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Graphene wrinkle effects on molecular resonance states

Peter N. Nirmalraj', Kishan Thodkar@?>3, Sarah Guerin?, Michel Calame?>*> and Damien Thompson*

Wrinkles are a unique class of surface corrugations present over diverse length scales from Kinneyia-type wrinkles in Archean-era
sedimentary fossils to nanoscopic crinkling in two-dimensional crystals. Lately, the role of wrinkles on graphene has been subject to
debate as devices based on graphene progress towards commercialization. While the topology and electronic structure of
graphene wrinkles is known, data on wrinkle geometrical effects on molecular adsorption patterns and resonance states is lacking.
Here, we report molecular superstructures and enhancement of free-molecular electronic states of pentacene on graphene
wrinkles. A new trend is observed where the pentacene energy gap scales with wrinkle height, as wrinkles taller than 2 nm
significantly screen metal induced hybridization. Combined with density functional theory calculations, the impact of wrinkles in
tuning molecular growth modes and electronic structure is clarified at room-temperature. These results suggest the need to rethink
wrinkle engineering in modular devices based on graphene and related 2D materials interfacing with electronically active

molecules.

npj 2D Materials and Applications (2018)2:8; doi:10.1038/541699-018-0053-7

INTRODUCTION

Graphene is never flat, even when supported or suspended.
Rather, it is a two-dimensional (2D) atomic solid with intriguing
topological defects ranging from corrugations such as ripples,’
wrinkles,? crumples,® and atomic-scale lattice defects* to micro-
meter scale grain boundaries® particularly in graphene grown via
chemical vapor deposition (CVD). The origin of these defects®’
and their effects on the mechanical®'° and electrical properties' '~
3 of graphene are currently being investigated as graphene-
based materials progress towards a technological stable state,
reflected in the recent surge in patent applications.' In particular,
graphene electrodes integrated in nanoscale devices serve as
electrical contacts such as top-electrodes in organic solar cells,'
bottom-electrodes in flexible electronics'®'” and in-plane electro-
des'®' in atomic®® and single-molecular circuits.”’ Some com-
monly used techniques to obtain high-quality graphene include
mechanical exfoliation,?® epitaxial growth,”® atomically clean
graphene grown directly on single crystalline silver,**** CVD
growth on untreated copper foils'®'®?% and on electropolished
Cu.?’ The exfoliation method involves peeling few-layer graphene
films from a piece of graphite. It offers high charge carrier mobility
and defect-free graphene, but the small area of the exfoliated
flakes and the very limited yield currently precludes the use of
exfoliation in large scale applications. It is also possible to grow
graphene in layers by sublimation on silicon carbide (SiC)
substrates, but the growth conditions make it challenging to
control charge carrier density.®

By contrast, CVD is a technique that produces large-area high-
quality graphene films with minimal defects for industrial scale
applications,?®3° with a wide range of choice of growth substrates
and gas precursors. Two further advantages are that the layer
thickness of the graphene films fabricated through CVD can be
tuned and the graphene can be transferred to a wide range of

1

substrates.3’ Using the highly flexible and reproducible CVD
fabrication technique, we fabricated single-layer graphene films
on copper foil using methane as the carbon precursor. The
electronic and structural properties of molecular adsorbates on
epitaxial graphene have been well characterised®>3?* and the
role of graphene edges on molecular conductance gaps® is
known. By contrast, the effect of out-of-plane wrinkles (outsized
ripples with an aspect ratio larger than 1) present on CVD-grown
graphene (commonly used in the fabrication of graphene
electrodes) on the energetic states of molecules remain to be
fully clarified.?” Further information on site-dependent discrepan-
cies in molecular resonance will aid efforts to predict the
performance of large-scale devices integrated with electrodes
made from graphene and other 2-D layered materials.*®

