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ABSTRACT

COMPUTATIONAL DISCOVERY OF ANIMAL

SMALL RNA GENES AND TARGETS

Dimosthenis Gaidatzis

Biozentrum, University of Basel

Swiss Institute of Bioinformatics

Though recently discovered, small RNAs appear to play a wealth of regulatory

roles, being involved in degradation of target mRNAs, translation silencing of

target genes, chromatin remodeling and transposon silencing. Presented here

are the computational tools that I developed to annotate and characterize

small RNA genes and to identify their targets. One of these tools is oligomap,

a novel software for fast and exhaustive identification of nearly-perfect matches

of small RNAs in sequence databases. Oligomap is part of an automated anno-

tation pipeline used in our laboratory to annotate small RNA sequences. The

application of these tools to samples of small RNAs obtained from mouse and

human germ cells together with subsequent computational analyses lead to

the discovery of a new class of small RNAs which are now called piRNAs. The

computational analysis revealed that piRNAs have a strong uridine preference

at their 5’ end, that unlike miRNAs, piRNAs are not excised from fold-back

precursors but rather from long primary transcripts, and that the genome or-



ganization of their genes is conserved between human and mouse even though

piRNAs on the sequence level are poorly conserved. In vertebrates, the most

studied class of small regulatory RNAs are the miRNAs which bind to mRNAs

and block translation. A computational framework is introduced to identify

miRNA targets in mammals, flies, worms and fish. The method uses extensive

cross species conservation information to predict miRNA binding sites that

are under evolutionary pressure. A downstream analysis of predicted miRNA

targets revealed novel properties of miRNA target sites, one of which is a

positional bias of miRNA target sites in long mammalian 3’ untranslated re-

gions. Intersection of our predictions with biochemical pathway annotation

data suggested novel functions for some of the miRNAs. To gain further in-

sights into the mechanism of miRNA targeting, I studied microarray data

obtained in siRNA experiments. SiRNAs have been shown to produce off-

targets that resemble miRNA targets. This analysis suggests the presence of

additional determinants of miRNA target site functionality (beyond comple-

mentarity between the miRNA 5’ end and the target) in the close vicinity

(about 150 nucleotides) of the miRNA-complementary site. Finally, as part

of a study aiming to reduce siRNA off-target effects by introducing chemical

modifications in the siRNA, I performed microarray data analysis of siRNA

transfection experiments. Presented are the methods used to quantify off-

target activity of siRNAs carrying different types of chemical modifications.

The analysis revealed that off-targets caused by the passenger strand of the

siRNA can be reduced by 5’-O-methylation.
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Chapter 1

Annotation and characterization of

small RNA sequence libraries

1.1 Introduction

Cloning and sequencing is the method of choice for small regulatory RNA identi-

fication. Using deep sequencing technologies one can now obtain up to a billion

nucleotides – and tens of millions of small RNAs – from a single library. Careful com-

putational analyses of such libraries enabled the discovery of miRNAs, rasiRNAs,

piRNAs, and 21U RNAs. Given the large number of sequences that can be obtained

from each individual sample, deep sequencing may soon become an alternative to

oligonucleotide microarray technology for mRNA expression profiling.

Though recently discovered, small RNAs appear to play a wealth of regulatory

roles, ranging from degradation of target mRNA [1,2], translation silencing of target

mRNA [3–5], chromatin remodeling [6, 7] and transposon silencing [8–10]. In verte-

brates, the most studied class of small regulatory RNAs are the microRNAs (miR-

NAs), which are produced from hairpin precursors by the Dicer endonuclease [3–5] to

block the translation of target mRNAs [11]. The discovery of the let-7 miRNA, which

is perfectly conserved in sequence from worm to man [12], sparked a great interest

in the identification of additional miRNAs as well as of other regulatory RNAs. The

group of Tom Tuschl (Rockefeller University) developed a protocol for isolating miR-

NAs which typically yields 80−90% miRNAs in a given sample of small RNAs [13,14],

1



1.2 Automated annotation of small RNAs 2

and used it to collect small RNA expression profiles from hundreds of mammalian

samples. Based on this data, an atlas of miRNA expression profiles in a large number

of mammalian tissues [15] was constructed. In parallel, high-throughput pyrosequenc-

ing [16] or sequencing-by-synthesis [17] technologies are being developed to deliver up

to a billion nucleotides in a run. With millions of miRNA sequences from a single

sample, one can obtain a very fine resolution picture of miRNA expression.

