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Abstract: The aim of this work was to provide a comprehensive insight concerning coated films which might 
be used for first mirrors in ITER. The influence of the mirror crystallite size has been addressed as well as 

the coating techniques to provide nanocrystalline films. Tests of coated mirrors both in laboratories and in 
tokamaks are reviewed. For the tokamak tests a wide angle camera system has been installed in JET-ILW 
which is composed of a mirror box with 3 stainless steel mirrors coated with rhodium viewing the torus 

through a conically shaped aperture. The system delivered the required image quality for plasma monitoring 
and wall protection. No or insignificant degradation of the optical transmittance has been observed during 
the experimental campaign in 2014 with about 3000 plasma pulses in different magnetic field configurations. 
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1. INTRODUCTION
*
 

In current fusion experiments the plasma is often viewed 

directly, which will not be possible in future tokamaks (e.g. 

ITER) due to the high level of neutron radiation expected. 

Therefore, metallic mirrors are foreseen to play a key role in 

guiding the plasma light towards the optical diagnostics. As 

these so-called first mirrors (FM) directly view the plasma, 

they will be subjected to a harsh environment of particle 

fluxes due to charge exchange neutrals and neutrons, as well 

as UV, x-ray and gamma radiation [1].  

Molybdenum (Mo) and rhodium (Rh) are two important 

candidate materials for FM, especially in ITER. Molybdenum, 

due to its low sputtering yield, is more advantageous under 

erosion conditions [2]. Rhodium, on the other hand, provides 

a better reflectivity (between 70-80%) in the visible range [3] 

as well as near-infrared and infrared ranges (around 85% at 

1μm). Rh has also low chemical reactivity, preventing oxide 

and carbide formation [4, 5]. In the case of polycrystalline 

mirrors composed of many grains with random orientation of 
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faces, the sputtering yield can vary strongly over the material 

surface depending on the crystallographic plane of each 

individual grain and its orientation with respect to the 

incoming particle flux [6-9]. It is also important to keep the 

surface relief pattern i.e. the roughness of a polycrystalline 

mirror small compared to the wavelength of the reflected light 

in order to minimize the effect of diffuse reflection on the 

measurements [10]. Generally, this indicates that the mirrors 

must have small grain sizes and preferably similar crystal 

orientation to be homogeneously sputtered. These 

requirements can be fulfilled, for instance, by using a single 

crystal or by coating the surface with nanometer-size 

crystallites. Moreover, test of amorphous metal alloy mirrors 

were carried out under ion bombardment. These mirrors have 

no crystalline structure and after long-term sputtering the 

initial optical quality was maintained [9, 11, 12]. However, 

there is a critical difficulty with the possibility of 

recrystallization due to hydrogen embrittlement, to 

significantly reduced performance. This may rule out the use 

of current alloy in large scale fusion experiments, but new 

amorphous alloys might be developed with a greater 

resistance to recrystallization. Due to technological difficulties 

in producing large size Mo single crystals [13], coating might 

be considered as an alternative. 
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2. REALISATION OF COATED MIRRORS 

The preparation of such coated mirrors was reported by 

magnetron sputtering [3, 14], evaporation [15] and pulsed 

laser deposition (PLD) [16-18] technique for Rh, Mo and W 

coatings. Silver and aluminum coatings with a thick protective 

dielectric layer with low rate of sputtering and chemical 

modification (Al2O3, ZrO2) were also investigated [19, 20]. 

The ZrO2 films deposited at room temperature were found to 

have good homogeneity without microcrystalline inclusions. 