Here we report the adsorption patterns and electronic states of
pentacene adsorbed on wrinkled and flat regions of CVD-grown
graphene, measured using atomic force microscopy (AFM),
scanning tunneling microscopy (STM), and spectroscopy (STS).
The topographic information reveals different growth configura-
tions of pentacene which depend on the graphene landscape,
from the assembly of ribbon-like architectures on top of the
wrinkles to the emergence of island type patterns on flat regions
within a single graphene grain. A doubled conductance gap of
(3.0+0.3)eV was measured for pentacene adsorbed on the
wrinkles compared with (1.3+0.2)eV for pentacene adsorbed
on flat regions. Comparative spectral analysis of pentacene
electronic structure as a function of local adsorption profile
confirms pronounced electronic decoupling of pentacene
adsorbed on wrinkles (height: 1-3 nm), which is in stark contrast
to pentacene adsorbed on flat-graphene, where the molecular
energy levels are broadened by the underlying metal, confirming
that flat-graphene is semi-permeable to the tunneling electrons
from underlying Cu. Together with atomic-scale modelling and
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density functional theory calculations, our findings provide new
insights into molecular adsorption on CVD-grown graphene and
highlight the so-far overlooked necessity to consider the influence
of topological corrugations on molecular electronic states when
designing nanoscale devices with graphene electrodes.

RESULTS AND DISCUSSION

Figure 1a is an AFM image of CVD-grown graphene® showing the
typical honeycomb structure, seen previously with scanning probe
microscopy,” suggesting the conformal growth of graphene
following the landscape of the underlying Cu surface. Spatially
magnifying over the AFM image shown in Fig. 1a shows dense
wrinkles within the grains as shown in Fig. 1b and the
corresponding phase image (Fig. 1¢). The formation of wrinkles
on graphene has been attributed to the non-uniform strain
distribution at the physisorbed graphene-copper interface,*
differences between the thermal expansion coefficients of
graphene and the support metal® during the cooling phase, and
also the propagation of defect lines on the metals.*’ More recent
studies identify the pressure exerted by trapped molecules
originating from the CVD process*® as another possible cause of
wrinkle formation. Variations in wrinkle topology**%“° and related
changes in the electronic structure*? have been studied in great
detail under ultra-high vacuum conditions. We verify the atomic-
scale geometry of the wrinkles using room temperature STM
imaging of CVD-grown graphene samples. Figure 1d is a cross-
sectional view of a three-dimensionally represented STM image of
a typical curved wrinkle on graphene. The height (H) and width
(W) of the wrinkle is measured from the high-resolution STM
image (Fig. 1d) and the mean H and W over 20 such atomically
resolved wrinkles is calculated to be (1.8 = 1.0) and (1.1 £0.5) nm,
respectively. The graphene carbon hexagon is evident from the
lateral-view 3-D STM image (Fig. 1e) of the same wrinkle shown in
Fig. 1d. The corresponding 2-D unfiltered STM image is shown in
Fig. 1f.

Upon registering the variations in CVD-grown graphene
topology, we spray-deposited liquid-phase solublized pentacene
on graphene. The rationale was to investigate the impact of
graphene topology on pentacene assembly, in particular the
influence of in-grain wrinkles on the electronic properties of
pentacene. Figure 2a shows a large-area AFM topograph of the
graphene landscape after pentacene adsorption. A three-
dimensional pattern is seen with ribbon-like assemblies (marked
in yellow) on top of island-type structures (marked in blue) on
graphene. Regions with missing molecular layers are also seen
within the same AFM image (marked in green), suggesting a
discontinuous first molecular layer on graphene. A plausible
explanation for the formation of the ribbon-type pentacene
structures is that wrinkles on CVD-grown graphene serve as
surface templates to guide the pentacene assembly. Spatially
magnifying on the ribbon-like structure reveals a two-dimensional
configuration as seen from the amplitude (Fig. 2b) and height (Fig.
2c) AFM images which are comparable in geometry to recent
reports of pentacene growth modes on 2D MoS,.** In a more
closely related study it was pointed out that the wrinkles on
graphene serve as nucleation sites leading to the formation of
ribbon-like pentacene® and para-sexiphenyl*® molecular struc-
tures. In addition to observing pentacene growth differences on
wrinkles and flat-graphene, we also measure the local variations in
surface roughness parameters of root-mean-square roughness
(Ry), detailed in the schematic in Fig. 2d. We calculate a mean
short-range (area<100nm®) Ry of (23+0.5)nm for pentacene
adsorbed on graphene wrinkles (indicated by blue arrow over the
AFM image in Fig. 2e) and a mean short-range R of (0.7 £0.2) nm
for pentacene adsorbed on flat-graphene (indicated by yellow
arrow over the AFM image in Fig. 2e), which is closer to the mean
Rq values we calculate for flat-graphene (0.5+0.2)nm. This
variation in the R, values confirms that the island-type pentacene
structures tend to form on the flat-graphene regions between
wrinkles, adopting the conformity of closer packed structures with
reduced surface roughness compared to pentacene adsorbed on
graphene wrinkles. We anticipate that in future experiments it

