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Identification of sparsely representable diffusion parameters in elliptic problems

Luzia N. Felber∗ , Helmut Harbrecht∗ , and Marc Schmidlin∗

Abstract. We consider the task of estimating the unknown diffusion parameter in an elliptic PDE as a model
problem to develop and test the effectiveness and robustness to noise of reconstruction schemes with
sparsity regularisation. To this end, the model problem is recasted as a nonlinear optimal control
problem, where the unknown diffusion parameter is modelled using a linear combination of the
elements of a known bounded sequence of functions with unknown coefficients. We show that the
regularisation of this nonlinear optimal control problem using a weighted `

1-norm has minimisers
that are finitely supported. We then propose modifications of well-known algorithms (ISTA and
FISTA) to find a minimiser of this weighted `

1-norm regularised nonlinear optimal control problem
that account for the fact that in general the coefficients need to be `

1 and not only `
2 summable.

We also introduce semismooth methods (ASISTA and FASISTA) for finding a minimiser, which
locally use Gauss-Newton type surrogate models that additionally are stabilised by means of a
Levenberg-Marquardt type approach. Our numerical examples show that the regularisation with
the weighted `

1-norm indeed does make the estimation more robust with respect to noise. Moreover,
the numerical examples also demonstrate that the ASISTA and FASISTA methods are quite efficient,
outperforming both ISTA and FISTA.

Key words. Parameter identification, nonlinear optimal control, `1-regularisation, iterated soft-thresholding,
semismooth method, Levenberg-Marquardt method

MSC codes. 49M05, 49M15, 65N21

1. Introduction. In many applications, one has a physical phenomenon that is described
by a partial differential equation (PDE), where one is able to obtain certain measurements
and wants to reconstruct other involved quantities. In a mathematical context, such problems
are commonly called inverse or parameter estimation problems.

For example, magnetic resonance elastography (MRE) is becoming more prevalent in
clinical diagnostic as it is a powerful tool to map tissue stiffness. As a noninvasive technique,
it is currently well established to examine the liver, but it can also be used to diagnose breast
cancer, to study the function of the heart or to monitor mechanical muscle properties [12].
Further applications include imaging the brain to diagnose early stages of Alzheimer’s disease
as well as determine its progress [23].

To obtain an MRE, a stress or motion is applied to the tissue under consideration, the
response of which is then measured by magnetic resonance imaging (MRI). This data and
the unknown stiffness parameter are related by a viscoelastic wave equation, which leads to
a generalisation of the Helmholtz equation, when the motion or stress applied to the tissue
is periodic. Using this PDE, inversion algorithms can reconstruct the stiffness parameter to
generate the elastogram of the mechanical properties [12].

Current research in biomedical engineering investigates the possibility to reduce the mag-
netic field in MRIs which would be beneficial in many practical applications. For example,
this enables the construction of mobile apparatures, and the lower power requirements has less
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environmental impact. However, the reduced magnetic field yields noisier measurements and
thus also noisier MRI images [26]. Therefore, there is a need for robust inversion algorithms
to compute elastograms in this setting.

In this article, we investigate methods for the identification of a parameter in a simpler
model problem: the diffusion parameter function in a second-order diffusion model. In par-
ticular, we consider an approach that represents the parameter function sought using a linear
combination of the elements of a known bounded sequence of functions with unknown coef-
ficients, i.e. an expansion. This enables us to formulate the inversion as a nonlinear optimal
control problem, where we are then minimising a functional that depends on the coefficients of
the expansion. To regularise this minimisation task, we additionally add a weighted `1-norm
of the coefficients to the functional.

As the space, in which the parameter lies, is not a Hilbert space, and since we only
assume that the sequence of elements, which is utilised in the expansion, is bounded, we
require that the coefficients form an `1-sequence. Therefore, in order to justify the use of
the well-established iterative shrinkage-thresholding algorithm (ISTA, see [8]) and the fast
iterative-shrinkage thresholding algorithm (FISTA, see [2]) for the minimisation, we show
that the soft-threshold based first order optimality condition, which lies at the center of these
two methods, also holds in our setting. Another popular approach to solve the underlying
optimisation problem is given by the alternating direction method of multipliers (ADMM, see
[3]), which we however do not consider here.

For the optimisation, we also introduce an active set method similar to those proposed
by several authors, compare [13, 19, 21, 22] for example, which we call the active set iterated
soft-threshold algorithm (ASISTA). However, in contrast to the active set methods cited
for nonlinear optimal control problems, the ASISTA method is based on the semismooth
minimisation of successive Gauss-Newton type approximations of the functional, which are
additionally stabilised by using a type of Levenberg-Marquardt stabilisation. In order to
derive this method, we also provide the semismoothness of the soft-threshold based first order
optimality condition for our setting, as this setting is not covered by the works cited. Moreover,
we also introduce the fast active set iterated soft-threshold algorithm (FASISTA) by simply
applying the acceleration from [24] to the ASISTA method.

We finally discretise our model problem using bilinear finite elements and consider two
expansions: one which represents the unknown diffusion parameter using Haar wavelets and
one that is based on the discrete cosine transform. With this we test the robustness of our
approach in numerical experiments by using different regularisation parameters and noise
levels and compare the behaviour of the three optimisation methods used. It turns out our
new ASISTA and FASISTA methods converge at a higher rate compared to the other two
methods, hence being superior.

This article is structured as follows. In Section 2, we introduce the optimal control problem
under consideration. Then, in Section 3, we compute the cost functional’s derivative and derive
the first order optimality condition. The optimisation algorithms which we apply are proposed
in Section 4. The discretisation of the optimal control problem is introduced in Section 5.
Section 6 contains the results of our numerical experiments. Finally, in Section 7, we state
concluding remarks.



IDENTIFICATION OF SPARSELY REPRESENTABLE DIFFUSION PARAMETERS 3

2. Parameter identification problem. As the model problem, we consider the following
second-order elliptic PDE on the domain Ω ⊂ R

n with boundary Γ = ∂Ω,

(2.1) − div(a∇u) = f in Ω, u = g on Γ.

Here, the source term f ∈ H−1(Ω) and the boundary values g ∈ H1/2(Γ) are assumed to be
known input data, while the diffusion parameter function

a ∈ Aad :=
{
v ∈ L∞(Ω) : ess inf

x∈Ω
v(x) > 0

}
⊂ L∞(Ω)

is not known. However, we assume that u ∈ H1(Ω) can be measured yielding the measurement
ud ∈ L

2(Ω), which, due to noise in the measuring procedure, only fulfils ‖u − ud‖L2(Ω) ≈ 0.
Then, the parameter identification problem is to determine the unknown diffusion parameter
function a ∈ Aad.

Because of the fact that ud only is in L2(Ω), one cannot simply replace u in (2.1) with ud
to arrive at a nonlinear operator equation to be solved. Instead, it is common to reformulate
the problem as a constrained minimisation, yielding the nonlinear optimal control problem:

minimise
1

2
‖u− ud‖

2
L2(Ω) over a ∈ Aad, u ∈ H

1(Ω),

subject to − div(a∇u) = f in Ω, u = g on Γ.

Using the parameter-to-state mapping S : Aad → H1(Ω), that is the map S(a) = u stem-
ming from (2.1), we arrive at the equivalent reduced formulation:

minimise
1

2

∥∥S(a)− ud
∥∥2
L2(Ω)

over a ∈ Aad.

