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Abstract: Approximately 9% of couples are infertile, with half of these cases relating to male factors.
While many cases of male infertility are associated with genetic and lifestyle factors, approximately
30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances
identified in the environment for the first time or detected at low concentrations during water
quality analysis. Since CEC production and use have increased in recent decades, CECs are now
ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and
parallel reports indicate that semen quality is continuously declining, supporting the notion that
CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides
and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South
Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as
well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo
exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to
the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to
pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro.
These contaminants are also likely to play a key role in health and disease in offspring sired by
parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its
sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and
repro-toxicology studies.

Keywords: contaminants of emerging concern; environmental pollution; male fertility; pesticides;
pharmaceuticals; semen quality; sexual development; spermatozoa

1. Introduction

Reproduction is a key biological event that ensures the continuation of any species [1].
Thus, species preservation and sustainable development strategies depend critically upon
population dynamics and sexual reproductive health, both of which can be affected by
various agents [2]. Elements interfering with reproductive processes can have profound
effects on species’ evolution and the equilibrium of entire ecosystems. In this regard, the
Environmental Protection Agency (EPA) has classified contaminants of emerging concern
(CECs) as chemicals or materials which have a perceived, potential, or real threat to human
health and the environment [3]. Such contaminants include for example pharmaceuticals,
personal care products, pesticides, flame retardants, plasticizers, endocrine disruptors,
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surfactants, and polycyclic aromatic hydrocarbons [4,5]. Over the last two decades, various
diseases and mass mortalities in marine invertebrates, mammals, and birds have been
attributed to chemical exposure [6–8]. Human health is equally compromised as was
shown by repeated studies linking long-term environmental chemical exposure to various
diseases including cancer, asthma, and hypersensitivity [9–11]. Furthermore, evidence
is mounting that such compounds are likely to interfere with human reproduction and
offspring health [12].

During the past six decades, infertility rates in developing countries have increased
from about 8% to 35% [13]. According to the World Health Organization (WHO) statistics,
approximately 9% of couples worldwide experience fertility problems, and male fertility
issues account for about 50% of these cases [14]. Male factor infertility is associated with
many genetic and lifestyle factors; however, approximately 30% of cases are still considered
idiopathic [14]. Various intrinsic and extrinsic factors can lead to diminishing semen quality.
Examples of intrinsic physiological factors include conditions such as varicocele, metabolic
disturbance, cryptorchidism, hypogonadism, hormone imbalances, and genetic aspects [15].
On the other hand, extrinsic environmental factors may include uncontrolled, prescribed,
and inappropriate usage of medications, exposure to pollutants (e.g., chemicals in air, food,
and water), and addictive disorders (e.g., alcoholism, smoking, and illicit drugs) [16].

Since several CECs can bind to gonadal steroid receptors, mimic steroid hormone
action, and affect steroid hormone production and turnover, the decline in semen qual-
ity could likely be due to environmental (extrinsic) rather than physiological (intrinsic)
factors [12,17]. Considering that male reproduction involves complex biological pro-
cesses, male factor infertility is increasingly recognized as a biomarker of a male’s overall
health and is associated with future disease risks including cancer, metabolic disease,
and mortality [18].

Globally, poor water quality is largely determined by the level of aquatic pollution
and is of great concern to public health and well-being [19]. Numerous studies have
reported endocrine disruptors, pesticides, pharmaceuticals, illicit drugs, and personal
care products in surface or drinking water sources [20–25]. While relative assessments
indicate that traces of these compounds are present in drinking water, the majority are
detected at low concentrations (ng/L to µg/L). Nonetheless, such minimum traces found
in water or sediments are likely to bioaccumulate in species exposed to constant trace
amounts of many different compounds. Consumption of animals exposed directly to
such contaminants is becoming increasingly problematic [19]. Ojemaye and Petrik [26–28]
reported that the levels of contaminants found in seawater, sediment, and several marine
organisms (seaweed, invertebrates, and fish) may pose a threat to various trophic levels
due to their high bioaccumulation factors and calculated risk quotients.

There are three objectives of this narrative review: (i) to present an overview of the
existing literature regarding the effects of the selected CECs on male fertility, (ii) to assess
the impact of CECs on the offspring of exposed parents, and (iii) to explore the idea of
using spermatozoa as a bioindicator of environmental change as well as its potential use
for future toxicology studies. Six CECs discussed in this narrative review (pesticides
(atrazine, simazine, and chlorpyrifos) and pharmaceuticals (diclofenac, naproxen, and
sulfamethoxazole)) were selected based on their high prevalence in the near-shore marine
environment of False Bay around Cape Town [28,29] as well as in rivers [30,31], ambient
air [32,33], household dust [34], and human samples in agricultural areas in the Western
Cape, South Africa [35]. The effects of the selected CEC groups on male reproductive health
were evaluated through a comprehensive survey of in vivo and in vitro studies across taxa,
with emphasis on the two groups of contaminants. Overall, this review underscores the
importance of understanding the potential impact of CECs on male reproductive health.

2. Origin and Distribution of CECs

While CECs have been developed for specific industrial applications and are useful
for a wide range of purposes, they can also cause undesirable effects on human and animal
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health [4]. CECs have been released into the environment since the industrial revolution,
but the quantities and varieties of CECs detected have accelerated in the last 50 years [5].
Indeed, such compounds have been consistently identified in wastewater, surface water,
groundwater, and treated drinking water at low concentrations (i.e., ng/L to µg/L) [36,37].

During the past few decades, much has been revealed about the sources, transport,
and biological effects of CECs in aquatic ecosystems [38]. Such contaminants are introduced
into the ecosystem via two sources, namely point and non-point sources [39]. Point sources
include small to large wastewater treatment plants treating sewage from municipal and
industrial sources, as well as hospitals, whereas non-point sources refer to landfill leachates,
surface runoff, atmospheric deposition, and agricultural applications of biosolids and
manure (Figure 1) [38].
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Figure 1. Origin and distribution of persistent CECs in the environment. Human activities and
the associated chemicals developed for better quality of life and modern living conditions are the
primary sources of contaminants entering natural ecosystems. Various anthropogenic sources of
CECs contribute to their widespread occurrence. Examples of CEC sources include agricultural
use of pesticides and herbicides, industrial and hospital waste, wastewater treatment plant effluent,
and building and hardware chemicals. POPs = persistent organic pollutants. Image source www.
waterstories.co.za (accessed on 1 April 2022).

Although many treatment technologies, including activated carbon and reverse osmo-
sis membranes, have been used for the removal of CECs, these approaches have failed to
remove them [39]. In addition, degradation intermediates could be more toxic than their
original compounds, which poses a great challenge to overcome [39]. Unlike conventional
pollutants, CECs are rarely globally regulated [37] and can therefore present a signifi-
cant risk to various organisms, ultimately affecting human health through the food web.
Currently, information about co-occurrence, synergistic effects of complex mixtures, and
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biomagnification of CECs through different trophic levels of the aquatic food web (Figure 1)
as well as its effect on individual species from different trophic levels are lacking [40,41].

