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Abstract: We examine the spectral structure and many-body dynamics of two and three repulsively
interacting bosons trapped in a one-dimensional double-well, for variable barrier height, inter-particle
interaction strength, and initial conditions. By exact diagonalization of the many-particle Hamiltonian,
we specifically explore the dynamical behavior of the particles launched either at the single-particle
ground state or saddle-point energy, in a time-independent potential. We complement these results
by a characterization of the cross-over from diabatic to quasi-adiabatic evolution under finite-time
switching of the potential barrier, via the associated time evolution of a single particle’s von Neumann
entropy. This is achieved with the help of the multiconfigurational time-dependent Hartree method
for indistinguishable particles (MCTDH-X)—which also allows us to extrapolate our results for
increasing particle numbers.

Keywords: Bosonic systems; ultracold atomic gases; tunneling and Josephson effect; Bose–Einstein
condensates in periodic potentials

1. Introduction

The detailed microscopic understanding of interacting many-particle quantum dynamics in
state-of-the-art experiments with ultracold atoms [1–10] in well-characterized potential landscapes
remains a challenging task for theory: While a large arsenal of advanced numerical techniques has been
developed over the past two decades to efficiently simulate interacting many-particle dynamics [11–15],
all of them must ultimately surrender when confronted with truly complex dynamics, i.e., under
conditions where a generic initial state fully explores, on sufficiently long time scales, an exponentially
large Hilbert space in the number of particles and/or degrees of freedom. By the very meaning
of complexity, even the most efficient numerical methods can only be expected to yield reliable
results when the dynamics can be restricted to finite sub-spaces of the exponentially large Hilbert
spaces—either by reducing the time window over which the evolution is followed, or by choosing
physical situations which a priori confine the many-particle state. This has been long understood in
the light–matter interaction of atoms and molecules [16], as well as in quantum chaos [17], and meets
revived interest given the experimental progress in the control of cold matter [18].

While it is, therefore, clear that the only promising route for an efficient characterization
of large and complex quantum systems can be through effective descriptions—such as offered,
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e.g., by the theory of open quantum systems [19–22], modern semiclassics [23], or random matrix
theory [24,25]—there is an intermediate range of system sizes where efficient numerical methods can
(a) be gauged against each other, to benchmark their quantitative reliability, without any a priori
restriction on the explored portion of Hilbert space, and (b) contribute to gauge effective theories
against (numerically) exact solutions [26–28], at spectral densities where quantum granular effects
induce possibly sizeable deviations [29] from effective theory predictions (which always rely on some
level of coarse graining). In our view, it is this intermediate system sizes where efficient methods of
numerical simulation develop their full potential, since they can inspire and ease the development,
e.g., of powerful statistical methods and paradigms (such as scaling properties [18,26,30])—which then
enable robust predictions in the realm of fully unfolding complexity.

In the present paper, we contribute to this line of research by exploring the spectral and
dynamical properties of a few bosonic particles loaded into a symmetric double-well potential,
with static or switchable barrier. Prima facie, this is a well-known and text-book-like example,
yet with a panoply of experimental realizations, and of paradigmatic relevance as an incarnation of
Josephson dynamics [4,31–47] or as the elementary building block of quantum dynamics in lattice-like
structures [48], and quickly defines a formidable numerical challenge if only one admits excitations
far beyond the immediate vicinity of the ground state energy, and seeks to accurately monitor
the long-term dynamics of two or more particles. We will see how the spectral structure of the
single-particle problem is amended by adding a second, identical particle, and how finite-strength
interactions restructure the many-particle spectrum and eigenstates, throughout the excitation
spectrum up to the vicinity of the potential barrier.

Ultimately, we have two main goals: First, we want to shed light onto the nature of the tunneling
processes of two, repulsively interacting bosons launched either at the ground state or saddle-point
energy. Secondly, we want to study the transition between diabatic and adiabatic switching of the
potential barrier for different particle numbers. Importantly, we will find that tunneling is described by
a second-order two-particle process and not by a direct first-order two-particle process. We underpin
our studies by information from the respective regimes in the spectrum. These scenarios come with very
different challenges for the numerical treatment, because the evaluation of the time evolution generated
by a time-independent ordinary differential equation in case of a static potential significantly differs
from the one described by a time-dependent ordinary differential equation in case of a switchable
barrier. To achieve our above two main goals and as a central aspect of our present contribution, we
employ a variety of different numerical approaches which, by accounting for the complete spectral
structure of the double-well (rather than the lowest-lying band alone), go far beyond widely used
single-band Bose–Hubbard models.

Here and in the following, we use the term “many-body/particle”, albeit the systems we consider
are composed of a relatively small number of particles. Please note that our considerations are
from first principles and start from the many-body Hamiltonian. Moreover, it has been shown
theoretically [17,49,50] and experimentally [1,2] that the physics of interacting few-body systems can
very quickly approach the many-body limit.

The spectral information thus generated allows us to decipher characteristic features of the
many-particle dynamics, for distinct choices of the initial condition, and over a wide range of interaction
strengths, for static as well as for diabatically or (quasi-)adiabatically ramped potential barriers. Finally,
we illustrate, through an analysis of the von Neumann entropy of the (reduced) single-particle density
matrix, how such transition from diabatic to (quasi-) adiabatic switching controls the effectively
explored sub-volume of Hilbert space, and how robust coarse grained features of the resulting “phase
diagram” emerge as the particle number is increased from two to ten. The latter case can only be
treated with the help of the MCTDH-X [28,51,52] method which has been verified against exact [27,28]
and experimental [53] results and is reviewed in Ref. [15]. Here, we push MCTDH-X to its limits in
monitoring long-term dynamics of rather moderate, mesoscopic particle numbers, in the presence of
strong, switching-induced excitations (“quenches”).
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The paper is organized as follows: The theoretical framework, including a brief description
of the numerical methods, is presented in Section 2. Section 3 is devoted to the discussion of the
spectral and eigenstate structure of the problem at hand. First, Section 3.1 discusses how the energy
spectrum depends on both the tunneling barrier height and the inter-particle interaction strength, for
two and three particles. Next, in Section 3.2, we study few-body correlations encoded in the few-body
eigenstates. This prepares our analysis of the dynamics in Section 4. In Section 4.1, we investigate the
dynamics of two particles in a static double-well potential, initially prepared in two different states:
A superposition of low-lying states, and a superposition of excited states with energies close to the
saddle point. Finally, we consider the scenario of a time-dependent potential in Section 4.2: With the
atoms initially prepared in the ground state of a harmonic trap, a central barrier is ramped up, and the
thereby induced dynamics can be tuned from diabatic to (quasi-) adiabatic by appropriate control of
the ramping time. Our results are summarized in Section 5.

2. Hamiltonian and Methods

2.1. Hamiltonian of Trapped Interacting Bosons

The Hamiltonian of N spinless, ultracold atoms with repulsive contact interaction and confined
to a one-dimensional double-well potential reads in atomic units

H =
N

∑
i

(
−1

2
d2

dx2
i
+ V(xi, t)

)
+

λ

2 ∑
i 6=j

δ(xi − xj) , (1)

where

V(xi, t) =
x2

i
2

+ A(t)e−x2
i /2 (2)

allows for a non-trivial time dependence of the potential barrier, through the time dependence of A(t),
xi denotes the position of the ith particle, and the repulsive interaction strength λ > 0 is determined
by the s-wave scattering length and the transverse confinement [54].

The minimum of V(xi, t) is located at x = 0 if A(t) < 1 (single-well), or at x = ±
√

2 ln (A(t))
if A(t) ≥ 1 (double-well). Both static and time-dependent barriers will be considered. In the static
case, the central barrier amplitude is constant, A(t) = Amax, whereas in the time-dependent scenario,
the amplitude is ramped up linearly according to

A(t) = Amax ×
{

t/Tramp, t < Tramp,
1, t ≥ Tramp.

(3)

2.2. Numerical Methods and Observables

The spectral and dynamical properties of the Hamiltonian (1) are numerically investigated by
using three approaches: the Fourier Grid Hamiltonian (FGH), the Bose–Hubbard (BH) representation
of a continuous potential, and the multiconfigurational time-dependent Hartree method for
indistinguishable particles (MCTDH-X); see Appendices A, B and C, respectively.

Each of these is suited for a specific task. We use FGH and BH which, ultimately, rely on different
basis set representations of the Hamiltonian, to infer the spectrum of N ≤ 2 and N = 3 interacting
bosons, by direct diagonalization. FGH is also useful for the investigation of the quenched dynamics
when a harmonic potential with Amax = 0 at t = 0 is suddenly transformed into a static double-well
with fixed barrier Amax = const. at t > 0 (in other words, Tramp → 0 in Equation (3)). For our study of
the case of N ≤ 10 interacting bosons in a time-dependent double-well with Tramp 6= 0, we use the
MCTDH-X method which enables accurate results for the dynamics, but cannot provide the complete
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spectral information as the BH/FGH methods. Since dynamical properties of interacting many-particle
systems emerge, already at rather small particle numbers [17], the combination of all three approaches
can be considered complementary.

