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A B S T R A C T   

In recent years, there has been growing interest in developing air pollution prediction models to reduce exposure 
measurement error in epidemiologic studies. However, efforts for localized, fine-scale prediction models have 
been predominantly focused in the United States and Europe. Furthermore, the availability of new satellite in-
struments such as the TROPOsopheric Monitoring Instrument (TROPOMI) provides novel opportunities for 
modeling efforts. We estimated daily ground-level nitrogen dioxide (NO2) concentrations in the Mexico City 
Metropolitan Area at 1-km2 grids from 2005 to 2019 using a four-stage approach. In stage 1 (imputation stage), 
we imputed missing satellite NO2 column measurements from the Ozone Monitoring Instrument (OMI) and 
TROPOMI using the random forest (RF) approach. In stage 2 (calibration stage), we calibrated the association of 
column NO2 to ground-level NO2 using ground monitors and meteorological features using RF and extreme 
gradient boosting (XGBoost) models. In stage 3 (prediction stage), we predicted the stage 2 model over each 1- 
km2 grid in our study area, then ensembled the results using a generalized additive model (GAM). In stage 4 
(residual stage), we used XGBoost to model the local component at the 200-m2 scale. The cross-validated R2 of 
the RF and XGBoost models in stage 2 were 0.75 and 0.86 respectively, and 0.87 for the ensembled GAM. Cross- 
validated root-mean-squared error (RMSE) of the GAM was 3.95 μg/m3. Using novel approaches and newly 
available remote sensing data, our multi-stage model presented high cross-validated fits and reconstructs fine- 
scale NO2 estimates for further epidemiologic studies in Mexico City.   

1. Introduction 

Mexico City is the most populous city in North America, with a 
population of over 22 million in its metro area. Air pollution has been a 
persistent problem in Mexico City, in part due to the city’s high eleva-
tion, high levels of urbanization, and rapid industrial growth (Brav-
o-Alvarez and Torres-Jardón, 2002). In 1992, the United Nations 
declared Mexico City as the most polluted city on Earth (Air Quality Life 
Index, 2019), prompting additional mitigation efforts that the govern-
ment had begun back in 1990 with the Comprehensive Program Against 
Air Pollution (PICCA). Since then, the Mexican government introduced a 

series of comprehensive policies as part of the ProAire program, which 
aimed to address pollution from several fronts, including reducing en-
ergy consumption, improving public transportation infrastructure, and 
promoting environmental education (Centre for Public Impact, 2016). 
Currently in its fourth phase, ProAire has been successful in improving 
air quality in the Greater Mexico City area. However, because the city 
sits over 2000 m above sea level and is surrounded by mountains on 
three sides, atmospheric oxygen levels are naturally lower, which results 
in incomplete fuel combustion and increased concentrations of various 
primary and secondary pollutants, including fine particulate matter 
(PM2.5), ozone, and nitrogen dioxide (NO2). 
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NO2 is an important traffic-related pollutant and has numerous roles 
in the formation of secondary pollutants in the environment. In the 
presence of sunlight and volatile organic compounds, NO2 is a precursor 
chemical to ozone. NO2 also plays a major role in the formation of haze 
and acid rain (U.S. Environmental Protection Agency (EPA), 2016). 
Because fossil fuel combustion directly contributes to the production of 
NO2, NO2 is often considered a surrogate of traffic-related air pollution 
(TRAP). The negative effects of NO2 on human health are also well 
established. NO2 can result in many harmful effects to the respiratory 
system, including reduced lung function and increased inflammation of 
airways (United States Environmental Protection Agency, 2015). 
Numerous epidemiologic studies have found associations between NO2 
and increased mortality, hospital admissions, and other subclinical 
outcomes (Burnett et al., 2004; He et al., 2020; Mills et al., 2015; 
Ward-Caviness et al., 2016). 

