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Abstract. We consider the task of estimating the unknown di usion param eter in an elliptic PDE as a model
problem to develop and test the e ectiveness and robustness to noise of reconstruction schemes with
sparsity regularisation. To this end, the model problem is recasted as a nonlinear optimal control
problem, where the unknown diusion parameter is modelled usin g a linear combination of the
elements of a known bounded sequence of functions with unknow coe cients. We show that the
regularisation of this nonlinear optimal control problem using a weighted **-norm has minimisers
that are nitely supported. We then propose modi cations of wel I-known algorithms (ISTA and
FISTA) to nd a minimiser of this weighted !-norm regularised nonlinear optimal control problem
that account for the fact that in general the coe cients need to be “! and not only “? summable.
We also introduce semismooth methods (ASISTA and FASISTA) for nding a minimiser, which
locally use Gauss-Newton type surrogate models that additionally are stabilised by means of a
Levenberg-Marquardt type approach. Our numerical examples show that the regularisation with
the weighted ~*-norm indeed does make the estimation more robust with respect to noise. Moreover,
the numerical examples also demonstrate that the ASISTA and FA SISTA methods are quite e cient,
outperforming both ISTA and FISTA.

Key words. Parameter identi cation, nonlinear optimal control, !-regularisation, iterated soft-thresholding,
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1. Introduction. In many applications, one has a physical phenomenon that is described
by a partial di erential equation (PDE), where one is able to obtain certain measurements
and wants to reconstruct other involved quantities. In a mathematical context, such problems
are commonly called inverse or parameter estimation problems.

For example, magnetic resonance elastography (MRE) is becoming more pralent in
clinical diagnostic as it is a powerful tool to map tissue sti ness. Asa noninvasive technigue,
it is currently well established to examine the liver, but it can also be used to diagnose breast
cancer, to study the function of the heart or to monitor mechanical musde properties [L2].
Further applications include imaging the brain to diagnose early stages oAlzheimer's disease
as well as determine its progress2[3].

To obtain an MRE, a stress or motion is applied to the tissue under consleration, the
response of which is then measured by magnetic resonance imaging (MRIThis data and
the unknown sti ness parameter are related by a viscoelastic waveequation, which leads to
a generalisation of the Helmholtz equation, when the motion or stress app#id to the tissue
is periodic. Using this PDE, inversion algorithms can reconstruct he sti ness parameter to
generate the elastogram of the mechanical propertiesLp].

Current research in biomedical engineering investigates the podslity to reduce the mag-
netic eld in MRIs which would be bene cial in many practical applic ations. For example,
this enables the construction of mobile apparatures, and the lower poer requirements has less
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environmental impact. However, the reduced magnetic eld yields misier measurements and
thus also noisier MRI images P6€]. Therefore, there is a need for robust inversion algorithms
to compute elastograms in this setting.

In this article, we investigate methods for the identi cation of a parameter in a simpler
model problem: the di usion parameter function in a second-order diusion model. In par-
ticular, we consider an approach that represents the parameter functin sought using a linear
combination of the elements of a known bounded sequence of functionsittv unknown coef-
cients, i.e. an expansion. This enables us to formulate the inver®n as a nonlinear optimal
control problem, where we are then minimising a functional that dep&ds on the coe cients of
the expansion. To regularise this minimisation task, we additionally adi a weighted *1-norm
of the coe cients to the functional.

As the space, in which the parameter lies, is not a Hilbert space, and ste we only
assume that the sequence of elements, which is utilised in the pansion, is bounded, we
require that the coe cients form an “l-sequence. Therefore, in order to justify the use of
the well-established iterative shrinkage-thresholding algorithm (ISTA, see [8]) and the fast
iterative-shrinkage thresholding algorithm (FISTA, see [2]) for the minimisation, we show
that the soft-threshold based rst order optimality condition, which lies at the center of these
two methods, also holds in our setting. Another popular approach to solve he underlying
optimisation problem is given by the alternating direction method of multipliers (ADMM, see
[3]), which we however do not consider here.

For the optimisation, we also introduce an active set method similar b those proposed
by several authors, compare 13, 19, 21, 22] for example, which we call the active set iterated
soft-threshold algorithm (ASISTA). However, in contrast to the active set methods cited
for nonlinear optimal control problems, the ASISTA method is based on the semismooth
minimisation of successive Gauss-Newton type approximations of the fictional, which are
additionally stabilised by using a type of Levenberg-Marquardt stabilisation. In order to
derive this method, we also provide the semismoothness of the $dahreshold based rst order
optimality condition for our setting, as this setting is not covered by the works cited. Moreover,
we also introduce the fast active set iterated soft-threshold algoribm (FASISTA) by simply
applying the acceleration from P4] to the ASISTA method.

We nally discretise our model problem using bilinear nite elements and consider two
expansions: one which represents the unknown di usion parameter sing Haar wavelets and
one that is based on the discrete cosine transform. With this we testlte robustness of our
approach in numerical experiments by using di erent regularisation parameters and noise
levels and compare the behaviour of the three optimisation methods wl. It turns out our
new ASISTA and FASISTA methods converge at a higher rate compared to the dier two
methods, hence being superior.

This article is structured as follows. In Section2, we introduce the optimal control problem
under consideration. Then, in Section3, we compute the cost functional's derivative and derive
the rst order optimality condition. The optimisation algorithms which we apply are proposed
in Section 4. The discretisation of the optimal control problem is introduced in Section 5.
Section 6 contains the results of our numerical experiments. Finally, in Setion 7, we state
concluding remarks.
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2. Parameter identi cation problem. As the model problem, we consider the following
second-order elliptic PDE on the domain R" with boundary = @,

(2.1) div(ar uy=f in ; u=gon

Here, the source termf 2 H 1() and the boundary values g2 H () are assumed to be
known input data, while the di usion parameter function

n o
a2Ax:= Vv2 Ll():esszinf v(x)>0 L)
X

is not known. However, we assume thati 2 H () can be measured yielding the measurement
ug 2 L2(), which, due to noise in the measuring procedure, only fulls ku UdKg 2(y 0.
Then, the parameter identi cation problem is to determine the unknown di usion parameter
function a2 Agg.