Fig. 1 One-dimensional wrinkle topology on CVD-grown graphene. a Large-area AFM image of CVD grown graphene on copper substrate
and b is a zoom-in of local topography over the region indicated by the white box in panel a and the corresponding phase data c revealing
the wrinkle density (scale bar: 2 pym for AFM data in panel a, scale bar: 800 nm for AFM data in b and c). d Atomic resolution three-
dimensionally (3D) represented STM image showing the curved nature of the one-dimensional wrinkle geometry (cross-sectional view) of
height (H: 0.8 nm) and width (W: 1.2 nm). e Lateral-view of the 3D constant-current STM image shown in d, highlighting the wrinkle atomic
structure with the hexagonally packed carbon framework and the length (L: 2.8 nm) along the out-of-plane wrinkle. Tunnelling parameters
used for STM data shown (d, e) are liynner () = 250 pA, Viias (V) = 1.2 V. f Two-dimensional raw AFM data of the wrinkle shown (d, e) (scale bar:

1 nm)
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Fig. 2 Pentacene superstructures on wrinkle and flat-area graphene. a Large-area AFM image of pentacene molecular layer spray-deposited
onto the CVD graphene surface from liquid-phase. The AFM data shows the formation of chain-like (regions marked in yellow) and island-type
(regions marked in blue) pentacene structures within a single graphene grain and areas where pentacene molecular layers are missing
(regions marked in green) (scale bar: 1 um). b, ¢ Spatially magnified AFM amplitude and height data of the chain-like and the island-type
pentacene structures. (scale bar: 500 nm for AFM data (b, c). d Schematic detailing the differences in measurements for root-mean-square (Rg)
and average (R,) surface roughness. e Spatially magnified three-dimensionally represented AFM topography over which R, values are

measured for pentacene adsorbed on graphene wrinkle (indicated b
0.5) nm and (0.7 £ 0.2) nm, respectively. (Scan size for e: 1.1 X 0.8 ym

should be possible to reduce the roughness of the pentacene
layers when deposited on graphene grown on electropolished Cu,
which has lower surface roughness than bare Cu foil *®