Epidemiologic studies of air pollution and health have traditionally 
relied on the use of data from ground monitoring stations for the pur-
poses of exposure assessment (Bell et al., 2008; Dockery et al., 1993; 
Peng et al., 2005). Because monitoring stations are somewhat sparse 
relative to the populations of interest, doing so introduces two potential 
problems. First, epidemiologic studies relying solely on monitoring 
stations for exposure are limited to studying populations with a specified 
distance to the monitors. Since monitors are generally placed in densely 
populated urban areas, this often results in rural populations being 
excluded from epidemiologic studies. Second, populations around a 
certain monitor would typically receive the same exposure assignment, 
which introduces potential error due to exposure misclassification. 

In order to address the above concerns, there has been an increase in 
the use of air pollution prediction models in recent years. Current 
modeling efforts often utilize remote sensing data and/or employ ma-
chine learning-based techniques that result in high levels of predictive 
accuracy (Bi et al., 2018; Di et al., 2019; Just et al., 2020; Shtein et al., 
2019; Stafoggia et al., 2019; Van Donkelaar et al., 2016). Although 
existing modeling efforts have predominantly focused on PM2.5, there 
are also many prediction models for other pollutants, including NO2 (De 
Hoogh et al., 2019; Di et al., 2020; Gilbert et al., 2005; Hoek et al., 2008; 
Lee and Koutrakis, 2014; Zhan et al., 2018). Early attempts for NO2 
modeling employed land-use regression models, which are typically 
more suitable for the modeling of long-term averages (Lee and Kou-
trakis, 2014). With an increased demand for short-term (e.g., daily) air 
pollution predictions for use in health studies, efforts have shifted to-
wards the use of satellite-based models, since spatiotemporal modeling 
allows for short-term predictions. The statistical modeling approach for 
satellite-based models have also grown increasingly sophisticated over 
the years, from transitional regression models and linear mixed effects 
models (De Hoogh et al., 2019) towards machine learning-based 
methods, including the use of the random forest (RF) algorithm (De 
Hoogh et al., 2019; Zhan et al., 2018) or alternate algorithms, such as 
neural networks (Di et al., 2020). Relative to the United States and 
Europe, there is a critical need for fine-scale prediction models built in 
low- and middle-income countries, including for Mexico City. 

The purpose of this study is to construct a fine-scale daily NO2 model 
over Mexico City from 2005 to 2019. We build on the methodology 
introduced in de Hoogh et al. (De Hoogh et al., 2019), which utilizes 
NO2 columns from OMI, and introduce additional novel modeling 
components, including the use of data from the new TROPOspheric 
Monitoring Instrument (TROPOMI) NO2 product and ensemble models 
for higher predictive accuracy. 

2. Data and methods 

2.1. Study area 

The study area includes Mexico City, previously known as the Fed-
eral District (Distrito Federal). It is the capital and largest city of Mexico. 
It is also Mexico’s most densely populated city, spanning an area of 

1494.3 km2 (577.0 miles2) with a population of over 9 million people 
split across 16 boroughs (INEGI, n.d.). Mexico City sits over 2000 m 
above sea level and is surrounded by mountains and volcanos nearby on 
three sides, some reach elevations of over 5000 m. 

2.2. Monitoring data 

Daily NO2 monitoring data for the study period (January 1, 2005 to 
December 30, 2019) were downloaded from Mexico City’s automatic air 
quality monitoring network (Red Automática de Monitoreo Atmos-
férico; RAMA), which contains 42 monitoring stations across the Mexico 
City metropolitan area (CDMX, 2022) . Details about the principles of 
operation and types of equipment used for the monitoring system can be 
found in monitoring site audit reports (EPA Systems, 2018). 

2.3. Satellite data 

Two satellite-based NO2 products were used in this study: OMI and 
TROPOMI. Launched in 2004, OMI is an instrument on the Aura satellite 
and provides NO2 column data at a 0.25◦ × 0.25◦ resolution. For the 
purposes of this study, the variable “ColumnAmountNO2-
TropCloudScreened” was extracted from the level-3 OMNO2d product, 
which provided NO2 column measurements for the entire study period. 