As is generally the case with high-throughput data, fast and accurate computa-

tional analysis methods are needed to uncover the information contained in these

large datasets. One of the main goals of my work was to develop computational

methods for the identification and characterization of novel regulatory RNAs. Here I

will present one of my projects that addressed this topic. It concerns a set of analyses

that I performed in order to identify and characterize a novel class of small regulatory

RNAs that specifically associate with proteins of the Piwi family that are expressed

in germ cells [18].

1.2 Automated annotation of small RNAs

The protocol for small RNA sequencing is sketched in Figure 1.1. Total RNA is

size-separated to extract sequences of the appropriate size (roughly 22 nucleotides for

miRNAs, 25-35 for piRNAs, etc.), which are subjected to adaptor ligation using a

procedure that takes advantage of the presence of a 5’ phosphate and a 3’ hydroxyl

group in the RNase III products [14]. The resulting sequences are concatenated,

ligated into the T vector, cloned and sequenced. The first computational step is to

retrieve the sequence of the small RNAs from the sequenced concatamers. This is ac-

complished by mapping the adaptors to the concatamer sequences. The subsequences

of a concatamer that are found between matches to 5’ and 3’ adaptors in the correct

configuration are extracted as small RNAs.

The first aim of the analysis of a large-scale small RNA dataset is to identify

all sequences whose function is already known. Since many genomes have been now

sequenced and annotated to a large extent, one can frequently infer the function of a

small RNA from the annotation of the genomic region to which the small RNA maps.

This approach of course fails when the genome assembly or the genome annotation
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Total RNA

5’ P OH 3’ 
5’ P OH 3’ 
5’ P OH 3’ 

Size-based
separation

Adaptor ligation
to Dicer products
(miRNA, siRNA)

Concatamerization

Ligation into vector
and sequencing

Sequence reads

Figure 1.1: Protocol for small RNA sequencing.

are incomplete or incorrect. For instance, the annotation of small RNAs derived from

ribosomal RNA cannot be readily done based on the genome annotation because the

rRNA repeat unit, though available in the Genbank database (U13369 for human

and BK000964 for mouse), is not present in its entirety in the current assemblies of

the human and mouse genomes. Another example is the cluster of mouse embryonic

miRNAs (mmu-mir-290 to mmu-mir-295) which is absent from the current assembly

of the mouse genome, but was present in a previous assembly [19]. For this reason

we used in our study both the genome annotation as well as mappings of the small

RNAs to transcripts with known function to functionally annotate small RNAs. We

downloaded the genome sequence of the species from which the small RNAs have been

cloned from the UCSC repository (http://genome.cse.ucsc.edu), from which we also

obtain the annotation of repeat elements in the genome. As sources of transcripts of

known function we used the following resources:

• miRNA - ftp://ftp.sanger.ac.uk/pub/mirbase/sequences/CURRENT/hairpin.fa.gz

• rRNA - Genbank sequence search using human/mouse/rat as species and rRNA
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as “Molecule type” to filter the records

• tRNA - http://lowelab.ucsc.edu/GtRNAdb/

• sn- and sno-RNA - Genbank sequence search filtering for the appropriate “Fea-

ture Key”

• mRNA - Genbank sequence search using human/mouse/rat as species and

mRNA as “Molecule type” to filter the records.

After compiling these data, we can proceed to identify those small RNAs whose

function is already known. We achieved through the following steps:

1. Small RNAs are mapped to genome using oligomap (0− /1−error matches,see

Chapter 2) and WU-BLAST (matches with ≥ 2 errors).

2. For each small RNA the locus/loci with minimum number of errors (mismatch,

insertion, deletions) in the small RNA-to-genome mapping is/are identified.

3. Too distant mappings (< 92.5% identity) are filtered out.

4. Small RNAs are mapped to annotated sequences using oligomap (0− /1−error

matches), WU-BLAST (matches with ≥ 2 errors).

5. For each small RNA the sequences with minimum number of errors (mismatch,

insertion, deletions) in the small RNA-to-annotated sequence mapping are iden-

tified.

6. Too distant mappings < 92.5% identity are filtered out.

7. A functional category is assigned to each small RNA based on all its best map-

pings.