FGH and BH yield the N-particle eigenenergies

H|Ψn〉 = ENP
n (Amax, λ)|Ψn〉 , (4)

with |Ψn〉 the N-particle eigenvector with quantum number n. All eigenstates are normalized to unity,
throughout this paper. The quantity

|ψn(x1, x2, . . . , xN)|2 = |〈x1, . . . , xn|Ψn〉|2 (5)

yields the associated probability density to find N bosons located at positions x1, x2, . . . , xN ,
respectively. Visualizations thereof reflect the correlations between the positions of the
particles [37,38,40,41,43,44,53,55,56], which can be assessed, e.g., through their entanglement.
A possible (though certainly non-exhaustive) quantifier of the non-separability of a general
many-particle state |Ψ(t)〉 is given by the von Neumann entropy

S(t) = −Tr
[
ρ1P(t) ln ρ1P(t)

]
(6)

of the reduced single-particle density matrix [37,38,57–59], where ρ1P(x, x′, t) is defined as the trace
over all degrees of freedom of all but one boson of the full density operator, i.e.,

ρ1P(t) = Tr2,...,N [|Ψ(t)〉〈Ψ(t)|] . (7)

In particular, S = 0 if the state is separable, while large values of S are a hallmark of a strongly entangled
many-particle state [60–64]. We note that wide-spread mean-field approaches like the time-dependent
Gross–Pitaevskii equation presuppose a separable many-body state with S = 0; any S 6= 0 thus heralds
the breakdown of such a mean-field description.

To characterize the dynamics of two bosons, we monitor the time evolution of the particles’
probabilities to reside both in the right (RR) or left (LL) well, or of each occupying one well (LR), given
by [55]

P(LL)(t) =
∫ 0

xmin

dx1

∫ 0

xmin

dx2 |ψ(x1, x2; t)|2,

P(RR)(t) =
∫ xmax

0
dx1

∫ xmax

0
dx2 |ψ(x1, x2; t)|2, (8)

P(LR)(t) = 2 ·
∫ 0

xmin

dx1

∫ xmax

0
dx2 |ψ(x1, x2; t)|2,

where we defined the three mutually distinct domains (LL) = (x1 < 0, x2 < 0),
(RR) = (x1 ≥ 0, x2 ≥ 0), and (LR) = (x1 < 0, x2 ≥ 0) ∨ (x1 ≥ 0, x2 < 0). We also introduced
the minimum (xmin) and maximum (xmax) values of the grid in configuration space employed in the
numerical approaches. In addition, we evaluate the time-integrated probability current

J(RR→LR)(t) = 2 ·
∫ t

0
dt′

∫ xmax

0
dx2 Im

[
ψ∗(x1, x2; t′)

∂

∂x1
ψ(x1, x2; t′)

]
x1=0

, (9)

where the factor 2 accounts for the bosonic symmetry. J(RR→LR) is derived [65] from the continuity
equation and measures the probability flux within a time interval t from domain (RR) to domain (LR).
This quantity is particularly important to distinguish first-order pairwise tunneling (RR→ LL) from
second-order pairwise tunneling (RR→ LR→ LL). First-order pairwise tunneling was observed [65],
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e.g., for attractively interacting bosons in a double-well, where J(RR→LR)(t) = 0, ∀t, when the particles
are initially prepared in one well.

3. Structure of Spectrum and Eigenstates

3.1. Few-Body Excitation Spectra

Since the dynamics of the system is ultimately encoded in its spectrum, we first discuss the
parametric evolution of the eigenvalues (4) of N = 1, 2 and 3 bosons with both the central barrier
height Amax and the interaction strength λ.

The single-particle spectrum is obtained by solving the time-independent Schrödinger equation(
−1

2
d2

dx2 +
x2

2
+ Amaxe−x2/2

)
ψn(x) = E1P

n ψn(x). (10)

Figure 1 shows the evolution of the single-particle eigenenergies E1P
n as the central barrier height

Amax is continuously increased from a harmonic trap (Amax = 0) to a deep double-well (Amax = 30).

(a) (b)

Figure 1. Single-particle eigenenergies E1P
n of Equation (10), (a) as a function of the tunneling barrier

height Amax, and (b) for Amax = 30 in the double-well potential (red). The red line in (a) indicates the
central barrier’s height on the energy axis. Even- (blue lines) and odd-parity (black dashed) states
become nearly degenerate as Amax is increased. Employed parameter values for the FGH method
(see Appendix A): xmax = −xmin = 40, Ncut = 330, and NGrid = 2047.

In the harmonic limit, the spectrum exhibits the well-known harmonic oscillator structure
E1P

n (Amax = 0) = n + 1/2. As the eigenenergies dive into the region below the barrier Amax

(indicated by the red diagonal in Figure 1a), the odd and even harmonic oscillator states become
(nearly) degenerate. Sufficiently above Amax, the energies are only weakly perturbed by the central
barrier and we essentially recover the harmonic oscillator energy levels. In the limit Amax → ∞,
the two wells decouple, leading to a fully degenerate harmonic oscillator spectrum.

From the structure of the single-particle spectrum, we can already anticipate that different
dynamical behaviors can be expected for initial conditions with energies chosen below or above Amax,
as will be elaborated upon, subsequently.

We now turn our attention to the spectrum of two particles obtained with the FGH method.
The exact two-body spectrum is calculated by diagonalization of Equation (1) represented in the
single-particle basis, as explained in Appendix A. Figure 2a shows that for Amax = 0, we recover the
well-known spectrum of two non-interacting bosons in a harmonic trap, i.e., E2P

n (Amax = 0) = n + 1,
with n = n1 + n2 and degeneracy g = n/2 + 1 (g = (n + 1)/2) for even (odd) n ≥ 0. Here again,
raising the central barrier gradually introduces a further degeneracy in the spectrum: The first three
lowest-lying states become (nearly) degenerate when increasing Amax. This effect, also discussed in
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Ref. [38], is a direct consequence of the two-fold degeneracy of the single-particle ground state of the
double-well, since all the eigenstates |Ψ0Ψ0〉, |Ψ0Ψ1〉 and |Ψ1Ψ1〉, with

|ΨnΨm〉 ≡
|Ψn〉 ⊗ |Ψm〉+ |Ψm〉 ⊗ |Ψn〉√

2
√

1 + 〈Ψn|Ψm〉
, (11)

acquire the same energy value at large Amax (see Equations (A9) and (A10)). For higher excitations,
an analogous effect is observed: e.g., the energies of the states |Ψ2Ψ0〉, |Ψ2Ψ1〉, |Ψ3Ψ0〉 and |Ψ3Ψ1〉,
respectively given by the sums of single-particle energies, E1P

2 + E1P
0 , E1P

2 + E1P
1 , E1P

3 + E1P
0 , and E1P

3 +

E1P
1 , converge when increasing Amax, since E1P

1 ' E1P
0 and E1P

3 ' E1P
2 . Therefore, the entire spectrum of

two non-interacting bosons, plotted in Figure 2a, can be understood solely in terms of the single-particle
spectrum. The emergence of the sequence of quasi-degenerate states is clearly observed below the
separatrix E2P = 2Amax, plotted in red in Figure 2a.
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Figure 2. Two-particle eigenenergies E2P
n per particle, Equation (4), as a function of the (static) tunneling

barrier height Amax, for interaction strengths (a) λ = 0 and (b) λ = 1. Finite interactions partially
or totally lift the degeneracy of the eigenenergies, depending on the considered quantum number.
The red line indicates the effective potential barrier height—which is twice the barrier height for
a single particle, i.e., 2Amax. Parameter values for the FGH method: xmax = −xmin = 40, Ncut = 330,
and NGrid = 2047.

Turning on the interaction changes the structure of the energy spectrum, as shown in Figure 2b.
The calculation of the energy spectrum in the general case Amax 6= 0 requires a numerical treatment,
whereas an analytical solution exists for the harmonic trap with Amax = 0 and N = 2 [59,66]. The most
striking feature is the opening of an energy gap, clearly observed at large Amax: At the ground-state
level, the three-fold degenerate states for λ = 0 split into a unique ground state which remains
unperturbed by the interaction, plus two (nearly) degenerate excited states which are affected by
the non-vanishing interaction strength λ 6= 0. This behavior was already discussed in Ref. [38] for
a polynomial double-well. Our present results show that this effect is also observed in the excitation
spectrum below the separatrix 2Amax. For instance, the first excited state manifold of the λ = 0 limit
(see Figure 2a, in the range Amax ≥ 10), which is four-fold degenerate, splits (for λ = 1, Figure 2b) into
two (nearly) degenerate states unperturbed by the interaction, plus two (nearly) degenerate states
slightly shifted by the interaction. The presence of these energy gaps in the spectrum will be essential
for our understanding of the many-particle dynamics discussed in the next sections.