Launched in 2017, TROPOMI is an instrument on the Copernicus 
Sentinel-5 Precursor satellite, and provides NO2 column measurements 
at finer spatiotemporal resolutions. Both OMI and TROPOMI fly in a sun- 
synchronous orbit, with daily overpass times around local solar noon. 
Processed level-3 TROPOMI products were obtained from the Royal 
Netherlands Meteorological Institute, which provided 2-km2 measure-
ments of NO2 columns from May 2018 to December 2019 (van Geffen 
et al., 2022). 

2.4. Modeled tropospheric column NO2 

We also obtained daily estimates of modeled tropospheric column 
NO2 from the Copernicus Atmospheric Monitoring Service’s (CAMS) 
global reanalysis, which provided estimates at a 0.75◦ × 0.75◦ resolu-
tion. Because satellites cannot accurately measure NO2 columns at times 
due to cloud coverage, the daily CAMS estimates, together with other 
variables, were used to impute missing satellite NO2 column measure-
ments whenever applicable. 

2.5. Spatial and temporal predictors 

A number of additional spatial and temporal predictors are also 
included in the modeling process, including longitude, latitude, 10 m U 
wind component (wind_u), 10 m V wind component (wind_v), and 2 m 
temperature (temp_2m) from the global reanalysis ERA5-Land hourly 
data (0.1◦ × 0.1◦); daily boundary layer height (blh), and total cloud 
cover (cloud) from the global reanalysis ERA5 hourly data on single 
levels (0.25◦ × 0.25◦); sum of length of major roads (road_length), road 
density (road_density), density of road intersections (intersection_density), 
and distance to closest major road (closest_road) derived from Open-
StreetMap; and elevation (ele) data from the Shuttle Radar Topography 
Mission. Our list of selected predictors is initially based on the lists of 
predictors from similar NO2 prediction models published in the litera-
ture. From there, we tested in the imputation and calibration stages 
which predictors meaningfully contributed to improved model perfor-
mance (e.g., higher R2, reduced RMSE, etc.), which were then kept for 
the final models. A detailed list of all spatial and temporal predictors and 
their data sources can be found in the Supplemental Material (Table S1). 

2.6. Statistical methods 

We estimated daily ground-level nitrogen dioxide (NO2) concentra-
tions using a four-stage modeling process. Prior to modeling, all 
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geospatial data were resampled from their initial resolutions into stan-
dardized 1-km2 grids using bilinear interpolation, which takes into ac-
count the centroid value based on the four closest cells to calculate each 
new grid cell. 

In the first stage (imputation stage), we imputed missing OMI data 
using the CAMS ensemble NO2 estimates along with other spatial and 
temporal variables (longitude, latitude, blh, temp_2m) using an RF 
model. This stage of the model performed well, with a 10-fold cross- 
validated R2 of ~0.90. The filled-in OMI data along with additional 
spatial and temporal predictors are then used as inputs in the next stage. 

In the second stage (calibration stage), we link the gap-filled OMI 
data to ground-level NO2 from monitoring sites using RF and extreme 
gradient boosting (XGBoost), two machine-learning based algorithms. 
Both models included the same set of predictors, which includes gap- 
filled OMI data, wind_u, wind_v, temp_2m, blh, cloud, elevation, road_-
length, and Julian date. For the RF model, the following hyperparameters 
were considered: number of variables randomly sampled at each split 
(mtry), number of trees to grow (num.trees), and minimum size of ter-
minal nodes (min.node.size). For the XGBoost model, the following 
hyperparameters were considered: maximum tree depths (max_depth), 
learning rate (eta), number of covariates sampled in each tree (colsam-
ple_bytree), and minimum leaf weight (min_child_weight). 

In the third stage (prediction stage), we employ a generalized addi-
tive model (GAM) to geographically weight the cross-validated pre-
dictions from the two base learners (RF and XGBoost) in a highly flexible 
manner, which is then used to predict ground-level NO2 from moni-
toring sites. Because the base learners each have its own advantages and 
disadvantages, geographically weighting the predictions (i.e., ensemble 
modeling) allows us to maximize the strengths from the individual 
models to yield the highest quality predictions. The model is based on 
the following relationship: 

GAM(NO2)ij = s(X,Y, by = predRF)ij + s(X, Y, by = predXGBoost)ij + εij  

Where NO2 ij is the NO2 concentration at monitor i on day j, X and Y are 
the geographic coordinates of monitor i, and predRF and predXGBoost are 
the cross-validated predictions from the RF and XGBoost models at 
monitor i on day j, and εij is the error of the model. The GAM model is 
then used to predict ground-level NO2 values across the entire study area 
over the study period. As a sensitivity analysis, we also run separate 
models from May 2018 to December 2020 predicting ground-level NO2 
by replacing OMI with TROPOMI NO2 column data from the above 
stages to compare model performance. 