Because of the fact thatug only is in L2(), one cannot simply replace u in (2.1) with ugq
to arrive at a nonlinear operator equation to be solved. Instead, it is comnon to reformulate
the problem as a constrained minimisation, yielding the nonlinear opimal control problem:

N 1
minimise éku udkfz() overa2 Agg; u2 H() ;
subject to div(ar uy=fin ; u=gon

Using the parameter-to-state mappingS: Aaq ! H?(), that is the map S(a) = u stem-
ming from (2.1), we arrive at the equivalent reduced formulation:

N 1
minimise > S(a) uqg iz() overa?2 Agg:

Since it is well established that this problem and other similar rebrmulations are ill-posed, see
e.g. [, 12, 2€], it is necessary to introduce more knowledge of the possible or kdty di usion
parameter function a 2 A,q into the formulation, see [10, 16] for example.

We propose to consider the situation, where it is known or assumed thathe logarithm of
the di usion parameter function a 2 A,q, which is to be reconstructed, can be approximated
by a sparse linear combination of the elements of a known bounded sequee = ( k2
L1 (), where the index set is countable but may be nite or innite . That is, we assume
that we have

X
log(a) b«

k2

for some sparse sequende= (bl 2 R .
For this, we rst introduce the sequence spacesP with1 p<1 and'! by

X X 1=p
Pi= v2R 0 jwjP< 1l kvkp : jVijP ;

k2 k2
n (0]

~1 . . Nyd . — F
= V2R maxjwj<1l ; kvk1 :=max jv
A VK] 1 ng JVk]
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and the y-weighted sequence spaceé§ with1 p<1 and )} by

X X 1=p
= v2R © jwwiP< 1l kvk.p := ivvid®
k2 k2
y = V2R : IPZankakJ <1 ; kvk\§ = nlzgx 1Yk Vi

for any y 2 R, 5. With these at hand, we de ne the expansion mappingE: 1! L () by
X

(2.2) E(b) := b «:
k2

Hence, we are proposing to search for the di usion parameter function irthe subspace

n 0
exp E(b) :b2'1 Ay

and thus de ne the data mist mapping M: 11 L?() and the data delity functional
F:*11 Rby

1
2
The corresponding optimal control problem thus now simply reads:

(2.3) M(b):=S exp E(b)  ug and F(b):= 5 M(b) {5 :

minimise F(b) overb2 *i:

Now it is known, at least if we had the space’? instead of *%, cf. [8, 13, that to encourage
sparsity one may introduce thew-weighted " 1-regularisation term R: 1 ! R de ned by

X
(2.4) R(b):=  wijhyj;

k2
wherew 2 R  is a non-negative sequence. In order forZ4) to be wellde ned, we assume
that the positive sequence 2 R, is such that

Kk and k Wk

holds for all k 2 for some 2 Rso. Additionally, when is an in nite set, we assume
that w and therefore also tend to in nity. With this, we nally arrive at the regularised
minimisation problem

1
2
Note that for the rest of the article, we choose to rig the "P-sequence spaces and the

y-weighted “P-sequence spaces over around the Hilbert spacé? with its associated scalar
product

(2.5) minimise J(b) := M (b) ﬁz() + R(b) over b2l:

X
Hd; bi ;= dbx:
k2
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This then yields the following schema of spaces with canonical emiddings and identi cations
of duals under the duality product h; i, where 1< p;q < 1 are conjugate indices, that is
l=p+1=q=1:

O RT
y (‘1) -1
‘[ j (P) =d
~1 ) (‘2) — "2
N </’ y % =P

Especially, the dual of a space on the left side is thus identi ed wih the space lying diagonally
opposite it. Lastly, forany v;u 2 R ,wedenev u :=(VvuUx)k> andwesetv !:= (Vi D2
forany v 2 Ry, .

3. Derivatives and rst order optimality conditions.

3.1. Derivatives of the data mist and data delity terms. We shall next consider the
behaviour of the data mist mapping M and the data delity functional F. To this end,
we show the following lemma which provides the Fechet deriatives of the problem under
consideration.

Lemma 3.1.Both M: 11 L?() and F: 1! R are Fechet dierentiable and their
derivatives are given by

MYb)[d]= u® and FYb)[d]= aE(d)r u;r p L20)

where, witha=exp E(b) and u = S(a), that is u solves
div(ar uy=fin ; u=gon ;

u®2 H}() is the solution of the boundary value problem
div(ar U9 =div aE(d)ru in ; u’=0on ;
and the adjoint statep 2 H3() satis es the boundary value problem

diviar pp=u ugin ; p=0on

Proof. In accordance with e.g. |, 15, S is Fechet di erentiable and SYa) is given by
S%a)[v] = u® where u®is the solution of the boundary value problem

div(ar u9 =div(vr u)in ; u’=0on ;

with u = S(a). Moreover, E is a bounded linear map and, hence, also Fechet di erentiable
with Eqb)[v] = E(v), while

exp:LY () ! LY(); a7
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being a globally converging power series on the Banach algebta" (), is Fechet di erentiable
with
)4 aj 1jV X‘ aj

— = V= exp(a)v:

expYa)lv] =

Now simply applying the chain rule for Fechet derivatives on M = S exp E yields the
assertions forM .

The Fechet di erentiability of F is again a consequence of the chain rule. Using it and
the adjoint state p, we arrive at

FAb)[d]= u ug;M Yb)[d] L2 = (U ug;u9 2y = div(ar p);u° 20
The formula for F {b) then obviously follows by integration by parts,

div(ar p);u° 20 p:div(ar u9 L20)

p;div aE(d)r u

ae(d)r u;r p |

L2() L2() -

Remark 3.2. It is well known that the parameter-to-state mapping S: Azg! HY()is a
real analytic mapping, see e.g.q, Section 2.1]. Therefore, as the mappings exp an& are
obviously also real analytic, it follows by the chain rule for analytic mappings that both M
and F are real analytic mappings and thus indeed in nitely Fechet di er entiable.

3.2. Generalised derivative of the regularisation term. In order to derive a rst order
necessary condition for any minimiser ofJ, we now consider the regularisation term. Since
R: 1 I R is obviously locally Lipschitz, it is generalised di erentiable everywhere, cf. p,
Proposition 2.1.2], and its generalised derivative is characterised as folvs.

