume that c and p lie on the infinity section and apply Lemmas
I.3.15 and I.3.16. Then using the notation of Lemma I.3.16, the contraction
Blp1(Blp(C × P1)) → A0 of Êp and of the strict transform f̂p of fp is Ga-
equivariant, so there exists a unique section σ of self-intersection 2 passing
through a and b. Moreover for all b′ ∈ fq \σ0, it also follows from Lemma I.3.16
that there exists a unique γ ∈ Ga such that ψ−1ϕ1,γψ(σ) is the unique section
of self-intersection 2 passing through a and b′.
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Proposition I.3.18. Let C be an elliptic curve. Then AutC(A0) is isomorphic
to Ga and the following sequence of algebraic groups is exact:

1 → Ga → Aut◦(A0) → Aut◦(C) → 1.

Proof. From Lemma I.3.17, we know that Ga is one-to-one to a subgroup of
AutC(A0). Conversely, let a ∈ σ0, b ∈ A0 \ σ0 with a and b not in the same
fiber. Then an automorphism f ∈ AutC(A0) sends a section of self-intersection
2 passing through a and b to a section of self-intersection 2 passing through a
and a point b′ in the same fiber as b. Let ψ, p, and c be as defined in the proof
of Lemma I.3.17, then the automorphism ψ−1fψ sends a section in C × P1 of
self-intersection 4 passing through p and c to another section of self-intersection
4 passing through p and c. From Lemma I.3.14, it follows that ψ−1fψ = ϕ1,γ
for some γ and therefore AutC(A0) is isomorphic to Ga. Since Ga is connected,
we get the exact sequence given in the statement.

The algebraic group Aut◦(A1) when char(k) ̸= 2

In this paragraph we assume that the characteristic of k is different than
2. Let ∆ = {1, d1, d2, d3} be the subgroup of two torsion points of C which
is isomorphic to (Z/2Z)2. Then ∆ acts on C by translation and on P1 in the
following way:

1 : [u : v] 7→ [u : v],

d1 : [u : v] 7→ [−u : v],

d2 : [u : v] 7→ [v : u],

d3 : [u : v] 7→ [−v : u].

We denote by E the quotient (C × P1)/∆ given by the diagonal action:

∆× (C × P1) → C × P1

(di, (x, [u : v])) 7→ (di + x, di · [u : v]).

Lemma I.3.19. Let ∆ be a finite group acting on a irreducible variety X. Then
k(X)∆ is isomorphic to k(X/∆).

Proof. Since G is finite, we can find an affine ∆-invariant open subset U ⊂
X. Because OX(U)∆ ⊂ OX(U), we have an extension Frac(OX(U)∆) →
Frac(OX(U))∆. Let f/g ∈ Frac(OX(U))∆, write ∆ = {d0, d1, ..., dn} where d0
is the neutral element and consider g′ =

∏n
i=1 di ·g. Then f/g = (fg′)/(gg′) and

gg′ are ∆-invariant, hence fg′ as well. Thus Frac(OX(U)∆) ≃ Frac(OX(U))∆,
i.e. k(X/∆) is isomorphic to k(X)∆ by definition of the quotient.

Lemma I.3.20. Let C be an elliptic curve. Then the following hold:
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(1) The surface E is a P1-bundle over C/∆ with the following structure mor-
phism:

π : E −→ C/∆

(x, [u : v]) mod ∆ 7−→ x mod ∆.

(2) If q : C → C/∆ is the quotient map for the action of ∆ on C by transla-
tions of order 2, then the pullback bundle q∗(E) is C-isomorphic to C×P1.

Proof. (1) First one can check that π is well-defined. Let d : C × P1 → E
be the quotient map for the diagonal action of ∆ on C × P1, then the following
diagram is commutative:

C × P1 E

C C/∆.

d

π1 π

i

Every fiber of π corresponds to the gluing of 4 disjoint fibers of C×P1 → C/∆.
Since every fiber of π is isomorphic to P1, it follows that π : E → C/∆ is a ruled
surface.

(2) Since the diagram in (1) is commutative, there exists α : C×P1 → i∗(E)
such that the following diagram is commutative:

C × P1

q∗(E) E

C C/∆.

α

d

π1

p2

p1 π

q

From Lemma I.3.19, we have that k(E) ≃ k(C×P1)∆ and hence ∆ is the Galois
group of the extension d∗ : k(E) → k(C×P1) (see e.g. [Jac85, Theorem 4.7]). In
particular, [k(C×P1) : k(E)] = #∆ = 4. Since p2 is 4-to-1, it follows that α∗ is
a k-isomorphism i.e. α is a birational morphism. Because α is also bijective, it
follows from Zariski’s main theorem (see e.g. [Gro67, Corollary 18.12.13]) that
α is an isomorphism.

Lemma I.3.21. The ruled surface E is isomorphic to A0 or A1 (see Theorem
I.2.19).
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Proof. Let q : C → C/∆ and assuming that E admits two disjoint sections σ1
and σ2, we will derive a contradiction. For k ∈ {1, 2}, the pullback sections
q∗σk defined as:

C → q∗(E)
x→ (x, σk(x mod ∆))

induce two disjoint sections α−1(q∗σk) of C×P1 since C×P1 is C-isomorphic to
q∗(E) by Lemma I.3.20 (2). Then it implies that α−1(q∗σ1) and α

−1(q∗σ2) are
constant sections. Then for k ∈ {1, 2}, there exists a constant [u : v] ∈ P1 such
that α−1(q∗σk) is defined as C → C × P1, x 7→ (x, [u : v]). This implies that σk
is given by C/∆ → E , x mod ∆ 7→ (x, [u : v]) mod ∆, which is not well-defined.
Therefore, constant sections of C×P1 are not obtained by pulling back sections
of π. Thus, there are no disjoint sections of π and E is an indecomposable P1-
bundle over C/∆. Finally ∆ is the kernel of the multiplication by 2 in C, hence
C is isomorphic to C/∆, so E is isomorphic to A0 or A1.

Proposition I.3.22. The following sequence is exact:

0 → ∆ → Aut◦(E) → Aut◦(C/∆) → 0.

In particular, the ruled surface E is C-isomorphic to A1.

Proof. First we have an injective morphism of algebraic groups j : Aut◦(C) →
Aut◦(E), t 7→ ((x, [u : v]) mod ∆ 7→ (t(x), [u : v]) mod ∆) such that the follow-
ing diagram commutes:

Aut◦(C) Aut◦(E)

Aut◦(C/∆).

j

π∗

In particular the morphism π∗ : Aut◦(E) → Aut◦(C/∆) is also surjective. Let
i : C → C/∆ then ker(π∗) is a subgroup of Aut(i∗(E)) by the embedding f 7→
(id, f). Moreover i∗(E) is isomorphic to C × P1 from Lemma I.3.20 (2) and
the automorphism (id, f) of Aut◦(i∗(E)) corresponds to a C-automorphism of
C × P1, i.e. of the form (id,M) where M ∈ PGL2. For such an automorphism
to be compatible with the ∆-action, it has to send an orbit to an orbit for the
action of ∆ and a direct computation shows thatM belongs to one the following
matrices: [

1 0
0 1

]
,

[
−1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −1
1 0

]
;

and conversely they all define automorphisms of E . It follows that ker(π∗) is
isomorphic to ∆ and we get the exact sequence in the statement. Since Aut◦(E)
is a 1-dimensional algebraic variety and E is an Atiyah bundle (Lemma I.3.21),
and we know from Proposition I.3.18 that Aut◦(A0) is 2-dimensional algebraic
group, it follows from Theorem I.2.19 that E is C-isomorphic to A1.
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Description of the maximal automorphism groups

We have proven the following result, which also follows from [Mar71, Theorem
3].

Theorem I.3.23. Let C be an elliptic curve. Then for all distinct points
z1, z2 ∈ C, we have the following exact sequences of algebraic groups:

0 −→ Gm −→ Aut◦(Sz1,z2) −→ C −→ 0,

0 −→ Ga −→ Aut◦(A0) −→ C −→ 0,

Moreover, the surfaces Aut◦(Sz1,z2) and Aut◦(A0) are commutative algebraic
groups and Aut◦(A0) is not isomorphic to a semidirect product Ga ⋊ Aut◦(C).
Finally, if the characteristic of k is different than 2 and if ∆ ≃ (Z/2Z)2 denotes
the subgroup of 2-torsion points of C, then the following sequence of algebraic
groups is exact:

0 −→ ∆ −→ Aut◦(A1) −→ C −→ 0.

Proof. The three exact sequences in the statement are proven in Propositions
I.3.13, I.3.18, I.3.22. Moreover, the algebraic groups Aut◦(A0) and Aut◦(Sz1,z2)
are commutative from [Ros56, Corollary 2 p. 433]. Because there is no non-
trivial morphism from C to Aut(Ga) ≃ k∗ (or because Aut◦(A0) is commuta-
tive), the algebraic group Aut◦(A0) is not isomorphic to Ga ⋊Aut◦(C).

Remark I.3.24.

(1) From [Ser84, VII.16, Theorem 6] (see also [BSU13, Example 1.1.2]), the
extensions of C by Gm are classified by C itself. Let z1, z2 ∈ C be distinct
points and G be the Gm-bundle defined as the complement of the zero section
in OC(z1 − z2). Then we have a morphism π : G → C with kernel Gm, i.e. an
exact sequence:

0 → Gm → G
π→ C → 0.

Let S be the quotient of (G × P1) by Gm, given by the following action of
Gm on G × P1: t · (g, [u : v]) 7→ (g · t−1, [g · u, v]). Then this gives a morphism
S → G/Gm ≃ C which endows S with a structure of P1-bundle over C. One can
check by computing in local charts that S → C is C-isomorphic to Sz1,z2 → C,
hence the extension 0 → Gm → Aut◦(Sz1,z2) → C → 0 corresponds to the point
z1 − z2 ∈ C.

(2) From [Ser84, VII. 17, Theorem 7] (see also [BSU13, Example 1.1.2]), the
extensions of C by Ga are classified by H1(C,OC) ≃ k. Since the extension
0 → Ga → Aut◦(A0) → C → 0 does not split, it corresponds to a non zero
element of k.

(3) Serre shows in [Ser84, VII. 15, Theorem 5] that the algebraic groups
Aut◦(A0) and Aut◦(Sz1,z2) are respectively endowed with a canonical structure
of Ga-principal bundle and Gm-principal bundle over C. From [Mar71, Theorem
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3.(3)], the connected algebraic group Aut◦(A0) is isomorphic to A0 \ σ0, where
σ0 is the unique minimal section of A0. From [Mar71, Theorem 3.(2)], the
connected algebraic group Aut◦(Sz1,z2) is isomorphic to Sz1,z2 \ {σ1, σ2}, where
σ1, σ2 are the two minimal sections of Sz1,z2 . A natural problem is to describe
geometrically their group laws, and a formula has been computed explicitly for
the group law of A0 \ σ0 when k = C in [LMP09, § 3.3 p.251].

I.3.4 Proof of Theorems C and D

Proposition I.3.25. † Let X be a surface and G = Aut◦(X). If X is not
birationally equivalent to C×P1, for some curve C, then G is an abelian variety
and exactly one of the following cases holds:

(1) G is an abelian surface and G ≃ X.

(2) G is isomorphic to an elliptic curve and moreover, there exist a not nec-
essarily reduced curve Y which is connected, a finite subgroup scheme F
of G and a G-equivariant isomorphism:

X ≃ (G× Y )/F.

The quotient (G × Y )/F is given by a diagonal action of F on G × Y ,
f · (g, y) 7→ (g · f−1, f · y).

(3) G is trivial.

In case (2), if the characteristic of k is zero then F is reduced and Y is smooth.

Proof. From Chevalley’s structure theorem (see e.g. [BSU13, Theorem 1.1.1]),
there exists an exact sequence 0 → L → G → A → 0 where L is a linear
algebraic group and A is an abelian variety. If L is not trivial, it contains a
Ga or a Gm and this implies that X is birationally equivalent to C × P1 for
some curve C (this follows from [Ros56, Theorems 2 and 10], see also [BFT21b,
Proposition 2.5.1]). Thus L is trivial, i.e. G is isomorphic to A.

First suppose that G has an open orbit O in X which is isomorphic to
G/Stab(x) for some x ∈ O. Since G is commutative and acts faithfully on O, it
follows that Stab(x) is trivial and hence O ≃ G. Because O is also the image of
the projective morphism G → X, g 7→ g · x, then O is closed in X. Therefore,
we have G ≃ O = X and G is an abelian surface acting on itself by translation.

Otherwise suppose that G has an orbit O of dimension 1 and then for all
x ∈ O, the subgroup Stab(x) is finite (see [BSU13, Proposition 2.2.1]). Therefore
G is an elliptic curve. From [BSU13, Theorem 2.2.2 and the paragraph following
the theorem], there exist a positive integer n and a G-equivariant isomorphism
h: X → (G× Ỹ )/Gn, where Gn denotes the finite subgroup scheme of n-torsion
points of G and Ỹ is a closed subscheme of X of dimension 1. The projection
to the first factor G × Ỹ → G induces a morphism g : (G × Ỹ )/Gn → G/Gn

which is G-equivariant. The Stein factorization of f = gh gives morphisms

†The idea of the proof is due to Michel Brion.
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u : X → Z and v : Z → G/Gn, such that u has connected fibers, v is finite
and f = vu. From Blanchard lemma, there exists an action of G on Z such
that u is G-equivariant. Since u is also surjective and f is G-equivariant, it
follows that v is G-equivariant. Moreover, Z is a curve because v is finite,
hence it is an orbit of the G-action and the stabilizer F of a point is finite.
Therefore Z ≃ G/F and u : X → Z ≃ G/F is a G-equivariant morphism.
From [Bri17, Section 2.5, paragraph following Lemma 2.10] (see also [BSU13,
Paragraph following Example 6.1.2]), X is isomorphic to the F -torsor (G×Y )/F
where Y = u−1(F/F ) is connected and the quotient is given by the diagonal
action f · (g, y) 7→ (g ·f−1, f ·y) for all g ∈ G, f ∈ F, y ∈ Y . Since X is a surface,
it implies that Y is a not necessarily reduced curve in positive characteristic.
In characteristic zero, Gn is reduced because the multiplication by n is an étale
endomorphism of G, and it follows that the finite subgroup scheme F of Gn is
also reduced. Hence G×Y → (G×Y )/F ≃ X is an étale finite morphism from
[Mum08, Theorem in Section 2.7, p.63]. Because X is smooth, it follows that
Y is also smooth.

Finally if the orbits of G have dimension 0 then G is trivial.

Proof of Theorem C. Let C be a curve of genus g ≥ 1. From Theorem A, not
every connected algebraic subgroup of Bir(C × P1) is contained in a maximal
one. If X is rational, then every connected algebraic subgroup of Bir(X) is
contained in Aut◦(P2) or some Aut◦(Fn) for n ̸= 1. If X is not a ruled surface
and is not rational, then Proposition I.3.25 implies that Aut◦(X) is contained
in a maximal connected algebraic subgroup of Bir(X).

Proposition I.3.26. Let X be a surface over k and G be a maximal connected
algebraic subgroup of Bir(X). If X is birationally equivalent to C × P1 with C
a curve of genus g, then G is conjugate to one of the following:

(1) Aut(P2) or Aut◦(Fn) with n ̸= 1, if g = 0.

(2) Aut◦(C×P1), or Aut◦(A0), or Aut◦(A1), or Aut◦(Sz1,z2) for some z1, z2 ∈
C, if g = 1.

(3) Aut◦(C × P1), if g ≥ 2.

If X is not birationally equivalent to C × P1 then up to conjugation we have
G = Aut◦(X) and one of the following holds:

(4) G is isomorphic to X, which is an abelian surface.

(5) G is isomorphic to an elliptic curve and moreover, there exist a not nec-
essarily reduced curve Y which is connected, a finite subgroup scheme F
and a G-equivariant isomorphism:

X ≃ (G× Y )/F.

The quotient (G × Y )/F is given by a diagonal action of F on G × Y ,
f · (g, y) 7→ (g · f−1, f · y).

(6) G is trivial.
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In case (5), if the characteristic of k is zero then F is reduced and Y is smooth.

Proof. Let X be a surface and G = Aut◦(X) a maximal algebraic subgroup of
Bir(X). From Proposition I.2.5, G is conjugate to Aut◦(S) with S a minimal
surface birationally equivalent to X.

IfX is birationally equivalent to C×P1 with C a curve, it follows that S is P2
or a ruled surface over C from [Har77, Examples V.5.8.2, V.5.8.3 and Remark
V.5.8.4]. If X is rational then G is conjugate to Aut◦(P2) ≃ PGL3 which is
maximal from Lemma I.2.6 (3), or to Aut◦(Fn) for some integer n ̸= 1. From
[Bla09b, §4.2] there exists a surjective group homomorphism Aut◦(Fn) → PGL2,
and hence Aut◦(Fn) is also maximal from Lemma I.2.6 (3). If X is not rational,
the statement follows from Theorem B.

Otherwise X is not birationally equivalent to C × P1 and the statement
follows from Proposition I.3.25.

Proof of Theorem D. Assume that k is a field of characteristic 0, the first
two columns of the table are given by the classification of algebraic surfaces.
For the last column, the case κ(X) = −∞ follows from Proposition I.3.26 and
Theorem A.

