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Abstract

The past decades have seen exponential growth of both consumption and pro-
duction of data, with multimedia such as images and videos contributing sig-
nificantly to said growth. The widespread proliferation of smartphones has
provided everyday users with the ability to consume and produce such content
easily. As the complexity and diversity of multimedia data has grown, so has the
need for more complex retrieval models which address the information needs
of users. Finding relevant multimedia content is central in many scenarios, from
internet search engines and medical retrieval to querying one’s personal multi-
media archive, also called lifelog. Traditional retrieval models have often focused
on queries targeting small units of retrieval, yet users usually remember tempo-
ral context and expect results to include this. However, there is little research
into enabling these information needs in interactive multimedia retrieval.

In this thesis, we aim to close this research gap by making several contribu-
tions to multimedia retrieval with a focus on two scenarios, namely video and
lifelog retrieval. We provide a retrieval model for complex information needs
with temporal components, including a data model for multimedia retrieval,
a query model for complex information needs, and a modular and adaptable
query execution model which includes novel algorithms for result fusion. The
concepts and models are implemented in vitrivr, an open-source multimodal
multimedia retrieval system, which covers all aspects from extraction to query
formulation and browsing. vitrivr has proven its usefulness in evaluation cam-
paigns and is now used in two large-scale interdisciplinary research projects. We
show the feasibility and effectiveness of our contributions in two ways: firstly,
through results from user-centric evaluations which pit different user-system
combinations against one another. Secondly, we perform a system-centric eval-
uation by creating a new dataset for temporal information needs in video and
lifelog retrieval with which we quantitatively evaluate our models.

The results show significant benefits for systems that enable users to specify
more complex information needs with temporal components. Participation in
interactive retrieval evaluation campaigns over multiple years provides insight
into possible future developments and challenges of such campaigns.
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�A : &) ! 2Ŝ feature retrieval function

Query Model
qt 2 &) :=

D
data,�

E
query term; atomic query element

&) set of all query terms
qt = (qt1, qt2, . . . , qt=) list of query terms
r̂ : ( [0, 1])= ! [0, 1] Similarity-Combining Function (SCF)
csq :=

⌦
qt, r̂

↵
complex similarity query

csq = (csq1, csq2, . . . , csq=) list of complex similarity queries
tsq :=

⌦
csq, q,l, qttsq, r̂tsq

↵
temporal similarity query

q 2 � desired distance between two subqueries
� set of all user-specified distances
q = (q1, q2, . . . , q=) list of distances between subqueries
l 2 ⌦ desired maximum length of a result
⌦ set of all possible l

qttsq =
⇣
qttsq1 , qttsq2 , . . . , qttsq@

⌘
query-level constraints of a temporal query

r̂tsq SCF describing how query-level constraints are
merged with subquery results

Result Model
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ẽ := ( ê1, ê2, . . . , ê=) candidate sequence; list of scored sequences
A = ( B̂1, B̂2, . . . , B̂=) result; scored segment list
A� = ( B̂1, B̂2, . . . , B̂=) result of a retrieval feature, scored list
Asqi =

�
Aqt1 , Aqt2 , . . . , AqtD

�
intermediate results per query term

Acsq = ( B̂1, B̂2, . . . , B̂=) result of a complex similarity query, scored list
Acsq =

�
Acsq1 , Acsq2 , . . . , Acsq=

�
list of subquery results



List of Symbols xxi
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Dear Sir or Madam, will you read
my book?
It took me years to write, will you
take a look?

— The Beatles,
Paperback Writer1

Introduction

The question of how to best organize and make available stored information
has occupied humanity for millennia. Starting with the storage of clay tablets,
to papyrus, novel ways to store information in an accessible manner are still
an active area of research, for example DNA storage [DSP+20; BCQ+21]. This
is necessitated by the ever-growing amounts of data which is consumed and
produced in the past decades, with multimedia data such as images and videos
contributing significantly to said growth.

The widespread availability of smartphones and wearables means that indi-
viduals produce data and content about themselves at an ever-growing rate. The
rise of social networks has also blurred the line between consumers and produc-
ers of media, leading to a prosumer [Tof84] ecosystem where people leave large
digital traces both in the public eye as well as on their private devices passively
and actively.

Today, the most popular social networks [Ang21] are centered around ex-
periencing multimedia data. Of those, YouTube1 and TikTok2 are built entirely
for video consumption, albeit with different user interaction modalities. On In-
stagram3, every post by a user must contain a picture or video, which can be
augmented with text. TikTok, the fastest-growing social network is built entirely
around algorithmic curation of user-generated videos.

In a professional context, applications relying on multimedia data are plen-
tiful. Consider for example libraries with a mix of physical and digital media
where retrieval is central to their utility, or museums which are also interested in
novel ways of presenting and interacting with both ancient physical and novel,

1https://youtube.com
2https://tiktok.com
3https://instagram.com

https://youtube.com
https://tiktok.com
https://instagram.com
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digital-only exhibits [BMR+07; TLS+16; PSS+22]. Journalists writing articles re-
quire background information from archives or illustrative examples for their
stories [MS98], companies have internal archives of meeting recordings, docu-
mentation, and work artifacts. Additional applications might include archae-
ology [KHZ09; BVL+22] and retrieval in medical imaging databases [MMB+04;
SBL+16; IMP+22]

In this data abundance, people from all walks of life, researchers, librarians,
doctors and creatives have motivated the quest for making this data accessi-
ble and searchable. One of the foundational vision texts for the digital age is
Vannevar Bush’s essay As We May Think [Bus45]. In it, he makes the case that
after focusing their efforts on the second world war, scientists should tackle the
challenge of making human knowledge and wisdom more accessible to indi-
viduals, as this is not only essential for advanced research in all fields, but also
more general to wield knowledge for the “true good” [Bus45]. He envisions a
device called “Memex” which can to store all information relevant to an indi-
vidual, “books, records, and communications” [Bus45]. This is relevant for all
types of media and applications, ranging from the more general such as video
to narrower domains such as searching one’s personal multimedia archive, or
lifelog [DK07].

Research has tackled the task of finding relevant things under various labels
such as Information Retrieval [Sal89; BR11]4 and Multimedia Retrieval [BBF+07],
and as the complexity and diversity of multimedia data has grown, so has the
need for more complex retrieval models. One of the driving forces behind this
trend is the recognition that users have various information needs and enabling
them to express those in a suitable way or modality is key. Additionally, tradi-
tional retrieval models have often focused on queries targeting small units of
retrieval such as an image or a specific point in time of a video, a point also
made in literature: “limitations [...] include retrieving shots only rather than
larger units” [Sme07]. Similar to the need for more complex retrieval models,
there is also a clear need for users to express complex and rich information needs
easily. This is especially the case for information needs with a temporal context,
which are common for both video and lifelogs, which are inherently temporal.

Additionally, the proposition that information retrieval should be “regarded
as an inherently interactive/evolving process [Bat89; BMC93]” [LBB+22] has led

4The precise origin of the information retrieval field is described differently in various
sources, one of the first books was [BH63], Mooers is said to have coined the term [Moo50],
Salton [Sal68] is often cited as one of the most significant researchers in the early years [SC12],
and Rijsbergen’s book [van79] is often cited as an authoritative source of the early years.
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to an increasing interest in the interactive aspect of multimedia retrieval, starting
with the Relevance Feedback (RF) paradigm [RHO+98] and has paved the path
for modern interactive and user-centric systems [KJR+20]. Against this backdrop
of more complex retrieval models and interactive retrieval systems, the biggest
change in the past decade has been the rise of Deep Learning, which has funda-
mentally changed the landscape of multimedia analysis [KSH17; ZZX+19] and
retrieval [LXY+19; LVM+21; RGL+21; HGB+22] and other areas ranging from
Chemistry [JEP+21] to board games such as Chess and Go [SHS+18]. Deep
Learning has however not changed the fundamental problem of multimedia re-
trieval, which considers a user looking for the proverbial needle in the haystack.

Traditional algorithmic evaluation on state-of-the-art datasets, and system
evaluations considering scaling behavior or other properties are useful tools
which have served the community well when evaluating research contributions
in this domain. Considering the trend toward interactive retrieval and the im-
portance of understanding the whole user journey from query formulation to
result browsing, these evaluations are complemented and enhanced by user-
centric evaluations such as the Video Browser Showdown (VBS)5 [HGB+22] and
Lifelog Search Challenge (LSC)6 [GJS+22], where user-system combinations are
evaluated, and thus all aspects from user interface, to retrieval model and sys-
tem efficiency are considered. Benchmarking and competition results also in-
fluence and facilitate the evolution of systems and methods, it is thus particu-
larly important that they reflect sensible and realistic scenarios, as to avoid over-
optimization. The information needs in those competitions ideally also reflect
realistic queries users may make to system, for instance by including different
presentation or communication modalities, and including temporal context in a
way that is reflective of human perception and recall.

1.1 Focus and Significance of Research

As discussed, existing research has often focused on scenarios where a query is
formulated in a single modality (e.g., text) and targets a specific unit of retrieval
which is defined before the query (e.g., a shot in a video, or an image in a col-
lection). In contrast, more complex retrieval models consider combinations of
modalities and query models which enable users to express also temporal rela-

5VBS is a yearly evaluation campaign, we cite the 2022 review here which references the
reviews from previous years.

6We also only cite the most recent LSC overview here.
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tions. The need for such models has been well-established, such as in [HXL+11]:
“Description of temporal relations between different kinds of information from
multiple models, dynamic weighting of features of different models, fusion of
information from multiple models that express the same theme, and fusion of
multiple model information in multiple levels are all difficult issues in the fusion
analysis of integrated models.”. Earlier literature in the field of video retrieval
has also explicitly called for research in this area, for example “As a unit of infor-
mation a shot is [...] often sufficient for a user, but often it is not” [Sme07]. Look-
ing at complex retrieval models which enable different modalities and concepts,
there is a large body of work on combining multiple query modalities for multi-
media retrieval [CWW+10; PT16; LZM18; Ros18; LKS+19b]. Textual embeddings
using deep learning dominate retrieval benchmarks in recent years [LVM+21;
HGB+22], yet successful systems allow to combine them with different modali-
ties such as sketches [LKS20; LKS+19a].

Recent benchmarking campaigns have shown complex retrieval models
which enable temporal context to be specified to be successful for interactive
retrieval. One example is the analysis of VBS 2020: “The results reveal that
the top two systems mostly relied on temporal queries before a correct frame
was identified” [LVM+21] and 2021 “[...] almost all top performing systems [...]
enable specification of temporal context in queries” [HGB+22]. However, there
is little common terminology in the multimedia retrieval community around
conceptual models on query formulation, execution, and evaluation of temporal
information needs.

Tackling these challenges not only in theory, but in practice by building use-
ful retrieval systems has been identified as a key challenge, e.g., in [DJL+08],
where one of the four key questions for retrieval is “How can useful systems
be built [...]?”, or [JSG06], where the need for “human-centered multimedia sys-
tems” is motivated. Working with and advancing a fully-fledged retrieval sys-
tem has also the advantage of being able to integrate state-of-the-art advances
or develop novel retrieval methods.

In this thesis, we focus on two applications for our conceptual and im-
plementation contributions, namely video and lifelog retrieval. The research
community has long identified interactive video retrieval as a relevant field
of research [AY99; HC04; SW09; Sch19], and systems meeting these needs are
an active subfield. Lifelog retrieval is also a vibrant field where progress
is driven through various benchmarking campaigns, such as the NTCIR-
Lifelog task [GJH+19], ImageCLEF [NLZ+20] and the Lifelog Search Challenge
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(LSC) [GLN+20; GJS+21; GJS+22]. We specifically choose video and lifelog
retrieval because the temporal aspect of information needs is inherent and
prominent in both those media types. Video retrieval also serves as an exam-
ple of a broadly relevant media type relevant for many applications, whereas
lifelogs represent a narrower and more specialized field. We focus on the visual
domain as it dominates media consumption and production, and define our
model in a generic way such that it is easily extendable to other media types
which have temporal progression, and implement it in a multimedia retrieval
engine, where it also works for audio content.

1.2 Contributions

Based on the previously identified research gaps and considerations, this thesis
attempts to push the frontiers of multimedia retrieval and multimedia retrieval
systems by presenting a retrieval model for complex information needs in inter-
active multimodal multimedia retrieval, which is based on an implementation
in vitrivr, an open-source multimodal multimedia retrieval system. To evalu-
ate our contributions, we have participated with vitrivr at interactive evaluation
campaigns numerous times, and will present, contextualize and analyse insights
from these evaluations in addition to a more traditional system-centric evalua-
tion. In particular, this thesis makes the following key contributions:

– We present a retrieval model including data and query model for query
formulation and execution in interactive multimodal video and lifelog re-
trieval. The model considers multimodal information needs with temporal
components targeting different units of retrieval and includes novel algo-
rithms for result fusion.

– The model is based on an implementation in a modular manner in vit-
rivr, a multimodal multimedia retrieval system which covers the entire
user journey including extraction, query formulation and result presenta-
tion. vitrivr is now used in multiple large-scale interdisciplinary research
projects [Wel22; LFF22], and has a healthy open-source ecosystem around
it.

– To demonstrate the effectiveness of our model and implementation, we
show results and insights from user-centric evaluations, where we have
also made contributions to evaluation methodology. Additionally, we per-
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form a system-centric evaluation, based on real-world data used in evalu-
ation benchmarks, which looks at different model and system configura-
tions.

The software contributions made in this thesis are fully open-sourced7 with
the aim of making them accessible to other researchers and practitioners.

The rest of thesis is structured along our key contributions. Chapter 2 will
introduce our motivating scenario and its applications in video and lifelog re-
trieval, derive requirements for systems and model wishing to holistically ad-
dress these scenarios, and map our contributions to these requirements which
sets the scene for the remainder of the thesis. Afterwards, Chapter 3 will cover
relevant foundations of multimedia retrieval and retrieval systems. The first con-
tribution, our retrieval model for query formulation and execution of temporal
multimodal multimedia retrieval queries is then described in Chapter 4. The
chapter includes the data model, query model, execution model for multimodal
queries, and execution model for temporal queries. During this dissertation
project, significant contributions have been made to the multimedia retrieval
system vitrivr. We describe the system architecture and implementation as our
second contribution in Chapter 5. We evaluate different aspects of the model
and its implementation in vitrivr in Chapter 6 and show results and insights
from interactive benchmarking competitions, which marks our third key contri-
bution. Related work is discussed in Chapter 7, and Chapter 8 concludes and
gives an outlook to future work.

7https://github.com/vitrivr, https://vitrivr.org

https://github.com/vitrivr
https://vitrivr.org


Dreaming, after all, is a form of
planning

— Gloria Steinem2
Motivating Scenario

In this chapter, we will consider the two exemplary scenarios of information
needs with temporal components in our two key applications, video and lifelog
retrieval. They are both ad-hoc, spur-of-the-moment, instantaneous, information
needs, where users are looking for a specific item in the collection. Both sce-
narios focus on interactive retrieval, defined as “[Retrieval] with users” [Kel09].
Modern information retrieval systems are interactive, and users can change their
queries based on the interaction with the system. The interactive nature of the
system also may make users reconsider their queries or even information need
based on the results.

Users with such information needs are also referred to as Searchers in lit-
erature, who “are very clear about what [they] are searching for, [and their]
session would typically be short, with coherent searches leading to an end-
result” [DJL+08]. In the search-exploration axis [ZW14] of the Multimedia Analytics
field [CTW+10], our motivating scenarios are clearly situated on the search side.

The first scenario is interactive video retrieval in Section 2.1, where a user
might remember several parts of a desired video, and the second one is lifelog
retrieval in Section 2.2, where information needs are based on memories and
thus have an inherently temporal context. In Section 2.3, we derive requirements
for a multimedia retrieval system addressing those scenarios, which we map to
the contributions of this thesis in Section 2.4.

2.1 Video Retrieval

Consider the example of a documentary filmmaker, who is doing a documen-
tation to shed light on the exploitation of wildlife in deserts. They remember
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(a) A lion lying down (b) A giraffe eating (c) A group of elephants in a
lake

Figure 2.1 Example sequence from video 07119 of the V3C [RSA+19] collection

having filmed a sequence where there were multiple animals visible in succes-
sion: first, a lion, then a giraffe, and the sequence closed on a group of elephants,
as shown in Figure 2.11. However, they cannot remember where the footage is
located in their collection and thus would significantly benefit from a system
which indexes their collection, and enables them to find this particular sequence
without having to manually annotate all the footage. They may formulate their
query in different ways, for example, using metadata such as the location where
the footage was taken, textual descriptions (“a lion lying down in the desert”),
and example images or sketches of the animals they are looking for. The film-
maker may also wish to specify the temporal context of their information need
(i.e., the order in which animals appear in the footage), which should be consid-
ered during retrieval. This point is also made in literature: “It is the combination
of shots what describes the story element, and each shot uses the context of the
surrounding shots to convey its message” [Sme07]. Additionally, the filmmaker
might not have a perfect memory of the sequence and remember it with partial
context. In this context, the system should account for imperfect queries, and
serve relevant results based on the specified query and context. To iterate on
their query, the filmmaker should be able to reformulate it across all modalities
and be able to seamlessly combine them, for example by specifying textual infor-
mation from the metadata. They may also query based on other content-based
features such as Optical Character Recognition (OCR) data or Automatic Speech
Recognition (ASR) data.

After query formulation, the system should return relevant results which
fulfill the information need. Presenting the results in a manner which makes
browsing and exploration efficient for a wide range of users is an often under-
investigated task. In addition to a ranking by relevance, our filmmaker might
wish to order query results by video or as a timeline. The interface could also
organize the results in a semantically meaningful way, for example in a hierar-

1Stills from this video [V3c] are used for examples in multiple chapters of this thesis
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chical clustering, and enable filtering by metadata such as duration or content
such as the number of animals. The system might also provide feedback to the
user on how their query could be improved, or provide additional multimedia
data from other domains such as related articles or images.

Given that the filmmaker has a very specific sequence in mind, the relevance
of results is highly subjective. Another user might perceive results from other
videos as relevant to the given queries, or formulate the queries when looking
for the same sequence differently.

2.2 Lifelog Retrieval

The vision of having all of one’s memories, and communications available
for retrieval has been set forth and discussed by different researchers [SW10;
GSD14; RTN22] and in popular culture [Wel11; Nai04]. In particular, the
MyLifeBits [GBL+02] project which aimed to fill Bush’s vision of the Memex [Bus45]
discussed in Chapter 1 is widely considered to be the starting point for the
field [GLN+20].

The motivation for lifelogging can be separated into two groups of users —
so-called lifeloggers and people simply using digital services and devices. Lifel-
oggers wear specialized cameras to record every aspect of their life, which in-
troduces considerable challenges for both research and everyday interactions
such as anonymization and consent. More broadly, most individuals who have
smartphones or wearables generate huge amount of data traces. Even just using
E-Mail and online services means that a significant amount of personal data ac-
cumulates over the years. Children’s upbringing is extensively documented by
many parents, resulting in teenagers who have extensive documentation about
their personal life. This means there is both interest in the narrow lifelogging
community and from the broader public in efficient and privacy-preserving
ways to search one’s personal data. In the past decade, modern devices have
made searching one’s lifelog much more accessible by automatically adding
sensor data such as GPS, identifying objects or scenery such as „beach“, and
detecting faces [CZK+21], which makes queries like “show me all images from
the beach in Barcelona” accessible to everyday users [App22; Goo22]. Lifelogs
have a few special properties. They almost always consist of different media
types, ranging from the visual to sensor metadata and inherently exhibit a tem-
poral progression. Not only vary information needs significantly based on the
user, but also the way in which they can best express their query, and the rel-
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evance results depends significantly on the individual which is using a lifelog
retrieval system [GSD14].

Beyond the visual lifelog, audio also plays an important role when remem-
bering moments. While audio processing is its own research domain, for re-
trieval there are two important aspects: transcription (Speech-to-Text) and anno-
tation (e.g., speaker recognition, conversation segmentation). These two enable
querying not just for content, but also context of audio recordings. If audio and
video is recorded jointly, similar and even stronger arguments as were made
in the previous section apply. Processing and doing retrieval in both domains
jointly enables much more expressive queries and thus more useful functional-
ity.

One active research problem in lifelog retrieval is retrieving days or events
based on more complex descriptions, such as “I had breakfast at Starbucks, then
walked to the office and afterwards had a two-hour meeting. It was the week
after I came home from Canada”. These can also be considered ad-hoc informa-
tion needs with a temporal component, similar to the video retrieval scenario.
Particularly for lifelog retrieval, enabling users to formulate their information
needs using the modalities most suited to them personally is critical. Addition-
ally, the retrieval model should be robust to incomplete descriptions and queries,
as humans forget things over time [Ebb85; MD15].

2.3 Deriving Requirements

From these two example scenarios and the context of multimedia, we can derive
requirements for systems and models which wish to address the multimedia
retrieval problem. These requirements are additionally based on those already
identified in literature [BBF+07; BR11; CHM+19].

Multimedia: As already specified in its name, a multimedia retrieval system
should support different types of media, ranging from video and images to
audio or 3D. A system could also consider composite objects consisting of
different media types.

Different Modalities: Different types of media call for different ways of query
expression. Different users have different capabilities and preferences when
it comes to expressing their information need. A multimedia retrieval system
should therefore enable users to express their information need in different
ways, and map those expressions to a unified query model which combines



Motivating Scenario 11

those modalities seamlessly. Both the expression of information needs and
the mapping to queries should keep in mind various gaps between informa-
tion need and abstract representation, for example the semantic gap between
the interpretation of a user and the machine-extractable information.

Temporal Context: Most multimedia data, such as video and audio, exhibits a
temporal progression. If the multimedia data itself does not exhibit one, mul-
timedia collections have temporal aspects such as creation, modification, and
deletion dates, or they are clustered by events which have temporal context.
Beyond the data, information needs of users also have temporal context. An
example of this would be a lifelog collection, which may consist mostly of
images which do not have a temporal aspects, but their context and the col-
lection itself is inherently temporal. A multimedia retrieval system should
therefore enable users to specify their information needs in a semantically
meaningful way, and consider temporal aspects in result presentation.

Targeting Different Levels of Abstraction: Multimedia data is inherently com-
posed of different elements, and can be completely unstructured or have
structure defined by metadata or automated content analysis. A video con-
sists of shots, which in turn consists of frames. A single frame or image itself
can be described at various abstraction levels: color, semantic content, spatial
relationships between semantic content. Audio has temporal and potentially
spatial aspects, and different forms of audio (conversations, music, long-
running sensor audio) have different levels of abstraction. Text itself can be
structured in different ways, and cross-reference other textual or multimedia
data. This means that a multimedia retrieval system should enable retrieval
modules which target various levels of abstraction, and users to compose
their queries accordingly.

Notion of Relevance: In contrast to traditional Boolean queries which have a
binary notion of relevance, queries concerning multimedia data rely on a
notion of relevance which depends on both the user and the method used to
compare a query to a multimedia element. Therefore, a multimedia retrieval
system must support a non-binary notion of relevance at all levels, from
query formulation to query execution and result presentation.

User Journey: Users come with an information need to a system, formulate
their query, browse results and iteratively continue their process until they
are satisfied. Expert users may also wish to configure which features should
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be extracted for their data, as they possess insights into which methods may
be relevant for their scenario. A multimedia retrieval system should there-
fore support the whole user journey including extraction, query formulation,
query execution, and result browsing.

Interactive Retrieval: Even in a Known Item Search (KIS) scenario, the retrieval
process is an inherently interactive one as users refine their queries to find
the desired item. Beyond KIS, users might wish to explore a collection or
summarize it partially, in which case interaction is even more important.
Multimedia retrieval systems should thus enable their users to refine queries
efficiently, and ideally have mechanisms for relevance feedback.

Additionally, we could consider requirements such as scalability, privacy,
integration with external sources and learning over all user interactions, but we
do not elaborate on those in more detail as they are beyond the scope of this
thesis and the motivating scenario presented here.

2.4 Mapping Requirements to Contributions

Looking at our contributions described in Section 1.2, we can map them to the
requirements which we have outlined in the previous section.

Model for Query Formulation and Execution: Our model has at its heart a no-
tion of relevance or similarity, and the entire retrieval model is based around
the question of how to best determine and combine similarity. It combines
different modalities through different fusion schemes, enabling users like our
filmmaker or people searching their personal data to express queries in a
manner of their choosing. The model is agnostic to segmentation and thus
can target different levels of abstraction. It deals with temporal context of multime-
dia data at query level by enabling users to specify temporal context, at query
execution level through a formalization of problem setting and algorithms
for late fusion, and considers the result presentation step. This is relevant for
both scenarios, as both videos and lifelogs are inherently temporal.

The model does not cover all requirements and aspects of the scenarios ex-
haustively, for example textual data and metadata-heavy collections are not
considered in depth. Our focus is on video, which has an inherent temporal
progression, and visual lifelogs which are segmented not by event, but by
time. This means that non-visual media is not the focus and the temporal
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aspects of multimedia collections are not covered in depth. Our model is
however generic enough to also support audio in the implementation. Addi-
tionally, a theoretical model for the user journey which considers interaction
and past queries for query execution and scoring is beyond the scope of this
work. We demonstrate how relevance feedback and user preferences can be
incorporated into our query and execution model, but do not investigate this
in more depth.

Implementation in vitrivr: vitrivr covers the user journey from extraction, to
query formulation and browsing and enables interactive retrieval through easy
(re-)formulation of queries and late filtering of result sets. This means it of-
fers an end-to-end solutions for users seeking to index and query their per-
sonal collections. The implemented retrieval model combines relevance for
content-based queries with Boolean queries. vitrivr supports through a com-
bination of prior work, improvements made in this dissertation project, and
contributions by others different modalities such as query-by-sketch, query-by-
pose, textual queries, Boolean queries and others. These modalities can be
combined to query with temporal context. It also supports different multimedia
types, namely video, images, audio, and 3D [GRS19b].

The existing segmentation for video [RGS14] and other segmentations enable
querying for different levels of abstractions, but the implementation currently
does not cleanly support multiple segmentations for one multimedia object.
Additionally, the limitations from the model section with regard to a user
model for personalized information retrieval are also applicable in the im-
plementation.

Evaluation: The evaluation contributions touch all requirements, with the user-
centric evaluation being specifically meaningful for the user journey and inter-
active retrieval in multimedia, and the system-centric evaluations showing the
feasibility and effectiveness of model and implementation for the notion of
relevance and temporal context. Through this combination, we combine a more
traditional evaluation with results from benchmarking campaigns focusing
on a more holistic comparison and involving both expert and novice users.





Errors like straws upon the
surface flow;
He who would search for pearls
must dive below

— John Dryden,
All for Love. Prologue [p. V]3

Foundations of Multimodal
Multimedia Retrieval

In this chapter, we discuss the theoretical models behind multimodal multime-
dia retrieval and systems. Generally speaking, multimedia retrieval is a subfield
of Information Retrieval (IR), with the IR Problem being defined as follows [BR11,
p. 4]:

[T]he primary goal of an IR system is to retrieve all the documents
that are relevant to a user query while retrieving as few non-relevant
documents as possible.

Definitions of the Multimedia Retrieval (MR) problem are often very simi-
lar and additionally emphasize the multimedia nature of the documents [BR11,
p. 588]

Both this chapter and the next chapter of this thesis follow the fundamental
aim of an Information Retrieval (IR) model, which is “producing [...] a function
that assigns scores to documents with regard to a given query” [BR11, p. 57].
Over the chapters, we consider different abstractions for document both from a
query and result perspective, and the term function is loosely used, as complex
models are not particularly suited to a singular function representation. The aim
of this chapter is to lay the groundwork for our model chapter, which means the
focus and notation is tailored toward relevance in the context of this thesis.

In this chapter, we begin by going from the user to a formulated query in Sec-
tion 3.1, have a look at different retrieval models in Section 3.2, provide a high-
level conceptual view on retrieval systems in Section 3.3, show different query
modalities in Section 3.4, and wrap up by discussing foundations of how differ-
ent query modalities and retrieval models can be fused in Section 3.5.
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Figure 3.1 Visual overview of the retrieval process

3.1 From Information Need to Query Expression

A visual overview of the process discussed in this and the next section is shown
in Figure 3.1. Fundamentally, a user formulates a query, which is along with
the multimedia objects transformed into a common space, where relevance is
evaluated. The transformation of objects into features and their storage in a
database is often described as the offline part of retrieval, whereas the query
formulation and relevance evaluation is online. We will revisit this separation
later when we take a system perspective on retrieval.

We start with a user D 2 U who wishes to utilize a retrieval system and their
information need. The literature does not have a consensus on the definition of
information need, see [CG16, p. 68–83] for an extensive discussion of the term
and its various meanings. For our purposes, we define an information need
in Definition 3.1.