Since it is well established that this problem and other similar reformulations are ill-posed, see
e.g. [1, 12, 26], it is necessary to introduce more knowledge of the possible or likely diffusion
parameter function a ∈ Aad into the formulation, see [10, 16] for example.

We propose to consider the situation, where it is known or assumed that the logarithm of
the diffusion parameter function a ∈ Aad, which is to be reconstructed, can be approximated
by a sparse linear combination of the elements of a known bounded sequence ψ = (ψk)k∈Λ ⊂
L∞(Ω), where the index set Λ is countable but may be finite or infinite. That is, we assume
that we have

log(a) ≈
∑

k∈Λ

bkψk

for some sparse sequence b = (bk)k∈Λ ∈ R
Λ.

For this, we first introduce the sequence spaces `p with 1 ≤ p <∞ and `∞ by

`p :=

{
v ∈ R

Λ :
∑

k∈Λ

|vk|
p <∞

}
, ‖v‖`p :=

(∑

k∈Λ

|vk|
p

)1/p

,

`∞ :=
{
v ∈ R

Λ : max
k∈Λ
|vk| <∞

}
, ‖v‖`∞ := max

k∈Λ
|vk|



4 L. FELBER, H. HARBRECHT, AND M. SCHMIDLIN

and the y-weighted sequence spaces `py with 1 ≤ p <∞ and `∞y by

`py :=

{
v ∈ R

Λ :
∑

k∈Λ

|ykvk|
p <∞

}
, ‖v‖`py :=

(∑

k∈Λ

|ykvk|
p

)1/p

,

`∞y :=
{
v ∈ R

Λ : max
k∈Λ
|ykvk| <∞

}
, ‖v‖`∞

y
:= max

k∈Λ
|ykvk|

for any y ∈ R
Λ
>0. With these at hand, we define the expansion mapping E : `1 → L∞(Ω) by

(2.2) E(b) :=
∑

k∈Λ

bkψk.

Hence, we are proposing to search for the diffusion parameter function in the subspace

{
exp

(
E(b)

)
: b ∈ `1

}
⊂ Aad

and thus define the data misfit mapping M : `1 → L2(Ω) and the data fidelity functional

F : `1 → R by

(2.3) M(b) := S
(
exp

(
E(b)

))
− ud and F(b) :=

1

2

∥∥M(b)
∥∥2
L2(Ω)

.

The corresponding optimal control problem thus now simply reads:

minimise F(b) over b ∈ `1.

Now it is known, at least if we had the space `2 instead of `1, cf. [8, 13], that to encourage
sparsity one may introduce the w-weighted `1-regularisation term R : `1µ → R defined by

(2.4) R(b) :=
∑

k∈Λ

wk|bk|,

where w ∈ R
Λ
≥0 is a non-negative sequence. In order for (2.4) to be welldefined, we assume

that the positive sequence µ ∈ R
Λ
>0 is such that

µk ≥ µ and µk ≥ wk

holds for all k ∈ Λ for some µ ∈ R>0. Additionally, when Λ is an infinite set, we assume
that w and therefore also µ tend to infinity. With this, we finally arrive at the regularised
minimisation problem

(2.5) minimise J(b) :=
1

2

∥∥M(b)
∥∥2
L2(Ω)

+R(b) over b ∈ `1µ.

Note that for the rest of the article, we choose to rig the `p-sequence spaces and the
y-weighted `p-sequence spaces over Λ around the Hilbert space `2 with its associated scalar
product

〈d, b〉 :=
∑

k∈Λ

dkbk.
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This then yields the following schema of spaces with canonical embeddings and identifications
of duals under the duality product 〈·, ·〉, where 1 < p, q < ∞ are conjugate indices, that is
1/p+ 1/q = 1:

`q

`1y `∞

`2

`1 `∞
y−1

`p

(`1y)
∗ = `∞y−1

(`1)∗ = `∞

(`p)∗ = `q

(`2)∗ = `2

(`q)∗ = `p

Especially, the dual of a space on the left side is thus identified with the space lying diagonally
opposite it. Lastly, for any v,u ∈ R

Λ, we define v ·u := (vkuk)k∈Λ and we set v−1 := (v−1
k )k∈Λ

for any v ∈ R
Λ
6=0.

3. Derivatives and first order optimality conditions.

3.1. Derivatives of the data misfit and data fidelity terms. We shall next consider the
behaviour of the data misfit mapping M and the data fidelity functional F . To this end,
we show the following lemma which provides the Fréchet derivatives of the problem under
consideration.

Lemma 3.1. Both M : `1 → L2(Ω) and F : `1 → R are Fréchet differentiable and their

derivatives are given by

M ′(b)[d] = u′ and F ′(b)[d] = −
(
aE(d)∇u,∇p

)
L2(Ω)

,

where, with a = exp
(
E(b)

)
and u = S(a), that is u solves

− div(a∇u) = f in Ω, u = g on Γ,

u′ ∈ H1
0 (Ω) is the solution of the boundary value problem

− div(a∇u′) = div
(
aE(d)∇u

)
in Ω, u′ = 0 on Γ,

and the adjoint state p ∈ H1
0 (Ω) satisfies the boundary value problem

− div(a∇p) = u− ud in Ω, p = 0 on Γ.

Proof. In accordance with e.g. [1, 15], S is Fréchet differentiable and S′(a) is given by
S′(a)[v] = u′, where u′ is the solution of the boundary value problem

− div(a∇u′) = div(v∇u) in Ω, u′ = 0 on Γ,

with u = S(a). Moreover, E is a bounded linear map and, hence, also Fréchet differentiable
with E′(b)[v] = E(v), while

exp: L∞(Ω)→ L∞(Ω), a 7→
∞∑

j=0

aj

j!
,
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being a globally converging power series on the Banach algebra L∞(Ω), is Fréchet differentiable
with

exp′(a)[v] =

∞∑

j=1

aj−1jv

j!
=

∞∑

j=0

aj

j!
v = exp(a)v.

Now simply applying the chain rule for Fréchet derivatives on M = S ◦ exp ◦E yields the
assertions for M .

The Fréchet differentiability of F is again a consequence of the chain rule. Using it and
the adjoint state p, we arrive at

F ′(b)[d] =
(
u− ud,M

′(b)[d]
)
L2(Ω)

= (u− ud, u
′)L2(Ω) = −

(
div(a∇p), u′

)
L2(Ω)

.

The formula for F ′(b) then obviously follows by integration by parts,

−
(
div(a∇p), u′

)
L2(Ω)

= −
(
p, div(a∇u′)

)
L2(Ω)

=
(
p, div

(
aE(d)∇u

))
L2(Ω)

= −
(
aE(d)∇u,∇p

)
L2(Ω)

.

Remark 3.2. It is well known that the parameter-to-state mapping S : Aad → H1(Ω) is a
real analytic mapping, see e.g. [7, Section 2.1]. Therefore, as the mappings exp and E are
obviously also real analytic, it follows by the chain rule for analytic mappings that both M
and F are real analytic mappings and thus indeed infinitely Fréchet differentiable.

3.2. Generalised derivative of the regularisation term. In order to derive a first order
necessary condition for any minimiser of J , we now consider the regularisation term. Since
R : `1µ → R is obviously locally Lipschitz, it is generalised differentiable everywhere, cf. [6,
Proposition 2.1.2], and its generalised derivative is characterised as follows.