Assume that X is a surface isomorphic to (C × Y )/F , where C is a ellip-
tic curve, Y is a smooth curve and F is a finite subgroup of Aut◦(C) acting
diagonally on C × Y (in particular, F acts on C by translations). First notice
that we have a morphism X → C/F with all fibres isomorphic to Y , because
the pullback of X → C/F by the quotient morphism C → C/F is C × Y .
Moreover, the curve C/F is an elliptic curve because F is a finite subgroup of
Aut◦(C). If Y ≃ P1, then X is a ruled surface over C/F . If Y is an elliptic
curve, it follows that X is a quotient of an abelian surface by a finite group.
If Y/F ≃ P1, then X is a bielliptic surface [Bea96, Definition VI.19]. Else F
acts on Y only by translations, then F is an abelian subgroup of (C × Y ) and
X is again an abelian surface. If Y is a smooth curve of general type, then
κ(X) ≥ κ(Y ) + κ(C/F ) = 1 [Fuj20, Theorem 6.1.1]. Because Aut◦(C) acts on
X on the left factor, it is an algebraic subgroup of Aut◦(X) and X cannot be a
surface of general type. Thus κ(X) = 1.

We denote by E the set of all surfaces of the form (C × Y )/F , where C is
a elliptic curve, Y is a smooth curve of general type and F is a finite group
of Aut◦(C) acting diagonally on C × Y . We have shown that E is included
in the set of surfaces of Kodaira dimension 1. Let X ′ be a surface of Kodaira
dimension 1 which is not in E, then Aut◦(X ′) is trivial by Proposition I.3.26
(6). If the minimal model X of X ′ is an element of E, then Aut◦(X) is not
trivial and this implies that Aut◦(X ′) is not maximal. If X is not an element
of E, then Aut◦(X ′) is maximal.

If X is an abelian surface, then Aut◦(X) ≃ X is maximal. If X ′ is not
an abelian surface but is birationally equivalent to an abelian surface X, then
Aut◦(X ′) is trivial by Proposition I.3.26 (6) (since we have also shown that
X ′ does not correspond to a surface given by Proposition I.3.26 (5)). Thus
Aut◦(X ′) is trivial and is not maximal.
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Let X = (C × Y )/F be a bielliptic surface, with C, Y elliptic curves, and F
a finite group acting on C as a group of translations and acting also on Y not
only by translations. Then Aut◦(X) ≃ C [BM90, section 3] is maximal. Else
assume that X ′ is not a bielliptic surface but is birational to a bielliptic surface
X, then Aut◦(X ′) is trivial by Proposition I.3.26 (6) and is conjugated to the
trivial subgroup of Aut◦(X). Thus Aut◦(X ′) is not maximal.

From Proposition I.3.26 (6), if X is an Enriques surface, or a K3 surface,
or a surface of general type, then Aut◦(X) is trivial. Moreover, it is maximal
since Aut◦(X ′) is also trivial for any representative X ′ of the birational class of
X.

Remark I.3.27. Let X be a surface and G be a maximal connected algebraic
subgroup of Bir(X).

(1) In positive characteristic, Proposition I.3.26 (1), (2), (3), (4), (6) still
provides pairs (X,Aut◦(X)) where Aut◦(X) is maximal.

(2) In Proposition I.3.26 (5), we show that there exists a finite subgroup
scheme F ⊂ G and a connected curve Y which is not necessarily reduced, such
that X is isomorphic to (G× Y )/F and G ≃ Aut◦(X). To extend Theorem D
in positive characteristic, it remains to determine which curves Y are possible.
Recently, Brion shows that Y is G-normal [Bri22a, Definition 4.1, Proposition
5.6].
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Algebraic subgroups of the group of birational
transformations of ruled surfaces

II.1 Introduction

In this article, all varieties are defined over an algebraically closed field k, alge-
braic groups are smooth group schemes of finite type (or equivalently, reduced
group schemes of finite type), and C denotes a smooth projective curve of genus
g. The main results, namely Theorem E and Corollary F, hold when the char-
acteristic of k is different than two. When X is a projective variety, the auto-
morphism group of X is the group of k-rational points of a group scheme (see
[MO67]), and we only consider its reduced structure.

The study of algebraic subgroups of the group of birational transformations
has started with [Enr93], where the author has classified the maximal connected
algebraic subgroups of Bir(P2). More recently, the maximal algebraic subgroups
of Bir(P2) have been classified [Bla09b]. The purpose of this text is to study
the algebraic subgroups of Bir(C × P1) when g ≥ 1, which will complete the
classification for surfaces of Kodaira dimension −∞.

Let G be an algebraic subgroup of Bir(C × P1). The strategy is classi-
cal: first regularize the action of G, find a G-equivariant completion and run
a G-equivariant minimal model program to embed G in the automorphism
group of a G-minimal fibration. The equivariant completion from Sumihiro
[Sum74, Sum75] works for linear algebraic groups, therefore his results cannot
be applied in our setting. Recently, Brion proved the existence of an equivariant
completion for connected algebraic groups (not necessarily linear) acting bira-
tionally on integral varieties [Bri17, Corollary 3]. Using his results, we find an
equivariant completion for algebraic groups (not necessarily linear or connected)
acting on surfaces (see Proposition II.2.5). Then we reprove the G-equivariant
MMP (Proposition II.2.6), which is a folklore result (see e.g. [KM98, Exam-
ple 2.18]), by using only elementary arguments. We are left with studying the
automorphism groups of conic bundles. Following the ideas of [Bla09b], we
prove Propositions II.2.17 and II.3.11 which reduce the study to the cases of
ruled surfaces, exceptional conic bundles and (Z/2Z)2-conic bundles (see II.2.1
for definitions). The Segre invariant S(X) of a ruled surface X (see Defini-
tion II.2.9) has been introduced in [Mar70] and [Mar71] for the classification
of ruled surfaces and their automorphisms. The ruled surfaces A0 and A1 in
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Theorem E (4) and (5) are the only indecomposable P1-bundles over C up to
C-isomorphism, when C is an elliptic curve (see Definition II.2.8 and [Ati57,
Theorem 11], or [Har77, Theorem V.2.15]). Combining techniques from Blanc
and results of Maruyama, we prove the following theorem:

Theorem E. Let k be an algebraically closed field of characteristic different
than two, and let C be a smooth projective curve of genus g ≥ 1. The following
algebraic subgroups of Bir(C × P1) are maximal:

(1) Aut(C × P1) ≃ Aut(C)× PGL(2,k).

(2) Aut(X), where X is an exceptional conic bundle over C, which is the
blowup of a decomposable ruled surface π : P(OC(D) ⊕ OC) → C along
F = {p1, p2, · · · , p2 deg(D)} lying in two disjoint sections s1 and s2 of π,
and such that −2D is linearly equivalent to∑

p∈s1∩F

π(p)−
∑

p∈s2∩F

π(p).

Then Aut(X) fits into an exact sequence

1 → Gm ⋊ Z/2Z→ Aut(X) → H,

where H is the finite subgroup of Aut(C) preserving the image of the sin-
gular fibres.

(3) Aut(X), where X is a (Z/2Z)2-conic bundle with at least one singular
fibre. Then Aut(X) fits into an exact sequence

1 → (Z/2Z)2 → Aut(X) → H,

where H is the finite subgroup of Aut(C) preserving the image of the sin-
gular fibres.

(4) Aut(X) where X is a (Z/2Z)2-ruled surface (in consequence, S(X) > 0).
Then Aut(X) fits into an exact sequence

1 → (Z/2Z)2 → Aut(X) → Aut(C).

Moreover, if g = 1, there exists an unique (Z/2Z)2-ruled surface over C
denoted A1, which satisfies S(A1) = 1 and Aut(A1) fits into an exact
sequence

1 → (Z/2Z)2 → Aut(A1) → Aut(C) → 1.

(5) Aut(A0), where A0 is the unique indecomposable ruled surface over C with
Segre invariant zero when g = 1. Then there exists an exact sequence

1 → Ga → Aut(A0) → Aut(C) → 1.
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(6) Aut(X), where X ≃ P(OC(D) ⊕OC) is a non trivial decomposable ruled
surface over C with deg(D) = 0 (or equivalently, S(X) = 0), with the
additional assumption that 2D is principal if g ≥ 2. Then Aut(X) fits
into an exact sequence

1 → G→ Aut(X) → Aut(C),

where G = Gm ⋊ Z/2Z if 2D is principal, else G = Gm.

Moreover, any maximal algebraic subgroup of Bir(C × P1) is conjugate to one
in the list above.

By Corollary II.3.7, there exist exceptional conic bundles X → C, where C is
a curve of positive genus, such that Aut(X) is not a maximal algebraic subgroup
of Bir(C × P1). This does not happen when the base curve is rational: the
automorphism group of an exceptional conic bundle over P1 is always maximal
(if the number of singular fibres is at least four, see [Bla09b, Theorem 1. (2)],
else the number of singular fibres equals two and the result follows from [Bla09b,
Theorem 2. (3)]). Moreover, the cases (4), (5) and (6) of Theorem E do not
exist when the base curve is rational: the Segre invariant of a ruled surface
π : S → P1 is always non-positive (see [HM82] and Proposition I.2.18 (1)), and
equals zero if and only if π is trivial.

From the classification of Blanc, it follows that every algebraic subgroup
of Bir(P2) is conjugate to a subgroup of a maximal one. This does not hold
anymore for algebraic subgroups of Bir(C × P1) when C has positive genus.
The following corollary is an analogue of Theorem C for surfaces of Kodaira
dimension −∞.

Corollary F. Let k be an algebraically closed field of characteristic different
than two and let X be a surface of Kodaira dimension −∞. Then, every al-
gebraic subgroup of Bir(X) is contained in a maximal one if and only if X is
rational.

Acknowledgments. The author is thankful to Jérémy Blanc, Michel Brion,
Ronan Terpereau and Sokratis Zikas for helpful discussions and comments. The
author is also grateful to the anonymous referees for their careful reading and
interesting remarks.

Conventions. Unless otherwise stated, all varieties are smooth and projective,
and C is a smooth projective curve.

II.2 Preliminaries

II.2.1 Regularization and relative minimal fibrations

Definition II.2.1. Let C be a curve.

(1) A ruled surface over C is a morphism π : S → C such that each fibre is
isomorphic to P1.
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(2) A conic bundle over C is a morphism κ : X → C such that all fibres are
isomorphic to P1, except finitely many (possibly zero) which are called
singular fibres and are transverse unions of two (−1)-curves.

(3) A conic bundle κ : X → C is an exceptional conic bundle over C if there
exists n ≥ 1 such that κ has exactly 2n singular fibres and two sections of
self-intersection −n.

(4) If κ : X → C is a conic bundle, we denote by BirC(X) the subgroup of
Bir(X) which consists of the elements f ∈ Bir(X) such that κf = κ. We
also define AutC(X) = Aut(X) ∩ BirC(X).

(5) A conic bundle κ : X → C is a (Z/2Z)2-conic bundle over C if AutC(X) ≃
(Z/2Z)2 and each non trivial involution in this group fixes pointwise an
irreducible curve, which is a 2-to-1 cover of C ramified above an even
positive number of points.

(6) A (Z/2Z)2-ruled surface over C is a ruled surface over C which is also a
(Z/2Z)2-conic bundle over C.

Remark II.2.2. Assume that C has positive genus and let π : X → C be a
conic bundle. Let f be a smooth fibre of π and α ∈ Aut(X). Since (πα)|f : f ≃
P1 → C is constant, it follows that α(f) is also a smooth fibre of π. The set
of singular fibres is preserved by Aut(X) and π induces a morphism of group
schemes π∗ : Aut(X) → Aut(C). This implies that every automorphism of X
preserves the conic bundle structure.

Definition II.2.3. Let X be a surface and G be an algebraic subgroup of
Aut(X).

(1) A birational map ϕ : X 99K Y is G-equivariant if ϕGϕ−1 ⊂ Aut(Y ).

(2) The pair (G,X) is minimal if every G-equivariant birational morphism
X → X ′, where X ′ is a surface, is an isomorphism.

The classical approach to study algebraic subgroups uses the regularization
theorem of Weil [Wei55] (see also [Zai95] or [Kra18] for modern proofs). By
[Bri22b, Theorem 1], the regularization of X contains a G-stable dense open
subset U which is smooth and quasi-projective. Then by [Bri22b, Theorem 2],
U admits a G-equivariant completion by a normal projective G-variety, that we
can assume smooth by a G-equivariant desingularization (see [Lip78]).

In the following lemma and proposition, we give an elementary proof of the
existence of an equivariant completion for surfaces equipped with the action of
an algebraic group G, not necessarily connected or linear, without using results
of [Bri22b].

Lemma II.2.4. Let X be a surface and G be an algebraic subgroup of Bir(X),
such that G◦ acts regularly on X. Denote by Bs(X) the set of base points of
the G-action, including the infinitely near ones. Then Bs(X) is finite and the
action of G lifts to a regular action on the blowup of X at Bs(X).
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Proof. The set G/G◦ is finite, we can write G = G0 ⊔ G1 ⊔ · · · ⊔ Gn where
G◦ = G0 and each Gi is a connected component of G. For each i, we fix gi ∈ Gi

and get that giG
◦ = Gi. Let Bs(gi) be the set of base points of gi, including the

infinitely near ones, which is finite because X is smooth and projective. The
subgroup G◦ ⊂ G is normal, it follows that every element g′i ∈ Gi equals ggi
for some g ∈ G◦. Since G◦ acts regularly, Bs(Gi) = Bs(gi) for each i, and this
implies that Bs(X) =

⋃
i=1···n Bs(gi) is also finite. Besides, for each g ∈ G◦,

there exists g̃ ∈ G◦ such that gig = g̃gi. Then g−1(Bs(gi)) = Bs(gi) and this
implies that G◦ acts trivially on Bs(X).

If Bs(X) is empty, the result holds. Suppose that Bs(X) ̸= ∅. Let p ∈
Bs(X) ∩X be a proper base point, η : Xp → X be the blowup of X at p. We
consider the action of G on Xp obtained by conjugation. As p is fixed by G◦,
the algebraic group G◦ still acts regularly on Xp. We prove that each element
q ∈ Bs(Xp) corresponds via η to an element of Bs(X). Let q ∈ Bs(Xp), there
exists a surface Y such that q ∈ Y , and a birational morphism π : Y → Xp such
that q is a base point of η−1giηπ. Let W be a smooth projective surface, with
birational morphisms α : W → Y and β : W → Xp such that βα−1 is a minimal
resolution of η−1giηπ. The following diagram is commutative:

W

q ∈ Y

Xp Xp

X X.

α

βπ

ηπ

η

η−1giη

η

gi

Since q is a base point of η−1giηπ, it must be blown up by α. There exists a
(−1)-curve C̃ inW contracted by α to q, and such that its image by β is a curve
C in Xp. If the image of C by η is a curve in X, then q is a base point of gi. Else

C is contracted by η, i.e. C is the exceptional divisor of η. As C2 = C̃2 = −1,
the morphism β is an isomorphism Ũ → U where Ũ ⊂ W , U ⊂ Xp are open

subsets containing C̃ and C. Let j be such that p is a proper base point of gj .
Let W ′ be a smooth projective surface with birational morphisms α′ : W ′ → Xp

and β′ : W ′ → X such that β′α′−1η−1 is a minimal resolution of gj . We obtain
the following commutative diagram:

W W ′

q ∈ Y

Xp Xp

X X X.

α

β
α′

β′
π

ηπ

η

η−1giη

η

gi gj
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There exists a (−1)-curve C ′ in W ′ contracted to p by ηα′, and such that its
image by β′ is a curve in X. The image of C ′ by α′ is C or a point of C. Since
β : Ũ → U is an isomorphism, this implies that β−1α′ : W ′ 99K W is defined
on a neighborhood of C ′ and sends C ′ on either C̃ or a point of C̃. Hence
αβ−1α′ : W ′ 99K Y contracts C ′ onto q, so q ∈ Bs(gjgi).

Let Bs(Xp) be the set of base points of η−1Gη, including the infinitely near
ones. We have shown that if q ∈ Bs(Xp) then q ∈ Bs(X). The map Bs(Xp) →
Bs(X) \ {p}, sending the infinitesimal base point (q, π) to (q, ηπ) is injective.
Conversely, if q ∈ Bs(gi) and q ̸= p, then η−1(q) ∈ Bs(η−1giη). Therefore
Bs(Xp) ≃ Bs(X) \ {p}. Proceeding by induction, the blowup of all elements of
Bs gives rise to a surface on which G acts regularly.

Proposition II.2.5. Let X be a surface and G be an algebraic subgroup of
Bir(X). Then there exists a smooth projective surface Y with a birational map
ψ : X 99K Y such that ψGψ−1 is an algebraic subgroup of Aut(Y ).

Proof. Apply [Bri17, Corollary 3] to X equipped with the action of the con-
nected component of the identity G◦ ⊂ G. There exists a normal projective
surface Z with a birational map ϕ : X 99K Z, such that ϕG◦ϕ−1 ⊂ Aut◦(Z). By
an equivariant desingularization, we can also assume that Z is smooth [Lip78].
Let H = ϕGϕ−1 and η : Y → Z be the blowup of Z at Bs(Z). By Lemma II.2.4,
the action of H lifts to a regular action on Y . Then η−1Hη ⊂ Aut(Y ) is a
closed subgroup which is an algebraic subgroup of Bir(Y ). Take ψ = η−1ϕ, we
get that ψGψ−1 is an algebraic subgroup of Aut(Y ).