Many small RNAs map unambiguously to sequences from one single functional

category, and their origin can therefore be easily determined. There typically are also

small RNAs that map equally well to sequences with different function, such as for

instance tRNA and genomic repeat. For these, we choose what we consider the most
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likely annotation based roughly on the abundance of various types of sequences in the

cell, namely rRNA > tRNA > sn/sno-RNA > miRNA > piRNA > repeat > mRNA.

Using this annotation procedure, we have determined that RNAs that immuno-

precipitate with the Mili protein of the Piwi family are depleted in miRNAs or other

known RNAs, but are enriched in sequences of unknown function, whose average

length is 26-30 nucleotides, i.e. are longer than miRNAs, and that, similarly to miR-

NAs had a very strong U-bias at the first position. We therefore set to characterize

these sequences, as described in the following section.

1.3 A novel class of small RNAs bind to MILI pro-

tein in mouse testes

Parts of this section have been published in [18].
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1.3.1 Abstract

Small RNAs bound to Argonaute proteins recognize partially or fully complementary

nucleic acid targets in diverse gene–silencing processes [20–23]. A subgroup of the

Argonaute proteins–known as the Piwi family [24]-is required for germ– and stem–

cell development in invertebrates [25,26], and two Piwi members–MILI and MIWI–are

essential for spermatogenesis in mouse [27,28]. Here we describe a new class of small

RNAs that bind to MILI in mouse male germ cells, where they accumulate at the

onset of meiosis. The sequences of the over 1,000 identified unique molecules share

a strong preference for a 5’ uridine, but otherwise cannot be readily classified into

sequence families. Genomic mapping of these small RNAs reveals a limited number

of clusters, suggesting that these RNAs are processed from long primary transcripts.

The small RNAs are 26–31 nucleotides (nt) in length–clearly distinct from the 21–23

nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)–and we refer to them

as Piwi–interacting RNAs or piRNAs. Orthologous human chromosomal regions also

give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences

are distinct. The identification of this new class of small RNAs provides an important

starting point to determine the molecular function of Piwi proteins in mammalian

spermatogenesis.

1.3.2 MILI–immunoprecipitation from testis lysate of adult

mice

MILI–containing ribonucleoprotein complexes were immunoprecipitated from testis

lysate of adult mice and purified the associated RNAs. Although 5’ 32P–labelling

of the isolated molecules revealed a distinct population of RNAs 26–28 nt in length,
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Figure 1.2: MILI associates with 26–28 nt RNAs. a, 5’ 32P–labelling of total RNA

isolated from testes of adult or 10–day–old mice and adult brain. Adult testis reveals

an abundant 29– to 31–nt small RNA fraction. MILI–immunoprecipitated (IP) RNAs

are predominantly 26– to 28–nt while 29– to 31–nt RNAs remain in the supernatant

(sup). Size and mobility of oligoribonucleotide marker is indicated on the left. b, Size

distribution of small RNAs cloned from adult mouse testis total RNA of 18– to 26–nt

(dark blue bars) and 24– to 33–nt (light blue bars), and MILI–immunoprecipitated

RNA (orange bars). c, Size distribution of small RNAs cloned from human testis

total RNA of 18– to 26–nt (dark blue bars) and 24– to 33–nt (light blue bars)

total testis RNA from fertile adults–but not 10–day–old mice-showed a prominent

RNA species of approximately 30 nt in length (Figure 1.2a). Labelling of the RNA

remaining in the supernatant of the MILI immunoprecipitation showed that the 30–nt

fraction was intact, and that the 26–28–nt MILI–interacting RNAs were unlikely to

represent degradation products of the 30–nt–long RNAs. To determine the identity

of the different small–RNA size populations, the MILI–interacting small RNAs, as

well as small RNAs from testis ranging in size between 18–26 nt and 24–33 nt were

cloned and sequenced, and analyzed as described below.

The over 15,000 sequences identified in three small–RNA libraries suggested three

distinct size populations of small RNAs. The 18–26–nt fractionated library showed

a peak at 21 nt and 22 nt, corresponding to miRNAs, and also revealed a 26–nt

shoulder (Figure 1.2b). The 24–33–nt fraction showed a bimodal distribution with a
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strong peak at 29–31 nt, corresponding to the small RNAs detected by 5’-labelling

of total testis RNA, and a small peak at 26–28 nt. MILI–interacting small RNAs

demonstrated a unimodal length–distribution, with a peak at 26–28 nt. The 27–nt

shoulders in the size distribution profiles of the smaller and larger size fractions thus

probably represent the MILI–interacting subpopulation. Whereas ∼60% of small

RNA clones from the 18–26–nt library can be annotated as miRNAs and degradation

products of abundant cellular RNAs, more than 80% of the sequences in the MILI

immunoprecipitate and the 24–33–nt libraries did not derive from known transcripts

or genomic repeats (Table 1.1).