Lemma 3.3. The functional R : `1µ → R is generalised differentiable and its generalised

derivative is given by

∂R(b) =
{
ξθ ∈ `

∞
µ−1 : θ ∈ Θ(b)

}
with ξθ = (θkwk)k∈Λ,

where

Θ(b) :=
{
θ ∈ [−1, 1]Λ : θk = 1 if bk > 0 and θk = −1 if bk < 0 for all k ∈ Λ

}
.

Note that we have used the identification of the dual (`1µ)
∗ = `∞

µ−1 here, so that a ξθ is indeed

representing a linear functional under 〈·, ·〉,

〈ξθ,d〉 =
∑

k∈Λ

θkwkdk.

Proof. As R : `1µ → R is not only locally Lipschitz but also convex, we know that R has a
subderivative everywhere. This is equal to the generalised derivative. We also know that the
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generalised directional derivative R◦(b; d) simply equals the directional derivative R′(b; d), see
[6, Proposition 2.2.7],

R◦(b;d) := lim sup
y→b, ε↓0

R(y + εd)−R(y)

ε
= lim

ε↓0

R(b+ εd)−R(b)

ε
=: R′(b;d).

With this we have

R◦(b;d) = lim
ε↓0

∑

k∈Λ

wk
|bk + εdk| − |bk|

ε
≤

∑

k∈Λ

wk|dk| ≤ ‖d‖`1µ .

Next, we will prove

lim
ε↓0

∑

k∈Λ, bk 6=0

wk
|bk + εdk| − |bk|

ε
=

∑

k∈Λ, bk>0

wkdk −
∑

k∈Λ, bk<0

wkdk.

To that end, let (εj)j∈N ⊂ R be an arbitrary sequence fulfilling εj ↓ 0. We fix an arbitrary
δ > 0 and can then find a finite set Λδ ⊂ Λ such that

∑

k∈Λ\Λδ

µk|dk| ≤
δ

2
,

which we use to introduce mδ := min{|bk| : k ∈ Λδ with bk 6= 0}. Clearly, we have mδ > 0
and, therefore, there is a jδ ∈ N such that

εj‖d‖`1µ ≤ µ
mδ

2

holds for all j ≥ jδ. Thus, for all j ≥ jδ and all k ∈ Λδ with bk 6= 0, we have

εj |dk| ≤
µk
µ
εjdk ≤

1

µ
εj‖d‖`1µ ≤

mδ

2
,

which implies that bk + εjdk has the same sign as bk. Consequently, for all j ≥ jδ, we have

∑

k∈Λδ , bk 6=0

wk
|bk + εjdk| − |bk|

εj
=

∑

k∈Λδ , bk>0

wkdk −
∑

k∈Λδ , bk<0

wkdk

and we arrive at

∣∣∣∣∣
∑

k∈Λ, bk 6=0

wk
|bk + εjdk| − |bk|

ε
−

∑

k∈Λ, bk>0

wkdk +
∑

k∈Λ, bk<0

wkdk

∣∣∣∣∣ ≤ 2
∑

k∈Λ\Λδ , bk 6=0

wk|dk|.

As we have

2
∑

k∈Λ\Λδ , bk 6=0

wk|dk| ≤ 2
∑

k∈Λ\Λδ

wk|dk| ≤ 2
∑

k∈Λ\Λδ

µk|dk| ≤ δ
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and δ > 0 was arbitrary, this shows

lim
j→∞

∑

k∈Λ, bk 6=0

wk
|bk + εjdk| − |bk|

εj
=

∑

k∈Λ, bk>0

wkdk −
∑

k∈Λ, bk<0

wkdk.

Lastly, it is immediately evident that

lim
ε↓0

∑

k∈Λ, bk=0

wk
|bk + εdk| − |bk|

εj
= lim

ε↓0

∑

k∈Λ, bk=0

wk
ε|dk|

εj
=

∑

k∈Λ, bk=0

wk|dk|,

which proves

R◦(b;d) =
∑

k∈Λ, bk>0

wkdk −
∑

k∈Λ, bk<0

wkdk +
∑

k∈Λ, bk=0

wk|dk|.

Finally, let ξ ∈ `∞
µ−1 fulfilR

◦(b;d) ≥ 〈ξ,d〉 for all d ∈ `1µ. Now, we introduce the sequences

e(j) ∈ `1µ for j ∈ Λ defined by e
(j)
k = δj,k. Obviously, we have

ξk = 〈ξ, e(k)〉 ≤ R◦(b; e(k)) and ξk = −〈ξ,−e(k)〉 ≥ −R◦(b;−e(k))

for every k ∈ Λ. If bk > 0 this yields ξk = wk and, similarily, ξk = −wk, when bk < 0. For
bk = 0 we simply get |ξk| ≤ wk. Hence, there is a θ ∈ Θ(b) such that ξ = ξθ. Conversely,
since for every θ ∈ Θ(b) we clearly have R◦(b;d) ≥ 〈ξθ,d〉 for all d ∈ `

1
µ, it follows that

∂R(b) =
{
ξθ : θ ∈ Θ(b)

}
.

3.3. The first order optimality condition. Using the results of the previous two subsec-
tions, it follows that J : `1µ → R is generalised differentiable everywhere, cf. [6, Proposition
2.3.3], and this implies a necessary first order condition for any local minimiser of J , see [6,
Proposition 2.3.2]. Moreover, the formula for the generalised derivative follows by [6, Corollary
1 of Proposition 2.3.3].

Proposition 3.4. The generalised derivative of J is given by

∂J(b) = F ′(b) + ∂R(b) ⊂ `∞µ−1 .

Moreover, any local minimiser b? of J must fulfil 0 ∈ ∂J(b?) ⊂ `∞
µ−1.

Considering a local minimiser b? of J , we set g? := F ′(b?) ∈ `∞ ⊂ `∞
µ−1 . Then, we have

to have g? + ξθ = 0 for some θ ∈ Θ(b?), which we can also state as

(3.1)





g?k = −wk, if b?k > 0,

g?k = wk, if b?k < 0,

|g?k| ≤ wk, if b?k = 0.

Since we know that the terms g?k are bounded while the terms wk tend to infinity, it follows
that the first two cases, and hence b?k 6= 0, can only occur for finitely many k. Thus, we can
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conclude what is already known to be true for the Hilbert space setting: any minimiser of
(2.5) is sparse in the sense that it is a finitely supported sequence.

Nonetheless, this first order optimality condition is not well-suited for numerical exploita-
tion. Therefore, we proceed to show that the soft-threshold based first order optimality
condition used in a Hilbert space setting, i.e. for F : `2 → R, see [8, 13] for example, applies
to our non-reflexive, non-smooth Banach space setting with F : `1 → R also.

To this end, we introduce the soft-threshold operator Tw : RΛ → R
Λ by

(3.2) Tw(b) :=
(
sgn(bk)max

{
0, |bk| − wk

})
k∈Λ

.

Then, as is already known in the Hilbert space setting, we have the following equivalence.

Theorem 3.5. The first order optimality condition (3.1) is equivalent to

(3.3) b? = T s·w

(
b? − s · F ′(b?)

)

where s ∈ R
Λ
>0 is any arbitrarily chosen positive sequence. Moreover, the first order optimality

condition (3.1) implies (3.3) for any arbitrarily chosen non-negative sequence s ∈ R
Λ
≥0.