Definition 3.1 Information Need

An information need 8= 2 IN is “the actual, unexpressed, need for informa-
tion” [Tay62] with which a user approaches the retrieval system.

Given an information need, it is up to the user to transform their information
need into a representation which is understood by the retrieval system. We call
this a query, see Definition 3.2.



Foundations of Multimodal Multimedia Retrieval 17

Definition 3.2 Retrieval Query

A query @ 2 Q is a representation of a user’s information need. It is used as a
request to an IR system with the goal of retrieving relevant results.

The information need is transformed into a query in the query formulation
step described in Definition 3.3.

Definition 3.3 Query Formulation

The query formulation step QF : IN ⇥U ! Q maps an information need
8= 2 IN by a user D 2 U to a query @ 2 Q.

The resulting query depends thus on the information need, the user’s ability
to express their information need, and the interaction modalities offered by a
retrieval system.

A query can be of arbitrary complexity, containing and combining different
modalities (e.g., free text, Boolean predicates, color sketch). We discuss dif-
ferent query formulation modalities later in Section 3.4, and fusion for those
in Section 3.5. The query formulation step from information need to query is
fundamentally subject to various gaps between information need and the actual
query, as briefly reviewed in Literature Discussion 3.1.

Literature Discussion 3.1 Gaps From Information Need to Query

[SWS+00; DJL+08] identify two key gaps: the sensory gap (between the real-
world object and its computational description) and the semantic gap: “The
semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for a
user in a given situation.” [SWS+00]. [Gia18] identifies an additional expressive
gap between “the content a user perceives, [...], the concepts which are [...]
detectable by the system, and [...] ability to express these concepts”, which
could be argued represent two different gaps. [Ros18] additionally identifies
a perceptive gap (perception of a situation), interpretative gap (interpretation of a
situation), and mnemonic gap (between the actual situation and the memory of
it).

Because of those gaps and the complexity associated with bridging them,
most retrieval models and systems have as their starting point the actual query.
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From an interaction perspective, users might update their queries or include
relevance feedback in them. This leads us to the next section, where we discuss
different retrieval models and how they determine relevance.

3.2 Retrieval Models

In this section, we first define basic notations for retrieval models based on
existing work, and then briefly review two prominent retrieval models, vector
space retrieval and Boolean retrieval together with relevant examples. For the
purposes of this section, we focus on queries which only contain one modality
and within this modality are focused on one domain within which relevance
can be determined. Complex queries with different modalities are discussed
later in Section 3.5.

3.2.1 Overview

In multimedia retrieval, we define the set of all multimedia objects (e.g., images,
videos) O which are stored in the system and a single multimedia object > 2 O.

Our definitions of both a query and the IR Problem had the term relevance
at their heart. To determine the relevance of an element w.r.t. a query, we thus
require a compact representation of both the query and the element we wish to
evaluate its relevance for. To this end, we define a feature 5 2 F in Definition 3.4.

Definition 3.4 Feature

A feature 5 2 F is defined as “derived characteristics” [BBF+07] of an element.

As a simple example for a feature, consider a vector representing the aver-
age color of an image. To determine relevance between an object and a query,
we need to transform both into their common domain. This transformation is
defined in Definition 3.5.

Definition 3.5 Feature Transformation

A query is transformed to a feature with the query transformation function
F@ : Q ! F , and an object with the object transformation function F> : O ! F .

To make this chapter concise, we consider an object as the unit for which rel-
evance is determined. As discussed in the previous chapter, more sophisticated
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retrieval models enable different levels of abstraction which can be queried and
returned as results. Having mapped both query and media object into a com-
mon domain, we define a relevance function in Definition 3.6.

Definition 3.6 Relevance Function

A relevance function REL : F ⇥ F ! [0, 1] determines the relevance of one
feature w.r.t. the other. 0 indicates no relevance, 1 indicates perfect relevance.

This means that any notion of relevance in retrieval relies on the represen-
tations of the queries and objects and not on the queries and documents them-
selves [CLVR+98].

Since relevance is hard to define, we often first calculate dissimilarity or dis-
tance as it can be easily expressed as a mathematical function for many features.

Definition 3.7 Dissimilarity Function

A dissimilarity function DS : F ⇥F ! R�0 indicates how far apart two features
are in the feature domain.

Afterwards, we apply a correspondence function [CPZ98] as defined in Equa-
tion (3.1) to our dissimilarity.

C : R�0 ! [0, 1] (3.1)

In these cases, we define REL
�
5 @, 5 >

�
7! C(DS( 5 @, 5 >)). Correspondence

functions need to have the following two properties [CPZ98]:

C(0) = 1

G1  G2 ) C(G1) � C(G2) 8G1, G2 2 R�0

We show two examples of correspondence functions in Example 3.1.
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Example 3.1 Correspondence Functions

Assuming we are given a dissimilarity X 2 R�0, two examples of corre-
spondence functions C : R�0 ! [0, 1] are the linear correspondence func-
tion C;8= (X, max) 7! 1 � X

max and the hyperbolic correspondence function
C⌘H? (X, div) 7! 1

1+ X

div
. We visualize them in Figure 3.2, with the dissimilarity

on the x-axis and the resulting relevance score on the y-axis.

(a) C
;8=

with max = 100 (b) C
⌘H?

with varying 38E

Figure 3.2 Visualizations of two different correspondence functions

As intuitively expected, both result in a lower relevance score for increas-
ing dissimilarity. C⌘H? is especially useful for cases where close proximity
is essential, for example with geospatial features [BS16; SRS18] as used in
the lifelog retrieval modules implemented in the course of this dissertation
project [HGP+21].

As the goal is often to get all or the most relevant elements, retrieval can
be sped up using index structures which do not have to evaluate relevance per
item, but instead use heuristics. We will not discuss these here in detail, as
our model in the next chapter is agnostic to whether index structures exist for
a given retrieval module or not. Before ending this section, we review other
perspectives on retrieval models found in literature in Literature Discussion 3.2.

Literature Discussion 3.2 Other Perspectives on Retrieval Models

[BR11, p. 58] define an IR-model as a quadruple
⌦
⇡,&, �, '(@8, 3 9 )

↵
. ⇡ is a

set of representations of the documents in a collection (O in our notation). &

is a set of representations of the user information needs called queries (Q in
our notation). � is a framework for modeling representations, queries and
everything else (the transformation functions associated with a feature in our
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notation), and '(@8, 3 9 ) is a ranking function that associates a real number with
a query representation @8 2 & and a document representation 3 9 2 ⇡. This
ranking defines an ordering with regard to the query @8.
[SWS+00, p. 1365–1369] define a query space with the following components:
documents (images), features, a similarity function, and a set of labels for goal-
dependent semantics, the first three of which are closely aligned to our nota-
tion.
Fuhr [Fuh92] has the elements h⇡,&, A,U, Vi where ⇡ are the documents, &

the queries, and A all possible relevance judgments ([0, 1] in our notation). U

derives representations from queries and documents (which would be the Q

and O in our notation) and V derives descriptions from these representations,
on which a retrieval function can be applied. These descriptions are the features
F in our model.
Most retrieval models found in literature are similar in nature to very early
work [Coo76], which defines h�, ',+ ,)i where � is a set of representations of
all documents (in our notations, the features that were derived from O), ' all
“search prescriptions” (queries), + the set of “retrieval status values” a system
can produce (relevance judgments, [0,1] in our notation) and ) : ' ⇥ � ! + the
retrieval function (relevance function in our notation).
There is also work on probabilistic models, in which relevance is addition-
ally estimated based on the probability of relevance to a query. We do not
consider these in the scope of this thesis, and refer interested readers to sur-
veys [CLVR+98] and more recent work [BL17].

Most of the presented retrieval models assume that the unit of relevance is
a document, and do not explicitly consider the case in which the documents in
the collection, the unit for which a query is formulated, the unit for which rele-
vance is determined, and the unit which is presented, may differ. As discussed
in the previous chapter, enabling users to query different layers of abstraction
according to their information needs could have significant benefits for more
complex information needs, and we will revisit this requirement in our model
in Chapter 4.

In the remainder of this section, we discuss two common retrieval models
which are also used in our retrieval model and implementation, and how they
determine relevance along with simple examples. We begin with vector space
retrieval in Section 3.2.2 and continue with Boolean retrieval in Section 3.2.3.
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Figure 3.3 Illustration of how vector similarity is used and evaluated in a simple
feature for a user-provided sketch. Sketch from [Gst21]

3.2.2 Vector Space Retrieval

In the vector space model [SWY75], features are high-dimensional vectors, with
5 2 R=. This has the advantage that dissimilarity between two vectors can be
easily expressed as a mathematical function, with a wide range of options for
the dissimilarity function DS : F ⇥ F ! R�0 such as the Euclidean distance,
which is defined for a query vector 5 @ and an object vector 5 > as follows:

DS;2
�
5 @, 5 >

�
7!

vt
=’
8=1

�
5 @8
� 5 >8

�

We give an example for a simple color sketch feature which relies on the
vector space retrieval model in Example 3.2, which is illustrated in Figure 3.3.

Example 3.2 Sketch-based Video Retrieval

To find a sequence containing a giraffe, a user provides a sketch. A simple
feature for sketch-based retrieval shown in Figure 3.3 reduces both sketch and
most representative frame are to an 8-by-8 grid, where the distance between
the two vectors is computed using the Manhattan distance function which is
defined as follows:

DS;1
�
5 @, 5 >

�
7!

=’
8=1

| 5 @8 � 5 >8
|
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The vector space model was originally developed for textual data, where
textual documents are mapped to a vector in which each element represents a
specific term and its frequency, which is potentially normalized [Dom08, p. 163].
It can be also applied to various types of multimedia and features, such as tex-
tual embeddings of visual data [SGH+22], and color sketches [Ros18]. Different
dissimilarity functions are suited to different applications and feature spaces, for
a comprehensive evaluation of dissimilarity functions for multimedia retrieval,
we refer the reader to [Ros18].

We do not discuss the vector space retrieval model for text in further detail
as our conceptual model in Chapter 4 is agnostic to which feature is used for
text retrieval and the implementation discussed in Chapter 5 uses one of the
most popular libraries, Lucene [Fou21]. Lucene combines Boolean retrieval with
vector space retrieval by pre-filtering for Boolean matches before scoring with
vector space retrieval. This is extremely useful both for textual metadata as
present in our Lifelog scenario, and multimedia analysis modules which output
textual data such as OCR [SBY17; arg22] or ASR [HCC+14; Moz22; RKX+22].

3.2.3 Boolean Retrieval

The Boolean retrieval model is the foundational model of information retrieval,
and has been criticized and extended countless times by researchers. At its core
are three basic operators: AND, OR and NOT. Both the multimedia objects and
the query are represented as a set of terms, and the results contain all objects
which match the specified terms and their respective operators [Dom08, p. 126].

As a simple example, consider metadata about an audio collection, specif-
ically a textual description per song containing information about title, band,
and release year. If we wish to retrieve all songs by “The Beatles” or “The
Rolling Stones” but specifically not “Paperback Writer”, our query would be�
“The Beatles”_ “The Rolling Stones”

�
^ ¬“Paperback Writer”. It is easy to see

how this model has many disadvantages, with the two main being the inabil-
ity to rank documents and the rigidity of the operators [BBF+07], yet it also
has the benefit of clarity and being easily expandable with other operators and
wildcards for text retrieval.

There are extensions to the Boolean retrieval model which enable rank-
ing such as the ?-norm extended Boolean model [SFW83] or the probabilistic
model [BBF+07, p. 106–110], which we will not cover in further depth.

In the context of our work, we will also be using the terminology of Boolean
retrieval when talking about more traditional database queries as known from
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relational algebra [Cod70] or SQL. This is specifically useful when we consider
structured or semi-structured metadata as available in the context lifelog re-
trieval or most modern multimedia collections. We will not fully introduce the
relational data model here, for recent comprehensive overviews with examples
in the context of multimedia retrieval we refer to [Gia18; Gas23]. Our concep-
tual model is largely independent of the specific semantics of a query term, and
in the context of our implementation contributions [RGH+19; HPG+20], we use
standard operators such as =, , �, or IN for structured metadata and LIKE for
full-text retrieval.

3.3 A Conceptual View of Retrieval Systems

Having discussed the path from information need to query and different re-
trieval models, we turn to a systems perspective on multimedia retrieval. As
discussed in the previous chapter, support for the user journey and interactive
retrieval necessitate a system view, and the other requirements also lend them-
selves to being considered from this perspective. In this section, we discuss the
fundamentals of multimedia retrieval systems, which will lead into the next sec-
tions with a conceptual discussion of query formulation methods and fusion for
complex queries.

In general, retrieval systems consist of three core components: a user inter-
face for formulating queries and browsing results, an application layer and a
data management system. We show an architectural view in Figure 3.4. This
separation makes sense from a variety of perspectives: It follows the traditional
three-tier architecture of information systems [Sch18], is in line with retrieval
system ideas developed on the basis of the MPEG-7 standard [HBH+04; KAG10],
and is also widely advocated in literature [Fuh12; Fuh14; JWZ+16; Gia18; Ros18;
Gas23].

Traditionally, a separation has been made between an offline phase where
data is ingested, parsed, analyzed and stored in the database layer and an online
phase, during which data is retrieved. While this assumption has been signifi-
cantly challenged in recent years due to the dynamic nature of the applications
in which multimedia retrieval systems are used [Gas23], we still include it in this
chapter as it also helps to understand the different parts of a retrieval system,
but will talk of parts instead of phases to highlight that ingestion, extraction and
retrieval can happen in parallel.

In the offline part, data which should be retrievable is provided to the sys-
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Figure 3.4 Model of a general purpose multimedia retrieval system. Based
on [Gia18; HGG+23; HSS23]

tem through an Application Programming Interface (API), Command-Line In-
terface (CLI) or User Interface (UI). Features are then extracted from the mul-
timedia objects and stored along metadata in the database. The data manage-
ment layer should support both structured and semi-structured data, relevant
retrieval models such as vector space retrieval, full-text search and Boolean re-
trieval in addition to traditional Database Management System (DBMS) capabil-
ities [Gia18; Gas23].

In the online part, information needs are mapped to a system query in the
query formulation process as defined in the previous section. This can be done
through various modalities, which will be described in Section 3.4. The query
formulation options offered by the system not only determine the available
modalities, but through those also the retrieval models and the ability of the
user to express their information need. The application layer (also called re-
trieval engine in this thesis) is responsible for executing queries in an efficient
and effective manner, and returning meaningful results to the client. This neces-
sitates a clear model of determining relevance, and supporting complex queries.

Conceptually, this thesis introduces data, query and retrieval models in Chap-
ter 4 and thus touches all three areas of multimedia retrieval systems, with a
focus on the application layer. In the implementation presented in Chapter 5, the
contributions are mainly in the user interface and application layer, with minor
contributions to the data management layer. While the conceptual contributions
of this thesis are independent of the user interface modality itself (e.g., desktop,
mobile) and the implementation contributions are in a traditional desktop UI,
we will later briefly review different interface options in Section 7.1.2.
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3.4 Query Modalities

The literature has no unified definition of terminology and distinction of query
modalities, which could be defined as different ways to express an information need.
In this section, we cover different ways to formulate queries from a user per-
spective. We briefly review some categorizations from relevant literature in Lit-
erature Discussion 3.3, then discuss textual, sketch and Boolean queries in more
detail, and review novel query modalities at the end of this section.

Literature Discussion 3.3 Query Modalities

[DJL+08] distinguishes between modalities and categorizes them into keywords,
free-text, image, graphics (sketch), and composite queries, which are grouped
together with interactive queries. [HXL+11] distinguishes between query types
with query-by-example, query-by-sketch, query-by-object, query-by-keyword,
query-by-natural language and combination based queries (also called mul-
timodel search) as examples. [Sme07] distinguishes between metadata and
browsing keyframes, text (ASR, OCR), keyframe matching (query-by-example),
semantic features, object-based video retrieval and a combination of the above.
Most recently, in comparison of interactive evaluation campaigns [LVM+21;
HGB+22], the categories free-text search, object / concept detection, image
search, sketch search, fusion of modalities, temporal queries and relevance
feedback are being used to categorize the different participating systems, with
the first five having a mapping to aforementioned literature.
Generally speaking, literature often distinguishes between query-by-example
and query-by-sketch, but we do not review query-by-example in this section
as it is not a prominent feature of modern retrieval systems anymore. Objec-
t/concept detectors remain a popular feature [HGB+22], and keyword queries
are either directly mapped to the output of such detectors or are then used as
a free-text field for OCR, ASR, or textual embeddings.

3.4.1 Textual Queries

Text is often described as “the universal interface” [Ray03], so it is unsurpris-
ingly an extremely popular and often used input modality for queries. From
web-scale search engines to library search systems, both large- and small-scale
systems offer users the option to simply write text and process it in such a way
that it produces relevant results. In the multimedia retrieval context, systems
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sometimes offer the user to explicitly distinguish between the meaning of the
text, for example if it is referring to OCR, ASR, or textual embeddings [LXY+19;
BNV+21]. Other systems try to parse free-text fields and map them to different
retrieval features (e.g., by separating Boolean filters such as the weekday from
content-based queries [TNN+22]).

The actual retrieval model which is used when evaluating a query with tex-
tual input differs based on the feature, for example OCR is often used with text
indexing models as described previously, while textual embeddings use vector-
based similarity search as introduced in Section 3.2.2. As discussed previously
in Literature Discussion 3.1 though, there are various gaps between a user’s
mental model of their information need, their ability to translate said need into
textual form and the ability of a system to make use of this expression. This
means that other query modes might be better choices for specific scenarios.

3.4.2 Sketch Queries

Drawing a sketch of an information need is a relatively intuitive modality, and
sketch-based image retrieval is an established field of research [RHC99; DJL+08;
LL18].

Sketches serve as an excellent illustration of the various gaps between infor-
mation need and query formulation mentioned earlier. Similarity to a sketch
can be interpreted on the basis of shape [Can86; PJW00], color [CMN04], im-
plicit semantics [SSX+16; SDM17] or even explicit semantics [RGS19]. Beyond
the gaps mentioned previously, there are sketch-specific gaps [LL18], namely
visual cues (sketches only have symbolic colors and little details on shape) and
content imbalance (sketches have in most cases no background). Additionally,
sketches can be representations of 3D objects [BGS+20], opening up interesting
questions for multimedia retrieval beyond video, images, audio and text. For
a more in-depth discussion on the fundamentals and limits of query-by-sketch,
we refer the reader to [Ros18, p. 10–16]. In our example for vector space re-
trieval (Example 3.2), we showed how a sketch query could be used to express
an information need.

3.4.3 Boolean Queries

When discussing differences between the world of Databases and Information
Retrieval, we often make a distinction between matching and relevant results or
partial and exact matches [van79]. However, sophisticated retrieval systems often
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offer users the ability to enhance or complement their queries with components
which have a binary relevance judgment. Examples for such queries might be
based on metadata (e.g., “only images within the last year”), or checkboxes
(e.g., “only videos”) or Safe Search functionality in Google, which hides content
deemed explicit). This is especially relevant in lifelog retrieval, where content-
based information needs are complemented through metadata-based ones (e.g.,
“I was at a conference in Korea last year”), and also underscores the need for
query models which enable a combination of modalities.

3.4.4 Novel Query Modalities

In the past decades, various novel and innovative query modalities have
been considered for multimedia retrieval. One example is querying by mo-
tion [KPZ+04] (e.g., specifying that a bird flies to the right in a video [RGS+15]),
other examples include querying for the constructed pose of a person [CHS+19;
HAG+22], query-by-humming [GLC+95; KNK+99], querying for the pose a
person is currently making in front of a camera [HCC+15], recording parts
of a song one is looking for [Wan03; Wan06], sketching 3D shapes in the
air [LLG+15; ZSY+17], querying for hand gestures [APRS+20; PWR+21], query-
ing by voice [GGR+17; ARG22], and sculpting 3D shapes in VR [GJS18; BGS+20].

Continuing research on existing and novel query modalities necessitates
generic retrieval models which can combine different modalities, which is cov-
ered in the next section, Section 3.5.

3.5 Complex Queries

Given that users may query using different modalities, and that those modalities
can be interpreted by a retrieval system using different features and retrieval
models, the task of combining these models, and generating a ranking from the
results is central to retrieval. In this section, we review the fundamentals of
complex queries and result fusion.

The underlying assumption behind fusion schemes should be that the indi-
vidual result sets to be combined have “high performance, a large overlap of
relevant documents, and a small overlap of nonrelevant documents” [VC99].
Three key effects help methods which use fusion [Dia98; VC99]:

The Skimming Effect: As different methods retrieve different multimedia doc-
uments, taking the top-ranked elements for each method (i.e., skimming) can
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benefit both recall and precision. Recall is potentially enhanced through the
diversity of relevant documents and precision, assuming highly ranked doc-
uments tend to be more relevant than lower ranked ones.

The Chorus Effect: A high ranking by different methods for a single item (i.e.,
a chorus instead of a solo) indicates higher confidence in its relevance than if
it is just highly ranked by a single method.

The Dark Horse Effect: Retrieval methods may be unusually accurate (or inac-
curate) for some queries or documents. Fusion schemes could make use of
this effect by dynamically adjusting weights based on the document or query
at hand and overweighting the method assumed to work best.

These effects are at odds with each other — skimming too much reduces
the chorus effect, the dark horse effect argues for reliance on individual meth-
ods while the chorus effect argues for weighing all methods, making fusion an
interesting and complex area of research.

For the purposes of this section, we assume that we have scored lists, that
is result lists where the individual elements are also assigned a relevance score
or dissimilarity. This enables us to do score-based fusion. If the result lists are
only ranked, rank-based fusion can be used [RS03; FKS03], which we do not
cover, but all methods for rank-based fusion can be used for scored lists as well
assuming there is a tiebreaker mechanism.

One of the fundamental concepts of fusion for similarity queries are so-called
Distance-Combining Function (DCF) as defined in Definition 3.8. They allow
users to express different semantics when combining multiple queries. As dis-
cussed previously, a dissimilarity or distance X is often easier to compute than
relevance, which is why DCF operate on distances.

Definition 3.8 Distance-Combining Function (based on [BMS+01])

A Distance-Combining Function (DCF) X̂ : (R�0)
=
! R�0 calculates a single

distance from = different distances. We label individual distances of a DCF
using X = (X1, X2, . . . , X=), with X8 2 X.

There are many different DCF imaginable, we will list some in the following
based on and adopted from [SF94; BMS+01].
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max: Sometimes called “fuzzy-and” [BMS+01], the maximum distance may be
selected when closeness to all subqueries is considered important, formally:

X̂<0G

⇣
X

⌘
7!

=

max
8=1

(X8)

min: Sometimes called “fuzzy-or” [BMS+01], the minimum distance may be
selected when closeness to one subquery suffices, formally:
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anz: The average of all distances below a threshold Y ignores queries which are
considered to be failing and can thus be viewed as a variation of an average
of non-zeroes1, formally:
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mnz: This fusion scheme rewards items retrieved by multiple methods2, for-
mally:
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Linear Combination: The last method combines distances according to user-
provided weights. It is called linear combination in [VC99], weighted score-based
late fusion in [DM10; Ros18] or weighted average in [BMS+01]. Given user-
provided weights F = (F1,F2, . . . ,F=) per distance (kFk =

���X���), the weighted
average is then defined as follows:
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1This is slightly adopted from [SF94], where they define “CombANZ” to be the average of
non-zero similarity values because we are combining distances and not similarity values. It is
reasonable to assume that distances above a threshold Y would have a similarity value of zero.

2This is also adopted from “CombMNZ” in [SF94] as we are comparing distances and not
similarities. In the original case, the sum of similarities is multiplied by the number of nonzero
similarities. In our case, we also want to reward items retrieved by multiple methods and
therefore additionally divide again by the number of nonzero similarities.
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We additionally discuss different perspectives on fusion in Literature Discus-
sion 3.4.

Literature Discussion 3.4 Fusion

Early fusion is commonly referred to as fusing modalities in the feature space
while late fusion aggregates those features (which are often unimodal) in or-
der to achieve better retrieval or classification performance [SWS05; AHES+10;
PG17] for example by learning weights [TFG+09; LLC+15].
Another application is machine learning in the combination of audio and
visual modalities [KLP13; EML+18; NYA+21] or to train text-image embed-
dings [LXY+19; RKH+21] which would be considered early fusion, as the fea-
ture representation is learned considering multiple modalities.
Connections can also be drawn to “unsupervised fusion and ensembles of clas-
sifiers in supervised learning [Die00; PP07; ZM12]” [KC18].
Starting with [SF94], there is a significant body of work for new models and
evaluations of different fusion and query evaluation schemes for complex
queries [Fag99; FLN01; BMS+01; WC02; FKS03; FKM+06; WCB06; BCO+07].

In this chapter, we have reviewed the fundamentals of multimodal multime-
dia retrieval, going from the query formulation step to different retrieval models,
a holistic perspective on retrieval systems, different modalities for queries and
fundamentals of more complex queries. This leads us to our own data, query
and retrieval model which enable different abstraction levels for queries, rele-
vance and presentation in Chapter 4, and will also serve as a basis for Chapter 5,
where we present vitrivr, a multimedia retrieval system which serves as a proof-
of-concept for our presented model and is used for the evaluation in Chapter 6.





But you wouldn’t clap yet.
Because making something
disappear isn’t enough — you
have to bring it back.

— The Prestige4
Temporal Multimodal Multimedia
Retrieval

Following the foundations of multimedia retrieval, we will turn to the concep-
tual model for temporal multimodal multimedia retrieval, which is at the core
of this thesis. Although our motivating scenario and evaluation is focused on
visual data with a temporal progression (video and visual lifelog data), both
the content of this chapter and the implementation in vitrivr is not specific to
visual data and also applicable to other domains such as audio. This is why
we talk about multimedia in this chapter even though the title of this thesis is
focused on video and lifelog data. The examples will be linked to the scenarios
from Chapter 2, and the notation and concepts build upon Chapter 3.

This chapter partially builds upon previous work on the conceptual founda-
tions of multimodal multimedia retrieval in the vitrivr system [Gia18; Ros18],
and contains content from peer-reviewed journal, conference, and workshop
publications which were (co-)authored [RGH+19; SPG+20; HSS+20; HPP+20;
HPG+20; HGI+21; HAG+22; HSS23], which are directly referenced where ap-
propriate. Literature discussion blocks often go beyond the content of the publi-
cations referenced based on correspondence with the original authors to ensure
a correct description and mapping to our model.

We start with our data model in Section 4.1, and then go to the information
needs which are within the scope of our model by showing our query model
in Section 4.2. Afterwards, we follow the title in reverse order by first discussing
complex multimodal queries, which consider different input modalities (e.g.,
sketch, text) and combinations thereof, in Section 4.3. The chapter ends with our
execution model for temporal queries, which enable users to formulate temporal
context and constraints for queries in Section 4.4.
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4.1 Data Model

The overarching goal of the conceptual data model is to be generic enough such
that it supports different kinds of media, such as video, images, audio and 3D
models. This is not only important from a theoretical perspective, but also for
the implementation work described in the next chapter, where we describe our
work on vitrivr, a multimedia retrieval system which supports all those media
types.

In our data model, we start with a multimedia object > 2 O which is divided
into segments B 2 S by a segmentation function SEG : O ! 2S . For notation
purposes, we write the power set, that is the set of all subsets, of a set ( as 2( in
this thesis.

Different segmentation functions are imaginable, in the context of our work
we consider segmentation functions which map an object onto a linear space
with temporal progression from one segment to the next1. Other segmentation
functions such as partitioning a 3D model into semantically meaningful com-
ponents, or multiple segmentation functions per object are imaginable, but not
supported in the system presented in this thesis as discussed in Chapter 2.

In this section, we first introduce relevant definitions for our multimedia data
model and then briefly discuss metadata. This serves as the basis for the sections
in which our retrieval model is defined.

Multimedia Data

We define objects and segments in Definitions 4.1 and 4.2, a scored segment
in Definition 4.3, segmentation functions which map an object to segments
in Definition 4.4, and then retrieval features used for retrieval in Definition 4.5.

Definition 4.1 Object

A multimedia object > 2 O := hoid, type, pathi has an identifier oid, is of a
type, and tracks a reference path to the actual location where its content is
stored.

Using path instead of the actual data enables theoretical objects where the
entire content is contained in the segments. In such cases, content-resolution

1This does not necessarily prevent multimedia objects which do not have such a progression
from being segmented. It just means that retrieval functionality which depends on this pro-
gression will not work. This is fine, as there is not really a sensible information need based on
temporal progression for objects which do not have one.
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by segment identifier would need to be possible. On an implementation level,
objects may hold type-specific information such as a frame rate for videos using
horizontal or vertical partitioning.