1.3.3 Characterization of piRNAs

Sequence analysis indicated that 85% of the MILI–interacting RNAs and 88% of

the 24–33–nt RNAs contain a 5’ uridine residue (Table 1.1, Figure 1.3). The bias

for 5’ uridine is one of the characteristics of miRNAs and repeat–associated siRNAs

(rasiRNAs) produced from double–stranded RNA (dsRNA) precursors by RNase III

enzymes [29–31]. The majority of mouse small RNA sequences (92.9% and 97.7%,

respectively) obtained from libraries of 24–33–nt testis and MILI immunoprecipitation

were cloned only once. Genomic mapping of cloned sequences showed that less than

15% of clones in both libraries are derived from annotated repetitive regions (Tables

1.1,1.2). Further more, less than 3% of the sequences match the genome more than

ten times. The relative frequency of sequences matching different types of repeats

roughly corresponds to the relative proportion of those repeat elements in the genome.

Clustering the genomic loci corresponding to the more than 1,500 MILI–interacting

sequences, on the basis of a maximum distance of 15 kilobases (kb) between two con-

secutive loci, indicated that 81% of clones are derived from only 42 genomic regions

(Figure 1.4). Moreover, 19% of the sequences in the 18–26–nt library also originate

in these regions, indicating that the 26–nt shoulder in the size distribution profile of

this library indeed corresponds to MILI–interacting RNAs. Even more surprisingly,

we found that 76% of all sequences identified in the 24–33–nt library map to the same

regions, which thus seem to produce both the 26–28–nt MILI–interacting RNAs and

the abundant 29–31–nt RNAs that are present in total testis RNA. On the basis of

the interaction of these small RNAs with the MILI member of the Piwi protein family,
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Figure 1.3: Graphic representation of an aligned set of the regions containing piRNAs.

The genomic location of the clones with a unique mapping to piRNA clusters was

used to extract 60 nt–long sequences, with 30 nt upstream and 30 nt downstream of

the 5’–most nucleotide of the small RNA (located at position 0 in panel a) and of the

3’–most nucleotide of the small RNA (located at position 0 in panel b). The weblogo

software (http://weblogo.berkeley.edu/logo.cgi) represents the positional weight ma-

trix computed from the input sequences. The total height of the letters indicates the

information score at that position, while the height of the individual letters indicates

the relative frequency of each nucleotide at that position.

we refer to them as Piwi–interacting RNAs (piRNAs).

The pronounced clustering strongly suggests that multiple piRNAs are processed

from long primary transcripts. A hypothesis supported by testis–specific expressed

sequence tags (ESTs) and messenger RNAs mapping to these regions. The identified

piRNA–encoding regions are distributed over most mouse chromosomes and they

range in size from 0.9 to 127 kb (Figure 1.4). Although piRNAs map exclusively

to one chromosomal strand in many regions, some regions–including the region on

mouse chromosome 17 that is one of the major sources of piRNAs-encode piRNAs in

both orientations. Notably, in all cases this arrangement was caused by two closely

spaced clusters: one that almost exclusively contained sequences mapped to the sense

strand and the other containing sequences mapped to the antisense strand, suggesting

bidirectional divergent transcription from a central promoter (Figure 1.5). Thus,

although piRNAs resemble in size the rasiRNAs of fruitfly and zebrafish [29,31] they

differ from rasiRNAs in several respects. First, piRNAs map to the genome in a highly

strand–specific manner, in contrast to rasiRNAs that map to repeat regions in sense

or antisense orientation as if randomly generated from long dsRNA precursors [29,31].