The next result is also known, see e.g. [KM98, Example 2.18], we reprove it
in our specific situation using elementary arguments.

Proposition II.2.6. Let C be a curve of positive genus, and let X be a surface
birationally equivalent to C × P1. Let G be an algebraic subgroup of Aut(X). If
(G,X) is minimal (see Definition II.2.3), then X is a conic bundle over C.

Proof. Since X is birational to C × P1, there exists a morphism κ : X → C and
a birational map ϕ : C × P1 99K X such that κϕ = p1, where p1 : C × P1 → C
denotes the projection on the first factor. In particular, ϕ is a finite composite
of blowups and contractions, and there exists a non empty open U ⊂ C such
that ϕ|U×P1 is an isomorphism. Let p ∈ C \ U , it remains to see that κ−1(p) is
isomorphic to P1 or is the transverse union of two (−1)-curves. Since X is the
blowup of a ruled surface S in finitely many points (maybe infinitely close), we
can write κ−1(p) = E1 ∪ · · · . ∪ En where:

• Each Ei is isomorphic to P1.
• For all i, j distinct, Ei and Ej intersect transversely at a point or are

disjoint.

If n = 1, κ−1(p) is a smooth fibre isomorphic to P1. If n = 2, then E1 and E2

intersect transversely in one point. Because there is a contraction to the ruled
surface S, either E1 or E2 can be contracted. Therefore, E2

1 = E2
2 = −1.

46



Assume from now on that n ≥ 3. First, E2
i < 0 for all i. The contrac-

tion of any collection of disjoint (−1)-curves permuted transitively by G is G-
equivariant. Since (G,X) is minimal, there exist k, l ∈ {1, · · · , n} with k ̸= l
such that Ek and El are two (−1)-curves in the same G-orbit and Ek ∩El ̸= ∅.
The image of El by the contraction of Ek has self-intersection zero, and in par-
ticular it cannot be contracted. By assumption that n ≥ 3, we can contract
other (−1)-curves in κ−1(p), which increases the self-intersection. This contra-
dicts the existence of a contraction of X to the ruled surface S, where f2 = 0
for any fibre f . Therefore, we must have n ≤ 2.

The previous proposition motivates the study of automorphism groups of
conic bundles. The next lemma can be used as a criterion of maximality of
their automorphism groups.

Lemma II.2.7. Let C be a curve of positive genus. Let κ : X → C and
κ′ : X ′ → C be conic bundles. Let G be an algebraic group acting on X and
X ′ such that (G,X) and (G,X ′) are minimal, and let ϕ : X 99K X ′ be a G-
equivariant birational map which is not an isomorphism. Then ϕ = ϕn · · ·ϕ1
where each ϕj is the blowup of a finite G-orbit of a point, which is contained
in the complement of the singular fibres and does not contain two points on the
same smooth fibre, followed by the contractions of the strict transforms of the
fibres through the points of the G-orbit. In particular, κ and κ′ have the same
number of singular fibres.

Proof. Take a minimal resolution of ϕ, i.e. a surface Z with G-equivariant bi-
rational morphisms η : Z → X and η′ : Z → X ′ satisfying η′ = ϕη, and such
that there is no (−1)-curve contracted by η and η′. Let E1, · · · , Em ⊂ Z be

a G-orbit of (−1)-curves contracted by η′ and let pi = κη(Ei). Denote by Ẽi

the images of Ei by η, which are contained in the fibres κ−1(pi). Since (G,X)

is minimal, η must blowup a G-orbit of points Ω contained in Ẽ1 ∪ · · · ∪ Ẽm.
Hence, Ẽ2

i ≥ 0 for all i. In particular, Ẽ1 ∪ · · · ∪ Ẽm is not contained in the set

of singular fibres of κ and Ẽ2
i = 0 for each i.

Then, Ẽ1 ∪ · · · ∪ Ẽm is contained in the complement of the singular fibres.
As Ẽ2

i = 0 and E2
i = −1 for each i, no distinct points of Ω lie in the same

smooth fibre. Because (G,X ′) is minimal, we can contract the strict transforms
of the fibres, which yields a G-equivariant birational map ϕ1 : X 99K X1 such
that ϕ factorizes through ϕ1. By induction, we find G-equivariant birational
maps ϕj : Xj−1 99K Xj such that ϕ = ϕn · · ·ϕ1, where each ϕj is as we wanted.

Finally, applying elementary transformations in the complement of the set
of singular fibres does not change the number of singular fibres.

II.2.2 Generalities on ruled surfaces and their automor-
phisms

Definition II.2.8. A ruled surface π is decomposable if it admits two disjoint
sections. Else, π is indecomposable.
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The following notion has been already used in [Mar70, Mar71] and in Chapter
I.

Definition II.2.9. The Segre invariant S(S) of a ruled surface π : S → C is
the integer min{σ2, σ section of π}. A section σ of π such that σ2 = S(S) is
called a minimal section.

Lemma II.2.10. Let π : S → C be a decomposable ruled surface with S(S) = 0.
If two sections are disjoint then they are both minimal sections.

Proof. Let σ be a minimal section. Let Num(S) be the group of divisors of S,
up to numerical equivalence. Then Num(S) is generated by the classes of σ and
f , where σ is a minimal section and f is a fibre [Har77, Proposition V.2.3]. Let
s1 and s2 be disjoint sections. In particular, s1 ≡ σ + b1f and s2 ≡ σ + b2f for
some b1, b2 ∈ Z. Since we have s1 · σ ≥ 0 and s2 · σ ≥ 0, it follows that b1 ≥ 0
and b2 ≥ 0. Since s1 · s2 = 0, this implies that b1 = b2 = 0.

Lemma II.2.11. Let S → C be a ruled surface such that S(S) = −n < 0. The
following hold:

(1) there exists a unique section of negative self-intersection and all other
sections have self-intersection at least n,

(2) two sections are disjoint if and only if one is the (−n)-section and the
other has self-intersection n,

(3) there exists a section of self-intersection n if and only if S is decomposable.

Proof. (1) By assumption, there exists a section s−n of self-intersection
s2−n = −n < 0. Let s ̸= s−n be a section, then s is numerically equivalent to
s−n + bf for some integer b and 0 ≤ s · s−n = s2−n + b. Therefore b ≥ −s2−n = n
and it follows that s2 = s2−n + 2b ≥ n.

(2) Denote by s1, s2 two disjoint sections. Then s1 ≡ s−n + b1f and s2 ≡
s−n + b2f for some b1, b2 ∈ Z. We get that 0 = s1 · s2 = −n + b1 + b2. If s1
and s2 are both different from s−n, then b1 ≥ n and b2 ≥ n by (1), and this
contradicts the equality 0 = −n+ b1 + b2. Then we can assume that s1 = s−n

and b1 = 0. It follows that b2 = n and s22 = s2−n + 2n = n. Conversely, if s is a
section of self-intersection n then s ≡ s−n + nf and s−n · s = 0.

(3) Let s be a section such that s2 = n, then s ≡ s−n+nf and s·s−n = 0, i.e.
s and s−n are disjoint sections. In particular, S is decomposable. Conversely,
if S is decomposable, there exist two disjoints sections and one of them has
self-intersection n by (2).

Definition II.2.12. Let f ∈ BirC(C × P1) ≃ PGL(2,k(C)). The determinant
of f , denoted det(f), is the element of k(C)∗/(k(C)∗)2 defined as the class of
the determinant of a representative of f in GL(2,k(C)).
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A non trivial decomposable ruled surface S of Segre invariant zero admits
exactly two minimal sections. In [Mar71, Theorem 2, (3) and (4)], a necessary
and sufficient condition for such surfaces to have an automorphism permuting
two minimal sections is given. We provide below a revisited version of this
result, that we prove by computations in local charts:

Lemma II.2.13. Let C be a curve. Let π : S = P(OC(D) ⊕ OC) → C be a
decomposable P1-bundle and p1 : C × P1 → C be the trivial P1-bundle over C.
Then S(S) = 0 if and only if deg(D) = 0. Moreover, if S(S) = 0 and π is not
trivial then the following hold:

(1) π has exactly two minimal sections s1 and s2 of self-intersection 0.

(2) AutC(S) ≃ Gm ⋊ Z/2Z if 2D is principal. In this case, for each element
ι ∈ AutC(S) permuting s1 and s2, there exists a birational map ξ : S 99K

C × P1 such that π = p1ξ and ξιξ−1 =

[
0 β
1 0

]
, with β ∈ k(C)∗ and

div(β) = 2D. In particular, ι is not a square in BirC(S).

(3) AutC(S) ≃ Gm if D is 2-torsion.

Proof. We prove first that S(S) = 0 if and only if deg(D) = 0. Assume that
S(S) = 0. By [Mar70, Lemma 1.15] (see also Corollary I.2.16), we get 0 =
deg(OC(D) ⊕ OC) − 2 deg(M), where M is a line subbundle of OC(D) ⊕ OC

of maximal degree. By additivity of the degree, deg(D)− 2 deg(M) = 0. Since
deg(M) ≥ 0 and deg(M) is maximal, deg(D) = deg(M) = 0. Conversely, we
have that S(S) ≤ 0 by Proposition I.2.18 (1). Moreover, S admits two disjoint
sections corresponding to the line subbundles OC and OC(D) of OC ⊕OC(D),
and they both have self-intersection zero by Proposition I.2.15. The caseS(S) <
0 is ruled out by Lemma II.2.11 (1), and thus S(S) = 0.

We now assume that S(S) = 0 and that π is not trivial, and prove (1), (2),
(3). The proof of (1) can be found in [Mar71, Lemma 2. (2)], or Proposition
I.2.18 (3.iii). Then we prove (2) and (3). Let A be a very ample divisor on C.
For an integer m large enough, the divisor B = D +mA is also very ample. In
particular, we can find B′ ∼ B and A′ ∼ mA such that Supp(B′)∩Supp(D) = ∅
and Supp(A′) ∩ Supp(D) = ∅. Let E = A′ − B′, then D + E ∼ 0, and there
exists f ∈ k(C) such that div(f) = D+E and Supp(D)∩Supp(E) = ∅. Choose
U = C \ Supp(E) and V = C \ Supp(D) as trivializing open subsets of π, and
local trivializations of π such that s1 and s2 are respectively the zero and the
infinity sections. The transition map of S can be written as:

svu : U × P1 99K V × P1

x, [y0 : y1] 7−→ x, [f(x)y0 : y1].

By (1), an element of AutC(S) either fixes pointwise s1 and s2, or otherwise per-
mutes s1 and s2. If ϕ ∈ AutC(S) fixes s1 and s2, then it induces automorphisms
ϕu : U ×P1 → U ×P1, x, [y0 : y1] 7→ x, [αu(x)y0 : y1] and ϕv : V ×P1 → V ×P1,
x, [y0 : y1] 7→ x, [αv(x)y0 : y1] with αu ∈ OC(U)∗, αv ∈ OC(V )∗. The
condition ϕvsvu = svuϕu is equivalent to αu = αv = α ∈ Gm. We have
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shown that

{[
α 0
0 1

]
, α ∈ Gm

}
is the algebraic subgroup of AutC(S) fixing s1

and s2. If ι ∈ AutC(S) permutes s1 and s2, then ι induces automorphisms
ιu : U × P1 → U × P1, x, [y0 : y1] 7→ x, [βu(x)y1 : y0] and ιv : V × P1 → V × P1,
x, [y0 : y1] 7→ x, [βv(x)y1 : y0] with βu ∈ OC(U)∗, βv ∈ OC(V )∗. The condition
ιvsvu = svuιu is now equivalent to f2βu = βv. In particular, div(βv) = 2D
and 2D is a principal divisor. Conversely, if 2D is a principal divisor, there
exists β ∈ k(C)∗ such that div(β) = 2D. Choose βv = β and βu = f−2βv, the
automorphisms ιu, ιv glue back to a C-automorphism ι of S of order two which
permutes s1 and s2. Thus, AutC(S) ≃ Gm⋊Z/2Z if and only if 2D is principal,
and ιv induces the birational map ξ : S 99K C × P1 given in the statement.

Finally, assume ι is a square in Bir(S). Then ξιξ−1 is a square in Bir(C×P1)
and has determinant −β. Since π is not trivial by assumption, it follows that
D is not principal and div(β) = 2D, this implies that −β = det(ξιξ−1) is not a
square, which is a contradiction.

Every element of AutP1(Fn) fixes pointwise a section of Fn. This is not true
when we consider P1-bundles over a non-rational curve C, as we have seen in
Lemma II.2.13 (2). The following lemma shows that it is the only exception up
to conjugation:

Lemma II.2.14. Let C be a curve. Let π : S → C be a ruled surface, let
p1 : C×P1 → C be the trivial P1-bundle and f ∈ AutC(S). Then f satisfies one
of the following:

(1) f fixes pointwise a section of π,

(2) f does not fix any section of π, and there exists a birational map ξ : S 99K

C × P1 such that π = p1ξ and ξfξ−1 =

[
0 β
1 0

]
, with div(β) = 2D for

some divisor D which is not principal.

Moreover, if f satisfies (2) then f is not a square in BirC(S).

Proof. First we deal with the case S(S) ≤ 0. If S(S) < 0, or S(S) = 0 and
S is indecomposable, then S has a unique minimal section which is AutC(S)-
invariant (see Lemma II.2.11 (1) and [Mar71, Lemma 2. (1.ii)], or Proposition
I.2.18 (3.ii)). If S is trivial, then AutC(S) = PGL(2,k) and every element fixes
pointwise a section. In particular, f satisfies the condition (1). Else S(S) = 0,
S is decomposable and S is not trivial. Then S = P(OC(D) ⊕ OC) for some
divisor D of degree 0 and by Lemma II.2.13, AutC(S) ≃ Gm or Gm⋊Z/2Z. In
particular, the automorphism f fixes the two minimal sections of S and satisfies
(1), or permutes them and satisfies (2).

Assume S(S) > 0. Then S is indecomposable and AutC(S) is finite [Mar71,
Theorem 2 (1)]. Let s be a section of S. If f(s) = s, we are done. Else s and
f(s) intersect in finitely many points which are fixed by f . Blow up these points
and contract the strict transforms of their fibres, and repeat the process until
that the strict transforms of the sections are disjoint. This yields a f -equivariant
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birational map ϕ : S 99K S′ with S′ decomposable. By Proposition I.2.18 (1),
it follows that S(S′) ≤ 0. Moreover, the strict transforms of s and f(s) by ϕ
are disjoint and permuted by ϕfϕ−1, hence S(S′) = 0 (see Lemma II.2.11 (2)).
Then Lemma II.2.13 implies that f satisfies (2). Since ϕfϕ−1 is a not a square
in BirC(S) by Lemma II.2.13 (2), it also follows that f is also not a square in
BirC(S).

II.2.3 Reduction of cases

The following lemma is an analogue of [Bla09a, Lemma 6.1. (1) ⇔ (2)] for conic
bundles, not necessarily rational. The proof is slightly more difficult, due to the
case (2) of Lemma II.2.14 which does not exist in the rational case.

Lemma II.2.15. Let C be a curve. Let κ : X → C be a conic bundle with at
least one singular fibre and let f ∈ AutC(X) permuting the irreducible compo-
nents of at least one singular fibre. Then f has order two.

Proof. Let η : X → S be the contraction of one irreducible component in each
singular fibre. The automorphism f2 preserves all the irreducible components
of the singular fibres, hence η is f2-equivariant. Let g = ηf2η−1 ∈ AutC(S),
which is a square in BirC(S), then g fixes pointwise a section (Lemma II.2.14).
Let s′inv be a g-invariant section of S, and sinv its strict transform by η which is
f2-invariant. As f exchanges the irreducible components of at least one singular
fibre, the section sinv is not f -invariant. The sections sinv and f(sinv) meet a
general fibre in two points which are exchanged by the action of f . Thus f has
order two.

Lemma II.2.16. Let C be a curve. Let κ : X → C be a conic bundle with at
least one singular fibre, such that its two irreducible components are exchanged
by an element ρ ∈ Aut(X). Let G be the normal subgroup of AutC(X) which
leaves invariant each irreducible component of the singular fibres. The following
hold:

(1) If G fixes a section σ1 of κ and G is not trivial, then κ is an exceptional
conic bundle.

(2) If there exists a contraction η : X → S such that S(S) ≤ 0 and S is
indecomposable, then G is trivial.

Proof. (1) The subgroup G ⊂ Aut(X) is normal, hence ρGρ−1 = G and the
section σ2 = ρσ1 ̸= σ1 is also G-invariant. Let η : X → S be the contraction of
one irreducible component in each singular fibre of κ, namely the one intersecting
σ2, then it is a G-equivariant birational morphism. Let H = ηGη−1 ⊂ AutC(S),
which is not trivial. The images of σ1 and σ2 by η are H-invariant sections s1
and s2 of S. Assume that s1 and s2 intersect. Choose another section s3.
Apply elementary transformations centered on {si ∩ sj , i, j ∈ {1, 2, 3}, i ̸= j},
and repeat until that the strict transforms of s1, s2, s3 are disjoint. This yields
an H-equivariant birational map ψ : S 99K C × P1. The group ψHψ−1 is an
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algebraic subgroup of PGL(2,k) which fixes the strict transforms of s1, s2 and
the base points of ψ−1. The base points of ψ−1 coming from the contraction
of the strict transforms of the fibres passing through the intersections of s1 and
s2 are outside of the strict transforms of s1 and s2. Then H is conjugate to a
subgroup of PGL(2,k) fixing three distinct points on P1, which implies that H
is trivial and it is a contradiction. Therefore, s1 and s2 are disjoint sections of
S, and it follows that S is decomposable and S(S) ≤ 0 by Proposition I.2.18
(1). Thus σ1 and σ2 are also disjoint sections of X which pass through different
irreducible components in each singular fibre.