Lemma 3.3.The functional R: Y | R is generalised di erentiable and its generalised
derivative is given by

@R (b) = 2,0 2 (b)) with =( kWikk2 ;
where
( b):= 2] L;1] : xk=1ifb>0and = 1lifh < Oforall k2
Note that we have used the identi cation of the dua(*!) = ! , here, so thata is indeed
representing a linear functional underh; i,
X
h ;di = kade
k2

Proof. AsR: 1! R s not only locally Lipschitz but also convex, we know that R has a
subderivative everywhere. This is equal to the generalised derative. We also know that the
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generalised directional derivativeR (b; d) simply equals the directional derivative Rqb; d), see
[6, Proposition 2.2.7],

R (b;d) = limsup RY D R O) _y, R+ R (B)

: RHb;d):
y! b;"#0 "#0 O( )

With this we have

X . wa s . X
Wklh<+ d"kJ j b

R (b;d) = lim
#0 k2 k2

ijdkj k dk-1:

Next, we will prove

X . wa : s . X X
I,im WkaK+ dk] J bKJ = W i Wi di:

'#O
k2 ;b.60 k2 ;b>0 k2 ;b<0

To that end, let ("j)j2n R be an arbitrary sequence fullling "; # 0. We x an arbitrary
> 0 and can then nd a nite set such that

X - .
kjdk] 5
k2 n

which we use to introducem = minfjhj:k 2 with b 6 0g. Clearly, we havem > 0
and, therefore, there is aj 2 N such that

kdkr

holds for allj j . Thus,forallj | andallk?2 with b 6 0, we have

S " 1, m
gl —jde ="jkdkes o

which implies that b + "jdx has the same sign a.. Consequently, for allj j , we have

L T I L VP
k2 ;b60 ! k2 :b>0 k2 :b<O

n

and we arrive at

X D X X
W|<JbK JO.IKJ 15 Wi dy + widie 2 Wy jdg]:
k2 ;b 60 k2 ib>0 k2 ib<0 K2 n ;b60

As we have

2 Wijdikj 2 Wijdkj 2 kjdkj
k2 n ;b860 k2 n k2 n
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and > 0 was arbitrary, this shows

X ot i . X X
k2 ;b>0 k2 ;bc<O

lim -
" j
k2 ;bc60

Lastly, it is immediately evident that

X . " .. . X - .
lim w A T 0 o LI Wigjdkj;
oo j oo j o
k2 :bc=0 k2 :bc=0 k2 :bc=0
which proves
X X X
R (b;d) = Wi i Wi dy + Wy jdkj:
k2 ;b¢>0 k2 ;bc<0 k2 ;bc=0

Finally, let 21 ,full R (b;d) h :diforalld2 1. Now, we introduce the sequences
el) 2 1 forj 2 dened by e(kj) = k. Obviously, we have

v=h:e®i R (b;e®) and = h ; e®i R (b eW)

foreveryk 2 . If b > O this yields = wyg and, similarily, = wg, whenb, < 0. For
b = 0 we simply getj xj wk. Hence, thereisa 2 ( b)suchthat = . Conversely,
since for every 2 ( b) we clearly haveR (b;d) h ;di forall d 2 !, it follows that

@ (b) = 2 (b |

3.3. The rst order optimality condition.  Using the results of the previous two subsec-
tions, it follows that J: 1 ! R is generalised di erentiable everywhere, cf. §, Proposition
2.3.3], and this implies a necessary rst order condition for any local mmimiser of J, see §,
Proposition 2.3.2]. Moreover, the formula for the generalised derivatie follows by [6, Corollary
1 of Proposition 2.3.3].

Proposition 3.4. The generalised derivative of] is given by

@b)= FY{b)+ @(b) ' i
Moreover, any local minimiser b? of J must full 02 @{b’) ! ,.
Considering a local minimiserb” of J, we setg” := Fqb?) 2 1 *1 .. Then, we have

to haveg’+ =0 for some 2 ( b?), which we can also state as

8

200= w if0>0;
(3.1) S o =wk ifR<0;

gl wi ifBE=0:
Since we know that the termsg; are bounded while the termswy tend to in nity, it follows
that the rst two cases, and henceq'-(’ 6 0, can only occur for nitely many k. Thus, we can
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conclude what is already known to be true for the Hilbert space settig: any minimiser of
(2.5) is sparsein the sense that it is a nitely supported sequence.

Nonetheless, this rst order optimality condition is not well-suite d for numerical exploita-
tion. Therefore, we proceed to show that the soft-threshold based rst order optimality
condition used in a Hilbert space setting, i.e. forF : 21 R, see B, 13| for example, applies
to our non-re exive, non-smooth Banach space setting withF : *1 ! R also.

To this end, we introduce the soft-threshold operatorT,,: R ! R by

(3.2) Tw(b):= sgnb)max O;jbgj wk

Then, as is already known in the Hilbert space setting, we have the ftdwing equivalence.
Theorem 3.5.The rst order optimality condition (3.1) is equivalent to

(3.3) b’=Tsw b’ s Fqb?)

wheres 2 R, is any arbitrarily chosen positive sequence. Moreover, the rst order ptimality
condition (3.1) implies (3.3) for any arbitrarily chosen non-negative sequences 2 R .

Proof. Let g? := Fqb?). We rst assume that condition ( 3.1) holds. Then, the elements
of the sequenceT s (b° s g?) are given by
n o]
sgn(o; . skgr)max 0;jb} SOl SkWi

2 sgn(o; + skwg) max O;ji + sgwij  skWwx = b2 whenly > O;
= sgn@  skWx)max O;jlY  scwkj skwk = B whenly < 0;
" sgn( skgg) max O;jskglj skwk =0= by when i = 0;

whensy 0 holds for allk 2 . This proves that condition ( 3.3) is ful lled.
Now, let us assume that condition @3.3) holds for an arbitrarily chosen positive sequence
S2 R, Then, b’ = Tsyw (b’ s g°) and we have

b =sgn(bf scg)max O skgl S
forall k2 . If K > 0, we necessarily have

Y skge >0 and K =jb skgl  SkWik

as the sign-term must be positive and the max-term cannot equal O, resm#ively. However,
this implies

=tk skgl skwg or equivalently gl=  wy:
Mutatis mutandis, when q’j < 0, we arrive at

bl = b  skgl + scwi  or equivalently gl = w:
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Finally, if bl =0, we have

0=sgn( skgl)max O;jsk0j SkWk

which implies

jskgii  Skwx O orequivalently jgij  wg:
Hence, we have that condition @.1) is ful lled. [ |

It is informative to consider in which spaces the terms in the righthand side of the rst
order optimality condition ( 3.3) lie. For this, we will restrict the possible choices of the step
size parameters 2 R | slightly: We assume that there is ac 2 R such that

(3.4) Sk <
k

holds for all k 2 . Note that when is a nite index set this simply means that s¢ > 0
holds for all kK 2 , however, when is an in nite index set, then k tends to in nity and
(3.4) simply means that we are requiring that sy does not tend to zero faster than ! does.
Especially, (3.4) allows one to choose a sequencethat is simply a positive constant or one
that tends to in nity.

