
Identi�cation of sparsely representable di�usion
parameters in elliptic problems

Luzia N. Felber, Helmut Harbrecht, Marc Schmidlin

Departement Mathematik und Informatik
Fachbereich Mathematik
Universit•at Basel
CH-4051 Basel

Preprint No. 2023-03
April 2023

dmi.unibas.ch

https://dmi.unibas.ch/


Identi�cation of sparsely representable di�usion parameters in e lliptic problems

Luzia N. Felber� , Helmut Harbrecht� , and Marc Schmidlin�

Abstract. We consider the task of estimating the unknown di�usion param eter in an elliptic PDE as a model
problem to develop and test the e�ectiveness and robustness to noise of reconstruction schemes with
sparsity regularisation. To this end, the model problem is recast ed as a nonlinear optimal control
problem, where the unknown di�usion parameter is modelled usin g a linear combination of the
elements of a known bounded sequence of functions with unknown coe�cients. We show that the
regularisation of this nonlinear optimal control problem using a weighted `1-norm has minimisers
that are �nitely supported. We then propose modi�cations of wel l-known algorithms (ISTA and
FISTA) to �nd a minimiser of this weighted `1-norm regularised nonlinear optimal control problem
that account for the fact that in general the coe�cients need to be `1 and not only `2 summable.
We also introduce semismooth methods (ASISTA and FASISTA) for �nding a minimiser, which
locally use Gauss-Newton type surrogate models that additionally are stabilised by means of a
Levenberg-Marquardt type approach. Our numerical examples show that the regularisation with
the weighted `1-norm indeed does make the estimation more robust with respect to noise. Moreover,
the numerical examples also demonstrate that the ASISTA and FA SISTA methods are quite e�cient,
outperforming both ISTA and FISTA.

Key words. Parameter identi�cation, nonlinear optimal control, `1-regularisation, iterated soft-thresholding,
semismooth method, Levenberg-Marquardt method
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1. Introduction. In many applications, one has a physical phenomenon that is described
by a partial di�erential equation (PDE), where one is able to obtain certain measurements
and wants to reconstruct other involved quantities. In a mathematical context, such problems
are commonly called inverse or parameter estimation problems.

For example, magnetic resonance elastography (MRE) is becoming more prevalent in
clinical diagnostic as it is a powerful tool to map tissue sti�ness. Asa noninvasive technique,
it is currently well established to examine the liver, but it can also be used to diagnose breast
cancer, to study the function of the heart or to monitor mechanical muscle properties [12].
Further applications include imaging the brain to diagnose early stages ofAlzheimer's disease
as well as determine its progress [23].

To obtain an MRE, a stress or motion is applied to the tissue under consideration, the
response of which is then measured by magnetic resonance imaging (MRI). This data and
the unknown sti�ness parameter are related by a viscoelastic waveequation, which leads to
a generalisation of the Helmholtz equation, when the motion or stress applied to the tissue
is periodic. Using this PDE, inversion algorithms can reconstruct the sti�ness parameter to
generate the elastogram of the mechanical properties [12].

Current research in biomedical engineering investigates the possibility to reduce the mag-
netic �eld in MRIs which would be bene�cial in many practical applic ations. For example,
this enables the construction of mobile apparatures, and the lower power requirements has less
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environmental impact. However, the reduced magnetic �eld yields noisier measurements and
thus also noisier MRI images [26]. Therefore, there is a need for robust inversion algorithms
to compute elastograms in this setting.

In this article, we investigate methods for the identi�cation of a par ameter in a simpler
model problem: the di�usion parameter function in a second-order di�usion model. In par-
ticular, we consider an approach that represents the parameter function sought using a linear
combination of the elements of a known bounded sequence of functions with unknown coef-
�cients, i.e. an expansion. This enables us to formulate the inversion as a nonlinear optimal
control problem, where we are then minimising a functional that depends on the coe�cients of
the expansion. To regularise this minimisation task, we additionally add a weighted `1-norm
of the coe�cients to the functional.

As the space, in which the parameter lies, is not a Hilbert space, and since we only
assume that the sequence of elements, which is utilised in the expansion, is bounded, we
require that the coe�cients form an `1-sequence. Therefore, in order to justify the use of
the well-established iterative shrinkage-thresholding algorithm (ISTA, see [8]) and the fast
iterative-shrinkage thresholding algorithm (FISTA, see [2]) for the minimisation, we show
that the soft-threshold based �rst order optimality condition, which lies at the center of these
two methods, also holds in our setting. Another popular approach to solve the underlying
optimisation problem is given by the alternating direction method of multipliers (ADMM, see
[3]), which we however do not consider here.

For the optimisation, we also introduce an active set method similar to those proposed
by several authors, compare [13, 19, 21, 22] for example, which we call the active set iterated
soft-threshold algorithm (ASISTA). However, in contrast to the active set methods cited
for nonlinear optimal control problems, the ASISTA method is based on thesemismooth
minimisation of successive Gauss-Newton type approximations of the functional, which are
additionally stabilised by using a type of Levenberg-Marquardt stabilisation. In order to
derive this method, we also provide the semismoothness of the soft-threshold based �rst order
optimality condition for our setting, as this setting is not covered by the works cited. Moreover,
we also introduce the fast active set iterated soft-threshold algorithm (FASISTA) by simply
applying the acceleration from [24] to the ASISTA method.

We �nally discretise our model problem using bilinear �nite elements and consider two
expansions: one which represents the unknown di�usion parameter using Haar wavelets and
one that is based on the discrete cosine transform. With this we test the robustness of our
approach in numerical experiments by using di�erent regularisation parameters and noise
levels and compare the behaviour of the three optimisation methods used. It turns out our
new ASISTA and FASISTA methods converge at a higher rate compared to the other two
methods, hence being superior.

This article is structured as follows. In Section2, we introduce the optimal control problem
under consideration. Then, in Section3, we compute the cost functional's derivative and derive
the �rst order optimality condition. The optimisation algorithms which we apply are proposed
in Section 4. The discretisation of the optimal control problem is introduced in Section 5.
Section 6 contains the results of our numerical experiments. Finally, in Section 7, we state
concluding remarks.
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2. Parameter identi�cation problem. As the model problem, we consider the following
second-order elliptic PDE on the domain 
 � Rn with boundary � = @
,

(2.1) � div(ar u) = f in 
 ; u = g on � :

Here, the source termf 2 H � 1(
) and the boundary values g 2 H 1=2(�) are assumed to be
known input data, while the di�usion parameter function

a 2 Aad :=
n

v 2 L 1 (
) : ess inf
x 2 


v(x ) > 0
o

� L 1 (
)

is not known. However, we assume thatu 2 H 1(
) can be measured yielding the measurement
ud 2 L 2(
), which, due to noise in the measuring procedure, only ful�ls ku � udkL 2 (
) � 0.
Then, the parameter identi�cation problem is to determine the unk nown di�usion parameter
function a 2 Aad.