Bioaccumulation of a contaminant refers to the buildup of the CECs in an organism,
due to exposure through both its abiotic environment and its food sources [42]. Bioaccumu-
lation of CECs has been observed in aquatic organisms worldwide and may be elevated
in fish, for instance, due to limited intrinsic clearance mechanisms [43]. Moreover, some
CEC mixtures result in greater bioaccumulation and stronger effects than that of a single
CEC [38]. For example, heavy metals can accumulate in fish disrupting steroidogenesis,
impairing hormone production in both sexes, and causing a reduction in the quality and
quantity of gamete production [42]. Endosulfan, a polychlorinated compound used as a
pest control, has also been reported to bioaccumulate in marine organisms [43], causing
decreased adenylate energy charge, oxygen consumption, hemolymph amino acids, succi-
nate dehydrogenase, heartbeat (mussel), and altered osmoregulation [44]. Benzotriazole,
a corrosion inhibitor, has been shown to bioaccumulate in fish tissue and may act as an
endocrine disruptor [45].

An increased awareness exists that oceans and seas can contribute to the production
of feed, raw materials, and biomaterials, and seafood is widely recognized as a nutritious
and high-quality food source [46]. However, seafood, similar to other types of foods, can
contain harmful CECs [46]. As such, there is an increasing need for information about the
presence and potential effects of any pollutants that accumulate in marine biota and the
marine food web, resulting in potential contamination of seafood [46].

Even though these contaminants are usually found at low concentrations in aquatic
environments, they may produce adverse short- and long-term effects over time [19].
The effects of complex mixtures of CECs on organisms are often subtle, sublethal, and
indirect [38]. Multigenerational exposure to CECs in the aquatic environment may delay
the occurrence of adverse effects or may result in evolutionary adaptation to historically
exposed populations, making it more challenging to detect sublethal effects [38]. Currently,
there is limited information about how CECs may damage organisms, but some studies
have reported adverse effects involving chronic toxicity [47], endocrine disruption [48],
and the development of bacterial pathogen resistance [49].

3. Impact of CECs on Male Fertility

Male infertility can be classified according to etiology and severity, ranging from minor
changes in semen characteristics to complete spermatogenic dysfunction of the gonads. It
therefore remains challenging to assess the causes of male infertility without accounting
for both intrinsic and extrinsic factors which could contribute to clinical phenotypes [50].
Evaluation of semen quality is the main component for determination of male reproduc-
tive health [51]. Pharmaceuticals, personal care products (PPCPs), and pesticides have
been shown to have unfavorable effects on semen quality, by negatively impacting the
hypothalamic–pituitary–gonadal (HPG) axis, Sertoli and Leydig cells, spermatogenesis,
steroid hormone production, and ultimately sperm function [52,53]. CECs can interfere with
spermatogenesis by (i) disrupting endogenous hormone production, kinetics, and signaling
pathways in the HPG axis and (ii) by disrupting the blood–testis barrier (BTB), allowing
the passage of such compounds into the seminiferous tubules. Both these interferences
may thus compromise the development of spermatozoa and ultimately a male’s fertility
(Figure 2). It is therefore essential to evaluate the effects of CECs on male reproduction.

Table 1 [54–69] includes a summary of the effects of several CECs grouped as pesti-
cides and pharmaceuticals on male fertility (e.g., hormone levels, testis size and structure,
and sperm characteristics) in different species. Example of CECs listed in Table 1 [54–69]
included both in vivo and in vitro treatments and illustrates the broad negative reproduc-
tive effects that CECs have. Overall, collective findings indicate defects in reproductive
function across a wide range of marine and terrestrial animals including fish [70], birds [71],
alligators, turtles, salamanders [72], mice [73], and panthers [74], when exposed to CECs.
There is considerable evidence that chemical pollution commonly interferes with hormone
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function, leading to endocrine disruption [75]. Due to the vulnerability of hormone-receptor
systems, certain endocrine disruptors affect normal reproductive functions as well as em-
bryo development [75]. Therefore, CECs causing hormone disruption or direct damage to
spermatogenesis may be responsible for changes in male reproduction (Figure 2) [13,75].
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Figure 2. Overview of the spermatogenesis process and the levels of CECs interference. In the brain,
CECs can disrupt gonadotropin releasing hormone (GnRH) production and release and interfere
with the hypothalamic–pituitary–gonadal (HPG) axis. In the testis, CECs can disrupt the blood–testis
barrier between the Sertoli cells, allowing the passage of contaminants into the seminiferous tubules,
affecting meiotic spermatocytes and haploid spermatids. Figure generated using Biorender.

Chronic, low-dose exposures to multiple chemicals are challenging to identify, yet
these are extremely prevalent [16]. Studies have shown that these exposures can have
dramatic effects on both individual and population health, and interest in the cumulative
and synergistic effects of such exposures on spermatogenesis and sperm function is on
the rise [16]. A study assessing the reproductive health of 26,400 male workers on ba-
nana and pineapple plantations in 12 developing countries found that 24% of workers
exposed to the 1,2-dibromo-3-chloropropane pesticide suffered from azoospermia, and
40.3% had oligospermia [76]. Not only did these men have compromised fertility, but only
about 2.5% had fathered offspring. Because sperm production is so variable and intricate,
chronic exposure may affect spermatogenesis at many levels [16]. Moreover, acute expo-
sures to highly toxic substances can cause dramatic short-term and long-term changes in
sperm characteristics [16].
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Table 1. The effect of various contaminants of emerging concern (CECs) on male fertility of various species.

Chemical Concentrations In Vivo/In
Vitro Study Population Duration Effects Study

Pe
st

ic
id

es

Atrazine 5 mg/kg bw/day In vivo
Pregnant female mice
and male pups after

gestation

Early gestation day
9.5 until 12 or

26 weeks of age

↓ Epididymal sperm concentration
Harper et al. (2020) [54]↑ Altered steroidogenic gene expression

↓ Cells within the preimplantation embryo

Atrazine and diamino chlorotriazine ATZ (0.1 or 1 µM) and DACT
(1 or 10 µM) In vitro Bull semen

During
cryopreservation

(3 hrs) and during
capacitation (4 hrs)

↓ Sperm vitality
Komsky-Elbaz et al. (2019) [55]↑ MMP

↓ Ca++ ionophore-induced AR

Atrazine 0.5, 25, and 50 mg/kg bw In vivo Young adult male
mice

3 days

↓ Testis weight and gonadosomatic index

Abarikwu et al. (2021) [56]
↑ Abnormal histology of gonads

↓ Testosterone levels and production
↑ Impaired spermatogenesis

↓ Leydig cell viability

Atrazine 0.1 mg/kg, 1 mg/kg, and 10 mg/kg of bw In vivo Adult male rodents 21 days
↓ Total and prog mot

Saalfeld et al. (2018) [57]↓ Sperm membrane integrity
↑ Membrane fluidity

↓ Mitochondrial functionality and acrosome integrity

Chlorpyrifos

Dietary CPF: 1 mg/kg/day, 3 mg/kg/day, or 12 mg/kg/day. Intraperitoneal CPF
injection: 3 mg/kg/day, 6 mg/kg/day, or 12 mg/kg/day. Gavage CPF:

12 mg/kg/day and 25 mg/kg/day. In vitro: 25 µg/mL for sperm and 50 µM or
25 µM for cell lines

In vivo and
in vitro

Male mice and germ
cell culture

Dietary CPF: 80 days.
Intraperitoneal CPF
injection: 15 days.
Gavage CPF: 35 or
70 days. In vitro:

sperm 1 hrs, cell line
12 or 24 hrs

↓ Expression steroid hormone synthesis-related genes.