Definition 4.2 Segment

A segment B 2 S := hsid, oid, seq,start,endi has an identifier sid, a reference
to its object oid, the index which tracks temporal progression within the object
seq and a start and end.

As objects are segmented with a temporal progression, seq references the in-
dex of a segment as determined by a segmentation function. start and end can
be frame numbers for videos, or timestamps for lifelogging. In our formaliza-
tion, a segment cannot be a part of multiple objects as seq is always relative to
a specific object segmentation and start and end are often relative to a specific
object. For retrieval, we assign relevance scores g 2 [0, 1] to elements, with 1
indicating perfect relevance. For clarity, we define a scored segment in Defini-
tion 4.3.

Definition 4.3 Scored Segment

A scored segment B̂ 2 Ŝ := hB, gi consists of a segment B and a corresponding
relevance score g 2 [0, 1].

Definition 4.4 Segmentation Function

A segmentation function SEG : O ! 2S takes as input an object > 2 O and
returns a list of segments for said object. The sequence number of a generated
segment is equivalent to its index in the list, thus indicating its temporal index
within the specified segmentation.

We provide an example for a segmentation function in Example 4.1.

Example 4.1 Segmentation for Video Retrieval

In video retrieval, one sensible segmentation approach is shot segmentation.
A shot is a sequence of frames “from a single camera made without inter-
ruption” [Skl93]. Thus, a conversation between two people with a back-and-
forth in perspectives will result in several shots as this is a visual and not
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semantic unit of segmentation. The semantic unit of segmentation would be a
scene [HA99].
Specifically, the approach used in vitrivr is based on [KGU10] and compares
color histograms of succeeding frames to detect shot boundaries [Ros18].

We show an example of how the data model could be used in a lifelog re-
trieval context for lifeloggers (that is, people who record their lives as introduced
in Section 2.2) in Example 4.2.

Example 4.2 Data Model for Lifelogging Wearables [HSS23]

For wearables which are configured to take pictures at specified intervals, the
data used for retrieval is individual images with an associated capture times-
tamp. These can be used as the atomic unit of retrieval, and are thus considered
as the segments in that scenario [RGH+19].

Segment 160923_1224:
23.09.16 20:06

Segment 160923_523:
23.09.16 11:26

Segment 160923_1033:
23.09.16 18:23

Segment 160924_523:
24.09.16 10:22

Segment 160924_853:
24.09.16 13:26

Segment 160924_1404:
24.09.16 19:17

Object 160923 (23.09.16)

Object 160924 (24.09.16)

In this example, we group them by day, and thus each day is an object which
has as its segments, the images taken on said day.
Assuming all images from the 23rd of September 2016 are stored in
the same directory, the object for the 23rd of September would thus be⌦
160923, DAY, lifelog/160923

↵
and the 1224th image from that day taken at

20:06 would be h160923_1224, 160923, 1224, 120600, 120601i.
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Similarly to what we defined in the previous chapter based on [BR11; Gia18],
a retrieval feature � is responsible for mapping both query and segment into a
common space where relevance scores are calculated. Our atomic query unit is
called query term qt.

Definition 4.5 Retrieval Feature

A retrieval feature � :=
⌦
�qt,�B,�A

↵
is defined by three functions: a query

transformation function �qt : &) ! F , a segment transformation function
�B : S ! F , and a retrieval function �A : &) ! 2Ŝ .

Example 4.3 Text Embedding Retrieval Feature for Video Retrieval

The filmmaker from our motivating example could search for the lion using
the text “Lion in a desert”. vitrivr implements a co-embedding retrieval fea-
ture [SGH+22], whose inner workings are shown in Figure 4.1. Both the text
input and the frames from the shot get embedded in the co-embedding space,
where the distance between the two vectors gets computed.

Textual Query

Pretrained Visual
Feature Encoder

Pretrained Textual
Feature Encoder

Lion in a
desert Textual Embedding

Visual Embedding

Per-Frame
Visual Features

Textual Features

Co-Embedding Space

𝒻

Segmentation

𝒻

Information
Need

Query Formulation

Figure 4.1 Illustration of a retrieval feature with text embedding. Adopted
from [SGH+22]

In this case, we use a linear correspondence function to transform the vector
distance to a relevance score.

The first two functions have as their output a feature 5 , �qt transforms a
query term qt and �B a segment B. Those features are used to evaluate relevance
through REL

�
5 qt, 5 B

�
, where 0 indicates no relevance and 1 indicates perfect

relevance.

For notation purposes and conceptual clarity, this is summarized in �A ,
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where a single scored list A� = ( B̂1, B̂2, . . . , B̂=) 2 2Ŝ is generated given a query
term qt. Each individual element of this list is a scored segment B̂ 2 Ŝ :=
hB, gi, whose relevance score is determined by evaluating the relevance of the
segment B 2 S for the given query term. For an individual segment B, B̂ =⌦
B, REL(�qt(qt),�B (B))

↵
.

Metadata

The metadata model looks the same for objects and segments and was already
described in [HSS23]. Literature often views all extracted features as metadata,
and based on this we can differentiate metadata between two types of metadata
in our model from a conceptual perspective: metadata that is used for Boolean
retrieval, and metadata that is used for content-based retrieval such as OCR
data. From an implementation perspective, we can separate two different types:
metadata that can be extracted from the given multimedia data such as frame
rate, and externally provided metadata such as archival annotations in a cultural
heritage context.

Metadata for Boolean Retrieval: To support information needs which contain
a component where binary relevance evaluation is possible, we use simple meta-
data tuples as defined in Definition 4.6.

Definition 4.6 Metadata Tuple

Given the identifier id of either a segment or an object, a metadata tuple m is
defined as follows:

m := hmid,id,domain,key,valuei

with mid being a unique identifier per metadata tuple.

Domains might include exif, technical for aspect ratio or resolution, or provided
to indicate external sources. As we assign an artificial primary key, multiple
metadata tuples per object or segment are possible.

Metadata for Content-Based Retrieval: Multimedia data in real-world scenar-
ios often comes with provided information from third-party sources such as tex-
tual descriptions. In these cases, the retrieval features defined in Definition 4.5
can shed the need for a segment transformation function �B and instead only
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provide a query transformation function �qt. Otherwise, this kind of metadata
can be considered identical to extracted features.

4.2 Query Model

In this section, we build the query model incrementally by starting with our
atomic query unit, define complex similarity queries with specific examples,
and then define temporal similarity queries.

4.2.1 Query Term

At the core of the query model lies a query term qt 2 &) :=
D
data,�

E
, which

contains information about a single modality, and the retrieval features used.
We define qt in Definition 4.7 and provide an example in Example 4.4.

Definition 4.7 Query Term

A query term qt 2 &) :=
D
data,�

E
is a representation of a user’s information

need for a specific modality (e.g., free text, Boolean predicates, visual sketch).
The actual content depends on the modality and is captured in data, and �

contains a list of retrieval features that the user deems sensible for the content
of the query term.

Example 4.4 Text Query Term

Marion is looking for images that contain a tree next to a river. They there-
fore formulate a query with a single modality: the text “tree next to a river”.
Internally, the retrieval system has two kinds of retrieval features that work
with text: a text-embedding retrieval feature such as W2V++ [LXY+19], and
a traditional text retrieval feature that searches in textual descriptions gen-
erated by a commercial API using Lucenea. Assuming the retrieval fea-
tures are called embedding and description and default parameters are used,
qtC =

⌦
“tree next to a river”, (embedding, description)

↵
ahttps://lucene.apache.org

A possible extension would be to allow users to specify explicitly how the
results from the features are combined, but we assume that if multiple features
are evaluated for the same query term, a simple linear combination should suf-

https://lucene.apache.org
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fice. Otherwise, a user could simply evaluate the features in two different query
terms and specify a complex similarity query, which we will discuss in the next
subsection.

Configurable parameters such as the number of results to be returned : , or
which correspondence function to be used are included in the parameter data

in our model.
Building upon that, we extend our retrieval model in the next section with

more complex queries.

4.2.2 Complex Similarity Queries

Having defined our atomic query unit, we now turn to more complex infor-
mation needs that still target a single segment. Our query model relies upon
fundamental work in the domain of complex queries [Fag99; BMS+01]2. Spec-
ifying the combinations in advance allows for improved query planning and
execution models for the retrieval engine and database.

Additionally, as the retrieval features we use in our model are tasked with
generating ranked lists with a relevance score, we use a slightly adapted version
of DCF [BMS+01] which we call Similarity-Combining Function (SCF)3. We de-
fine SCF in Definition 4.8, build our definition for complex similarity queries on
that in Definition 4.9 and provide an example in Example 4.6.

Definition 4.8 Similarity-Combining Function

A Similarity-Combining Function (SCF) r̂ : ( [0, 1])= ! [0, 1] calculates a single
relevance score g 2 [0, 1] from = different relevance scores. The individual
scores to be combined by a SCF are g = (g1, g2, . . . , g=), with g8 2 g.
r̂ is monotonic for all arguments: r̂

⇣
g1, g2, . . . , g=

⌘
 r̂

⇣
g
0

1, g02, . . . , g0
=

⌘
if g8  g

0

8

for all 8.

r̂ can be chained and nested. Consider Example 4.6, where the final r̂ com-
bines a min operator with a linear combination: r̂4 = r̂<8=

�
r̂;2 (gC , g?), g3

�
.

2Which has also informed some work on predecessors of the vitrivr system [Spr14; Gia18].
3The space of potential SCF is large. We have covered different fusion functions in the

previous chapter, with some adopted from foundational work on combining similarities [SF94].
The implementation chapter will cover the implemented functionality in vitrivr, which slightly
deviates from the model for engineering reasons.
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Definition 4.9 Complex Similarity Query

Given a list of individual query terms qt, we define a complex similarity query
csq :=

⌦
qt, r̂

↵
with

��qt�� = =, and r̂ : ( [0, 1])= ! [0, 1] as defined above describ-
ing the desired similarity-combining functions to merge the different result sets
from individual query terms.

In this definition, the query terms are comparable to “atomic queries”
in [Fag99] and “reference objects” in [BMS+01].

Having defined complex similarity queries, we will now provide two exam-
ples. The first is a simple weighted multimodal similarity query in the context
of video retrieval in Example 4.5 and the second is a more complex similarity
query in the context of lifelog retrieval Example 4.6.

In the first example, we consider a weighted multimodal similarity query
with a list of query terms to considered qt = (qt1, qt2, . . . , qt=), relevance scores
are combined using linear combination r̂;2 : [0, 1]= ⇥ [0, 1]= and thus the user
provides additionally weights for each query term F = (F1,F2, . . . ,F=), kFk =��qt��.
Example 4.5 Weighted Multimodal Similarity Query

Andrea is looking for pictures of the time they visited their red va-
cation house, which sits on top of a hill. They therefore formulate
a query with two modalities: a textual one “A red house on top of
a hill, surrounded by trees.” and a sketch B: serialized to Base64-
representation B:164 with equal importance and thus F=(1,1). Assum-
ing there are multiple sketch-features such as edge and localcolor, qtC =⌦
“A red house on top of a hill, surrounded by trees.”, (embedding)

↵
and qtB =⌦

B:164, (edge, localcolor)
↵

the full query is csq = h(qtC , qtB) , r̂;2 (g, (1, 1))i)
meaning the results are fused using linear combination as discussed in the
previous chapter.

The example shows how the implementation model used in [RGT+16; Gas17],
which introduced first iterations of the vitrivr system, can be easily mapped onto
our retrieval model.
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Example 4.6 Complex Similarity Query - Lifelog

fireworks

1/Aug/18,
Basel

1/Aug/21,
Hong Kong

A lifelog query looking for images from the Swiss national day where fire-
works are visible would result in two queries: date=01/08 and a content-
based query for “fireworks”. Thus qt1 = hdate=01/08, (metadata)i, qtC =⌦
“fireworks”, (embedding)

↵
. Since the date is a hard constraint, r̂ = min (g1, g2)

as the query for the date will return binary relevance scores.
If we are additionally most interested in images in proximity of the “Mittlere
Brücke” and would add a proximity query qt? =

⌦
[47.56, 7.59], (map)

↵
, the

SCF becomes slightly more complicated. In this example, we go for a linear
combination of the two content-based features and keep the date as a hard
constraint and thus the final r̂ is as follows:
r̂ = min (g1, r̂;2 (g2, g3)).
In this case, an image of fireworks from a trip to Hong Kong over the 1st of
August would still be retrieved, albeit with a lower score.

4.2.3 Temporal Similarity Queries

Having defined a query model that is sufficient to address complex single-
segment information needs, we now introduce our query model for informa-
tion needs with temporal components such as those defined in our motivating
scenarios in Chapter 2. Definition 4.10 defines a temporal similarity query tsq.
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Definition 4.10 Temporal Similarity Query

A temporal similarity query tsq :=
⌦
csq, q,l, qttsq, r̂tsq

↵
, is defined as a list

of subqueries csq specifying individual components, an optional list of user-
specified distances between those components q (

��
q

�� = kcsqk � 1), an optional
maximum length of a result l and an optional list of query-level constraints
qttsq =

⇣
qttsq1 , qttsq2 , . . . , qttsq@

⌘
together with a SCF r̂ : [0, 1]@+1

! [0, 1],
which specifies how the query-level constraints are to be merged with the re-
sults of the subqueries.

q can be either a real number or a semantic expression of a temporal dis-
tance such as “immediately afterwards” or “shortly after” which can be used by
the execution engine and interpreted differently based on the scenario. We do
not restrict the semantic space of user-specified distances q,l as it is scenario-
dependent. The query execution section will discuss how a subset of these are
used in the individual fusion algorithms.

It is important to note that although this model cleanly builds upon our
model for complex similarity queries, other retrieval models for subqueries
could also be used as long as a list of scored segments is produced per subquery
(i.e., Acsq = ( B̂1, B̂2, . . . , B̂=)). This flexibility is important for other approaches from
literature which might have different approaches for queries targeting a single
segment but still wish to allow users to specify temporal context.

One design alternative to the query model is that we could allow specify-
ing the desired duration of an individual component. Our model allows this
indirectly through the distances between the subqueries, but the semantics are
slightly different.

While the model is built with the assumption that the subqueries follow
each other in a linear sequence, it can also be used if the ordering does not
matter. Specifying does not matter as a semantic distance between subqueries
can be used to provide the information that algorithms not requiring a strictly
matching temporal order can be used or are preferred. While this might not be
the most common scenario, it might have its uses especially for memory aid,
where the exact order of a sequence in the past is not remembered anymore.

We give two examples for temporal similarity queries, one for video retrieval
in Example 4.7 and one for lifelog retrieval in Example 4.8.
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Example 4.7 Temporal Similarity Query for Video Retrieval

Considering the example discussed in Chapter 2 and the availability of a
concept-detector, sketch features and a textual embedding, a query might look
as follows:

A group of
elephants

standing in a
lake

Here, the three subqueries include a concept-based query for a lion, a com-
bination of sketch and concept-based query for the giraffe and a combination
of concept search and textual embedding for the elephants. Whereas for the
sketch, a minimal combination makes sense as we are specifically interested
for sketch matches where a giraffe was detected, for the elephants, a linear
combination is selected. Two distances specifying q1, q2 = “shortly afterwards”
are also provided.
While we do not provide query-level constraints in this example, simple exam-
ples might include that a song was playing through all sequences or technical
details such as aspect ratio.
Formally:
csq1 =

⌦�⌦
“lion”, (tag)

↵�
, ()

↵
csq2 =

⌦�⌦
“giraffe”, (tag)

↵
,
⌦
B:6, (sketch)

↵�
, r̂<8=

↵
csq3 =

⌦�⌦
“elephant”, (tag)

↵
,
⌦
“A group [. . . ]”, (embedding)

↵�
, r̂;2

↵

and tsq = h(csq1, csq2, csq3), (q1, q2),�,�,�i

Example 4.8 Temporal Similarity Query for Lifelog Retrieval

This example is based on a task from LSC 2019a [GSH+19]. A significant
amount of information is available. The lifelogger was driving for an hour
until arriving at a friends house, where a red car was parked. Afterwards, the
lifelogger spent time inside with their friends around a wooden table. It was a
cloudy day on a weekend.
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A wooden table with
some stuff on it

Putting all this together, we get a more complex query than in the previous
example, where the individual query terms specify driving, a red car and a
house, and then a description of the inside of the house. Additionally, we
have query-level constraints such as the information that it was cloudy and the
possible days of the week. The combination function requires a match for the
date using r̂<8= but allows misses for the cloud constraint as there might not be
clouds visible inside the house using r̂;2. Thus, given g0 as the score of a result
before the query-level constraints, r̂tsq = r̂;2 (g2, r̂<8= (g0, g1))

aSpecifically, Task 26.

4.3 Query Execution for Multimodal Queries

Having defined our data and query model, we will first discuss our execution
model for complex multimodal queries in this section before moving to the exe-
cution model for temporal queries in the next section.

4.3.1 Retrieval Features

The task of an individual retrieval feature is to generate a scored list of the
relevant elements with respect to a given query. There are different types of
similarity queries imaginable, such as returning the : most similar items, all
elements above a given relevance threshold Y or even the : most dissimilar items.
Additionally, retrieval features might speed up retrieval using index structures
relevant to the feature representation.

As previously introduced, a retrieval feature � is tasked with generating a
scored list A� = ( B̂1, B̂2, . . . , B̂=), with the individual element being a scored seg-
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ment B̂ 2 Ŝ := hB, gi when provided with a query term qt. The retrieval function
�A : &) ! 2Ŝ could also be expressed in pseudo-sql as shown in Listing 4.1,
where feature_transform indicates transforming the query term as previously
defined using �qt and score indicates evaluating per-row relevance of a seg-
ment.

SELECT id,
score(

feature_transform(query),
segment_features

) AS score
FROM feature_table
LIMIT 1000
ORDER BY score DESC

Listing 4.1: Pseudo-SQL for retrieval on a single retrieval feature, retrieving the
top 1000 relevant results. Taken from [HSS+20]

This is sufficient for the purposes of our model. We have shown differ-
ent retrieval models and features in the previous chapter, and will give a brief
overview over the ones implemented in vitrivr in Chapter 5.

4.3.2 Complex Multimodal Queries

As argued previously, the space for potential SCF that could be specified is large,
and we will focus in this section on selected SCF that are useful in practice.

SCF can generally be evaluated by the application layer (in our case, the
retrieval engine) after the individual query terms have been executed indepen-
dently. In most cases, there are performance gains to be had by pushing them
down to the database layer.

We will first show SCF where late fusion is easily possible, and then after-
wards discuss examples where it can lead to significant performance gains to
have a different execution model.

The first group of SCF all operate under the assumption that the individual
query terms have been executed independently and in parallel4.

This means that when evaluating the SCF r̂ : ( [0, 1])= ! [0, 1], we have the
intermediate results Asqi =

�
Aqt1 , Aqt2 , . . . , AqtD

�
available similar to the previous

section and therefore for notation purposes in this subsection, r̂ : ( [0, 1])D !
[0, 1].

4This allows systems to show preliminary results early, which has interesting implications
for the database layer [Gia18].
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This allows us to support different SCF which are useful in different con-
texts. We will list some of them here, based on the DCF discussed in the previ-
ous chapter [SF94; BMS+01]. Preliminary versions of this work were published
in [HSS+20; HPP+20], and negative relevance feedback has benefited from work
supervised during this dissertation project [Pas20].

Linear Combination: r̂;2 requires a vector of weights F;2, kF;2k = D as an addi-
tional argument and is then defined as:

r̂;2 (g,F;2) 7!

Õ
D

8=1 F;28
· g8Õ

D

8=1 F;28

For context, this is the approach that was used in earlier versions of vit-
rivr [RGT+16; Ros18], and remains a simple, yet effective configuration of
the user interaction today. We provide an example in Example 4.9.

Example 4.9 Linear Combination for Multimodal Queries

Alex is searching for multimedia objects containing mountains. Therefore,
they formulate a query containing two modalities: a sketch of a mountain
and a concept search for mountain. Both modalities are equally important
to them. This is internally translated to two query terms, a base64-encoded
sketch and a query term which simply has the tag mountain.
Thus, qt = (qtB:4C2⌘, qtC06), F = (1, 1) , r̂ = r̂;2 (F), and csq :=

⌦
qt, r̂

↵
. Af-

ter query execution, this results in two scored segments B̂ 2 Ŝ := hB, gi
per term. AqtB:4C2⌘ = (hB1, 0.8i , hB3, 0.4i), AqtC06 = (hB1, 1i , hB2, 1i), and Asqi =

(AqtB:4C2⌘ , AqtC06).
Applying linear combination results in the following score per segment:

B̂1.g = r̂;2 (gB1 ,FB@) =
1 · 0.8 + 1 · 1

2
= 0.9

B̂2.g = r̂;2 (gB2 ,FB@) =
1 · 0 + 1 · 1

2
= 0.5

B̂3.g = r̂;2 (gB3 ,FB@) =
1 · 0.4 + 1 · 0

2
= 0.2

and so, Acsq = ( B̂1, B̂2, B̂3) = (hB1, 0.9i , hB2, 0.5i , hB3, 0.2i).
Implementations may choose to pass intermediate results Asqi to the fron-
tend so Alex could change the weighting of their modalities without exe-
cuting another query.
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min: Sensible especially for the combination of Boolean relevance scores as in
a lifelog scenario where metadata is plentiful, r̂<8= requires closeness to all
query terms, formally:

r̂<8= (g) 7!
D

min
8=1

(g8)

This is basically the AND operator in fuzzy logic. As an example, consider
the combination of a query term which looks for a specific date and a textual
description of an image.

max: Taking the maximum relevance score of a single query term can be sensi-
ble, but it requires the assumption that the relevance scoring function of the
used retrieval features are closely aligned. This means that a relevance score
of 0.8 for a sketch-feature indicates the same relevance as a relevance score
of 0.8 for an OCR retrieval feature. However, if two retrieval features use the
same underlying method (e.g., when combining two different OCR methods
which both use Lucene), it can be sensible. This is basically the OR operator
in fuzzy logic.

r̂<0G (g) 7!
D

max
8=1

(g8)

Absolute Negative Relevance Feedback: In case a user wishes to use content-
based late filtering (e.g., by removing all video segments that contain wed-
ding imagery5), this can also be done in a late filtering SCF6. This is sensible
when there is a threshold applied to the retrieval features that return un-
desirable segments, either by limiting the number of segments (:==) or a
fixed relevance threshold (Y==; Y 2 [0, 1]). Formally, assuming an arbitrary
number of query terms which describe undesirable content, their indexes <

with 8<8 2 [1, D], and a SCF r̂A : [0, 1]D�k<k ! [0, 1] which combines the
remaining similarities:

r̂=A (g,<, r̂A) 7!
8>><
>>:

0
Õk<k

8=1 g(<8)
> 0

r̂A ({g8 |8 8 <})
Õk<k

8=1 g(<8)
= 0

This filters out all segments that match the negative query terms. We pro-
vide an example in Example 4.10. Alternatively, one might consider having

5For example, multiple participants in user studies over the years have noted the propor-
tionally large amount of wedding footage in V3C1 [BRS+19].

6This is the implementation methodology used in [HPP+20; Pas20].
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an extended variant which explicitly specifies how the negative relevance
feedback scores should be combined.

Example 4.10 Negative Relevance Feedback in Video Retrieval

Ollie is searching for videos containing people in green dresses,
but knows their collection contains a significant amount of wed-
ding imagery, and they are specifically looking for non-wedding ex-
amples. Therefore, they formulate a query containing two content-
based text terms: qt1 =

⌦
“people in green dresses”, embedding

↵
, qt2 =⌦

“people at a wedding”, embedding
↵
. The indexes of the query terms de-

scribing undesirable content are < = {2}. As there is only one query term
specifying relevant content, r̂A is irrelevant and we use r̂<0G . The query
specified is csq = h(qt1, qt2) , r̂=A (2, r̂<0G)i.
For the first query term we get two scored segments, B̂1 = hB1, 0.8i , B̂2 =

hB2, 0.5i and for the second query term B̂3 = hB1, 0.3i. Accordingly, we have
two set of relevance scores, g1 = (0.8, 0.3) , g2 = (0.5, 0).
This results in the following scores per segment:

r̂=A (g1,<, r̂A) = 0
1’
8=1

g1(<
8
)
= g12 = 0.3

r̂=A (g2,<, r̂A) 7! r̂<0G (g21) = 0.5
1’
8=1

g(<8)
= g22 = 0

and thus, Acsq = ( B̂1, B̂2) = (hB1, 0i , hB2, 0.5i). This is in line with Ollie’s
expectations as the first segment was a content match for the wedding query
term.

For the next operator, it makes sense to involve the database layer more
closely due to their semantics.

Staged Queries: Considering Example 4.9, a more sensible approach might be
to evaluate similarity to the sketch on all segments that have been classified as
mountains, instead of executing the queries independently. Similarly, for the
r̂<8= operator introduced previously, a common use case for lifelog retrieval
is to have a content-based query with a Boolean filter.

In both cases, if a user is interested in the : most similar results, execution
order matters. Searching for the : most relevant segments for a query term
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and filtering for those which match a Boolean filter is almost guaranteed to
return less than : items. On the other hand, Boolean filters often would
return more than : items, and ranking those by similarity is not necessarily
sensible.

To guarantee being able to return : items in late fusion, the database layer
would have to return the relevance score for all items in a collection, which
makes the usage of index structures unfeasible and has significant perfor-
mance drawbacks.

Thus, we introduce the r̂:1 operator, which guarantees that : elements are
returned that are relevant for the filtering relevance score7. The semantics
of the operator are not the same as for r̂<8=, as it only operates on two rele-
vance scores8. The combination of the two resulting similarity scores can be
specified with r̂2 : ( [0, 1])2

! [0, 1]

r̂:1(g1, g2, r̂2) 7!

8>><
>>:

0 g1 = 0

r̂2 (g1, g2) g1 > 0

The reason we only require g1 to be 0 is that the second part might be a
color sketch with a relevance of zero, but the user would still want to see
the result. This operator can be chained indefinitely, although the usefulness
of this scenario is questionable. A previous version of this operator and its
implementation is described in [HSS+20], where we described it using the
term Staged Queries, where for example a Boolean filter would be stage 0 and
the content-based query term stage 1.

For this operator, there are different execution plans imaginable: the whole
query could be sent to the database as-is, or we first query all relevant items
for the first operator, and then send the relevant ids along with the second
similarity query as a filter. We show pseudo-SQL for the first variant in List-
ing 4.2 and for the second variant in Listing 4.3.

Sophisticated execution models for complex similarity queries have long
been a source of research interest [Fag99; BMS+01], however looking at state-of-
the-art systems for video and lifelog retrieval [LVM+21; HGB+22; GJS+22] they
are rarely implemented in practice. In contrast, the execution model presented in

7Only elements with a relevance score g > 0 are returned, therefore there can be edge cases
where fewer than : elements are returned.

8Recall from Section 4.2.2 that SCF can be chained, and thus this does not limit the number
of query terms.
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SELECT id,
score(

feature_transform(query),
segment_features

) AS score
FROM feature_table
WHERE id IN(

SELECT id
FROM other_feature
LIMIT 1000
ORDER BY
score(

feature_transform(other_query),
segment_features

)
DESC

)
LIMIT 1000
ORDER BY score DESC

Listing 4.2: Pseudo-SQL for retrieval on a single retrieval feature, retrieving the
top 1000 relevant results limited to ids deemed relevant by a subquery

SELECT id,
score(

feature_transform(query),
segment_features

) AS score
FROM feature_table
WHERE id IN(id1,id2 ,...id:)
LIMIT 1000
ORDER BY score DESC

Listing 4.3: Pseudo-SQL for retrieval on a single retrieval feature, retrieving the
top 1000 relevant results limited to ids obtained by a previous process. Adopted
from [HSS+20]

this section cleanly separates database and application layer which significantly
simplifies both implementation and model. Similar to what we will argue in the
next section however, advances in modeling database support for multimedia
retrieval [Gas23] and query planning in multi-model databases [Vog22] open in-
teresting avenues for research that considers tighter integration of the retrieval
layers, which we leave for future work.

4.4 Query Execution for Temporal Queries

In this section, we will present our retrieval and execution model for tempo-
ral queries. It contains concepts and implementation work partially done in
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the context of VBS [SPG+20; HGI+21; HAG+22], LSC [HPG+20], and super-
vised theses [Gst21; Ben22a]. A preliminary version of this work was published
in [HSS+20].

We will begin by defining the problem in Section 4.4.1, then discuss our re-
trieval model in Section 4.4.2 from which different fusion algorithms are derived
in Section 4.4.3.