Because of the fact thatud only is in L 2(
), one cannot simply replace u in (2.1) with ud

to arrive at a nonlinear operator equation to be solved. Instead, it is common to reformulate
the problem as a constrained minimisation, yielding the nonlinear optimal control problem:

minimise
1
2

ku � udk2
L 2 (
) over a 2 Aad; u 2 H 1(
) ;

subject to � div(ar u) = f in 
 ; u = g on � :

Using the parameter-to-state mappingS: Aad ! H 1(
), that is the map S(a) = u stem-
ming from (2.1), we arrive at the equivalent reduced formulation:

minimise
1
2




 S(a) � ud




 2

L 2 (
) over a 2 Aad:

Since it is well established that this problem and other similar reformulations are ill-posed, see
e.g. [1, 12, 26], it is necessary to introduce more knowledge of the possible or likely di�usion
parameter function a 2 Aad into the formulation, see [10, 16] for example.

We propose to consider the situation, where it is known or assumed thatthe logarithm of
the di�usion parameter function a 2 Aad, which is to be reconstructed, can be approximated
by a sparse linear combination of the elements of a known bounded sequence  = (  k )k2 � �
L 1 (
), where the index set � is countable but may be �nite or in�nite . That is, we assume
that we have

log(a) �
X

k2 �

bk  k

for some sparse sequenceb = ( bk )k2 � 2 R� .
For this, we �rst introduce the sequence spaces̀ p with 1 � p < 1 and `1 by

`p :=
�

v 2 R� :
X

k2 �

jvk jp < 1
�

; kvk`p :=
� X

k2 �

jvk jp
� 1=p

;

`1 :=
n

v 2 R� : max
k2 �

jvk j < 1
o

; kvk`1 := max
k2 �

jvk j
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and the y -weighted sequence spaces̀py with 1 � p < 1 and `1
y by

`p
y :=

�
v 2 R� :

X

k2 �

jykvk jp < 1
�

; kvk`p
y

:=
� X

k2 �

jykvk jp
� 1=p

;

`1
y :=

n
v 2 R� : max

k2 �
jykvk j < 1

o
; kvk`1

y
:= max

k2 �
jykvk j

for any y 2 R�
> 0. With these at hand, we de�ne the expansion mappingE : `1 ! L 1 (
) by

(2.2) E(b) :=
X

k2 �

bk  k :

Hence, we are proposing to search for the di�usion parameter function inthe subspace
n

exp
�
E(b)

�
: b 2 `1

o
� Aad

and thus de�ne the data mis�t mapping M : `1 ! L 2(
) and the data �delity functional
F : `1 ! R by

(2.3) M (b) := S
�

exp
�
E(b)

� �
� ud and F (b) :=

1
2




 M (b)




 2

L 2 (
) :

The corresponding optimal control problem thus now simply reads:

minimise F (b) over b 2 `1:

Now it is known, at least if we had the spacè 2 instead of `1, cf. [8, 13], that to encourage
sparsity one may introduce thew-weighted`1-regularisation term R : `1

� ! R de�ned by

(2.4) R(b) :=
X

k2 �

wk jbk j;

where w 2 R�
� 0 is a non-negative sequence. In order for (2.4) to be wellde�ned, we assume

that the positive sequence� 2 R�
> 0 is such that

� k � � and � k � wk

holds for all k 2 � for some � 2 R> 0. Additionally, when � is an in�nite set, we assume
that w and therefore also� tend to in�nity. With this, we �nally arrive at the regularised
minimisation problem

(2.5) minimise J (b) :=
1
2




 M (b)




 2

L 2 (
) + R(b) over b 2 `1
� :

Note that for the rest of the article, we choose to rig the `p-sequence spaces and the
y -weighted `p-sequence spaces over � around the Hilbert spacè2 with its associated scalar
product

hd; bi :=
X

k2 �

dkbk :
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This then yields the following schema of spaces with canonical embeddings and identi�cations
of duals under the duality product h�; �i , where 1 < p; q < 1 are conjugate indices, that is
1=p+ 1=q= 1:

`q

`1
y `1

`2

`1 `1
y � 1

`p

(`1
y ) � = `1

y � 1

(`1) � = `1

(`p) � = `q

(`2) � = `2

(`q) � = `p

Especially, the dual of a space on the left side is thus identi�ed with the space lying diagonally
opposite it. Lastly, for any v; u 2 R� , we de�ne v �u := ( vkuk )k2 � and we setv � 1 := ( v� 1

k )k2 �

for any v 2 R�
6=0 .

3. Derivatives and �rst order optimality conditions.

3.1. Derivatives of the data mis�t and data �delity terms. We shall next consider the
behaviour of the data mis�t mapping M and the data �delity functional F . To this end,
we show the following lemma which provides the Fr�echet derivatives of the problem under
consideration.

Lemma 3.1.Both M : `1 ! L 2(
) and F : `1 ! R are Fr�echet di�erentiable and their
derivatives are given by

M 0(b)[d] = u0 and F 0(b)[d] = �
�
aE(d)r u; r p

�
L 2 (
) ;

where, with a = exp
�
E(b)

�
and u = S(a), that is u solves

� div(ar u) = f in 
 ; u = g on � ;

u0 2 H 1
0 (
) is the solution of the boundary value problem

� div(ar u0) = div
�
aE(d)r u

�
in 
 ; u0 = 0 on � ;

and the adjoint state p 2 H 1
0 (
) satis�es the boundary value problem

� div(ar p) = u � ud in 
 ; p = 0 on � :

Proof. In accordance with e.g. [1, 15], S is Fr�echet di�erentiable and S0(a) is given by
S0(a)[v] = u0, where u0 is the solution of the boundary value problem

� div(ar u0) = div( vr u) in 
 ; u0 = 0 on � ;

with u = S(a). Moreover, E is a bounded linear map and, hence, also Fr�echet di�erentiable
with E 0(b)[v] = E(v), while

exp: L 1 (
) ! L 1 (
) ; a 7!
1X

j =0

aj

j !
;
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being a globally converging power series on the Banach algebraL 1 (
), is Fr�echet di�erentiable
with

exp0(a)[v] =
1X

j =1

aj � 1jv
j !

=
1X

j =0

aj

j !
v = exp( a)v:

Now simply applying the chain rule for Fr�echet derivatives on M = S � exp� E yields the
assertions forM .

The Fr�echet di�erentiability of F is again a consequence of the chain rule. Using it and
the adjoint state p, we arrive at

F 0(b)[d] =
�
u � ud; M 0(b)[d]

�
L 2 (
) = ( u � ud; u0)L 2 (
) = �

�
div(ar p); u0�

L 2 (
) :

The formula for F 0(b) then obviously follows by integration by parts,

�
�
div(ar p); u0�

L 2 (
) = �
�
p;div(ar u0)

�
L 2 (
)

=
�

p;div
�
aE(d)r u

� �

L 2 (
)
= �

�
aE(d)r u; r p

�
L 2 (
) :

Remark 3.2. It is well known that the parameter-to-state mapping S: Aad ! H 1(
) is a
real analytic mapping, see e.g. [7, Section 2.1]. Therefore, as the mappings exp andE are
obviously also real analytic, it follows by the chain rule for analytic mappings that both M
and F are real analytic mappings and thus indeed in�nitely Fr�echet di�er entiable.

3.2. Generalised derivative of the regularisation term. In order to derive a �rst order
necessary condition for any minimiser ofJ , we now consider the regularisation term. Since
R : `1

� ! R is obviously locally Lipschitz, it is generalised di�erentiable everywhere, cf. [6,
Proposition 2.1.2], and its generalised derivative is characterised as follows.