In the fourth stage (residual stage), we defined another XGBoost 
model to explain the residuals between the modeled NO2 in the pre-
diction stage and other prediction variables at the 200-m2 scale. In 
addition to spatial and temporal variables included in earlier stages 

(wind_u, wind_v, temp_2m, blh, cloud, ele), we considered a number of 
additional road metrics (road_density, intersection_density, and close-
st_road). Fig. 1 shows a flow diagram that summarizes the entire step-
wise modeling approach. 

Model performance from each stage was evaluated based on 10-fold 
cross-validation. We split the monitors into training and testing groups, 
and performance evaluation was completed only in the testing groups. 
Specifically, the monitoring database was divided into 10 random 
groups, and the cross-validation was completed in two separate 
substages.  

(1) In the first substage, we create out-of-sample predictions for the 
two models in the calibration stage (RF and XGBoost). At each 
iteration, the two models were trained on 80% of the monitors to 
estimate NO2 values for a separate test dataset that consisted of 
another 10% of monitors. A remaining 10% of monitors is kept as 
a validation dataset for evaluating the performance of the GAM 
model.  

(2) At each iteration of this substage, the GAM model is trained using 
out-of-sample predictions of NO2 from the first substage, which 
are then used to predict on the validation dataset that was kept 
aside during the first substage. This process ensures that the GAM 
model is trained on unbiased estimations (i.e., no data were used 
for both model fitting and predicting) and predicts on a dataset 
that was not used to train the other learners. The other learners 
are also trained using this same training dataset to predict the 
validation set. This process is reiterated 10 times until there are 
NO2 estimates for all monitors. These estimates were then 
compared to actual measurements from the monitors. 

Using the above procedure, we compute the following performance 
metrics.  

• Coefficient of determination (R2): the percent of explained variance 
between the observed and predicted NO2 values  

• Root mean squared error (RMSE): the square root of the mean 
observed differences between the observed and predicted values of 
NO2, considered a summary measure of prediction error  

• Intercept: the y-intercept of the simple linear regression between 
observed and predicted NO2  

• Slope: the coefficient of the simple linear regression between 
observed and predicted NO2 

All statistical analyses were performed using the R Statistical Soft-
ware, version 4.0.3 (Foundation for Statistical Computing, Vienna, 
Austria). The ranger package was used to fit all RF models (Wright and 
Ziegler, 2017), the xgboost package was used to fit all XGBoost models 

Fig. 1. Flow diagram of modeling approach.  
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(Chen and Guestrin, 2016), and the caret package was used to tune 
hyperparameters in the XGBoost models (Kuhn, 2008). 

3. Results 

A total of 42 unique NO2 monitors operated across the study area 
during our study period. The mean daily measured NO2 in our study area 
for the entire study duration is 27.1 μg/m3. Measured NO2 concentra-
tions in the area decreased over the 15-year period, with a mean con-
centration of 32.3 μg/m3 in 2005 to 21.5 μg/m3 in 2019. A time series of 
ground-level NO2 and detailed descriptive statistics of all NO2 moni-
toring stations can be found in the Supplemental Material (Fig. S1; 
Table S2). 

Performance metrics across all stages are shown in Table 1. On 
average, the RF, XGBoost, and GAM models in Stages 2 and 3 explained 
75, 86, and 87% of variations in measured NO2 concentrations. In our 
evaluation of variable importance, we found that wind_u, road_length, 
and satellite NO2 were the top three contributors to model performance. 
While the RF and XGBoost models already present high cross-validated 
fits across the entire study period, the GAM further reduces the RMSE 
and slope of the model. The GAM is especially efficient at reducing the 
bias of the model, to a slope of 1.01 (down from 1.06 in the RF and 1.05 
in XGBoost). For the residual stage, the XGBoost model explained on 
average 66% of variation in the residual NO2 concentrations. 