Using (3.4) we now haveb’ 2 "1 1 "1 I "1 and sinceF{b’) 2 *!, we also have
s Fqb?) 2 é .. Hence, the term appearing as the argument in the soft-thresholding oprator
liesin ! ;. Now, forv 2 'l ., we have that

kvk\i L= "Q?X S i< 1
while the elements ofT s (V) are given by

sgnfvg) max O;jvkj SkWg :

Since we know that the termss, Livij are bounded while thewy tend to in nity, it follows
that the sequenceT sy (v) has nite support and we thus also haveT sy (v) 2 “1. In view
of (3.3), we will consider the soft-threshold operator as a maprl sy, : ; . ! 1 from here on
out.

Remark 3.6. We note that, if we have 1< p;gq < 1 with 1=p+1=q=1and F: P! R,
then all the previous results also hold by replacing’® with “P and *! with 9. In this case,
instead of assuming thatw tends to in nity, it su ces to assume that 0 is not an accumulation
point of w. Hence, also needs not tend to in nity but it still must be bounded away fr om
zero uniformly. For p = 2, we thus essentially recover the classic setting considerechiworks
such as P, 8, 13, 22]. Indeed, sinceR(b) = 1 forall b2 *2n"1, the minimisation task

minimise F(b)+ R(b) over b2 2

with F: 21 R is obviously equivalent to the setting given by

minimise F(b)+ R(b) over b2 !:
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4. Optimisation Methods. Using the xed-point equation ( 3.3), we now discuss the op-
timisation methods that we will utilise to solve our problem (2.5). Before we investigate
the possibility of second order methods, we introduce versions ofato well-known rst order
methods adapted to our non-re exive, non-smooth Banach space setting.

4.1. Simple xed point methods. First, we can directly use (3.3) to de ne the xed-point
iteration
bj=Tsw b 1 5 Fo(bj 1)

starting from some initial value by. With some strategy for choosing the step sizes; 2 R
this will yield a kind of ! space version of the known ISTA method, cf. §]. Note that the !
space setting means that step size strategies commonly employed ihg Hilbert space setting
are not necessarily justi ed. For example, the strategy used in 2, 20], derives from the fact
that the iterate b; de ned by

b; Z=TJ.W bj 1 jFO(bj 1)
with a scalar step size j 2 Rs¢ indeed is the minimiser of the surrogate functional

1
Jj(b):= F(oy )+ FY )ib b 1 + RO+ kb by 1k
]

Now, if F %is Lipschitz with respect to the ~2-norm, this surrogate provably ful Is Jj(b) J(b)
when  is chosen small enough. However, in our setting we generally only mightdve that F 0
is Lipschitz with respect to the stronger “1-norm and hence cannot guarantee that); (b)  J(b)
holds even if j is chosen arbitrarily close to O.

An obvious strategy for choosing the step size is to choose a xed baseegi sizes 2 R
that fulls ( 3.4) and then scale it in each step with some step size multiplier ; 2 R, i.e.
one uses

A simple heuristic approach for determining a suitable step size mltiplier is given in the
following Algorithm 4.1. In it, to determine the step size multiplier for every iterate, one
rst tries a step using the initial or previous step size multiplier, if taking this step does not
reduce the value of the functional, one successively halves the ntidlier until it does (lines
5{8). Then, if one did not need to decrease the multiplier, one doubleshe multiplier if this
manages to decrease the value of the functional su ciently more (linesL0{15). Finally, if one
did not increase the multiplier, one halves it if this still manages to decrease the value of the
functional su ciently much (lines 16{20). The parameter, which control s when a decrease is
su cient, is the greediness parameter 2 [0;1]. For close to zero it only allows the step
size multiplier to double, if this also nearly doubles the decreas, while for close to one it
also allows the step size multiplier to double, as long as the decreastays the same.

Next, by applying the acceleration from [24] to this version of the ISTA method, we arrive
at the following non-Hilbert space version of the FISTA method, cf. ], given in Algorithm 4.2.
Note that compared to the ISTA method, the FISTA method as stated will not guarantee
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strict monotonicity of the values of the functional J(b;). To ensure strict monotonicity, we can
modify it to reject any step where monotonicity would be violated and restart the acceleration.
Since the rst iterate computed after (re)starting the acceleration is precisely a normal ISTA
iterate this indeed quarantees strict monotonicity and shows that at worst, when such a
restarted FISTA method is restarting for every iterate, it coinci des with the ISTA method.