Lemma 3.3.The functional R : `1
� ! R is generalised di�erentiable and its generalised

derivative is given by

@R(b) =
�

� � 2 `1
� � 1 : � 2 �( b)

	
with � � = ( � kwk )k2 � ;

where

�( b) :=
�

� 2 [� 1; 1]� : � k = 1 if bk > 0 and � k = � 1 if bk < 0 for all k 2 �
	

:

Note that we have used the identi�cation of the dual(`1
� ) � = `1

� � 1 here, so that a� � is indeed
representing a linear functional under h�; �i ,

h� � ; di =
X

k2 �

� kwkdk :

Proof. As R : `1
� ! R is not only locally Lipschitz but also convex, we know that R has a

subderivative everywhere. This is equal to the generalised derivative. We also know that the
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generalised directional derivativeR � (b; d) simply equals the directional derivative R 0(b; d), see
[6, Proposition 2.2.7],

R � (b; d) := lim sup
y ! b; " #0

R(y + "d) � R (y )
"

= lim
"#0

R(b + "d) � R (b)
"

=: R 0(b; d):

With this we have

R � (b; d) = lim
"#0

X

k2 �

wk
jbk + "dk j � j bk j

"
�

X

k2 �

wk jdk j � k dk`1
�
:

Next, we will prove

lim
"#0

X

k2 � ; bk 6=0

wk
jbk + "dk j � j bk j

"
=

X

k2 � ; bk > 0

wkdk �
X

k2 � ; bk < 0

wkdk :

To that end, let ( " j ) j 2 N � R be an arbitrary sequence ful�lling " j # 0. We �x an arbitrary
� > 0 and can then �nd a �nite set � � � � such that

X

k2 � n� �

� k jdk j �
�
2

;

which we use to introducem� := min fj bk j : k 2 � � with bk 6= 0g. Clearly, we have m� > 0
and, therefore, there is aj � 2 N such that

" j kdk`1
�

� �
m�

2

holds for all j � j � . Thus, for all j � j � and all k 2 � � with bk 6= 0, we have

" j jdk j �
� k

�
" j dk �

1
�

" j kdk`1
�

�
m�

2
;

which implies that bk + " j dk has the same sign asbk . Consequently, for all j � j � , we have

X

k2 � � ; bk 6=0

wk
jbk + " j dk j � j bk j

" j
=

X

k2 � � ; bk > 0

wkdk �
X

k2 � � ; bk < 0

wkdk

and we arrive at
�
�
�
�
�

X

k2 � ; bk 6=0

wk
jbk + " j dk j � j bk j

"
�

X

k2 � ; bk > 0

wkdk +
X

k2 � ; bk < 0

wkdk

�
�
�
�
�

� 2
X

k2 � n� � ; bk 6=0

wk jdk j:

As we have

2
X

k2 � n� � ; bk 6=0

wk jdk j � 2
X

k2 � n� �

wk jdk j � 2
X

k2 � n� �

� k jdk j � �
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and � > 0 was arbitrary, this shows

lim
j !1

X

k2 � ; bk 6=0

wk
jbk + " j dk j � j bk j

" j
=

X

k2 � ; bk > 0

wkdk �
X

k2 � ; bk < 0

wkdk :

Lastly, it is immediately evident that

lim
"#0

X

k2 � ; bk =0

wk
jbk + "dk j � j bk j

" j
= lim

"#0

X

k2 � ; bk =0

wk
" jdk j

" j
=

X

k2 � ; bk =0

wk jdk j;

which proves

R � (b; d) =
X

k2 � ; bk > 0

wkdk �
X

k2 � ; bk < 0

wkdk +
X

k2 � ; bk =0

wk jdk j:

Finally, let � 2 `1
� � 1 ful�l R � (b; d) � h � ; di for all d 2 `1

� . Now, we introduce the sequences

e(j ) 2 `1
� for j 2 � de�ned by e(j )

k = � j;k . Obviously, we have

� k = h� ; e(k) i � R � (b; e(k) ) and � k = �h � ; � e(k) i � �R � (b; � e(k) )

for every k 2 �. If bk > 0 this yields � k = wk and, similarily, � k = � wk , when bk < 0. For
bk = 0 we simply get j� k j � wk . Hence, there is a� 2 �( b) such that � = � � . Conversely,
since for every� 2 �( b) we clearly haveR � (b; d) � h � � ; di for all d 2 `1

� , it follows that

@R(b) =
�

� � : � 2 �( b)
	

:

3.3. The �rst order optimality condition. Using the results of the previous two subsec-
tions, it follows that J : `1

� ! R is generalised di�erentiable everywhere, cf. [6, Proposition
2.3.3], and this implies a necessary �rst order condition for any local minimiser of J , see [6,
Proposition 2.3.2]. Moreover, the formula for the generalised derivative follows by [6, Corollary
1 of Proposition 2.3.3].

Proposition 3.4.The generalised derivative ofJ is given by

@J(b) = F 0(b) + @R(b) � `1
� � 1 :

Moreover, any local minimiser b? of J must ful�l 0 2 @J(b?) � `1
� � 1 .

Considering a local minimiserb? of J , we set g? := F 0(b?) 2 `1 � `1
� � 1 . Then, we have

to have g? + � � = 0 for some � 2 �( b?), which we can also state as

(3.1)

8
><

>:

g?
k = � wk ; if b?

k > 0;

g?
k = wk ; if b?

k < 0;

jg?
k j � wk ; if b?

k = 0 :

Since we know that the termsg?
k are bounded while the termswk tend to in�nity, it follows

that the �rst two cases, and hence b?
k 6= 0, can only occur for �nitely many k. Thus, we can
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conclude what is already known to be true for the Hilbert space setting: any minimiser of
(2.5) is sparse in the sense that it is a �nitely supported sequence.

Nonetheless, this �rst order optimality condition is not well-suite d for numerical exploita-
tion. Therefore, we proceed to show that the soft-threshold based �rst order optimality
condition used in a Hilbert space setting, i.e. forF : `2 ! R, see [8, 13] for example, applies
to our non-re
exive, non-smooth Banach space setting withF : `1 ! R also.

To this end, we introduce the soft-threshold operatorT w : R� ! R� by

(3.2) T w (b) :=
�

sgn(bk ) max
�

0; jbk j � wk
	 �

k2 �
:

Then, as is already known in the Hilbert space setting, we have the following equivalence.

Theorem 3.5.The �rst order optimality condition (3.1) is equivalent to

(3.3) b? = T s�w
�
b? � s � F 0(b?)

�

wheres 2 R�
> 0 is any arbitrarily chosen positive sequence. Moreover, the �rst order optimality

condition (3.1) implies (3.3) for any arbitrarily chosen non-negative sequences 2 R�
� 0.