Zhang et al. (2020) [58]

↓ Weight of gonads and associated structures
↑ Protein expression of Caspase3

↓ Sperm density and prog mot and linear movement
↑ ROS
↓ MMP

↓ Cell line normal morphology and viability

Chlorpyrifos, imidacloprid, and cypermethrin 5 mg/kg bw CYP, 9 mg/kg bw IMC, and 1.9 mg/kg bw CPF In vivo Male rats 5 times per week for
1 month

↑ Testis weight

Abdel-Razik et al. (2021) [59]

↓ Epididymis and prostate gland weights
↓ Sperm counts, moti, viability and normality

↑ ROS, lipid peroxidation and testis protein carbonyl
content

↓ Serum testosterone, LH and FSH levels
↓ Spermatogenesis

↑ Abnormal histology of gonads and associated cells

Chlorpyrifos 1 mg/kg In vivo Adult male rats 60 days

↓ Weight of gonads and associated structures

Khalaf et al. (2022) [60]
↓ Sperm count, sperm mot and prog mot

↑ Dead and abnormal sperm
↓ Serum testosterone, FSH, and LH levels

↑ DNA laddering

Chlorpyrifos 37 mg/kg/bw In vivo Male rats
Sampling on days 5,

15, 30,
and 45

↓ Testicular weight
Babazadeh

and Najafi (2017) [61]
↓ Sperm count, viability and mot

↓ Leydig cells
↑ Abnormal histology of gonads and associated cells

↑ Immature sperm and DNA damage

Ph
ar

m
ac

eu
ti

ca
ls

Atorvastatin, sildenafil citrate, gemfibrozil, ibuprofen, atenolol,
ofloxacin, carbamazepine, bezafibrate, and diclofenac

Atorvastatin (13 ng/mL), sildenafil citrate (26–25 ng/mL), gemfibrozil (380 ng/mL),
ibuprofen (92 ng/mL), atenolol (241 ng/mL), ofloxacin (50 ng/mL), carbamazepine

(310 ng/mL), bezafibrate (57 ng/mL), and diclofenac (180 ng/mL)
In vitro Men aged

20–30 years 15, 30, and 45 min
↓ Sperm mot

Rocco et al. (2012) [62]↑ Genomic damage
↑ Apoptotic cells and DNA fragmentation

Indomethacin, diclofenac sodium, tolmetin, acetylsalicylic acid,
resveratrol, and NS-398

0 to 15 mM In vitro Turkey toms 5 min ↓ Sperm mot Kennedy et al. (2003) [63]

Diclofenac 10 mg/kg In vivo Male rats 30 days
↓ Serum testosterone, LH and FSH

El-Megharbel et al. (2021) [64]↓ Sperm mot and count
↓ Testicular tissue antioxidant defence enzymes

Ibuprofen 25 and 50 µg/L In vivo and
in vitro

Mature male striped
catfish

4 months
↓ Prog and total mot, rapid and medium speeds

Gallego-Ríos et al. (2021) [65]↑ Slow speeds and immotile sperm
↓ VCL, VSL and VAP, LIN and STR, ALH, WOB and BCF

Naproxen and meloxicam Naproxen (10 mg/kg) and meloxicam (1 mg/kg) In vivo Male rats 35 days
↓ Sperm mot and count

Uzun et al. (2015) [66]↓ Prostaglandins and ROS defence enzymes in testis
↑ Abnormal histology of gonads and associated cells

Lincomycin-spectinomycin and sulfamethoxazole-trimethoprim Lincomycin-spectinomycin injected 0.1 mL/kg bw and
sulfamethoxazole-trimethoprim orally administered at 0.12 mL/kg bw In vivo Rams

Intramuscular
injections once daily
for 3 days and oral

administration twice
daily for 3 days

↑ Serum and semen hyaluronidase activity
Tanyildizi et al. (2003) [67]↓ Sperm count

↑ Sperm mot

Lopinavir-ritonavir and sulfamethoxazole-trimethoprim
22.4/4.6 mg/kg of sulfamethoxazole-trimethoprim, 22.8/5.8 mg/kg of

lopinavir-ritonavir, and combined doses of sulfamethoxazole-trimethoprim +
lopinavir-ritonavir

In vivo Male rats 2–8 weeks

↑ Testicular MDA

Oputiri and Elias (2014) [68]
↓ SOD

↓ Sperm mot and count
↑ Abnormal sperm morphology
↑ Abnormal testicular histology

Norfloxacin and sulfamethoxazole
Norfloxacin: 0.0032, 0.016, 0.08, 0.4, 2, and 10 mg/L. Mixture of norfloxacin and

sulfamethoxazole: 0.0016 + 0.008, 0.008 + 0.04, 0.04 + 0.2, 0.2 + 1.0, 1.0 + 5.0, and 5.0 +
25.0 mg/L, respectively.

In vivo One year old male
goldfish 7 days ↑ DNA damage of the gonads Liu et al. (2014) [69]

Abbreviations: ↓, decrease or negatively affected; ↑ increased or positively affected; ALH, amplitude of lateral head displacement; AR, acrosome reaction; AZT, atrazine; BFC, beat cross
frequency; bw, body weight; COX, cyclooxygenase inhibitors; CPF, chlorpyrifos; CYP, cypermethrin; DACT, diamino chlorotriazine; DMSO, dimethyl sulfoxide; DNA, deoxyribonucleic
acid; FSH, follicle stimulating hormone; GEH, germinal epithelium height; GPx, glutathione peroxidase; GSH, glutathione; hrs, hours; IMC, imidacloprid; LH, luteinizing hormone; LIN,
linearity; min, minutes; MDA, malondialdehyde; MMP, mitochondrial membrane potential; Mot, motility; PGE, prostaglandin; Prog, progressive motility; RI, repopulation index;
ROS, reactive oxygen species; SOD, superoxide dismutase; STD, seminiferous tubules diameter; STR, straightness; TDI, tubular differentiation index; VAP, average path velocity; VCL,
curvilinear velocity; VSL, straight-line velocity; WOB, wobble.
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In this particular review, we focused on a selected group of CECs found in False Bay,
Cape Town, South Africa, including pesticides such as atrazine, simazine, and chlorpyrifos,
as well as pharmaceuticals such as sulfamethoxazole, diclofenac, and naproxen. We discuss
their use and potential mechanisms of action impairing a male’s reproductive success.