Algorithm 4.1  ISTA: Iterated Soft-Thresholding Algorithm
Require: Initial value by, initial step size multiplier o> 0, base step sizes,
greediness parameter 2 [0; 1] for determining step size multiplier
for | 1,2;3;::: do
' i i1

1

2

3 bj T ,swhb1 iS Fo(bj 1)
4: grow  true

5: while J(bj) J(b; 1) do
6 P2

7 bj T ,swhb1 iS Fo(bj 1)
8 grow  false

9: shrink true

10: if grow =true then

11 C T2 sw bj 1 2js Fo(bj 1)

12: if J(c) J(bj 1)+ %1 J(bj) J(bj 1) then
13: j 2 j

14: bj c

15: shrink false

16: if shrink =true then

17 C T%,—sw bj 1 %jS Fo(bj 1)

18: if J(c)<J(bj 1)+ %1 J(bj) J(bj 1) then
19: P

20: bj Cc

Algorithm 4.2  FISTA: Fast Iterated Soft-Thresholding Algorithm
Require: Initial value by, initial step size multiplier ¢ > 0, base step sizes,
greediness parameter 2 [0; 1] for determining step size multiplier
1: to 1
220y bo
3: for j 1;2;3;::: do
4 Compute lines 2{20 in Algorithm 4.1 with bj ; replaced byq;

5t 3 1+(1+4t? )2
tj 1 1
6 qj bj + %(bj bj 1)
4.2. Newton di erentiability of the soft-threshold operator. As is well known and as

we will see later on in the numerical experiments, the simple xe&l-point methods given above
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are fairly slow in their convergence. However, as was done in e.dLd, 22], we wish to consider
semismooth Newton methods for solving 8.3), cf. [5]. To justify this, we extend the result

from [13, Proposition 3.3] asserting that the soft-threshold operator is Newton di erentiable as
amap from P to ' forabitraryl p<1 andl r 1 by proving that the soft-threshold

operator is indeed also Newton di erentiable as a map from‘é L to L,

Lemma 4.1.The soft-threshold operator Tsy: "1 ; I "1 is Newton dierentiable and
tsw: s 1!l (l;71) dened by

— he;  whenjvij > sgwy;
tsw(V)Ih]:= 0, whenjvij SkWi; |,
is a slanting function for Ts, on the whole of‘g 1.

Proof. As the elements ofw tend to in nity, when is not nite, we know that
vi= k2 o w< kvk‘i 1
is a nite set. Forany h 2 g . with kh k\i , landanyk2 n ,, wethen have that
S ivic+ hj k v+ hkr kvkr +1wg

and, therefore, the elements ofTsw (v + h), Tsw(v) and tg,, (v + h)[h] at index k are all
Zero.
Now, we split the set  into the active, edge-case and inactive indices:

K2 v :Ijv>skWg ;
K2 v ijv = skWk ;

<— <o <o
1

= kK2 vk <skwg

Obviously, for any h 2 g 1 the dierence of the elements of Tsw(v + h) and Tsy(v) at
index k is equal totg,, (v + h)[h] at index k for k 2 €. Next, we introduce

= min Jvgj  Skwg > 0
k2 8[

For any h 2 i  with khk-1 we have that the elements ofTs (v + h), Tsw(v) and

tsw (v + h)[h] at index k are all zero fork 2 1. Similarly, the di erence of the elements of
Tsw(v+ h)and Tsy(v) atindex k is equal totg , (v + h)[h] at index k for k2 3.
Combining all this shows that we have

Tsw(V+h) Tsw(v) tgu(v+h)h]=02"
forany h 2 °1 ; with khk1 =~ minf1; gand thus

Tsw(v+h) Tsw(v) tgyu(v+h)h] .,

lim =0
khk1 !0 khk-1 )
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holds, proving that Ts, is Newton di erentiable and tg,, is a slanting function for Ts, on
the whole of *! ;. ]

4.3. Semismooth methods. SinceF: 1! R is twice Fechet dierentiable with F
being locally Lipschitz, cf. Remark 3.2, it is possible to use the Newton di erentiabilty of
Tsw and a chain rule for Newton di erentiability to derive a semismooth Newton method for
solving (3.3), see P2.

For this, we introduce the indicator sequences as follows: Givenaosne iterate b; 1 and
step length sj, we de ne the upper active indicator by

ia.,. - 1; when bj 1 Sj Fo(bj 1) K > [Sj W]k;
] 0; else 2
and the lower active indicator by
a .~ L when by, s FAby 1) < [sj wl;
J 0; else K2
The active and inactive indicators are now de ned byi? := ija" +i? and |J' =i if, where
i :=(1) k2 . The corresponding active sets are obviously given by
n 0

jt:: k2 : it =1

fort2fa+;a ;aig.
Now, given the iterate b; ; and step length s;, the next iterate bj of the semismooth
Newton method applied to the equation

0=b Tswb s Fqb)
is de ned by

bj Z=ija bj 1 dj;

whered; ful Is the equations

il d

i? F%b 1) i dj

0;

it Fqy 2) i w0t FRby a) i) by oo

(4.1)

where i w = ijf"‘+ w i w,cf. [22. Note that the rst equation in ( 4.1) directly
prescribes the value of 0 tod; at all indices in the inactive set J' , while the second equation
in (4.1) only depends on the values ofl; at indices in the active set f‘

Moreover, since the active set is of nite cardinality, the linear map

v7ri2 FRy 1) i? v

can be understood as a square matriH ; which maps the nite dimensional spaceR 7 into
itself. Therefore, as the right-hand side of the second equation in4.1) also lies inR 7, we know
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that d; is uniquely de ned if and only if H; has full rank. However, while Lemma3.1 shows
that, as is well known for such problems, the derivativeF {b) may be computed e ciently by
simply solving two boundary value problems, the computation of the Hesin F °¢b) is known
to be more expensive. In 22], the authors thus propose to replace the exact Hessian with an
approximation, i.e. the use of a semismooth quasi-Newton method.

In contrast to this, given the structure of our problem, we consider aGauss-Newton type
of modi cation instead. That is, given the iterate b; 1, one de nes the local approximation
of F by

1

Fi(b):= =
i(b):= 3
compare (2.3) for the precise de nition of the operators M and F . Then using the step length
Sj, one computes the next iterateb; by a single step of the semismooth Newton method

applied to the equation

M(b 1)+ My Db b 1] £

0=b Tgwb s Fb

from the iterate bj 1. Since by construction Fj(b; 1) = F(bj 1) and FAb; 1) = F%by 1)
hold, the active and inactive indicators and sets are the same as before ande arrive at

bj = ija bj 1 dj;
where d; instead ful Is the equations
il dj=0;

it PR ) iR dp =i} Fy 1) i w0} Foy ) 0] by oo

(4.2)

As Fj is a quadratic polynomial over the Banach space?, its second order Fechet derivative
is simply given by

FAb Dlvilive = FRb olvivel= MXb )IvaEM Yy )lval oy

Hence, the second order Fechet derivative results in a symmeic and positive semide nite
matrix H j when one restricts it onto the nite subspace R i