Proof. Let g? := F 0(b?). We �rst assume that condition ( 3.1) holds. Then, the elements
of the sequenceT s�w (b? � s � g?) are given by

sgn(b?
k � skg?

k ) max
n

0; jb?
k � skg?

k j � skwk

o

=

8
><

>:

sgn(b?
k + skwk ) max

�
0; jb?

k + skwk j � skwk
	

= b?
k ; when b?

k > 0;

sgn(b?
k � skwk ) max

�
0; jb?

k � skwk j � skwk
	

= b?
k ; when b?

k < 0;

sgn(� skg?
k ) max

�
0; jskg?

k j � skwk
	

= 0 = b?
k ; when b?

k = 0 ;

when sk � 0 holds for all k 2 �. This proves that condition ( 3.3) is ful�lled.
Now, let us assume that condition (3.3) holds for an arbitrarily chosen positive sequence

s 2 R�
> 0. Then, b? = T s�w (b? � s � g?) and we have

b?
k = sgn(b?

k � skg?
k ) max

�
0; jb?

k � skg?
k j � skwk

	

for all k 2 �. If b?
k > 0, we necessarily have

b?
k � skg?

k > 0 and b?
k = jb?

k � skg?
k j � skwk

as the sign-term must be positive and the max-term cannot equal 0, respectively. However,
this implies

b?
k = b?

k � skg?
k � skwk or equivalently g?

k = � wk :

Mutatis mutandis, when b?
k < 0, we arrive at

b?
k = b?

k � skg?
k + skwk or equivalently g?

k = wk :
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Finally, if b?
k = 0, we have

0 = sgn(� skg?
k ) max

�
0; jskg?

k j � skwk
	

which implies

jskg?
k j � skwk � 0 or equivalently jg?

k j � wk :

Hence, we have that condition (3.1) is ful�lled.

It is informative to consider in which spaces the terms in the right-hand side of the �rst
order optimality condition ( 3.3) lie. For this, we will restrict the possible choices of the step
size parameters 2 R�

� 0 slightly: We assume that there is ac 2 R> 0 such that

(3.4) sk �
c

� k

holds for all k 2 �. Note that when � is a �nite index set this simply means that sk > 0
holds for all k 2 �, however, when � is an in�nite index set, then � k tends to in�nity and
(3.4) simply means that we are requiring that sk does not tend to zero faster than� � 1

k does.
Especially, (3.4) allows one to choose a sequences that is simply a positive constant or one
that tends to in�nity.

Using (3.4) we now have b? 2 `1
� ,! `1

� ,! `1
s � 1 and since F 0(b?) 2 `1 , we also have

s �F 0(b?) 2 `1
s � 1 . Hence, the term appearing as the argument in the soft-thresholding operator

lies in `1
s � 1 . Now, for v 2 `1

s � 1 , we have that

kvk`1
s � 1

= max
k2 �

s� 1
k jvk j < 1

while the elements ofT s�w (v) are given by

sgn(vk ) max
�

0; jvk j � skwk
	

:

Since we know that the terms s� 1
k jvk j are bounded while thewk tend to in�nity, it follows

that the sequenceT s�w (v) has �nite support and we thus also haveT s�w (v) 2 `1
� . In view

of (3.3), we will consider the soft-threshold operator as a mapT s�w : `1
s � 1 ! `1

� from here on
out.

Remark 3.6. We note that, if we have 1 < p; q < 1 with 1=p+ 1=q = 1 and F : `p ! R,
then all the previous results also hold by replacing`1 with `p and `1 with `q. In this case,
instead of assuming thatw tends to in�nity, it su�ces to assume that 0 is not an accumulation
point of w . Hence,� also needs not tend to in�nity but it still must be bounded away fr om
zero uniformly. For p = 2, we thus essentially recover the classic setting considered in works
such as [2, 8, 13, 22]. Indeed, sinceR(b) = 1 for all b 2 `2 n `1

� , the minimisation task

minimise F (b) + R(b) over b 2 `2

with F : `2 ! R is obviously equivalent to the setting given by

minimise F (b) + R(b) over b 2 `1
� :
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4. Optimisation Methods. Using the �xed-point equation ( 3.3), we now discuss the op-
timisation methods that we will utilise to solve our problem (2.5). Before we investigate
the possibility of second order methods, we introduce versions of two well-known �rst order
methods adapted to our non-re
exive, non-smooth Banach space setting.

4.1. Simple �xed point methods. First, we can directly use (3.3) to de�ne the �xed-point
iteration

bj := T s j �w
�
bj � 1 � sj � F 0(bj � 1)

�

starting from some initial value b0. With some strategy for choosing the step sizessj 2 R�
� 0

this will yield a kind of `1 space version of the known ISTA method, cf. [8]. Note that the `1

space setting means that step size strategies commonly employed in the Hilbert space setting
are not necessarily justi�ed. For example, the strategy used in [2, 20], derives from the fact
that the iterate bj de�ned by

bj := T � j w
�
bj � 1 � � j F 0(bj � 1)

�

with a scalar step size� j 2 R> 0 indeed is the minimiser of the surrogate functional

J j (b) := F (bj � 1) +


F 0(bj � 1); b � bj � 1

�
+ R(b) +

1
2� j

kb � bj � 1k2
`2 :

Now, if F 0 is Lipschitz with respect to the `2-norm, this surrogate provably ful�ls J j (b) � J (b)
when � j is chosen small enough. However, in our setting we generally only might have that F 0

is Lipschitz with respect to the stronger `1-norm and hence cannot guarantee thatJ j (b) � J (b)
holds even if � j is chosen arbitrarily close to 0.

An obvious strategy for choosing the step size is to choose a �xed base step sizes 2 R�
� 0

that ful�ls ( 3.4) and then scale it in each step with some step size multiplier� j 2 R> 0, i.e.
one uses

sj := � j s:

A simple heuristic approach for determining a suitable step size multiplier is given in the
following Algorithm 4.1. In it, to determine the step size multiplier for every iterate, one
�rst tries a step using the initial or previous step size multipl ier, if taking this step does not
reduce the value of the functional, one successively halves the multiplier until it does (lines
5{8). Then, if one did not need to decrease the multiplier, one doublesthe multiplier if this
manages to decrease the value of the functional su�ciently more (lines10{15). Finally, if one
did not increase the multiplier, one halves it if this still manages to decrease the value of the
functional su�ciently much (lines 16{20). The parameter, which control s when a decrease is
su�cient, is the greediness parameter � 2 [0; 1]. For � close to zero it only allows the step
size multiplier to double, if this also nearly doubles the decrease, while for � close to one it
also allows the step size multiplier to double, as long as the decrease stays the same.

Next, by applying the acceleration from [24] to this version of the ISTA method, we arrive
at the following non-Hilbert space version of the FISTA method, cf. [2], given in Algorithm 4.2.
Note that compared to the ISTA method, the FISTA method as stated will not guarantee
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strict monotonicity of the values of the functional J (bj ). To ensure strict monotonicity, we can
modify it to reject any step where monotonicity would be violated and restart the acceleration.
Since the �rst iterate computed after (re)starting the acceleration is precisely a normal ISTA
iterate this indeed quarantees strict monotonicity and shows that at worst, when such a
restarted FISTA method is restarting for every iterate, it coinci des with the ISTA method.