3.1. Pesticides

Pesticides comprise semi-volatile persistent organic pollutants (POPs), categorized
by their use as biocides, fungicides, bactericides, insecticides, and herbicides [26,27,77].
Generally, a pesticide is defined as “any substance or combination of substances that is used
to prevent or eradicate undesirable insects, including vectors of disease in animals, weeds,
fungi, or other organisms in order to enhance food production, and to facilitate the pro-
cessing, storage, transportation, or marketing of food and agricultural commodities” [78].
Due to the ever-increasing global population and the accompanied need for a greater food
supply, these agents are expected to be more widely utilized [79]. It is estimated that in the
last three decades, pesticide use has increased at least two to three times worldwide [80],
highlighting that further research on their effects on public health is urgently needed.

Pesticides commonly enter aquatic environments via surface runoff and wastew-
ater effluents from agriculture production and household use (Figure 1) and may ac-
cumulate in sediments and marine organisms [40,41,81]. Irrespective of whether they
are applied intentionally or by runoff, pesticides remain in various water sources for
a long time due to their chemical properties such as adsorption and solubility [82]. In
general, most herbicide monitoring studies are focused on surface freshwater sources
such as lakes, rivers, and reservoirs, with a particular focus on organochlorine and
organophosphorus compounds [26,27,77,79].

After assessing organochlorine pesticide levels in nine fish species from Taihu Lake,
China, reports suggested that consumption of more than 250 mg/d of semi-essential fatty
acids from the fish could cause cancer [83]. The authors found that pesticide concentrations
varied amongst specific muscle groups of the fish. Another study conducted in South
Africa examined the concentration of herbicides in several organs of four wild fish species
sold at Kalk Bay harbor in Cape Town [77]. The authors reported the presence of herbicides,
namely simazine and atrazine, in the liver, intestines, gills, and filet. Thus, these chemicals
not only pose a threat to the animals’ health and the ecosystem as a whole but also to
human health as these fish species are typically consumed.

Another source of concern is the direct exposure to pesticides (air or residues) of
people working in agricultural fields, as well as their children due to living on the farms.
The latter group is of particular concern as they are physically not yet fully developed and
have regular contact with contaminants due to frequent hand-to-mouth activities, eating
more food per body weight and height, and playing in outdoor areas where potential con-
taminants’ residues are present. In addition, a link has also been found between pesticide
exposure and a reduction in semen parameters, thus affecting fertility [78]. A study con-
ducted on urine samples from Australian community children (aged 0 to 5 years old) found
the presence of 3,5,6-trichloro-2-pyridinol (TCPY), a specific metabolite of chlorpyrifos, in
each sample [84]. The study further suggested that although the “worse-case scenario”
daily intake of chlorpyrifos was found to be two-fold lower than the Australian Acceptable
Daily intake guidelines, the levels of metabolite detected in Australian preschoolers are
higher than in other countries. In addition, recent observations of 1001 children and adoles-
cents, as part of the cohort CapSA (described in Chetty-Mhlanga et al. [85]) of agricultural
areas in the Western Cape of South Africa, indicate an overall negative trend ascribed to
long-term pesticide exposure with headaches and neurocognition function reported [85,86].
Another comprehensive study, assessing 181,842 individuals performing agricultural re-
lated activities in France, reported a two-to-three-fold increased risk in central nervous
system tumors in the studied population [87]. While these studies did not evaluate the
reproductive organs and function of the participants, it is likely that a longitudinal study
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would reveal alterations in fertility, as nervous and reproductive tissues share numerous
molecular mechanisms [88].

Pesticides used on fruits, vegetables, and crops can also leave potential harmful
residues. As infants, children, and adults consume these foods daily, this is a major concern.
Residue levels were found to be above the WHO’s lower limit in vegetables commonly
sold at six different markets in Lagos, Nigeria [89]. It was also noted that exposure to
vegetable pesticides could occur either at storage sites or in the field. Not only are such
pesticides sprayed upon the vegetables, but their continuous use is likely to result in
leakage into the soil and subsequent uptake by the plants. According to the authors, such
vegetables could potentially cause bioaccumulation and health risks. Furthermore, after
examining pesticide residues in vegetables and fruits from Qatar, Al-Shamary et al. [90]
found insecticide concentrations of imported fruit and vegetables to be above the maximum
acceptable residue levels. Due to the poisonous nature of pesticides, regulatory bodies
must be vigilant in their oversight of pesticides and rely on science to develop appropriate
protocols to maintain an equilibrium between beneficial use and adverse consequences [91].

Despite the growing evidence of the various routes of pesticide exposure to humans,
the effects of these CECs on male reproductive health and sperm functionality remain
elusive. Many agricultural and non-agricultural pesticides are hormonally active, including
organophosphates, pyrethroids, triazines, azoles, and carbamates. As such, they have the
potential to interfere with the endocrine system which controls various important repro-
ductive processes. Previous reviews have demonstrated significant associations between
pesticide exposure and diminished sperm quality in humans [78,92]. Research suggests
that occupational exposure to pesticides can result in male reproductive system pathology,
such as damage to testes, impaired spermatogenesis, and reduced semen quality [55].

3.1.1. Atrazine

One of the most used chlorotriazine herbicides is atrazine, which persists in water
and soil for extensive periods due to its long half-life (>60 days) [55,93]. Despite being
banned in the European Union and restricted in other countries, atrazine is still found
in water at levels exceeding recommended limits (US Environmental Protection Agency
(EPA) = 3 µg/L, European Union = 0.1 µg/L) [57]. In accordance with US EPA tolerances
and drinking water, recent reports indicate that acute dietary exposures to atrazine in
humans range from 0.234 to 0.857 µg/kg/day, and chronic dietary exposures range from
0.046 to 0.286 µg/kg/day [57]. Various investigations have indicated atrazine as a potent
endocrine disruptor, which may affect reproduction in mammals, birds, amphibians, rep-
tiles, and fish [57]. Atrazine passes biological barriers, such as the blood–brain barrier
(BBB), targeting the HPG axis and the BTB, causing oxidative stress, inflammation, mi-
tochondrial dysfunction, and apoptosis in the exposed cells [93]. Low doses of in vitro
exposure to atrazine (0.1 or 1 µM) or its major metabolite diaminochlorotriazine (DACT;
1 or 10 µM) have been demonstrated to disrupt sperm membranes and acrosome integrity
and functionality, as well as mitochondrial function in bovine spermatozoa [55].