However, this Gauss-Newton type approach still leaves us with the chllenge of solving a
linear system of equations with a symmetric and positive semide nie matrix. To overcome
this, it is natural to consider a Levenberg-Marquardt type stabilisation of the system matrix.
As a suitable step sizes; is needed to be determine the active sets, we propose that the
stabilisation is derived by considering the xed-point iterate in the ISTA algorithm using the
same step size. For this, we notice that the xed-point step with step sizes;,

by := Tsw bj 1 S Fo(bj 1) ;

also can be given by

bj = i@

jbjl dj;
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where d; instead ful Is the equations

| d j

i

I
ra 1 )
if s d

0;

it Fb 1) it owe

(4.3)

Speci cally, we propose that one blends the equation 4.2), de ning a Gauss-Newton type
update, in a sigmoidal manner with the equation @.3), de ning the xed-point update. For

2 R, we may combine the equations using the Weight% and ﬁ yielding the equations
il dj=0;
@4 1350 By ) if d + o if 5t d
1

=it R ) if w1 PR ) ) by g

for computing a Levenberg-Marquardt type update. This symmetric and positive de nite

equation simply can be solved approximately by the CG-method for exarple. By using a sim-
ple strategy for de- and increasing the stabilisation parameter , we arrive at the method de-
scribed in Algorithm 4.3, called the Active Set Iterated Soft-Threshold Algorithm (ASISTA).

Algorithm 4.3  ASISTA: Active Set Iterated Soft-Threshold Algorithm
Require: Initial value by, initial step size multiplier o> 0, base step sizes,
greediness parameter 2 [0; 1] for determining step size multiplier

1: 0
2: dg 0
3: for | 1,2;3;::: do
4: Compute lines 2{20 in Algorithm 4.1
5: Compute the indicators ija*, i?,ifand |J'
6: stepok  false
7: shrink true
8: while stepok = false do
J di  mif d 1t g0 1 b))
10: Update d; to approximately ful | ( 4.4) using CG
11: Cj ija bj 1 dj
12: if J(bj 1) J(c) then
13: +1
14: shrink false
15: else
16: if J(l) <J (cj) or CG did not converge su ciently then
17: shrink false
18: stepok  true
19: bj Cj
if shrink =true then

N
> @

1

N
Ly
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Again, by simply applying the acceleration from [24] to ASISTA, we also introduce the
corresponding method given in Algorithm 4.4, which we call the Fast Active Set Iterated
Soft-Threshold Algorithm (FASISTA). As is with FISTA, FASISTA also does not ensure strict
monotonicity as stated but can be modi ed to do so by rejecting any stgp where monotonicity
would be violated and restarting the acceleration.

Algorithm 4.4  FASISTA: Fast Active Set Iterated Soft-Threshold Algorithm

Require: Initial value bp, initial step size multiplier o > 0, base step sizes,
greediness parameter 2 [0;1] for determining step size multiplier

; 0

: dg 0

: for j 1;2;3;::: do

Compute lines 4{21 in Algorithm 4.3 with b ; replaced byq;

i 3 1+(@+4t? )2

g b+ (b by )

J

2 A O

Remark 4.2. Again, we note that all the results in this section also hold when one has
F:P1 Rwithl <p;q< 1 thatfulls1 =p+1=g= 1, if one replaces ! with P and "1
with "9, cf. Remark 3.6. For the casep = 2, we then can observe that the methods de ned
by the equations (4.1), (4.2) and (4.4) can also be derived as inexact proximal Newton-type
methods, see 19]. For this, one simply approximates the smooth part of the functional F in
each step as is done in the Newton, Gauss-Newton or Levenberg-Marquardt ntetds and then
approximately solves the subproblem using a single step of the seamooth Newton method
from [13]. Therefore in this case, ASISTA might be considered to be an inexacproximal
Levenberg-Marquardt-type method.

5. Remarks on discretisation. To solve the optimal control problem (2.5) with the opti-
misation algorithms, we need to discretise the partial di erential equations as well as choose
an appropriate bounded sequence for the expansion.

For the sake of simplicity, we assume from here on that the domain is the unit square

:= (0 ;1)2. Then, for some givenN 2 N, we denote the set of all square elements that are
formed by subdividing the square into N2 square elements of side lengtih := N by Qu.

5.1. Discretisation of the parameter-to-state mapping. We straightforwardly utilise bi-
linear nite elements and discretise the partial di erential equ ation in their weak form using
the Galerkin method. For this, we introduce the space of bilinear nite element functions

VN := u2C(): uis bilinear on every elementQ 2 Qn and u=0 on

and let ( j)L; with n = (N 1) be the nodal basis ofVy. For the discretisation of the
di usion coe cient a, we also introduce the space of element-wise constant nite elenm
functions

Wy = a2 Ll (): ais constant on every elementQ 2 Qy
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and let ( )™, with m = N2 be the basis ofWy that is made up of all the indicator functions
of the elements, i.e. the functionslg for Q 2 Qn. Now, for functions v 2 Vy and w 2 Wy,
we denote their coe cients with respect to the correspondig base by iz and .

We will assume that the sequence de ning the expansion lies iV . That is the expansion
a= E(b)canbedenedbyh= Eb forallb2 1, whereE 2 R™ s a (possibly semi-in nite)
matrix. Moreover, for a more concise exposition, we will assume thatiy ug lies in Vy, where
Ug is the H Lextension ofg and ug the measurement. In practise this might be enforced by
replacing ug and ug with some approximations of them in Vy .

Considering the weak formulation of 2.1), we de ne the sti ness matrix with coe cient
a2 Wy by

z
Ag= ax) r j(x)r i(x) dx 2R""
1)
and the right-hand side using theH 1-extensionug 2 H1() of g by
VA Z
fa= f(x) i(x)dx a(x) r ug(x);r i(x) dx 2R"

Now, for B = Eb, we have that the Galerkin approximation of (2.1) is given by
U= Up+ Ug; Where b= A, .