Proof. Let g? := F ′(b?). We first assume that condition (3.1) holds. Then, the elements
of the sequence T s·w(b

? − s · g?) are given by

sgn(b?k − skg
?
k)max

{
0, |b?k − skg

?
k| − skwk

}

=





sgn(b?k + skwk)max
{
0, |b?k + skwk| − skwk

}
= b?k, when b?k > 0,

sgn(b?k − skwk)max
{
0, |b?k − skwk| − skwk

}
= b?k, when b?k < 0,

sgn(−skg
?
k)max

{
0, |skg

?
k| − skwk

}
= 0 = b?k, when b?k = 0,

when sk ≥ 0 holds for all k ∈ Λ. This proves that condition (3.3) is fulfilled.
Now, let us assume that condition (3.3) holds for an arbitrarily chosen positive sequence

s ∈ R
Λ
>0. Then, b

? = T s·w(b
? − s · g?) and we have

b?k = sgn(b?k − skg
?
k)max

{
0, |b?k − skg

?
k| − skwk

}

for all k ∈ Λ. If b?k > 0, we necessarily have

b?k − skg
?
k > 0 and b?k = |b?k − skg

?
k| − skwk

as the sign-term must be positive and the max-term cannot equal 0, respectively. However,
this implies

b?k = b?k − skg
?
k − skwk or equivalently g?k = −wk.

Mutatis mutandis, when b?k < 0, we arrive at

b?k = b?k − skg
?
k + skwk or equivalently g?k = wk.
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Finally, if b?k = 0, we have

0 = sgn(−skg
?
k)max

{
0, |skg

?
k| − skwk

}

which implies

|skg
?
k| − skwk ≤ 0 or equivalently |g?k| ≤ wk.

Hence, we have that condition (3.1) is fulfilled.

It is informative to consider in which spaces the terms in the right-hand side of the first
order optimality condition (3.3) lie. For this, we will restrict the possible choices of the step
size parameter s ∈ R

Λ
≥0 slightly: We assume that there is a c ∈ R>0 such that

(3.4) sk ≥
c

µk

holds for all k ∈ Λ. Note that when Λ is a finite index set this simply means that sk > 0
holds for all k ∈ Λ, however, when Λ is an infinite index set, then µk tends to infinity and
(3.4) simply means that we are requiring that sk does not tend to zero faster than µ−1

k does.
Especially, (3.4) allows one to choose a sequence s that is simply a positive constant or one
that tends to infinity.

Using (3.4) we now have b? ∈ `1µ ↪→ `∞µ ↪→ `∞
s−1 and since F ′(b?) ∈ `∞, we also have

s ·F ′(b?) ∈ `∞
s−1 . Hence, the term appearing as the argument in the soft-thresholding operator

lies in `∞
s−1 . Now, for v ∈ `

∞
s−1 , we have that

‖v‖`∞
s−1

= max
k∈Λ

s−1
k |vk| <∞

while the elements of T s·w(v) are given by

sgn(vk)max
{
0, |vk| − skwk

}
.

Since we know that the terms s−1
k |vk| are bounded while the wk tend to infinity, it follows

that the sequence T s·w(v) has finite support and we thus also have T s·w(v) ∈ `
1
µ. In view

of (3.3), we will consider the soft-threshold operator as a map T s·w : `∞
s−1 → `1µ from here on

out.

Remark 3.6. We note that, if we have 1 < p, q < ∞ with 1/p + 1/q = 1 and F : `p → R,
then all the previous results also hold by replacing `1 with `p and `∞ with `q. In this case,
instead of assuming that w tends to infinity, it suffices to assume that 0 is not an accumulation
point of w. Hence, µ also needs not tend to infinity but it still must be bounded away from
zero uniformly. For p = 2, we thus essentially recover the classic setting considered in works
such as [2, 8, 13, 22]. Indeed, since R(b) =∞ for all b ∈ `2 \ `1µ, the minimisation task

minimise F(b) +R(b) over b ∈ `2

with F : `2 → R is obviously equivalent to the setting given by

minimise F(b) +R(b) over b ∈ `1µ.
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4. Optimisation Methods. Using the fixed-point equation (3.3), we now discuss the op-
timisation methods that we will utilise to solve our problem (2.5). Before we investigate
the possibility of second order methods, we introduce versions of two well-known first order
methods adapted to our non-reflexive, non-smooth Banach space setting.

4.1. Simple fixed point methods. First, we can directly use (3.3) to define the fixed-point
iteration

bj := T sj ·w

(
bj−1 − sj · F

′(bj−1)
)

starting from some initial value b0. With some strategy for choosing the step sizes sj ∈ R
Λ
≥0

this will yield a kind of `1 space version of the known ISTA method, cf. [8]. Note that the `1

space setting means that step size strategies commonly employed in the Hilbert space setting
are not necessarily justified. For example, the strategy used in [2, 20], derives from the fact
that the iterate bj defined by

bj := T λjw

(
bj−1 − λjF

′(bj−1)
)

with a scalar step size λj ∈ R>0 indeed is the minimiser of the surrogate functional

Jj(b) := F(bj−1) +
〈
F ′(bj−1), b− bj−1

〉
+R(b) +

1

2λj
‖b− bj−1‖

2
`2 .

Now, if F ′ is Lipschitz with respect to the `2-norm, this surrogate provably fulfils Jj(b) ≥ J(b)
when λj is chosen small enough. However, in our setting we generally only might have that F ′

is Lipschitz with respect to the stronger `1-norm and hence cannot guarantee that Jj(b) ≥ J(b)
holds even if λj is chosen arbitrarily close to 0.

An obvious strategy for choosing the step size is to choose a fixed base step size s ∈ R
Λ
≥0

that fulfils (3.4) and then scale it in each step with some step size multiplier λj ∈ R>0, i.e.
one uses

sj := λjs.

A simple heuristic approach for determining a suitable step size multiplier is given in the
following Algorithm 4.1. In it, to determine the step size multiplier for every iterate, one
first tries a step using the initial or previous step size multiplier, if taking this step does not
reduce the value of the functional, one successively halves the multiplier until it does (lines
5–8). Then, if one did not need to decrease the multiplier, one doubles the multiplier if this
manages to decrease the value of the functional sufficiently more (lines 10–15). Finally, if one
did not increase the multiplier, one halves it if this still manages to decrease the value of the
functional sufficiently much (lines 16–20). The parameter, which controls when a decrease is
sufficient, is the greediness parameter σ ∈ [0, 1]. For σ close to zero it only allows the step
size multiplier to double, if this also nearly doubles the decrease, while for σ close to one it
also allows the step size multiplier to double, as long as the decrease stays the same.

Next, by applying the acceleration from [24] to this version of the ISTA method, we arrive
at the following non-Hilbert space version of the FISTA method, cf. [2], given in Algorithm 4.2.
Note that compared to the ISTA method, the FISTA method as stated will not guarantee
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strict monotonicity of the values of the functional J(bj). To ensure strict monotonicity, we can
modify it to reject any step where monotonicity would be violated and restart the acceleration.
Since the first iterate computed after (re)starting the acceleration is precisely a normal ISTA
iterate this indeed quarantees strict monotonicity and shows that at worst, when such a
restarted FISTA method is restarting for every iterate, it coincides with the ISTA method.