Fig. 2 shows maps of mean concentrations of NO2 for the three 
different models across the entire study period, and Fig. 3 shows annual 
mean NO2 concentrations of the GAM from 2005 to 2019. Predicted 
residuals had a mean of 0.05 and were normally distributed and 
centered around 0. Fig. 4 shows a histogram of predicted mean residuals 
(based on the residual stage model) across the entire study period. 
Additional performance metrics and spatial distributions of predictions 
can be found in the Supplemental Material (Table S3; Fig. S2; Fig. S3). 

Performance metrics of the sensitivity analyses using TROPOMI data 

are shown in Table 2. To allow for a fair comparison, we reran models 
from our main analysis (using OMI) for the truncated time period for 
which TROPOMI data were available. Generally speaking, model per-
formance using OMI and TROPOMI yielded similar results. 

4. Discussion 

This is the first high spatially and temporally resolved ensemble- 
based NO2 exposure model built over Mexico City. Specifically, we 
developed models to estimate daily NO2 concentrations at the 1-km2 

resolution from 2005 to 2019, and further estimated model residuals 
using a localized model at the 200-m2 resolution. In our four-stage 
modeling process, we used an RF model to impute missing OMI NO2 
column data based on CAMS, established a relationship between 
ground-level NO2 and OMI plus additional spatial and temporal pre-
dictors using RF and XGBoost models, applied the model to predict daily 
NO2 across the entire study area using a GAM model, and finally esti-
mated residuals using an XGBoost model, which can be used to estimate 
local NO2 concentrations at the 200-m2 scale. The model showed 
excellent performance, explaining on average up to 87% of variation in 
measured NO2 concentrations and on average 66% of variation in re-
sidual NO2 concentrations. 

Spatially, we find the highest levels of NO2 to be located in the center 
of the city, with levels decreasing substantially towards the outskirts of 
the city limits. This is an expected finding, as NO2 is a traffic tracer and is 
highly dependent on traffic and road density. Temporally, outside of the 
expected seasonal trends within a given year, there is a clear decreasing 
trend of NO2 over time. This can be seen in Fig. 3 as well, where mean 
predicted NO2 levels for the entire study area decreased by 4.6 μg/m3 

from 2005 to 2019 (from 17.3 μg/m3 to 12.7 μg/m3). 
To the best of our knowledge, this is also one of the first large-scale 

NO2 prediction model to be utilizing TROPOMI data. Relative to OMI, 
the finer resolution of TROPOMI offered a promising alternative that 

Table 1 
Cross-validated model performance across all stages.  

Measure RF (Stage 1 – Imputation) RF (Stage 2 – Calibration) XGBoost (Stage 2 – Calibration) GAM (Stage 3 – Ensemble) XGBoost (Stage 4 – Residual) 

R2 0.90 0.75 0.86 0.87 0.66 
RMSE 0.00 5.43 3.98 3.95 1.67 
Intercept 0.00 − 1.62 − 1.25 − 0.28 − 0.02 
Slope 1.11 1.06 1.05 1.01 2.34  

Fig. 2. Mean NO2 estimates for all three models from 2005 to 2019: locations of monitoring stations are marked on each map.  
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Fig. 3. Annual mean NO2 estimates in 2005 and 2019 based on GAM.  
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allows for the enhancement of existing NO2 modeling capabilities. 
However, in our sensitivity analysis comparing models using OMI and 
TROPOMI for the same time period, early analysis of TROPOMI data 
seems to be on par with OMI data in terms of performance metrics, even 
though we expected a slight improvement. This may be due to the fact 
that we are modeling over a relatively small region for a short time 
period (~1.5 years). The benefits of TROPOMI data for NO2 model 
predictions may be more pronounced as more data become available. 
Furthermore, the TROPOMI data that we used in our study comes from 
an early-stage algorithm. As with any early product, the algorithm and 
model are not fully optimized, and we expect the models to capture even 
more detailed spatiotemporal variations as we improve our under-
standing of the physical and atmospheric mechanisms that contribute to 
the model. 