4.4.1 Problem Definition

Whereas previously, a segment was the atomic unit of retrieval and therefore a
scored segment the unit in which results were returned B̂ 2 Ŝ := hB, gi, expanding
the desired unit requires us to consider segment-spanning sequences as our result
unit. We define a sequence e in Definition 4.11 and its scored equivalent, a scored
sequence ê in Definition 4.12.

Definition 4.11 Sequence

A sequence e 2 S := hoid, start,endi consists of an object identifier oid, and a
reference to its start and end inside said object.

Since sequences are constructed on the fly based on segments but may be
only a partial segment, or span multiple segments, a sequence only carries about
its start and end.

Definition 4.12 Scored Sequence

Similarly to a scored segment B̂ 2 Ŝ := hB, gi, a scored sequence ê 2 Ŝ :=
he, gi , g 2 [0, 1] consists of information about a sequence and its score.

The problem a temporal fusion algorithm needs to solve is described in Def-
inition 4.13 and builds on our query model. A brief overview of approaches by
other systems is provided in Literature Discussion 4.1.

Definition 4.13 Temporal Fusion Problem

Given a temporal query tsq :=
⌦
csq, q,l, qttsq, r̂tsq

↵
, a retrieval system is

tasked with retrieving relevant sequences e and assigning them a relevance score
g, thus producing a ranked list of scored sequences Atsq = (ê1, ê2, . . . , êG).
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Literature Discussion 4.1 Temporal Search Perspectives of Other Systems

Taking a look at other retrieval systems participating in video retrieval bench-
marks, no system offers query-level constraints, with most research prototypes
in 2022 offering temporal queries that also follow a late fusion approach sim-
ilar to ours [HDN+22; ABC+22; AMG+22; KSJ+22; HSJ+22; AGG22; TNN+22].
The execution model differs, as does the level of detail provided in the pa-
pers, but all the cited systems first execute the subqueries independently, and
then perform a re-ranking to show sequences that match the query specifica-
tion. The unit of result presentation differs, with some showing segment pairs
matching the query sequence [HDN+22; AGG22], others constructing matching
sequences with some level of aggregation or enhancement [ABC+22; HSJ+22],
and others simply using an entire video as the result unit [KSJ+22].
As an outlier, [LMS+22] directly evaluates the full query. This is among other
reasons possible because each subquery is precisely a textual description of a
segment, from which a vector is generated and then the generated vectors for
each subquery are used in a linear scan over all stored vectors with a sliding
window.
In the context of lifelog retrieval, some systems have no temporal query ca-
pabilities, but implement a form of lifelog summarization or event cluster-
ing [NLN+22; HTN+22; ARG22].

As discussed, there are different execution models imaginable, particularly
when it comes to the handling of query-level constraints. We will discuss a few
here, and then afterwards reason why we have chosen to investigate a late fusion
option in this thesis.

Append Query Terms: One option is to append all query constraints to each
subquery, and to extend the SCF of the subqueries by the specified SCF of
the temporal query. While this executes each query-level constraint provided
in qttsq per subquery, it significantly simplifies the execution model. This
option is compatible with both a late fusion of the subquery results, and an
approach where the logic is pushed down to the database layer.

As a concrete example, consider the query-level constraint of a weekday in
Lifelog Retrieval. Appending this Boolean filter to each subquery is triv-
ially done, but has performance drawbacks as it has to be applied for each
subquery.

Execute Constraints Only Once: Executing separate queries for the query-level
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constraints avoids repeat execution, but forces a late fusion approach where
results are fused only at the end.

In the example of a weekday query-level constraint, this would mean merg-
ing the scores of the query-level constraint with the scores of the subqueries.

Push Logic to Database: By either pushing the entire logic down to the database
layer or rewriting the query even further, one could take advantage of
database planning and caching capabilities. This is however not supported
in most current multimedia retrieval databases [Gia18; GRH+20].

We assume in the remainder of this section that whichever approach was
chosen, the scores of the query-level constraint have been fused into subquery
results and are therefore agnostic to the approach chosen. At its core, the argu-
ment we make in our model for temporal queries is for late fusion. Therefore,
all algorithms will be presented with results from the individual subqueries and
are tasked with generating a relevant and ranked list of sequences.

There is an argument to be made to view the entire space of query possibil-
ities as one query and then treat query execution as a classical database query
planning problem. In this approach, the database layer might create more effi-
cient plans or design approaches that exploit that the full query is available. We
leave this approach for future work for both conceptual and practical reasons.
On the conceptual side, this would require significant additional work in terms
of modeling the interplay between query specification, query transformation,
the data to be queried and the execution model for complex similarity search on
the database side. As argued previously, recent advances in modeling database
support for multimedia retrieval [Gas23] and query planning in multi-model
databases [Vog22] make this a potentially feasible approach for future work. On
the practical side, our late fusion approach significantly simplifies the interaction
between application and database layer.

4.4.2 Execution Model

As discussed, we consider in this thesis temporal fusion as a late fusion prob-
lem and thus assume that the subqueries are executed independently, and no
matter which option was chosen, the scores of the query-level constraints have
already been considered. Thus, we define our approach to the problem in Defi-
nition 4.14.
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Figure 4.2 Visual overview of late fusion for temporal scoring

Definition 4.14 Temporal Late Fusion

Given a list of results per subquery, Acsq =
�
Acsq1 , Acsq2 , . . . , Acsq=

�
with = = kcsqk,

an optional list of user-specified distances q (
��
q

�� = = � 1), and an optional
maximum distance l, a temporal fusion algorithm is tasked with generating,
scoring and therefore ranking sequences e and assigning them a relevance score
g, thus producing a ranked list of scored sequences Atsq = ( ê1, ê2, . . . , êG).

We identify different stages in our execution model where different ap-
proaches are imaginable, and this subsection is structured accordingly. We
show a visual representation of this process in Figure 4.2. As is usually the case
in retrieval approaches, units of retrieval must be retrieved or generated, scored or
ranked, and then presented. In the figure, this corresponds to pre-candidate and
candidate generation, ranking & scoring and then post aggregation.

In a first step, algorithms must choose on which basis they will generate our
unit of retrieval, the sequence e . Most algorithms we present do so by mapping
the individual result lists to sequences, for example by merging temporally close
segments from a single result list. This assumes that the underlying system has
over-segmented a video relative to the desired concept. Alternatively, algorithms
may also not aggregate or assume under-segmentation and partition elements
from the result lists.

Having selected their approach, algorithms must generate candidate sequences,
that is sequences that are potentially relevant to the given query. These can-
didate sequences must then be scored and ranked, where there are different
approaches, e.g., in the handling of a user-provided distance between two sub-
queries. Finally, there is a post-aggregation step, where the resulting sequences
are transformed into the unit of presentation, for example, overlapping candidate
sequences in a given object may be merged or removed from consideration.
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Pre-Candidate Generation

As the result unit of our model for temporal queries are sequences, at some
point we must transform the segments from the subquery results to sequences.
This is rather trivial for individual sequences, as a segment B already possesses
all relevant attributes to construct a sequence e 2 S := hoid, start,endi.

However, algorithms can choose to aggregate temporally close segments
from the same subquery. We define this step in Definition 4.15, show an ex-
ample of this aggregation in Example 4.11 and then discuss approaches used by
other systems in Literature Discussion 4.2. As we assume all subqueries csq tar-
get the same object, in the pre-candidate generation phase all scored segments
per object need to be merged into scored sequences for said object.

Definition 4.15 Pre-Candidate Generation Phase

Given a list of results per subquery, Acsq =
�
Acsq1 , Acsq2 , . . . , Acsq=

�
with = = kcsqk,

the pre-candidate generation phase generates a list of scored sequences e>8
per

subquery 8 and object >. It can thus be viewed as applying 2Ŝ ! 2Ŝ to the list
of scored sequences per subquery and object.

Semantically, including the optional list of user-specified distances q, and op-
tional maximum distance l makes little sense, as this step is simply concerned
with generating sequences and not yet generating or scoring results. For nota-
tion purposes in the remainder of this chapter, we will only refer to e8 for the
list of scored sequences for a given subquery, this always assumes the results for
a specific object unless explicitly noted.

As an example for such an algorithm, we have implemented a fixed-threshold
aggregation, which aggregates two segments if they are closer together than a
scenario-specific distance. The algorithm is illustrated in Example 4.11.
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Example 4.11 Pre-Aggregation for Video Retrieval

Considering our example of the lion and the giraffe, we might receive the fol-
lowing results for two subqueries, which are both sequential segments:

Figure 4.3 Result segments for two subqueries looking for a lion and a giraffe

It is intuitively sensible to not consider the two segments showing the giraffe
as separate sequences, but as one sequence which is relevant for the given
subquery.
All segments are from the same object (E_7119). To simplify the example, we
ignore the relevance scores per segment. This means that for csq1 we have the
following segments:
B1 = hE_7119_34, E_7119, 34, 96, 101i
B2 = hE_7119_35, E_7119, 35, 101, 104i

For csq2:
B3 = hE_7119_36, E_7119, 36, 104, 108i
B4 = hE_7119_37, E_7119, 37, 108, 113i

When merging all segments within a fixed threshold, we get two sequences,
namely for csq1, e1 = hE_7119, 96, 101i and for csq2, e2 = hE_7119, 104, 113i. The
scores of the segments can be merged in an implementation-specific manner
(e.g., by taking the maximum relevance score).
For lifelog retrieval, this aggregation is even more relevant, as we might con-
sider, for instance, a drive taking an hour with just pictures of a steering wheel
and the view looking out of the car.

Literature Discussion 4.2 Pre-Candidate Generation Steps in other Systems

Some systems perform no pre-candidate generation steps [HDN+22; KSJ+22;
HSJ+22; AMG+22; AGG22] and simply use the result segments from sub-
queries for their temporal fusion model. This corresponds to skipping the
pre-candidate generation stage in our model. Looking at our example, it would
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mean generating two sequences per subquery and keeping their scores.
Others assume under-segmentation of their result or presentation
units [ABC+22] and thus generate sequences which may be smaller than
their result units.
In [ABC+22], sequences are generated by applying a fixed length sliding win-
dow (7 seconds in VBS 2023) for each subquery and taking as sequence score
the maximum score of all segments within that timeframe. This is a differ-
ent algorithm than the fixed-length merge algorithm we have implemented for
the evaluation, but the input and output of the pre-candidate generation stage
is the same. They start with a list of scored segments, and generate a list of
scored sequences. It corresponds to the first output option of our definition, as
the scored sequences are generated per subquery.
Looking at our example, this would result for csq1 in two sequences: one from
96 seconds to 103 seconds, and one from 103 seconds to 110 seconds, each
scored with the maximum relevance score of the two segments.

Candidate Generation

Having generated a list of scored sequences per object and subquery, the next
step is to generate potentially relevant sequences for the given full query. We
call such sequences candidate sequences ẽ defined in Definition 4.16, and there are
many ways to construct sequences in a video. We will discuss assigning a score
to those candidates afterwards.

Definition 4.16 Candidate Sequence

A candidate sequence ẽ := (ê1, ê2, . . . , ê=) is a list of scored sequences.

The core idea behind a candidate sequence is that the individual sequences
are relevant to a specific subquery. Candidate Generation can thus be viewed as
a function that takes the scored sequences per subquery, optional user-specified
distances, and an optional maximum length and produces a set of candidate se-
quences. We define the candidate generation step in Definition 4.17, and provide
an example in Example 4.12.
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Definition 4.17 Candidate Generation

The candidate generation step
⇣
2Ŝ

⌘
=

⇥ (�)
=�1
⇥ ⌦ ! 2(Ŝ)

=

takes the scored

sequences 2Ŝ for all subqueries, the user-specified distances (q1, q2, . . . , q=�1)

and the maximum length l 2 ⌦, and produces a set of candidate sequences
2(Ŝ)

=

.

Example 4.12 Candidate Generation in Video Retrieval

Considering again our motivating ex-
ample for video retrieval, we have re-
sults which have been transformed
and potentially aggregated into se-
quences from three different sub-
query results, e1, e2, and e3. We
must now consider which subquery-
spanning sequences we consider as
candidates. If there are only two sub-
queries, one meaningful approach is
to consider either temporally close se-
quences from the next subquery or
the next sequences without consid-
ering their distance. Once there are
more than two subqueries, the ques-
tion becomes more complex. If we al-
low subquery misses, we would also

consider a candidate sequence that consists only of the lion in ê11 and the ele-
phants in ê31 or ê32. Regardless of whether we allow for subquery misses, at
each subquery result, we must consider the question of how many sequences
we keep in mind for future options, as the search space grows exponentially.
Consider the second subquery. Starting with the lion in ê11, both results for
subquery 2, ê21 and ê22, could be considered. If for both of those, all options
from the third subquery are also explored, it is easy to see how the potential
space of candidate sequences grows large. We call the parameter of how many
options are considered for further exploration 2 in the following.

When it comes to candidate generation, our approach considers the sub-
queries to be equal and thus potentially allows for retrieval misses in a sub-
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query. A significant number of other approaches found in literature assume
only two subqueries [HDN+22; ABC+22; HSJ+22; AMG+22] or fix one query as
the main query and allow a subquery before and after the main query [AGG22;
TNN+22]. In those cases, subquery misses are either punished heavily, result in
a sequence not being shown, or are only tolerable for the lesser queries speci-
fying temporal context for a main query. Our approach remains advantageous
when using modern machine learning methods, which are still susceptible to
noise or misclassifications and is especially important for longer sequences.

The fundamental mechanism we propose for candidate sequence generation
is an iterative approach with a configurable threshold which trades off potential
quality for speed. For each sequence in a subquery and assuming subquery
results are already grouped per object, we construct the best candidate sequence
as shown in Algorithm 4.1.

To determine the best candidate for a sequence, we show pseudocode in Al-
gorithm 4.2 which operates on the transformed subquery results generated by
the pre-candidate generation phase from Definition 4.15, an optional list of user
specified distances q, and an optional maximum distance l.

For clarity, functions inside the algorithms are noted not through their do-
mains and codomains, but by the input and output variables, which is why 7!
is used instead of! in the following.

Algorithm 4.1 CandidateGeneration(rcsq (e)
=, dists (q)

=�1, l)

Require: BestCandidate : ê ⇥ (e)= ⇥ (q)=�1
⇥l 7! ẽ

Require: rcsq is filtered to only contain sequences from a single object
Require: = � 1

1: 2;  () ù candidate list
2: for 8  1 to = do ù subquery index
3: for all ê 2 rcsq

8
do ù best candidate sequence for each sequence in subquery

4: ẽ  BestCandidate( ê, rcsq, dists, l, 8)

5: 2;  2; + + ẽ ù add candidate to list
6: end for
7: end for

Handling the case where a subquery has no possible sequences can be done
in an algorithm-specific manner using the expand function. The simplest ver-
sion is to simply move the end of the sequence by mapping the user-specified
distance to a number.

Evaluating the score of a candidate sequence ẽ := ( ê1, ê2, . . . , ê=) is also
algorithm-specific using the score function, which we will further discuss later.

Generating candidates (genCandidates in the pseudo-code) given an exist-
ing sequence and an optional user-provided distance can be done in different
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Algorithm 4.2 BestCandidate(seq ê, rcsq (e)
=, dists (q)

=�1, l, i)
Require: expand : ( ê)= ⇥ q 7! ê ù there are no results for a subquery
Require: score : ( ê)= ⇥ (q)=�1

7! [0, 1] ù score a candidate sequence
Require: genCandidates : ê ⇥ q ⇥ e 7! e ù generate candidates from a subquery result
Require: ++ operator concatenates a list an element
Ensure: 1  8  #

1: if i == N then
2: return seq ù last subquery; no following sequences
3: end if
4: 14BC  =D;;

5: B4@D4=24B (seq) ù initial candidate sequence consists of start
6: while true do
7: _B B4@D4=24B.pop() ù fetch candidate sequence to check
8: for 9  (8 + 1) to # do
9: if rcsq

8
== =D;; then ù check for subquery misses

10: _B expand(_B, q 9 )

11: continue
12: end if
13: 2 : e  genCandidates(_B, q8 , rcsq8) ù generate |2 | candidates from next subquery
14: for G  1 to |2 | do
15: _2B _B + + 2G ù new candidate
16: if score(_2B, dists) > score(14BC, dists) then
17: 14BC  _2B
18: end if
19: if 9 == # then
20: continue ù final subquery; no more candidates to be generated
21: end if
22: B4@D4=24B.push(_2B)
23: end for
24: end for
25: end while

ways, a select few of which we will briefly discuss here and in Literature Dis-
cussion 4.3, where we show how other approaches can be mapped to our model.

Strict Time-Based Filtering: Given a user-provided distance (of semantic na-
ture or simply a number), one approach is to return the best |2 | candidates
where the distance between two potential scored sequences is below that
threshold

�
De : S ⇥S! R

�
 q. This assumes that a comparison  is de-

fined between the distance, which is in R and the user-specified distance q.
This means in practice mapping different q in a scenario-specific manner.

Probabilistic Time-Based Filtering: This approach rewards sequences that
match a user-specified distance while not completely ignoring those that
do not exactly match that distance.

Index-Based Filtering: When no user-specified distance is provided, or it can-
not easily be mapped to a number, one approach is to find all scored se-
quences in the subquery results after the startpoint, and then simply con-
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sidering the first = results. The intuition here would be that we are simply
interested in a sequence and not necessarily in the distance between the ele-
ments.

Literature Discussion 4.3 Candidate Generation Steps of Other Systems

While not all approaches to candidate generation can be mapped to our model,
we will briefly discuss both those that can be and some that cannot.
[HDN+22] brute-force all possible combinations, which means in our termi-
nology generating

Œkcsqk
8=1

��
Acsq

8

�� possible candidates and specifically for the
genCandidates candidate function simply returning all sequences.
[ABC+22] follow a similar approach to our model, with the candidate-
generation criteria being strict time-based filtering and considering only the
best match per subquery (|2 | = 1).
[HSJ+22] also follow a similar approach to our model, they use index-based
filtering, looking ahead three sequences at VBS 2022. More formally, this means
that if for subquery 2 e2 5 all items would be after the start sequence, only the
first three items of that list would be considered. From those, the best would
be returned (|2 | = 1)
[AMG+22] only consider “the first valid ordered tuple of each video” to calcu-
late the score, which in our model would mean using index-based filtering with
a threshold of 1 (as opposed to 3 in [HSJ+22]), only considering one candidate
(|2 | = 1), and not only generating candidates once per video. In our example,
this means only keeping the first valid ordered sequence, and not generating
any other candidates, therefore no candidate sequence would contain a differ-
ent lion than the first one, even if the sequence would be scored higher in the
end.
[KSJ+22] operate on a video-level, which can be considered as generating a
single candidate sequence per video. This sequence is constructed by applying
set-operators to the results of the subqueries, namely one of {[,\, �, \}, that is
union, intersection, minus, or set difference.
[AGG22] also allow a user-specified distance, similar to our model and then
consider the highest-scoring sequence (|2 | = 1). In their model, there is a single
main query and two context queries for before and after, and therefore can-
didate sequences are only generated for the result of a single subquery. This
contrasts with our model, where a candidate sequence which matches the first
and last subquery, but not the middle one, would be considered.
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Candidate Sequence Scoring

Algorithms need a way to evaluate the relevance of a candidate sequence ẽ for
the specified query. This requires generating a relevance score g for candidate
sequences based on the scores of the sequences, and the match between the
user-specified distance and the distance between the sequences.

Given the number of subqueries kcsqk and a candidate sequence, meaning
one or zero matching sequences per subquery, a scoring function is tasked with
scoring the candidate sequence. This can again be considered a problem of
combining similarities and we thus reuse the SCF notation. Formally, we define
the problem in Definition 4.18 and map other approaches found in literature to
our model in Literature Discussion 4.4.

Definition 4.18 Scoring Candidate Sequences

Given a candidate sequence, that is a list of scored sequences ẽ :=
( ê1, ê2, . . . , ê=) and the list of user-specified distances q, we define r̂B2B :⇣
Ŝ
⌘
=

⇥ (�)
=�1
! [0, 1], which generates a single relevance score for the given

candidate sequence. The first parameter is the candidate sequence to be scored
ẽ and the last one the user-specified distances q.

The reason we do not include the maximum distance l is because we assume
it has been considered in the candidate generation phase. Some approaches in
literature normalize the relevance scores of sequences by the maximum score
of the results for a subquery [ABC+22], we assume this has been done in the
pre-candidate generation phase and therefore we do not include the full results
per subquery.

What is useful about this definition is that it is reminiscent of and closely
related to the problem discussed in Chapter 3, where we discussed DCF, which
grapple with the question of late fusion for results from multiple methods or
systems, and the late fusion approaches in Section 4.3.2. This means similar
approaches are imaginable: average, median, sum, max, linear combinations,
schemes which reward items retrieved by multiple methods such as mnz [SF94],
but also negative combinations (e.g., in a lifelog context, instances where the
lifelogger left their house but did not get in the car).

None of the approaches from literature consider a scenario where adherence
to a user-specified distance is not binary. We close this gap in the next section,
where we introduce the notion of a reward function, which rewards sequences
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that match the user-specified distance while not applying a binary threshold.

Literature Discussion 4.4 Candidate Scoring in Other Systems

[ABC+22; HSJ+22; AGG22] sum relevance scores of the subquery results. In our
model r̂tsq =

Õkcsqk
8=1 ẽ8.g.

[AMG+22] apply the inverse exponential function to the sum of differences. In
our model (requiring kcsqk� 2):

r̂tsq =
1

exp
Õkcsqk

8=2 ( ẽ 8 .g�ẽ 8�1.g)

[KSJ+22] perform rank-based fusion instead of score-based fusion, and use the
average rank of all sequences belonging to a candidate. In our model, this
would mean caching the absolute rank of each segment pre-transformation,
skipping the transformation step and then scoring candidate sequences based
on the absolute rank of the result of each subquery within said subquery.

Transformation To Result Unit: Post-Aggregation

Having generated different sequences with their respective relevance scores,
we may now further aggregate these results for result presentation in a post-
aggregation step. The abstraction for result presentation can have many forms,
in our model we assume that they are also some form of sequence, and thus this
step can be seen as further aggregating candidate sequences of length =, or more
formally 2(Ŝ)

=

! 22Ŝ .

The simplest example is a case where a sequence from subquery 2 ê20 is
the best match for two sequences from subquery 1: ê10 , ê11 . Our results then
include

�
( ê10 , ê20) ( ê11 , ê20)

�
One simple solution is to implement a fixed-length

aggregation similar to what has been discussed in the pre-candidate generation
step, where two candidate sequences are merged if they are temporally close.
Alternatively, at this stage event aggregation algorithms such as the ones found
in lifelog literature [ARG22; NLN+22] may be considered, or summarization
techniques could be used.

The abstraction level that was chosen for sequences is also relevant when it
comes to questions like thumbnail selection and fetching additional information
may be required.

We discuss approaches found in literature in Literature Discussion 4.5.
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Figure 4.4 Visual overview of late fusion for temporal scoring (Recap from Fig-
ure 4.2 ).

Literature Discussion 4.5 Result Transformation of other Systems

Some systems do not apply a transformation or enhancement [HDN+22;
KSJ+22; AGG22]. In some systems, no deduplication steps to candidate se-
quences are applied [HDN+22; AGG22] and in others it is not necessary be-
cause of the model used [KSJ+22].
[ABC+22] avoid showing overlapping content by selecting the highest-scoring
sequence if there is overlap.
[HSJ+22] follow a slightly more complicated approach, where only one se-
quence per best candidate is shown. In terms of our model, this means that
if sequence e22 is the best match in subquery 2 for both e10 and e11 from sub-
query 1, only the highest-scoring combination is kept.
[AMG+22] only generate one candidate sequence per video, and do not per-
form any other transformations to result units.

4.4.3 Algorithms

Having formulated the temporal query problem, and our theoretical model and
approach, we now discuss the temporal fusion algorithms we can potentially
derive. To recap, we show the process again in Figure 4.4.

Simple Temporal Scoring

First, we bring together the model into a single modular algorithm. In the first
phase, individual segment results are mapped to candidate sequences. This can
be turned off to emulate approaches used in earlier work done in this disserta-
tion project on vitrivr [SPG+20; HSS+20; HAG+22] and more recent approaches
from literature [HSJ+22].
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By default, we have implemented a fixed-length aggregation algorithm
where two sequences are merged if their distance is below a scenario-specific
threshold. Additionally, we have implemented the pre-candidate generation
step described in the VISIONE algorithm [ABC+22] to enable a comparison.

In the second phase, the candidate generation algorithm that is described
previously is implemented. The algorithm uses as a stop-criterion by default a
strict cutoff after the user-specified distance. For semantic distances q, if sim-
ply afterwards is specified, all sequences from the following subquery are con-
sidered and otherwise the semantic distance q is mapped to a fixed time in a
scenario-specific manner. The number of candidates to be considered and the
stop criteria itself are configurable, which enables a comparison to prior work
published during dissertation project [SPG+20; HSS+20], where the number of
candidates was unlimited (no stop criteria), and implementing other approaches
from literature such as [ABC+22] with a fixed-length stop criteria. Our version
of [HSJ+22] implements this phase separately, as their result transformation step
requires caching information acquired during this step.

Scoring is fully configurable, with the default implementation choosing the
best-scoring candidates during the candidate generation phase and the average
score over a candidate sequence in the candidate scoring phase.

For the result transformation phase, we again implement by default a fixed-
length aggregation algorithm, which merges result sequences with a scenario-
specific overlap. As in the pre-candidate generation phase, this can be turned
off to enable a comparison to prior work and approaches from literature.

Distribution Algorithms

The next family of algorithm relies on the idea that temporal sequences that
match the user-specified distances should be rewarded. To this end, all of
these algorithms define a reward function, which output a score multiplier for
sequences inside this temporal sequence based on their adherence to a user-
specified distance.

A reward function takes as arguments the current end of a temporal sequence
e1, a sequence to be considered as a followup e2, and a user-specified distance
q 2 � between them and calculates a scoring multiplier. We define the reward
function in Definition 4.19.
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Definition 4.19 Reward Function

A reward function REW : S ⇥S ⇥ � ! [0, 1] determines a score multiplier
depending on the adherence of the distance between two sequences e1, e2 2 S

to the user-specified distance q 2 �. The function should be monotonically
increasing until the maximum, and then monotonically decreasing.
It should have a maximum value of 1, and that maximum value should be
reached when the distance between the two sequences exactly matches the
user-specified distance.
More formally, max(REW) = 1, REW(e1, e2, q) = 1 | De (e1, e2) = q, and given
two sequences which are temporally ordered e2 ! e3 (De (e2, e3) � 0):

REW(e1, e2, q) �REW(e1, e3, q)
8>><
>>:
� 0 e1 ! e2

 0 e3 ! e1

for all functions De : S ⇥S ! R which determine the distance between two
sequences.

We do not require the reward function to be symmetric, which is why for the
order e2 ! e1 ! e3, no requirements are defined.

This is due to the fact that for a user-specified distance of 20 seconds, it may
be reasonable to treat sequences which are 5 seconds apart differently than those
35 seconds apart.

r̂tsq could already include a handling of the distances. Assuming it does
not, we can incorporate the reward function through in different ways, for ex-
ample through a multiplication, which means given the candidate sequence
ẽ := ( ê1, ê2, . . . , ê=) we calculate the relevance score gẽ as follows:

gẽ = ©≠
´
kcsqk�1÷

8=1

REW ( ê8, ê8+1, q8)
™Æ
¨
· r̂tsq

⇣
ẽ, q

⌘

In this section, we introduce three different algorithms for the reward func-
tion based on commonly used distributions: Normal Distribution Algorithm
(NDA), Log Normal Decay Algorithm (LNA), and Exponential Decay Algorithm
(EDA). These are all based on distributions and serve as an example of reward
functions, but do not exhaustively cover all possibilities.

Normal Distribution Algorithm (NDA) One of the most widely used distri-
butions is the normal distribution [Gau23], which has as parameters the mean `

and variance f, and is shown in Equation (4.1) and visualized in Figure 4.5a.
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(a) Normal distribution with varying f (b) REW
=30

with ` = q = 10B

Figure 4.5 The normal distribution and the resulting reward function with different
parameters

nd(G,f, `) 7!
1

f

p
2c

exp
✓
�

1
2

⇣
G � `

f

⌘2
◆

(4.1)

As the normal distribution is monotonically increasing until its one and only
maxima and monotonically decreasing afterward, we only need to adjust the
y-axis to fulfill the requirement that max (REW) = 1 and choose the x-axis in a
sensible way.

We normalize the y-axis by dividing it through max(nd), which leads to the
NDA reward function shown in Equation (4.2).

REW=30 (G,f, `) 7!
nd(G,f, `)
max(nd)

7!