The observed needle-like pores in ZrO2 may provide a path 

for hydrogen transport through the film, inhibiting its 

accumulation at the oxide-metal interfaces and therefore 

preventing blister formation [20]. Several proven techniques 

offer the possibility to produce coated mirrors at least on a 

laboratory size (tens of centimeters) with nanometric 

crystallites and a dense structure. The peculiar PLD 

capability to tailor film structure at the nanoscale gives the 

possibility to deposit low roughness Rh films with a wide 

variety of structures (polycrystalline, highly oriented and 

amorphous) and morphologies. This technique allow to 

deposit planar and homogeneous Rh films effectively 

suppressing surface defects on areas of the order of 10 cm
2
 

with a satisfactory specular reflectivity. For all the techniques 

previously mentioned the optical properties of the coated 

films are similar to the theoretical one. Industrial-type ITER 

FM mock-ups prepared by magnetron sputtering have 

already been manufactured [21]. A total of eight cooled full-

scale ITER mirrors of 109 mm diameter have been 

manufactured by magnetron sputtering technique. The 

polishing quality achieved is characterized by a flatness error 

lower than 0.1 μm root mean square and roughness lower 

than 2 nm. The spectral reflectance of the coating deposited 

by magnetron sputtering reaches the theoretical values for 

both the molybdenum and rhodium layers. However, the 

mirror flatness error (defined in peak to valley in wave 

measured with interferometer at a wavelength of 633 nm over 

90 mm diameter) has significantly increased in comparison to 

the polished substrate due to the coating process, which 

shows that sample and/or target rotation during deposition is 

needed. 

3. LABORATORY TESTS 

Mo and Rh coated mirrors were tested in laboratory in terms 

of their mechanical properties i.e. adhesion to the substrate 

[17, 22], chemical reactivity towards typical tokamak 

impurities (like oxygen or carbon from residual gas fractions 

with partial pressure < 5 10
-8

) mbar or elements eroded from 

the first wall (like tungsten) [4, 5, 23-25]. It appeared that the 

adhesion increased with increasing substrate hardness and 

increasing deposition temperature for the magnetron 

deposition technique. For PLD the highly-oriented 

polycrystalline film structure guarantees the best adhesion to 

the substrate while a higher cohesion is achieved in the 

amorphous-like film [17]. Ion bombardment and especially 

deuterium plasma exposures were performed for Mo and Rh 

mirrors [26-28]. For example, 200 eV D
+
 exposures of coated 

molybdenum mirrors causes no significant mechanical 

damage such as blistering of the coating or increase of the 

surface roughness. The drop of reflectivity may be explained 

with the complex permittivity  = 1 + i 2. The smaller 

decrease in 1 (the real part of the permittivity) of exposed 

mirrors with increasing wavelength is attributed to a shorter 

intraband relaxation time compared with virgin mirrors. This 

suggests enhanced light scattering, which can be attributed 

to surface and grain boundary scattering, defects, and 

impurity scattering. Since the diffuse reflectivity measured by 

the spectrophotometer does not increase after any of the 

exposures, surface and grain boundary scattering are 

negligible. The lower amplitude of 2 (the imaginary part of 

the permittivity) of exposed mirrors compared with virgin 

mirrors for lower wavelengths is attributed to weaker optical 

absorption associated with the interband transitions. This is 

also due to a higher concentration of deuterium and 

deuterium induced defect in the subsurface layers of 

molybdenum mirrors as a result of implantation [25]. Mo 

coatings will remain functional in most of the cases in ITER, 

mainly no strong reflectivity degradation (higher as 10%). 

However, changes in the expected conditions such as 500 eV 

mean energy of impinging charge exchange neutrals or <100 

°C surface temperature of the mirrors can lead to gradual or 

sudden failure of the coatings, mainly a complete loss of the 

reflectivity [29]. It has to be taken into account for dust 

deposition on the mirror, the life time will be reduced [30] and 

is described in the next section for tokamak exposed mirrors. 

This was leading to extensive research as reviewed by 

Voitsenya et al. [9]. Rh mirrors exposed to D2 plasma show a 

drop in the reflectivity which can be associated with a 

formation of a subsurface rhodium deuteride (RhDx, x 2), 

which has optical constants different to those of Rh [25]. After 

exposure to a total ion fluence of 1.6 10
20

 cm
-2

 less than 

10% reflectivity losses was observed indicating that this 

mirror will remain functional for ITER. Crystal structure and 

morphology of rhodium films strongly affect the change of the 

specular reflectivity during exposure to deuterium plasmas 

[27]. In particular, films with few nm crystallite size and 

granular-like morphology prevent the reflectivity degradation, 

probably as a consequence of the inhibition of rhodium 

deuteride sub-superficial layer formation. The roughness all 

films evaluated from the Atomic Force Microscopy (AFM) 