3.1.2. Simazine

Simazine have been found both in surface and ground water sources as well as in food
products, which can lead to human exposure through consumption [94]. An additional risk
of occupational simazine exposure has been reported through skin contact during mixing or
application of this pesticide [94]. Across Europe, simazine was one of the triazine herbicides
most frequently detected above regulatory levels [82]. Triazines such as atrazine and
simazine display similar modes of action and have been implicated in a variety of cancers
according to different studies [95]. In addition, long-term consumption of high doses
caused tremors, damage to the testes, kidneys, liver, and thyroid, and decreased sperm
production in laboratory animals [95]. Due to its endocrine disruptor-like characteristics
and large production volume, simazine was included in a final list of chemicals tested in
the US EPA’s endocrine disruptor screening program in 2009 [96]. Researchers reported
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that male offspring exposed to simazine proved to have decreased body weight, testicular
size, and epididymis mass, increased testicular apoptosis, and low sperm counts [96,97].
Simazine is thought to act by downregulating genes such as those involved in the relaxin
pathway, including nitric oxide synthase 2 (Nos2) and Nos3 [96,97]. Thus, simazine results
in the reduction of nitric oxide (NO) production in rat Leydig cells in vitro [96,97] and alters
the expression of genes that are critical for regulating apoptosis and steroidogenesis [98].

3.1.3. Chlorpyrifos

Another widely used pesticide in both agriculture and industrial sectors across the world
is chlorpyrifos, globally adopted due to its broad-spectrum effectiveness against insects [99].
After reviewing scientific studies, the EPA concluded that chemical residues on or in food are
unsafe based on the cumulative exposure to chlorpyrifos [91,100]. Despite this evidence, no re-
vocations or cancellations of chlorpyrifos registrations were made [91,101]. Since then, several
reports have indicated that, in addition to its acute toxicity, hepatotoxicity, nephrotoxicity,
neurotoxicity, and developmental toxicity, chlorpyrifos affects male reproduction [58]. How-
ever, detailed investigations regarding chlorpyrifos reproductive toxicity and mechanisms
are lacking [58].

Observations have suggested that exposure to chlorpyrifos may increase intracellular
reactive oxygen species, thereby leading to oxidative stress and damage in cells [58]. An
in vivo study on mice fed 3.0 mg chlorpyrifos/kg body weight for 20 weeks demonstrated
significantly decreased sperm counts, serum testosterone, and gonadotropin levels and
enzyme activity related to spermatogenesis [102]. Zhang et al. [58] exposed mouse sper-
matozoa to 25 µg/mL chlorpyrifos and after 1 h observed significantly decreased motility
and mitochondrial membrane potentials with an increase in reactive oxygen species (ROS).
Interestingly no significant effect was observed on sperm viability [58].

3.2. Pharmaceuticals

Pharmaceuticals and personal care products (PPCP) have a wide range of applica-
tions including being used as antibiotics, hormones, antimicrobial agents, and synthetic
musks [103]. In human and veterinary medicine, most pharmaceuticals are used to prevent
or treat infectious or lifestyle diseases, whereas large amounts are also used in agriculture
to promote fruit growth and in livestock and fish farming to promote growth and prevent
disease [69]. Since pharmaceuticals are biologically active substances that can interfere with
the biochemical and physiological processes of non-target organisms when they ends up
in water resources (Figure 1), they are recognized as being CECs [104]. A large number of
PPCPs are excreted as the parent compound or as its metabolites, which flow into wastew-
ater treatment plants [48]. While the concentration of some of these compounds can be
controlled or reduced by facility-specific treatment practices, many CECs are not properly
removed or are discharged into surface waters, including streams, estuaries, or open ma-
rine waters due to secondary bypass or combined sewer overflows [48,104]. Additionally,
considering that approximately 70% of pharmaceuticals consumed by humans are ionized
weak bases, more research is needed to understand pH influences on the bioavailability
and toxicity of ionized pharmaceuticals [43].

In aquatic organisms, pharmaceuticals are accumulated as a result of two primary
processes, namely direct partitioning from the abiotic environment (bioconcentration)
and trophic transfer (dietary exposure) [105]. The majority of pharmaceuticals are more
polar and less hydrophobic than most CECs and thus do not preferentially associate with
sediment or tissue [48]. Even so, they can be bioaccumulated through ventilation, ingested
water, and prey and therefore may interact with receptor targets, causing pharmacological
effects in non-targeted organisms when concentrations are high enough [48].

Several types of PPCPs have been found in water, sediments, and fish in the Mediter-
ranean River Basins [40,41] and in South Africa [28,77,106]. Those detected in fish samples
included anti-inflammatories (diclofenac), psychiatric drugs (citalopram, carbamazepine,
and venlafaxine), and β-blockers (clopidogrel, carazolol, sotalol, and propranolol). Inter-
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estingly, the most frequently detected PPCP was diclofenac [28,40,41,106]. According to a
recent study of 12 fish species from a variety of families, more than 65% of drug targets
had orthologues in humans [107], suggesting that many of the drugs metabolized and
bioaccumulated in fish might also negatively affect humans.

3.2.1. Sulfamethoxazole

Pharmaceuticals of emerging concern in African surface waters include antiretrovirals
and antibiotics [108]. Antibiotics rank as one of the most commonly used and consumed
pharmaceutical classes, with low levels widely detected in sewage treatment plants effluent,
surface water, groundwater, and drinking water [69]. Trimethoprim/sulfamethoxazole
has been the choice of antibiotic therapy for the last 30 years due to its effectiveness
against both gram-negative and gram-positive bacteria [109]. However, as a result of the
sequential blockade of multiple steps involved in microbial folate synthesis, trimetho-
prim/sulfamethoxazole can inhibit the formation of purines and, ultimately, DNA [68,110].
In addition, the compound can also cross the placenta and thus harm neonates due to its
folic acid antagonist properties [109]. Low folate levels in seminal plasma are reported to
be associated with increased sperm DNA damage [111].

Oputiri and Elias [68] found that male rats orally treated with sulfamethoxazole/
trimethoprim (22.4/4.6 mg/kg) showed decreased semen quality (sperm count and motil-
ity) associated with increased reactive oxygen species (ROS), histological testicular damage,
and abnormal spermatozoa. Salarkia et al. [111] observed that adult male Wistar rats treated
in vivo with trimethoprim/sulfamethoxazole (30, 60, and 120 mg/kg/day) for either 14 or
28 days presented with significantly decreased sperm counts and percentages of motility
and viability. Moreover, a study conducted by Hargreaves et al. [112] indicated that at low
concentrations, trimethoprim/sulfamethoxazole did not affect human sperm movement;
however, at 500 µg/mL, it reduced the movement by 34% [113]. Thus, exposure to trimetho-
prim/sulfamethoxazole can potentially decrease male fertility through possible inhibition
of meiosis of primary spermatocytes, direct destruction of spermatozoa, interfering with
energy production and mitochondria, or decreasing folate levels in seminal plasma [68].