Since σ2 = ρσ1, it follows that σ
2
1 = σ2

2 . Then s
2
1 < s22. If S(S) = 0, then s1

and s2 are both minimal section as they are disjoint, and this contradicts the
inequality s21 < s22. Therefore, S(S) < 0 and by Lemma II.2.11 (2), it follows
that s21 = −n < 0 and s22 = n > 0 for n = −S(S). In particular, η is the
blow-up of 2n points on σ2. Then κ has 2n singular fibres and two disjoint
(−n)-sections, i.e. it is an exceptional conic bundle.

(2) If S(S) ≤ 0 and π is indecomposable, then S has a unique minimal
section which is Aut(S)-invariant [Mar71, Lemma 2 (1), (i) and (ii)] (or Propo-
sition I.2.18 (2) and (3), and its strict transform by η is a G-invariant section of
κ. If G is not trivial, it follows from (1) that X is an exceptional conic bundle.
This implies that S admits two disjoint sections, which is a contradiction.

The key result of this section is the following proposition, analogue of [Bla09b,
Lemma 4.3.5], which will be useful to reduce to the study of automorphism
groups of ruled surfaces, exceptional conic bundles and (Z/2Z)2-conic bundles.

Proposition II.2.17. Assume that char(k) ̸= 2. Let C be a curve. Let κ : X →
C be a conic bundle with at least one singular fibre, such that its two irreducible
components are exchanged by an element of Aut(X). Let G be the normal
subgroup of AutC(X) which leaves invariant every irreducible component of the
singular fibres. If G is not trivial and if there exists a contraction η : X → S
with S a decomposable P1-bundle over C, then κ is an exceptional conic bundle.
Else, AutC(X) is isomorphic to (Z/2Z)r for some r ∈ {0, 1, 2}.

Proof. If G is trivial, then every element of AutC(X) is an involution. This
implies that AutC(X) is a finite subgroup of PGL(2,k(C)) and the statement
follows. Assume that G is not trivial and let η : X → S be a contraction where
π : S → C is a P1-bundle. Then η is G-equivariant and H = ηGη−1 ⊂ AutC(S)
is not trivial. Three cases arise:

(1) Assume first that S(S) < 0. Then S admits a unique minimal section,
and its strict transform by η is a G-invariant section of κ. By Lemma II.2.16,
S is decomposable and κ is an exceptional conic bundle.

(2) Assume that S(S) = 0. If a section of S of self-intersection 0 passes
through at least one of the points blown-up by η, its strict transform is a section
s of X of negative self-intersection. Contracting in each fibre the irreducible
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component not intersecting s gives a birational morphism η′ : X → S′ with
S(S′) < 0, reducing to the previous case. We now assume that no section of S
of self-intersection 0 passes through any point blown-up by η. Firstly, π : S → C
is not a trivial bundle, as otherwise sections of S of self-intersection 0 would
cover S. From Lemma II.2.16 (2), S is decomposable. Moreover, by Lemma
II.2.13 (1) there exist exactly two disjoint sections s′1, s

′
2 of S of self-intersection

0. Furthermore, ηGη−1 is a non-trivial subgroup of AutC(S), isomorphic to Gm

or Gm ⋊Z/2Z (see Lemma II.2.13), that fixes the base-points of η−1, not lying
on s′1 or s′2. We now prove that no non-trivial element of ηGη−1 can lie in Gm:
taking a trivializing open subset U ⊆ C of π : S → C containing the image of a
base-point, and taking an isomorphism π−1(U) ≃ U×P1 sending s′1, s

′
2 onto the

zero and infinity sections, the action of Gm on U×P1 is (x, [u : v]) 7→ (x, [αu : v])
and thus no non-trivial element of Gm fixes any point outside of s′1, s

′
2. Then

ηGη−1 ∩ Gm = {1} and G has order 2. By Lemma II.2.15, every element of
AutC(X) is an involution. As AutC(X) is a finite subgroup of PGL(2,k(C)),
this implies that AutC(X) ≃ (Z/2Z)r for some r ∈ {0, 1, 2}.

(3) Assume that S(S) > 0. In particular, S is indecomposable (Proposition
I.2.18 (1)). Then from [Mar71, Lemma 3], AutC(S) is isomorphic to a subgroup
of Pic0(C)[2]. In particular, it is a finite subgroup of PGL(2,k(C)) such that
every element is an involution. Hence AutC(S) ≃ (Z/2Z)s for some s ∈ {0, 1, 2}.
It follows that every element of G is an involution, and by Lemma II.2.15 every
element of AutC(X) is an involution. Since AutC(X) is a finite subgroup of
PGL(2,k(C)), it follows that AutC(X) ≃ (Z/2Z)r for some r ∈ {0, 1, 2}.

II.3 Automorphism groups of irrational conic bun-
dles

II.3.1 Infinite increasing sequence of automorphism groups

We first prove the following lemma which is a generalization of Theorem A,
and the proof works essentially the same, based on an explicit automorphism of
ruled surfaces computed in [Mar71].

Lemma II.3.1. Let C be a curve of positive genus and π : S → C be a ruled
surface such that S(S) < 0. Then there exists an infinite family {Si, ϕi}i≥1,
where πi : Si → C are ruled surfaces and ϕi : S 99K Si are Aut(S)-equivariant
birational maps, such that:

Aut(S) ⊊ ϕ−1
1 Aut(S1)ϕ1 ⊊ · · · ⊊ ϕ−1

n Aut(Sn)ϕn ⊊ · · ·

is an infinite increasing sequence of algebraic subgroups of Bir(C × P1). In
particular, Aut(S) is not a maximal algebraic subgroup of Bir(C × P1).

Proof. Since S(S) < 0, there exists a unique negative section (Lemma II.2.11
(1)), which is Aut(S)-invariant. From [Mar71, Lemmas 6 and 7], the morphism
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of algebraic groups π∗ : Aut(S) → Aut(C) has a finite image. Let p be a point
on the minimal section, its orbit by the Aut(S)-action is a finite subset of the
minimal section. The blowing up of the orbit of p followed by the contractions
of the strict transforms of the fibres, defines an Aut(S)-equivariant birational
map η1 : S 99K S1 with S(S1) < S(S). Repeating this process gives rise to a
family of ruled surfaces {πi : Si → C}i≥1 with an infinite sequence

Aut(S) ⊂ ϕ−1
1 Aut(S1)ϕ1 ⊂ · · · ⊂ ϕ−1

n Aut(Sn)ϕn ⊂ · · · (†)

where ϕi = ηi · · · η1, and we will see that this sequence is not stationary.
Take n large and let z = π(p). By a choice of trivialization π−1

n (U) ≃ U×P1,
we can assume that q = (z, [0 : 1]) ∈ U×P1 is a base point of η−1

n : Sn 99K Sn−1.
Let V be a vector bundle of rank two over C such that P(V ) = Sn, and let
L ⊂ V be the line subbundle associated to the minimal section in Sn. Let
L = det(V )−1 ⊗ L2, it follows from Corollary I.2.16 that deg(L) = −S(Sn).
Since n is chosen large, we can assume that S(Sn) < 0 is small enough, such
that h1(C,L) = h1(C,L ⊗ OC(z)

−1) = 0. By Riemann-Roch, we get that
h0(C,L⊗OC(z)

−1) < h0(C,L), i.e. z is not a base point of the complete linear
system |L|. Therefore, there exists γ ∈ H0(C,L) such that γ(z) ̸= 0.

Let (Ui)i be a trivializing open subsets of πn, the automorphisms:

Ui × P1 → Ui × P1

(x, [y0 : y1]) 7→ (x, [y0 + y1γ|Ui
(x) : y1])

glue into a C-automorphism fγ of Sn (see [Mar71, case (b) p.92]) such that fγ
does not fix q and Aut(Sn−1) ⊊ η−1

n Aut(Sn)ηn. We have proved that the se-
quence (†) is not stationary. Removing in the sequence the groups which are not
strictly bigger than the previous term and renaming the elements accordingly,
yields the increasing sequence of the statement.

Remark II.3.2. Notice that the proof of Lemma II.3.1 gives back Theorem A.
Let γ ∈ Γ(C,det(V )−1 ⊗ L2) as above. For any t ∈ Ga, the automorphisms

Ui × P1 → Ui × P1

(x, [y0 : y1]) 7→ (x, [y0 + y1tγ|Ui
(x) : y1])

glue into an C-automorphism ftγ . In particular, each automorphism fγ belongs
to the connected component of the identity. Restricting the infinite chain (†) to
the connected components, one gets that

Aut◦(S) ⊊ ϕ−1
1 Aut◦(S1)ϕ1 ⊊ · · · ⊊ ϕ−1

n Aut◦(Sn)ϕn ⊊ · · · ,

and in particular, dim(Aut◦(Sn)) < dim(Aut◦(Sn+1)) for all n.

II.3.2 Exceptional conic bundles

The following lemma is a generalization of [Bla09b, Lemma 4.3.1], for excep-
tional conic bundles which are not necessarily rational.

54



Lemma II.3.3. Let C be a curve and let κ : X → C be a conic bundle with
2n ≥ 0 singular fibres. The following assertions are equivalent:

(1) π is exceptional,

(2) there exist exactly two sections s1, s2 with self-intersection −n, which are
disjoint and intersect different irreducible components of each singular fi-
bre,

(3) there exists a birational morphism ηn : X → S where S is a decomposable
P1-bundle over C with S(S) = −n, which consists in the blowup of 2n
points on a section of self-intersection n in S,

(4) there exists a birational morphism η0 : X → S where S is a decomposable
P1-bundle over C with S(S) = 0, which consists in the blowup of 2n points,
such that no two points are in the same fibre, n are chosen on a section
of self-intersection 0 and the other n are chosen on a another section of
self-intersection 0.

Proof. (1) =⇒ (2), (3) Assume κ is exceptional and let s1, s2 be sections of
self-intersection −n. Contracting in each singular fibre the irreducible compo-
nent which does not meet s1 yields a birational morphism ηn : X → S where S
is a ruled surface over C. Denote by s′1 and s′2 the images of s1 and s2 by ηn,
then s′21 = −n and s′22 ≤ n. The case s′22 < n cannot happen (Lemma II.2.11
(1)), and the equality implies s1 and s2 pass through different irreducible com-
ponents of each singular fibre. Then the sections s1 and s2 are disjoint (Lemma
II.2.11 (2)), and S is decomposable (Lemma II.2.11 (3)). Assume there exists
a third section s3 of self-intersection (−n) on X ′. By the same argument, s3
has to pass through different irreducible components than s1 and s2. Since each
singular fibre contains exactly two irreducible components, this is not possible.

(2) =⇒ (4) Contract in n singular fibres the irreducible components meet-
ing s1, and contract in the other singular fibres the irreducible components
meeting s2. This defines a birational morphism η0 : X → S such that the im-
ages of s1 and s2 by η0 are disjoint sections of S with self-intersection zero. In
particular, S is decomposable and by Lemma II.2.11 (1), S(S) = 0.

(2), (3), (4) =⇒ (1) The implication (2) =⇒ (1) is trivial. The strict
transforms by ηn of the sections of S with self-intersection n and (−n) are two
sections of κ of self-intersection (−n). The strict transforms by η0 of the two
sections of S with self-intersection zero are two sections of κ of self-intersection
(−n). This proves that (3) and (4) imply (1).

In [Bla09b, Lemma 4.3.3 (1)], it is proven that AutP1(X) ≃ Gm ⋊ Z/2Z
when X is an exceptional conic bundle over P1, which implies that Aut(X) is
maximal. We see below that automorphism groups of exceptional conic bundles
over a non rational curve do not always contain an involution permuting the two
(−n)-sections (Proposition II.3.5), and are not always maximal (Lemma II.3.4).
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Lemma II.3.4. Let C be a curve of positive genus and let κ : X → C be an ex-
ceptional conic bundle. If AutC(X) contains a non-trivial involution permuting
the irreducible components of the singular fibres, then AutC(X) ≃ Gm ⋊ Z/2Z
and Aut(X) is maximal. Else, AutC(X) ≃ Gm and Aut(X) can be embedded
in a infinite increasing sequence of algebraic subgroups of Bir(C × P1).

Proof. Denote by s1, s2 the two (−n)-sections of κ. Let G be the subgroup
of AutC(X) which leaves invariant the irreducible components of each singular
fibre and let η0 : X → S be a birational morphism which contracts an irreducible
component in each singular fibre and such that S(S) = 0 (Lemma II.3.3 (4)).
Let π : S → C be the morphism such that κ = πη0. Let s′1, s

′
2 be respectively

the images of s1 and s2 by η0. Then η0 is G-equivariant and η0Gη
−1
0 is an

algebraic subgroup of AutC(S) which leaves invariant s′1 and s′2. If π is trivial,
then η0Gη

−1
0 is an algebraic subgroup of PGL(2,k) fixing at least two points

on a fibre, and thus is contained in Gm ⊂ PGL(2,k). If π is not trivial, then
η0Gη

−1
0 is an algebraic subgroup of Gm or Gm⋊Z/2Z by Lemma II.2.13. Since

the element of order two in Z/2Z permutes s′1 and s′2, it follows that η0Gη
−1
0

is also contained in Gm in the second case. Hence η0Gη
−1
0 is contained in a

subgroup of AutC(S) isomorphic to Gm. Conversely, every element of Gm fixes
s′1, s

′
2 (the images of s1, s2 by η0), hence η0Gη

−1
0 = Gm.

The exceptional conic bundle κ has exactly two (−n)-sections, which are left
invariant or are permuted by the elements of Aut(X). Assume that AutC(X)
contains an element ι which permutes the two (−n) sections of κ (or equivalently,
the irreducible components of each singular fibre by Lemma II.3.3 (2)). The
automorphism ι acts on a general fibre by permuting two points, which implies
that ι is an involution. If f ∈ AutC(X) permutes the two (−n)-sections then ιf
does not, i.e. ιf ∈ G. This implies that AutC(X) = G⋊ ⟨ι⟩. Moreover, there is
no ι-equivariant contraction from X and all Aut(X)-orbits in the complement of
the singular fibres are infinite, or contain two points on a smooth fibre. Hence
there is no Aut(X)-equivariant birational map from X (Lemma II.2.7) and
Aut(X) is maximal.

Else AutC(X) = G ≃ Gm. Since there exist exactly two (−n)-sections, an
element of Aut(X) fixes them or permutes them. The contraction of Aut(X)-
orbits of (−1)-curves yields an Aut(X)-equivariant birational morphism ηn : X →
S where S(S) < 0 (see Lemma II.3.3 (3)). Then use Lemma II.3.1 to con-
clude.

Proposition II.3.5. Let C be a curve. Let κ : X → C be a conic bundle with
two disjoint sections s1 and s2 passing through different irreducible components
of each singular fibre. Let η : X → S be the contraction of an irreducible com-
ponent in each singular fibre. This yields a ruled surface π : S → C such that
κ = πη. Denote by s′1 and s′2 the images of s1 and s2 by η. The following hold:

(1) π is decomposable, i.e. there exists D ∈ Pic(C) such that S = P(OC(D)⊕
OC).

(2) The birational morphism η is the blow-up of finite sets Z ⊂ s′1 and P ⊂ s′2.
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(3) The group AutC(X) contains a non-trivial involution permuting the irre-
ducible components of each singular fibre if and only if the divisor −2D is
linearly equivalent to ∑

z∈π(Z)

z −
∑

p∈π(P )

p.

(4) If one of the condition of (3) holds, then κ is an exceptional conic bundle.

Proof. (1) Each fibre of π is isomorphic to P1. It follows that π is a ruled
surface, which is decomposable because s′1 and s′2 are disjoint.

(2) Each irreducible component of a singular fibre intersects s1 or s2. It
follows that η is the blow-up of finitely many points lying in s′1 or s′2.

(3) Up to a choice on the trivialization of S, we can also assume that s′1 is
the zero section and s′2 is the infinity section. Replacing D by another divisor
of its linear class, we can assume that Supp(D)∩π(Z ∪P ) = ∅. Let U ⊂ C be a
trivializing open subset of π containing π(Z∪P ) and such that Supp(D) ⊂ C\U .

Assume first that there exists f ∈ k(C) such that

div(f) =
∑

z∈π(Z)

z −
∑

p∈π(P )

p+ 2D.

Then define the birational map ϕu : U × P1 99K U × P1, (x, [y0 : y1]) 7→
(x, [f(x)y1 : y0]), which is involutive and has base points at Z∪P . Take another
trivializing open subset V with a trivialization map such that transition function
of π equals guv : V × P1 99K U × P1, (x, [y0 : y1]) 7→ (x, [αuv(x)y0 : y1]), where
αuv ∈ k(C)∗ denotes the transition function of OC(D). Denote by νq the mul-
tiplicity at q ∈ C, then νq(α

−2
uv f) = νq(f)− 2νq(αuv) = 0 for all q ∈ V \U . This

implies that ϕv = g−1
uv ϕuguv : (x, [y0 : y1]) 7→ (x, [α−2

uv (x)f(x)y1 : y0]) extends to
a birational map defined at (V \ U) × P1. Hence ϕu extends to a C-birational
map ϕ of S, and η−1ϕη ∈ AutC(X) is an involution permuting the irreducible
components of the singular fibres of κ.