Consideration of a deep double-well, e.g., Amax = 30, allows for a better understanding of
interaction-induced spectral features, as shown in Figure 3.

Indeed, for energies E2P
n � 2Amax, one can approximate the two wells by two decoupled

harmonic traps with vanishing tunneling coupling. Flat energy levels correspond to the situation
where the particles are almost completely localized in opposite wells and, consequently, do not interact.
The remaining energy levels represent configurations where both particles occupy the same well.
The spectral lines then approach the next higher-lying manifold at strong interaction, e.g., λ ' 10.
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In the limit of λ→ ∞, one recovers the Tonks-Girardeau (or fermionization) limit where these states
become degenerate [38,43,44] with the second excited state manifold. Please note that by construction,
this limit is out of reach for the single-band (or two-mode) approximation widely used in the literature.
Figure 3 shows that the trend towards degeneracy between even and odd states with increasing λ

(fermionization process) is not restricted to the first spectral manifolds, but clearly manifests itself in
the entire spectral range E2P

n � 2Amax.

0 2 4 6 8 10

6

7

8

9

10

11

λ

E
n2
P
/2

Figure 3. Two-particle eigenenergies E2P
n per particle, Equation (4), as a function of the inter-particle

interaction strength λ, in a deep double-well with Amax = 30. Flat energies (continuous lines)
correspond to the situation where the particles are almost completely localized in opposite wells and
do not interact. Increasing λ tends to induce a degeneracy between even and odd states (fermionization
process). FGH parameters: xmax = −xmin = 40, Ncut = 330, and NGrid = 2047.

The situation is (again) very different for three interacting particles [42]: Figure 4 shows the
three-particle energy levels, for Amax = 30, as a function of the interaction strength U. All states
are sensitive to the interaction and we observe two manifolds of states—states which exhibit
interactions of two particles (full lines), and states which exhibit interactions of three particles (dashed
lines). In contrast to the two-particle case, the ground state remains two-fold quasi-degenerate
at large λ. Please note that the present three-particle results were obtained with the BH method
(see Appendix B), since the Hamiltonian matrix is sparse in the BH representation, and therefore
allows for computationally more efficient handling than the FGH method, for which the eigenenergies
converge only slowly as a function of Ncut [56]. Furthermore, in the BH method U ≡ λ ∑i |w0i|4,
cf. Equation (A21), substitutes for λ used in the FGH calculations.
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Figure 4. Three-particle eigenenergies E3P
n per particle, Equation (4), as a function of the inter-particle

interaction strength U ≡ λ ∑i |w0i|4 (see Appendix B), with Amax = 30. Dashed (continuous) lines
represent eigenstates with three (two) particles on the same well, and the red horizontal line indicates
the Tonks-Girardeau (TG) limit for the ground state. Parameters employed for the BH method
(see App. B): xmax = −xmin = 10, and L = 231.

3.2. Eigenstate Structure and Few-Body Correlations

Let us now inspect the associated many-particle eigenstates and the spatial correlations encoded
into them, again as a function of both the central barrier height Amax and the interaction strength
λ. The probability density, Equation (5), provides useful intuition. For two non-interacting bosons,
the probability densities |ψn(x1, x2)|2 are plotted in Figure 5, for energetically low- and high-lying
eigenstates, as well as for different choices of the barrier height Amax.

At low energies (n = 0, 1, 2), and with increasing barrier height Amax → ∞, |ψn(x1 = 0, x2)|2 → 0
and |ψn(x1, x2 = 0)|2 → 0. Consequently, the maxima of the probability density symmetrically
split into the two or four corners of configuration space [37,38,67]. For n = 1, the nodal line x1 =

−x2 originates from the superposition of even and odd (nearly) degenerate single-particle states.
Please note that the associated eigenenergies are quasi-degenerate at Amax = 30: E2P

n=0,1,2 ' 11.34.
At higher excitations, where the spectrum must progressively approach that of a harmonic oscillator
(recall Figure 1b), the eigenstates exhibit a metamorphosis, sometimes even displaying a maximum
at the saddle point, see, e.g., n = 76, Amax = 10, and thus reminiscent of barrier states of the
single-particle problem.

Interactions affect the spatial correlations in many ways, as shown in Figure 6 for λ = 1:
Comparison to Figure 5 shows that for n = 0 − 3, the interaction slightly stretches the maxima
of the eigenstates along the anti-diagonal x2 = −x1 [38], and in some cases suppresses the amplitudes
for double-occupancy of either site or that of delocalization over both sites. In a deep double-well,
e.g., Amax = 30, the three-fold (nearly) degenerate non-interacting eigenstates n = 0− 2 of Figure 5
split into a unique ground state and two (nearly) degenerate eigenstates n = 1, 2. At higher excitations
(n = 76), we observe product states in the relative ∝ x1 − x2 and center-of-mass ∝ x1 + x2 coordinates
(see Figure 6 for Amax = 0), and, therefore, also for these states correlated tunneling is expected,
as opposed to the independent tunneling imprinted into the eigenstates in Figure 5. The impact of
interactions on states in the vicinity of the separatrix is mainly highlighted by a suppression of the
density maximum around x1 = x2 = 0, see the result for Amax = 10, n = 76 in Figure 6.
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Figure 5. Probability densities |ψn(x1, x2)|2 of the nth eigenstates of two non-interacting particles
(λ = 0), in configuration space (x1, x2), with variable barrier height from the single (Amax = 0) to the
double-well (Amax 6= 0) scenario, cf. Equation (2). The densities are plotted on a linear scale which
interpolates between vanishing probability (dark blue) and the maximum probability density |ψ|2max of
the given eigenstate. FGH parameters: xmax = −xmin = 40, Ncut = 330, and NGrid = 2047.
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Figure 6. Probability densities |ψn(x1, x2)|2 of the nth eigenstates of two interacting particles (λ = 1), in
configuration space (x1, x2), with variable barrier height from the single (Amax = 0) to the double-well
(Amax 6= 0) scenario, cf. Equation (2). Color coding as in Figure 5. FGH parameters: xmax = −xmin =

40, Ncut = 330, and NGrid = 2047.

Next, let us have a closer look at the three-body probability density |ψn(x1, x2, x3)|2 of the ground
state (n = 0) in a deep double-well, Amax = 30. Figure 7a,d show the three-body probability density
(5) for non-interacting, U = 0, and interacting, U = 1, particles, respectively (see Equation (A21)).
Since all particles occupy the same single-particle orbital |ψ0〉, the non-interacting ground state covers
all eight octants of configuration space in Figure 7a.



Entropy 2020, 22, 382 11 of 29

0.02

0.04

0.06

0.08

-5. 0. 5.
-5.

0.

5. (b)

0

0.05

0.10

0.15

●●●●●●●●●●●●●●●●●●●●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5
(c)

0.02

0.04

0.06

0.08

-5. 0. 5.
-5.

0.

5. (e)

0

0.05

0.10

0.15

0.20

●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5
(f)

Figure 7. Three-body probability density |ψ0(x1, x2, x3)|2 (a,d), diagonal of the reduced two-body
probability density matrix |ψ0(x1, x2)|2 (b,e), and diagonal of the reduced one-body probability density
matrix |ψ0(x1)|2 (c,f) of the ground state of three (a–c) non-interacting (U = 0) and (d–f) interacting
(U = 1) particles in the double-well (Amax = 30), cf. Equation (2). Please note that in (d), |ψ0|2 ≈ 0 if
all bosons are in the same well (x1, x2, x3 > 0 and x1, x2, x3 < 0), due to the interactions. The red line in
(c) is the profile of |ψ0(x1)|2 for non-interacting particles. Parameters employed for the BH method:
xmax = −xmin = 10, and L = 231.