3.2.2. Non-Steroidal Anti-Inflammatory Drugs

In South Africa, non-steroidal anti-inflammatory drugs (NSAIDs) have historically
been the most consumed category of drugs, followed by antibiotics [114]. NSAIDs are used
to treat various illnesses either alone or in conjunction with other pharmaceuticals [114].
NSAIDs such as acetylsalicylic acid, ibuprofen, and naproxen are commonly available
over the counter, thereby increasing their prevalence in the environment. Ibuprofen,
naproxen, diclofenac, ketoprofen, and fenoprofen are reported to be the most prominent
NSAIDs found in aquatic environments of South Africa [114] and should be considered as
potential CECs.

NSAIDs inhibit the non-selective activity of cyclooxygenase (COX)-1 and -2 isoforms,
decreasing the catalysis of prostaglandin (PG) biosynthesis from phospholipid arachidonic
acid [115]. These compounds are widely used for their analgesic, antipyretic, and anti-
inflammatory properties [116]. The PG family consists of lipid-signaling molecules derived
from polyunsaturated fatty acids and are involved in a variety of biological processes, in-
cluding fertilization [117]. As a result, they regulate human reproduction, neurological func-
tion, cancer progression, and inflammation and serve as short-lived, local hormones [117].
An association has been suggested between PGs and sperm motility as PGF1α binds with
high affinity to the sperm calcium channel (CatSper), which in mammalian spermatozoa is
crucial for generating hyperactivated motility and therefore fertilization [117]. In addition
to their role in the regulation of testicular functions, PGs have been suggested to exert
stimulatory as well as inhibitory effects on spermatogenesis [66].

Various water sources, such as drinking and groundwater, have been found to contain
naproxen, ranging in concentrations from ng/L to µg/L [118]. In spite of their low con-
centration, NSAIDs have the potential to cause adverse effects on non-target organisms in
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long-term exposure or while mixed with other drugs [118]. As a result, naproxen and its
byproducts can be harmful to living organisms, including humans [119]. Uzun et al. [66]
treated male rats with naproxen and meloxicam and observed a significant decrease in
sperm count and motility, with induced damage of seminiferous tubules, without any effect
on plasma hormone levels. According to the study, reproductive toxicity may be caused
by the inhibition of PG synthesis, whereas oxidative stress may also play a key role [66].
The latter effect was confirmed in a study by Ahmad et al. [120] that suggested naproxen
to be a potential genotoxic agent. Oral naproxen administration to male Wistar rats for
14 days resulted in biochemical imbalances and induced oxidative stress, which weakened
the integrity of the cells [120].

Diclofenac, one of the most prescribed NSAIDs, is widely used to treat pain and inflam-
mation, but it has been closely associated with adverse effects on avian fauna and raised
environmental concerns [121,122]. In relation to other commonly used NSAIDs, diclofenac
is reported to be about three to 1000 times more effective on a molar basis and in its ability
to inhibit the activity of COX [104]. Despite acting as an anti-inflammatory, diclofenac has
also been associated with decreasing antioxidant indices and thus may induce oxidative
stress in cells [123]. Vyas et al. [121] administered diclofenac (0.25 mg/kg, 0.50 mg/kg, and
1.0 mg/kg) to male rats for 30 days and observed significant decreases in weight of the
testis, epididymis, ventral prostate, and seminal vesicles [121]. A dose-dependent decrease
was also observed in sperm count, density (in epididymis and testis), motility, and testicu-
lar cell population dynamics [121]. Mousa et al. [124] observed decreased sperm counts,
individual sperm motility, and viability as well as depleted concentrations of reduced
glutathione in testicular tissue, decreased testosterone levels, and alteration in testicular his-
tological features in rats treated with diclofenac (2.5 mg/kg body weight) four times/week
for 8 weeks.

Diclofenac may thus induce its negative effects on both qualitative and quantitative
measures of spermatozoa [122]. These consequent effects may be attributed to reduced lev-
els of gonadal hormones, decreased antioxidant defense mechanisms, increased oxidative
stress, altered concentrations of nitric oxide that are required to maintain normal sperm
physiology, and reduced synthesis of PGs [122]. However, further investigation on these
possible mechanisms and effects are required, especially for in-depth sperm functional
characteristics related to fertilization success.

4. Impact of CECs on Offspring and Potential Mechanisms

Since their introduction in the environment more than 50 years ago, CECs have
been found to not only affect the health of exposed individuals, but also of subsequent
generations. For instance, environmental exposure to endocrine disruptors has been linked
to headaches [86] and neuro-developmental disorders in upcoming generations [125–127].
Spermatozoa have been reported to deliver non-genetic factors into the oocyte [128]. The
mechanisms underlying such transfer include the binding of methyl/acetyl groups to
DNA, modification of sperm histones affecting gene expression [129], and transfer of RNA
families or proteins present in spermatozoa into the zygote [130]. These heritable changes,
known as epigenetic marks, do not necessarily involve the alteration of the DNA sequence
but rather promote alterations in gene function without changing the underlying genome.
Such modifications result in altered gene expression in response to environmental factors
without affecting the DNA code itself. Given their role in controlling gene expression,
it is likely that paternal conditions, such as exposure to CECs, would affect epigenetic
patterns in the offspring. Whilst evidence in humans is often technically challenging
to obtain, in animal models, on the other hand, evidence is mounting and emphasizes
that the perturbation of epigenetic marks might account for infertility cases and diseases
in the offspring.

Early embryonic development is critically sensitive to epigenetic manipulations by
exposure to environmental contaminants. In exposed females, CECs can be transferred into
the breast milk and cross the blood–placental barrier, compromising the development of
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the progeny. In fact, rodent studies suggest that exposure of mothers to therapeutic doses
of paracetamol not only negatively affects the testosterone levels of male pups [131] but
also compromises the ovarian reserve of female offspring [132]. Exposure to diclofenac,
particularly, in pregnancy seems to dramatically affect the total number of Sertoli and
Leydig cells in the rat male offspring [133]. In utero exposure to other forms of CECs
including the pesticide permethrin, insect repellent N,N-Diethyl-meta-toluamide, plastic
additives such as bisphenol A and phthalates, dioxin, and jet fuel was also shown to pro-
mote male germline alterations in F3 progeny [134]. In addition, exposure to the pesticide
atrazine also induces epigenetic transgenerational inheritance. Two generations of mice
following parental exposure presented sperm epigenetic alterations, with only F2 and
F3 having a higher incidence of early onset puberty and testis disease, respectively [135].
Such evidence suggests that parental exposure to CECs affects not only the parents them-
selves but also leaves profound signatures in the germline, compromising the health of the
subsequent generations.