Conversely assume there exists an involution ψ ∈ AutC(X) permuting the
irreducible components of the singular fibres. Then ηψη−1 ∈ Bir(S) acts triv-
ially on C and permutes s1 and s2, hence there exists f ∈ k(C) such that the
restriction of ηψη−1 on π−1(U) yields a birational map

ϕu : U × P1 99K U × P1

(x, [y0 : y1]) 7−→ (x, [f(x)y1 : y0]).

Since the set of base points of ηψη−1 is exactly Z ∪ P , the rational function
f|U has zero in π(Z) and poles in π(P ). Computing in local charts, one can
check that νq(f) = 1 if q ∈ π(Z) and νq(f) = −1 if q ∈ π(P ). Conjugate as
before by the transition maps of π gives ϕv = g−1

uv ϕuguv : V × P1 99K V × P1,
(x, [y0 : y1]) 7→ (x, [α−2

uv (x)f(x)y1 : y0]). The birational map ηψη−1 is biregular
on π−1(C\U), hence νq(α

−2
uv f) = 0 for all q ∈ V \U . Thus div(f) =

∑
z∈π(Z) z−∑

p∈π(P ) p+ 2D.
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(4) Let m be the number of singular fibres of κ and denote by ι ∈ AutC(X)
a non-trivial involution permuting the irreducible components of each singular
fibre. Without loss of generality, we can replace s2 by ι(s1) and it follows that
s21 = s22. Contracting the irreducible components intersecting s1 in each singular
fibre of κ gives a birational morphism η : X → S where S is decomposable with
two disjoint sections s′1 and s′2. Then S(S) ≤ 0 (see [Mar70, Corollary 1.17], or
Proposition I.2.18 (1)), and S(S) ̸= 0 by definition of η and by Lemma II.2.10 as
S → C is decomposable by (1). This implies that s′21 = −S(S) and s′22 = S(S)
(Lemma II.2.11 (2)). On the other hand, we have s22 = s′22 and s21 = s′21 −m.
Thus m = s′21 − s21 = −2S(S) > 0. In particular, η corresponds to a birational
map ηn as in Lemma II.3.3 (3) and κ is an exceptional conic bundle over C.

Combining the previous lemma and proposition, we get the main result of
this section:

Proposition II.3.6. Let C be a curve of positive genus. Let κ : X → C be
an exceptional conic bundle with two (−n)-sections s1 and s2. The contraction
of an irreducible component in each singular fibre gives a birational morphism
η : X → S where π : S = P(OC(D)⊕OC) → C is a decomposable ruled surface,
for some D ∈ Pic(C). In particular, κ = πη. Denote by s′1, s

′
2 the images of

s1, s2 by η, and by Z ⊂ s′1, P ⊂ s′2 the set of base points of η−1. The algebraic
group Aut(X) is maximal if and only if −2D is linearly equivalent to∑

z∈π(Z)

z −
∑

p∈π(P )

p,

and in this case, Aut(X) fits into an exact sequence of algebraic groups:

0 −→ Gm ⋊ Z/2Z −→ Aut(X)
κ∗−→ H,

where H denotes the subgroup of Aut(C) which fixes the finite subset π(Z ∪P ).
Else, Aut(X) is not maximal and can be embedded in an infinite increasing
sequence of algebraic subgroups of Bir(C × P1).

Proof. The structure morphism κ induces a morphism of algebraic groups
κ∗ : Aut(X) → Aut(C), and an element in the image of κ∗ must preserves
π(Z ∪ P ) which is the set of points in C having singular fibres. The rest of the
statement follows from Lemma II.3.4 and Proposition II.3.5.

Corollary II.3.7. Let C be a curve of positive genus. Then there exist ex-
ceptional conic bundles X → C such that Aut(X) is not a maximal algebraic
subgroup of Bir(C × P1).

Proof. Let X be an exceptional conic bundle over C, which is not the blowup
of a decomposable ruled surface π : P(OC(D)⊕OC) → C along
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F = {p1, p2, · · · , p2 deg(D)} lying in two disjoint sections s1 and s2 such that
−2D is not linearly equivalent to∑

p∈s1∩F

π(p)−
∑

p∈s2∩F

π(p).

By Proposition II.3.6, Aut(X) is not a maximal algebraic subgroup of Bir(C ×
P1).

In Proposition II.3.6, the morphism κ∗ : Aut(X) → H can be surjective: it
is always the case if C = P1 (see [Bla09b, Lemma 4.3.3 (1)]), or if C is a curve
of genus g ≥ 2 with a trivial automorphism group. We give an example where
this surjectivity fails.

Example II.3.8. Let C be an elliptic curve over C with neutral element p0.
Choose a 4-torsion point p1 ∈ C such that p2 = 2p1 ̸= p0, and denote by ∆ =
{p0, p1, p2, p3} the subgroup generated by p1. Define the ruled surface π : S =
P(OC(D) ⊕ OC) → C where D = p0 + p1. The line subbundle OC(D) ⊂
OC(D) ⊕ OC corresponds to a section with self-intersection −deg(D) = −2
(see Proposition I.2.15). By Lemma II.2.11 (1), it follows that σ is the unique
section of π with negative self-intersection, and therefore S(S) = −2. Let s′1, s

′
2

be two disjoint sections with s′21 = −2 and s′22 = 2. Denote by η : X → S the
blowup of s′2 ∩ π−1(∆), and by s1, s2 the strict transforms of s′1 and s′2 by η.
Then κ = πη is a conic bundle. Moreover,

(p0+p1+p2+p3)−(2D) = −p0−p1+p2+p3 = −(p1−p0)+(p2−p0)+(p3−p0) ∼ 0

implies that (−2D) ∼ −(p0+p1+p2+p3) and it follows that Aut(X) is maximal
with AutC(X) ≃ Gm ⋊ Z/2Z (Proposition II.3.6).

Let f ∈ Aut(C) be the translation x 7→ x+p1 which preserves ∆, i.e. f ∈ H.

Denote by H̃ the subgroup of Aut(X) which fixes s1 and s2. Notice that η is

H̃-equivariant and the following diagram is commutative:

Aut(X) ⊃ H̃

Aut(S)

Aut(C) ⊃ H.

κ∗
κ∗

η∗

π∗

Assume that f ∈ Aut(C) lifts to an element of Aut(X), then it can also be

lifted in H̃ (if the lifting permutes s1 and s2, compose it with the non-trivial

involution to get an element in H̃), and a fortiori can be lifted in Aut(S). This
is not the case because f∗(D) = p0 + p3 is not linearly equivalent to D .
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II.3.3 (Z/2Z)2-conic bundles

The key result in this section is Proposition II.3.11. We will also need [Bla09b,
Lemmas 4.4.1, 4.4.3, 4.4.4], and their proofs are left as exercises in the original
article. For the sake of self-containess, we reprove them below (see Lemmas
II.3.9, II.3.10, II.3.13).

Lemma II.3.9. Let C be a curve. Every element of order two in PGL(2,k(C))

is conjugate to an element of the form σf =

[
0 f
1 0

]
where f ∈ k(C)∗. Moreover,

σf and σg are conjugate if and only if f/g is a square in k(C)∗.

Proof. Let σ ∈ PGL(2,k(C)) be an element of order two and let v ∈ P1 such
that σ(v) ̸= v. Since σ is of order two, there exists f ∈ k(C)∗ such that the

matrix of σ with respect to the basis {v, σ(v)} is σf =

[
0 f
1 0

]
. Let f, g ∈ k(C)∗.

Assume σf and σg are conjugate. Take σ̃f , σ̃g be their respective representatives
in GL(2,k(C)) having 1 as the lower left coefficient. Then there exists λ ∈ k(C),
P ∈ GL(2,k(C)) such that Pσ̃fP

−1 = λσ̃g. Taking the determinant in the last
equality gives f/g = λ2. Conversely, assume that f/g = λ2 for some λ ∈ k(C)∗.
Then [

1 0
0 λ−1

]
· σg ·

[
1 0
0 λ

]
= σf .

Lemma II.3.10. Assume that char(k) ̸= 2. Let C be a curve. Let σ =[
0 f
1 0

]
∈ PGL(2,k(C)), where f ∈ k(C)∗ is not a square. Let Nσ be the

normalizer of ⟨σ⟩ in PGL(2,k(C)). Then

Nσ =

{[
a bf
b a

]
, a, b ∈ k(C)

}
∪
{[
a −bf
b −a

]
, a, b ∈ k(C)

}
≃ N◦

σ ⋊ Z/2Z,

where N◦
σ =

{[
a bf
b a

]
, a, b ∈ k(C)

}
is isomorphic to k(C)[

√
f ]∗/k(C)∗ via

the group homomorphism

[
a bf
b a

]
7→ [a + b

√
f ], and Z/2Z is generated by the

diagonal involution. The action of Z/2Z on N◦
σ sends

[
a bf
b a

]
on

[
a −bf
−b a

]
.

Proof. Since σ has order two, the normalizer of ⟨σ⟩ equals the centralizer of
⟨σ⟩. Then it is a straightforward computation in PGL(2,k(C)) to check that

matrices commuting with σ are of the form

[
a bf
b a

]
or

[
a −bf
b −a

]
for some

a, b ∈ k(C), and N◦
σ is a normal subgroup of Nσ. Since N

◦
σ ∩

{
I2,

[
1 0
0 −1

]}
=
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{I2} and N◦
σ ·
{
I2,

[
1 0
0 −1

]}
= Nσ, it follows that Nσ ≃ N◦

σ ⋊ Z/2Z. For all

a1, a2, b1, b2 ∈ k(C),[
a1 b1f
b1 a1

]
·
[
a2 b2f
b2 a2

]
=

[
a1a2 + b1b2f (a1b2 + a2b1)f
a2b1 + a1b2 a1a2 + b1b2f

]
and (a1 + b1

√
f)(a2 + b2

√
f) = (a1a2 + b1b2f) + (a1b2 + a2b1)

√
f . Hence N◦

σ is

isomorphic to k(C)[
√
f ]∗/k(C)∗ via

[
a bf
b a

]
7→ [a+ b

√
f ]. Finally,

[
1 0
0 −1

]
·
[
a bf
b a

]
·
[
1 0
0 −1

]
=

[
a −bf
−b a

]
,

i.e. the action of Z/2Z on N◦
σ sends

[
a bf
b a

]
on

[
a −bf
−b a

]
.

The following key proposition is an analogue of [Bla09b, Proposition 5.2.2]
for non rational ruled surfaces. We prove it by copying, mutatis mutandis, the
proof of [Bla09b, Proposition 5.2.2].

Proposition II.3.11. Assume that char(k) ̸= 2. Let C be a curve of positive
genus and let G be a finite subgroup of Bir(C × P1) = PGL(2,k(C))⋊Aut(C).
Denote by G′ ⊂ G and H ⊂ Aut(C) the kernel and the image of the action of
G on the base of the fibration C × P1 → C. Then the following hold:

(1) if G′ = {1} then G is conjugate to H in Bir(C × P1).
(2) if G′ ≃ Z/2Z is generated by an involution with a non trivial determinant,

then G normalizes a group V ⊂ PGL(2,k(C)) isomorphic to (Z/2Z)2 and
containing G′.

Proof. By Tsen theorem, k(C) is a C1-field. Then H1(H,GL(2,k(C))) and
H2(H,k(C)∗) are trivial ([Ser68, Chap. X, Propositions 3, 10 and 11]) and this
implies that H1(H,PGL(2,k(C))) is also trivial.

(1) If G′ = {1}, then G is isomorphic to H and there exists a section
s : H → G. Let sc be the homomorphism H → PGL(2,k) ⋊ H, h 7→ (1, h)
and f be the homomorphism H → Bir(C × P1), h 7→ s(h)sc(h)

−1. Denote
by π : Bir(C × P1) → Aut(C) the projection on Aut(C). For all h ∈ H,
πf(h) = π(s(h))π(sc(h)

−1) = 1, i.e. there exists a homomorphism f̃ : H →
PGL(2,k(C)), such that f(h) = (f̃(h), 1). In particular, s(h) = (f̃(h), h).
For all h1, h2 ∈ H, (f̃(h1h2), 1) = f(h1h2) = s(h1)s(h2)sc(h2)

−1sc(h1)
−1 =

(f̃(h1)h1 · f̃(h2), 1), i.e. f̃ is a cocycle. Since H1(H,PGL(2,k(C))) is trivial, f
is conjugate to the trivial cocycle and this implies that s and sc are conjugate
up to an element of PGL(2,k(C)). Thus G and H are conjugate.

(2) Let σ be the element of order two of G′. From Lemma II.3.9, we can

assume up to conjugation that σ =

[
0 f
1 0

]
, for some f ∈ k(C)∗ which is not a
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square (by assumption the determinant of σ is not trivial). We denote by Nσ

the normalizer of σ. By Lemma II.3.10, Nσ ≃ N◦
σ ⋊ Z/2Z with N◦

σ isomorphic

to k(C)[
√
f ]∗/k(C)∗ and Z/2Z acts on N◦

σ by sending

[
a bf
b a

]
on

[
a −bf
−b a

]
.

All elements of the form

[
a −bf
b −a

]
have order two in PGL(2,k(C)): the

goal is to find one of them which generates with σ a subgroup V isomorphic to
(Z/2Z)2 and normalized by G.

Let h ∈ H. Then π−1(h)∩G = {(γ, h), (σγ, h)} for some γ ∈ PGL(2,k(C)).
The element σ has order two and G′ is normal in G, this implies that (σ, 1) is
in the center of G. In particular, (γ, h)(σ, 1)(h−1 · γ−1, h−1) = (σ, 1), and it
follows that γ(h · σ)γ−1 = σ. By Lemma II.3.9, there exists µ ∈ k(C)∗ such

that µ2 = f/(h · f). Let β =

[
µ 0
0 1

]
and α = γβ−1. Then β(h · σ)β−1 = σ

and ασα−1 = σ. Therefore, α ∈ Nσ and replacing µ by −µ if needed, we can
assume that α ∈ N◦

σ . Under this last further condition, µ and α2 are uniquely
determined by h, since (σα)2 = α2. By associating h to ρh = α2 and µh = µ,
this yields the following well-defined maps:

ρ : H → N◦
σ µ : H → k(C)∗

h 7→ ρh h 7→ µh.

We show that µ is a cocycle, and ρ is also a cocycle after conjugating by
some element of PGL(2,k(C)). Let h1, h2 ∈ H and h3 = h1h2. For i ∈ {1, 2, 3},

choose as previously (αiβi, hi) ∈ G where αi ∈ N◦
σ , βi =

[
µi 0
0 1

]
, µ2

i = f/(hi ·

f). We can also choose α3β3 such that (α1β1, h1)(α2β2, h2) = (α3β3, h3), which
implies that

α3 = α1β1(h1 · (α2β2))β
−1
3 = α1(β1(h1 · α2)β

−1
1 )β1(h1 · β2)β−1

3 . (†)

Writing explicitly α2 =

[
a bf
b a

]
, it follows that

β1(h1 · α2)β
−1
1 =

[
µ1(h1 · a) (h1 · b)f
h · b µ1(h1 · a)

]
∈ N◦

σ

. Then β1(h1 ·β2)β−1
3 ∈ N◦

σ , which is a diagonal matrix, and thus equals identity.
This implies that µ3 = µ1(h1 · µ2), i.e. µ is a cocycle. The group H1(H,k(C)∗)
is trivial ([Ser68, Chap. X, Propositions 10 and 11]), there exists ν ∈ k(C)∗ such
that µh = ν/(h · ν) for all h ∈ H. Then f/ν2 is H-invariant. Conjugating G

by

[
1 0
0 ν

]
, we can assume that f is H-invariant, which is equivalent to µh = 1

for all h ∈ H. From the equation (†), it follows that α3 = α1(h1 · α2), which
implies that ρ is a cocycle.
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The H-equivariant exact sequence 1 → k(C)∗ → k(C)[
√
f ]∗ → N◦

σ → 1 with
the equalities H1(H,k(C)[

√
f ]∗) = {1} and H2(H,k(C)∗) = {1} (see [Ser68,

Chap. X, Propositions 10 and 11]) imply that H1(H,N◦
σ) = {1}. Therefore,

ρ is conjugate to the trivial cocycle, i.e. there exists τ ∈ N◦
σ such that ρh =

τ · (h · τ)−1
for all h ∈ H. The element T = (τ,−1) ∈ N◦

σ ⋊ Z/2Z has order
two and is different from σ (because σ ∈ N◦

σ). Besides, every element of G
is of the form ((α, 1), h) with α ∈ N◦

σ and h ∈ H such that α2 = ρh, and
((α, 1), h)(T, 1)(h−1 · (α−1, 1), h−1) = ((α, 1)(h · τ,−1)(α−1, 1), 1) = ((α2(h ·
τ),−1), 1) = (T, 1) in G. The subgroup generated by σ and (T, 1) is normalized
by G and is isomorphic to (Z/2Z)2.