Next, we introduce the mass matrix
Z
M = j(x) i(x)dx 2R"™ "™
B

with which we can compute the discretised data delity (2.3) as
1
F(b) = 5(do + by bg) ™™ (bo + by bg);
and the Galerkin approximation of the adjoint state p by
b=A,'M (ao+ by by):

Finally, we de ne the matrix
Z
W au, = a(x) j(x) r (up+ ug)(x);r i(x) dx 2R" "
ij
with coe cient a2 Wy and solution ug + ug with up 2 V. Then, it is easy to see that the
discretised derivative of the data delity as an element of 1 is given by

Fo)= ETW],,b
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and the discretised second derivative of the approximated data delkty for b = bj 1 is given
by

Fjo?b)[vl; va]= viETW]

a;ug

A,TMA W 4y, Ev i

5.2. Choice of the parameter expansion. In agreement with the preeceding subsection,
one has to choose a bounded sequence= ( )k2 Wy LT () which then de nes the
expansion @.2). In this case, the kth column in the (possibly semi-in nite) matrix E 2 R™
is precisely the coe cients b, Obviously, while there are a myriad of possible expansions, the
main point to consider here is that log(@) is supposed to be approximated by a fairly sparse
expansion for all likely di usion parameter functions a 2 Agg.

However, there is at another point which should be taken into account. Ascan be seen
in the preceeding subsection, both the expansiofE as well as its transposeE T will need
to be applied during every iteration of the optimisation. This means that expansions whose
applications have a computational complexity which scales nearly linarly in maxfj j;mg
are preferential to those that scale like the productj jm. This motivates the utilisation
of expansions such as wavelet and wavelet-like expansions or Fourigmpe series, when the
logarithm of the di usion parameter is likely to be cartoon-like or very smooth, respectively.
For our numerical experiments, we will consider the following twochoices:

We choose to only consider the simplest wavelet expansion, that ishe isotropic two-

dimensional Haar wavelets. For sake of simplicity, we restrict the posible N to a

power of two, i.e.N = 2. Note that the Haar wavelets are scaled to have a.* -norm

of 1, so that they form a bounded sequence. Moreover, the application ofdih E as

well as ET have a log-linear computational complexity inm = N2 = 4L, For this

expansion, we choose to dene by setting (=2 lforalll k N2, for which
k is a wavelet on level .

Remark 5.1. In general, the use of a Haar wavelet expansion is not necessarily optimal.
If the logarithm of the di usion parameter is a cartoon-like function, t hen curvelets,
contourlets and similar bases and frames are likely to have sparser eapsions, see
[4, 9, 14]. We also want to point out that one can consider a general domain by
constructing wavelets over any type of nite element discretisation using the approach
of Tausch and White, see P5].

We consider a two-dimensional discrete cosine series expansion asimge example
for a Fourier-type expansion. To this end, letk = rc+ N(sy 1) foralll k N?
with 1 ry;sk N, then we dene by
X
k= cos (rg 1)cga cos (s 1)cq2 lg;
Q2Qn

where (Cq:1; Cg;2) denotes the coordinates of the centre and.q the indicator function
of an elementQ 2 Qp. Specically, the expansion that this nite sequence yields
is a rescaled two-dimensional version of the transform known as the typ Il discrete
cosine transform (DCT-III) or inverse of the type Il discrete cosine transform (DCT-
I). Therefore, by rescaling it, one can e ciently compute the application of both E
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as well asE T using fast cosine transform (FCT) algorithms, that have a log-linear
computationqi complexity in m = N?2. For this expansion, we choose to de ne by

setting = r2+s2foralll k N2

6. Numerical examples. To illustrate the behaviour of the minimisation methods as well
as that of the regularisation, we consider the reconstruction of the two dusion parameters
shown in Figure 1, from here on also referred to as phantoms.

1

0:8 5
0:6
1:5
0:4
1
0:2
0 0:5

Figure 1. The two diusion parameters considered in the numerical exa mples. The phantom on the left
(geometric phantom) consists of three superimposed simple geometric shapes, vile the phantom on the right
is inspired by an abdominal cross-section of a human torso (torso phantom) .

6.1. Comparison of the minimisation methods. In our rst numerical example, we focus
on the behaviour of the minimisation methods, and of the step size sategy. We let the
right-hand sides of (2.1) bef =1 and g =0 and consider the reconstruction of the geometric
phantom. For the minimisation methods, we useN 2 nite elements to represent the state and
the coe cient as described in Section5 with N =27,

The synthetic measurementuy is computed as follows: We compute an approximatioru,
of the exact state using N,2 bilinear nite elements with N, = 28 1. This choice ensures
that the associated meshes are not nested. The respective solutien 2 Vy, is then projected
into the spaceVy by means of theL2-best approximation, yielding uc. Then, we de ne the
synthetic measurement byuq := uc+ , where 2 Vy indicates white Gaussian noise at the
nodes of the elements de ningVy , scaled to full k k 2(y = kuck_2(y . The noise level is set
to :=10 3. This approach results in a relativeL %-error in the data that approximately equals

, with any deviation from this stemming from the error made in the L?-best approximation.
In our example, this yields the following relative L2- and H *-error in the data,

ku urk ku urk
AHd Frfz() 0:0010095 and AHd HrfHO

0:0703314
kurkLZ() kUrkH ()

For this rst example, we choose the Haar wavelet expansion and considaregularisation
weights given byw := % . We then use the ISTA, FISTA, ASISTA and FASISTA methods
given in Algorithms 4.1, 4.2, 4.3 and 4.4 to minimise the optimal control problem (2.5), where
we modify FISTA and FASISTA to restart the acceleration to ensure monotonicity. We apply
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all four methods for each greediness parameter 2 f 0:3;0:4;:::;0:9g and each regularisation
strength %2 f 10 11;10 12;10 13;10 #g. The initial value for the methods is by := 0 and
the base step size is = 1. We stop a method when it has solved 42000 PDEs (forward
and adjoint problems). The CG-solver in the ASISTA and FASISTA methods is declared to
have converged if the relative residual measured in thé! -norm is smaller than 10 2 and is
otherwise stopped after 50 iterations.