Most recent preliminary in vitro studies in humans show that exposure, at human
therapeutically relevant levels, to acetaminophen and ibuprofen causes loss of germ cells
and modification in their epigenetic patterns [136]. Furthermore, human testis cultured
with therapeutic doses of paracetamol presented up to a 30% reduction of testosterone
after 24 h of exposure [137]. Further experiments using human fetal testis in a xenograft
model reveal a 45% reduction in plasma testosterone and 18% reduction in the seminal
vesicle weight after 7 days of therapeutic exposure to paracetamol [138]. Whilst such work
highlights the physiological impact of CEC exposure on the male reproductive system,
recent molecular work confirmed the molecular signatures left by CEC exposure. A recent
study performed epigenetic analysis from cord blood samples from children exposed
for more than 20 days to paracetamol in utero and found significant differences in DNA
methylation levels compared to the control group [139]. The study further suggested that
several methylated genes were linked to attention-deficit/hyperactivity disorder (ADHD),
oxidative stress, neurodevelopment, and neurotransmission. In line with this evidence,
another study identified several genome-wide differentially methylated regions (DMRs)
in sperm produced by men under low and high exposure to the insecticide 1,1-dichloro-
2,2-bis(p-chlorophenyl)ethylene (DDE). Elevated exposure to DDE was suggested to be
associated with DMRs in sperm, and those regions are enriched for genes involved in
neurological functions including susceptibility to autism spectrum disorders, schizophrenia,
and bipolar disorder [140]. Although these studies have only focused on the direct exposure
of selective groups of CECs, cumulative effects and bioaccumulation of these compounds
through the different sources have the potential to contribute to subtle changes at the level
of the epigenome and are thus likely to be manifested through various phenotypic forms in
the germline and offspring.

5. Management, Detection, and Possible Treatment of CEC Exposures

Increasing urbanization has resulted in increased anthropogenic activities, economic
growth, urbanization, industrialization, and exploitation of natural resources, leading to
massive waste management problems, disposal problems, and the emergence of various
contaminants [141]. Through various pathways, CECs contaminate soil, water, and air,
affecting the environment and human health (Figure 1) [141]. A variety of analytical tech-
niques have been employed to detect and quantify inorganic and organic contaminants
in aqueous matrices; however, the presence of contaminants in water has demonstrated
that current quality controls cannot detect or treat pollutants that are present [142]. Never-
theless, detection techniques still include chromatographic, spectroscopic, electrochemical,
and colorimetric titration amongst others. Each of these methods weigh in with various
advantages and disadvantages as critically discussed by Warren-Vega et al. [142].

Urban wastewater treatment plants (WWTPs) release organic contaminants into
aquatic systems, thereby making WWTPs a major land-based pollution source of wa-
terbodies. The removal efficiency of organic contaminants varies substantially as a result of



Toxics 2023, 11, 330 13 of 23

a number of factors, including the difference in operating conditions of the treatment plants,
the structural diversity of the organic contaminants, and their chemical and physicochemi-
cal properties [143]. As a result, conventional secondary (e.g., activated sludge process) and
tertiary treatments (e.g., filtration and disinfection) in WWTPs are not effective in removing
most CECs from the water [144]. More recently, the removal of CECs from wastewater has
been investigated by using a range of new advanced treatment methods, including those
consolidated (activated carbon adsorption, ozonation, and membrane filtration) and those
not as intensively implemented, such as advanced oxidation [144].

As the detection and eradication of CECs proves to be problematic, the question
remains whether exposure to CECs causes irreversible harm to human health, especially
reproductive health. In this regard, it becomes clear that the chemical nature of the CECs, in
addition to the period in an organism’s lifespan during which it is exposed, determines the
duration of effects. For example, in external fertilizers, exposure to diclofenac for 14 days
has led to significant reduction in fecundity and fertility; however, after being returned to
clean water their reproductive ability was gradually restored [145]. In contrast, in mammals,
the reproductive effects of early life exposures to CECs in utero are much more pronounced
later in life, even without subsequent exposure [146]. In addition, disruptions in the HPG
axis in young elephant bulls was shown to lead to a dramatic reduction in testis size, sperm
production, and testosterone concentrations even years post puberty interference [147].
Consequently, it is likely that in humans, exposure to CECs during critical stages of develop-
ment affects reproduction irreversibly. Although preventative strategies to limit exposure
to such compounds are difficult to be implemented due to their ubiquitous presence in
everyday life, a recent study found that selenium supplementation likely counteracts the
reactive oxygen species and DNA damage in sperm induced by Ibuprofen exposure [148].
Nonetheless, a randomized control trial suggests that antioxidant supplementation does
not improve sperm function in infertile men [149]. Therefore, the latter study speculates
that if exposure to CECs dramatically affects sperm quality, compromising a man’s ability
to father offspring, then antioxidant supplementation would not alleviate the harmful
effects of CECs. Control measures and mitigation strategies should therefore focus on
limiting human exposure to CECs through appropriately identifying and eliminating the
compounds from the possible sources as well as imposing penalties for using such com-
pounds in agriculture and manufacturing, especially when alternatives are available. In
addition, establishing informational campaigns to increase public awareness about the
emergence of CECs and their consequences has the promise to drive legislative action and
limit the reproductive effects currently reported.

6. Role of Spermatozoa in Toxicology Applications

Bioindication has been one of the major directions of environmental research, and
ecologists are interested not only in pollution levels but also in how organisms react
to xenobiotics [150]. It is critical to use bioindicators to detect, evaluate, and monitor
changes in the environment, both positive and negative [151]. A variety of factors must
be considered when choosing biological indicators for bioassays, including its sensitivity
and reliability, distribution, and environmental relevance, as well as availability through-
out the year. Moreover, an accurate, predictable, and reliable endpoint is required for
toxicity testing [152].

In toxicity screening, many validated in vivo and in vitro models are used to identify
and predict the potential harmful effects of anthropogenic chemicals. However, the develop-
ment and implementation of new in vitro techniques for ecotoxicology and environmental
risk assessment are paramount due to the fact toxicological studies on animals are costly,
require many specimens, and can raise ethical concerns [153]. Besides reducing the number
of animals used in toxicity testing, in vitro model systems have several other advantages,
including a reduced maintenance cost, a smaller amount of chemicals required, shortening
of the time required for tests, and increasing the throughput for evaluating many chemicals
and their metabolism [154].
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Spermatozoa have the potential to meet many of the aforementioned requirements
as an in vitro toxicological model [155]. As highly specialized cells, spermatozoa have
a unique compartmentalized structure which enables them to perform a diverse range
of biological functions (movement, cell recognition, secretion, and membrane fusion)
required for fertilization [156]. As such, spermatozoa have measurable characteristics that
respond to toxicants in a dose-response manner [155], particularly in relation to the effects
of xenobiotics on biological membranes [156]. Moreover, spermatozoa are inexpensive
to produce and easy to obtain and manipulate in laboratory environments. Displayed
in Table 2 [157–164] are several examples of investigations (from 2006 to 2021) using
spermatozoa from various phyla as toxicological in vitro models and assessing various
reliable endpoints (sperm viability, kinematics and motility, and DNA fragmentation
amongst others) for toxicity effects. Studies displayed in Table 2 [157–164] were selected on
the basis of including in vitro sperm exposure to various CECs.