Under the assumptions of Proposition II.3.11, the automorphism group of
a conic bundle X such that AutC(X) ≃ Z/2Z is not maximal. Below, we see
that a conic bundle X such that AutC(X) ≃ (Z/2Z)2 is always a (Z/2Z)2-conic
bundle and it has a maximal automorphism group (Lemmas II.3.15 and II.3.16).

Lemma II.3.12. Assume that char(k) ̸= 2. Let C be a curve and let κ : X → C
be a conic bundle having at least one singular fibre. Suppose there exists a non
trivial involution f ∈ AutC(X) fixing pointwise two sections s1 and s2. Then
in each singular fibre, the sections s1 and s2 pass through different irreducible
components.

Proof. Assume there is a singular fibre κ−1(p), where s1 and s2 pass through
the same irreducible component. Since f fixes pointwise s1 and s2, the contrac-
tion of the other irreducible component gives a f -equivariant birational mor-
phism η : κ−1(U) → U × P1, where U is an open neighborhood of p. The
C-automorphism ηfη−1 has order two and this implies that there exist a, b, c ∈
OC(U) such that

ηfη−1 : (x, [u : v]) 7→ (x, [au+ bv : cu− av]). (⋆)

On the other hand, ηfη−1 fixes the point contracted by η, and the sections
η(s1) and η(s2). In particular, it fixes three distinct points in the fibre p−1

1 (p)
where p1 : U ×P1 → U denotes the first projection. Therefore ηfη−1

|p−1
1 (p)

equals

identity. It implies from (⋆) that b(p) = c(p) = 0 and a(p) = −a(p) ̸= 0, which
is a contradiction, since char(k) ̸= 2.

Lemma II.3.13. Let C be a curve. Let σ ∈ PGL(2,k(C)) be a non trivial
involution with det(σ) ∈ k(C)∗/(k(C)∗)2.

(1) If det(σ) = 1, then σ is diagonalisable and fixes pointwise two sections.

(2) If det(σ) ̸= 1, then σ is not diagonalisable and fixes pointwise an irre-
ducible curve, which is birational to a 2-to-1 cover of C ramified above an
even positive number of points.
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Proof. (1) If det(σ) = 1 then σ is conjugate to the matrix

[
0 1
1 0

]
by Lemma

II.3.9, and [
1 1
1 −1

]
·
[
0 1
1 0

]
·
[
1 1
1 −1

]
=

[
−1 0
0 1

]
.

In particular, σ is diagonalizable and fixes two sections.

(2) If det(σ) ̸= 1 then σ is conjugate to σf =

[
0 f
1 0

]
, where f ∈ k(C)∗ is not

a square by Lemma II.3.9. Assume σf is conjugate to a diagonal matrix

[
α 0
0 β

]
.

By taking the determinant, there exists λ ∈ k(C)∗ such that λ2αβ = f . Since
σ has order two, α2 = β2 and this implies that f2 = λ4α4. This contradicts the
assumption that f is not a square.

The equation [f(x)v : u] = [u : v] is equivalent to u2 − v2f(x) = 0 which
defines an irreducible curve Q in C×P1. The first projection of C×P1 restricted
to Q is a 2-to-1 cover of C, and Q is birational to a curve having an even positive
number of ramification points by Hurwitz formula [Har77, IV. Corollary 2.4].

Corollary II.3.14. Let C be a curve. Let π : S → C be a ruled surface such
that S(S) < 0, let p1 : C×P1 → C be the first projection and let f : S 99K C×P1
be a birational map such that p1f = π. Then fAutC(S)f

−1 ⊂ PSL(2,k(C)).

Proof. Let σ ∈ AutC(S). Then fσf−1 ∈ PGL(2,k(C)). Since S(S) < 0,
there exists a section s : C → S of negative self-intersection which is fixed by σ.
Assume that det(σ) ̸= 1, then σ also fixes pointwise an irreducible curve which
is a 2-to-1 cover of C by Lemma II.3.13 (2). Then σ fixes three distinct points
in a general fibre, hence σ equals identity, which contradicts det(σ) ̸= 1.

Lemma II.3.15. Let C be a curve of positive genus. Let κ : X → C be a
ruled surface, or a conic bundle with at least one singular fibre such that its two
irreducible components are exchanged by an element of Aut(X). If AutC(X) ≃
(Z/2Z)r with r ∈ {1, 2}, then det(σ) ̸= 1 for all σ ∈ AutC(X) \ {1}. In
particular, if r = 2 then κ is a (Z/2Z)2-conic bundle.

Proof. Assume first that κ has at least one singular fibre and let η : X → S be
the contraction of an irreducible component in each singular fibre. Let G be the
normal subgroup of AutC(X) which leaves invariant each irreducible component
of the singular fibres.

Suppose that r = 1. Let σ1 ∈ AutC(X) be the element of order two and
assume that det(σ1) = 1. By Lemma II.3.13 (1), the automorphism σ1 fixes
pointwise two sections, which do not pass through the same irreducible com-
ponents in each singular fibre (Lemma II.3.12), and η is σ1-equivariant. This
implies that ηGη−1 has an invariant section and by Lemma II.2.16 (1), κ is an
exceptional conic bundle, which contradicts the assumption that AutC(X) is
finite (Lemma II.3.4).
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Suppose that r = 2. Let σ1, σ2, σ3 be the elements of order two in AutC(X).
If det(σi) ̸= 1 for all i ∈ {1, 2, 3}, then κ is a (Z/2Z)2-conic bundle by Lemma
II.3.13 (2). Without loss of generality, we can assume by contradiction that
det(σ1) = 1. By Lemma II.3.13 (1), the automorphism σ1 fixes two sections
s1 and s2, which do not pass through the same irreducible components in each
singular fibre (Lemma II.3.12), and η is σ1-equivariant. In particular, σ1 ∈ G
and G is not trivial. Let σj ∈ G and denote by Fix(σ1) the set of fixed points
of σ1. Then σj(Fix(σ1)) = Fix(σ1) for j = {2, 3}. It follows that σj permutes
s1 and s2, or leaves them invariant. Since we assume that σj ∈ G, it follows
that σj must leave them invariant. This implies that G also leaves s1 and s2
invariant. Therefore κ is an exceptional conic bundle by Lemma II.2.16 (1),
which contradicts the assumption that AutC(X) is finite (Lemma II.3.4).

Assume from now on that κ has no singular fibre and AutC(X) ≃ (Z/2Z)r
for r ∈ {1, 2}. Then X is a ruled surface with S(X) > 0 [Mar71, Theorem 2].
Let σ1 be an element of order two with det(σ1) = 1, then σ1 fixes two sections
s1 and s2 (Lemma II.3.13 (1)) which intersect because X is indecomposable
by Proposition I.2.18 (1). Applying elementary transformations centered on the
intersections yields a σ1-equivariant birational map ϕ : X 99K S where π : S → C
is a decomposable ruled surface. The automorphism ϕσ1ϕ

−1 fixes the strict
transforms of s1 and s2 which are disjoint sections of π, and the base points of
ϕ−1 which are in the complement of s1 ∪ s2. Choose trivializations (Ui)i of π
such that the strict transforms of s1 and s2 are the zero and infinity sections
of π. Then (ϕσ1ϕ

−1)|Ui
: (x, [u : v]) 7→ (x, [αi(x)u : v]) for some αi ∈ OC(Ui)

∗

and the transition maps are of the form: sij : Uj × P1 99K Ui × P1, (x, [u :
v]) 7→ (x, [tij(x)u : v]) for some tij ∈ OC(Uij)

∗. The condition (ϕσ1ϕ
−1)|Ui

sij =
sij(ϕσ1ϕ

−1)|Uj
implies that there exists α ∈ Gm such that αi = αj = α for all

i, j. Since ϕσ1ϕ
−1 fixes the base points of ϕ−1 which do not lie in s1 ∪ s2, this

implies that α = 1, i.e. σ1 equals identity, which is a contradiction.

Lemma II.3.16. Assume that char(k) ̸= 2. Let C be a curve of positive genus
and let κ : X → C be a (Z/2Z)2-conic bundle. Then Aut(X) is a maximal
algebraic subgroup of Bir(C×P1). Moreover, Aut(X) fits into an exact sequence

1 → (Z/2Z)2 → Aut(X)
π∗→ Aut(C),

where the image of π∗ equals Aut(C) if X ≃ A1 (or equivalently, C is an elliptic
curve and κ is the only (Z/2Z)2-ruled surface over C), or equals a finite subgroup
of Aut(C) preserving the set of singular fibres of κ (possibly empty, if κ is a
ruled surface over a curve C of genus ≥ 2).

Proof. Let p ∈ C such that κ−1(p) is a smooth fibre. The group AutC(X) ≃

(Z/2Z)2 acts on κ−1(p). Any σ ∈ AutC(X) of order two is the form

[
a b
c −a

]
for

some a, b, c ∈ OC(U) where U is an open neighborhood of p. If σ equals identity
on κ−1(p), then b(p) = c(p) = 0 and a(p) = −a(p) ̸= 0. Hence σ does not act
trivially on κ−1(p), i.e. the action of (Z/2Z)2 over κ−1(p) is faithful. Besides,
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any (Z/2Z)2 ⊂ PGL(2,k) acts without fix points and by Lemma II.2.7, the
subgroup Aut(X) is maximal.

It remains to prove the exact sequence. By definition, the kernel of π∗
is isomorphic to (Z/2Z)2. Assume first that κ is a ruled surface. If g = 1,
the assumption that AutC(S) is finite implies that S(X) > 0 (see [Mar71,
Theorem 2]) and κ is an indecomposable ruled surface (see Proposition I.2.18
(1)). Then X is C-isomorphic to A0 or A1 (see [Har77, Theorem V.2.15]),
which respectively satisfy S(A0) = 0 and S(A1) = 1 (see Proposition I.2.21).
Therefore, X is isomorphic to A1 and the exact sequence follows from [Mar71,
Theorem 3. (4)]. If g ≥ 2, the statement holds because Aut(C) is a finite
group ([Har77, Exercise IV.2.5]). Assume that κ has a singular fibre. Then any
element of Aut(X) has to preserve to set of singular fibres, which is finite. It
follows that the morphism κ∗ : Aut(X) → Aut(C) has a finite image.

II.3.4 Ruled surfaces

Proposition II.3.17. Assume that char(k) ̸= 2. Let C be a curve of genus
g ≥ 1 and π : S → C be a ruled surface. The following hold:

(1) If π is trivial, then Aut(S) is maximal.

(2) If S(S) = 0, π is not trivial and S ≃ P(OC(D)⊕OC) is decomposable, then
Aut(S) is maximal if and only if g = 1, or g ≥ 2 and 2D is principal. If
g ≥ 2 and 2D is not principal, then Aut(S) can be embedded in an infinite
increasing sequence of algebraic subgroups of Bir(C × P1).

(3) If S(S) = 0 and S is indecomposable, then Aut(S) is maximal if and only
if g = 1. If g ≥ 2, then Aut(S) can be embedded in an infinite increasing
sequence of algebraic subgroups of Bir(C × P1).

(4) If S(S) > 0 then Aut(S) is maximal if and only if S is a (Z/2Z)2-ruled
surface.

Proof. (1) If S is trivial, each Aut(S)-orbit contains at least a fibre. Hence
Aut(S) is maximal by Lemma II.2.7.

(2) If g = 1, then the morphism Aut◦(S) → Aut◦(C) is surjective Propo-
sition I.3.10. There is no Aut(S)-orbit of finite dimension, hence Aut(S) is
maximal.

Assume that g ≥ 2. If 2D is principal, then AutC(S) ≃ Gm⋊Z/2Z (Lemma
II.2.13 (2)), and the group AutC(S) acts on a fibre with two orbits: one isomor-
phic to Gm and the other one is made of two points exchanged by the involution.
From Lemma II.2.7, Aut(S) is a maximal algebraic subgroup. If 2D is not prin-
cipal, Aut(S) ≃ Gm (Lemma II.2.13 (3)). Take a point in a minimal section, its
Aut(S)-orbit is finite and contains at most one point in each fibre. The blowup
of this orbit followed by the contraction of the strict transforms of the fibres,
gives an Aut(S)-equivariant birational map S 99K S′ where S′ is a ruled surface
with S(S′) < 0. Then apply Lemma II.3.1.
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(3) From Proposition I.2.18 (3.ii), S has a unique minimal section which is
Aut(S)-invariant. If g ≥ 2, take a point on this minimal section and blowup
its orbit (which consists of finitely many points on the minimal section), then
contract the strict transforms of the fibres. It defines an Aut(S)-equivariant
map S 99K S′ with S(S′) < 0. Then apply Lemma II.3.1. If g = 1 then S ≃ A0

and π∗ : Aut◦(S) → Aut◦(C) is surjective Proposition I.3.8. In particular, there
is no Aut(S)-orbit of dimension 0 and no Aut(S)-equivariant map. Thus Aut(S)
is maximal.

(4) Assume that S(S) > 0. In particular, π is indecomposable (see e.g.
Proposition I.2.18 (1)). If g = 1, then S ≃ A1 is a (Z/2Z)2-ruled surface and
Aut(A1) is maximal by Lemma II.3.16. From now on, we assume that g ≥ 2.
By [Mar71, Lemma 3, Theorem 2], AutC(S) is isomorphic to a subgroup of
Pic0(C)[2]. In particular, it is a finite subgroup of PGL(2,k) such that every
element is an involution. Hence AutC(S) ≃ (Z/2Z)s for some s ∈ {0, 1, 2}.
Moreover, Aut(C) is finite, and this implies that Aut(S) is also finite.

By Lemma II.3.15, each non-trivial element of AutC(S) has a non-trivial
determinant. If s = 0, then Aut(S) is conjugate to a finite subgroup of Aut(C) ⊊
Aut(C×P1) by Lemma II.3.11 (1). If s = 1, then by Lemma II.3.11 (2), Aut(S)
normalizes a group V ≃ (Z/2Z)2 containing AutC(S), i.e. there exists a finite
subgroup G ⊂ Bir(C × P1) containing Aut(S) such that V is the kernel of the
action of G on C. In particular, Aut(S) ⊊ G. Therefore, we get that Aut(S)
is not maximal if s ∈ {0, 1}. If s = 2, then S is a (Z/2Z)2-ruled surface.
Conversely, the automorphism group of a (Z/2Z)2-ruled surface is maximal by
Lemma II.3.16.

II.3.5 Examples of (Z/2Z)2-conic bundles

If C is an elliptic curve, the Atiyah bundle A1 is the only (Z/2Z)2-ruled surface.
We give below examples of (Z/2Z)2-conic bundles over any curve C of genus
≥ 2. If X is a (Z/2Z)2-conic bundle over P1 with at least one singular fibre,
then every element of order two in AutP1(X) acts non trivially on Pic(X) by
permuting the irreducible components of a singular fibre (by [Bla09b, Lemma
4.3.5]. If there exists an element of AutP1(X) \ {1} acting trivially on Pic(X),
then X → P1 is an exceptional conic bundle, and thus not a (Z/2Z)2-conic
bundle by [Bla09b, Lemmas 4.3.3. (1) and 4.3.5]). The following example also
shows that this does not hold anymore when C has positive genus.

Example II.3.18. Assume that char(k) ̸= 2. Let C be a curve of genus g ≥
1 and D be a non principal divisor such that 2D is principal. Let S be the
decomposable ruled surface P(OC(D)⊕OC). From Lemma II.2.13, AutC(S) =
Gm⋊Z/2Z and the element σ of order two that generates Z/2Z is conjugate to[
0 f
1 0

]
for some f ∈ k(C)∗ such that div(f) = 2D. Since D is not principal, f

is not a square. In particular, det(σ) ̸= 1 and σ fixes pointwise an irreducible
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curve birational to a 2-to-1 cover of C and ramified above an even positive
number of points (Lemma II.3.13 (2)).

The matrix τ =

[
a −bf
b −a

]
of order two has determinant −a2+b2f = −N(a+

b
√
f), where N : k(C)[

√
f ] → k(C) is the norm, which is surjective (see [Ser68,

X.7, Propositions 10 and 11]). Choose a and b such that det(τ) has a pole with
odd multiplicity at a point where f is regular. Then det(τ) ̸= 1 and det(στ) ̸= 1.

Since στ = τσ, the subgroup of PGL(2,k(C)) generated by σ and τ is iso-
morphic to (Z/2Z)2. Apply Propositions II.2.6 and II.2.17, there exists a Z/2Z-
equivariant birational map from S to a conic bundle X such that (Z/2Z)2 ⊂
AutC(X); and X is a ruled surface, or an exceptional conic bundle, or a
(Z/2Z)2-conic bundle. Assume that X is not a (Z/2Z)2-conic bundle. Notice
that X cannot be neither a ruled surface with S(X) < 0 by Corollary II.3.14
or S(X) > 0 by [Mar71, Lemma 3]. It implies X is either a ruled surface with
S(X) = 0, or an exceptional conic bundle, such that AutC(X) ≃ Gm ⋊ Z/2Z
(Lemmas II.2.13 and II.3.4), with det((−1, 0)) = 1. Since det(σ), det(τ) and
det(στ) are all non trivial, it is a contradiction. Therefore, X is a (Z/2Z)2-
conic bundle.