Algorithm 4.1 ISTA: Iterated Soft-Thresholding Algorithm
Require: Initial value b0, initial step size multiplier � 0 > 0, base step sizes,

greediness parameter� 2 [0; 1] for determining step size multiplier
1: for j  1; 2; 3; : : : do
2: � j  � j � 1

3: bj  T � j s�w
�
bj � 1 � � j s � F 0(bj � 1)

�

4: grow  true
5: while J (bj ) � J (bj � 1) do
6: � j  1

2 � j

7: bj  T � j s�w
�
bj � 1 � � j s � F 0(bj � 1)

�

8: grow  false
9: shrink  true

10: if grow = true then
11: c  T 2� j s�w

�
bj � 1 � 2� j s � F 0(bj � 1)

�

12: if J (c) � J (bj � 1) + 2
� +1

�
J (bj ) � J (bj � 1)

�
then

13: � j  2� j

14: bj  c
15: shrink  false
16: if shrink = true then
17: c  T 1

2 � j s�w

�
bj � 1 � 1

2 � j s � F 0(bj � 1)
�

18: if J (c) < J (bj � 1) + � +1
2

�
J (bj ) � J (bj � 1)

�
then

19: � j  1
2 � j

20: bj  c

Algorithm 4.2 FISTA: Fast Iterated Soft-Thresholding Algorithm
Require: Initial value b0, initial step size multiplier � 0 > 0, base step sizes,

greediness parameter� 2 [0; 1] for determining step size multiplier
1: t0  1
2: q0  b0

3: for j  1; 2; 3; : : : do
4: Compute lines 2{20 in Algorithm 4.1 with bj � 1 replaced byqj � 1

5: t j  1
2

�
1 + (1 + 4 t2

j � 1)1=2
�

6: qj  bj + t j � 1 � 1
t j

(bj � bj � 1)

4.2. Newton di�erentiability of the soft-threshold operator. As is well known and as
we will see later on in the numerical experiments, the simple �xed-point methods given above
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are fairly slow in their convergence. However, as was done in e.g. [13, 22], we wish to consider
semismooth Newton methods for solving (3.3), cf. [5]. To justify this, we extend the result
from [13, Proposition 3.3] asserting that the soft-threshold operator is Newton di�erentiable as
a map from `p to ` r for abitrary 1 � p < 1 and 1 � r � 1 by proving that the soft-threshold
operator is indeed also Newton di�erentiable as a map from`1

s � 1 to `1
� .

Lemma 4.1.The soft-threshold operator T s�w : `1
s � 1 ! `1

� is Newton di�erentiable and
t �
s�w : `1

s � 1 ! L (`1
s � 1 ; `1

� ) de�ned by

t �
s�w (v)[h ] :=

��
hk ; when jvk j > s kwk ;
0; when jvk j � skwk ;

�

k2 �

is a slanting function for T s�w on the whole of`1
s � 1 .

Proof. As the elements ofw tend to in�nity, when � is not �nite, we know that

� v :=
�

k 2 � : wk < kvk`1
s � 1

+ 1
	

is a �nite set. For any h 2 `1
s � 1 with khk`1

s � 1
� 1 and any k 2 � n � v , we then have that

s� 1
k jvk + hk j � k v + hk`1

s � 1
� k vk`1

s � 1
+ 1 � wk

and, therefore, the elements ofT s�w (v + h), T s�w (v) and t �
s�w (v + h)[h ] at index k are all

zero.
Now, we split the set � v into the active, edge-case and inactive indices:

� a
v :=

�
k 2 � v : jvk j > s kwk

	
;

� e
v :=

�
k 2 � v : jvk j = skwk

	
;

� i
v :=

�
k 2 � v : jvk j < s kwk

	
:

Obviously, for any h 2 `1
s � 1 the di�erence of the elements ofT s�w (v + h) and T s�w (v) at

index k is equal to t �
s�w (v + h)[h ] at index k for k 2 � e

v . Next, we introduce

� := min
k2 � a

v [ � i
v

�
� jvk j � skwk

�
� > 0:

For any h 2 `1
s � 1 with khk`1

s � 1
� � we have that the elements ofT s�w (v + h), T s�w (v) and

t �
s�w (v + h)[h ] at index k are all zero for k 2 � i

v . Similarly, the di�erence of the elements of
T s�w (v + h) and T s�w (v) at index k is equal to t �

s�w (v + h)[h ] at index k for k 2 � a
v .

Combining all this shows that we have

T s�w (v + h) � T s�w (v) � t �
s�w (v + h)[h ] = 0 2 `1

�

for any h 2 `1
s � 1 with khk`1

s � 1
� minf 1; � g and thus

lim
kh k` 1

s � 1
! 0




 T s�w (v + h) � T s�w (v) � t �

s�w (v + h)[h ]





`1
�

khk`1
s � 1

= 0
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holds, proving that T s�w is Newton di�erentiable and t �
s�w is a slanting function for T s�w on

the whole of `1
s � 1 .

4.3. Semismooth methods. Since F : `1 ! R is twice Fr�echet di�erentiable with F 00

being locally Lipschitz, cf. Remark 3.2, it is possible to use the Newton di�erentiabilty of
T s�w and a chain rule for Newton di�erentiability to derive a semismooth Newton method for
solving (3.3), see [22].

For this, we introduce the indicator sequences as follows: Given some iterate bj � 1 and
step length sj , we de�ne the upper active indicator by

i a+
j :=

��
1; when

�
bj � 1 � sj � F 0(bj � 1)

�
k > [sj � w ]k ;

0; else;

�

k2 �

and the lower active indicator by

i a�
j :=

��
1; when

�
bj � 1 � sj � F 0(bj � 1)

�
k < � [sj � w ]k ;

0; else;

�

k2 �
:

The active and inactive indicators are now de�ned by i a
j := i a+

j + i a�
j and i i

j := i � i a
j , where

i := (1) k2 � . The corresponding active sets are obviously given by

� t
j :=

n
k 2 � :

�
i t
j

�
k = 1

o

for t 2 f a+ ; a� ; a; ig.
Now, given the iterate bj � 1 and step length sj , the next iterate bj of the semismooth

Newton method applied to the equation

0 = b � T s j �w
�
b � sj � F 0(b)

�

is de�ned by

bj := i a
j � bj � 1 � d j ;

where d j ful�ls the equations

(4.1)
i i
j � d j = 0;

i a
j � F 00(bj � 1)

�
i a
j � d j

�
= i a

j � F 0(bj � 1) � i a�
j � w � i a

j � F 00(bj � 1)
�
i i
j � bj � 1

�
;

where � i a�
j � w = i a+

j � w � i a�
j � w , cf. [22]. Note that the �rst equation in ( 4.1) directly

prescribes the value of 0 tod j at all indices in the inactive set � i
j , while the second equation

in (4.1) only depends on the values ofd j at indices in the active set � a
j .

Moreover, since the active set is of �nite cardinality, the linear map

v 7! i a
j � F 00(bj � 1)

�
i a
j � v

�

can be understood as a square matrixH j which maps the �nite dimensional spaceR� a
j into

itself. Therefore, as the right-hand side of the second equation in (4.1) also lies inR� a
j , we know
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that d j is uniquely de�ned if and only if H j has full rank. However, while Lemma3.1 shows
that, as is well known for such problems, the derivativeF 0(b) may be computed e�ciently by
simply solving two boundary value problems, the computation of the Hessian F 00(b) is known
to be more expensive. In [22], the authors thus propose to replace the exact Hessian with an
approximation, i.e. the use of a semismooth quasi-Newton method.