Second, piRNAs predominantly map to single genomic loci, whereas rasiRNAs map by

definition to repetitive sites including transposable elements. In fact, the proportion
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Figure 1.4: MILI–interacting piRNAs are encoded in clustered genomic loci. a,

Location of piRNA–encoding regions on mouse chromosomes. The size of the triangles

is proportional to the number of cloned MILI–interacting sequences. The left or

right position of the triangles indicates mapping of the clones to the minus or plus

strand, respectively. b, c, Northern blot hybridization for mouse chromosome (Chr)

17 piRNAs using partially hydrolysed RNA probes against four distinct 500–nt regions

(b) or a 27–nt oligodeoxynucleotide probe complementary to a single piRNA clone (c)

(top panels). Mouse total RNA from adult testis (Te) or brain (Br) was examined,

and the size and mobility of the RNA size marker (M) is specified. The asterisk marks

tRNA cross–hybridization signals. Blots were re–probed with a U6 antisense probe

(bottom panels). MILI–immunoprecipitated RNAs (IP) are absent in control (Ctl)

immunoprecipitation experiments; miR–16 is detectable in total RNA from testis or

brain, but is undetectable in the MILI–immunoprecipitated sample.
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Figure 1.5: Bidirectional clusters of piRNA. Clones from the MILI–

immunoprecipitated RNAs mapping to the genomic regions that define bidirectional

transcript start sites are shown.

of repeat elements is smaller within the piRNA regions than in the 100–kb flanking

regions (29% versus 38%, P–value , 2.2 ∗ 10−16).

The spacing between cloned piRNAs within each genomic region has no apparent

pattern. To assess whether the piRNAs show any evidence of specific processing,

we aligned the piRNAs whose loci are partially overlapping (52% of the clones in

the piRNA regions) and evaluated the precision with which their 5’ and 3’ ends

have been processed. We found frequent examples of piRNAs whose 5’ or 3’ ends

coincide, indicating that they are not random degradation products of long transcripts

(Figure 1.6). Additionally, the 5’ end seems to be more precisely processed than the

3’ end, similar to what has been observed among miRNA clones [30]. To examine if

piRNAs may be–like miRNAs–excised from dsRNA fold–back precursor structures,

we investigated if any base–paired regions emerged in approximately 100 nt from each
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side of the piRNA. Although our computational approach was able to reveal the loop

and stem regions of miRNA precursors, no clear hybridization pattern involving the

piRNAs or the sequences flanking them was found (Figure 1.7). It is possible that

long–range dsRNA structures or sequence–specific protein machinery are involved in

guiding the maturation process. The strong preference for a 5’ uridine in piRNAs

suggests the involvement of Drosha or Dicer RNase III, but additional structural or

sequence–specific determinants are yet to be identified.

The processing of piRNA primary transcripts was further examined by northern

blotting of total testis RNA using probes specific to four 500–nt regions within the

largest piRNA cluster on mouse chromosome 17. All four probes antisense to cloned

piRNAs detected a signal at 26–31 nt in testis, but not in brain, RNA (Figure 1.4b).

None of the sense probes yielded any signal, supporting the strand–specific accumu-

lation of piRNAs (data not shown). Surprisingly, even a single oligodeoxynucleotide

probe antisense to an individual piRNA was sufficient to detect a 26–28–nt–size signal

in MILI–immunoprecipitated RNA and a 29–31–nt–size signal in total testis RNA

(Figure 1.4c). Oligodeoxynucleotide probes to sequences immediately flanking the

isolated piRNA failed to produce a signal (data not shown), suggesting that the pro-

cessing of piRNAs occurs in a directed fashion. Examination of the 5’ and 3’ ends of

a 30–nt cloned piRNA by rapid amplification of cDNA ends (RACE) showed that the

5’ ends of the piRNA RACE clones were invariant in both libraries, whereas the 3’

end clones were truncated by 2 nt in the MILI immunoprecipitate small–RNA library.

It is possible that the more abundant 29–31–nt fraction represents an intermediate

processing product or that it corresponds to small RNAs interacting with another

Piwi protein expressed in testis. Re–probing of the RNA blot for the ubiquitously

expressed 22–nt miR–16 produced a miRNA signal for testis total RNA but none for

MILI–immunoprecipitated RNA, indicating that MILI was specifically loaded with

piRNAs but not miRNAs.