1
f

p
2c

exp
⇣
�

1
2
�
G�`

f

�2
⌘

max(nd)
(4.2)

After normalizing the y-axis, the next consideration is the choice of x-
axis. We could choose the distance to the user-specified distance, that is
G =

�
De (e1, e2) � q

�
with ` = 0, or we can choose the distance between the

two sequences De : S ⇥S ! R as the x-axis with ` = q. This choice does not
matter a great deal, as in both cases the distribution is symmetrical. We choose
the second option and visualize the resulting reward function in Figure 4.5b.

However, in both cases the x-axis is directly correlated to the distance be-
tween two sequences. This means that depending on the scenario, a different f
might be needed9.

9Alternatively, one might consider normalizing the x-axis relative to a fixed value to the
dataset or to the user-specified distance.
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(a) Varying f, original pdf (b) Varying f, shifted x-axis based on
maximum

Figure 4.6 Probability density function of a lognormal distribution without and
with shifted x-axis

Log Normal Decay Algorithm (LNA) Another option to model a reward func-
tion is a lognormal distribution10. Such distributions are used in fields as diverse
as meteorology [BL15] and neuroscience [BM14].

Equation (4.3) shows the probability density function of a lognormal distribu-
tion of a random variable G, which requires as parameters mean ` and variance
f of ln(G).

pdf;=3 (G,f, `) 7!
1

Gf

p
2c

exp
✓
�
(ln(G) � `)2

2f2

◆
(4.3)

In our work, we build on this distribution for the LNA algorithm. For the
x-axis, we consider the ratio between the distance of the two sequences:

G;=0 =
����De (e1, e2)

q

����
We thus reward sequences that fit the specified distance while still consid-

ering those that are not a perfect match. This means that our optimal case is
G;=0 = 1 and since ln(1) = 0, ` = 0. We visualize the probability density function
in Figure 4.6a.

As clearly visible in Figure 4.6a, depending on the chosen f, the max-
imum reward will not always be at G;=0 = 1. We thus shift the x-axis rel-
ative to where pdf;=3 has its maximum with the given f, `. Given G<0G =

{G |pdf;=3 (G,f, `) � pdf;=3 (D,f, `) ,8D 2 R�0}, the shift is defined in Equa-
tion (4.4).

Ĝ = max (0.01, G;=0 � (1 � G<0G)) (4.4)

10Which has no commonly agreed upon origin story, see [Gad45]. Galton [Gal79] is often
credited with the fundamental idea.
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(a) LNA reward function without and with
x-axis offset

(b) LNA reward function with varying f

Figure 4.7 Visualizations of the LNA reward function

The motivation for the shift to ensure that max(REW;=0) = REW;=0 (1) is given
in Example 4.13, and the resulting function is visualized in Figure 4.6b. As the
x-axis is proportional to the user-specified distance, the chosen parameters do
not necessarily need to vary based on the application.

To achieve max(REW;=0) = 1, we normalize the y-axis similar to the approach
for NDA. The difference between an adjusted and non-adjusted G-axis after nor-
malizing the H-axis is shown in Figure 4.7a

Example 4.13 X-axis offset for LNA reward function

To illustrate why an x-axis offset is needed, consider the simple exam-
ple of f = 0.5, ` = 0. As the local maxima is at G = 1

4p
4

, we compute
both y without adjustments H = pdf;=3 (G,f, `) and with adjustments
HB = pdf;=3 (Ĝ,f, `) 7! pdf;=3

⇣
max

⇣
0.01, G �

⇣
1 � 1

4p
4

⌘⌘
,f, `

⌘
:

x y HB

0.6 0.78 0.31
1
4p
4

0.90 0.72

1 0.79 0.90
1.4 0.45 0.64

This results in the desired property 5 (1) = max ( 5 (G)). We visualize the differ-
ence in reward functions with and without an offset when fixing f = 0.5, ` = 0
and additionally normalizing the y-axis in Figure 4.7a.

Given that Ĝ indicates a modified G;=0 as defined above, the reward function
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Figure 4.8 EDA reward function with different _

for LNA is shown in Equation (4.5).

REW;=0 (G;=0,f, `) 7!
1

Ĝf

p
2c

exp
⇣
�

(ln(Ĝ)�`)2

2f2

⌘
max(pdf;=3)

(4.5)

We show the LNA reward function with different f and fixing ` = 0 in Fig-
ure 4.7b.

Exponential Decay Algorithm (EDA) Another option to model a reward func-
tion is an exponential decay distribution. Such distributions are used in different
contexts such as modeling tail distributions of mobile devices [KLBV10]. The
key idea which makes the distribution useful in our context is that we want the
reward function to decrease proportionally the further it strays from the ideal
distance. Exponential decay functions are characterised by two parameters: #0

which is the value of the function at G = 0, and an exponential decay constant _.
We show the exponential decay function used for EDA in Equation (4.6).

ed(G) 7! #04
�_G (4.6)

For our scenario, we need to make a slight adjustment. The trivial choice is to
set #0 = 1, as we wish to have a perfect reward for an exactly matching distance.
Given a decay constant _ > 0, we define our reward function REW430 as follows
in Equation (4.7). Additionally, we invert _ depending on the distance of the
candidate sequence being smaller or larger than the user-specified distance, to
make the decay exponential in both directions.
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REW430 (G,_) 7!

8>>>>><
>>>>>:

4
_G

G > q

4
�_G

G < q

1 G = q

(4.7)

We show how the reward function changes for different values of _ in Fig-
ure 4.8.

To make the function fit different scenarios11 we can either normalize the
distance to the user-specified distance or vary _. The considerations are similar
to the ones discussed for previous distributions, for EDA it is convenient to vary
_ dependent on the scenario.

11In the context of video retrieval, 10 seconds is a reasonable distance for a user to specify,
while in lifelog retrieval, distances are more commonly specified in hours.



For the most part, things never
get built the way they were drawn

— Maya Lin5
vitrivr: A Multimodal Multimedia
Retrieval System

The conceptual model for multimedia retrieval presented in this thesis is backed
by an implementation in vitrivr, an open-source full-stack multimedia retrieval
system. In this chapter, we present vitrivr with a focus on the conceptual system
design. We give an overview of the architecture and describe the two compo-
nents at the center of this thesis, the retrieval engine and the user interface. In
doing so, we cover the user journey with extraction, query formulation, and
result presentation.

Before doing so, we will briefly discuss and delineate the contributions made
to the vitrivr system which are also referenced and described in this chapter.
Software development is collaborative work and vitrivr is no exception1. vit-
rivr was originally introduced in [RGT+16] and has grown out of the IMOTION
stack [RGS+15; RGH+16; RGT+17], and parts of it have been the subject of previ-
ous [Gia18; Ros18] and concurrent [Gas23] dissertations.

This chapter contains partial content from, and summarizes implementa-
tion contributions made in (co-)authored peer-reviewed publications [RPG+19;
RGH+19; GRH+20; HSS+20; HPP+20; SPG+20; HPG+20; HGI+21; HGP+21;
SGH+21a; SGH+21b; HAG+22; HRS+22; SGH+22; HSS23] and [rossettoDeepLearningBasedConcept2019notes;
HGG+23]. A complete list of publications of the vitrivr project is available
online2. vitrivr received contributions from numerous Bachelor and Master

1While the full commit log of all components is openly available, distinguishing conceptual
and implementation work, which is sometimes also done collaboratively via pair programming
or designing, is rarely a sensible enterprise. vitrivr nowadays squashes pull requests into one
commit, which can lead to misleading statistics. The repositories have also moved between
platforms, and the commit history has not always been transferred.

2https://dbis.dmi.unibas.ch/research/projects/vitrivr-project

https://dbis.dmi.unibas.ch/research/projects/vitrivr-project
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projects, some of which supervised during this dissertation [Pas20; Nem20;
Gst21; Ill21; Pop21; Ben22a; Pet22], and some the author’s own [Hel16; Hel18].
Additionally, vitrivr has demonstrated its feasibility and attractiveness as an
open-source research system in different ways, for example through its partic-
ipation at Google Summer Of Code (GSOC) in 2016, 2018 and 20213. In past
years, state-of-the-art retrieval methods such as CLIP [RKH+21] were integrated
into vitrivr, and novel retrieval methods (e.g., for OCR [TRB22]4) or textual
embeddings for video retrieval [SGH+22] were developed in vitrivr.

These implementation contributions enable vitrivr to be used in various
contexts outside video and lifelog retrieval, such as cultural heritage [SRS18;
RSS+21; PSS+22] and retrieval for speech transcription [SLT+21]. It is now also
used in two large-scale interdisciplinary projects in the context of Virtual Reality
(VR)/Augmented Reality (AR) and cultural heritage [Wel22; LFF22].

The database layer, Cottontail DB, is only described briefly in this chapter, as
it is subject to a separate dissertation [Gas23] and has only received minor con-
tributions in this dissertation project in [GRH+20; GRH+21]. For the purpose of
this thesis, it is relevant to note that Cottontail DB supports all relevant retrieval
modes introduced in this thesis and used by the retrieval engine. In contrast to
its predecessor ADAM?A>, Cottontail DB is a single-node database, which places
limitations on retrieval efficiency as the amount of data grows, but means it is a
better fit for most evaluation scenarios in contemporary retrieval research.

This chapter starts with an architecture overview in 5.1, then covers the re-
trieval engine and user interface in Sections 5.2 and 5.3.

5.1 System Architecture

vitrivr follows the traditional three-tier architecture of information systems [Sch18]
similar to what was introduced in Section 3.3, which separates three areas of
concern: data management, application logic, and presentation layer. This sep-
aration means components are easily replaceable and can be used individually
in research applications. We show an architecture overview in Figure 5.1, which
shows the different components vitrivr consists of:

Database Engine: vitrivr requires support for various retrieval models, such as
vector space retrieval, text retrieval, and traditional Boolean retrieval, as de-
scribed in Section 3.2. This is delegated to a dedicated storage layer. The
3The author was one of the mentors and org admins for vitrivr 2018 and 2021.
4HyText was developed for vitrivr, see https://github.com/vitrivr/cineast/pull/212.

https://github.com/vitrivr/cineast/pull/212
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Cineast

Multimedia Collection

Cottontail DB

retrieval engine

• shot segmentation

• extraction of various features

• score fusion of final result set

• retrieval API

database engine

• column store

• index-structures for efficiency

• Boolean, full-text and vector-space retrieval

upload store

queryquery

results results

vitrivr-NG

vitrivr-VR

query by ...
 • keywords
 • full-text
 • location

Figure 5.1 Architecture of the vitrivr ecosystem, with the shared components of
the retrieval engine and the database. Two different frontends are
shown, the traditional desktop UI, and a VR one. Taken from [HSS23]

retrieval features described in Chapter 4 rely on the database engine to per-
form retrieval using the appropriate retrieval model.

Retrieval Engine: The retrieval engine is responsible for feature extraction from
document collections. It receives and orchestrates queries and processes the
results. It is thus responsible for handling and processing multimodal and
temporal queries as described in Sections 4.3 and 4.4.

User Interface: To formulate the kinds of queries described in Section 4.2 and
browse results, vitrivr offers a desktop-based user interface. Other projects
have built upon the retrieval and database engine and created user interfaces
for retrieval in mobile devices [SRS18] or VR [SGH+22].

Individual components can be easily replaced, such as in the transition of the
database layer from ADAM?A> [GS16; Gia18] to Cottontail DB [GRH+20; GRH+21;
Gas23]. They can also be used individually in different applications which only
need one component of the system. Examples of this include medical appli-
cations for Magnetic Resonance Fingerprinting (MRF) [Gas23] where only the
database layer is used, different lifelog retrieval systems [RBA+20; RBG+21] that
re-use the frontend with different backends, mobile applications that use both
retrieval engine and the database [SRS18], or VR museum applications [PSS+22].
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Figure 5.2 Cineast Architecture. Based on [Ros18; HGG+23]

5.2 Retrieval Engine

The retrieval engine of vitrivr is called Cineast and was originally introduced
in [RGS14]. It offers various important functionalities such as media segmen-
tation and extraction, and a full-fledged retrieval API. Significant contributions
were made to all parts of the system, including features, retrieval model, API, ex-
traction, and performance improvements. In this section, we will give an archi-
tectural view of the functionality of Cineast to contextualize those contributions
and show how the presented concepts are implemented. For a comprehensive
and detailed overview of its core functionality for video retrieval, such as the
features used in sketch retrieval, we refer to [Ros18].

Figure 5.2 shows an architectural overview of Cineast and how it fits into the
bigger picture. We see two major modules: extraction and retrieval, which cor-
respond to the offline and online parts described in Chapter 3. Some classes are
only used during extraction (e.g., thumbnail generation), others only during re-
trieval (e.g., retrieval features querying externally generated features), and some
are used during both. There is a REST and Websocket API used by different fron-
tends, and a CLI. The database layer is abstracted to enable switching between
different implementations such as ADAM?A> [GS16], Cottontail DB [GRH+20] or
a JSON implementation for testing. Additionally, Cineast needs to decode and
segment multimedia files, serve multimedia and thumbnails during runtime
and offers monitoring capabilities during long-running extraction tasks and for
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productive use.
Following the structure of Chapters 3 and 4, we first cover the extraction

module and then the retrieval module.
Information about multimedia objects > 2 O to be extracted is provided either

via API or via CLI (e.g., when running a distributed extraction for large multi-
media collections). The objects are then distributed to an appropriate handler
(videos, images, 3D models, and lifelog collections need to be handled differ-
ently), which segments them as defined in the previous chapter (SEG : O ! 2S).
Each segment B 2 S is then processed by specified classes, either extraction-only
classes (such as metadata extractors or thumbnail generators) or feature classes
which are also used during retrieval (�B : S ! F ). Afterwards, the gener-
ated feature representations 5 2 F are stored in the database layer for future
retrieval purposes. These representations can not only be vectors as in previ-
ous work [Ros18], but also text or other meaningful and useful representations
for retrieval. The extraction API enables Cineast to be integrated into broader
multimedia analytic pipelines, for example when collecting and analyzing social
media data for political sciences [Pet22].

In the retrieval module, Cineast uses mainly late fusion of retrieval results.
As discussed in the previous chapter, each query term is delegated to the spec-
ified retrieval features, where a list of scored segments is returned (�A : &) !
2Ŝ). For efficiency reasons, only the segment id is fetched. Associated metadata
and segment information is only retrieved at the end of the fusion process. Af-
terwards, the implemented SCF are applied, and temporal scoring is performed
as discussed in the previous chapter. Generally speaking, each retrieval feature
is evaluated independently and in parallel, but for some queries, it is desirable
to have an execution order. An example of this would be the r̂:1 operator in-
troduced in the previous chapter, which we also call staged queries in [HSS+20].
An overview of the current features used in Cineast with a specific focus on
Lifelog retrieval can be found in [HSS23]. The current implementation of tem-
poral scoring in the main branch is described in [HAG+22] and is based on the
EDA algorithm described in Chapter 4.

Cineast is fully open-source5 and written in Java. It uses a plethora of
libraries for processing and analyzing multimedia. To list a few, Tensor-
Flow [AAB+15] for retrieval features that use machine learning, BoofCV [Abe16]
and OpenCV [Bra00] for video and image processing is done, and JavaE-
WAH6 [LKA10; KL16] for binary vectors in the context of near-duplicate detec-

5https://github.com/vitrivr/cineast
6https://github.com/lemire/javaewah

https://github.com/vitrivr/cineast
https://github.com/lemire/javaewah
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(a) Entry point (b) Toggles for different query
modalities

Figure 5.3 Overall entry point and toggles for different modalities

tion [Hel18]. The API and CLI use gRPC7, Javalin8, and Airline9, and monitoring
is implemented using Prometheus10 and Grafana11.

5.3 User Interface

Fundamentally, a retrieval user interface should address the three basic re-
quirements of query specification, inspection of results, and query reformula-
tion [BR11]. vitrivr-ng is the desktop-based user interface for vitrivr and the
first iteration was introduced in [Gas17; GRS19a; GRS19b]. It is implemented
in Typescript and uses the Angular Framework12. Query formulation happens
on the left side of the screen, and results are displayed in the center. Different
result views can be toggled in the header. Significant contributions were made
to all parts of the frontend, both conceptually and in the implementation. This
section draws on the conceptual and implementation contributions mentioned
at the beginning of this chapter, and specifically contains a significant amount
of content from [HSS23], where we systematically introduce and compare the
interfaces for vitrivr-ng and vitrivr-VR in the context of lifelog retrieval. For the
sake of readability, overlap with that paper is not quoted explicitly.

5.3.1 Query Formulation

Figure 5.3 shows how the user interface looks when the user encounters it and
a closeup of the empty query formulation view. In vitrivr-ng, all modalities can

7https://grpc.io
8https://javalin.io
9https://rvesse.github.io/airline

10https://prometheus.io
11https://grafana.com
12https://angular.io

https://grpc.io
https://javalin.io
https://rvesse.github.io/airline
https://prometheus.io
https://grafana.com
https://angular.io
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be toggled. New subqueries can be added by clicking on the green plus button,
which allows specifying temporal context. Users express their information needs
by formulating queries using the different modalities available, which usually
translate to queries involving one or multiple of the aforementioned features.
We briefly list the modalities supported by vitrivr, and then show what the user
interface looks like for a selection of those.

Sketch: Hand-drawn sketches, retrieval is performed based on color and shape
features [RGS14; Ros18]

Aural: Audio samples or recorded input, retrieval is performed based on audio
features [Gas17; GRS19b]

Pose Queries: Queries specifying the pose of one or more people [Par21;
HAG+22]

3D: 3D model similarity search based on 3D model descriptors [Gas17; GRS19b;
BGS+20]

Semantic Sketch: Sketching of the spatial distribution of different high-level
concepts such as „mountain“ or „sky“ [RGS19]

Fulltext: Text input used for search in textual information (e.g., ASR, OCR), or
textual embeddings [RPG+19]

Tags: Queries for specific tags assigned by an object classifier [RPG+19; RGH+19;
SPG+20].

Boolean: Classic metadata retrieval [HPG+20]

Maps: Location-based retrieval used in applications such as cultural her-
itage [BS16] or lifelogging [HGP+21]

We show the interfaces for textual and geospatial queries in Figure 5.4. Tex-
tual queries for OCR, ASR, or textual embeddings are specified with a traditional
text input field, where boxes can be checked depending on the desired features.
For information needs with a spatial context, vitrivr-ng supports the simple use
case of putting a pin on the map and searching for segments in proximity. This
is implemented using Leaflet13 and OpenStreetMap14, and the leaflet-geosearch
package15 is used for location lookup independent of the dataset (i.e., searching

13https://leafletjs.com
14https://www.openstreetmap.org
15https://github.com/smeijer/leaflet-geosearch

https://leafletjs.com
https://www.openstreetmap.org
https://github.com/smeijer/leaflet-geosearch
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(a) Textual queries (b) Geospatial queries

Figure 5.4 Textual and geospatial query formulation view in vitrivr-ng

(a) Sketch queries (b) Pose queries

Figure 5.5 Sketch and pose query formulation views in vitrivr-ng

for „Dublin“). The user interface for geospatial queries is partially based on
experiences gained during a student project supervised during this dissertation
project [Pop21].

The interfaces for the sketch and pose modality are shown in Figure 5.5.
Sketch queries were the motivation for the original Cineast system [RGS14], and
the current query formulation view features a palette of frequently used colors
and a size-adjustable pencil to draw. Pose queries are the most recent addition
to the vitrivr system [HAG+22]. The user interface allows specifying multiple
independent people and has individually adjustable keypoints. It does not yet
allow specifying occlusion or rotation, which is subject to research in pose-based
retrieval [Par21].
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(a) Ranked segment view (b) Object view

Figure 5.6 Result displays where segments are either ranked individually, or
grouped by object

5.3.2 Result Presentation and Browsing

Displaying results means either showing the full document or a compact repre-
sentation, sometimes called surrogate (e.g., a thumbnail of a video shot) [BR11].
For result presentation of videos, we use shot-based thumbnails as widely rec-
ommended in literature [GWG+03; BN07] and also used in other state-of-the-art
retrieval systems [HGB+22].

vitrivr-ng has three important result presentation views: a ranked segment
view, a view that groups segments based on their object, and a view that con-
siders specified temporal context. The first two are shown in Figure 5.6, and the
temporal context view is shown in Figure 5.7. We describe the different result
views in the following and show examples.

In all the views, the background of the thumbnail is colored according to the
score of the element shown, with a dark green indicating a relevance score of
1 and a white background indicating a relevance score of 0. Hovering over the
thumbnails reveals additional information, such as relevance feedback function-
ality, and the possibility to inspect metadata and associated features. Clicking on
a thumbnail opens the associated segment or object data in a sensible manner.
Examples include jumping to the corresponding point in the video, opening a
3D viewer for 3D objects, and a IIIF16 viewer for images served from a IIIF server,
which is frequently used in the context of cultural heritage.

The default view orders individual segments (e.g., shots in the context of
video retrieval, individual images in the context of lifelog retrieval) by their
score, with the segment with the highest relevance score shown in the top left.

In the object view, all segments belonging to an object are shown together.
The score is either calculated through max- or averagepooling of individual seg-

16https://iiif.io

https://iiif.io
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Figure 5.7 Result view for the temporal query example used in Chapters 2 and 4.
Query formulation view adjusted for ease of understanding

ment scores. One scenario where the object view is useful is when many relevant
segments are from a small set of videos which can from quick visual inspection
be judged as irrelevant.

The temporal context result view is similar to the object view but shows
the sequences calculated by the algorithms shown in Chapter 4 and sorts
those sequences by their score. This offers additional motivation for the post-
aggregation step because sequences with overlapping content would mean
significant additional effort for the user when browsing results with little gain.

When browsing results, users can additionally filter them without reformu-
lating the query based on available metadata [HPG+20] (e.g., by specifying the
day of the week or location).



Nicht alles, was zählt, kann
gezählt werden, und nicht alles,
was gezählt werden kann, zählt

— Albert Einstein6
Evaluation

In this chapter, we evaluate our contributions and show the feasibility of the con-
ceptual model and implementation. In addition to a traditional system-centered
evaluation, we include results from user-centered evaluations. These focus on
a more holistic comparison of retrieval systems, and consider interactions with
real users from query formulation to result presentation, inspection, and brows-
ing.

In the user-centered evaluation, we analyze results from four years of in-
teractive retrieval evaluation campaigns for video and lifelog retrieval, with a
perspective both on our contributions and a broader view of the format and
learnings.

In the system-centered evaluation, we compare retrieval quality and speed
of the different algorithms introduced in this thesis and discuss their reliance
on underlying retrieval functionality by comparing two features for text embed-
ding.

Both parts of the evaluation are centered around the motivating scenarios
described in Chapter 2, where users know the item they are searching for with
their information need.

We first show results from user-centered evaluations, then the system-
centered evaluation follows, with a systematic walkthrough of requirements,
methods, and results, and then the chapter closes with a summary and discus-
sion of the evaluation.
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Figure 6.1 Keyframes from a Visual Known Item Search (V-KIS) task. A sequence
of 25 seconds was shown. The example is from VBS 2021 [HGB+22]

6.1 User-Centered Evaluation: Interactive
Evaluation Campaigns

In this section, we first motivate interactive evaluation campaigns1, and after-
wards describe two such campaigns, VBS and LSC, and the results and learn-
ings of our participations from 2019–2022. For VBS, there are publications that
analyze the results of the campaign [RGL+21; LVM+21; HGB+22], while for LSC,
one is available for the 2018 [GSJ+19] and 2021 iteration [TND+23], but none for
2019–2020.

To contextualize the contributions of this section, the vitrivr system has par-
ticipated successfully to VBS and LSC multiple times during this dissertation
project (VBS: [RPG+19; SPG+20; HGI+21; HAG+22; SGH+23], LSC: [RGH+19;
HPG+20; HGP+21; HRS+22]), achieving the highest score in 2019 and 2021 at VBS
and 2019 at LSC. In addition to the yearly iterations of the interactive evaluation
campaigns, the format has also been used for the evaluation of student projects
supervised during this dissertation [Pas20; Ill21] and in a large-scale compari-
son [RGH+21] of vitrivr and SOMHunter [KVM+20]. These contributions have
not only informed developments of vitrivr, but also work on evaluation tooling
by others [RGS+21; SGB+22], and evaluation methodology [LBB+22]. This section
will draw on co-authored work, which attempts to provide a systematic catego-
rization for user-centric comparative multimedia search evaluations [LBB+22]
and significantly on the analysis of VBS 2021 [HGB+22]2.

After analyzing and discussing results from the 2019–2022 participations at
VBS and LSC, we will discuss insights and recommendations based on the ex-
perience gained.

1Sometimes also called benchmarking campaigns.
2Contribution statement: lead author with responsibility for structure, coordination, super-

vising and determining analysis methods (except Sections 4.3.3, 4.3.4, and Figure 4), significant
contributions to writing all sections (except Sections 1, 4.3.3 and 4.3.4).



Evaluation 85

Table 6.1 Textual Known Item Search (T-KIS) task t-2 from VBS 2021 with its de-
scriptions, which get more detailed over time. After 120 seconds, the
full description is revealed, the task duration is 420 seconds [HGB+22]

Time Text

0s A hand opening and closing a window
of a mountain hut.

60s A hand opening and closing a window
of a mountain hut. There are snow cov-
ered mountains outside.

120s A hand opening and closing a window
of a mountain hut. There are snow cov-
ered mountains outside. The weather
is sunny, the shadow of the hut is visi-
ble in the snow.

6.1.1 On Interactive Retrieval Evaluations

Since different multimedia retrieval systems will have significant differences in
not only retrieval models and functionality but also in their user interaction ap-
proaches, a fair comparison of different systems is challenging. Additionally,
as prominently mentioned by [BR11, p. 131], “To evaluate an IR system is to
measure how well the system meets [information needs]. This is troublesome,
given that [the] same result might be interpreted differently by distinct users”.
One approach to tackle this problem is benchmarking campaigns, in which dif-
ferent systems are compared against one another in controlled environments3.
Benchmarking campaigns have also been motivated in literature: “It is desir-
able to have a forum or gathering at regular intervals for discussing different
approaches, as well as their respective performance and shortcomings using the
evaluation strategy” [DJL+08].

Two key challenges in these benchmarking campaigns are that partici-
pant motivation is essential when evaluating interfaces [BCB+05; Spo02], and
that they should “adequately reflect user interest and satisfaction” [DJL+08].
Examples of these evaluation campaigns for information retrieval include
TREC [ABC+21b], CLEF [SCIG+21], NTCIR [GJH+19], ImageCLEF [IMP+19]
and MediaEval [CHL+20].

Two examples of interactive benchmarking campaigns are VBS for video re-
trieval and LSC for lifelog retrieval, and their format is very similar. Search tasks
are defined on a dataset, and users with different experience levels (i.e., novices

3Which variables are controlled depend on the campaign. Some restrictions may include
used hardware, time of day during which the evaluation is done, or available preparation time.
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and experts) solve the tasks simultaneously in a real-time setting. Each partic-
ipating team brings its own system, and thus the entire system ranging from
UI to retrieval features, retrieval efficiency, and engineering is evaluated. Both
benchmarking campaigns we discuss in this evaluation have KIS tasks. In Fig-
ure 6.1, we provide an example of a Visual Known Item Search (V-KIS) task,
and Table 6.1 shows an example of a Textual Known Item Search (T-KIS) task.

For T-KIS tasks, a textual description of the desired scene is gradually re-
vealed. The textual description is inherently an incomplete representation of the
original item and thus models a realistic setting with limited recollection. How-
ever, there can be ambiguity, especially when considering cultural and language
barriers in understanding the provided description. This ambiguity is a some-
what problematic limitation, especially given that not all participants and users
are native speakers of English.

For V-KIS tasks, a unique video clip of approximately 20 seconds is shown
to all users, and they have to use their retrieval systems to find the clip in the
dataset. These tasks are unique to VBS, as in the visual lifelog setting, such an
information need is deemed not very interesting. Even though they are a staple
of VBS, they do not necessarily model a realistic scenario, as the presentation of
the video is not obfuscated in any way which would model human perception
and memory [RBB21].

LSC experimented in 2022 for the first time with Q&A tasks, where the sce-
nario is that a person has an information need specific to their memory (e.g.,
when did I last use my hammer?), and an item from the collection has to be
submitted which contains the correct answer.

As the scoring function for KIS tasks in VBS and LSC is the same, we will
briefly recap it here [HGB+22]: Given a linearly decreasing function 5CB based on
search time, the time of correct submission C and the wrong submissions F, the
score for a given KIS task is as follows:

5:8B (C,F) 7! max (0, 50 + 50 · 5CB (C) � 10 · kFk)

5:8B thus awards at least 50 points for a correct submission if no wrong sub-
mission was made and penalizes each wrong submission with a malus of 10
points.