images remains on the order of that of the stainless steel 

substrate (few nanometers) even after the deuterium plasma 

exposure. This is consistent with the diffuse reflectivity 

measurements which exhibit values below 3% in the range of 

wavelength of 250-2500 nm for every Rh films both before 

and after the exposure. Moreover, as reported mock ups 

including water cooling were realised [21] and recently 

exposed to H2/Ar (90/10%) plasma in the Magnum-PSI linear 

plasma device [31]. Roughening of the coated mirror surface 

is flux and temperature dependent i.e. at RT implanted 

hydrogen cannot easily diffuse along the grain boundaries 

towards the surface. This increases the dynamic hydrogen 

inventory in the layer and thus its tendency to blister. Mo 
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mock ups of coated mirrors exposed in Magnum-PSI show a 

high diffuse reflectivity after H2/Ar plasma inducing a specular 

reflectivity loss at 500 nm higher than 60%. In case of water 

cooled mock ups with 5 μm Rh films, at a flux of 3 10
23

 m
-2

/s 

the coating delaminated which is not seen for 1 μm Rh film. 

Rh films showed a high compressive stress of -2.5 GPa 

leading to a poor film adhesion on stainless steel substrate 

due to an important available energy per area stored in the 

unbuckled film for the thicker film. Furthermore, Mo and Rh 

coated mirrors on SS substrate were irradiated under 

neutrons (0.1 dpa) in the materials testing reactor BR2 and 

analyses are ongoing [32]. As first results, the reflectivity 

losses in the range 250-2500 nm were not more than few 

percent. 

4. TOKAMAK EXPOSURES 

Tests were carried out in TEXTOR [3, 33, 34], DIII-D [35], 

JET-C [36, 37] and JET-ILW [38] showing no critical failure of 

the coated mirrors like delamination or strong degradation of 

the optical properties. For example in TEXTOR for Rh coated 

mirror exposure, the film survived under erosion conditions 

although the reflectivity was decreased by 8% at 250 nm after 

exposure [3]. For another exposure of a Mo coated mirror, a 

2.5% degradation of reflectivity in the UV range was noticed 

under erosion after an exposure fluence of 1.4 10
25

 ions/m
2
. 

Mostly, Rh and Mo coated mirrors were investigated, also in 

JET during the 2013-2014 campaign. In previous studies in 

the JET-C wall configuration, Rh coatings with an initial 

reflectivity 30% better than that of pure Mo survived the test 

without detachment, however, their post-exposure reflectivity 

was the same as that of the exposed Mo surfaces [36]. 

Results of JET-ILW mirrors exposure in the main chamber 

wall show for Rh mirror surfaces originally having very high 

reflectivity a significantly reduced performance (25% at 250 

nm); reflectivity is now at a level typical for Mo polycrystalline 

mirrors in most of the spectral range under examination. For 

all materials degraded performance is observed in the entire 

spectral range (250-2500 nm), but the most significant 

decrease is in the UV range (250-400 nm) [38]. Despite these 

results no further experiments from the JET First Mirror Test 

were started in 2013 and 2014. However, optical systems 

using coated mirrors for plasma monitoring and wall 

protection are used nowadays in JET-ILW; this last point is 

developed in the present paper including characterizations of 

these mirrors.  