To obtain insight into the temporal expression of piRNAs during mouse spermato-

genesis, total testis RNA was then isolated at different time points of postnatal devel-

opment. In mice, mitotically active spermatogonia represent the principal developing

germ cells in testis up to day 6 after birth. Meiosis I is initiated on day 10, with germ

cells reaching the preleptotene/leptotene, zygotene and early pachytene stages by days
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Figure 1.6: Precision of mouse piRNA processing at the 5’ end (left panels) and

the 3’ end (right panels) for a) all single mapping clones and b) all single mapping

unique clones (removing possible amplification biases resulting in multiple counts for

the same small RNA). Partially overlapping clones from three libraries (52%) were

aligned to form miniclusters. To assess the precision with which the 5’ and the 3’ ends

of the piRNAs are processed, we determined the most frequently observed location of

the 5’ and 3’ end, respectively, in each minicluster, and we constructed the histogram

of the distances between the location of the 5’ and 3’ end of each sequence in the

minicluster and the reference location of the 5’ and 3’ ends. The 5’ ends of aligned

sequences are more sharply defined than the 3’ ends.
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Figure 1.7: Propensity of regions around miRNAs and piRNAs to form secondary

structures. The set of mouse miRNAs was extracted from the miRNA repository

(http://microrna.sanger.ac.uk/sequences/index.shtml). The genomic location of the

small RNA sequences (piRNAs or miRNAs) was used to extract 225 nt sequences,

with 100 nt upstream and 125 nt downstream of the 5’ end of the small RNA (lo-

cated at position 0). These regions were folded using the RNAfold program of the

Vienna package (http://www.tbi.univie.ac.at/ ivo/RNA), and the minimum free en-

ergy structure was used to determine an average profile of paired nucleotides along

the sequence. The figure shows for each position the fraction of sequences whose

nucleotide at that position was paired, over all miRNAs (a) and over all piRNAs (b).

miRNAs clearly demonstrate secondary structure that involves mature miRNA and

either left or right arm of the hairpin precursor (depending on whether the mature

form of the miRNA is in the 5’ or 3’ arm of the pre–miRNA). No prominent secondary

structure is seen for piRNAs.
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Figure 1.8: Temporal expression of piRNAs during mouse spermatogenesis. a, Sketch

of mouse spermatogenesis with the temporal expression patterns of MILI (blue) and

MIWI (red). Abbreviations: PGC, primordial germline cells; GSC, germline stem

cells; Sg, spermatogonia; LSc, leptotene spermatocytes; PSc, pachytene spermato-

cytes; RSp, round spermatids; ESp, elongating spermatids; LSp, late spermatids. b,

Northern blot of testis total RNA from 8–, 10–, 12– and 14–day–old newborn and

3–month–old adult (Ad) mice and brain (Br) total RNA with oligodeoxynucleotide

probes complementary to piRNAs (top panels) from chromosome (Chr) 17 (left panel)

and chromosome 9 (right panel). The asterisk marks a cross–hybridization signal to

a larger RNA also present in brain. Expression of miR–16 is monitored and serves

as loading control (bottom panels). c, SYBR Green II staining of total RNA from

elutriator–enriched male germ cells separated on a denaturing polyacrylamide gel. As

reference RNA markers, two 22–nt and two 28–nt oligoribonucleotides of distinct se-

quences were loaded. d, Northern blot for samples shown in c using antisense probes

specific for the piRNA cluster on chromosome 9 (top panel) and for miR–16 (bottom

panel). A synthetic 28–nt chromosome 9 piRNA was loaded to quantify the amount

of piRNA expressed in germ cells.
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10, 12 and 14, respectively [32] (Figure 1.8a). MILI is expressed in male germ cells

from primordial germ cells until the pachytene stage of meiosis [27], whereas MIWI

is expressed in pachytene–stage spermatocytes and round spermatids [28]. North-

ern blotting of testis total RNA for two distinct piRNAs from mouse chromosome

9 and 17 revealed piRNA accumulation starting at day 14, when the first sperma-

tocytes reach the pachytene stage (Figure 1.8b). To assess the presence of piRNAs

in specific germ–cell types, RNA was isolated from cells enriched for different stages

of spermatogenesis after elutriation purification.Notably, the 30–nt piRNAs were so

abundant that they were visible by SYBR Green II staining, and were estimated to be

present at about 1 million piRNA molecules per mouse spermatocyte or round sper-

matid (Figure 1.8c). Quantitative northern blotting for an individual piRNA from

mouse chromosome 9 indicated about 8,000 copies per pachytene spermatocyte and

about 2,000 copies per haploid round spermatid (Figure 1.8d). The piRNA level was

reduced by about tenfold in RNA isolated from later stages of germ–cell development.