Algorithm 4.1 ISTA: Iterated Soft-Thresholding Algorithm

Require: Initial value b0, initial step size multiplier λ0 > 0, base step size s,
greediness parameter σ ∈ [0, 1] for determining step size multiplier

1: for j ← 1, 2, 3, . . . do
2: λj ← λj−1

3: bj ← T λjs·w

(
bj−1 − λjs · F

′(bj−1)
)

4: grow ← true
5: while J(bj) ≥ J(bj−1) do
6: λj ←

1
2λj

7: bj ← T λjs·w

(
bj−1 − λjs · F

′(bj−1)
)

8: grow ← false
9: shrink ← true

10: if grow = true then

11: c ← T 2λjs·w

(
bj−1 − 2λjs · F

′(bj−1)
)

12: if J(c) ≤ J(bj−1) +
2

σ+1

(
J(bj)− J(bj−1)

)
then

13: λj ← 2λj
14: bj ← c

15: shrink ← false
16: if shrink = true then

17: c ← T 1
2
λjs·w

(
bj−1 −

1
2λjs · F

′(bj−1)
)

18: if J(c) < J(bj−1) +
σ+1
2

(
J(bj)− J(bj−1)

)
then

19: λj ←
1
2λj

20: bj ← c

Algorithm 4.2 FISTA: Fast Iterated Soft-Thresholding Algorithm

Require: Initial value b0, initial step size multiplier λ0 > 0, base step size s,
greediness parameter σ ∈ [0, 1] for determining step size multiplier

1: t0 ← 1
2: q0 ← b0
3: for j ← 1, 2, 3, . . . do
4: Compute lines 2–20 in Algorithm 4.1 with bj−1 replaced by qj−1

5: tj ←
1
2

(
1 + (1 + 4t2j−1)

1/2
)

6: qj ← bj +
tj−1−1

tj
(bj − bj−1)

4.2. Newton differentiability of the soft-threshold operator. As is well known and as
we will see later on in the numerical experiments, the simple fixed-point methods given above
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are fairly slow in their convergence. However, as was done in e.g. [13, 22], we wish to consider
semismooth Newton methods for solving (3.3), cf. [5]. To justify this, we extend the result
from [13, Proposition 3.3] asserting that the soft-threshold operator is Newton differentiable as
a map from `p to `r for abitrary 1 ≤ p <∞ and 1 ≤ r ≤ ∞ by proving that the soft-threshold
operator is indeed also Newton differentiable as a map from `∞

s−1 to `1µ.

Lemma 4.1. The soft-threshold operator T s·w : `∞
s−1 → `1µ is Newton differentiable and

t◦s·w : `∞
s−1 → L(`

∞
s−1 , `

1
µ) defined by

t◦s·w(v)[h] :=

({
hk, when |vk| > skwk,
0, when |vk| ≤ skwk,

)

k∈Λ

is a slanting function for T s·w on the whole of `∞
s−1.

Proof. As the elements of w tend to infinity, when Λ is not finite, we know that

Λv :=
{
k ∈ Λ : wk < ‖v‖`∞

s−1
+ 1

}

is a finite set. For any h ∈ `∞
s−1 with ‖h‖`∞

s−1
≤ 1 and any k ∈ Λ \ Λv, we then have that

s−1
k |vk + hk| ≤ ‖v + h‖`∞

s−1
≤ ‖v‖`∞

s−1
+ 1 ≤ wk

and, therefore, the elements of T s·w(v + h), T s·w(v) and t◦s·w(v + h)[h] at index k are all
zero.

Now, we split the set Λv into the active, edge-case and inactive indices:

Λa
v :=

{
k ∈ Λv : |vk| > skwk

}
,

Λe
v :=

{
k ∈ Λv : |vk| = skwk

}
,

Λi
v :=

{
k ∈ Λv : |vk| < skwk

}
.

Obviously, for any h ∈ `∞
s−1 the difference of the elements of T s·w(v + h) and T s·w(v) at

index k is equal to t◦s·w(v + h)[h] at index k for k ∈ Λe
v. Next, we introduce

δ := min
k∈Λa

v
∪Λi

v

∣∣|vk| − skwk

∣∣ > 0.

For any h ∈ `∞
s−1 with ‖h‖`∞

s−1
≤ δ we have that the elements of T s·w(v + h), T s·w(v) and

t◦s·w(v + h)[h] at index k are all zero for k ∈ Λi
v. Similarly, the difference of the elements of

T s·w(v + h) and T s·w(v) at index k is equal to t◦s·w(v + h)[h] at index k for k ∈ Λa
v.

Combining all this shows that we have

T s·w(v + h)− T s·w(v)− t
◦
s·w(v + h)[h] = 0 ∈ `1µ

for any h ∈ `∞
s−1 with ‖h‖`∞

s−1
≤ min{1, δ} and thus

lim
‖h‖`∞

s−1
→0

∥∥T s·w(v + h)− T s·w(v)− t
◦
s·w(v + h)[h]

∥∥
`1µ

‖h‖`∞
s−1

= 0
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holds, proving that T s·w is Newton differentiable and t◦s·w is a slanting function for T s·w on
the whole of `∞

s−1 .

4.3. Semismooth methods. Since F : `1 → R is twice Fréchet differentiable with F ′′

being locally Lipschitz, cf. Remark 3.2, it is possible to use the Newton differentiabilty of
T s·w and a chain rule for Newton differentiability to derive a semismooth Newton method for
solving (3.3), see [22].

For this, we introduce the indicator sequences as follows: Given some iterate bj−1 and
step length sj , we define the upper active indicator by

ia+j :=

({
1, when

[
bj−1 − sj · F

′(bj−1)
]
k
> [sj ·w]k,

0, else,

)

k∈Λ

and the lower active indicator by

ia−j :=

({
1, when

[
bj−1 − sj · F

′(bj−1)
]
k
< −[sj ·w]k,

0, else,

)

k∈Λ

.

The active and inactive indicators are now defined by iaj := i
a+
j + ia−j and iij := i− i

a
j , where

i := (1)k∈Λ. The corresponding active sets are obviously given by

Λt
j :=

{
k ∈ Λ :

[
itj
]
k
= 1

}

for t ∈ {a+, a−, a, i}.
Now, given the iterate bj−1 and step length sj , the next iterate bj of the semismooth

Newton method applied to the equation

0 = b− T sj ·w

(
b− sj · F

′(b)
)

is defined by

bj := i
a
j · bj−1 − dj ,

where dj fulfils the equations

(4.1)
iij · dj = 0,

iaj · F
′′(bj−1)

[
iaj · dj

]
= iaj · F

′(bj−1)± i
a±
j ·w − i

a
j · F

′′(bj−1)
[
iij · bj−1

]
,

where ±ia±j · w = ia+j · w − i
a−
j · w, cf. [22]. Note that the first equation in (4.1) directly

prescribes the value of 0 to dj at all indices in the inactive set Λi
j , while the second equation

in (4.1) only depends on the values of dj at indices in the active set Λa
j .

Moreover, since the active set is of finite cardinality, the linear map

v 7→ iaj · F
′′(bj−1)

[
iaj · v

]

can be understood as a square matrix Hj which maps the finite dimensional space R
Λa
j into

itself. Therefore, as the right-hand side of the second equation in (4.1) also lies in R
Λa
j , we know
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that dj is uniquely defined if and only if Hj has full rank. However, while Lemma 3.1 shows
that, as is well known for such problems, the derivative F ′(b) may be computed efficiently by
simply solving two boundary value problems, the computation of the Hessian F ′′(b) is known
to be more expensive. In [22], the authors thus propose to replace the exact Hessian with an
approximation, i.e. the use of a semismooth quasi-Newton method.