The question is then: if pentacene adopts a different growth
mode directed by the 1-D wrinkle template, how does the wrinkle
height influence molecular resonance states? To address this issue,
we performed local point-probe STS measurements on pentacene
adsorbed on wrinkles and compared the spectral signature with
pentacene adsorbed on flat-region graphene (as shown in the STS
schematic in Fig. 3a). Figure 3b is a constant-current STM image
showing the pentacene coated wrinkles (indicated by red arrow)
and flat graphene regions (indicated by yellow arrow). First, the
electronic structure of a free-pentacene molecule is determined
by density functional theory (DFT) using the Gaussian09 code
(Gaussian, Inc) with a B3LYP wavefunction and 6-311 + + G**
basis set. The eigenvalues of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of pentacene are —4.6 and —2.4 eV, respectively, which
yields a conductance gap (AE) of 2.2 eV (Fig. 3c). A more rigorous
prediction of the gap comes from subtracting lonization Potential
and Electron Affinity values estimated from the energies of
neutral, radical cation, and radical anion structures, which gives
AE=48¢eV. The range of values we compute for free (non-
broadened)-pentacene molecule are consistent with literature
values*” which depend strongly on model chemistry.***° Figure
3d is a differential conductance (dI/dV) spectrum of pentacene
residing along the length of the ribbon structure on top of a
wrinkle located by STM as shown in Fig. 3b. Energetically well-
resolved molecular resonance peaks are evident from the spectral
curve (Fig. 3d) with a distinct region of low conductance for the
surface bound pentacene. Two primary non-linear peaks are
observed centered around positive (4-1.75 eV) and negative bias
(—1.35eV) relative to the Fermi edge, which can be attributed to
resonant tunneling through the LUMO and the HOMO levels of
surface confined pentacene. Based on spectroscopic analysis at
several positions along the pentacene ribbon structure on top of
the wrinkle we calculate a mean AE (energy difference between
the HOMO and LUMO-derived resonance peaks) for pentacene
adsorbed on the wrinkles of (3.0 +£0.3) eV. The differences in the
error bars shown in Fig. 4 stems from the variations in the position
of the frontier molecular orbital peaks when the spectral curve
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Y blue arrow) and on flat-graphene (indicated by yellow arrow) of (2.3 +
)

(forward and reverse) was recorded over ten different locations
along the pentacene rows on the graphene wrinkle. In general,
the energy gap value we have measured for pentacene on top of
a graphene wrinkle at room-temperature is consistent with the
recently reported AE value of 3.3 eV at 5.3 K for pentacene on h-BN
atomic surface®® but significantly smaller than the AE value of
4.1eV at 5K for pentacene on highly insulating NaCl thin film,*’
suggesting that the wrinkles screen but do not completely
suppress metal-induced hybridization with the underlying copper
substrate. Dispersion corrected DFT®? pentacene-graphene elec-
tronic structures (Fig. 3e), computed using methods reported in
ref. °> show zero electronic interaction between pentacene and
graphene; the binding is purely van der Waals, which suggests
that pentacene is hybridizing in the experiments with the
underlying copper support. The electronic properties of the
adsorption complex formed by pentacene on 2D substrates such
as BN is known to depend on the geometry of the hetero-
structures.>® In the present calculations we focus on the electronic
structure of the complexes between single pentacene molecules
and graphene, including also control simulations of pentacene on
Cu (Fig. 5e).

Analyzing the STM/STS dataset, a correlation between the
degree of electronic decoupling of the molecules and the height
of the wrinkle is observed. Figure 4 is a plot of the measured
pentacene molecular energy gap AE as a function of graphene
wrinkle height. A trend is visible where AE scales almost linearly
with increase in wrinkle height. A transition phase appears at a
wrinkle height of ~2 nm (shaded in red in Fig. 4) beyond which
larger molecular energy gaps are measured and the AE values
tend to plateau (shaded in blue in Fig. 4). This result can be
explained from previous STM and STS studies on pentacene
electronic structure, where free-molecular electronic properties
were reported for pentacene adsorbed on highly insulating NaCl
membranes with a thickness of about three atomic layers, on Cu.”"
Subsequently, STS based characterization of pentacene adsorbed
on flat-graphene regions is performed to understand the role of
surface based corrugation of CVD graphene on the energy levels
of molecular adsorbates. Figure 5a shows the dl/dV spectra
measured after positioning the STM probe within a pentacene
island adsorbed on a flat-graphene region. Only weak molecular
resonance peaks are detected both at positive and negative