Mouse piRNA sequences are well conserved and cluster within the closely re-

lated rat genome. However, the alignments of the mouse genome with eight other

genomes [33] indicated that piRNA regions are poorly conserved between more distant

species (Figure 1.9), and that conserved elements are present with similar frequency

within piRNA clusters and within introns of proteincoding genes (Figure 1.9b). For

seven of the ten mouse piRNA clusters that seem to contain a bidirectional promoter,

we found short regions of homology with the human genome. Moreover, we found that

the frequency of ESTs that overlap with these human genomic regions orthologous to

the mouse piRNA clusters was 9–21–times higher compared with the representation

of testis ESTs among all the GenBank ESTs. To provide experimental support for

human piRNAs, 18–26–nt and 24–33–nt small–RNA libraries from human testis total

RNA (Figure 1.2c) were further prepared and sequenced. The small– RNA com-

position shows the expected enrichment for 5’ uridine, especially in the longer–size

library where a 5’ uridine bias is not introduced by the presence of miRNAs. Using

the same clustering criteria as for the mouse sequences, we were able to define 14

human piRNA clusters. They, together, contain 8.5% of all the cloned human se-

quences, and 24% of the human clones that were not derived from other functional

RNAs. The divergently transcribed piRNA cluster with the strongest expression in
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Figure 1.9: Cross–species conservation of the individual piRNAs and piRNA clus-

ters. a, Cross–species conservation profile of piRNAs compared with miRNAs. The

phastCons conservation scores from the UCSC database were used as a measure of

nucleotide conservation (see Methods). The plot shows the conservation score at each

position, averaged first over the miRNAs (red) and then over the piRNAs (blue). b,

Cross–species conservation of the piRNA regions. The phastCons conserved elements

that overlap piRNA regions were extracted from the UCSC database. The coverage of

piRNA regions by conserved elements in comparison with CDS and intronic regions

of mouse RefSeq mRNAs [34], was determined similarly to a previously described

analysis [33].

mouse is orthologous to the divergently transcribed cluster with the strongest expres-

sion in human (Figure 1.10), and two additional human regions that are orthologous

to divergently transcribed mouse piRNA clusters are experimentally supported.

Although Piwi proteins were shown to be important for stem– and germ–cell

development in different animals [25–28], the underlying biochemical pathways are

unknown. The identification of piRNAs provides an important molecular link regard-

ing the function of Piwi proteins. Given the timing of the maturational arrest in

mili and miwi knockout mice at the pachytene spermatocyte [27] and the spermatid

steps [27], respectively, it is conceivable that piRNAs and germline–specific Piwi pro-

teins regulate the timing of meiotic and postmeiotic events through transcriptional

and translational repression. Argonaute proteins have been implicated in diverse
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Figure 1.10: Predominant mouse piRNA cluster and its orthologous cluster in hu-

man. Alignment view of the most highly expressed mouse piRNA cluster and its

corresponding human orthologue. The positions of cloned sequences indicate diver-

gent transcription from a central promoter in both species.

processes such as genome rearrangement in Tetrahymena [35] or heterochromatic si-

lencing and chromosome segregation in fission yeast [36], and we are only beginning

to develop an understanding of the molecular mechanisms mediated by the diverse

group of Argonaute ribonucleoprotein complexes.

1.3.4 Methods

Preparation of male germ cells and testis extracts. Germ cells were obtained from the

seminiferous tubules of 3–month–old C57BL/6J male mice (Jackson Laboratory, Bar

Harbor, ME) by the separation and purification of spermatogenic cells on the basis

of sedimentation velocity using centrifugal elutriation as previously described [37].

Pachytene spermatocytes (2.3 ∗ 107 cells) yielded 420 µg and round spermatids (9.8 ∗
107 cells) 270 µg of total RNA. Twenty–four testicles were washed with ice–cold PBS

and homogenized in two volumes of buffer (25 mM Tris–HCl, pH 7.5, 150 mM KCl,

2 mM EDTA, 0.5% NP40, 1 mM NaF, 1mM DTT, 100 U/ml RNasin ribonuclease

inhibitor (Promega), Complete EDTA–free protease inhibitor (Roche) with a Dounce

homogenizer. The concentrated testis lysate was cleared by centrifugation in a Sorvall

fresco tabletop centrifuge at 14,000 rpm (16,000 g) for 10 min at 4◦C. The total protein

concentration of the extract was about 35 mg/ml.