In contrast to this, given the structure of our problem, we consider a Gauss-Newton type
of modification instead. That is, given the iterate bj−1, one defines the local approximation
of F by

Fj(b) :=
1

2

∥∥M(bj−1) +M ′(bj−1)[b− bj−1]
∥∥2
L2(Ω)

,

compare (2.3) for the precise definition of the operatorsM and F . Then using the step length
sj , one computes the next iterate bj by a single step of the semismooth Newton method
applied to the equation

0 = b− T sj ·w

(
b− sj · F

′
j(b)

)

from the iterate bj−1. Since by construction Fj(bj−1) = F(bj−1) and F ′
j(bj−1) = F ′(bj−1)

hold, the active and inactive indicators and sets are the same as before and we arrive at

bj := i
a
j · bj−1 − dj ,

where dj instead fulfils the equations

(4.2)
iij · dj = 0,

iaj · F
′′
j (bj−1)

[
iaj · dj

]
= iaj · F

′
j(bj−1)± i

a±
j ·w − i

a
j · F

′′
j (bj−1)

[
iij · bj−1

]
.

As Fj is a quadratic polynomial over the Banach space `1, its second order Fréchet derivative
is simply given by

〈
F ′′
j (bj−1)[v1],v2

〉
= F ′′

j (bj−1)[v1,v2] =
(
M ′(bj−1)[v2],M

′(bj−1)[v1]
)
L2(Ω)

.

Hence, the second order Fréchet derivative results in a symmetric and positive semidefinite
matrix Hj when one restricts it onto the finite subspace R

Λa
j .

However, this Gauss-Newton type approach still leaves us with the challenge of solving a
linear system of equations with a symmetric and positive semidefinite matrix. To overcome
this, it is natural to consider a Levenberg-Marquardt type stabilisation of the system matrix.
As a suitable step size sj is needed to be determine the active sets, we propose that the
stabilisation is derived by considering the fixed-point iterate in the ISTA algorithm using the
same step size. For this, we notice that the fixed-point step with step size sj ,

bj := T sj ·w

(
bj−1 − sj · F

′(bj−1)
)
,

also can be given by

bj := i
a
j · bj−1 − dj ,
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where dj instead fulfils the equations

(4.3)
iij · dj = 0,

iaj · s
−1
j · dj = i

a
j · F

′
j(bj−1)± i

a±
j ·w.

Specifically, we propose that one blends the equation (4.2), defining a Gauss-Newton type
update, in a sigmoidal manner with the equation (4.3), defining the fixed-point update. For
κ ∈ R, we may combine the equations using the weights 1

1+2κ and 1
2−κ+1

yielding the equations

(4.4)

iij · dj = 0,

1

1 + 2κ
iaj · F

′′
j (bj−1)

[
iaj · dj

]
+

1

2−κ + 1
iaj · s

−1
j · dj

= iaj · F
′
j(bj−1)± i

a±
j ·w −

1

1 + 2κ
iaj · F

′′
j (bj−1)

[
iij · bj−1

]
.

for computing a Levenberg-Marquardt type update. This symmetric and positive definite
equation simply can be solved approximately by the CG-method for example. By using a sim-
ple strategy for de- and increasing the stabilisation parameter κ, we arrive at the method de-
scribed in Algorithm 4.3, called the Active Set Iterated Soft-Threshold Algorithm (ASISTA).

Algorithm 4.3 ASISTA: Active Set Iterated Soft-Threshold Algorithm

Require: Initial value b0, initial step size multiplier λ0 > 0, base step size s,
greediness parameter σ ∈ [0, 1] for determining step size multiplier

1: κ ← 0
2: d0 ← 0

3: for j ← 1, 2, 3, . . . do
4: Compute lines 2–20 in Algorithm 4.1
5: Compute the indicators ia+j , ia−j , iaj and iij
6: stepok ← false
7: shrink ← true
8: while stepok = false do

9: dj ←
1

1+2κ i
a
j · dj−1 +

1
2−κ+1

(bj−1 − bj)
10: Update dj to approximately fulfil (4.4) using CG
11: cj ← iaj · bj−1 − dj
12: if J(bj−1) ≤ J(cj) then
13: κ ← κ+ 1
14: shrink ← false
15: else

16: if J(bj) < J(cj) or CG did not converge sufficiently then

17: shrink ← false
18: stepok ← true
19: bj ← cj
20: if shrink = true then

21: κ ← κ− 1
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Again, by simply applying the acceleration from [24] to ASISTA, we also introduce the
corresponding method given in Algorithm 4.4, which we call the Fast Active Set Iterated
Soft-Threshold Algorithm (FASISTA). As is with FISTA, FASISTA also does not ensure strict
monotonicity as stated but can be modified to do so by rejecting any step where monotonicity
would be violated and restarting the acceleration.

Algorithm 4.4 FASISTA: Fast Active Set Iterated Soft-Threshold Algorithm

Require: Initial value b0, initial step size multiplier λ0 > 0, base step size s,
greediness parameter σ ∈ [0, 1] for determining step size multiplier

1: κ ← 0
2: d0 ← 0

3: for j ← 1, 2, 3, . . . do
4: Compute lines 4–21 in Algorithm 4.3 with bj−1 replaced by qj−1

5: tj ←
1
2

(
1 + (1 + 4t2j−1)

1/2
)

6: qj ← bj +
tj−1−1

tj
(bj − bj−1)

Remark 4.2. Again, we note that all the results in this section also hold when one has
F : `p → R with 1 < p, q < ∞ that fulfils 1/p + 1/q = 1, if one replaces `1 with `p and `∞

with `q, cf. Remark 3.6. For the case p = 2, we then can observe that the methods defined
by the equations (4.1), (4.2) and (4.4) can also be derived as inexact proximal Newton-type
methods, see [19]. For this, one simply approximates the smooth part of the functional F in
each step as is done in the Newton, Gauss-Newton or Levenberg-Marquardt methods and then
approximately solves the subproblem using a single step of the semismooth Newton method
from [13]. Therefore in this case, ASISTA might be considered to be an inexact proximal
Levenberg-Marquardt-type method.

5. Remarks on discretisation. To solve the optimal control problem (2.5) with the opti-
misation algorithms, we need to discretise the partial differential equations as well as choose
an appropriate bounded sequence ψ for the expansion.

For the sake of simplicity, we assume from here on that the domain Ω is the unit square
Ω := (0, 1)2. Then, for some given N ∈ N, we denote the set of all square elements that are
formed by subdividing the square into N2 square elements of side length h := N−1 by QN .

5.1. Discretisation of the parameter-to-state mapping. We straightforwardly utilise bi-
linear finite elements and discretise the partial differential equation in their weak form using
the Galerkin method. For this, we introduce the space of bilinear finite element functions

VN :=
{
u ∈ C(Ω) : u is bilinear on every element Q ∈ QN and u = 0 on Γ

}

and let (φi)
n
i=1 with n = (N − 1)2 be the nodal basis of VN . For the discretisation of the

diffusion coefficient a, we also introduce the space of element-wise constant finite element
functions

WN :=
{
a ∈ L∞(Ω) : a is constant on every element Q ∈ QN

}
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and let (χi)
m
i=1 with m = N2 be the basis of WN that is made up of all the indicator functions

of the elements, i.e. the functions 1Q for Q ∈ QN . Now, for functions v ∈ VN and w ∈ WN ,
we denote their coefficients with respect to the correspondig bases by v̂ and ŵ.