In the following, we focus on comparing expert users, as only VBS 2019 out
of the eight analyzed benchmarking campaigns had a novice session. Generally
speaking, the literature suggests a significant performance difference between
novices and experts [HC04], which has been replicated at VBS 19 [RGL+21].
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6.1.2 Video Browser Showdown (VBS)

VBS is usually collocated with the International Conference on Multimedia
Modeling (MMM), started in 2012, and has since then been a yearly fixture at
the conference4. VBS 2019–21 used the V3C1 [BRS+19], and VBS 2022 addition-
ally the V3C2 [RSB21] dataset, which are shards of the V3C [RSA+19] dataset
consisting of videos scraped from Vimeo. It has three task types: V-KIS and
T-KIS, as described previously, and Ad-Hoc Video Search (AVS), where multiple
correct submissions can be made.

The scoring functions for those tasks have changed over the years. Funda-
mentally, the intent for KIS tasks is to reward quickly finding the correct item
while punishing wrong submissions. In AVS tasks, the goal is to reward both
precision and recall. We will recap the scoring function used in 2021 and 20225

for AVS tasks: Given correct submissions 2 and incorrect submissions 8 of a
team, all correct submissions of all teams for a task ? and a quantization func-
tion quant which merges temporally close correct shots into ranges6, the scoring
function for AVS tasks is as follows:

50EB (2, 8, ?) 7!
100 · k2k

k2k +
k8k

2

·
kquant(2)k
kquant(?)k

We show a tabular overview of the results of VBS from 2019–2022 in Table 6.2.
For reading clarity, we have sometimes named systems by the same research
group with similar approaches consistently over the years.

Immediately noticeable is the increase in the number of participants. Some
participants have been present over multiple years, such as VISIONE [ABC+22],
VIRET [LKS+19b; LBS+21], and VIREO [NWN+20]. The placement of teams
also varies significantly over the years, which indicates that the field pro-
gresses fast, and the adaption and invention of new features is essential to
keep up with state-of-the-art systems. The analysis papers of the 2020 and
2021 iterations showed that enabling users to express temporal context is a
crucial feature of top performing systems [LVM+21; HGB+22]. When specif-
ically considering vitrivr, the success in 2019 can be mainly attributed to the
inclusion of various deep learning features for OCR, ASR, and concept re-

4The analysis of VBS 2021 was led during this dissertation project, and this subsection draws
significantly on it [HGB+22]. For the sake of readability, we will not use quotation marks explic-
itly when quoting from our own journal paper in this subsection.

5For 2023, a new scoring function is used that only awards points for one correct submission
per video.

6“since VBS 2018, ranges are fixed static non-overlapping segments of 180s dura-
tion” [Sch21b], in 2021 the ranges were dynamic and based on shot segmentation.
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Table 6.2 VBS result overview from 2019–2022

2019 2020 2021 2022

vitrivr SOMHunter vitrivr HTW
VIRET VIRET VIRET VIRET
VIREO vitrivr VIREO VISIONE
VISIONE VIREO SOMHunter IVIST
ITEC Exquisitor HTW AVSEEKER
- IVIST VIRET HCMUS-FIRST
- AAU VERGE VideoFall
- ITEC VBS20 Winner VERGE
- VERGE vitrivr-VR vitrivr
- VNU Exquisitor VNUHCM
- - VISIONE VIREO
- - diveXplore UIT
- - VideoGraph vitrivr-VR
- - noshot diveXplore
- - IVIST Exquisitor
- - EOLAS ViRMA

trieval [rossettoDeepLearningBasedConcept2019notes; RPG+19; RGL+21]. At
VBS 2020, the novel textual embedding of the top two performing systems
proved crucial to their success [LVM+21], with the 2020 iteration of vitrivr not
yet integrating such an embedding and thus placing third. The new textual
embedding specifically developed for vitrivr and vitrivr-VR in 2021 [SGH+21a],
together with a new and improved temporal search functionality [HSS+20;
Gst21; HAG+22], and a strong AVS performance, resulted in vitrivr achieving
first place again [HGB+22]. The midfield performance of vitrivr in 2022 can
most probably be attributed to the fact that most top performing systems used
a version of CLIP [RKH+21], which vitrivr only integrated later that year, and
operator performance7.

One advantage of the format is that it enables an analysis of the result logs.
In addition to the submissions, most teams logged the result sets of their queries,
either storing the logs locally or sending them directly to the competition server.
In [HGB+22], we have shown what insights can be drawn from analysing logs
and submissions and will show a few interesting highlights here.

One interesting question is how long it took operators to find an item once it
was present in a result set. This is dependent on the system (i.e., how good the

7A preliminary analysis of result log data shows a significant number of browsing failures
for vitrivr, indicating that while the retrieval model worked, the operators (including the author
of this thesis) missed the correct item during browsing.
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(a) Time deltas of teams between first
appearance of correct item in result logs

and submission

(b) Relation between rank and submission
delta

Figure 6.2 Relation between the rank of first occurrence of a shot in the result
logs and time delta to correct submission at VBS 21. As expected, time
delta increases with rank, with variance increasing as well [HGB+22]

browsing capabilities of a system are), and the operator, since some operators
prefer to browse a result set exhaustively, while others prefer to reformulate
and execute new queries. Figure 6.2a shows the elapsed time between the first
appearance of the correct shot in the result set and submission time of the correct
item. Note that it is possible that a correct item was found through the video
and not the shot. To visualize the dependency between the rank of a found
item and the time until correct submission, we show in Figure 6.2b each correct
submission as a datapoint with the rank it was found at first, and the time it
took until correct submission. Overall, the figure shows that, as expected, the
time between the first appearance and a correct submission increases with the
rank. However, the figure also demonstrates that variance increases as well,
indicating that operator differences are indeed occurring. While some operators
might have browsed for a long time, others reformulated their query or found
the correct item through the correct video. The two plots show that while there
is a relation between the rank at which a correct item is found, and the time
it is submitted, the effect is relatively weak and operator efficiency is crucial
with browsing misses (that is, the correct item is visible at a low rank but not
submitted) relatively common.

In the 2019 and 2020 iterations of VBS, there was no analysis of AVS tasks
due to technical issues [Sch19; RGL+21; LVM+21]. At VBS 2021, the new evalu-
ation server [RGS+21] improved testing by teams before the competition, which
helped improve data quality. This also meant that we could analyze research
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Table 6.3 List of AVS tasks for VBS 2021 with their description, ordered by ap-
pearance order in the competition (a-5 was solved first, a-6 last)

Task ID Task Description

a-5 Find shots of a person holding or wav-
ing a flag.

a-9 Find shots of at least one person drink-
ing beer.

a-8 Find shots inside an airplane, showing
at least one passenger.

a-1 Find outdoor shots of two women walk-
ing and talking to each other.

a-2 Find shots of people having their hair
done.

a-3 Find shots of a person skiing, with
his/her own skis in the picture.

a-10 Find shots of two adult men hugging
each other.

a-4 Find shots of kids playing football (soc-
cer).

a-11 Find shots of people skiing, shot with
the camera looking into the sun (back-
lit shot, possibly with lens flare).

a-6 Find underwater shots of one or more
fish.

questions around AVS tasks, for which both retrieval and judgement is done
interactively at VBS. Table 6.3 shows all AVS tasks of VBS 2021 and their de-
scription in the order in which they were solved in the competition. All plots
going forward include the task identifiers.

One area of interest is how the assessed correctness of submissions changes
during the time allocated to a task. The hypothesis being that at the start of a
task, there is some ambiguity between the task description and judge and op-
erator understanding of the description, which is improved as teams see in real
time thumbnails correct or incorrect submissions. Figure 6.3a shows the ratio of
submissions judged as correct over time. What stands out is that there were two
tasks with a large degree of difference in task understanding, a-3 (person skiing
with their own skis in the picture) and a-11 (person skiing, camera looking into
the sun). For a-3, the difference (the task intention was for point-of-view shots)
was clarified with a comment from a judge, however the ratio remains low since
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(a) Share of AVS submissions judged as
correct over time during an AVS task

(b) Cumulative unique correct video
submissions over time during an AVS task

Figure 6.3 AVS submission and judgment statistics [HGB+22]

(a) All submissions (b) Submissions judged as correct

Figure 6.4 Selected AVS metrics per task, looking at all and only correct submis-
sions. Higher y-axis values indicate that for a given task, it is easier to
find results [HGB+22]

not all teams followed the discussion. For a-11 the different understandings per-
sisted. Overall, no clear trend emerges. Some tasks exhibit consistently high
agreement (e.g., a-6 looking for fish underwater, and a-5 person with a flag),
while most tasks have a high variance during the task. Figure 6.3b shows that
the number of unique correct videos that are found per task continues to increase
even toward the end of the task, showing that even at the end of the time limit,
new videos matching the description are still being found. This indicates that
given a longer task duration, the number of unique correct submissions would
probably still increase, as long as relevant segments exist in the collection.

Another interesting question is what differences, if any, there are between
AVS tasks. For some tasks, looking at a thumbnail is sufficient (e.g., underwater
shot of fish), while for tasks describing an action, the video needs to be inspected
(e.g., shots of two women walking and talking). Additionally, some tasks might
have a wide range of acceptable results, while others are quite narrow. Fig-
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ure 6.4a, with all submissions, and Figure 6.4b, with only correct submissions,
show the difference between the AVS tasks in terms of selected metrics: the
number of overall submissions (shown as bars), time until first (correct) submis-
sion, time to first (correct) submission by half the teams, and time until first ten
(correct) submissions by half the teams. The y-axis indicating the time, on the
right, has been inverted so that higher y-axis values indicate that a task is easier
for all metrics. On the x-axis, tasks are ordered by their appearance in the com-
petition. Looking at these three graphs, the data indicates that there are relevant
differences between the AVS tasks. For example, in the task a-1, it took almost
five minutes for half of the teams to find 10 submissions which were judged as
correct.

This analysis led improvements in evaluation methodology like a pre-event
briefing of judges at VBS 2022 and 2023, and the methods are re-used for the 2022
analysis [LAB+23]. In particular, there is a focus on ensuring that both T-KIS
and AVS tasks are clearly formulated, and ambiguity is reduced. Additionally,
edge cases for judgment calls are discussed beforehand to reduce significant
differences between the judges.

In general, the evaluation challenges noted in [Fer17; RGH+21] are visible
in the analysis of VBS over the years [LVM+21; RGL+21; HGB+22]. Perfor-
mance of human operators varies greatly, with the format not necessarily col-
lecting enough data to make robust statements about the comparison of sys-
tems. Almost all systems rely on “countless opaque parameters and configura-
tions” [RGH+21], and many systems are meta-evaluated before the competition
to be improved, making “key observation and motivation for a specific configu-
ration of the system irreproducible” [RGH+21].

The challenge that systems are meta-evaluated before the competition also
partially applies to vitrivr. Although the contributions made in the course
of VBS were aimed at general purpose video retrieval, some functionality has
been primarily motivated by or geared toward an interactive evaluation setting.
To name a few, functionality for cooperative retrieval and quick submission from
thumbnails for AVS tasks [rossettoDeepLearningBasedConcept2019notes], spe-
cific UI views [RPG+19], and the move toward a new database system with im-
proved single-node performance [SPG+20; GRH+20].

Other contributions made in the context of VBS have been motivated more
broadly by the journey toward a general purpose multimedia retrieval system
and not necessarily geared toward a competitive setting, such as the inclusion
of novel deep learning methods [RPG+19], tighter integration of retrieval mod-
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Table 6.4 LSC result overview from 2019–2022

2019 2020 2021 2022

vitrivr MySceal MySceal MySceal
VIRET SOMHunter SOMHunter LIFESEEKER
HCMUS-FIRST vitrivr LIFESEEKER Memento
LIFESEEKER VIRET Voxento HCMUS-FIRST
THUIR Exquisitor VIRET Voxento
Exquisitor diveXplore Memento vitrivr
ITEC ViRLE HCMUS-FIRST diveXplore
NTU LIFESEEKER NTU vitrivr-VR
LENS HCMUS-FIRST diveXplore MEMORIA
- VideoGraph LifeMon -
- THUIR vitrivr -
- NTU vitrivr-VR -
- BIDAL-HCMUS Exquisitor -
- DCU Vox XQC -
- - PhotoCube -
- - ViRMA -
- - VideoGraph -

els [SPG+20], exploring explainability [HGI+21], or novel query methods like
pose-based queries [HAG+22].

6.1.3 Lifelog Search Challenge (LSC)

The Lifelog Search Challenge (LSC) is “modelled on the successful Video
Browser Showdown (VBS)” [GSJ+18] and has as the underlying dataset mul-
timodal data captured by a single lifelogger over the years. The exact dataset
which is used for LSC has differed but is consistently “a multimodal lifelog
dataset gathered by one active wearer (lifelogger)” [GJS+22]. It has over the
years included various metadata such as location, music listening history, and
biometric data. Anonymized images taken by a wearable camera are central
to the dataset and the challenge, as the queries often describe visual context.
LSC is collocated with the ICMR conference yearly and has been the Grand
Challenge of ICMR 2022. For task types, LSC includes T-KIS and AVS tasks
similar to VBS and has experimented with a Q&A task in 2022 [HRS+22].

For a direct comparison, the main difference between LSC and VBS lies in
the task types, with LSC having no V-KIS tasks and a Q&A task in 2022, and the
dataset. Otherwise, the format and scoring function is the same.

We show a tabular overview of the results of LSC from 2019–2022 in Table 6.4.
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For reading clarity, we have sometimes named systems by the same research
group with similar approaches consistently and matched them with the VBS
names.

Comparing the result overview with the one from VBS, we can see that the
top-performing teams (especially in 2021 and 2022) are more similar, indicating
a larger performance gap. We attribute this to the specialization involved with
the top performing systems (e.g., MySceal [TNN+22], LIFESEEKER [NLN+22],
Memento [AGG22]), which are built specifically for lifelog retrieval. Includ-
ing specialized features like spatial aggregation of metadata, sometimes with
handcrafted mappings, requires significant engineering effort, and the special-
ization also means operators are intimately familiar with the datasets and the
setting. Due to the COVID-19 pandemic, LSC 2020–2022 was run in hybrid/on-
line mode, meaning novice sessions were not included, and thus the perfor-
mance of the one allowed operator is crucial for high scores, and further benefits
expert systems.

To contextualize the results of vitrivr, the deep learning functionality in-
tegrated for VBS 2019 also proved essential in achieving the highest score at
LSC 2019, and in 2020 a specialized Lifelog System and SOMHunter with an
improved textual embedding proved the benefit of specialization and textual
embeddings. The results of LSC 2021 showed that the embedding used by
vitrivr was not ideal for lifelog retrieval, and systems incorporating CLIP or
specializing in Lifelog Retrieval (e.g., MySceal, LifeSeeker) achieved a higher
score [TND+23]. Even though CLIP was added for the 2022 iteration, sys-
tems specialized in Lifelog retrieval (and also optimized specifically for LSC)
still achieved higher scores than vitrivr, indicating that the general-purpose ap-
proach in the implementation has its limit and that future work on result pre-
sentation and summarization in the context of lifelog retrieval and beyond may
be a worthwhile endeavor both on a conceptual and system level.

LSC has acted as a driver for vitrivr to further move toward a general purpose
retrieval system, with additions for Boolean retrieval in both retrieval model and
UI, and late filtering functionality for metadata [RGH+19], or experimentation
with image stabilization and addition of geo-spatial queries [HGP+21].

6.1.4 Four Years of Interactive Retrieval Evaluation Campaigns

To wrap up this section, we will discuss subjective experiences and impres-
sions, sometimes backed by data, gained during four years of interactive re-
trieval evaluation campaigns and provide a critical look toward these evaluation
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campaigns. As discussed previously, the format of synchronously compar-
ing retrieval systems at a conference (e.g., VBS, LSC) or in a dedicated set-
ting [RGH+21] has significant advantages. These settings have been described
as “equitable” [LBB+22], which is true to some degree, yet there are chal-
lenges which also have been highlighted by reviewers and in (co-)authored
works [RGH+21; HGB+22; HSS23] which we wish to discuss briefly.

Clarity about Goals & Methods: In its current form, the focus and methods
of the analysis papers is determined after the competition. While this has
some benefits, best practice in some fields of natural science include pre-
registration of analysis goals and methods [NED+18].

One example of this is the question of interaction and result logs. While
there are significant challenges with normalizing a variety of user interfaces
and conceptual approaches to a format which can be analyzed, these are
not unsolvable problems. Since both format and extent of required logging
is often communicated only very close to the competition and not enforced
through automated testing, analysis papers only have access to logs from a
subset of teams, which require a significant post-hoc normalization effort.
Additionally, it means results are subject to publication bias [Sut09].

While there is a balance to be struck between barrier to entry for new teams
and extensive data collection from participants, the current format and or-
ganization could benefit from a clearer communication of the goals of these
campaigns and the methods which are used to achieve these goals.

Barrier to Entry: Looking at the results of previous years, the top teams often
come from the same research groups. On one hand, this makes sense as
building a performant and user-friendly system is not a trivial endeavor, and
teams benefit from work done and experience gained. On the other hand,
this means individual aspects or improvements are harder to identify as rele-
vant, and new participants require a significant effort to become competitive.

Efforts have been made to reduce the barrier to entry, such as in the VBS con-
text open-sourcing the data used by vitrivr in 2019 [RPG+19] and extracted
data for the dataset used in 2022 [RSB21], and in the LSC context providing
output of the Microsoft vision API for the entire dataset. These efforts are
commendable, but more work remains to be done. vitrivr has been between
2019–2022 the only fully open-source participant at both competitions, and
a limited number of participants have released snapshots of their code in
separate publications.
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A commitment to open code would aid new participants and existing partic-
ipants in understanding the precise nature of the approaches used by other
researchers, as not every implementation detail can fit into a 6-page ACM
double-column paper.

Robustness of Results: As shown in [RGH+21], inter-user performance differ-
ences can be significant, even for expert users of the same system. In its
current format, both VBS and LSC only allow a limited number of partici-
pants (2 resp. 1), which limits the robustness of the results of these evaluation
campaigns.

This is related to the fact that they physically take place at a conference,
which poses organizational challenges, but advances in tooling [RGS+21] has
enabled remote and hybrid participation, which would allow more users per
system.

Fully Fair Setting: Multiple areas can be identified where the current setting
does not offer a fully fair evaluation. While these areas involve tradeoffs and
are not easily solvable, it is nevertheless important to briefly mention them
here. First, the textual presentation modality for T-KIS tasks means that
participants which do not share a similar cultural background as the person
creating the queries can be at a disadvantage as they do not comprehend
references or might describe a scene differently. Second, there are commonly
differences between expert users in terms of used hardware or time spent
practicing with their system.

The Nature of a High Score: Related to the first point, participants and exter-
nal reviewers have different outlooks on what a high / the highest score at
such a competition and benchmarks in general mean. It starts with the ba-
sic question of calling the team which has achieved the highest score “win-
ner”. On one hand, participants invest significant efforts in their concepts
and implementation, and in a competitive setting it is entirely appropriate to
term the highest-scoring participant “winner”. On the other hand8, among
the many aims of science one could reasonably formulate, none of them
include winning against other researchers. If the aim is to further human
understanding, science should be a collaborative endeavor and rewarding
high-achieving teams incentivizes teams to focus on their own score instead

8As noted by multiple reviewers in different contexts.
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of advancing the community as a whole9. The current practice of giving
the lead of the common journal publication to the highest-scoring team also
further incentivizes a focus on one’s own score.

6.2 System-Centered Evaluation

Turning to a more standard way of evaluating contributions, we will evaluate
our model and implementation in this section using a newly created dataset
with appropriate metrics, and associated significance tests.

We focus on the scenario described in Chapter 2, which is mapped to a task
occurring in benchmarking campaigns [LBB+22], which is that of “retrieving one
particular data item which satisfies a specific information need for a user (i.e., a
KIS task)” [LBB+22]. The results shown in this evaluation serve two purposes.
On one hand, we can make recommendations about algorithm selection and
gain insights for our scenario, on the other hand we offer a blueprint for future
work aiming to further drive progress in this area. Following [Hul93; BBF+07;
BR11] we briefly list requirements from literature for retrieval experiments:

Test Collection: Any test collection should contain the data itself, tasks for the
collection and a ground truth containing correct answers10. We will describe
the dataset used in this evaluation in Section 6.2.1.

Evaluation Measures: The effectiveness of the used system or method needs to
be quantified using suitable metrics. We describe the metrics used in our
evaluation in Section 6.2.2.

Significance: There should be a statistical methodology which determines
whether the differences between the methods are statistically significant.
We outline our significance tests in Section 6.2.3, and report results for the
metrics, with additional information in the appendix.

Work in this section has benefited from supervised student theses [Gst21;
Ben22a; Ben22b] and is performed using a separate evaluation client which em-
ulates the functionality of the retrieval engine and in which model and algo-

9As a simple example, consider incentives around sharing data extracted from a paid API
such as the Google Vision API. Allowing teams to use paid commercial APIs without requiring
them to share such data could be construed as a form of pay-to-“win”.

10In a KIS scenario, the relevance for each item except the desired one is 0 for any query
formulated for a specific task. Outside the KIS scenario, the item might be relevant for the
query.
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rithms are implemented. We now start with a description of the dataset, metrics
and significance method and then show evaluation results.

6.2.1 Dataset

As existing datasets for multimedia retrieval evaluation are focused on a queries
without temporal context, we constructed our own evaluation dataset based on
the VBS and LSC evaluations. Our argument for a distinct reference collection
which is focused on a particular type of information need is also in line with
arguments from standard literature [BR11, p. 134]. Following the requirements
described for a test collection, we describe our datasets.

Multimedia Data For the multimedia data, we use V3C1 [BRS+19] for the
video retrieval evaluation and the dataset from LSC 2020 & 2021 [GLN+20;
GJS+21] for the lifelog retrieval evaluation. V3C1 consists of a wide range of
videos which were collected from Vimeo11, and the lifelog dataset consists of
four months of multimodal lifelog data including approx. 180’000 images, loca-
tion logs and biometrics.

Task Data As the datasets are used at benchmarking campaigns, we also have
tasks associated with them from the KIS parts of these campaigns. This means
that there are tasks which are relevant to the dataset and have been selected and
designed by independent actors.

Queries The queries for these tasks have been collected from a variety of users.
For the video retrieval scenario, we have asked users to describe video clips of
the defined tasks in plain text. Details on the tasks and prompt are available
in Appendix B. For the lifelog scenarios, the queries have been created by the au-
thor and in a student project [Ben22a]. [CPK+08] argues that “more queries with
fewer or noisier judgments is preferable to evaluation over fewer queries with
more judgments”. We follow their argument and generate new, artificial queries
based on the user-provided queries. Specifically, we simulate users leaving out
one or more query elements in their descriptions as described in Example 6.1.

11https://vimeo.com

https://vimeo.com
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Example 6.1 Query Generation

Assuming we have a query with three subqueries: “giraffe”, “lion”, and “ele-
phants” with user-specified distances of 5 and 10 seconds. We generate the
following new, additional, queries:

– “giraffe”! “lion” with a distance of 5 seconds

– “giraffe”! “elephants” with a distance of 15 seconds

– “lion”! “elephants” with a distance of 10 seconds

This simulates users leaving out queries, but adds noise as the duration of the
subquery which is removed is set to 0. We still think this is preferable following
the arguments of [CPK+08].

To give an overview of the datasets, Table 6.5 shows the number of tasks,
queries and how many queries there are in total after applying query expansion.

Table 6.5 Tabular overview of task data

Dataset Tasks Queries Expanded Queries

Lifelog 16 17 136
Video 69 143 3904

6.2.2 Metrics

In this subsection, we describe the metrics we use to measure retrieval perfor-
mance. We use the best rank as a metric for individual queries and hit@k as a
summary metric.

Metric I: Best Rank

The best rank of a correct item is chosen because in the KIS scenario, a user is
satisfied after the first correct item, Example 6.2 illustrates this metric.

Example 6.2 Best Rank

Assuming we are looking for an element in the sequence between 00:20–00:40
in video 1, and we are provided the following result list:

1. Video 2, 01:30–01:35
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2. Video 1, 00:15–00:25 (correct)

3. Video 5, 02:40–03:10

4. Video 1, 00:30–00:40 (correct)

As the results at rank 2 and 4 are correct, the best correct rank is 2.

Metric II: hit@k

hit@k indicates the percentage of correct answers at or below a certain thresh-
old and is defined in Definition 6.1. It is used in evaluations of other retrieval
systems and methods [AGG21; AGG22; WCM+19; Mof13; TNN+22; HK92;
KKO+92; CWZ+11; SSX+16; SBH+16; YLS+16] and in machine learning evalua-
tions [FCS+13; NMB+14; IM18].

Definition 6.1 hit@k

Given a ranked list containing the results for a query A, 52 (A) which returns the
position of the first correct answer in A, and a threshold : , we define a helper
function ⌘(A, :). This indicates if for a given result set, the correct item was
found at or below the given threshold:

⌘ (A, :) =
8>><
>>:

1 if 52 (A)  :

0 otherwise

Then, given the set of all evaluation queries Q4 and the set of results for all
queries A = (A1, A2, . . . , A=), hit@k is defined as follows:

hit (Q4, :) =
ÕkQ4 k

8=1 ⌘(A8, :)
kQ4k

As both of those metrics rely on a fair comparison of ranks, we make two
adjustments. Firstly, algorithms get a configurable maximum execution time
of 10 seconds. If this is exceeded, execution is terminated. Secondly, to avoid
known issues when comparing top-k lists, best ranks are capped at 10’000 and
if computation time is exceeded or an item is not found, its value is simply set
to 10’000 + 1. We illustrate the need for these adjustments in Example 6.3.
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Example 6.3 Creating Boxplots with unequal =

Moving into the world of visualization, we can showcase the need for having
equal sample size with categorical boxplots through a simple example. This ex-
ample is also relevant for other methods which rely on a comparison of median
values.
Let us consider two systems � and ⌫ which are tasked with retrieving the top :

elements for a query. Given four tasks and : = 10, the correct item is found at
the following ranks:

Task � ⌫

1 1 1
2 - 2
3 3 3
4 - 4

System � now has a median best rank of 2, while system ⌫ has a median best
rank of 2.5 — making system ⌫ appear worse in the boxplot, even though it is
clear that it is preferable. In the most favorable scenario, � would have found
the desired item at ranks : + 1 = 11, which would mean � has a best-case
median of 7.

6.2.3 Significance

To briefly summarize, significance tests aim to disprove the null hypothesis,
which in our case is that there is no difference between two methods. This
rejection would imply that there is indeed a difference, with either of the two
methods outperforming the other.

In our work, we will use the paired sign test [DM46; Sie57], which compares
not the magnitude of difference between two methods for a query, but only
which method performed better. We discard other tests because they make
significant assumptions about the distribution of measurements and differences,
as argued by [van79; BBF+07]. As a simple example, if method � has a best rank
of 1 for a query, and method ⌫ has a best rank of 2, the sign is -1. This would
also be the case for 1 vs 500.

The statistical methods we use for significance tests are taken from [BBF+07,
p. 357–359]. The implementation of the significance tests has partially been done
in the context of a supervised student project [Ben22b].
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Specifically, given two methods � and ⌫ we compute the sign B8 of each
measurement as follows:

B8 =

8>>>>><
>>>>>:

�1 if A outperforms B on measurement 8

0 if both methods are equal on measurement 8

1 if B outperforms A on measurement 8

Afterwards, we compute the number of occurrences 21, 2�1 where each
method outperforms the other. Given a function which checks the sign 5 :
{1,�1} ⇥ {1,�1} ! {0, 1}, with 5 (B1, B2) = 1 if B1 = B2 and 5 (B1, B2) = 0 otherwise,
we compute 21, 2�1 as follows:

2: =
kQ4 k’
8=1

5 (: , B8)

Following [BBF+07] and given : = min(21, 2�1) and = = 21 + 2�1 (the number
of queries where the results are not equal)12, we then compute the ?-value as
follows:

? = 2 ⇤
:’
9=1

=!
9 !(= � 9)!

0.5 9

(1 � 0.5)=� 9

Finally, we compare the calculated ?-value to a pre-determined significance
level. If ? is below the significance level, we reject the assumption that there
is no difference between the two methods, which means we have a statistically
significant difference.

We indicate ?-values lower than 0.001 as 0.001 following APA statistic guide-
lines [Ass22].

6.2.4 Results: Retrieval Quality

Having introduced our dataset, metrics and significance method, we will now
first show results for retrieval quality and then afterwards turn to retrieval run-
time. We focus on the quality of algorithms and underlying retrieval features.
For every metric and visualization, we show results for video and lifelog re-
trieval.