npj 2D Materials and Applications (2018) 8
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Fig. 3 Electronically decoupled pentacene on graphene wrinkles. a Schematic detailing the STS setup for local point probe spectroscopy
measurements for pentacene adsorbed on CVD-grown graphene landscape on copper (objects shown in schematic not to scale) and the
actual constant-current STM map of the pentacene adsorbed on wrinkles (red arrow) and flat-graphene (yellow arrow) is shown (b) (constant-
current STM recording parameters: I: 25 pA, Vi,: 100 mV). ¢ Density functional theory calculated highest occupied molecular orbitals (HOMO)
and lowest unoccupied molecular orbitals (LUMO) for gas-phase isolated pentacene molecule. d Differential conductance (dI/dV) spectrum of
pentacene molecules within the row-type structure growth on graphene (as seen from the constant-current STM image (b) revealing sharp
frontier molecular resonance peaks. The ribbon-type pentacene structures (red arrow in b) have a propensity to grow directly on the wrinkles
on CVD graphene surface which makes them more structurally and electronically decoupled from the underlying copper surface when
compared to structures grown on flat graphene (yellow arrow in b). Feedback loop parameters under which the spatially averaged dI/dV
spectra were acquired over ~10 points within the pentacene ribbons: /;: 150 pA, V,,: 500 mV. e The computed electronic structure of pentacene
adsorbed on graphene without underlying copper, shows a purely van der Waals pentacene-graphene binding energy of —0.9 eV with
pentacene positioned at 3.5 A above the monoatomic graphene surface. Near-HOMO electron density at the top of the valence band (from
the Fermi energy level down to —1 eV below the Fermi level) is overlaid and colored blue in this and all subsequent DFT computed structures
with the density plotted at a resolution of 0.025 electrons

voltages, together with a significantly reduced energy gap of
~1.4eV measured between the two central peaks located at
—0.85eV and +0.55. We calculate a mean AE of (1.3+0.2) eV for
pentacene adsorbed on flat-graphene based on the statistical
analysis shown in Fig. 5¢, less than half the AE value measured for
pentacene adsorbed on 1-3 nm high wrinkles.
The measured weak spectral signature for pentacene on flat-
graphene suggests that graphene is semi-permeable to the
tunneling electrons from the copper substrate. The inherent
hexagonal atomic arrangement together with the presence of
known vacancies and topological defects could further increase
the probability for a large population of charge carriers to be
transmitted through the graphene. As a control, we also measured
the electronic coupling of pentacene adsorbed directly on Cu.
Figure 5d is a dI/dV spectra recorded on pentacene adsorbed on
Cu showing a more broadened spectral curve as a result of the
direct charge transfer at the pentacene-Cu(111) interface. This is
T consistent with the electronic interaction calculated between
28 32 pentacene and bare copper in control DFT simulations (Fig. 5e),
confirming that the topology of the spacer layer, in this case
graphene, determines the extent to which a molecule can be
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Fig. 4 Effect of wrinkle height on molecular energy gaps. A trend is
observed where the measured molecular energy gap (AE) of
pentacene scales with the height of the wrinkles on which the
molecule is adsorbed (schematically shown in inset, where the blue
arrow indicates the position of the STM tip on top of pentacene
adsorbed on a wrinkle). A sharp increase is seen in the conductance
gap for molecules adsorbed on wrinkles that are taller than 2 nm
(indicated by the red shaded region, with the S-shaped curve
overlaid to guide the eye) beyond which the conductance gap is
observed to reach its maximum plateau for wrinkles with height up
to 3 nm (indicated by the blue shaded region)
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electronically decoupled from a metallic surface. The differences in
the peak widths for the primary molecular resonance peaks for
pentacene on graphene-wrinkle, pentacene on flat graphene, and
pentacene on Cu are shown in the comparative full width half
maximum (FWHM) analysis (Fig. 5f, g). We attribute the large AE
values and sharper peak widths for pentacene adsorbed on
wrinkles to the increased spatial separation created by the
wrinkles resulting in significant, systematic screening of Cu which
in turn produces less broadened pentacene resonance states. It
should also be taken into account that wrinkles are known to have

Published in partnership with FCT NOVA with the support of E-MRS



(a)
+1.30 (+P2)

40
g -1.55 (-P2)
:
> 204
9
o

-0.85 (-P1) +0.55 (+P1)
AE =14V
0
-1 0 1
Bias Energy (eV)