A study in G. caespitosa assessed the effects of four heavy metals (Cu, Zn, Pb, and Cd)
on spermatozoa and found that these contaminants affect sperm density and fertilization
success [157]. Another study in rainbow trout found that exposure of sperm to sublethal
concentrations of two heavy metals (Hg2+ and Cd2+) alters sperm motility and larvae
hatching rates [158]. A more recent study in mice evaluated the effects of sperm exposure
to temephos and concluded that sperm function and metabolism, fertilization rates, and
blastocyst formation rates were significantly decreased [160]. Human spermatozoa have
also been shown to be responsive to environmental pollutants, serving as a powerful alert of
the detrimental effect that environmental contaminants have on human health [165]. Hardneck
et al. [166] were able to determine the threefold concentrations for the harmful effect of CuSO4
and CdCl2 on human sperm by calculating IC50 values, suggesting that spermatozoa could
be used as a potential bioindicator for heavy metal toxicity. Vollmer et al. [167] developed
human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced
toxicity by using sperm motility and viability as a screening tool to identify in vivo toxins,
which could possibly also be applied for environmental toxins.

The use of male gametes from plants in ecotoxicology has been established for a
number of years. Studies revealed that the use of pollen to detect pesticides is beneficial for
environmental monitoring [168] as it provides important insights of the consequences of
environmental change in the adult plant, due to gametocytes expressing many genes that
are known to correlate with sporophyte fitness [169]. Identification of pollen that is more
resistant to stress correlates with more resistant crop plants [170]. The use of fish sperm for
toxicity tests is another example, since fish gametes and embryos are highly sensitive to the
toxic effects of water contaminants [171].

Furthermore, the human genome consists of approximately 25,000 genes, of which 10%
are related to reproduction [18,172]. It is highly likely that these genes have overlapping
pathways and functions with those found in a variety of cell types and organ systems.
Research suggests that there is a considerable gene overlap between the testes and brain [88].
It may therefore be plausible to infer the potential outcome of CECs on other cell types by
analyzing the effects on various sperm functional characteristics, and the development of
spermiotoxicity assays could provide a faster alternative to traditional in vivo assays.
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Table 2. Studies using spermatozoa as a bio-indicator to evaluate the effect of various environmental contaminants on male fertility of various species, including
examples of exogenous and endogenous fertilization strategies.

Species Endogenous/Exogenous Environmental
Contaminant Concentrations Duration Effects Study

Sydney worm
(Galeolaria caespitosa) Exogenous Heavy metals

(Cu, Zn, Pb, and Cd)

Cu (12–33) Zn (160–550), Pb
(560–1500), and

Cd (4900–6100) µg/L
30 min ↓ Fertilization rate Lockyer et al., 2019 [157]

Rainbow trout
(Oncorhynchus mykiss) Exogenous Hg2+ and Cd2 1, 10, 100 mg Hg2+/L and 10,

100, 500 mg Cd2 4 and 24 h
↓ Viability

Dietrich et al., 2010 [158]↓ Kinematics
↑ DNA fragmentation

Yellow-tailed lambari
(Astyanax altiparanae) Exogenous Aluminium 0.05, 0.1, 0.3, and 0.5 mg/L 50 sec, 10 and 30 min

↓ Membrane vitality
de Assis et al., 2021 [159]↓ Mitochondrial activity

↓ Mot and kinematics

Mouse (Mus musculus) Endogenous Temephos 0.1, 1, 10, and 100 mM 90 min

↓ Sperm mot, medium and rapid sperm
mot, prog mot, kinematics

Kim et al., 2020 [160]
↑ Live AR

↓ Live Capacitated
↓ ATP levels

↓ PKA activity and tyrosine
phosphorylation
↓ Fertilization rate

Buffalo (Bubalus bubalis) Endogenous Cadmium, lead, chlorpyrifos,
and endosulfan

0.005, 0.05, 0.02, 0.1, 0.5, 1.0, 2.0,
and 4.0 µg/mL 1 h

↓ Prog and total mot

Selvaraju et al., 2011 [161]

↓ Kinematics
↑ Tail abnormality

↓ Plasmalemma, functional membrane
integrities and acrosomal integrities

↓ Normal nuclear morphology
↑ Nuclear chromatin decondensation

↓ MMP
↓ Sperm–zona binding and in vitro

Duroc boar (Sus scrofa) Endogenous Atrazine, fenoxaprop-ethyl,
malathion, and diazinon 50, 100, and 500 µM 1 h

↓ Viability Betancourt and Reséndiz, 2006
[162]↓ Prog mot

↓ Kinematics

Human (Homo sapiens) Endogenous PCB126, PCB118, and PCB153 2–20 µg PCB/mL 5 hr
No effects observed on sperm mot,

vitality, spontaneous AR, or inducibility
of the AR.

Pflieger-Bruss et al., 2006 [164]

Human (Homo sapiens) Endogenous Roundup 1 mg/L 1 and 3 hr
↓ Prog and total mot Anifandis et al., 2017 [164]↓ MMP

Abbreviations: ↓, decrease or negatively affected; ↑ increased or positively affected; AR, acrosome reaction; ATP, adenosine triphosphate; DNA, deoxyribonucleic acid; h, hour; min,
minutes; MMP, mitochondrial membrane potential; mot, motility; PCB, pentachlorobiphenyl; prog, progressive motility; sec, seconds.
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7. Conclusions

Spermatogenesis requires precise regulation of somatic cell populations which are
highly sensitive to both extrinsic and intrinsic factors. Exposure to CECs such as atrazine,
chlorpyrifos, simazine, diclofenac, naproxen, and sulfamethoxazole may affect male fertility
and overall health through various mechanisms such as direct damage to cell structure,
acting as an EDC and affecting hormones, causing DNA fragmentation and alterations,
gene mutations, and epigenetic effects through altering gene expression. These extrinsic
sources therefore interfere with intrinsic physiological processes that ultimately affect an
organism’s health. Although CECs have a wide range of negative effects on the male repro-
ductive system, this could be seen as an advantage for the potential use of spermatozoa
as a bioindicator of toxic environments for a vast range of contaminants—a double-edged
sword for addressing CECs in future studies. Having a comprehensive understanding
of the effects of CECs on the functional characteristics of human spermatozoa can also
aid in identifying idiopathic fertility cases and may lead to the development of more
individualized treatment plans for patients undergoing ART. Furthermore, identifying
the concentrations or combined mixtures at which these compounds may cause repro-
ductive toxicity can assist in the development of legislative measures that monitor and
regulate CECs.
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