5. WIDE ANGLE VIEWING SYSTEM AT JET-ILW 

After the previous examples of tokamak tests of coated 

mirrors it was important to demonstrate a complete optical 

diagnostic system operating in a metallic tokamak and 

especially at JET. During the JET-ILW shutdown a wide 

angle camera system has been installed [39] in the horizontal 

mid-plane of the low field side with the field of view shown in 

the figure 6 of reference [39]. The 2011-2012 campaigns 

exposure lasted 18.9 h in total with approximately 13.1 h of 

X-point operation and after that the mirrors were exposed 

also to 19 h in total with 12 h of X-point operation for the 

2013-2014 campaigns. This system, composed of a mirror 

box with 3 stainless steel mirrors coated with Rh, is attached 

to the vacuum vessel wall on the low field side of the JET 

torus. The mirror system contains two branches, a lower and 

an upper branch. Each of the branches viewing half of the 

machine through a conically shaped aperture with a minor 

diameter of 3 mm. A 30° off-axis parabolic mirror with a focal 

length of 50.8 mm creates an intermediate image of the 

object inside the box close to the surface of the next, flat 

mirror. The half images of the two branches are then 

combined on the camera sensor to form a full wide angle 

view image. The detailed description of the wide angle 

imaging system is given in [39]. A rhodium film (175 nm thick) 

was evaporated directly on polished flat stainless steel 

mirrors (60 40 mm). On the other hand, for the parabolic 

mirrors a 100 μm amorphous electroless coating of a nickel-

phosphorus alloy was used on the polished stainless steel 

surface as an interlayer to reduce the micro roughness of the 

surface after polishing and to allow accurate surface shaping. 

The characterisations of the films were carried out on witness 

samples (25 mm in diameter). The diffuse reflectivity was 

below 3% in the range 250-2500 nm and the specular 

reflectivity was similar to the reference one [3]. Reflectivity 

measurements were also performed at incidence angles of 

40, 50, 60, 70 and 80° for perpendicular (s) and parallel (p) 

polarized light with a spectral ellipsometer SENTECH S 850, 

and are identical to the reference one (Figure 5 in reference 

[3]). The reflectivity observed for a natural or unpolarized 

light, containing an equal mix of s and p-polarisations is given 

by the sum of Rs and Rp divided by 2. Secondary Emmision 

Microscopy (SEM) observations show small crystallites (few 

tens of nm) typical for evaporated Rh films [15]. For all 

tokamak as well as ITER, baking of vacuum chamber are 

performed. To simulate a really harsh baking a 6 hours 

annealing at 600 °C in air was carried out. Chemical analyses 

of the surface by x-ray Photon Spectroscopy (XPS) revealed 

a Rh metallic surface covered with adsorbed molecules 

(oxygen, carbon) and a thin rhodium oxide layer as described 

in our previous paper [3] but nothing else. No degradation of 

the optical reflectivity was observed after this annealing in 

contrary to Mo mirrors which oxidised in air [38] showing a 

reflectivity decrease of more than 10% in the visible range 

between the mirror production and JET installation. The 

system delivered the required image quality for JET plasma 

monitoring and wall protection. 

For the 2013-2014 campaigns a new system, KL14, was 

installed in JET (Figure 1) using the lower left limiter guide 

tube. A mirror box identical to the previously described one is 

used and a new flat stainless steel mirror (165 80 mm) 

coated also with Rh was added to guide the optical beam 

(Figure 2). This system was also given the same 

measurements quality. Monitoring discharges with identical 

plasma shape and operational parameters have been 

regularly executed to document the change in the optical 
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performance of the wide angle systems [40]. Figure 3 shows 

the time evolution of typical monitoring pulses: pulse #84570 

directly after the installation of the new wide angle KL14 

system and the pulse #87402 at the end of the experimental 

campaign. These L-mode pulses with an additional NBI-

power of about 1.2 MW have been performed at BT 2.0 T, 

Ip=2.0 MA and safety factor q95=3.2. For precise control of 

the changes of the optical performance it is important to keep 

the radial outer gap (ROG) as well as the inner gap (RIG) 

constant. The gap is the distance between the plasma 

surface (LCFS=Last Closed Flux Surface) and the first wall. 

Figure 4 shows the same values of RIG and ROG for the 

analysed pulses indicating the identical plasma shape. The 

central line-integrated plasma density as well as the D  

emission in the outer divertor were also identical. 

 

Figure 1: Schematic view from the top showing the optical path of 

the KL14 wide angle viewing system installed in the lower left limiter 

guide tube. The field of view of the system is tangential to the entire 

vessel including the wide outer poloidal limiter, re-ionisation plates, 

narrow outer poloidal limiter, lower hybrid antenna and inner wall 

guard limiters. 