We will assume that the sequence defining the expansion lies inWN . That is the expansion
a = E(b) can be defined by â = Eb for all b ∈ `1, where E ∈ R

m×Λ is a (possibly semi-infinite)
matrix. Moreover, for a more concise exposition, we will assume that ug−ud lies in VN , where
ug is the H1-extension of g and ud the measurement. In practise this might be enforced by
replacing ug and ud with some approximations of them in VN .

Considering the weak formulation of (2.1), we define the stiffness matrix with coefficient
a ∈WN by

Aa =

[∫

Ω
a(x)

〈
∇φj(x),∇φi(x)

〉
dx

]

i,j

∈ R
n×n

and the right-hand side using the H1-extension ug ∈ H
1(Ω) of g by

fa =

[∫

Ω
f(x)φi(x) dx−

∫

Ω
a(x)

〈
∇ug(x),∇φi(x)

〉
dx

]

i

∈ R
n.

Now, for â = Eb, we have that the Galerkin approximation of (2.1) is given by

u = u0 + ug, where û0 = A
−1
a fa.

Next, we introduce the mass matrix

M =

[∫

Ω
φj(x)φi(x) dx

]

i,j

∈ R
n×n,

with which we can compute the discretised data fidelity (2.3) as

F(b) =
1

2
(û0 + ûg − ûd)

TM(û0 + ûg − ûd),

and the Galerkin approximation of the adjoint state p by

p̂ = A−1
a M(û0 + ûg − ûd).

Finally, we define the matrix

W a,u0 =

[∫

Ω
a(x)χj(x)

〈
∇(u0 + ug)(x),∇φi(x)

〉
dx

]

i,j

∈ R
n×m

with coefficient a ∈ WN and solution u0 + ug with u0 ∈ VN . Then, it is easy to see that the
discretised derivative of the data fidelity as an element of `∞ is given by

F ′(b) = −ETW T

a,u0
p̂
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and the discretised second derivative of the approximated data fidelity for b = bj−1 is given
by

F ′′
j (b)[v1,v2] = v

T

2E
TW T

a,u0
A−T

a MA−1
a W a,u0Ev1.

5.2. Choice of the parameter expansion. In agreement with the preeceding subsection,
one has to choose a bounded sequence ψ = (ψk)k∈Λ ⊂ WN ⊂ L∞(Ω) which then defines the
expansion (2.2). In this case, the kth column in the (possibly semi-infinite) matrix E ∈ R

m×Λ

is precisely the coefficients ψ̂k. Obviously, while there are a myriad of possible expansions, the
main point to consider here is that log(a) is supposed to be approximated by a fairly sparse
expansion for all likely diffusion parameter functions a ∈ Aad.

However, there is at another point which should be taken into account. As can be seen
in the preceeding subsection, both the expansion E as well as its transpose ET will need
to be applied during every iteration of the optimisation. This means that expansions whose
applications have a computational complexity which scales nearly linearly in max{|Λ|,m}
are preferential to those that scale like the product |Λ|m. This motivates the utilisation
of expansions such as wavelet and wavelet-like expansions or Fourier-type series, when the
logarithm of the diffusion parameter is likely to be cartoon-like or very smooth, respectively.
For our numerical experiments, we will consider the following two choices:

• We choose to only consider the simplest wavelet expansion, that is the isotropic two-
dimensional Haar wavelets. For sake of simplicity, we restrict the possible N to a
power of two, i.e. N = 2L. Note that the Haar wavelets are scaled to have a L∞-norm
of 1, so that they form a bounded sequence. Moreover, the application of both E as
well as ET have a log-linear computational complexity in m = N2 = 4L. For this
expansion, we choose to define µ by setting µk = 2`−1 for all 1 ≤ k ≤ N2, for which
ψk is a wavelet on level `.

Remark 5.1. In general, the use of a Haar wavelet expansion is not necessarily optimal.
If the logarithm of the diffusion parameter is a cartoon-like function, then curvelets,
contourlets and similar bases and frames are likely to have sparser expansions, see
[4, 9, 14]. We also want to point out that one can consider a general domain by
constructing wavelets over any type of finite element discretisation using the approach
of Tausch and White, see [25].

• We consider a two-dimensional discrete cosine series expansion as a simple example
for a Fourier-type expansion. To this end, let k = rk +N(sk − 1) for all 1 ≤ k ≤ N2

with 1 ≤ rk, sk ≤ N , then we define ψk by

ψk =
∑

Q∈QN

cos
(
π(rk − 1)cQ,1

)
cos

(
π(sk − 1)cQ,2

)
1Q,

where (cQ,1, cQ,2) denotes the coordinates of the centre and 1Q the indicator function
of an element Q ∈ QN . Specifically, the expansion that this finite sequence yields
is a rescaled two-dimensional version of the transform known as the type III discrete
cosine transform (DCT-III) or inverse of the type II discrete cosine transform (DCT-
II). Therefore, by rescaling it, one can efficiently compute the application of both E
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as well as ET using fast cosine transform (FCT) algorithms, that have a log-linear
computational complexity in m = N2. For this expansion, we choose to define µ by

setting µk =
√
r2k + s2k for all 1 ≤ k ≤ N2.

6. Numerical examples. To illustrate the behaviour of the minimisation methods as well
as that of the regularisation, we consider the reconstruction of the two diffusion parameters
shown in Figure 1, from here on also referred to as phantoms.
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Figure 1. The two diffusion parameters considered in the numerical examples. The phantom on the left
(geometric phantom) consists of three superimposed simple geometric shapes, while the phantom on the right
is inspired by an abdominal cross-section of a human torso (torso phantom).

6.1. Comparison of the minimisation methods. In our first numerical example, we focus
on the behaviour of the minimisation methods, and of the step size strategy. We let the
right-hand sides of (2.1) be f = 1 and g = 0 and consider the reconstruction of the geometric
phantom. For the minimisation methods, we use N2 finite elements to represent the state and
the coefficient as described in Section 5 with N = 27.

The synthetic measurement ud is computed as follows: We compute an approximation ur
of the exact state using N2

r bilinear finite elements with Nr = 28 − 1. This choice ensures
that the associated meshes are not nested. The respective solution ur ∈ VNr is then projected
into the space VN by means of the L2-best approximation, yielding uc. Then, we define the
synthetic measurement by ud := uc + δη, where η ∈ VN indicates white Gaussian noise at the
nodes of the elements defining VN , scaled to fulfil ‖η‖L2(Ω) = ‖uc‖L2(Ω). The noise level is set
to δ := 10−3. This approach results in a relative L2-error in the data that approximately equals
δ, with any deviation from this stemming from the error made in the L2-best approximation.
In our example, this yields the following relative L2- and H1-error in the data,

‖ud − ur‖L2(Ω)

‖ur‖L2(Ω)
≈ 0.0010095, and

‖ud − ur‖H1(Ω)

‖ur‖H1(Ω)
≈ 0.0703314.