Like in the two boson case, the three-body wave function develops a nodal line along the main
diagonal x1 = x2 = x3 for non-vanishing U > 0. At strong interaction, the maxima of the wave
function are additionally shifted towards the corners of configuration space, along the diagonals
x1 = x2 = −x3, x1 = −x2 = x3 and −x1 = x2 = x3. Using a two-mode description, the ground state
for sufficiently strong interactions is given by two particles at the same site and one on the opposite
site. Therefore, the ground state, illustrated in Figure 7d, has no density in the areas associated with
three particles at the same site (x1, x2, x3 > 0 and x1, x2, x3 < 0). Moreover, the two-mode description
in the Fock basis |nL, nR〉 helps to understand the structure of the doubly degenerate ground state,
since both states

|ψ1〉 = |2, 1〉,
|ψ2〉 = |1, 2〉, (12)

give rise to the same energy. The degenerate first and second excited states are then given by

|ψ3〉 = |3, 0〉,
|ψ4〉 = |0, 3〉, (13)

which are energetically even more sensitive to the interaction than the ground state doublet. Therefore,
the four-fold degenerate ground state in the non-interacting case evolves into two doublets of states
which further separate as a function of the interaction strength, as illustrated in the spectrum in
Figure 4.

Finally, we inspect how the correlation information imprinted into the three-particle state is
reduced when subsequently integrating out degrees of freedom. Averaging over one degree of freedom
leads to the diagonal of the reduced two-body density matrix |ψ0(x1, x2)|2 =

∫
dx3|ψ0(x1, x2, x3)|2,

plotted for U = 0 and for U = 1 in Figure 7b,e, respectively. The impact of interaction becomes
clearly visible by the reduction of the density along the diagonal x1 = x2, tantamount of reduced
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correlations—as already observed in Figures 5 and 6. Please note that in some contrast to the density
of the two-particle state n = 0, for λ = 1 and Amax = 30 in Figure 6, the probability to detect two
particles in the same well is not fully suppressed at interaction strength U = 1.

Averaging over the second degree of freedom leads to the diagonal of the reduced one-body
density matrices, |ψ0(x1)|2 =

∫
dx2dx3|ψ0(x1, x2, x3)|2, displayed in Figure 7c,f. The profile of

|ψ0(x1)|2 for U = 0, cf. Figure 7c, is exactly the same as the one obtained for the non-interacting
two-particle case (red line), as expected. Only a small difference between the one-body densities
|ψ0(x1)|2 associated with interacting and non-interacting (red line) bosons, respectively, is detectable,
cf. Figure 7f (please note that the two-mode approximation (i.e., the double-well Bose–Hubbard
model) is not sensitive to changes of the intra-well correlations—which here manifest themselves in
the changed one-body density profile). This analysis therefore indicates that even if the interaction
strongly affects the correlations, this information is not reflected by the one-body density profile.

4. Dynamics in the Double-Well

4.1. Static Potential: Two-Body Excited State Dynamics

Given the above phenomenology of spectra and eigenstates, we now explore how the tunneling
dynamics of two interacting particles in a static double-well depends on the choice of the initial state.
To this end, we consider a system initially prepared in a superposition of excited states, such that both
particles are localized on the right-hand side of the double-well, at fixed barrier height Amax = 10.
This localized state can be constructed by coherent superposition of (non-interacting) adjacent, even
and odd one-body eigenstates:

|Ψloc
n (t = 0)〉 = 1

2
(
|Ψ1P

2n+1〉+ |Ψ1P
2n 〉
)
⊗
(
|Ψ1P

2n+1〉+ |Ψ1P
2n 〉
)

. (14)

The dynamics is deduced from a spectral decomposition of the many-body Hamiltonian (1) with
the FGH method, and we compare the dynamics seeded by a low-lying initial state |Ψloc

n=0(t = 0)〉 to
that of an initial state |Ψloc

n=3(t = 0)〉 with energy close to the potential’s saddle point, i.e., E2P ' 20,
see Figure 1a.

In the non-interacting case, the wave function always remains separable and, therefore, one can
straightforwardly express the probabilities (8) in terms of the single-particle density, which yields

P(LL)(t) = P2
L(t) =

[∫ 0

xmin

dx |ψ(x; t)|2
]2

,

P(LR)(t) = 2 · PL(t)PR(t), (15)

P(RR)(t) = P2
R(t) =

[∫ xmax

0
dx |ψ(x; t)|2

]2
.

Applying a simplified three-level model for n = 0 [65], Equation (15) can be rewritten as

P(LL)(t) = sin4
(

∆
2

t
)

,

P(LR)(t) =
1
2

sin2 (∆t) , (16)

P(RR)(t) = cos4
(

∆
2

t
)

.

Due to the equidistance between the low-lying energies E2P
2 , E2P

1 , and E2P
0 for λ = 0, the uncorrelated

tunneling dynamics is governed by a single Rabi frequency ∆ = E2P
2 − E2P

1 = E2P
1 − E2P

0 [43,44]. In
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particular, for Amax = 10, P(LL)(t) and P(RR)(t) oscillate with the period T(λ = 0) = 2π/∆ ' 12 · 103.
In the non-interacting case, tunneling is thus a first-order single-particle process.

A finite interaction strength perturbs the equidistance between the low-lying energies and,
therefore, two distinct periods emerge from the dynamics: T21 = 2π/(E2P

2 − E2P
1 ) and T10 =

2π/(E2P
1 − E2P

0 ), in qualitative agreement with experimental observations [31].
The evolution of these periods with λ, plotted in Figure 8, shows a rapid increase (decrease)

of T21 (T10) for weak interactions λ < 0.5, and a monotonous decrease of T21 for λ > 0.5, while T10

saturates at T10 ' 3 for λ → ∞. Please note that for λ = 0.5, the Josephson oscillation period T21 ∼
1750 · T(λ = 0) is much larger than the one for non-interacting particles—but finite. This corresponds
to the self-trapping regime [4]. Interestingly, the Josephson oscillation period T21 converges to the
non-interacting period, T21 ∼ T(λ = 0), in the Tonks-Girardeau limit λ→ ∞. This effect agrees with
the fermionized pair-state dynamics discussed in Refs. [43,44].

0.001 0.010 0.100 1 10 100

101

102

103

104

105

106

107

λ

T10

T21

T (λ=0)

Figure 8. Characteristic periods T21 and T10 of the two-particle tunneling dynamics as displayed in
Figure 9, as a function of the interaction strength λ, for a double-well potential barrier height Amax = 10,
on a double-logarithmic scale. The horizontal, black, dashed line indicates the (degenerate, see main
text) period of the non-interacting case T(λ = 0) ' 12 · 103.

In the two-mode approximation (i.e., the double-well Bose–Hubbard model) for the present
scenario, the dynamics is fully described by the amplitudes of the Fock basis states |nL, nR〉 ∈
{|2, 0〉, |1, 1〉, |0, 2〉}, with degenerate |2, 0〉 and |0, 2〉. Two correlated two-particle tunneling processes
are then possible in this simplified picture: a first-order two-particle tunneling process which
corresponds to the direct tunneling of both bosons along the diagonal x1 = x2 (i.e., the transition
|2, 0〉 → |0, 2〉), or a second-order two-particle process (i.e., the transition |2, 0〉 → |1, 1〉 → |0, 2〉). We
now elucidate the actual nature of the tunneling process for weak interactions.

Starting in the initial state |Ψloc
n=0(t = 0)〉 as defined by (14), with λ = 0.005, the dynamics clearly

exhibits the Josephson oscillation period T21 ' 65 · 103, garnished by a small amplitude beat frequency
associated with T10 ' 2 · 103. These oscillations are observed in the time evolution of the detection
probabilities (8) in Figure 9a, with the Josephson oscillation period T21 ' 5.5 · T(λ = 0) strongly
enhanced with respect to the non-interacting value T(λ = 0). This is in good qualitative agreement
with experimental observation [31]. One also encounters a strongly reduced probability to observe
the bosons in opposite wells, signaled by max(P(LR)) < 0.1 in Figure 9a. The reduction of max(P(LR)),
arising from the interaction between the particles, suggests a direct tunneling along the diagonal
x1 = x2, i.e., a first-order tunneling process. Such a reduction, which is a corollary of P2(t) ≡∫

x1·x2≥0 dx1dx2 |ψ(x1, x2; t)|2 = P(LL)(t) + P(RR)(t) = 1− P(LR)(t) / 1, was previously discussed in
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Refs. [43,44]. However, its interpretation as evidence of first-order tunneling is in contradiction with
the time dependence of the integrated probability current J(RR→LR)(t) also shown in Figure 9a, which
clearly indicates a transport across the domain (LR). Indeed, J(RR→LR)(t) records all probability which
passes (LR) and excludes the tunneling along the diagonal x1 = x2. This quantity thus allows us to
discriminate sharply the two types of two-particle tunneling. By virtue of Figure 9a, J(RR→LR)(t) ∼
P(LL)(t) implies that almost all probability that oscillates between regions (LL) and (RR) passes region
(LR). This confirms a second-order rather than a direct first-order two-particle tunneling process from
region (LL) to (RR).
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Figure 9. (a) Detection probabilities, Equation (8), and time-integrated probability current,
Equation (9), as a function of time, for the two-particle initial state |ψloc

n=0(t = 0)〉, Equation (14),
and a weak interaction strength λ = 0.005. (b) Expansion coefficients of the initial state in
the interacting two-body eigenbasis, as a function of the eigenenergy E2P

n , for interactions λ =

0 (circles), 0.001 (squares), 0.005 (diamonds) and 1 (triangles). The inset zooms onto the dominant
expansion coefficients. FGH parameters: xmax = −xmin = 40, Ncut = 330, and NGrid = 2047.