In contrast to this, given the structure of our problem, we consider aGauss-Newton type
of modi�cation instead. That is, given the iterate bj � 1, one de�nes the local approximation
of F by

F j (b) :=
1
2




 M (bj � 1) + M 0(bj � 1)[b � bj � 1]




 2

L 2 (
) ;

compare (2.3) for the precise de�nition of the operators M and F . Then using the step length
sj , one computes the next iterate bj by a single step of the semismooth Newton method
applied to the equation

0 = b � T s j �w
�
b � sj � F 0

j (b)
�

from the iterate bj � 1. Since by construction F j (bj � 1) = F (bj � 1) and F 0
j (bj � 1) = F 0(bj � 1)

hold, the active and inactive indicators and sets are the same as before andwe arrive at

bj := i a
j � bj � 1 � d j ;

where d j instead ful�ls the equations

(4.2)
i i
j � d j = 0;

i a
j � F 00

j (bj � 1)
�
i a
j � d j

�
= i a

j � F 0
j (bj � 1) � i a�

j � w � i a
j � F 00

j (bj � 1)
�
i i
j � bj � 1

�
:

As F j is a quadratic polynomial over the Banach spacè1, its second order Fr�echet derivative
is simply given by



F 00

j (bj � 1)[v1]; v2
�

= F 00
j (bj � 1)[v1; v2] =

�
M 0(bj � 1)[v2]; M 0(bj � 1)[v1]

�
L 2 (
) :

Hence, the second order Fr�echet derivative results in a symmetric and positive semide�nite
matrix H j when one restricts it onto the �nite subspace R� a

j .
However, this Gauss-Newton type approach still leaves us with the challenge of solving a

linear system of equations with a symmetric and positive semide�nite matrix. To overcome
this, it is natural to consider a Levenberg-Marquardt type stabilisation of the system matrix.
As a suitable step sizesj is needed to be determine the active sets, we propose that the
stabilisation is derived by considering the �xed-point iterate in the ISTA algorithm using the
same step size. For this, we notice that the �xed-point step with step sizesj ,

bj := T s j �w
�
bj � 1 � sj � F 0(bj � 1)

�
;

also can be given by

bj := i a
j � bj � 1 � d j ;
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where d j instead ful�ls the equations

(4.3)
i i
j � d j = 0;

i a
j � s� 1

j � d j = i a
j � F 0

j (bj � 1) � i a�
j � w :

Speci�cally, we propose that one blends the equation (4.2), de�ning a Gauss-Newton type
update, in a sigmoidal manner with the equation (4.3), de�ning the �xed-point update. For
� 2 R, we may combine the equations using the weights 1

1+2 � and 1
2� � +1 yielding the equations

(4.4)

i i
j � d j = 0;

1
1 + 2 � i a

j � F 00
j (bj � 1)

�
i a
j � d j

�
+

1
2� � + 1

i a
j � s� 1

j � d j

= i a
j � F 0

j (bj � 1) � i a�
j � w �

1
1 + 2 � i a

j � F 00
j (bj � 1)

�
i i
j � bj � 1

�
:

for computing a Levenberg-Marquardt type update. This symmetric and positive de�nite
equation simply can be solved approximately by the CG-method for example. By using a sim-
ple strategy for de- and increasing the stabilisation parameter� , we arrive at the method de-
scribed in Algorithm 4.3, called the Active Set Iterated Soft-Threshold Algorithm (ASISTA).

Algorithm 4.3 ASISTA: Active Set Iterated Soft-Threshold Algorithm
Require: Initial value b0, initial step size multiplier � 0 > 0, base step sizes,

greediness parameter� 2 [0; 1] for determining step size multiplier
1: �  0
2: d0  0
3: for j  1; 2; 3; : : : do
4: Compute lines 2{20 in Algorithm 4.1
5: Compute the indicators i a+

j , i a�
j , i a

j and i i
j

6: stepok  false
7: shrink  true
8: while stepok = false do
9: d j  1

1+2 � i a
j � d j � 1 + 1

2� � +1 (bj � 1 � bj )
10: Update d j to approximately ful�l ( 4.4) using CG
11: cj  i a

j � bj � 1 � d j

12: if J (bj � 1) � J (cj ) then
13: �  � + 1
14: shrink  false
15: else
16: if J (bj ) < J (cj ) or CG did not converge su�ciently then
17: shrink  false
18: stepok  true
19: bj  cj

20: if shrink = true then
21: �  � � 1
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Again, by simply applying the acceleration from [24] to ASISTA, we also introduce the
corresponding method given in Algorithm 4.4, which we call the Fast Active Set Iterated
Soft-Threshold Algorithm (FASISTA). As is with FISTA, FASISTA also does not ensure strict
monotonicity as stated but can be modi�ed to do so by rejecting any step where monotonicity
would be violated and restarting the acceleration.

Algorithm 4.4 FASISTA: Fast Active Set Iterated Soft-Threshold Algorithm
Require: Initial value b0, initial step size multiplier � 0 > 0, base step sizes,

greediness parameter� 2 [0; 1] for determining step size multiplier
1: �  0
2: d0  0
3: for j  1; 2; 3; : : : do
4: Compute lines 4{21 in Algorithm 4.3 with bj � 1 replaced byqj � 1

5: t j  1
2

�
1 + (1 + 4 t2

j � 1)1=2
�

6: qj  bj + t j � 1 � 1
t j

(bj � bj � 1)

Remark 4.2. Again, we note that all the results in this section also hold when one has
F : `p ! R with 1 < p; q < 1 that ful�ls 1 =p+ 1=q = 1, if one replaces`1 with `p and `1

with `q, cf. Remark 3.6. For the casep = 2, we then can observe that the methods de�ned
by the equations (4.1), (4.2) and (4.4) can also be derived as inexact proximal Newton-type
methods, see [19]. For this, one simply approximates the smooth part of the functional F in
each step as is done in the Newton, Gauss-Newton or Levenberg-Marquardt methods and then
approximately solves the subproblem using a single step of the semismooth Newton method
from [13]. Therefore in this case, ASISTA might be considered to be an inexactproximal
Levenberg-Marquardt-type method.

5. Remarks on discretisation. To solve the optimal control problem (2.5) with the opti-
misation algorithms, we need to discretise the partial di�erential equations as well as choose
an appropriate bounded sequence for the expansion.

For the sake of simplicity, we assume from here on that the domain 
 is the unit square

 := (0 ; 1)2. Then, for some givenN 2 N, we denote the set of all square elements that are
formed by subdividing the square into N 2 square elements of side lengthh := N � 1 by QN .

5.1. Discretisation of the parameter-to-state mapping. We straightforwardly utilise bi-
linear �nite elements and discretise the partial di�erential equ ation in their weak form using
the Galerkin method. For this, we introduce the space of bilinear �nite element functions

VN :=
�

u 2 C(
) : u is bilinear on every elementQ 2 Q N and u = 0 on �
	

and let (� i )n
i =1 with n = ( N � 1)2 be the nodal basis ofVN . For the discretisation of the

di�usion coe�cient a, we also introduce the space of element-wise constant �nite element
functions

WN :=
�

a 2 L 1 (
) : a is constant on every elementQ 2 Q N
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and let (� i )m
i =1 with m = N 2 be the basis ofWN that is made up of all the indicator functions

of the elements, i.e. the functions1Q for Q 2 Q N . Now, for functions v 2 VN and w 2 WN ,
we denote their coe�cients with respect to the correspondig bases by bv and bw.

We will assume that the sequence de�ning the expansion lies inWN . That is the expansion
a = E(b) can be de�ned by ba = Eb for all b 2 `1, whereE 2 Rm� � is a (possibly semi-in�nite)
matrix. Moreover, for a more concise exposition, we will assume thatug � ud lies in VN , where
ug is the H 1-extension of g and ud the measurement. In practise this might be enforced by
replacing ug and ud with some approximations of them in VN .