In order to compare the e ciency of the methods, we suggest as the measa of cost
to consider how many PDEs (forward and adjoint problems) the method hadto solve to
arrive at its kth iterate. In Figure 2, we plot the distance between the functional at thekth
iterate J(by) and the estimated minimum value J (b ) as a function of total number of PDE
solves necessary to compute thkth iterate. The gure shows that the ASISTA and FASISTA
methods generally minimise the functionalJ more e ectively, i.e. they needs fewer PDE solves
than the ISTA and FISTA methods, with FASISTA generally outperformi ng ASISTA at leas
slightly. Indeed, the gure demonstrates that the ISTA method convergences very slowly and
shows that the FISTA method is truly accelerated. Moreover, while the FISTA method comes
close to matching the performance of the ASISTA method for%= 10 ! and %= 10 12 after
around 10000 PDE solves, it is simply outperformed fo= 10 2 and %= 10 4.

In Figure 2, the reconstruction of the phantom given by the last iterate of the FASISTA
method using = 0:5 is also depicted. These reconstructions show that, while the gular-
isation strengths %= 10 ! and %= 10 !* are over- and underregularising,%= 10 12 and
%= 10 13 are regularising quite e ectively.

Figure 3 shows the distance between the functional at thekth iterate J(bx) and the
estimated minimum value J(b ) as a function of iteration number k. It is noticeable that
ISTA does not seem able to achieve the rat&k ' which is known to hold for the classical
*2_setting, but rather a reduced rate k 2. However, for the strongest regularisation with
%= 10 1!, it seems that FISTA manages to mostly achieve the ratek 2 that is known to hold
for the classical ?-setting. On the other hand, FISTA also seems to only achieve the redced
rate k * for the weakest regularisation with %= 10 4, while its behaviour for %= 10 2 and
%= 10 12 lies somewhere in between the two extreme cases. FiguBealso indicates that the
ASISTA and FASISTA methods behave somewhat inversely: For%= 10 4 they seem to be
able to maintain their steep slope magnitude the longest ak increases, while for%= 10 1
they su er a noticeable decrease in slope magnitude.

6.2. E ectiveness of the regularisation. Our second numerical example focuses on the ef-
fectiveness of the regularisation visa-vis noise. The setup of thi example is the same as for the
rst example with the following changes: We consider the torso phanbm and setN = 2° and
N, =210 1. We consider the six levels of noise 2 f 10 15,10 2;10 %5;10 3;10 ¥5;10 “4g,
which yield relative L?- and H -errors in the data as shown in Tablel.

For this second example, we consider both the Haar wavelet expansion andhé discrete
cosine expansion. The regularisation weights in both cases are given by := % where we
choose the regularisation strengths%2 f 10 11;10 125,10 14,10 155g for the Haar wavelet
expansion and%2 f 10 19°:10 12;10 1¥5;10 15g for the discrete cosine expansion. We use
the FASISTA method with greediness parameter = 0:5 to minimise the optimal control
problem (2.5) and stop it after it has solved 5000 PDEs (forward and adjoint problems).
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Figure 2. First example: Distance to the estimated minimum (vertical a xis), i.e. J(bx) J(b), as a
function of the total number of PDE solves necessary to compue the kth iterate (horizontal axis). The four plots
show the four di erent regularisation strengths, %= 10 ;10 2;10 3;10 . For each method, the di erent
lines correspond to the di erent choices for the greediness parameter, =0:3;0:4;:::;0:9. The reconstruction
depicted in the lower left of each axis is the last iterate of FASISTA with = 0:5.
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Figure 3. First example: Distance to the estimated minimum (vertical a xis), i.e. J(bx) J(b), as a
function of iteration number k (horizontal axis). The four plots show the four di erent reg ularisation strengths,
%= 10 ;10 '?;10 *;10 *. For each method, the dierent lines correspond to dierent choices for the
greediness parameter, =0:3;0:4;:::;0:9.



24 L. FELBER, H. HARBRECHT, AND M. SCHMIDLIN

Table 1
Relative L2- and H !-errors in the data for the di erent noise levels considered in the second example.
kug urkl_z() kug urky 10
kurkLz() kUrkH 1()

10 ™ | 0:0316228 78774228
10 2 0:0100000 24926186
10 25| 0:0031624 07889325
10 3 0:0010003 @®499083
10 35| 0:0003173 00802032
10 4 0:0001032 00289778

The resulting reconstructions are shown in Figures4 and 5. In both cases, higher noise
in the data requires stronger regularisation to be able to su ciently suppress noise in the
reconstruction. The reconstructions using the discrete cosinexpansion shown in Figure5
su er from a wrong reconstruction near the centre of the image. This lkely happens due to
an interplay between the expansion and the known di culty of deter mining the coe cient
near points where the gradient of the stateu vanishes, seel7]. The reconstructions using the
Haar wavelet expansion shown in Figure4 seem to su er less from this, with that area instead
appearing more pixelated. Generally, the reconstructions in Figure4 appear very pixelated
for large regularisation strengths by nature of the Haar wavelets.

7. Conclusion. In this article, we considered the reconstruction of an unknown di usion
coe cient from measurements of the PDE solution inside the domain of nterest. This ill-posed
problem was stated as a nonlinear optimal control problem and regularised byparsity con-
straints for the di usion coe cient, which was represented by either a Haar wavelet expansion
or a cosine series expansion. We investigated the functional analyticetup and determined
variants of the ISTA and FISTA methods for the minimisation. Moreover, by a novel combi-
nation of known approaches we derived the minimisation methods ASISTAand FASISTA. So
far for all these methods, we can only provide a heuristic line sealhc The numerical examples
demonstrated that the sparsity constraints can be used to control noisén the reconstruction
and indicated that the ASISTA and FASISTA methods are more e cient than the ISTA and
FISTA methods. Finally, we would like to mention that the ASISTA and FASISTA methods
might be able to be improved further by developing suitable precoditioning for the conjugate
gradient method that is part of their inner iteration.
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discussions. The colour map utilised in the depictions is \CET-L04" from the perceptually
uniform colour map collection \colorCET", cf. [ 18], available at https://colorcet.com .

Data Availability. The numerical examples presented in this article can be replicat
solely using the information contained in this article. In addition, the MATLAB code that
computed the numerical examples is available asl[i].
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Figure 4. Second example: Reconstructions using the Haar wavelet exgnsion. In each row, the regulari-
sation strength decreases from left to right, while in each @lumn the noise level decreases from top to bottom.
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Figure 5. Second example: Reconstructions using the discrete cosinexpansion. In each row, the regulari-
sation strength decreases from left to right, while in each @lumn the noise level decreases from top to bottom.
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