 

Figure 2: Top view of the mirror layout in the KL14 system including 

the optical path. The distance from the pupil to the plasma is around 

20 centimetres, depending on the plasma configuration. 

 

 

Figure 3: Time evolution of typical monitoring L-mode discharges 

which correspond to the next figure 5. 

The wide angle view imaging system contains two CCD 

cameras, colour and monochrome cameras, each of it 

equipped with telephoto zoom lenses set to a focal length of 

250 mm and 300 mm consequently. An unfiltered colour CCD 

camera provides video images for general plasma operation 

monitoring in the visible spectral range. Figure 5 shows 

images taken by the colour camera directly after installation 

of the wide angle KL14 video systems (#84570) and at the 

end of the experimental campaign (#87402). No visible 

degradation of the images has been observed. The 

composite RGB signal of the unfiltered colour CCD camera 

has been split into three colour channels: Red: 580-750 nm; 

Green: 475-570 nm; Blue: 430-480 nm. The colour channels 

have been compared for the mentioned two monitoring 
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pulses in Figure 4. This figure shows the comparison for 

three region of the interest: ICRH antenna, Inner Wall Limiter, 

Upper dump plate. No or an insignificant degradation of the 

optical transmittance has been observed during one of the 

experimental C33 campaign (about 3000 plasma pulses in 

different magnetic field configurations). 

6. CONCLUDING REMARKS 

Metallic coated mirrors were extensively studied for ITER’s 

FM purpose concerning the manufacturing techniques, 

characterisations and laboratory tests. Thick coated Rh mock 

up delaminated at high flux exposure, which is a 1000-fold 

higher the D(T) incident fluxes (up to 10
20

 m
-2

s
-1

) that can be 

expected at the outer midplane wall of ITER [30], due to a 

high energy stored in the film. In case of the high flux plasma 

exposure in ITER, the coating parameters have to be 

adjusted to achieve a low compressive stress value i.e. a low 

energy stored in the film to avoid delamination. For an 

identical fluence but at a 100-fold lower flux level, tokamak 

tests in TEXTOR, DIII-D, JET-C and JET-ILW showed no 

critical failure of the coated mirrors like delamination or strong 

degradation of the optical properties. In case of Mo coatings 

exposed to D2 plasma, delamination of coatings from the 

substrate as a result of high flux deuterium plasma exposure 

was also shown to be a possible risk, which can, however, be 

suppressed at elevated sample temperatures relevant to 

ITER. Moreover, irreversible mechanisms such as surface 

roughening or deuterium which is strongly bound to defect 

sites in the Rh lattice have a negligible contribution to the 

reflectivity degradation. Two complete diagnostics using Rh 

coated mirrors i.e. wide angle viewing systems were installed 

in JET-ILW, they delivered the required image quality for 

plasma monitoring and wall protection. Moreover, irreversible 

mechanisms such as surface roughening or deuterium which 

is strongly bound to defect sites in the Rh lattice have a 

negligible contribution to the reflectivity degradation. 

Furthermore, Mo and Rh coated mirrors irradiated under 

 

Figure 4: Comparison of the colours channels of the colour camera 

for two monitoring pulses: directly after the installation of the wide 

angle KL14 video systems (#84570) and at the end of the 

experimental campaign (#87402). 

 

Figure 5: Two images taken by the colour cameras a) directly after the installation of the wide angle KL14 video systems (#84570) and b) at the 

end of the experimental campaign (#87402). Qualitatively no degradation of the picture can be observed, which is in line with results from 

quantitative comparisons at various key image areas (see Figure 4).  
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neutrons (0.1 dpa) showed not more than few percent 

reflectivity losses in the visible and near infrared range. 

For both systems a detailed ex-situ optical characterisation of 

the mirrors is foreseen in the future.  

The mirror reflectivity would also suffer from the rough 

deposits from W and beryllium grown on the surface; 

development of the in situ cleaning methods to be operated in 

the diagnostic modules started and first results on coated 

mirrors either by laser or plasma cleaning are encouraging 

[9].  
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