Considering the weak formulation of (2.1), we de�ne the sti�ness matrix with coe�cient
a 2 WN by

A a =
� Z



a(x )



r � j (x ); r � i (x )

�
dx

�

i;j
2 Rn� n

and the right-hand side using theH 1-extensionug 2 H 1(
) of g by

f a =
� Z



f (x )� i (x ) dx �

Z



a(x )



r ug(x ); r � i (x )

�
dx

�

i
2 Rn :

Now, for ba = Eb, we have that the Galerkin approximation of (2.1) is given by

u = u0 + ug; where bu0 = A � 1
a f a:

Next, we introduce the mass matrix

M =
� Z



� j (x )� i (x ) dx

�

i;j
2 Rn� n ;

with which we can compute the discretised data �delity (2.3) as

F (b) =
1
2

(cu0 + bug � bud)T M (bu0 + bug � bud);

and the Galerkin approximation of the adjoint state p by

bp = A � 1
a M (cu0 + bug � bud):

Finally, we de�ne the matrix

W a;u0 =
� Z



a(x )� j (x )



r (u0 + ug)(x ); r � i (x )

�
dx

�

i;j
2 Rn� m

with coe�cient a 2 WN and solution u0 + ug with u0 2 VN . Then, it is easy to see that the
discretised derivative of the data �delity as an element of `1 is given by

F 0(b) = � E T W T
a;u0

bp
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and the discretised second derivative of the approximated data �delity for b = bj � 1 is given
by

F 00
j (b)[v1; v2] = vT

2 E T W T
a;u0

A � T
a MA � 1

a W a;u0 Ev 1:

5.2. Choice of the parameter expansion. In agreement with the preeceding subsection,
one has to choose a bounded sequence = (  k )k2 � � WN � L 1 (
) which then de�nes the
expansion (2.2). In this case, the kth column in the (possibly semi-in�nite) matrix E 2 Rm� �

is precisely the coe�cients b k . Obviously, while there are a myriad of possible expansions, the
main point to consider here is that log(a) is supposed to be approximated by a fairly sparse
expansion for all likely di�usion parameter functions a 2 Aad.

However, there is at another point which should be taken into account. Ascan be seen
in the preceeding subsection, both the expansionE as well as its transposeE T will need
to be applied during every iteration of the optimisation. This means that expansions whose
applications have a computational complexity which scales nearly linearly in maxfj � j; mg
are preferential to those that scale like the product j� jm. This motivates the utilisation
of expansions such as wavelet and wavelet-like expansions or Fourier-type series, when the
logarithm of the di�usion parameter is likely to be cartoon-like or very smooth, respectively.
For our numerical experiments, we will consider the following twochoices:

� We choose to only consider the simplest wavelet expansion, that is the isotropic two-
dimensional Haar wavelets. For sake of simplicity, we restrict the possible N to a
power of two, i.e. N = 2 L . Note that the Haar wavelets are scaled to have aL 1 -norm
of 1, so that they form a bounded sequence. Moreover, the application of both E as
well as E T have a log-linear computational complexity in m = N 2 = 4 L . For this
expansion, we choose to de�ne� by setting � k = 2 ` � 1 for all 1 � k � N 2, for which
 k is a wavelet on level`.

Remark 5.1. In general, the use of a Haar wavelet expansion is not necessarily optimal.
If the logarithm of the di�usion parameter is a cartoon-like function, t hen curvelets,
contourlets and similar bases and frames are likely to have sparser expansions, see
[4, 9, 14]. We also want to point out that one can consider a general domain by
constructing wavelets over any type of �nite element discretisation using the approach
of Tausch and White, see [25].

� We consider a two-dimensional discrete cosine series expansion as a simple example
for a Fourier-type expansion. To this end, let k = r k + N (sk � 1) for all 1 � k � N 2

with 1 � r k ; sk � N , then we de�ne  k by

 k =
X

Q2Q N

cos
�
� (r k � 1)cQ;1

�
cos

�
� (sk � 1)cQ;2

�
1Q ;

where (cQ;1; cQ;2) denotes the coordinates of the centre and1Q the indicator function
of an element Q 2 Q N . Speci�cally, the expansion that this �nite sequence yields
is a rescaled two-dimensional version of the transform known as the type III discrete
cosine transform (DCT-III) or inverse of the type II discrete cosine transform (DCT-
II). Therefore, by rescaling it, one can e�ciently compute the appl ication of both E



20 L. FELBER, H. HARBRECHT, AND M. SCHMIDLIN

as well asE T using fast cosine transform (FCT) algorithms, that have a log-linear
computational complexity in m = N 2. For this expansion, we choose to de�ne� by

setting � k =
q

r 2
k + s2

k for all 1 � k � N 2.

6. Numerical examples. To illustrate the behaviour of the minimisation methods as well
as that of the regularisation, we consider the reconstruction of the two di�usion parameters
shown in Figure 1, from here on also referred to as phantoms.
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Figure 1. The two di�usion parameters considered in the numerical exa mples. The phantom on the left
(geometric phantom) consists of three superimposed simple geometric shapes, while the phantom on the right
is inspired by an abdominal cross-section of a human torso (torso phantom) .

6.1. Comparison of the minimisation methods. In our �rst numerical example, we focus
on the behaviour of the minimisation methods, and of the step size strategy. We let the
right-hand sides of (2.1) be f = 1 and g = 0 and consider the reconstruction of the geometric
phantom. For the minimisation methods, we useN 2 �nite elements to represent the state and
the coe�cient as described in Section5 with N = 2 7.

The synthetic measurementud is computed as follows: We compute an approximationur

of the exact state usingN 2
r bilinear �nite elements with N r = 2 8 � 1. This choice ensures

that the associated meshes are not nested. The respective solutionur 2 VN r is then projected
into the space VN by means of theL 2-best approximation, yielding uc. Then, we de�ne the
synthetic measurement byud := uc + �� , where � 2 VN indicates white Gaussian noise at the
nodes of the elements de�ningVN , scaled to ful�l k� kL 2 (
) = kuckL 2 (
) . The noise level is set
to � := 10 � 3. This approach results in a relativeL 2-error in the data that approximately equals
� , with any deviation from this stemming from the error made in the L 2-best approximation.
In our example, this yields the following relative L 2- and H 1-error in the data,

kud � ur kL 2 (
)

kur kL 2 (
)
� 0:0010095; and

kud � ur kH 1 (
)

kur kH 1 (
)
� 0:0703314:

For this �rst example, we choose the Haar wavelet expansion and considerregularisation
weights given by w := %� . We then use the ISTA, FISTA, ASISTA and FASISTA methods
given in Algorithms 4.1, 4.2, 4.3 and 4.4 to minimise the optimal control problem ( 2.5), where
we modify FISTA and FASISTA to restart the acceleration to ensure monotonicity. We apply
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all four methods for each greediness parameter� 2 f 0:3; 0:4; : : : ; 0:9g and each regularisation
strength %2 f 10� 11; 10� 12; 10� 13; 10� 14g. The initial value for the methods is b0 := 0 and
the base step size iss = 1. We stop a method when it has solved 42 000 PDEs (forward
and adjoint problems). The CG-solver in the ASISTA and FASISTA methods is declared to
have converged if the relative residual measured in thè1 -norm is smaller than 10� 2 and is
otherwise stopped after 50 iterations.