II.4 Proofs of the results

Proof of Theorem E. Each algebraic group in the list is a maximal algebraic
subgroup of Bir(C × P1) by Lemma II.3.16 and Propositions II.3.6, II.3.17.
Conversely, let G be a maximal algebraic subgroup of Bir(C × P1), where C is
a curve of genus g ≥ 1. Using the regularization theorem (Proposition II.2.5)
and the G-equivariant MMP (Proposition II.2.6), it follows that G is conjugate
to Aut(X) for some conic bundle κ : X → C. If κ has no singular fibre, apply
directly Proposition II.3.17. Else κ has at least a singular fibre. If there is no
element of Aut(X) permuting two irreducible components of a singular fibre,
then there exists an Aut(X)-equivariant contraction X → S, where S is a ruled
surface, and apply Proposition II.3.17 to conclude. Else, apply Proposition
II.2.17 with Proposition II.3.11, and it follows that X is an exceptional conic
bundle, or Aut(X) is conjugate to a subgroup of Aut(C×P1) or Aut(X ′) where
X ′ is a (Z/2Z)2-conic bundle. To conclude, apply Proposition II.3.6 for the case
of exceptional conic bundles, and apply Lemma II.3.16 for the case of (Z/2Z)2-
conic bundles. Finally, the exact sequences of (4) in case g = 1 and (5) are
taken from [Mar71, Theorem 3].

Proof of Corollary F. From [Bla09b, Theorem 1], every algebraic subgroup of
Bir(P2) is included in a maximal one. From Theorem E, every m aximal alge-
braic subgroups of Bir(C × P1) has dimension at most four. By Remark II.3.2,
there exist algebraic subgroups of arbitrary large dimension, and they cannot
be subgroups of the maximal ones.
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Connected algebraic subgroups of groups of bira-
tional transformations not contained in a maxi-
mal one (j.w. Sokratis Zikas)

III.1 Introduction

Let k be an algebraically closed field. The classification of algebraic subgroups
of groups of birational transformations was initiated in [Enr93], where Enriques
shows that each connected algebraic subgroup of Bir(P2) is conjugate to an al-
gebraic subgroup of Aut◦(S), with S isomorphic to P2 or to the n-th Hirzebruch
surface Fn for n ̸= 1; and these are all maximal, with respect to the inclusion,
among the connected algebraic subgroups of Bir(P2). The connected algebraic
subgroups of Bir(P3) have been classified over k = C by Umemura in a series
of four papers [Ume80, Ume82a, Ume82b, Ume85] and it follows again from his
classification that each connected algebraic subgroup of Bir(P3) is contained in
a maximal one (see also [BFT21a, BFT21b] for a modern approach). However,
it is an open problem whether every connected algebraic subgroup of Bir(Pn) is
contained in a maximal one when n ≥ 4.

On the other hand, it is proven in Theorem C that there exist connected
algebraic subgroups of Bir(C×P1) not contained in a maximal one when C is a
smooth curve of positive genus. The proof of this result is based on the existence
of infinite increasing sequences of connected algebraic subgroups of Bir(C ×P1)
(see Theorem A), and on the fact that the dimension of a maximal connected
algebraic subgroup of Bir(C×P1) is bounded by 4 (see Theorem B and [Mar71,
Theorem 3]). Our main result in this note is a higher dimensional analogue of
Theorem C:

Theorem G. Let k be an algebraically closed field of characteristic 0. Let
n ≥ 1 and C be a smooth curve of positive genus. Then there exists a connected
algebraic subgroup of Bir(C × Pn) which is not contained in a maximal one.

The idea of the proof is to consider the connected algebraic subgroup Aut◦(S×
Pn), where S is a ruled surface such that Aut◦(S) is not contained in a maximal
connected algebraic subgroup of Bir(S), and to show that it cannot be contained
in a maximal connected algebraic subgroup of Bir(S×Pn). Since Aut◦(S×Pn) ≃
Aut◦(S)× PGLn+1(k) by [BSU13, Corollary 4.2.7], the existence of infinite in-
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creasing sequences of connected algebraic subgroups of Bir(C × Pn+1) is an
immediate consequence of Theorem A. From this alone, it is nonetheless insuffi-
cient to deduce that one of the connected algebraic subgroups of Bir(C ×Pn+1)
appearing in the infinite increasing sequences is not contained in a maximal
one (see Remark III.2.8), and classifying all connected algebraic subgroups of
Bir(C × Pn+1) seems out of reach at the moment.

This article is organized as follows. Section 2 contains two results, namely
Lemmas III.2.6 and III.2.7, which are important for the proof of the higher di-
mensional case. As a consequence of these two lemmas, we also get a new and
short proof of the dimension two case (see Proposition III.2.9), without using
the classification of the maximal connected algebraic subgroups of Bir(C × P1)
(Theorem B). In Section 3, we prove the higher dimensional case under the extra
assumption that char(k) = 0, in view of using the machinery of the MMP and
the G-Sarkisov program. The latter has been developped by Floris in [Flo20],
building upon results of Hacon and McKernan in [HM13]. More precisely, if
G is a connected algebraic group, then every G-equivariant birational map be-
tween Mori fibre spaces decomposes into G-Sarkisov links (see [Flo20, Theorem
1.2]). We study the possible links in Lemmas III.3.4 and III.3.5. Combining
Proposition III.2.9 and Theorem III.3.6, we get Theorem G.

It is very natural to also ask whether for all n ≥ 2, there exists a variety X of
dimension n such that Bir(X) contains algebraic subgroups which are not lying
in a maximal one, without the connectedness assumption. If n = 2, the answer
is also affirmative (see Lemma II.3.1, Corollary F), and the proof is analogous
to that of the connected case. Since the G-Sarkisov program is known only for
connected algebraic groups, it is not clear if the proof presented in this article
could be adapted for the non-connected case in higher dimension.

Acknowledgments. We are thankful to Jérémy Blanc, Enrica Floris, Ronan
Terpereau, Susanna Zimmermann for interesting discussions and remarks. Spe-
cial thanks to Enrica Floris for pointing out a mistake in the proof of a prelim-
inary version. We are also grateful to the anonymous referees for their careful
reading and useful comments.

III.2 Some preliminaries and the case of dimen-
sion two

From now on, C will always denote a smooth curve of genus g over a field k. In
this section, k is an algebraically closed field of arbitrary characteristic. The fol-
lowing invariant was used by Maruyama in [Mar70, Mar71] for his classification
of ruled surfaces and their automorphisms.

Definition III.2.1. Let V be a rank-2 vector bundle over C and τ : S =
P(V ) → C be a ruled surface. We say that τ is decomposable if V is the direct
sum of two line bundles over C. Otherwise, we say that τ is indecomposable.
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We define the Segre invariant of S as

S(S) = min{σ2, σ section of τ}.

Remark III.2.2. Let τ : S → C be a ruled surface.

(1) Let p ∈ S and σ be a section of τ . Recall that the blow-up of S at p followed
by the contraction of the strict transform of the fibre passing through p,
yields a ruled surface τ ′ : S′ → C and a birational map ϵ : S 99K S′ called
the elementary transformation of S centered at p (see e.g. [Har77, V.
Example 5.7.1]). Let σ′ be the strict transform of σ by ϵ. If p ∈ σ, then
σ′2 = σ2 − 1. Else, σ′2 = σ2 + 1.

(2) Applying an elementary transformation on a point lying on the minimal
section of τ yields a ruled surface S′ such that S(S′) = S(S)−1. Repeat-
ing this process gives ruled surfaces with arbitrary small Segre invariants.

(3) As S is obtained by finitely many elementary transformations from C×P1
(see e.g. [Har77, V. Exercise 5.5]) and S(C × P1) = 0 (see e.g. Lemma
I.2.14), it follows that S(S) > −∞. If moreover S(S) < 0, then there
exists a unique section with negative self-intersection number (see e.g.
Lemma II.2.11).

(4) The Segre invariant S(S) equals −e, where e is the invariant defined in
[Har77, V. Proposition 2.8]. If τ is indecomposable, then by [Har77, V.
Theorem 2.12. (b)], we get S(S) ≥ 2− 2g = −deg(KC). In particular, if
S(S) < −deg(KC), then τ is decomposable.

We recall the statement of Blanchard lemma and its corollary (see [BSU13,
Proposition 4.2.1, Corollary 4.2.6]):

Proposition III.2.3. Let f : X → Y be a proper morphism of schemes such
that f∗(OX) = OY , and let G be a connected group scheme acting on X. Then
there exists a unique action of G on Y such that f is G-equivariant.

Corollary III.2.4. Let f : X → Y be a proper morphism of projective schemes
such that f∗(OX) = OY . Then f induces a homomorphism of group schemes
f∗ : Aut◦(X) → Aut◦(Y ).

Remark III.2.5. Let τ : S → C be a decomposable ruled surface. Assume that
C has genus g = 1 and S(S) ̸= 0, or that g ≥ 2. Then by [Mar71, Lemma 7],
the morphism induced by Blanchard lemma τ∗ : Aut◦(S) → Aut◦(C) is trivial.

In the next two lemmas, we compute Aut◦(S) and its orbits for a ruled
surface τ : S → C with S(S) < −(1 + deg(KC)). Such ruled surfaces exist and
are decomposable by Remark III.2.2 (2) and (4)).

Lemma III.2.6. Let C be a curve of genus g ≥ 1. Let τ : S = P(V ) → C
be a decomposable P1-bundle such that S(S) < −(1 + deg(KC)). Let σ be the
minimal section of τ and L(σ) be the line subbundle of V associated to σ. We
choose trivializations of τ such that σ is the infinity section. Then the following
hold:
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(1) The group Aut◦(S) is isomorphic to Gm⋊Γ(C, det(V )∨⊗L(σ)⊗2), where
det(V ) denotes the determinant line bundle of V . This isomorphism
associates α ∈ Gm and γ ∈ Γ(C,det(V )∨ ⊗ L(σ)⊗2), to the element
µα,γ ∈ Aut◦(S) obtained by gluing the automorphisms:

Ui × P1 → Ui × P1

(x, [u : v]) 7→
(
x, [αu+ γ|Ui

(x)v : v]
)
.

(2) The Aut◦(S)-orbits in S are {p} and τ−1(τ(p)) \ {p} for p ∈ σ.

Proof. (1) The proof follows from the computation made in [Mar71, case (b)
p.92]. For the sake of self-containess, we recall it below. Since τ is decomposable,
we can write its transition maps as tij : Uj × P1 → Ui × P1, (x, [u : v]) 7→
(x, [aij(x)u : bij(x)v]), where [u : v] denotes the coordinates of P1, aij ∈ OC(Ui∩
Uj)

∗ denotes the transition maps of the line bundle L(σ) and bij ∈ OC(Ui∩Uj)
∗.

Let µ ∈ Aut◦(S). The morphism induced by Blanchard lemma τ∗ : Aut◦(S) →
Aut◦(C) is trivial (Remark III.2.5). Moreover, σ is fixed by Aut◦(S) as it is the
unique minimal section. Therefore, for each trivializing open subset Ui ⊂ C,
µ induces an automorphism µi : Ui × P1 → Ui × P1, given by (x, [u : v]) 7→
(x, [αi(x)u+ γi(x)v : v]), where αi ∈ OC(Ui)

∗ and γi ∈ OC(Ui). The condition
µitij = tijµj implies that αi = αj = α ∈ Gm and γi = b−1

ij aijγj . Since aijbij
are the transition maps of the line bundle det(V ), and aij denote the transition
maps of L(σ), this implies that γ ∈ Γ(C,det(V )∨⊗L(σ)⊗2). The data of α ∈ Gm

and γ ∈ Γ(C,det(V )∨ ⊗ L(σ)⊗2) determine uniquely the automorphism µ, this
proves that we have an embedding Aut◦(S) ↪→ Gm ⋊ Γ(C,det(V )∨ ⊗ L(σ)⊗2).
Conversely, one can check that the automorphisms defined in the statement
commute with the transition maps, hence their gluing defines an automorphism
of S. Because Gm⋊Γ(C, det(V )∨ ⊗L(σ)⊗2) is also connected, we get that it is
isomorphic to Aut◦(S).

(2) Since the morphism induced by Blanchard lemma τ∗ : Aut◦(S) → Aut◦(C)
is trivial (Remark III.2.5), each Aut◦(S)-orbit is contained in a fibre of τ . As σ
is the unique section with negative self-intersection number, it is fixed pointwise
by Aut◦(S). It remains to see that Aut◦(S) acts transitively on τ−1(τ(p)) \ {p}
for each p lying on σ.

Let L = det(V )∨⊗L(σ)⊗2. It follows from Proposition I.2.15 that deg(L) =
−S(S) > 1 + deg(KC). Let p ∈ σ and let τ(p) = z. We get by Serre duality
that

h1(C,L) = h0(C,KC ⊗ L∨) = 0,

where the last equality follows from the fact that deg(KC⊗L∨) < −1. Similarly
we get the equality h1(C,L ⊗ OC(z)

∨) = 0. By Riemann-Roch, h0(C,L ⊗
OC(z)

∨) = deg(L)− g < deg(L)− g + 1 = h0(C,L). Therefore, z is not a base
point of the complete linear system |L|, i.e. there exists γ ∈ H0(C,L) such that
γ(z) ̸= 0, and the subgroup Ga ≃ {µ1,λγ ;λ ∈ k} acts transitively on τ−1(z)\{p}
(see (1) for the definition of µ1,λγ).
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Let S be a ruled surface as in Lemma III.2.6, and ϕ : S 99K S′ be an Aut◦(S)-
equivariant birational map (i.e. ϕAut◦(S)ϕ−1 acts regularly on S′). In the
following lemma, we compute the fixed points of the action of ϕAut◦(S)ϕ−1 on
S′.

Lemma III.2.7. Let C be a curve of genus g ≥ 1. Let τ : S → C be a decompos-
able P1-bundle such that S(S) < −(1+deg(KC)). If τ ′ : S′ → C is a ruled sur-
face and there exists an Aut◦(S)-equivariant birational map ϕ : S 99K S′ which
is not an isomorphism, then S(S′) < S(S) and ϕAut◦(S)ϕ−1 ⊊ Aut◦(S′). The
fixed points of the action of ϕAut◦(S)ϕ−1 on S′ are the points lying on the
minimal section of τ ′ and the base points of ϕ−1. Moreover, we can write ϕ
as a product of Aut◦(S)-equivariant elementary transformations centered on the
minimal sections.

Proof. By [DI09, Theorem 7.7], we can write ϕ = ϕn · · ·ϕ1 where each ϕi is an
Aut◦(S)-equivariant elementary transformation. Without loss of generality, we
can assume that this decomposition is minimal (i.e. the number of elementary
transformations n is minimal among all possible factorizations), and we prove
the statement by induction on n ≥ 1.

Let σ be the minimal section of τ . By Lemma III.2.6 (2), the algebraic
group Aut◦(S) acts transitively on τ−1(τ(p)) \ {p} for every p ∈ σ. Since ϕ1
is Aut◦(S)-equivariant, it follows that ϕ1 : S 99K S1 is an elementary transfor-
mation centered on a point p1 ∈ σ. The strict transform of σ by ϕ1 is the
minimal section σ1 of the ruled surface τ1 : S1 → C, and so S(S1) = S(S)− 1.
Since the base point q1 of ϕ−1

1 does not lie on the minimal section σ1 of τ1, it
follows by Lemma III.2.6 (2) that q1 is not fixed by Aut◦(S1). Since q1 is fixed
by ϕ1Aut◦(S)ϕ−1

1 , we have the strict inclusion ϕ1Aut◦(S)ϕ−1
1 ⊊ Aut◦(S1). In

the complement of the fibres fp1
⊂ S and fq1 ⊂ S1 containing the points p1

and q1 respectively, ϕ1 is an isomorphism. Therefore, by Lemma III.2.6, the
only fixed points of ϕ1Aut◦(S)ϕ−1

1 that lie in the complement of fq1 are the
points on the minimal section σ1. It remains to check that the only fixed
points on fq1 are the point q′1 ∈ σ1 and the base point q1 of ϕ−1. Let U be
a trivializing open subset of τ with τ(p1) ∈ U , and let f ∈ OC(U) such that
div(f)|U = τ(p1). We also choose trivializations of τ such that σ is the in-
finity section. Up to isomorphisms at the source and the target, ϕ1|U equals
(x, [u : v]) 7→ (x, [f(x)u : v]). By Lemma III.2.6 (1), there is an action of Gm

on S given locally by (x, [u : v]) 7→ (x, [αu : v]). This implies that there is an
action of ϕ1Gmϕ

−1
1 on S1, given locally by (x, [u : v]) 7→ (x, [αf(x)u : f(x)v]) =

(x, [αu : v]). Therefore, ϕ1Gmϕ
−1
1 ⊂ Aut◦(S′) acts transitively on fq1 \ {q1, q′1}.