For this first example, we choose the Haar wavelet expansion and consider regularisation
weights given by w := %µ. We then use the ISTA, FISTA, ASISTA and FASISTA methods
given in Algorithms 4.1, 4.2, 4.3 and 4.4 to minimise the optimal control problem (2.5), where
we modify FISTA and FASISTA to restart the acceleration to ensure monotonicity. We apply
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all four methods for each greediness parameter σ ∈ {0.3, 0.4, . . . , 0.9} and each regularisation
strength % ∈ {10−11, 10−12, 10−13, 10−14}. The initial value for the methods is b0 := 0 and
the base step size is s = 1. We stop a method when it has solved 42 000 PDEs (forward
and adjoint problems). The CG-solver in the ASISTA and FASISTA methods is declared to
have converged if the relative residual measured in the `∞-norm is smaller than 10−2 and is
otherwise stopped after 50 iterations.

In order to compare the efficiency of the methods, we suggest as the measure of cost
to consider how many PDEs (forward and adjoint problems) the method had to solve to
arrive at its kth iterate. In Figure 2, we plot the distance between the functional at the kth
iterate J(bk) and the estimated minimum value J(b∗) as a function of total number of PDE
solves necessary to compute the kth iterate. The figure shows that the ASISTA and FASISTA
methods generally minimise the functional J more effectively, i.e. they needs fewer PDE solves
than the ISTA and FISTA methods, with FASISTA generally outperforming ASISTA at leas
slightly. Indeed, the figure demonstrates that the ISTA method convergences very slowly and
shows that the FISTA method is truly accelerated. Moreover, while the FISTA method comes
close to matching the performance of the ASISTA method for % = 10−11 and % = 10−12 after
around 10 000 PDE solves, it is simply outperformed for % = 10−13 and % = 10−14.

In Figure 2, the reconstruction of the phantom given by the last iterate of the FASISTA
method using σ = 0.5 is also depicted. These reconstructions show that, while the regular-
isation strengths % = 10−11 and % = 10−14 are over- and underregularising, % = 10−12 and
% = 10−13 are regularising quite effectively.

Figure 3 shows the distance between the functional at the kth iterate J(bk) and the
estimated minimum value J(b∗) as a function of iteration number k. It is noticeable that
ISTA does not seem able to achieve the rate k−1 which is known to hold for the classical
`2-setting, but rather a reduced rate k−1/2. However, for the strongest regularisation with
% = 10−11, it seems that FISTA manages to mostly achieve the rate k−2 that is known to hold
for the classical `2-setting. On the other hand, FISTA also seems to only achieve the reduced
rate k−1 for the weakest regularisation with % = 10−14, while its behaviour for % = 10−12 and
% = 10−13 lies somewhere in between the two extreme cases. Figure 3 also indicates that the
ASISTA and FASISTA methods behave somewhat inversely: For % = 10−14 they seem to be
able to maintain their steep slope magnitude the longest as k increases, while for % = 10−11

they suffer a noticeable decrease in slope magnitude.

6.2. Effectiveness of the regularisation. Our second numerical example focuses on the ef-
fectiveness of the regularisation vis-à-vis noise. The setup of this example is the same as for the
first example with the following changes: We consider the torso phantom and set N = 29 and
Nr = 210 − 1. We consider the six levels of noise δ ∈ {10−1.5, 10−2, 10−2.5, 10−3, 10−3.5, 10−4},
which yield relative L2- and H1-errors in the data as shown in Table 1.

For this second example, we consider both the Haar wavelet expansion and the discrete
cosine expansion. The regularisation weights in both cases are given by w := %µ where we
choose the regularisation strengths % ∈ {10−11, 10−12.5, 10−14, 10−15.5} for the Haar wavelet
expansion and % ∈ {10−10.5, 10−12, 10−13.5, 10−15} for the discrete cosine expansion. We use
the FASISTA method with greediness parameter σ = 0.5 to minimise the optimal control
problem (2.5) and stop it after it has solved 5 000 PDEs (forward and adjoint problems).
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Figure 2. First example: Distance to the estimated minimum (vertical axis), i.e. J(bk) − J(b∗), as a
function of the total number of PDE solves necessary to compute the kth iterate (horizontal axis). The four plots
show the four different regularisation strengths, % = 10−11, 10−12, 10−13, 10−14. For each method, the different
lines correspond to the different choices for the greediness parameter, σ = 0.3, 0.4, . . . , 0.9. The reconstruction
depicted in the lower left of each axis is the last iterate of FASISTA with σ = 0.5.
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Figure 3. First example: Distance to the estimated minimum (vertical axis), i.e. J(bk) − J(b∗), as a
function of iteration number k (horizontal axis). The four plots show the four different regularisation strengths,
% = 10−11, 10−12, 10−13, 10−14. For each method, the different lines correspond to different choices for the
greediness parameter, σ = 0.3, 0.4, . . . , 0.9.



24 L. FELBER, H. HARBRECHT, AND M. SCHMIDLIN

Table 1

Relative L2- and H1-errors in the data for the different noise levels considered in the second example.

δ
‖ud−ur‖L2(Ω)

‖ur‖L2(Ω)

‖ud−ur‖H1(Ω)

‖ur‖H1(Ω)

10−1.5 0.0316228 7.8774228
10−2 0.0100000 2.4926186
10−2.5 0.0031624 0.7889325
10−3 0.0010003 0.2499083
10−3.5 0.0003173 0.0802032
10−4 0.0001032 0.0289778

The resulting reconstructions are shown in Figures 4 and 5. In both cases, higher noise
in the data requires stronger regularisation to be able to sufficiently suppress noise in the
reconstruction. The reconstructions using the discrete cosine expansion shown in Figure 5
suffer from a wrong reconstruction near the centre of the image. This likely happens due to
an interplay between the expansion and the known difficulty of determining the coefficient
near points where the gradient of the state u vanishes, see [17]. The reconstructions using the
Haar wavelet expansion shown in Figure 4 seem to suffer less from this, with that area instead
appearing more pixelated. Generally, the reconstructions in Figure 4 appear very pixelated
for large regularisation strengths by nature of the Haar wavelets.

7. Conclusion. In this article, we considered the reconstruction of an unknown diffusion
coefficient from measurements of the PDE solution inside the domain of interest. This ill-posed
problem was stated as a nonlinear optimal control problem and regularised by sparsity con-
straints for the diffusion coefficient, which was represented by either a Haar wavelet expansion
or a cosine series expansion. We investigated the functional analytic setup and determined
variants of the ISTA and FISTA methods for the minimisation. Moreover, by a novel combi-
nation of known approaches we derived the minimisation methods ASISTA and FASISTA. So
far for all these methods, we can only provide a heuristic line search. The numerical examples
demonstrated that the sparsity constraints can be used to control noise in the reconstruction
and indicated that the ASISTA and FASISTA methods are more efficient than the ISTA and
FISTA methods. Finally, we would like to mention that the ASISTA and FASISTA methods
might be able to be improved further by developing suitable preconditioning for the conjugate
gradient method that is part of their inner iteration.
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discussions. The colour map utilised in the depictions is “CET-L04” from the perceptually
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Figure 4. Second example: Reconstructions using the Haar wavelet expansion. In each row, the regulari-
sation strength decreases from left to right, while in each column the noise level decreases from top to bottom.
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Figure 5. Second example: Reconstructions using the discrete cosine expansion. In each row, the regulari-
sation strength decreases from left to right, while in each column the noise level decreases from top to bottom.
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