€€

€

SRR

3": t(i

Pentacene-Flat Graphene

Graphene wrinkle effects on molecular resonance states
PN Nirmalraj et al.

np)

(d)

144§
g |5 3
< ]
> 71 ¥
3
ko] / -1.15 (-P1)
O. T T T
-1 0 1
Bias Energy (eV)

Pentacene-Cu
1

®

Counts
kol

~

o

11

Molecular Energy Gap (eV)

Negative Voltage P1 Positive Voltage P1

05

FWHM (eV)

10

FWHM (eV)
Pentacene-Graphene Wrinkle
]

Fig. 5 Metal-induced screening of pentacene resonance states. (a) Spectroscopic signal registered when the STM probe is positioned over
pentacene adsorbed on a flat-graphene region (as shown in schematic in b). From the dI/dV spectra the frontier molecular orbital peak
positions and a region of low-conductance are discernible. A reduced conductance gap of 1.4 eV is measured between the HOMO (centered
around —0.85eV) and LUMO (centered around + 0.55eV). ¢ Statistically binned energy gap values for pentacene adsorbed on the flat-

graphene region. d Spectroscopic signal of pentacene adsorbed

directly on copper. The dI/dV spectrum shows broadened molecular

resonance peaks with weak spectral signature indicating a strong energetic overlap between the adsorbed pentacene and underlying copper,
consistent with the known hybridisation of the pentacene LUMO on copper.>’ e Computed direct pentacene adsorption on copper with a
molecular height of 3.0 A and binding energy of —3.1 eV (—1.9 eV electronic interaction due to pentacene-copper hybridisation plus —1.2 eV
van der Waals). f, g Comparative statistical analysis of full width half maximum peaks (FWHM) for negative voltage peak P1 and positive

voltage peak P1 positions for pentacene on graphene wrinkle (pink

histogram), pentacene on flat graphene (grey histogram) and pentacene

on Cu (blue histogram), respectively. The histograms quantitatively confirm that the primary molecular resonances observed at both positive
and negative voltages are significantly sharper for pentacene adsorbed on graphene wrinkles in comparison to pentacene on flat graphene

and on Cu

lower electrical conductance than flat graphene as previously
reported by Xu et al*? This limits the contribution to metal-
induced effects on molecular resonance states resulting in a larger
Coulomb repulsion of the tunneling electrons from Cu. We
believe, the preservation of free-molecular electronic structure on
wrinkles cannot just be a graphene-specific behavior but can be
expected on other related 2-D materials, such as MoS,,>> where
the wrinkles are spatially separated from the supporting metallic
substrates, necessitating future experiments along this direction.

In earlier simulation work the pentacene-copper interface has
been examined in terms of band structure,”® DOS,>’ binding
energies,”® and changing work functions.>>®° For monolayer
pentacene, molecules adopt a planar configuration®' with explicit
mixing of molecular orbitals and metal electronic states.>” Toyoda
et al.>® used vdW-DFT to highlight the strong correlation between
work function and the pentacene-copper separation distance.
HOMO-LUMO studies have shown that first layer molecular
orbitals are strongly affected by metallic d-band orbitals, whereas
second layer molecules that are further from the metal surface
behave as bulk pentacene®? Bilayer pentacene structures give

Published in partnership with FCT NOVA with the support of E-MRS

strong dI/dV peaks, whereas LUMO peaks were undetectable for
monolayer pentacene. It is possible that the graphene wrinkles
begin to simulate bilayer structures by reducing the strength of
the metallic d-band interaction. By contrast, band structure DFT
calculations show that the electronic states of pentacene and
(unsupported) graphene can resonate with each other®® (near the
X point). The electronic coupling between pentacene and
graphene is shown to be four times stronger than that between
the pentacene molecules themselves. The graphene-copper
interface itself is also well studied—the adsorption of graphene
onto copper (and metals generally) causes doping of the
graphene sheet, resulting in work function changes and Fermi
shifts.5*%> Epitaxial growth of pentacene on graphene/copper
results in dominant - interactions between the molecules (in a
flat configuration) and the surface.’® However Lee et al. have
shown that molecules begin to adopt an upright configuration for
CVD grown pentacene at film thicknesses greater than one
molecule, which then become dominated by intermolecular m-m
interactions.” A detailed theoretical and experimental study by
Zhang et al. of pentacene deposited on atomically flat BN confirms