An explanation of the underlying mechanism follows from the expansion coefficients of
|Ψloc

n=0(t = 0)〉 in the interacting two-particle basis. The inset in Figure 9b shows that for non-interacting
particles, only three coefficients—associated with equidistant energies—are non-zero, giving rise to
the single frequency ∆ = E2P

2 − E2P
1 = E2P

1 − E2P
0 oscillations described above. Turning on a weak

interaction (e.g., λ ≤ 0.005, in Figure 9a), the initial state’s overlap with the ground state decreases,
while at the same time, the coefficients of the first two excited states pick up comparable weights
(squares and diamonds in the inset). The mechanism behind the observed tunneling process is
straightforward: in the previous Section, we showed that the first two excited states stick together
to form a doublet with an energy which increases with λ, while the energy of the ground state—one
particle localized on each well—does not depend on the interaction, cf. Figure 3. Therefore, the ground
state corresponding to a balanced population in region (LR), see Figure 6, becomes off-resonant.
Thus, if a boson tunnels from the right- to the left-hand side, it can populate the ground state only for
very short times. The associated timescale is determined by the energy gap between the ground state
and the degenerate excited states’ energy. Subsequently, the boson tunnels either back to the right
well, or the other boson tunnels from the right to the left well, to re-establish energy conservation.
It follows from this latter argument that the involved frequencies can be inferred from a three-level
model [65]. Increasing further the interaction, the excited states turn resonant with the next higher-lying
band (recall Figures 2b and 3), such that additional transitions kick in, and the tunneling dynamics
exhibits more frequencies, with no simple representation in the above three-level model. In terms
of the expansion coefficients, this boils down to an increasing number of contributing eigenstates as
illustrated, for λ = 1, by the triangles in Figure 9b.

Considering now the non-interacting, excited initial state |ψloc
n=3(t = 0)〉 (see Equation (14)) with

energy close to the saddle point, i.e., E2P ' 20, the uncorrelated tunneling dynamics (not shown) is
that of a separable wave function with a single Rabi frequency ∆ = E2P

59 − E2P
52 = E2P

52 − E2P
51 , and period

T(λ = 0) = 2π/∆ ' 19.5. This monochromaticity again is a consequence of the equidistant level
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spacing of the high-lying energies E2P
59 , E2P

52 , and E2P
51 , for λ = 0 (see circles inset Figure 10b). Please

note that the Rabi period T ' 19.5 is much smaller than the one observed for the initial condition
|ψloc

n=0(t = 0)〉, for which T ' 12 · 103, since E2P
52 − E2P

51 > E2P
1 − E2P

0 , and the detection probabilities,
Equation (8), oscillate with reduced amplitude (smaller than 1), due to a less pronounced localization
of |ψloc

n=3(t = 0)〉 in either one of the individual wells.
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Figure 10. (a) Detection probabilities (8), and time-integrated probability current (9), as a function
of time, with initial two-particle state |Ψloc

n=3(t = 0)〉, Equation (14), and interaction strength λ = 0.1.
The vertical, dashed black lines indicate the period T(λ = 0) ' 19.5 of the non-interacting case.
(b) Expansion coefficients of the initial state in the interacting two-body eigenbasis, as a function of the
eigenenergy E2P

n , for interaction strengths λ = 0 (circles), 0.1 (diamonds), and 1 (triangles). The inset
zooms onto the dominant expansion coefficients. FGH parameters: xmax = −xmin = 40, Ncut = 330,
and NGrid = 2047.

How do interactions affect the evolution of the initial state |Ψloc
n=3(t = 0)〉? As expected from our

above spectral analysis, much stronger interactions than λ = 0.005 must be considered to induce visible
effects in the dynamics, since the impact of interactions is comparable for all eigenstates (cf. Figure 6, for
Amax = 30 and n = 76) which exhibit a large overlap with the initial state. Figure 10a shows the time
evolution of the detection probabilities (8) for λ = 0.1. The oscillation period seeded by |Ψloc

n=3(t = 0)〉
appears to be much less sensitive to interactions than for |Ψloc

n=0(t = 0)〉 (recall Figure 9): the oscillation
periods of P(LL)(t) and P(RR)(t) almost coincide with the non-interacting period T(λ = 0) ' 19.5
indicated by vertical dashed lines. Nevertheless, a small shift is visible after seven periods around
t ' 136.5. This small shift can be understood by inspection of the expansion coefficients of the initial
state in the interacting two-body eigenbasis, Figure 10b. In contrast to λ = 0, where only three energy
levels contribute to the dynamics (circles, inset Figure 10b), an interaction λ = 0.1 redistributes the
amplitudes over four dominant states with a weight larger than 5% (squares, inset Figure 10b). The
interactions slightly modify the energy gaps, leading to a small modification of the Josephson period,
and give finite weight to one additional eigenstate, leading to a modulation of the plotted observables
with period T ' 394. This additional modulation of the signal must not be confused with the damping
of density oscillations as observed for large particle numbers in bosonic Josephson junctions [40,68].
As indicated by the time-integrated probability current which roughly follows P(LL)(t) in Figure 10a,
we again witness a second-order tunneling across region (LR), instead of direct first-order tunneling
along the diagonal x1 = x2. When further increasing the interaction, see, e.g., the diamonds for λ = 1
in Figure 10b, significantly more states contribute to the time evolution (not shown). The inter-particle
interaction enforces mixing of the dynamics in the reduced single-particle subspace, and, accordingly,
increases the single-particle entropy.

Before the investigation of the time-dependent double-well, we stress here that improved
two-mode models for modeling the dynamics of interacting ultracold bosons confined in double-well
potentials [69,70] are not sufficient to capture the dynamics as seeded by highly excited initial states.
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Furthermore, the effective Hamiltonians in [69,70] contain strongly initial-state-dependent parameters
and thus a comprehensive comparison of different initial states is considerably complicated.

4.2. Time-Dependent Double-Well Potential: From Few- to Many-Body Dynamics

We have seen in the previous sections how the barrier height affects the impact of interactions
on the many-particle dynamics. We now generalize this analysis by considering a time-dependent
switching of the barrier according to Equations (2) and (3), with Amax = 30. Before this quench,
the bosons are prepared in the interacting many-particle ground state of a harmonic trap. Our purpose
is here to examine how the reduced one-body density matrix evolves for (quasi)-adiabatic vs.
diabatic switching. Extrapolation to larger particle numbers using the MCTDH-X method relates
our observations to previous studies of the splitting of a BEC by a laser sheet [34,39,71]. Please note
that while quenches can be efficiently simulated with the help of the FGH method, we employ the
MCTDH-X method (see Appendix C) for finite switching times, to deal with the time-dependent
Hamiltonian (1).

We start with the time evolution of the many-body wave function when the tunneling barrier
is suddenly quenched from Amax = 0 to 30 (i.e., Tramp → 0) [35,72,73]. Figure 11a–d shows the
behavior of the two-particle density for λ = 1, during the initial stage of the quench-induced dynamics.
The initial wave packet is split along the diagonal x1 = x2, and spreads towards the outer edges of the
double-well, until its reflection after half a period t ' 1.9. Since all the injected energy, i.e., Amax = 30,
is suddenly transferred to the two bosons, the turning point xturn ∼ ± 7.75 in Figure 11c, where the
reflection takes place, corresponds to V(xturn) ' Amax = 30 (see Figure 1b). We observe (not shown)
that the higher the tunneling barrier Amax, the longer the oscillation period. On its way back, the wave
packet broadens more and more due to reflections at the central barrier. Finally, after one period t ' 3.6,
Figure 11d, a large fraction is again located in the vicinity of the saddle point, which, subsequently,
splits once more.
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Figure 11. Time evolution of the two-body density |ψ(x1, x2; t)|2, launched in the initial two-particle
ground state of a harmonic trap, with interaction strength λ = 1, for (a–d) a diabatically switched
central barrier with amplitude Amax = 30 (Tramp → 0, with FGH parameters xmax = −xmin = 40,
Ncut = 330, and NGrid = 2047), and (e–h) (quasi-) adiabatic switching to Amax = 30 (Tramp = 30, with
MCTDH-X parameters xmax = −xmin = 12, Nx = 512, and M = 20).