Since ϕ1Aut◦(S)ϕ−1
1 ⊂ Aut◦(S′) acts fibrewise (Remark III.2.5) and is con-

nected, we get that q1 and q′1 are the fixed points of the action of ϕ1Aut◦(S)ϕ−1
1

on fq1 .
Assume the statement holds for the birational map ψ = ϕi · · ·ϕ1 : S 99K Si,

for some i ≥ 1, and where τi : Si → C is a ruled surface with a minimal section
σi. We now prove that the statement is then true for ϕi+1ψ. By induction, the
fixed points of ψAut◦(S)ψ−1 on Si are the points lying on the minimal section
σi and the base points of ψ−1.
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Assume that ϕi+1 is centered on a base point of ψ−1, which is (the image
of) the base point of the inverse of a previous elementary transformation ϕj . A
local calculation yields that we may cancel both ϕj and ϕi+1, which contradicts
the minimality of the factorization of ϕ. So ϕi+1 is centered on a point lying
on the minimal section σi. Hence S(Si+1) = S(Si) − 1 < S(S) by induction,
and ϕi+1(ψAut◦(S)ψ−1)ϕ−1

i+1 ⊂ Aut◦(Si+1). The base point of ϕi+1 is fixed

by ϕi+1(ψAut◦(S)ψ−1)ϕ−1
i+1, but is not fixed by Aut◦(Si) (by Lemma III.2.6).

Thus, we get the strict inclusion ϕi+1(ψAut◦(S)ψ−1)ϕ−1
i+1 ⊊ Aut◦(Si+1).

The infinite increasing sequences of automorphism groups given in Theorem
A can be obtained from Lemma III.2.7, but they do not imply that Aut◦(S) is
not contained in a maximal connected algebraic subgroup. As it is explained be-
low, we can get an infinite increasing sequence of connected algebraic subgroups,
where each of them is included in a maximal one, which a fortiori cannot be the
same for all of them.

Remark III.2.8. Let n ≥ d ≥ 2. Define the connected algebraic groups

Gd = {A2 → A2, (x, y) 7→ (x, y + p(x)), p ∈ k[x]≤d},

acting regularly on A2, and then birationally on P2 via any embedding A2 ↪→ P2.
Then Gd ⊊ Gd+1 for all d. On the other hand, using an explicit description
of Aut◦(Fn) from [Bla09b, §4.2], we get for all n ≥ d that Gd is a subgroup of
Aut◦(Fn), which is a maximal connected algebraic subgroup of Bir(P2).

Notice that for any variety X, using Remark III.2.8, we may produce an
infinite increasing sequence of connected algebraic subgroups of Bir(X × P2).
In particular, for n ≥ 2 and C a curve of positive genus, the same is true for
Bir(C × Pn) ≃ Bir(C × Pn−2 × P2).

We reprove below partially Theorem C, without using Theorem B.

Proposition III.2.9. Let C be a curve of genus g ≥ 1 and let τ : S → C be a
decomposable P1-bundle such that S(S) < −(1 + deg(KC)). Then Aut◦(S) is
not contained in a maximal connected algebraic subgroup of Bir(S).

Proof. Assume that Aut◦(S) is contained in a maximal connected algebraic sub-
group G of Bir(S). Then G acts regularly on a surface Y by Weil regularization
theorem (see [Wei55], or [Zai95, Kra18] for a modern proof). By [Bri17, Corol-
lary 3], we can choose Y to be normal and projective. Using an equivariant
resolution of singularities (see [Lip78, Remark B, p.155]), we can also assume
Y to be smooth. Then by Blanchard lemma (see Proposition III.2.3), the suc-
cessive contractions of the (−1)-curves gives rise to a ruled surface S′ such that
the induced birational morphism Y → S′ is G-equivariant. Since G is maxi-
mal and connected, it follows that G ≃ Aut◦(S′). The induced birational map
ϕ : S 99K S′ is Aut◦(S)-equivariant. If ϕ is an isomorphism, then S(S) = S(S′).
Else ϕ factorises as product of Aut◦(S)-equivariant elementary transformations
centered on the minimal sections and S(S′) < S(S) (by Lemma III.2.7). In
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both cases, we have S(S′) ≤ S(S). Let ϵ : S′ 99K S′′ be an elementary transfor-
mation centered on the minimal section of τ ′ : S′ → C. Then again by Lemma
III.2.7, it follows that ϵAut◦(S′)ϵ−1 ⊊ Aut◦(S′′), which contradicts the maxi-
mality of G as a connected algebraic subgroup of Bir(S).

III.3 Higher dimensional case

In what follows, we would like to utilize the machinery of the G-Sarkisov pro-
gram for a connected algebraic group G. Thus from now on, we furthermore
assume that char(k) = 0. The G-Sarkisov program is a non-deterministic al-
gorithm that decomposes every G-equivariant birational map between two G-
Mori fibre spaces as a product of simpler maps called G-Sarkisov links. Its
non-equivariant version was proven by Hacon and McKernan in [HM13] and,
building on their result, Floris proved the G-equivariant version in [Flo20]. We
follow the strategy of the proof of Proposition III.2.9, and in view of using
G-Sarkisov program, we recall first the definition:

Definition III.3.1. Let G be a connected algebraic group. A G-Mori fibre
space is a Mori fibre space with a regular action of G. Let π1 : X1 → B1 and
π2 : X2 → B2 be two birational G-Mori fibre spaces. A G-Sarkisov diagram
between X1/B1 and X2/B2 is a commutative diagram of the form

Y1

α1

��

χ // Y2

α2

��
X1

π1

��

X2

π2

��
B1

s1   

B2

s2~~
R

which satisfies the following properties:

(1) all morphisms appearing in the diagram are either isomorphisms or out-
puts of some G-equivariant MMP on a Q-factorial klt G-pair (Z,Φ) (recall
that a G-pair is a pair (Z,Φ) such that G acts regularly on Z and there
is an induced regular action on Φ),

(2) maximal dimensional varieties have Q-factorial and terminal singularities,

(3) α1 and α2 are G-equivariant divisorial contractions or isomorphisms,

(4) s1 and s2 are G-equivariant extremal contractions or isomorphisms,

(5) χ is an isomorphism or a composition of G-equivariant anti-flips/flop/flips
(in that order),
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(6) the relative Picard rank ρ(Z/R) of any variety Z in the diagram is at most
2.

We call R the base of the diagram.
Property (6) implies that α1 is a divisorial contraction if and only if s1 is an

isomorphism. A similar statement holds for the right hand side of the diagram.
Depending whether s1 or s2 is an isomorphism, we get four types of Sarkisov
diagrams:

Type I

Y1 //

��

X2

π2

��
X1

π1

��

B2

{{
B1 = R

Type II

Y1 //

��

Y2

��
X1

π1

��

X2

π2

��
B1 = R = B2

Type III

X1
//

π1

��

Y2

��
B1

##

X2

π2

��
R = B2

Type IV

X1
//

π1

��

X2

π2

��
B1

��

B2

��
R .

The birational map ψ = α2χα
−1
1 between X1 and X2 is called a G-Sarkisov

link.

Remark III.3.2. Property (2) does not follow directly from the original defini-
tion of a (G-)Sarkisov diagram of [HM13] and [Flo20]. For a proof, see [BLZ21,
Proposition 4.25].

In subsequent proofs we are going to make heavy use of the following ele-
mentary but useful observation:

Remark III.3.3. Let Z be one of the varieties appearing in a G-Sarkisov
diagram, such that the relative Picard rank ρ(Z/R) is 2. Then the G-Sarkisov
diagram is uniquely determined by the datum of Z → R, by a process known
as the 2-ray game (see [BLZ21, section 2.F]).

More specifically, the 2-ray game is a deterministic process that assigns to
any such Z → R a G-Sarkisov diagram. Moreover any G-Sakrisov diagram can
be recovered by the 2-ray game on any of its relative Picard rank 2 morphisms.
Thus, up to orientation of the diagram, there is a unique G-Sarkisov diagram
that contains Z → R.

Lemma III.3.4. Let n ≥ 1 and C be a curve of genus g ≥ 1. Let τ : S → C
be a decomposable P1-bundle such that S(S) < −(1 + deg(KC)) with minimal
section σ and let ϕ : S 99K S′ be an Aut◦(S)-equivariant birational map (possibly
the identity) to a P1-bundle τ ′ : S′ → C. Let π′ = τ ′ × idPn : S′ × Pn → C × Pn
and π′

1 : S
′ × Pn → S′ be the projection to the first factor. Then the following

hold:

(1) The only non-trivial Aut◦(S×Pn)-Sarkisov diagrams, where π′ : S′×Pn →
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C × Pn is the LHS Mori fibre space, are the following ones:

T × Pn T × Pn S′ × Pn S′ × Pn

S′ × Pn S′′ × Pn C × Pn S′

C × Pn C × Pn C .

α β π′ π′
1

π′ π′′
p1 τ ′

In the first case, the induced Sarkisov link S′ × Pn 99K S′′ × Pn is equal
to ψ × idPn , where ψ : S′ 99K S′′ is an elementary transformation of P1-
bundles whose center p is a point fixed by ϕAut◦(S)ϕ−1, and T is the blow-
up of S′ at p. In the second case, the induced Sarkisov link S′ × Pn 99K
S′ × Pn is equal to idS′×Pn .

(2) The only non-trivial Aut◦(S×Pn)-Sarkisov diagrams, where π′
1 : S

′×Pn →
S′ is the LHS Mori fibre space, are the following ones:

T × Pn T × Pn S′ × Pn S′ × Pn

S′ × Pn T S′ C × Pn

S′ C .

η×idPn π′′
1 π′

1 π′

π′
1 η τ p1

The induced Sarkisov link S′ × Pn 99K T × Pn is equal to η−1 × idPn in
the former case and idS′×Pn in the latter, where η : T → S′ is the blowup
of S′ at point p fixed by ϕAut◦(S)ϕ−1.

Proof. (1) We distinguish between two cases depending on the base R of the
diagram: if R = C×Pn then we have a link of Type I or II and so the first step
of the link is an Aut◦(S×Pn)-equivariant divisorial contraction α : Y → S′×Pn.
Note that by [BSU13, Corollary 4.2.7], it follows that (ϕ×idPn)Aut◦(S×Pn)(ϕ×
idPn)−1 ≃ ϕAut◦(S)ϕ−1 × PGLn+1(k). Let (q, x) ∈ S′ × Pn be a point in the
center of α. If q is not point fixed by ϕAut◦(S)ϕ−1, then and by Lemma III.2.6
and the description of ϕAut◦(S)ϕ−1, the closure of the orbit of (q, x) is a Cartier
divisor and thus α is an isomorphism, contradicting the assumption that α is a
divisorial contraction.

Thus we may assume that q is fixed by ϕAut◦(S)ϕ−1. In that case the orbit
of (q, x) is precisely {q}×Pn. Notice that the codimension of {q}×Pn is 2 and
so by [BLZ21, Lemma 2.13]

α = (η × idPn) : T × Pn → S′ × Pn,
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where η : T → S′ is the blowup of S′ at q. By Remark III.3.3, the unique
Sarkisov diagram containing T ×Pn → C×Pn is the one given in the statement.

We now consider the case when R ̸= C × Pn. Then we have a contraction
C × Pn → R of relative Picard rank 1. Since ρ(C × Pn) = 2, the cone of curves
NE(C ×Pn) has two extremal rays and so there are only two such contractions,
namely the projections to the two factors: C × Pn → C and C × Pn → Pn.
However, by property (1) of Definition III.3.1, C × Pn → Pn would have to be
an output of some MMP on a klt pair (Z,Φ), and thus by [HM07] its exceptional
locus would be rationally connected, a contradiction. Thus R = C and again
we conclude by Remark III.3.3 for S′ × Pn → C × Pn.

(2) We again proceed by a similar distinction of cases. If R = S′ then,
as in the proof of (1), the first step is an Aut◦(S × Pn)-equivariant divisorial
contraction η × idPn : T × Pn → S′ × Pn, where η : T → S′ is the blow-up of a
point of S′ fixed by ϕAut◦(S)ϕ−1, and we conclude by Remark III.3.3.

If R ̸= S′, then S′ → R is one of the two morphisms S′ → C or S′ → Š′,
where the latter is the contraction of the minimal section. Again, by [HM07]
we may exclude the latter case since its exceptional locus is not rationally con-
nected. Finally, Remark III.3.3, once again, guarantees that the Sarkisov dia-
gram is the one in the statement.

Lemma III.3.5. Let n ≥ 1 and C be a curve of genus g ≥ 1. Let τ : S → C be a
decomposable P1-bundle such that S(S) < −(1+deg(KC)) with minimal section
σ. Let ϕ : S 99K S′ be an Aut◦(S)-equivariant birational map, with S′ being a
smooth projective surface which is not minimal. Denote by π′

1 : S
′×Pn → S′ the

projection to the first factor. Then the only non-trivial Aut◦(S × Pn)-Sarkisov
diagrams, where π′

1 : S
′×Pn → S′ is the LHS Mori fibre space, are the following

ones:

T × Pn T × Pn S′ × Pn S′ × Pn

S′ × Pn T S′ T × Pn

S′ T.

η×idPn π′′
1 π′

1 κ×idPn

π′
1 η κ

π′′
1

In the first case, η : T → S′ is the blow-up of a point p fixed by ϕAut◦(S)ϕ−1. In
the second case, κ : S′ → T is the contraction of a (−1)-curve l. In both cases,
π′′
1 denotes the projection to the first factor.

Proof. We again distinguish between two cases depending on the base R of the
Sarkisov diagram: if R = S′ then the first step of the link is an Aut◦(S ×
Pn)-equivariant divisorial contraction α : Y → S′ × Pn. We follow the same
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strategy of the proof of Lemma III.3.4: first by [BSU13, Corollary 4.2.7], (ϕ ×
idPn)Aut◦(S×Pn)(ϕ×idPn)−1 = ϕAut◦(S)ϕ−1×PGLn+1(k). This again implies
that α has to be an extraction with center of the form {q}×Pn, where q is a point
fixed by the action of ϕAut◦(S)ϕ−1 on S′. Since the center is of codimension 2,
again using [BLZ21, Lemma 2.13], we conclude that

a = η × idPn : T × Pn → S′ × Pn,

where η : T → S′ is the blow-up of q. By Remark III.3.3, the diagram is the one
given in the statement.

If R ̸= S′, we have a morphism S′ → R of relative Picard rank 1. Since S′

is not minimal, its Picard rank is greater or equal to 3 which already implies
that R = T is a surface. Again, using Remark III.3.3 we may conclude that
the diagram is the one proposed in the statement. Moreover, by property (2) of
Definition III.3.1, T × Pn has to have terminal singularities. Thus the singular
locus of T × Pn has codimension at least 3 (see [KM98, Corollary 5.18]). If
q ∈ T is singular, then {q} × Pn is singular and has codimension 2 in T × Pn.
This implies that T is smooth and consequently, S′ → T is the contraction of a
(−1)-curve.

We prove below the higher dimensional analog of Proposition III.2.9.

Theorem III.3.6. Let n ≥ 1. Let C be a curve of genus g ≥ 1, let S be
a decomposable P1-bundle over C such that S(S) < −(1 + deg(KC)). Then
Aut◦(S × Pn) is not contained in a maximal connected algebraic subgroup of
Bir(S × Pn).

Proof. Assume that Aut◦(S×Pn) is contained in a maximal connected algebraic
subgroup G ⊂ Bir(S × Pn). By [Bri17, Corollary 3], there exists a normal and
projective variety Y , G-birationally equivalent to S × Pn, and on which G acts
regularly. Then we use an equivariant resolution of singularities (see [Kol07,
Thm. 3.36, Prop. 3.9.1]) to furthermore assume that Y is smooth. Running an
MMP, which is G-equivariant by [Flo20, Lemma 2.5], we get an Aut◦(S × Pn)-
equivariant birational map χ : S×Pn 99K Y such that G ≃ Aut◦(Y ) and Y → B
is a Mori fibre space. By [Flo20, Theorem 1.2], χ decomposes as a product of
Aut◦(S × Pn)-equivariant Sarkisov links. By Lemmas III.3.4 and III.3.5, it
follows that Y = T × Pn for some surface T and χ is of the form ψ × idPn ,
where ψ : S 99K T is an Aut◦(S)-equivariant birational map. Up to possibly
performing an extra link of Type IV (namely the RHS link in Lemma III.3.4
(1)), we may assume that B = T and θ is given by the projection to the
first factor. Contracting successively all (−1)-curves in T yields an Aut◦(S ×
Pn)-equivariant birational map ϕ × idPn : S × Pn 99K S′ × Pn (by Blanchard
lemma, see Proposition III.2.3), where ϕ is Aut◦(S)-equivariant and S′ is a
ruled surface. Two cases arise: either ϕ is an isomorphism and S(S) = S(S′),
or ϕ is not an isomorphism and S(S′) < S(S) by Lemma III.2.7. In both cases,
S(S′) ≤ S(S) and since G is maximal, G is isomorphic to Aut◦(S′ × Pn) ≃
Aut◦(S′) × PGLn+1(k) ([BSU13, Corollary 4.2.7]). Let ϕ′ : S′ 99K S′′ be an
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elementary transformation of S′ centered at a point on the minimal section.
Then ϕ′Aut◦(S′)ϕ′−1 ⊊ Aut◦(S′′) by Lemma III.2.6. Thus (ϕ′× idPn)Aut◦(S′×
Pn)(ϕ′ × idPn)−1 ⊊ Aut◦(S′′ × Pn), which contradicts the maximality of G as
connected algebraic subgroup of Bir(S × Pn).

Proof of Theorem G. Let C be a curve of positive genus and S → C be a
ruled surface. As S is birational to C×P1, we get for all n ≥ 1 that Bir(C×Pn) ≃
Bir(S × Pn−1). We conclude with Proposition III.2.9 for n = 1 and Theorem
III.3.6 for n ≥ 2.
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