When comparing algorithms, we compare the following based on the pre-
sented concepts in Chapter 4:

12[BBF+07] does not discuss ties, the original [DM46] suggests incrementing both 21 and 2�1
by half of the ties, common reference works suggest decreasing = by the number of ties [SS99;
Spr11].
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Do Not Consider Temporal Context: Two algorithms which do not consider
temporal context but instead just aggregate scores for a single segment using
either average- or maxpooling called Average Segment Scoring Algorithm
(AVGSSA) and Maximum Segment Scoring Algorithm (MAXSSA). These
served as the basis for previous iterations of vitrivr [Ros18].

Algorithms From Literature: For both VIBRO [HSJ+22] and VISIONE [ABC+22],
we have received enough information from the original authors to recon-
struct the functionality as discussed in Chapter 4. We use those two algo-
rithms also as a baseline, with the expectation that they perform better in the
video scenario than in the lifelog scenario as this is what they were originally
designed for.

Our Modular Algorithm: Our baseline algorithm uses for pre-aggregation, can-
didate generation and post-aggregation the mechanisms described in Chap-
ter 4. There is a strict time cutoff to consider candidate segments. We term
this algorithm SIMPLE as it uses the default configuration of our suggested
model.

Distribution Algorithms: As introduced in Section 4.4.3, these algorithms re-
ward candidate segments which are a close match to the user-specified dis-
tance while not ignoring those who are not a match. These are called NDA,
EDA, and LNA and use the distributions discussed previously in Section 4.4.

For the underlying retrieval features, we compare two textual embeddings,
CLIP [RKH+21] and the visual text co-embedding which vitrivr and vitrivr-VR
have used at previous benchmarking campaigns [SGH+21a; SS22]. We abbrevi-
ate them as CLIP and VTE respectively.

Best Rank

Figure 6.5 shows the best rank of a correct item over all tasks per algorithm.
As mentioned, all ranks are capped at 10’000, and if the algorithm did not find
the correct item or exceeded computation time, its rank is also set to 10’000+
1. Algorithms are ordered by median best rank. Looking at the results for both
video and lifelog retrieval, it is evident that there is a clear benefit for algorithms
which consider temporal context. For both datasets, the algorithms which do not
consider temporal context perform worst (AVGSSA and MAXSSA).

For the lifelog scenario, the two algorithms from literature designed for video
retrieval struggle as expected even though we tried to have a fair parameter map-
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(a) Lifelog (b) Video

Figure 6.5 Comparison of the best rank of a desired item over all tasks

Table 6.6 Tabular overview of best rank significance results for all Lifelog queries

EDA LNA SIMPLE NDA VISIONE VIBRO AVGSSA MAXSSA

EDA 0.036 0.181 0.001 0.001 0.001 0.001 0.001
LNA 0.729 0.543 0.001 0.001 0.001 0.001
SIMPLE 0.059 0.085 0.001 0.001 0.001
NDA 0.016 0.001 0.001 0.001
VISIONE 0.004 0.001 0.001
VIBRO 0.001 0.001
AVGSSA 0.347
MAXSSA

Table 6.7 Tabular overview of best rank significance results for all Video queries

EDA NDA LNA SIMPLE VISIONE VIBRO AVGSSA MAXSSA

EDA 0.001 0.001 0.001 0.55 0.001 0.001 0.001
NDA 0.001 0.001 0.55 0.001 0.001 0.001
LNA 0.001 0.001 0.001 0.001 0.001
SIMPLE 0.001 0.001 0.001 0.001
VISIONE 0.001 0.001 0.001
VIBRO 0.001 0.001
AVGSSA 0.001
MAXSSA

ping to the lifelog scenario. In both scenarios, the exponential decay algorithm
EDA performs best. In the video scenario, there is little visible difference in the
median of the boxplots between the four algorithms implemented in this thesis
and the two from literature, which is why we turn to the significance tests.

We show the results from the significance tests in Tables 6.6 and 6.7, with
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(a) Lifelog (b) Video

Figure 6.6 How many of the desired items were found at or below a certain posi-
tion

statistically significant results (? < 0.05) highlighted in bold. Algorithms are
ordered by median best rank on both axes. For example, we can see that there is
a statistically significant difference between EDA and MAXSSA with ? = 0.001
for both video and lifelog datasets.

In both scenarios, the differences between the algorithms which do not con-
sider temporal context and the algorithms which do are reported as significant
by the sign test. In the video retrieval scenario, there are enough queries to
achieve significant differences between all pairings except for the VISIONE al-
gorithm, while in the lifelog scenario, the differences between the SIMPLE and
VISIONE algorithms and some differences between our four algorithms are not
reported as significant.

This can indicate that more tasks and queries are needed, or that the uncer-
tainty associated with information needs spanning longer periods of time make
it difficult to design reward functions which work for all cases.

We show quality with regard to the number of subqueries in Appendix A.1
in Figures A.1 and A.2. Significance results for queries without query expansion
can be found in Appendix A.3.1.

Cumulative HIT@k

Figure 6.6 shows hit@k on the y-axis for k up to 200. The reason for choosing a
cutoff is the assumption that even expert users will rather re-formulate a query
in the interactive setting than browsing an entire result set [HGB+22].

Both figures show that there are diminishing returns when continuing to
explore results. It is also evident in both figures that any choice of temporal
scoring algorithm has benefits compared to ranking mechanisms which do not
consider temporal context. The results with the cutoff applied are relatively
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Table 6.8 Tabular overview of hit@k significance results for all Lifelog queries,
only looking at results with a best rank below 200

EDA LNA SIMPLE NDA VISIONE VIBRO AVGSSA MAXSSA

EDA 0.063 0.149 0.002 0.001 0.001 0.001 0.001
LNA 0.93 0.481 0.001 0.001 0.001 0.001
SIMPLE 0.069 0.115 0.001 0.001 0.001
NDA 0.015 0.001 0.001 0.001
VISIONE 0.001 0.001 0.001
VIBRO 0.001 0.001
AVGSSA 0.002
MAXSSA

Table 6.9 Tabular overview of hit@k significance results for all Video queries, only
looking at results with a best rank below 200

EDA NDA LNA SIMPLE VISIONE VIBRO AVGSSA MAXSSA

EDA 0.005 0.001 0.001 0.001 0.698 0.001 0.001
NDA 0.001 0.001 0.001 0.742 0.001 0.001
LNA 0.001 0.001 0.001 0.001 0.001
SIMPLE 0.001 0.134 0.001 0.001
VISIONE 0.021 0.001 0.001
VIBRO 0.001 0.001
AVGSSA 0.001
MAXSSA

consistent with those from the previous plots. It is evident that the gap between
the VIBRO/VISIONE implementations and ours is larger in the lifelog context,
which makes sense as those were not originally developed for lifelog retrieval
and thus, are not adopted for the longer distances between subqueries and dif-
ferent information needs.

The difference between the VIBRO algorithm and our algorithms at very low
ranks for video retrieval is interesting and could warrant further investigation.
Preliminary analysis from VBS 2022 data indicates that one of the reasons con-
tributing to VIBRO achieving the highest score was the very fast submission of
correct results compared to other systems. This is consistent with the results
shown here.

For significance results, we follow the same methodology as for the best rank
but ignore all queries with a best rank below 200, following the hypothesis that
users would ignore those. We show the results in Tables 6.8 and 6.9.

Again, the results are similar to those for comparing the best rank. In the
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(a) Lifelog

(b) Video

Figure 6.7 Comparing best rank for two different textual embedding features

lifelog scenario, more queries may help getting to more robust results, but a
clear difference between our algorithms and those from literature or those not
considering temporal context is visible. In the video retrieval scenario, our al-
gorithms have significantly better results than the others with the exception of
VIBRO.

Underlying Retrieval Features

We now turn our attention toward the importance of the underlying retrieval
functionality for temporal queries. As argued previously, complex queries and
fusion are useful when the individual components which are to be combined are
of high quality. Figure 6.7 shows a comparison of two different textual embed-
dings, CLIP [RKH+21] and the text co-embedding which vitrivr and vitrivr-VR
have used at VBS and LSC previously [SGH+21a; SS22].

The results show that the visual-text co-embedding vitrivr uses performs
better than the CLIP model for most algorithms in both the lifelog and video
retrieval scenario. One reason for this discrepancy could be that VTE operates
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Table 6.10 Lifelog: significance results when comparing CLIP and VTE per algo-
rithm

Method EDA LNA SIMPLE NDA VISIONE VIBRO AVGSSA MAXSSA

CLIP v VTE 0.335 0.006 0.258 0.001 0.861 0.001 0.001 0.001

Table 6.11 Video: significance results when comparing CLIP and VTE per algo-
rithm

Method EDA NDA LNA SIMPLE VISIONE VIBRO AVGSSA MAXSSA

CLIP v VTE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

(a) Lifelog (b) Video

Figure 6.8 Comparison of the algorithm runtime over all tasks

on the entire shot and temporally aggregates frames, while the implementation
of CLIP in vitrivr operates on a single frame. However, given that the difference
is not present in all algorithms, no clear recommendation emerges, indicating
that depending on the algorithm, a different ranking of the textual query works
better. This points toward result fusion of the two features being an attractive
option.

We show significance results for a comparison of CLIP and VTE per algo-
rithm in Tables 6.10 and 6.11. These indicate significant results across all algo-
rithms for the video dataset and significant results for most algorithms on the
lifelog dataset.

6.2.5 Results: Retrieval Runtime

Having focused of the quality of the algorithms and underlying retrieval func-
tionality, we now turn our attention toward the execution time. Figure 6.8 shows
the algorithm runtime over all tasks. We expect the algorithms which score seg-
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ments individually (i.e., MAXSSA and AVGSSA) to be significantly faster. In
both cases EDA is the fastest of the temporal scoring algorithms and LNA and
VISIONE are the slowest. Combined with the quality results, EDA emerges as
an attractive choice due to being both fast and accurate. More importantly, the
results show that with median scoring times below a second for single-threaded
execution on commodity hardware13, late fusion for temporal scoring does not
incur significant execution time costs when compared to the runtime of query
transformation and execution time of the actual database queries [Gas23]. We
show how runtime changes w.r.t the number of subqueries in Appendix A.2
in Figures A.3 and A.4.

Detailed results for the significance tests are in Appendix A.3.2, and show
that the differences for video retrieval are robust and for lifelog retrieval mostly
robust.

6.3 Discussion

Offering temporal search capabilities significantly enhances the performance of
modern multimedia retrieval systems. While underlying retrieval features mat-
ter a great deal, the interplay of retrieval models and user interfaces, and spe-
cialization for expert users is of significant importance. Humans describe and
remember with temporal context, and both system-centric and user-centric eval-
uations show the importance and benefits of temporal search. We recommend
multimedia systems offer at least the option to specify multiple sequential terms,
and combine results in a late fusion step which avoids showing duplicate results.
For user-centric benchmarking competitions, we argue for clarity around goals
and methods, and a concerted effort to make sure that the format suits those
goals and methods.

User-centered evaluations have shown vitrivr to be a competitive system
which is able to incorporate novel concepts, methods and ideas over a long
timespan. The ability to express temporal information needs and evaluate them
efficiently has played a key role in the success of vitrivr at these evaluations. In
interactive evaluation campaigns, the incorporation of improved temporal query
functionality together with a competitive textual embedding feature has proven
key to achieving the highest overall score at VBS 2021 in addition to a strong AVS
performance. We also show how result and submission logs can be leveraged to

13AMD EPYC 7302P for the video dataset, AMD Ryzen Threadripper 1950X for the lifelog
dataset.
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gain insights into the nature of AVS tasks and performance of retrieval systems.
However, to ensure meaningful, robust and reproducible results, more partici-
pants and a clearer research design than currently used would be beneficial, as
demonstrated in the analysis of multiple interactive evaluations (co-)authored
during this dissertation project [RGH+21; HGB+22; HSS23].

The system-centered evaluation shows the benefits of the presented concepts
for efficient video and lifelog retrieval. The model which considers the entire
pipeline including sequence generation, candidate generation and scoring, and
result generation enables a comparison of different approaches and that enabling
users to specify more complex information needs with temporal components
increases retrieval performance. It is evident that while there is a benefit to re-
warding elements which match the user-specified sequence and distance closely,
the best function to do so depends on the scenario and the users. In our evalu-
ation, an algorithm which rewards segments matching user-specified distances
through exponential decay modeling was best in terms of retrieval performance,
but this might vary for other datasets and scenarios. Content-based retrieval
features still dominate retrieval performance overall, which is consistent with
expectations about fusion algorithms as discussed in Chapter 3. As so often,
there is a tradeoff between speed and quality. In our case, the tradeoff is not se-
vere enough to warrant considering dropping temporal late fusion, but it needs
to be evaluated and kept in mind, especially for larger data and result sets.

From an implementation perspective, one limitation of the approach used by
vitrivr is that the clear separation of concerns in its components means more in-
tegrated and focused approaches are not within scope, and thus vitrivr struggles
versus specialized systems in evaluation campaigns such as LSC. The monolith
nature of the retrieval engine, which also offers media segmentation and feature
extraction, also means vitrivr requires more onboarding effort and collaboration
than smaller, more focused systems. However, the improvements made by the
years over all systems also showcase the need for a flexible and modular system
which can adapt to new research methods and results. Having a stable system
with proven stability and usefulness enables productivity gains for both core
computer science and interdisciplinary research.



Eragon looked back at him,
confused. “I don’t understand.”
“Of course you don’t,” said Brom
impatiently. “That’s why I’m
teaching you and not the other
way around.”

— Christopher Paolini,
Eragon [p. 148]7

Related Work

In this chapter, we will briefly cover relevant research related to this thesis which
has not been mentioned in Chapter 3 or the literature discussions across the
previous chapters. Different multimedia retrieval systems are discussed in Sec-
tion 7.1, a discussion on how contributions in the area can be evaluated is found
in Section 7.2, and we make a detour into the field of Temporal Information Re-
trieval in Section 7.3. For broader surveys on multimedia retrieval from the past
decades, we happily refer to [SWS+00; DJL+08; HXL+11; Gia18; Gas23]. In ad-
dition to the direct references, content is also based on foundational texts in
multimedia and information retrieval [BBF+07].

7.1 Multimedia Retrieval Systems

In this section, we give an overview of current trends and developments in
systems for multimedia retrieval. For historical context, most early research on
systems for information retrieval focused on text and document retrieval [Sch80;
Bla88]. Self-contained multimedia retrieval systems started appearing in the
1990s, for example the QBIC system [FSN+95; NBE+93], which enables users
to query using sketches or example images and had color, shape and texture
features. Other notable examples include QVE [HK92; KKO+92], VRSS [CR95],
Photobook [PPS96], Chabot [OS95], PicSOM [LKO02] or MindFinder [CWW+10].
A more recent example of an open-source system is LIRE1 (Lucene Image RE-
trieval) [LRH+16], which builds on Apache Lucene [MHG10]. Similarly to
Cineast, it supports feature extraction and retrieval with a number of retrieval
features. However, it does not have a user interface and is limited to the visual

1https://github.com/dermotte/LIRE

https://github.com/dermotte/LIRE
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domain, whereas vitrivr also handles multimedia such as 3D and audio.
Looking at more recent work, there are various other “retrieval systems that

support cross-modal searches and multiple query types (e.g., [LXY+19; LSV+20;
WNM+21; WN20])” [LBB+22], and for a recent comparison of retrieval systems
and their underlying functionality, we look at the top performing participants of
VBS 2021 in a tabular form (directly taken from [HGB+22]). The retrieval meth-
ods are shown in Table 7.1, and the interaction methods are shown in Table 7.2.

Looking at the tabular comparisons, it is clear that deep learning is also
unavoidable in contemporary video retrieval. All top performing systems ex-
cept HTW have a joint embedding, and HTW added one for its 2022 itera-
tion [HSJ+22]. In terms of temporal functionality, all user interfaces enable
browsing temporal context, but functionality and methodology for temporal
queries is underdeveloped as shown in the literature discussions of Chapter 4.
As similar picture emerges when looking at contemporary systems for lifelog re-
trieval [TND+23], where most systems feature embeddings and temporal queries
but with simple approaches with underdefined methodology.

Additionally, lifelog retrieval has overlap with the field of human memory
augmentation for which systems research is also done [KW07; HKB+09; BC17;
CGR+20].

7.1.1 Interactive Retrieval

In our work, we have focused on KIS scenarios, where users have an information
need which is satisfied by a single answer. As discussed in previous chapters,
there are many more user models.

Where earlier work distinguished between information lookup and ex-
ploratory search, the latter covering both learning and investigating [Mar06]
or differentiated between classic retrieval, dynamic interaction, browsing and
recommendation [BN07], current work characterizes needs along an exploration-
search axis [ZW14], which starts with browsing and moves over structuring,
summarization, finding relevant items, KIS to ranking at the other end of the
scale.

For perspectives on how users fulfill those needs, there are different models
in literature. The classic notion has four steps: problem identification, informa-
tion need articulation, query formulation and result evaluation [SE98; BR11].

This has both in theory and practice moved to more interactive or dynamic
models [Rob00; BR11]. [SWS+00] defines an interactive query session as a se-
quence of query spaces, with each interaction of the user yielding a relevance
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Table 7.2 Selected interaction approaches used in systems participating at VBS
2021, with the X� symbol indicating implementation in a given system.
Table from [HGB+22]
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VISIONE X� X� X�

feedback, and the transition from one element to the next materializing the feed-
back of the user. To mention a few nature-related models, Bates [Bat89] describes
information seeking as “berry-picking”, where users require a series of pieces of
information (berries) that they find along their ways scattered among the bushes.
Pirolli [PC95] use a foraging analogy, where the information scent guides humans
on their retrieval journey and humans adapt their seeking strategies to improve
their searches, similar to the behavior of animals which look for food.

From a systems perspective, in addition to the one mentioned in the pre-
vious section, there are other “interactive and user-centric systems, where the
query expressing the user’s information need is no longer considered predeter-
mined and static, but rather evolves dynamically during a search process [Chr07;
WSd+06]” [LBB+22]. One particularly interesting example is the Exquisitor sys-
tem, in which the entire retrieval model is centered around interactive learning
and relevance feedback [KJR+20].

For a more in-depth overview on search models and strategies, we refer
to [BR11, p. 22–25], [BN07], and [HGB+22, p. 4–8], and for query modification
and relevance feedback to [BR11, Ch. 5].

7.1.2 User Interaction

Somewhat independent of the model of information seeking and information
needs is the modality, which can range from traditional devices such as keyboard
and mouse to mobile phones and more recently VR headsets or AR glasses.
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Each modality requires its own way of expressing information needs, as they
have unique capabilities and limitations. It is important to consider the impact
of device properties such as screen size, interaction method (mouse, keyboard,
touch, controller) or navigation possibilities (2D, 3D, AR, VR) on the user ex-
perience, as adjusting the interaction methods is essential for user satisfaction
and effectiveness [SC06; SMW+13; KTS+17; MLK+18; DG20]. Looking at inter-
active learning and retrieval, research is also done on how to make use of mo-
bile phones [CSC+07; BSK+21]. The best solution may also differ based on the
user who is using the system, for example children may prefer different inter-
faces [LRL+10]. This is also one of the reasons why VBS sometimes incorporates
novices in the evaluation campaign. This allows a comparison of systems for
expert and novice users [LVM+21].

Another key element of user interaction is result visualization, where there
are different definitions and categorizations in literature around result visual-
ization. [SWS+00] very broadly a visualization operator which maps the query
space into the display space ⇡ having a perceived dimension 3. 3 is the in-
herent dimensionality of the result, which might need to be mapped onto the
available dimensionality e.g., 2D for traditional desktop user interfaces, and
3D for VR. Boertjes and Nijholt [BN07] discuss matching presentation and
content modality and differentiate between result presentation and visualiza-
tion, the argument being that visualization uses “techniques [..] to interpret
the data and [helps present] the data in a more understandable form” [BN07].
We do not use this separation in the following, as it is not often found in
literature. [DJL+08] categorize four different presentation categories: objects
can be ordered (by relevance or chronological), clustered (by either metadata
or content), arranged hierarchical or some composite of those methods. In
terms of contemporary systems with a traditional UI, SOMHunter [KVM+20]
use a Self-Organizing Map (SOM) [Koh90], and HTW [HSJ+21] a hierarchical
Self-Sorting Map (SSM) [SG14]. vitrivr-VR presents the result set in a sorted
grid which is wrapped cylindrically around the user [SGH+21a], and has a
in-video browsing mechanism “resembling a file cabinet drawer, which allows
quickly riffling through a temporally ordered box containing the segments
of a video” [HGB+22]. Another interesting visualization approach in VR is
ViRMA [DJ22a; DJ22b], where the data is mapped to a three-dimensional space
in which the user navigates.
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7.2 Multimedia Retrieval System Evaluation

There are different dimensions along which evaluations can be categorized. We
have used one prominent one, that of interactive or user-centric versus system-
centric to structure Chapter 6, which is similar to the glass box vs black box
categorization [Gro96], where glass box evaluations assess systematically com-
ponents of a system and black box evaluations evaluate the system as a whole. In
the context of our thesis, the interactive evaluation campaigns can be considered
black box evaluations and the system-centric evaluation a glass box evaluation.

From a historical perspective, Text Retrieval Conferences (TREC) [VH05] is
considered the first collaborative effort to both create test collections and eval-
uate methods and the format has been broadly adopted [BBF+07, p. 350–353].
VBS and LSC follow a similar approach, with a focus on the interactive aspect of
the evaluation but represent only one of many options for a framework of eval-
uating interactive retrieval systems [Bor03; LBB+22]. There are numerous eval-
uation campaigns with their respective collections, consider for example [BR11,
p. 158–165]. For a recent overview of current multimedia retrieval evaluation
campaigns, we refer the reader to [LBB+22, p. 194–197].

Lifelog retrieval evaluations come with their particular challenges, such
as relevance judgments being even more subjective than in the traditional re-
trieval context [GSD14]. The first test collection for lifelog research was released
in [GJH+16], and has paved the way for future evaluation campaigns such as
LSC, and future NTCIR [GJH+19] and ImageCLEF [DPR+18; DNPR+19; NLZ+20]
tasks.

For our work, we have chosen to focus on metrics suited for scenarios in
which only the first correct item is of interest. Evaluations where multiple rel-
evant items are considered and relevance judgments are provided might use
Precision/Recall-based metrics such as Mean Average Precision (MAP) or E-
resp. F-Measure [van79; SBH97], or Discounted Cumulative Gain (DCG) for
non-binary relevance judgments.

7.3 Temporal Information Retrieval

There are different definitions of Temporal Information Retrieval in literature.
[CDJ+14] define temporal information retrieval as “satisfy[ing] search needs by
combining the traditional notion of document relevance with temporal rele-
vance”. [KBN15] define it as focused on “how user behavior, document content
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and scale vary with time”. Generally, there is a significant focus on aspects like
freshness of retrieved documents, considering the relation between temporal
features of a document and the query [KGC11; MTY16] or multi-versioning.
This is not the focus of this thesis, as we do not consider the creation date of
a document during the retrieval process and leave multi-version aspects for
future work. Additionally, and consistent with earlier work in the context of
web retrieval [AGB07], the research question of how to best extract temporal
information from documents is raised (e.g., by detecting time specifications in a
text which are relative such as a weekday and mapping them to an actual date).
Early work in this domain relied on explicit specification. A prominent exam-
ple is TimeML [PCI+03], upon which extraction and normalization of temporal
expressions could be built [ASB+11].

On the feature side, there is also work which tries to identify activities over
a longer period of time in videos [HGS19]. We view this as tackling a different
dimension of the problem of temporal context, as this kind of research helps
only with the issue of one singular subquery, but not an arbitrary sequential
combination of activities. In the context of textual embeddings, recent work has
worked on scenarios where the desired item described by the query is shorter
or longer than the result item [DCZ+22]. This is related to the problems tackled
in Chapter 4, where we also need to aggregate result items to match the query,
however they do not consider multiple subqueries.





L’avenir, tu n’as point à le prévoir
mais à le permettre

— Antoine de Saint-Exupéry,
Citadelle, LVI [p. 167]8

Conclusion and Outlook

In this final chapter, we summarize the contributions and results in Section 8.1
and describe relevant and interesting future research directions in Section 8.2. In
particular, we refer back to our motivating scenario and requirements and how
our contributions address those.

8.1 Conclusion

As the starting point of this thesis, we have argued that the growth in variety and
volume of multimedia data necessitates research on a range of topics relating
to multimedia retrieval. Based on two motivating scenarios in the domains of
video and lifelog retrieval, we derived requirements for modern multimedia
retrieval systems wishing to address complex information needs of real users
in a comprehensive manner. After reviewing the foundations of multimodal
multimedia retrieval, we have made several contributions which further move
the field of multimedia retrieval in general and video and lifelog retrieval more
specifically toward the goal of a general purpose retrieval model for complex
information needs, which is backed by a usable implementation and evaluated
in a meaningful manner.

In Chapter 4, we introduced a retrieval model for complex information needs
with temporal components. The data model generalizes to all kinds of multi-
media and the query model is designed to enable efficient retrieval while en-
abling the expression of both simple and more elaborate queries. The model for
multimodal queries is based on the assumption that the traditional separation
between application layer and database layer is used, and shows how a variety
of information needs for different modalities and underlying retrieval features,
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and the corresponding notions of relevance, can be mapped to our model. The
model for temporal queries considers late fusion of subqueries, and cleanly sep-
arates the different steps taken by our approaches and others in literature. For
each of those steps, we show different original approaches and how other im-
plementations found in literature can be mapped to our model. We also present
different modular algorithms which can be used and evaluated in different for-
mats. It is to the best of our knowledge the first general purpose retrieval model
for queries with a temporal context in multimedia retrieval which is sufficiently
formalized and detailed to enable a comparison of different approaches in liter-
ature and enables the development and comparison of new algorithms.

In Chapter 5, we presented our contributions to vitrivr, an open-source multi-
modal multimedia retrieval system. Major contributions have been made to user
interface and retrieval engine, and minor contributions to the database layer.
vitrivr covers the full scope of a modern multimedia retrieval system and user
journey, including feature extraction, query formulation and execution, and re-
sult presentation and browsing. During this dissertation project, vitrivr has been
used in a variety of contexts and has served as a research platform for different
applications. It is now used in two large-scale interdisciplinary research projects,
one in the domain of cultural heritage [LFF22], and the other in the domain of
VR and AR [Wel22].

Our contributions are evaluated in Chapter 6 through both a user-centric and
system-centric lens. In the user-centric evaluation, we show results from inter-
active benchmarking campaigns from 2019 to 2022, and show that vitrivr is a
competitive system in both the domain of video and lifelog retrieval, achieving
the highest score three times between 2019 and 2022. New ideas for log analysis
alongside contributions in [HGB+22; RGH+21; HSS23] further analysis method-
ology for interactive retrieval evaluations. We also discuss our experience with
these campaigns backed by data and provide recommendations for future in-
teractive retrieval evaluations. In the system-centered evaluation, we evaluate
model and implementation in a more traditional manner using a newly created
dataset with appropriate metrics and significance tests. Our results show that
enabling users to express temporal context is essential when considering infor-
mation needs which are not only focused on a single element of a collection,
and that algorithms which consider user-specified distances perform better than
those who do not.

Taken together, we make a strong case for considering temporal context not
just on the feature level, but also enabling users to explicitly express it and
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consider it in the retrieval model. Our model serves as an important step to
fulfilling the user needs and requirements outlined at the beginning of this
thesis. Together with concurrent work on database management for multi-
media retrieval [Gas23] and multimodel multilanguage databases called Poly-
stores [Vog22], we also lay the groundwork for research on retrieval models
which bring together work from the domain of databases, multimedia retrieval,
and Human-Computer Interaction (HCI).

8.2 Future Work

There are many different interesting directions for future research in the field of
multimedia retrieval, and in this section we discuss potential future work which
would tackle important unsolved problems.

Explainable Retrieval: Explaining retrieval outcomes to users is especially rele-
vant given the rise of Artificial Intelligence (AI) methods involved in the pro-
cess [BADDS+20], and can be considered a multidisciplinary effort [BBB+20].
More broadly, recent regulations in the European Union include a “right to
explanation”, which includes affects also traditional algorithms [GF17]. Mak-
ing sure that retrieval results are not only relevant, but also the reason for
them being shown is explained to users is relevant for both the general public
and expert users, and affects all aspects of a retrieval system, from retrieval
model and underlying features to result presentation. Explainability is thus
a topic that would affect all contributions of this thesis.