npj 2D Materials and Applications (2018) 8
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the importance of intralayer and interlayer interactions®®; penta-
cene molecules that are further from the surface have lower
interaction strengths and altered charge transport properties, with
negligible influence of the 2D substrate on charge transport
beyond a two-molecule pentacene bilayer.

In summary, we demonstrate that atomic scale wrinkles on
graphene trigger variations in molecular growth modes and more
importantly for device applications, preserve free-molecular
electronic states. Our spectroscopy measurements highlight the
reality that differently decoupled electronic molecules can exist on
metal supported 2-D membranes. The benefit of a wrinkle (which
is often projected as a performance limiter) is made clear, and
further fuels the debate on whether wrinkles on graphene need
be ironed out®® or if in fact the wrinkle geometry and density can
be modulated in a predictable manner®® prior to integration of
graphene electrodes in high-density circuits. Our findings indicate
that it can, and so wrinkles and similar topological features (both
process artefacts and engineered) can potentially serve as
platforms in specific cases where the functionality of designer
molecules needs to be preserved and later exploited. In the
shorter term, the new insights gained on the molecule-wrinkle
interfacial effects merits consideration when benchmarking the
performance of molecular electronic devices based on nanoelec-
trodes fabricated from CVD-grown graphene and emerging 2D
atomic materials.

METHODS

Pentacene was purchased in powder form from Sigma Aldrich (99% purity,
CAS number: 135-48-8) and solublized in benzene, and used throughout
this study without additional purification. Ten microliter of pentacene
solution with a concentration of 10"2M was spray deposited (dual-pass,
Harder and Steenbeck, evolution airbrush) onto a CVD-grown graphene
sample on copper foils (sample was synthesized using protocols given in
ref. >>%9). Immediately following the spray-deposition step the sample was
blow dried using N, gas in a fume cupboard and then fixed on a metal disk
(purchased from Ted Pella, Inc) for AFM or placed within a custom-built
Teflon based liquid-cell sample holder filled with a thin layer of silicone oil
for STM measurements. The silicone oil film protects the organic
architecture from ambient contamination’® and ensures stable STM
imaging’"”? and spectroscopy.”®’* AFM was conducted on a Dimension
V AFM system operated in tapping mode under standard laboratory
conditions with a HI-RES tip (Cr-Au coating) with tip radius of <2nm
purchased from puMasch Co. Ltd. STM was performed in constant-current
mode at room-temperature using a Veeco Scanning Tunnelling Micro-
scope, Nanoscope llla, Multimode (Scanner model: E- Scanner) located in a
noise-free laboratory. A mechanically cut Au wire (0.25 mm, Good Fellow
GmbH) was used as the STM probe. Bias voltage is applied to the sample
and the metal tip held at ground potential. The preamplifer has a current
sensing capability of ~1 pA. For the STS measurements, the Au tip was first
positioned on top of either pentacene chain-like structures or on the
island-type configuration and then the feedback loop was opened at a
fixed height above the molecular region and the voltage is swept from -2 V
to +2V, while the current was being recorded. The feedback loop was re-
initiated in-between recording the spectroscopic data to confirm the
position of the STM tip is located on top of the specific region of interest.
The STS spectra on pentacene presented in this work was recorded using
multiple Au tips prepared using identical protocols to check for
reproducibility. To avoid tip artefacts the Au tip was calibrated by
measuring standard reference differential conductance spectra acquired
over blank Au (111) and graphene.”® Image processing was performed
using Gwyddion 2.39 freeware (http://gwyddion.net).

Data availability

All data related to the manuscript is available on request from the
corresponding author.
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