In order to compare the e�ciency of the methods, we suggest as the measure of cost
to consider how many PDEs (forward and adjoint problems) the method hadto solve to
arrive at its kth iterate. In Figure 2, we plot the distance between the functional at thekth
iterate J (bk ) and the estimated minimum value J (b� ) as a function of total number of PDE
solves necessary to compute thekth iterate. The �gure shows that the ASISTA and FASISTA
methods generally minimise the functionalJ more e�ectively, i.e. they needs fewer PDE solves
than the ISTA and FISTA methods, with FASISTA generally outperformi ng ASISTA at leas
slightly. Indeed, the �gure demonstrates that the ISTA method convergences very slowly and
shows that the FISTA method is truly accelerated. Moreover, while the FISTA method comes
close to matching the performance of the ASISTA method for%= 10 � 11 and %= 10 � 12 after
around 10 000 PDE solves, it is simply outperformed for%= 10 � 13 and %= 10 � 14.

In Figure 2, the reconstruction of the phantom given by the last iterate of the FASISTA
method using � = 0 :5 is also depicted. These reconstructions show that, while the regular-
isation strengths %= 10 � 11 and %= 10 � 14 are over- and underregularising,%= 10 � 12 and
%= 10 � 13 are regularising quite e�ectively.

Figure 3 shows the distance between the functional at thekth iterate J (bk ) and the
estimated minimum value J (b� ) as a function of iteration number k. It is noticeable that
ISTA does not seem able to achieve the ratek� 1 which is known to hold for the classical
`2-setting, but rather a reduced rate k� 1=2. However, for the strongest regularisation with
%= 10 � 11, it seems that FISTA manages to mostly achieve the ratek� 2 that is known to hold
for the classical`2-setting. On the other hand, FISTA also seems to only achieve the reduced
rate k� 1 for the weakest regularisation with %= 10 � 14, while its behaviour for %= 10 � 12 and
%= 10 � 13 lies somewhere in between the two extreme cases. Figure3 also indicates that the
ASISTA and FASISTA methods behave somewhat inversely: For%= 10 � 14 they seem to be
able to maintain their steep slope magnitude the longest ask increases, while for%= 10 � 11

they su�er a noticeable decrease in slope magnitude.

6.2. E�ectiveness of the regularisation. Our second numerical example focuses on the ef-
fectiveness of the regularisation vis-�a-vis noise. The setup of this example is the same as for the
�rst example with the following changes: We consider the torso phantom and setN = 2 9 and
N r = 2 10 � 1. We consider the six levels of noise� 2 f 10� 1:5; 10� 2; 10� 2:5; 10� 3; 10� 3:5; 10� 4g,
which yield relative L 2- and H 1-errors in the data as shown in Table1.

For this second example, we consider both the Haar wavelet expansion and the discrete
cosine expansion. The regularisation weights in both cases are given byw := %� where we
choose the regularisation strengths%2 f 10� 11; 10� 12:5; 10� 14; 10� 15:5g for the Haar wavelet
expansion and%2 f 10� 10:5; 10� 12; 10� 13:5; 10� 15g for the discrete cosine expansion. We use
the FASISTA method with greediness parameter � = 0 :5 to minimise the optimal control
problem (2.5) and stop it after it has solved 5 000 PDEs (forward and adjoint problems).
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Figure 2. First example: Distance to the estimated minimum (vertical a xis), i.e. J (bk ) � J (b� ), as a
function of the total number of PDE solves necessary to compute the kth iterate (horizontal axis). The four plots
show the four di�erent regularisation strengths, %= 10 � 11 ; 10� 12 ; 10� 13 ; 10� 14 . For each method, the di�erent
lines correspond to the di�erent choices for the greediness parameter, � = 0 :3; 0:4; : : : ; 0:9. The reconstruction
depicted in the lower left of each axis is the last iterate of FASISTA with � = 0 :5.
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Figure 3. First example: Distance to the estimated minimum (vertical a xis), i.e. J (bk ) � J (b� ), as a
function of iteration number k (horizontal axis). The four plots show the four di�erent reg ularisation strengths,
%= 10 � 11 ; 10� 12 ; 10� 13 ; 10� 14 . For each method, the di�erent lines correspond to di�erent choices for the
greediness parameter,� = 0 :3; 0:4; : : : ; 0:9.
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Table 1
Relative L 2- and H 1-errors in the data for the di�erent noise levels considered in the second example.

�
kud � ur kL 2 (
)

kur kL 2 (
)

kud � ur kH 1(
)

kur kH 1(
)

10� 1:5 0:0316228 7:8774228
10� 2 0:0100000 2:4926186

10� 2:5 0:0031624 0:7889325
10� 3 0:0010003 0:2499083

10� 3:5 0:0003173 0:0802032
10� 4 0:0001032 0:0289778

The resulting reconstructions are shown in Figures4 and 5. In both cases, higher noise
in the data requires stronger regularisation to be able to su�ciently suppress noise in the
reconstruction. The reconstructions using the discrete cosine expansion shown in Figure 5
su�er from a wrong reconstruction near the centre of the image. This likely happens due to
an interplay between the expansion and the known di�culty of deter mining the coe�cient
near points where the gradient of the stateu vanishes, see [17]. The reconstructions using the
Haar wavelet expansion shown in Figure4 seem to su�er less from this, with that area instead
appearing more pixelated. Generally, the reconstructions in Figure4 appear very pixelated
for large regularisation strengths by nature of the Haar wavelets.

7. Conclusion. In this article, we considered the reconstruction of an unknown di�usion
coe�cient from measurements of the PDE solution inside the domain of interest. This ill-posed
problem was stated as a nonlinear optimal control problem and regularised bysparsity con-
straints for the di�usion coe�cient, which was represented by ei ther a Haar wavelet expansion
or a cosine series expansion. We investigated the functional analytic setup and determined
variants of the ISTA and FISTA methods for the minimisation. Moreover , by a novel combi-
nation of known approaches we derived the minimisation methods ASISTAand FASISTA. So
far for all these methods, we can only provide a heuristic line search. The numerical examples
demonstrated that the sparsity constraints can be used to control noisein the reconstruction
and indicated that the ASISTA and FASISTA methods are more e�cient than the ISTA and
FISTA methods. Finally, we would like to mention that the ASISTA and FASISTA methods
might be able to be improved further by developing suitable preconditioning for the conjugate
gradient method that is part of their inner iteration.

Acknowledgements. The authors thank Yannik Gleichmann for helpful and insightful
discussions. The colour map utilised in the depictions is \CET-L04" from the perceptually
uniform colour map collection \colorCET", cf. [ 18], available at https://colorcet.com .

Data Availability. The numerical examples presented in this article can be replicated
solely using the information contained in this article. In addition, t he MATLAB code that
computed the numerical examples is available as [11].
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Figure 4. Second example: Reconstructions using the Haar wavelet expansion. In each row, the regulari-
sation strength decreases from left to right, while in each column the noise level decreases from top to bottom.
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Figure 5. Second example: Reconstructions using the discrete cosineexpansion. In each row, the regulari-
sation strength decreases from left to right, while in each column the noise level decreases from top to bottom.
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