Novel Features for Multimedia Retrieval: The underlying retrieval features
responsible for understanding multimedia and making it searchable have
evolved significantly in the past years. Breakthroughs in embeddings of vi-
sual and textual content [LXY+19; RKH+21] and speech recognition [RKX+22]
has led to significant gains in retrieval effectiveness. Research in improving
understanding of visual and textual content has significant potential, espe-
cially when also considering advances in text generation like GPT [BMR+20],
image generation like DALL-E [RPG+21] or Imagen [SCS+22], making work
on novel retrieval features still an essential tasks for the future of multimedia
retrieval research. Analyzing how novel features and users’ changing queries
based on their mental model of retrieval functionality affects the kinds of
information needs addressed in this thesis is thus a natural continuation of
this thesis. Of particular interest could be queries that are even more closely
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aligned with natural language descriptions of entire events, as users poten-
tially will get used to machines understanding this kind of query based on
their experience with text generation models like GPT.

Multimedia: The model and implementation presented in this thesis still con-
siders multimedia mainly siloed into either video, or images, or audio. As
identified in Section 2.3, fully enabling users to target different levels of ab-
straction in multimedia by considering composite multimedia data is rele-
vant in different contexts. Example document types include pdfs, presenta-
tion slides, or patient histories in a medical context, all of which have broad
and significant practical applications.

Multimedia Summarization: Often, the content of a multimedia object or a re-
sult element can and should be represented in a more concise summary to
the user [Sme07]. This has been an active area of research in video [BGS+10;
HXL+11], lifelogs [PC11], and audio [LLC19; VG20]. Related, but with a
different focus is the research area of content-based fusion, which considers
content when combining results. The algorithms presented in this thesis
only consider the content of the results to be combined through the under-
lying retrieval functionality, but are content-agnostic as they focus on the
scores. Content-based fusion has already received some attention in the lit-
erature [KK09; LMR+18; RM19]. This is an interesting avenue in general, but
specifically when considering queries which have an inherent temporal con-
text. Making use of this temporal context when creating result summaries
could be an interesting direction of future research.

Novel Input Modalities: Research at the intersection between multimedia
retrieval and human-computer interaction, especially for different input
modalities such as mobile phones [CMS17; BSK+21], AR [PPE+21; RRT22], or
VR [Sch21a; SGH+21a; DJ22b] is essential in a world where the predominant
way of accessing information is on mobile devices for a significant amount
of people. Research in this direction could look particularly at questions of
query formulation and result presentation and browsing, two areas where
the implementation in this thesis has followed a conventional approach with
a desktop interface. The relation between the kinds of information needs
users have and the context with which they use the interface should also
be kept in mind, as users on a mobile or VR device tend to have different
information needs than those in front of a traditional desktop computer.



Conclusion and Outlook 123

Interaction Models for Interactive Retrieval Systems: As discussed in this the-
sis, and in the analysis of benchmarking campaigns [RGH+21; RGL+21], a in-
teraction model for retrieval systems which is general enough to be applica-
ble to different implementations would enable a comparison of information
seeking strategies for different retrieval systems. Previous research in this
direction [LVM+21] has struggled to capture and compare the different inter-
action modalities along the user journey in a way which enables meaningful
results.

Large-Scale Interactive Retrieval Evaluations: Bringing together research in
the HCI domain with user-centric benchmarking campaigns would en-
able much more robust evaluation results when comparing user interaction
modalities of multimedia retrieval systems. During this dissertation project,
minor contributions were made toward a larger (= = 15) comparison of two
retrieval systems [RGH+21], where analysis and discussion showed that there
are interesting insights to be gained by increasing the number of participants
and tasks, and controlling the setting more rigidly, and we discuss similar
issues in [HSS23]. This has already motivated research on the user interface
of vitrivr-VR.

Structured Query Languages for Multimedia Retrieval: One of the fundamen-
tal research questions raised in [JWZ+16, p. 299] is “Is a novel multimedia
query language needed [...] to fully support multimedia analytics, or is
an extension of classic query languages sufficient?”. Given the prominence
and continued success of SQL, we think that extending SQL with the nec-
essary functionality for multimedia retrieval would be extremely beneficial
for modern multimedia retrieval systems for developers and users alike with
expected benefits in terms of efficiency, effectiveness and developer produc-
tivity. As argued in previous chapters, work done in parallel to and collabo-
ration with this dissertation on multimedia databases and Polystores [Gas23;
Vog22] paves the way together with this thesis for a new generation of multi-
media retrieval system which would truly bridge the gap between the worlds
of multimedia retrieval and databases.





The appendix lies
In the back of the thesis,
Waiting to be found.

Tiny appendix,
Nestled deep in thesis pages,
Key to the whole work.

— OpenAI ChatGPT,
Q: “Suggest a Haiku for the

appendix of a PhD thesis”

A
Additional Results

In this chapter, we present additional results from the evaluation. In particular,
results about quality are in Appendix A.1, about runtime in Appendix A.2, and
significance results in Appendix A.3.

A.1 Retrieval Quality

We show how the quality of results changes with the number of subqueries for
the lifelog dataset in Figure A.1 and for the video dataset in Figure A.2.
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A.2 Retrieval Runtime

We show how algorithm runtime changes with the number of subqueries for the
lifelog dataset in Figure A.3 and for the video dataset in Figure A.4.
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Table A.1 Tabular overview of best rank significance results for original Lifelog
queries

EDA LNA SIMPLE NDA VISIONE VIBRO AVGSSA MAXSSA

EDA 1.0 0.022 1.0 0.013 0.001 0.004 0.001
LNA 0.454 1.0 0.004 0.002 0.049 0.001
SIMPLE 0.092 0.143 0.001 0.077 0.001
NDA 0.013 0.001 0.004 0.001
VISIONE 1.0 1.0 0.001
VIBRO 1.0 0.002
AVGSSA 0.013
MAXSSA

Table A.2 Tabular overview of best rank significance results for original Video
queries

EDA NDA LNA SIMPLE VISIONE VIBRO AVGSSA MAXSSA

EDA 1.0 0.001 0.055 0.001 0.007 0.001 0.001
NDA 0.001 0.055 0.001 0.007 0.001 0.001
LNA 0.323 0.001 0.002 0.001 0.001
SIMPLE 0.001 0.088 0.001 0.001
VISIONE 0.073 0.008 0.052
VIBRO 0.001 0.001
AVGSSA 0.001
MAXSSA

A.3 Significance Tests

A.3.1 Retrieval Quality

We additionally show significance results on only the original queries without
expansion in Tables A.1 and A.2 for lifelog and video retrieval. These show
similar results as the ones in Chapter 6, with lower significance values which is
to be expected as the dataset is smaller.

To demonstrate the impact design choices of the algorithms and various pa-
rameters, such as pre- and post-aggregation, number of candidates to be gen-
erated or system configurations, we show significance values when comparing
different parameters for the lifelog and video dataset in Tables A.3 and A.4. We
will briefly discuss and contextualize the tables.

Lifelog The table shows that while for pre-aggregation, no significant differ-
ence can be seen except for NDA, there are significant differences when en-
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abling post-aggregation across all algorithms. This makes sense as enabling
post-aggregation reduces the number of duplicates in the result set and thus
makes the correct item appear higher up in the results. Specifically for the lifelog
retrieval, we have tested whether leaving out information about the dates such
as day of the month makes a difference, and we can see that there is no statisti-
cally significant difference for any of the algorithms, meaning that content-based
features are more important.

Looking at candidate numbers to be generated, while there seems to be a
sweet spot from a performance perspective between looking at too few or too
many segments, we do not see robust differences across algorithms.

For system configurations, the maximum number of results overall or per
feature has similar considerations as with candidate numbers. As expected, 100
results are too few and significant differences to the chosen number of 10’000
are present across all algorithms. While there are some quality considerations
between 1’000, 10’000 and 50’000, the differences are not significant across all al-
gorithms. This makes intuitive sense and is also consistent with the assumptions
discussed in Section 3.5, where the top ranked items are the most relevant ones
and there is a significant drop-off in usefulness after a certain point. The num-
bers for maximum results per feature are similar and thus similar considerations
apply.

Video For video retrieval, the results are much more robust which also makes
sense due to the larger dataset. Similar to the lifelog retrieval case though,
we can see that increasing the number of results returned from the system has
diminishing returns after a certain point.

A.3.2 Retrieval Runtime

We show the results from the significance tests for execution time in Tables A.5
and A.6. Algorithms are ordered by median execution time on both axes, which
is why the ordering is slightly different for Lifelog and Video data. The reason
we only put these numbers in the appendix is because the sign test becomes less
meaningful for execution times where differences of milliseconds are weighted
the same as differences of half a second. Nevertheless, we see robust differences
for video retrieval overall and mostly robust differences for lifelog retrieval.
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Table A.3 Tabular overview of significance results for Lifelog queries, all parame-
ters. For parameters with multiple possible values, the best value was
compared to all others

Method EDA LNA SIMPLE NDA VISIONE VIBRO AVGSSA MAXSSA

CLIP v VTE 0.335 0.006 0.258 0.001 0.861 0.001 0.001 0.001
Pre-Aggregation 0.451 0.857 0.098 0.029
Post-Aggregation 0.001 0.001 0.001 0.001
Dates in Query 0.082 0.72 0.457 0.05 0.497 0.374 0.362 0.774
C: 10 v 1 0.5 0.221 0.008 0.001
C: 10 v 5 0.5 0.059 0.008 0.124
C: 10 v 20 1.0 0.006 0.125 0.092
Sys: 10000 v 100 0.001 0.001 0.001 0.001 0.022 0.001 0.006 0.92
Sys: 10000 v 1000 0.214 0.191 0.791 0.188 1.0 0.019 0.855 0.001
Sys: 10000 v 50000 0.275 0.125 0.041 0.148 0.336 0.069 0.256 0.002
Feature: 20000 v 10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Feature: 20000 v 100 0.021 0.004 0.017 0.017 0.188 0.001 0.235 0.207
Feature: 20000 v 1000 0.784 0.225 0.86 0.589 0.661 0.098 0.077 0.002
Feature: 20000 v 10000 0.615 0.905 0.545 0.712 0.795 0.081 0.864 1.0
Feature: 20000 v 50000 0.289 0.532 0.175 0.366 1.0 0.026 0.229 0.549

Table A.4 Tabular overview of significance results for Video queries, all parame-
ters. For parameters with multiple possible values, the best value was
compared to all others

Method EDA NDA LNA SIMPLE VISIONE VIBRO AVGSSA MAXSSA

CLIP v VTE 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Pre-Aggregation 0.001 0.001 0.001 0.001
Post-Aggregation 0.001 0.001 0.001 0.001
C: 5 v 1 0.001 0.001 0.001 0.001
C: 5 v 10 1.0 1.0 0.007 1.0
C: 5 v 20 0.031 0.001 0.097 0.004
Sys: 10000 v 100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Sys: 10000 v 1000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.047
Sys: 10000 v 50000 0.001 0.001 0.001 0.001 0.001 0.072 1.0 1.0
Feature: 20000 v 10 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Feature: 20000 v 100 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Feature: 20000 v 1000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.007
Feature: 20000 v 10000 0.001 0.001 0.001 0.001 0.001 0.021 1.0 1.0
Feature: 20000 v 50000 0.001 0.001 0.001 0.001 0.001 0.01 1.0 1.0
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Table A.5 Tabular overview of execution time significance results for all Lifelog
queries

MAXSSA AVGSSA EDA NDA VIBRO SIMPLE LNA VISIONE

MAXSSA 0.347 0.001 0.001 0.001 0.001 0.001 0.001
AVGSSA 0.001 0.001 0.001 0.001 0.001 0.001
EDA 0.001 0.001 0.181 0.036 0.001
NDA 0.001 0.059 0.543 0.016
VIBRO 0.001 0.001 0.004
SIMPLE 0.729 0.085
LNA 0.001
VISIONE

Table A.6 Tabular overview of execution time significance results for all Video
queries

MAXSSA AVGSSA EDA VIBRO SIMPLE NDA LNA VISIONE

MAXSSA 0.001 0.001 0.001 0.001 0.001 0.001 0.001
AVGSSA 0.001 0.001 0.001 0.001 0.001 0.001
EDA 0.001 0.001 0.001 0.001 0.55
VIBRO 0.001 0.001 0.001 0.001
SIMPLE 0.001 0.001 0.001
NDA 0.001 0.55
LNA 0.001
VISIONE



I could make it longer if you like
the style
I can change it ’round

— The Beatles,
Paperback WriterB

Dataset Information

This appendix chapter contains additional information references through the
thesis such as details about the evaluation dataset in Appendix B.1 and about the
query collection methodology for the video retrieval evaluation in Appendix B.2.

B.1 Task Data

Table B.1 shows which videos were shown to participants. Tasks were selected
from previous VBS tasks during a student project supervised in the course of
this dissertation project [Ben22b].

Table B.1 Videos which were shown to participants. Original Type refers to the
task type which was used at VBS

V3C Video Id Original Type Start End

2224 T-KIS 70.00 78.00

5146 V-KIS 6.00 26.00

4316 T-KIS 1390.00 1397.00

3317 V-KIS 178.00 203.00

6228 T-KIS 0.00 13.00

6561 T-KIS 670.00 689.00

3870 V-KIS 179.00 202.00

7421 T-KIS 32.00 49.00

88 V-KIS 264.00 281.00

4035 V-KIS 296.00 313.00
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4979 V-KIS 333.00 352.00

4225 V-KIS 131.00 144.00

6979 V-KIS 122.00 139.00

4888 V-KIS 199.00 218.00

2034 V-KIS 38.00 57.00

2519 V-KIS 24.00 39.00

7116 V-KIS 113.00 128.00

6246 V-KIS 22.00 35.00

5531 V-KIS 74.00 87.00

6827 V-KIS 189.00 204.00

1871 T-KIS 166.00 179.00

4312 T-KIS 260.00 272.00

2630 V-KIS 63.88 82.76

3937 T-KIS 142.00 161.96

6029 V-KIS 64.40 84.36

2398 T-KIS 170.56 190.52

6195 V-KIS 47.20 71.16

5423 T-KIS 231.28 243.44

2274 V-KIS 260.40 280.36

6962 V-KIS 58.68 78.64

767 V-KIS 112.00 135.92

2630 V-KIS 160.24 180.20

6924 V-KIS 161.04 184.96

2148 T-KIS 36.00 52.96

2733 T-KIS 93.76 114.08

387 V-KIS 73.32 97.24

1263 V-KIS 95.16 119.80

7443 V-KIS 123.04 143.00

4835 V-KIS 6.12 26.08

4495 V-KIS 348.00 367.16

943 V-KIS 28.96 52.88
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2700 T-KIS 290.52 309.68

6200 V-KIS 58.28 78.24

2457 T-KIS 15.20 30.76

5497 V-KIS 408.00 427.16

4612 V-KIS 49.64 69.60

4468 V-KIS 238.96 258.12

4161 T-KIS 137.12 157.24

4619 V-KIS 1003.72 1022.88

4500 V-KIS 245.60 269.52

4408 T-KIS 107.00 126.96

3589 T-KIS 284.60 304.56

7258 V-KIS 80.52 99.68

1693 T-KIS 297.00 316.96

3482 V-KIS 177.76 197.72

156 V-KIS 23.16 43.12

12 T-KIS 64.00 78.36

2423 T-KIS 13.00 32.96

2801 V-KIS 62.36 86.28

6963 V-KIS 88.76 108.72

2380 V-KIS 147.68 171.60

2332 T-KIS 154.00 171.96

4795 V-KIS 562.00 581.96

5925 V-KIS 123.60 142.76

4791 V-KIS 60.64 84.56

3919 V-KIS 121.92 145.84

2637 T-KIS 50.12 65.24

986 V-KIS 133.20 150.16

3807 T-KIS 137.00 153.96

3624 V-KIS 279.08 303.00

4887 V-KIS 163.56 183.52
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B.2 Query Collection

In this section, we briefly recap the query collection process done during a mas-
ter project supervised in the course of this dissertation project [Ben22b].

Each participant described videos during a time period of 30 minutes, with
a limit of 2 minutes per video. Videos were played on loop during those two
minutes. The specific prompt given was as follows:

Describe the video that we show you. Try to answer the following
questions:

– What is the sequence of video?

– What do you see?

– What do you hear?

– Is something written on the screen?

13 people described videos. These descriptions were afterwards mapped
to queries for the system using the original wording. The reason we did not
ask people to formulate the queries to the system directly is that we wanted to
ensure people formulated descriptions as close to their perception as possible,
without limiting themselves through the query formulation process of vitrivr.
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[LBS+21] Jakub Lokoč, Jana Bátoryová, Dominik Smrž, and Marek Dobran-
ský. Video Search with Collage Queries. In MultiMedia Modeling,
pages 429–434. Springer International Publishing, 2021. isbn: 978-
3-030-67835-7. doi: 10.1007/978-3-030-67835-7_40.
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Schoeffmann, Bernd Muenzer, Tomáš Souček, Phuong Anh
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Stéphane Dupont, and Omar Seddati. Enhanced Retrieval and
Browsing in the IMOTION System. In MultiMedia Modeling,
pages 469–474. Springer International Publishing, 2017. isbn: 978-
3-319-51814-5. doi: 10.1007/978-3-319-51814-5_43.

[RPG+19] Luca Rossetto, Mahnaz Amiri Parian, Ralph Gasser, Ivan Gi-
angreco, Silvan Heller, and Heiko Schuldt. Deep Learning-
Based Concept Detection in vitrivr. In MultiMedia Modeling, vol-
ume 11296, pages 616–621. Springer International Publishing,
2019. doi: 10.1007/978-3-030-05716-9_55.

[RSB21] Luca Rossetto, Klaus Schoeffmann, and Abraham Bernstein. In-
sights on the V3C2 Dataset, 2021. doi: 10.48550/arXiv.2105.
01475.

[RSA+19] Luca Rossetto, Heiko Schuldt, George Awad, and Asad A. Butt.
V3C – A Research Video Collection. In MultiMedia Modeling,
pages 349–360. Springer International Publishing, 2019. isbn: 978-
3-030-05710-7. doi: 10.1007/978-3-030-05710-7_29.

[RHC99] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image Re-
trieval: Current Techniques, Promising Directions, and Open Is-
sues. Journal of Visual Communication and Image Representation,
10(1):39–62, 1999. issn: 1047-3203. doi: 10.1006/jvci.1999.0413.

https://doi.org/10.1109/ISM.2014.38
https://doi.org/10.1007/978-3-319-14442-9_24
https://doi.org/10.1145/2964284.2973797
https://doi.org/10.1145/2964284.2973797
https://doi.org/10.1007/978-3-319-51814-5_43
https://doi.org/10.1007/978-3-030-05716-9_55
https://doi.org/10.48550/arXiv.2105.01475
https://doi.org/10.48550/arXiv.2105.01475
https://doi.org/10.1007/978-3-030-05710-7_29
https://doi.org/10.1006/jvci.1999.0413


Bibliography 175

[RHO+98] Yong Rui, T.S. Huang, M. Ortega, and S. Mehrotra. Relevance
feedback: a power tool for interactive content-based image re-
trieval. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 8(5):644–655, 1998. issn: 1558-2205. doi: 10.1109/76.718510.

[SCS+22] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay
Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J. Fleet, and Mohammad Norouzi.
Photorealistic Text-to-Image Diffusion Models with Deep Lan-
guage Understanding, 2022. doi: 10.48550/arXiv.2205.11487.

[SWY75] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620,
1975. issn: 0001-0782. doi: 10.1145/361219.361220.

[Sal68] Gerard Salton. Automatic Information Organization and Retrieval.
McGraw Hill, 1968. isbn: 978-0-07-054485-7.

[Sal89] Gerard Salton. Automatic Text Processing: The Transformation, Anal-
ysis, and Retrieval of Information by Computer. Addison-Wesley,
1989. isbn: 0-201-12227-8.

[SFW83] Gerard Salton, Edward A. Fox, and Harry Wu. Extended Boolean
information retrieval. Communications of the ACM, 26(11):1022–
1036, 1983. issn: 0001-0782. doi: 10.1145/182.358466.

[SC12] Mark Sanderson and W. Bruce Croft. The History of Information
Retrieval Research. Proceedings of the IEEE, 100(Special Centen-
nial Issue):1444–1451, 2012. issn: 1558-2256. doi: 10.1109/JPROC.
2012.2189916.

[SBH+16] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James Hays.
The sketchy database: learning to retrieve badly drawn bunnies.
ACM Transactions on Graphics, 35(4):119:1–119:12, 2016. issn: 0730-
0301. doi: 10.1145/2897824.2925954.

[SGB+22] Loris Sauter, Ralph Gasser, Abraham Bernstein, Heiko Schuldt,
and Luca Rossetto. An Asynchronous Scheme for the Distributed
Evaluation of Interactive Multimedia Retrieval. In International
Workshop on Interactive Multimedia Retrieval, pages 33–39. Asso-
ciation for Computing Machinery, 2022. isbn: 978-1-4503-9497-0.
doi: 10.1145/3552467.3554797.

https://doi.org/10.1109/76.718510
https://doi.org/10.48550/arXiv.2205.11487
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/182.358466
https://doi.org/10.1109/JPROC.2012.2189916
https://doi.org/10.1109/JPROC.2012.2189916
https://doi.org/10.1145/2897824.2925954
https://doi.org/10.1145/3552467.3554797


176 Bibliography

[SGH+23] Loris Sauter, Ralph Gasser, Silvan Heller, Luca Rossetto, Colin
Saladin, Florian Spiess, and Heiko Schuldt. Exploring Effective
Interactive Text-Based Video Search in vitrivr. In MultiMedia Mod-
eling, pages 646–651. Springer International Publishing, 2023.
isbn: 978-3-031-27077-2. doi: 10.1007/978-3-031-27077-2_53.

[SPG+20] Loris Sauter, Mahnaz Amiri Parian, Ralph Gasser, Silvan Heller,
Luca Rossetto, and Heiko Schuldt. Combining Boolean and Mul-
timedia Retrieval in vitrivr for Large-Scale Video Search. In Mul-
tiMedia Modeling, volume 11962, pages 760–765. Springer Interna-
tional Publishing, 2020. doi: 10.1007/978-3-030-37734-2_66.

[SRS18] Loris Sauter, Luca Rossetto, and Heiko Schuldt. Exploring Cul-
tural Heritage in Augmented Reality with GoFind! In IEEE In-
ternational Conference on Artificial Intelligence and Virtual Reality,
pages 187–188. IEEE, 2018. doi: 10.1109/AIVR.2018.00041.

[Sch80] Hans-Jörg Schek. Methods for the Administration of Textual Data
in Database Systems. Conference on Research and Development in
Information Retrieval:218–235, 1980.

[Sch21a] Maurice Schleußinger. Information retrieval interfaces in virtual
reality—A scoping review focused on current generation tech-
nology. PLOS ONE, 16(2):e0246398, 2021. issn: 1932-6203. doi:
10.1371/journal.pone.0246398.

[Sch19] Klaus Schoeffmann. Video Browser Showdown 2012-2019: A Re-
view. In International Conference on Content-Based Multimedia In-
dexing, pages 1–4. IEEE, 2019. doi: 10.1109/CBMI.2019.8877397.

[Sch21b] Klaus Schoeffmann. VBS 2021 overview, Youtube, 2021. url:
https://www.youtube.com/watch?v=8Kg_5BQon9I&t=587s.

[SBL+16] Klaus Schoeffmann, Christian Beecks, Mathias Lux, Merih Seran
Uysal, and Thomas Seidl. Content-based retrieval in videos from
laparoscopic surgery. In Medical Imaging 2016: Image-Guided Proce-
dures, Robotic Interventions, and Modeling, volume 9786, pages 562–
571. SPIE, 2016. doi: 10.1117/12.2216864.

[Sch18] Heiko Schuldt. Multitier Architecture. In Encyclopedia of Database
Systems, pages 2443–2446. Springer, 2018. isbn: 978-1-4614-8265-9.
doi: 10.1007/978-1-4614-8265-9_652.

https://doi.org/10.1007/978-3-031-27077-2_53
https://doi.org/10.1007/978-3-030-37734-2_66
https://doi.org/10.1109/AIVR.2018.00041
https://doi.org/10.1371/journal.pone.0246398
https://doi.org/10.1109/CBMI.2019.8877397
https://www.youtube.com/watch?v=8Kg_5BQon9I&t=587s
https://doi.org/10.1117/12.2216864
https://doi.org/10.1007/978-1-4614-8265-9_652


Bibliography 177

[SDM17] Omar Seddati, Stéphane Dupont, and Saïd Mahmoudi. DeepS-
ketch 3. Multimedia Tools and Applications, 76(21):22333–22359,
2017. issn: 1573-7721. doi: 10.1007/s11042-017-4799-2.

[SCIG+21] K Selçuk Candan, Bogdan Ionescu, Lorraine Goeuriot, Birger
Larsen, Henning Müller, Alexis Joly, Maria Maistro, Florina Piroi,
Guglielmo Faggioli, and Nicola Ferro. Experimental IR Meets Mul-
tilinguality, Multimodality, and Interaction. 2021. doi: 10.1007/978-
3-030-85251-1.

[SW10] Abigail J. Sellen and Steve Whittaker. Beyond total capture: a
constructive critique of lifelogging. Communications of the ACM,
53(5):70–77, 2010. issn: 0001-0782. doi: 10 . 1145 / 1735223 .

1735243.

[SF94] Joseph A. Shaw and Edward A. Fox. Combination of multiple
searches. In The Second Text REtrieval Conference, volume 500–215,
pages 243–252. National Institute of Standards and Technology
(NIST), 1994.

[SBH97] W. M. Shaw, Robert Burgin, and Patrick Howell. Performance
standards and evaluations in IR test collections: Cluster-based re-
trieval models. Information Processing & Management, 33(1):1–14,
1997. issn: 0306-4573. doi: 10.1016/S0306-4573(96)00043-X.

[SBY17] Baoguang Shi, Xiang Bai, and Cong Yao. An End-to-End Train-
able Neural Network for Image-Based Sequence Recognition and
Its Application to Scene Text Recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(11):2298–2304, 2017.
issn: 1939-3539. doi: 10.1109/TPAMI.2016.2646371.

[Sie57] Sidney Siegel. Nonparametric Statistics for the Behavioural Sci-
ences. The Journal of Nervous and Mental Disease, 125(3):497, 1957.
issn: 0022-3018.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lilli-
crap, Karen Simonyan, and Demis Hassabis. A general rein-
forcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419):1140–1144, 2018. doi: 10 .

1126/science.aar6404.

https://doi.org/10.1007/s11042-017-4799-2
https://doi.org/10.1007/978-3-030-85251-1
https://doi.org/10.1007/978-3-030-85251-1
https://doi.org/10.1145/1735223.1735243
https://doi.org/10.1145/1735223.1735243
https://doi.org/10.1016/S0306-4573(96)00043-X
https://doi.org/10.1109/TPAMI.2016.2646371
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404


178 Bibliography

[Skl93] Robert Sklar. Film: An International History of the Medium. Prentice
Hall, 1993.

[Sme07] Alan F. Smeaton. Techniques used and open challenges to the
analysis, indexing and retrieval of digital video. Information Sys-
tems, 32(4):545–559, 2007. issn: 0306-4379. doi: 10.1016/j.is.
2006.09.001.

[SWS+00] A.W.M. Smeulders, M. Worring, S. Santini, A. Gupta, and R.
Jain. Content-based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, 2000. issn: 1939-3539. doi: 10.1109/34.895972.

[Smi07] R. Smith. An Overview of the Tesseract OCR Engine. In Interna-
tional Conference on Document Analysis and Recognition, volume 2,
pages 629–633, 2007. doi: 10.1109/ICDAR.2007.4376991.

[SW09] Cees G. M. Snoek and Marcel Worring. Concept-Based Video Re-
trieval. Foundations and Trends in Information Retrieval, 4:215–322,
2009. issn: 1554-0669. doi: 10.1561/1500000014.

[SWS05] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeul-
ders. Early versus late fusion in semantic video analysis. In In-
ternational Conference on Multimedia, pages 399–402. Association
for Computing Machinery, 2005. isbn: 978-1-59593-044-6. doi: 10.
1145/1101149.1101236.

[SSX+16] Jifei Song, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and
Xiang Ruan. Deep multi-task attribute-driven ranking for fine-
grained sketch-based image retrieval. In British Machine Vision
Conference, volume 1, page 3, 2016. doi: 10.5244/C.30.132.

[SMW+13] Yang Song, Hao Ma, Hongning Wang, and Kuansan Wang. Ex-
ploring and exploiting user search behavior on mobile and tablet
devices to improve search relevance. In International Conference
on World Wide Web, pages 1201–1212. Association for Computing
Machinery, 2013. isbn: 978-1-4503-2035-1. doi: 10.1145/2488388.
2488493.
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