In contrast, for a long ramping time Tramp = 30, see Figure 11e–h, the wave function has enough
time to adapt to the new boundary conditions, such that it rather smoothly follows the minima of
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the dynamically created double-well potential. The dynamics are still garnished, for this long but
finite ramping time, by excitations of the first band, as identifiable by additional nodal structures in
Figure 11g,h.

Comparison of the nodal structures of the two-particle densities observed in Figure 11 for Tramp =

0 and for Tramp = 30, respectively, suggests that less energy is absorbed by the center-of-mass degree
of freedom in the latter case (as expressed by considerably fewer nodal lines, indicative of smaller
momenta). To corroborate this conjecture (which is based on evidence exclusively gathered from short
time dynamics), we plot the two-particle energy expectation value

E2P(Tramp) = 〈Ψ(t0)|H2P(Tramp)|Ψ(t0)〉 , (17)

at t0 = 200� Tramp, for variable Tramp ∈ [0, 30], in Figure 12. We observe a quick initial drop of the
energy followed by a long tail approaching smoothly the energy of the ground state, for Amax = 30 and
λ = 1, i.e., E2P

0 ' 11.34. The inset zooms into the range Tramp ∈ [7.5, 30.5], where the horizontal dashed
lines indicate the eigenenergies of the two-particle system, with Amax = 30 and λ = 1. The evolution of
E2P(t0) implies that for Tramp ≥ 19, only transitions between the ground state and the first degenerate
(recall Figure 6) excited states occur. Thus, indeed, (quasi-)adiabatic switching does perform essentially
no work on the many-particle system.

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ● ● ● ● ● ● ●

10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0
●●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ● ● ● ● ● ● ● ● ●

●

●
●

●
● ● ●

0 5 10 15 20 25 30
0

10

20

30

Figure 12. Two-body energy expectation, Equation (17), versus ramping time, after a fixed evolution
time t0 = 200, for Amax = 30 and λ = 1. The inset zooms into the range Tramp ≥ 8, where the
horizontal dashed lines indicate the low-lying eigenenergies of Equation (1), computed by FGH. FGH
parameters: xmax = −xmin = 40, Ncut = 330, and NGrid = 2047; MCTDH-X parameters employed for
the time-propagation: xmax = −xmin = 12, Nx = 512, and M = 16.

The static double-well’s entropy of the reduced single-particle density matrix increases from zero
at λ = 0 and saturates at ln 2 [37,38,56] with our definition (6) for λ → ∞, ∀Amax. In our present,
dynamical scenario—where the harmonic trap is split into a double-well during a time Tramp—we
also expect the entropy to increase with the interaction. Figure 13 shows the time evolution of the
entropy for two ramping times (red/blue) and for two values of the interaction strength, (a) λ = 1 and
(b) λ = 0.1.

For short ramping time, Tramp = 0.001 (red lines), the entropy increases and saturates at ≈ 2.51
which is well below the maximal value Smax = log(M) ≈ 2.77 and which we verified with respect to
the time evolution for Tramp = 0 using the spectral decomposition based on our FGH computations
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from Section 3. In agreement with the asymptotic behavior of the energy expectation value observed
in Figure 12, the entropy oscillates with a single frequency for large ramping time, e.g., Tramp = 30
(blue lines in Figure 13). The stronger the interaction, the larger the frequency as well as the offset of
the minima of the entropy oscillations.

Monitoring the time evolution of the entropy over a broad interval of Tramp allows us to map out
the different dynamical regimes for two bosons with λ = 1 and λ = 0.1, respectively, see Figure 14a,d.
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Figure 13. Von Neumann entropy (6) of the interacting two-particle state launched in the harmonic
oscillator (interacting) two-particle ground state, as a function of time, for short and long ramping times,
Tramp = 0.001 (red) and Tramp = 30 (blue), and strong (λ = 1, (a)) and weak (λ = 0.1, (b)) interaction,
respectively. For small Tramp, the entropy increases and finally saturates, whereas it oscillates for long
ramping times. MCTDH-X parameters: xmax = −xmin = 12, Nx = 512, and M = 16.
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Figure 14. Time evolution of the von Neumann entropy S(Tramp, t), Equation (6), as a function of the
ramping time Tramp, for a final barrier height Amax = 30, increasing particle number N = 2, 3, 10 (from
left to right), and interaction strengths λ = 1 (a–c) and λ = 0.1 (d–f). The red line indicates the full
switching duration t = Tramp for the ramp to reach its maximum (Parameter values employed in the
MCTDH-X calculation: xmax = −xmin = 12, Nx = 512, M = 8).

In full agreement with what we observed above for the dependence of the energy expectation
value on Tramp, the transition from diabatic to (quasi-)adiabatic dynamics is also here the primary
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feature: For short ramping times, the entropy rapidly saturates at its equilibrium value, whereas, for
a sufficiently slow ramp, an oscillation emerges, with a single, well-defined frequency (and decreasing
amplitude, for increasing Tramp). A discrete Fourier transform of the signal for Tramp ≈ 19− 30 shows
that this frequency is determined by the energy gap (see Section 3.1) between the ground and first
excited state,

ν(λ) =
E2P

1 (λ)− E2P
0

π
. (18)

Indeed, only two eigenstates of the reduced single-particle density matrix—with opposite
parity and densities which closely resemble the typical structure of the double-well ground state
doublet [56]—contribute to the dynamics in this oscillating region (not shown). For intermediate
ramping times (Tramp ≈ 10− 19), the structures observed in Figure 14a,d still express the
switching-induced, coherent coupling of more than just two interacting eigenstates, because in this
regime the dynamics are not yet (quasi-) adiabatic (in agreement with our discussion of Figure 12).

Remarkably, although the detailed spectral structures are rather different for two and three
particles (see Figures 3 and 4), the ramping-induced time dependence of the von Neumann entropy is
qualitatively similar for N = 2, 3, and even N = 10 (where we cannot access the spectral structure, with
our presently available numerical resources) see Figure 14a–c, for λ = 1, and Figure 14d–f, for λ = 0.1.
We attribute this feature to the coarse-graining effect of a diabatic switch, where only the effective
density of states must be gauged against the spectral width of the time-dependent perturbation.
Closer inspection suggests that efficient excitation is achieved for slightly longer switching times
with increasing particle number, which is consistent with the increase of the density of states with
N. The frequency ν ∼ ENP

1 − ENP
0 of the entropy oscillations slowly decreases with the number of

particles, since the energy gap ∆E = ENP
1 − ENP

0 between the first excited state and the ground state
decreases with N, i.e., ∆E(N = 2) > ∆E(N = 10). Also note that the oscillating regime of Figure 14c,f
corresponds to the two-fold fragmented BEC discussed in Refs. [34,39,40]. Similar results are observed
for different barrier heights (not shown) [56].

Let us conclude this section with a remark on the convergence of the MCTDH-X results reported
in Figure 14c,f: For moderate and large Tramp & 7, only two orbitals of the employed M = 8 orbitals
have a significant population and the entropy S remains significantly smaller than the maximal value
Smax = log(M). From this fact it can be inferred that the wave function is accurately described
in these MCTDH-X computations at Tramp & 7. However, for small ramping times (Tramp . 7) all
M = 8 employed orbitals in the computation were populated. Consequently, the entropy reaches
its maximum Smax. This maximal entropy for small Tramp implies that the Hilbert space provided
by MCTDH-X is not large enough to host the complete dynamics of the many-body wave functions
and more orbitals (M > 8) would therefore be necessary to achieve convergence. Based on the FGH
results for sudden switches of the potential barrier, to cover the subspace of the Hilbert space more
than M = 16 (corresponding to a maximal entropy of Smax ≈ 2.77) orbitals are necessary, which
exceeds the typically employed number of orbitals (M ∈ {12 . . . 16}) for N ≤ 10 bosons reported in
the literature [74,75]. While the quantitative behavior of the entropy S(Tramp, t) at small Tramp . 7 in
Figure 14c,f therefore cannot be considered fully converged, the observed behavior is qualitatively
equivalent to that resulting for smaller particle numbers, where convergence of MCTDH-X could be
achieved with a smaller number M = 2, 4, 6 of orbitals, and is also consistent with our FGH-based
analysis for N = 2 particles (see Figure 12). This suggests that the results reported in Figure 14c,f
correctly indicate the qualitative trend of the evolution also for short ramping times.

5. Conclusions

We analyzed the spectral structures and the dynamics of a few interacting bosons in
a one-dimensional double-well potential, for both a static and a time-dependent potential barrier,
beyond the two-mode approximation. To this end, we used three complementary numerical methods.
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The Fourier Grid Hamiltonian method was employed to extract the full spectral information for two
interacting bosons, whereas a Bose–Hubbard representation of the continuous double-well potential
was found to be more efficient to describe the spectral structure of the three-particle case. Furthermore,
we used the MCTDH-X method to simulate the dynamical evolution of N = 2, 3, and 10 interacting
bosons in a potential with time-dependent barrier strength.