There are relatively few studies that have modeled daily NO2 con-
centrations using satellite NO2 products over a large spatial area. De 
Hoogh et al. built a model predicting fine-scale (1-km2) daily NO2 over 
Switzerland from 2005 to 2016 primarily using mixed effects and RF 
methods utilizing data from OMI. The models yielded robust predictions 
explaining ~58% of variations in measured NO2 concentrations and 

~73% of overall residuals (De Hoogh et al., 2019). Zhan et al. also 
utilized OMI data to construct a daily NO2 model over China from 2013 
to 2016. Their 0.1◦ × 0.1◦ model also showed good performance, with 
cross-validated R2’s of 0.62 and 0.73 for daily and spatial predictions 
respectively (Di et al., 2020). Di et al. built a 1-km2 daily NO2 model 
using multiple machine learning algorithms across the contiguous 
United States from 2000 to 2016. The model had a large number of 
predictor variables, including meteorological data, land-cover variables, 
and data from chemical transport models, and achieved a 
cross-validated R2 of 0.79 (Zhan et al., 2018). More recently, Kim et al. 
predicted hourly NO2 in Switzerland and northern Italy from 2018 to 
2020 using XGBoost and found that TROPOMI observations were the 
most important predictors in the model, with the model capturing up to 
59% of hourly NO2 variations (Kim et al., 2021). Compared to existing 
previous studies, our study achieved a high level of predictive accuracy 
with cross-validated R2’s of up to 0.87, which is excellent compared to 
the current state of the art. 

There are a few limitations of our study that should be considered. 
First, because our model relies primarily on NO2 column data to 
generate predictions, we are only able to generate NO2 predictions for 
which OMI data are available (2005 and on). This limitation in temporal 
coverage limits the use of our NO2 predictions for health studies at 
earlier time points. Second, even though we are generating cross- 
validated and calibrated NO2 predictions, the satellite NO2 data we 
use come from the entire atmospheric column, and we are missing 
detailed vertical profiles from OMI and TROPOMI. Ideally, it would be 
better if we can use stratified NO2 column data (e.g., column measure-
ments every 10 or 20 m) to obtain even more accurate ground-level NO2 
predictions. Third, aside from the most central parts of the city, Mexico 
City has a serious lack of monitoring stations, which inhibits our ability 
to extend the model to the Greater Mexico City region and beyond. 

Fig. 4. Histogram of mean predicted NO2 residuals based on XGBoost.  

Table 2 
Cross-validated model performance comparing OMI versus TROPOMI, May 
2018 to December 2020.  

Measure RF_Oa RF_Ta XGBoost_O XGBoost_T GAM_O GAM_T 

R2 0.79 0.78 0.88 0.88 0.88 0.88 
RMSE 4.04 4.13 2.98 3.02 2.98 3.00 
Intercept − 1.83 − 1.43 − 1.09 − 0.97 − 0.87 − 0.77 
Slope 1.08 1.06 1.05 1.04 1.04 1.03  

a _O indicates OMI, _T indicates TROPOMI. 
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Finally, similar to what we have seen with past modeling efforts for 
PM2.5 and temperature, the transferability of our prediction models is 
not straightforward: generating predictions for other regions will 
require separate calibration processes that take into account the 
anthropogenic, climatic, and atmospheric conditions of the regions. 

Our study also has a number of strengths. First, to the best of our 
knowledge, this is the first fine-scale, ensemble-based NO2 exposure 
model built over Mexico City, which provides a valuable data source for 
those who are interested in conducting health studies of NO2 in this 
densely populated metropolitan region. Second, our model demon-
strated excellent performance, with R2’s of up to 0.87 in our main pre-
diction model and R2’s of up to 0.66 in our residual model. Lastly, our 
model takes advantage of newly available TROPOMI NO2 column data, 
which we anticipate will provide significant improvements to air 
pollution prediction models as more data becomes available. 
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