Our spectral analysis highlights the dependence of the energy spectrum on the interaction
strength, on the one hand, and on the potential barrier height, on the other. Ramping up a barrier
in the center of an initially harmonic potential introduces a metamorphosis of state space from
a simple, highly degenerate harmonic oscillator progression, into a sequence of states which exhibit
the characteristic degeneracies associated with tunneling between symmetric wells, below the barrier
energy, and a harmonic-like spectrum sufficiently high above the barrier, separated by a range
around the barrier energy which mediates between both classes. Interactions lift many of the
energetic degeneracies and eventually induce mixing of energetic manifolds which otherwise remain
well-separated.

While for two (on-site interacting) particles distributed over two (deep) wells eigenstates exist
which remain unaltered by finite interactions, this is no longer true for three particles in the same
potential, since at least two particles then must interact: two manifolds of states emerge corresponding
to states where two or three particles are interacting. We supplemented our spectral analysis by
inspecting many-particle probability densities in configuration space, which directly exhibit the
spatial correlations inscribed into the many-body tunneling dynamics, for both energetically low- and
high-lying states. For three particles, we visualized the loss of information about correlations when
tracing from the three-body density to the two-body, and, eventually, to the one-body density.

We used that spectral information to decipher the tunneling dynamics of two interacting particles
in a static double-well. In particular, we compared and characterized Josephson oscillations of two
interacting bosons prepared in a superposition of excited states with energies either well below or close
to the potential’s saddle point. Inspection of the expansion coefficients of the evolved two-particle
state in the interacting two-particle basis provided evidence that a simple three-level description of the
dynamics fails at sufficiently strong interactions. The Josephson period at energies close to the saddle
point is much smaller and robust with respect to the interaction. In agreement with observations in
Ref. [31], we confirm a second-order pairwise tunneling process.

Finally, we investigated the spreading behavior of the many-particle state, when initially prepared
in the many-particle harmonic oscillator ground state, under diabatic vs. (quasi-) adiabatic switching
of a central barrier—transforming the potential into a double-well. Diabatic switching leads to efficient
energy transfer through the population of many many-particle excited states, as quantified by the
time evolution of the von Neumann entropy of the reduced single-particle density matrix, while
a (quasi-) adiabatic ramp only populates weakly excited states. This phenomenology emerges already
for two interacting particles and—due to the increasing spectral density—gets more pronounced for
ten particles, the largest particle number here considered.
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Appendix A. Fourier Grid Hamiltonian Method

The FGH method [76,77] is a special case of a discrete variable representation where the
eigenfunctions of the single-particle Hamiltonian are computed directly as the amplitudes of the wave
function on the grid points. The results of the FGH method—the single-particle eigenenergies and
eigenstates—are then used as a basis set representation of the many-particle Hamiltonian. A subsequent
exact diagonalization determines the many-body spectrum.

The FGH numerical implementation requires a discretization of the continuous coordinate space
by a discrete set of an odd number of NGrid lattice points distributed in a uniform manner, such that
xm = xmin + m∆x, with m ∈ [0, NGrid − 1]. This discretization leads to a grid and momentum spacing

∆x =
xmax − xmin

NGrid
, (A1)

∆p =
2π

xmax − xmin
. (A2)

From Equation (1), the single-particle Hamiltonian matrix elementsHmn = 〈xm|H|xn〉 read [76]

Hmn =

NGrid−1
2

∑
l=1

(l∆p)2

∆xNGrid
cos

(
2πl(m− n)

NGrid

)
+

V(xm, t)
∆x

δmn, (A3)

with the potential V(xm, t) defined by Equation (2). Using this discretized procedure, the wave function
may be represented as a vector on a discretized grid of points

|Ψ〉 = ∆x ∑
m

ψm|xm〉, (A4)

with ψm = ψ(xm) = 〈xm|Ψ〉 the value of the wave function evaluated at xm, and with orthogonality
condition ∆x〈xm|xn〉 = δmn.

We thus obtain a discretized position representation of the single-particle Hamiltonian and must
compute the eigenvalues of this Hamiltonian matrix. To this end, we consider the energy expectation
value with respect to state |ψ〉, given by

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑mn ψ∗m∆xHmnψn

∑m |ψm|2
. (A5)

The minimization of this energy functional by variation of the coefficients ψm leads to the
secular equations

NGrid−1

∑
n=0

[
∆xHmn − E1P

m δmn

]
ψm = 0, (A6)

m = 0, . . . , NGrid − 1,

with eigenvalues E1P
m . The eigenvectors |Ψm〉 give directly the (approximate) values of the solutions

of the Schrödinger equation evaluated at the grid points. As discussed below, the convergence of
the method in the absence of free scattering states is, a posteriori, well controlled, thus leading to
a numerically exact result, i.e., with an error of the order of machine precision. Furthermore, since
the single-particle Hamiltonian is real and symmetric, these eigenstates can always be chosen to be
real. Please note that the double-well potential investigated does not exhibit free scattering solutions,
but only bound states.
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The precision of the FGH method can be enhanced by varying two characteristic parameters:
(1) The range xmax − xmin determines the maximum value of the potential Vmax(xmax, t). As soon as
the energy of a given bounded state |Ψn〉 does not exceed the truncation Vmax(x, t), convergence can be
controlled. For instance, with xmax = −xmin = 40 and Amax / 30, roughly the Ncut = 600 lowest-lying
energy eigenstates can be converged with a precision up to 10−9. (2) Increasing the number of grid
points NGrid within a fixed range xmax − xmin improves the accuracy of the eigenenergies of the Ncut

states toward the exact solutions. Typically, with xmax = −xmin = 40 and Ncut = 330, we used
NGrid = 2047. These parameters ensure an energy convergence up to 10−9 in natural units and satisfy
the orthonormality 〈Ψn|Ψm〉 = δnm of the generated eigenstates, to machine precision.

Using second quantization, the two-body Hamiltonian, expressed in terms of the single-particle
eigenbasis obtained from the FGH method, reads

H2P =
Ncut−1

∑
k=0

E1P
k n̂k +

1
2

Ncut−1

∑
ksql=0

Wksql â
†
k â†

s âq âl , (A7)

with â†
k (âk ) the creation (annihilation) operator in state k, and where n̂k = â†

k âk counts the number of
particles in state k. The matrix element Wksql originates from contact interactions. The Hamiltonian
matrix, of dimension

dim(H2P) =
Ncut(Ncut + 1)

2
, (A8)

is computed in the Hilbert space of symmetrized and normalized two-body states |ψnψm〉, constructed
from the single-particle product states such that

|ΨnΨm〉 ≡
|Ψn〉 ⊗ |Ψm〉+ |Ψm〉 ⊗ |Ψn〉√

2
√

1 + 〈Ψn|Ψm〉
, (A9)

for Ncut ≥ n ≥ m ≥ 1. Using this two-particle basis, the diagonal Hamiltonian matrix elements read

〈ΨnΨm|
Ncut−1

∑
k=0

E1P
k n̂k|Ψn′Ψm′〉 = (E1P

n + E1P
m )δnn′δmm′ , (A10)

whereas the off-diagonal interaction terms read

1
2

Ncut−1

∑
ksql=0

Wksql〈ΨnΨm|â†
k â†

s âq âl |Ψn′Ψm′〉

=


Wnnn′n′ , for n = m, n′ = m′,√

2Wnmn′n′ , for n 6= m, n′ = m′,√
2Wnnn′m′ , for n = m, n′ 6= m′,

2Wnmn′m′ , for n 6= m, n′ 6= m′,

(A11)

with

Wksql = λ
NGrid−1

∑
m=0

∆x ψk
mψs

mψ
q
mψl

m (A12)

numerically calculated using a Kahan summation algorithm [78] to minimize the accumulated
numerical error.

Then, the Hamiltonian matrix is diagonalized with MATHEMATICA’s build-in LAPACK-routines
and MKL parallelization feature, which ultimately determine several dim(H2P) eigenvalues E2P

n and
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associated eigenvectors |Ψ2P
n 〉. The time evolution of the interacting two-particle system is given by

the spectral decomposition

|Ψ(t)〉 =
dim(H2P)−1

∑
n=0

e−itE2P
n 〈Ψ2P

n |Ψ(t = 0)〉 |Ψ2P
n 〉, (A13)

with initial state |Ψ(t = 0)〉.

Appendix B. Bose–Hubbard Model in the Continuum

The discretization of the continuous configuration space as performed hereafter ultimately leads
to a Hamiltonian which exhibits the familiar structure of a Bose–Hubbard Hamiltonian, amended
by a site-dependent potential form. Therefore, the model developed below is referred to as the
Bose–Hubbard (BH) model in the continuum [79]. This approach gives access to the energy spectrum
of two and three interacting bosons with a good accuracy. The main advantage of this technique is
that its convergence weakly depends on the interaction strength, which is not the case with the FGH
method for which the matrix to diagonalize is dense in the presence of interactions, then introducing
high CPU time and memory costs.

Starting from the generic many-body Hamiltonian for N ultracold particles in the continuum
limit, with contact interactions and double-well potential V(x, t) (Equation (2)),

HNP =
∫

dx Ψ̂†(x)
[
−1

2
∂2

∂x2 + V(x, t)
]

Ψ̂(x)

+
λ

2

∫
dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (A14)

we use the single-band description. For practical implementation aspects, the continuous space is
artificially discretized by covering it with Wannier functions. We can then expand the field operators
Ψ̂(x) in the basis of localized and orthonormal Wannier functions of the lowest-lying band w0(x− xi):

Ψ̂(x) =
L

∑
i=1

âiw0(x− xi), (A15)

with âi the annihilation operator for a particle in the single-mode Wannier function w0(x− xi) at site i,
and L the number of sites in the discretization (assimilable to the number of grid points in the FGH
method). Inserting the expansion (A15) in Equation (A14), we obtain

HNP = −1
2 ∑

ij

∫
dx â†

i w?
0(x− xi)

∂2

∂x2 âjw0(x− xj)

+ ∑
i

n̂iV(xi, t)

+
λ

2 ∑
i

n̂i(n̂i − 1)
∫

dx |w0(x− xi)|4 , (A16)

where n̂i = â†
i âi and n̂i(n̂i − 1) = â†

i â†
i âi âi .

Then, the kinetic term is discretized by a finite lattice spacing δx = (2xmax)/(L− 1),

∂2

∂x2 âjw0(x− xj) '
1
δ2

x
âj+1w0(x− xj+1) (A17)

+
1
δ2

x
âj−1w0(x− xj−1) (A18)

− 2
δ2

x
âjw0(x− xj) , (A19)
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such that L grid points are uniformly distributed between xmin = −xmax and xmax, and the discretized
Wannier function reads

w0(x− xi)→ w0i/
√

δx. (A20)

With the on-site interaction strength

U ≡ λ ∑
i
|w0i|4, (A21)

the BH Hamiltonian in the continuum takes the final form

HNP = − 1
2δ2

x

L−1

∑
i=1

(
â†

i âi+1 + â†
i+1 âi

)
+

L

∑
i=1

(
Vi(t) +

1
δ2

x

)
n̂i

+
U

2δx

L

∑
i=1

n̂i(n̂i − 1) . (A22)

The double-well potential, in accordance with Equation (2), is then encoded by the explicit form

Vi(t) =
x2

i
2

+ A(t)e−x2
i /2,

xi ∈ {−xmin,−xmin + δx, . . . , xmax} (A23)

which for A(t) = 0, turns into a harmonic (single-well) trapping potential. Using the Fock basis |~n〉,
the Hamiltonian matrix elements read

HNP
mn = 〈~m|HNP|~n〉. (A24)

For three particles, the matrix to diagonalize has a size of

dim(H3P) =
1
6

L(L + 1)(L + 2). (A25)

Despite the sparsity of the matrix—which is a great advantage compared to the FGH method—the
diagonalization of this matrix is rather challenging. Indeed, for 3 particles, we have used xmax =

−xmin = 10 and L = 231, leading to a matrix size of 2,081,156 × 2,081,156. To obtain parts of the
spectrum with reliable degeneracies, we used the MATHEMATICA’s implementation of the FEAST

eigensystem solver [80] for sparse matrices, which is inspired by the contour integration and density
matrix representation in quantum mechanics [81]. Within a given energy search interval {Emin, Emax},
the FEAST algorithm reduces the size of the eigenvalue problem to a subspace of size associated with
the number of eigenvalues in this interval. This approach naturally captures the degeneracies in the
energy spectrum [80]. Moreover, using MATHEMATICA, the FEAST method is MPI parallelized over all
processors on a single node on the cluster.

Appendix C. Multiconfigurational Time-Dependent Hartree Method for Indistinguishable Particles

MCTDH-X allows for the investigation of interacting particles in many scenarios, e.g., interacting
bosons or fermions in optical lattices [82], quantum vortex re-connections in a Bose–Einstein
condensate [83], or bosons in double-well potentials [39,41,44]. In our context, this method is useful
for the investigation of N interacting bosons in a time-dependent double-well potential. Nevertheless,
this method is not efficient for the calculation of the entire energy spectrum, thus justifying our use of
the FGH and BH methods for a few particles. In the following, we outline the basic steps towards the
MCTDH-X equations of motion, see Ref. [14] for supplemental details regarding the method.
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The aim is to solve the time-dependent Schrödinger equation

i
∂

∂t
|Ψ〉 = H|Ψ〉 , (A26)

with many-body Hamiltonian H defined by Equation (1). To do so, we first formulate a general
multiconfigurational ansatz for the wave function based on truncating the field operator

Ψ̂(x, t) = ∑
k

âk(t)φk(x, t) (A27)

from an infinite to a finite sum of M operators, i.e.,

Ψ̂(x, t) ≈
M

∑
k=1

âk(t)φk(x, t) . (A28)

Under this assumption, the bosonic ansatz for the many-body wave function reads

|Ψ〉 = ∑
{~n}

C~n(t)
M

∏
k=1

(â†
k(t))

nk
√

nk!
|vac〉, (A29)

where the summation runs over all (symmetrized) basis states of the Hilbert space. The vector
~n = (n1, n2, . . . , nM) represents the occupations of the orbitals that preserve the total number of
particles n1 + n2 + n3 + · · ·+ nM = N, M is the number of orbitals φk(x, t), and |vac〉 is the vacuum.
This (a posteriori controlled) assumption, which is the key idea of MCTDH-X, greatly reduces the
computational effort.

Using this ansatz, the time-dependent Schrödinger equation is solved by using the time-dependent
variational principle for minimizing the action functional [84]

S
[
{C~n(t)}, {φk(x, t)}

]
=
∫

dt
[
〈Ψ(t)|

(
H− i

∂

∂t

)
|Ψ(t)〉 −

M

∑
k,j=1

µkj(t)
(
〈φk(t)|φj(t)〉 − δkj

)]
,

where the time-dependent Lagrange multipliers µkj(t) enforce the orthonormality of the orbitals.
The minimization of the action S finally leads to the MCTDH-X equations of motion, i.e., a coupled

set of first-order non-linear differential equations [14]

i
∂

∂t
C~n(t) = ∑

~m
〈~n, t|H|~m, t〉C~m(t) , (A30)

i
∂

∂t
|φk〉 = P

[ (
−1

2
d2

dx2 + V(x, t)
)
|φk〉

+ λ
M

∑
αβγδ

{ρ(1)}−1
kα ρ

(2)
αβγδφ∗β(x, t)φδ (x, t)|φγ〉

]
, (A31)

where P = 1 − ∑M
j=1 |φj〉〈φj| denotes the projection operator, and where ρ

(1)
kα = 〈Ψ|â†

k âα|Ψ〉 and

ρ
(2)
αβγδ = 〈Ψ|â†

α â†
β âγ âδ |Ψ〉 are respectively the matrix elements of the reduced single- and two-particle

density matrices. The projector P vanishes exactly only in the limit M → ∞, thus Equation (A30)
becomes equivalent to the time-dependent Schrödinger equation. On the other side, the MCTDH-X

method with one orbital, i.e., M = 1, is equivalent to the Gross–Pitaevskii mean-field where only
one coefficient C0,0,..,N,..,0(t) contributes. Therefore, the accuracy of MCTDH-X strongly depends on
the choice of the number of orbitals M used in the simulations and the convergence of the MCTDH-X

results can be improved by increasing the number of orbitals M [27,28,82,85].
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We have used the freely available software implementation MCTDHB [14] within the MCTDH-X

package [52,86] where the spatial discretization relies on a discrete variable representation (DVR)
combined with a fast Fourier transformation [87]. In practice, we have used M ∈ {8, 20} orbitals,
xmax = −xmin = 12 and Nx = 512 grid points. With these parameters employed in MCTDH-X,
the absolute error of the eigenenergies—computed by improved relaxation—for two interacting
particles in a harmonic trap, with respect to the exact ones, is found to be at the order of 10−4–10−2.
See Refs. [27,28,82,85] for more details about the convergence of the method.
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