Immunoprecipitation of MILI ribonucleoprotein complexes, isolation and labelling
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of bead–bound nucleic acids. For immunoprecipitation, 1.2 ml of cleared lysate was

diluted 12.5 fold to a final protein concentration of 2.8 mg/ml with NT2 buffer (50

mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP40) supplemented

with 1 mM DTT, 2 mM EDTA and 100 U/ml RNasin. Protein A Sepharose CL–

4B beads (150 µl, Sigma, P3391) were equilibrated with NT2 buffer and incubated

with 15 µl of 1.7 mg/ml affinity–purified anti–MILI–pepN2 antibody raised against

the peptide VRKDREEPRSSLPDPS (amino acids 107-122) for 6 hours at 4◦C with

gentle agitation. The diluted testis lysate was added to the beads and the incuba-

tion was continued for overnight at 4◦C. The beads were washed twice with ice–cold

NT2 and twice with NT2 with the concentration of NaCl adjusted to 300 mM. Con-

trol immunoprecipitations were carried out in the absence of the antibody. Nucleic

acids that co–immunoprecipitated with MILI were isolated by treatment of the beads

with 0.6 mg/ml proteinase K in 0.3 ml proteinase K buffer, followed by phenol (at

neutral pH)/chloroform extraction and ethanol precipitation. Nucleic acids that co–

immunoprecipitated with MILI were isolated by treatment of the beads with 0.6

mg/ml proteinase K in 0.3 ml proteinase K buffer, followed by phenol (at neutral

pH)/chloroform extraction and ethanol precipitation. For 5’ labelling, aliquots of the

isolated nucleic acids were first subjected to dephosphorylation with calf intestinal

phosphatase as described [14]. After phenol/chloroform extraction and ethanol pre-

cipitation, the RNAs were labelled with [γ −32 P ]-ATP by T4 polynucleotide kinase

and resolved on a 15% acrylamide gel along with radioactive oligoribonucleotide size

markers.

Cloning of small RNAs. Total RNA from mouse testis was prepared as previously

described [38]. A previously prepared size–fractionated testis library of 18– to 26–nt

RNAs [38] was re–amplified and subjected to large–scale sequencing. A new small

RNA library covering the size range of 24– to 33–nt was prepared using pre–adenylated

3’ adapters as described [39]. The same revised protocol was used to clone MILI–

associated small RNAs without size selection, but by adding a trace amount of 5’–

labelled immunoprecipitated small RNA described above. Human total RNA used

for the preparation of the 18– to 26–nt and 24– to 33–nt library was purchased from

Ambion (22–year old male), or prepared by M. J. Brownstein from testis of a 73–year

old male.
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Northern blot analysis and piRNA quantification. Northern blots for detection of

miRNAs and individual piRNA were performed, as described previously loading 10

µg of total RNA per well [38]. The oligodeoxynucleotide probes for piRNAs on chr.9

and 17 were 5’ TCCCTAGGAGAAAATACTAGACCTAGAA and 5’ TCCTTGT-

TAGTTCTCACTCGTCTTTTA, respectively, and for miR–16 and U6 snRNA 5’

GCCAATATTTACGTGCTGCTA and 5’ GCAGGGGCCATGCTAATCTTCTCTG-

TATCG, respectively. The content of chr.9 piRNA in male germ cells was determined

by quantitative Northern blotting using synthetic 5’ UUCUAGGUCUAGUAUUUU-

CUCCUAGGGA for calibration. To quantify total piRNAs in germ cells by SYBR

Green II staining, 10 µg of total RNA were loaded per well. The 22– and 28–

nt reference standard contained equimolar amounts of 5’ AACUGUGUCUUUUCU-

GAAUAGA and 5’ UAUUUAGAAUGGCGCUGAUCUG or 5’ UAAAAGACGAGU-

GAGAACUAACAAGGAG and 5’ UUCUAGGUCUAGUAUUUUCUCCUAGGGA,

respectively. SYBR Green staining is sequence dependent so that the 22–nt and

the 28–nt reference standards yield somewhat different fluorescence intensities. The

RNA probes that cover fragments of piRNA–containing regions were produced from

about 500–nt long internally [α −32 P ]-UTP-labelled T3 or T7 RNA polymerase in

vitro transcripts using PCR templates amplified from mouse genomic DNA by three

rounds of nested PCR. The transcripts were partially hydrolysed in the presence of

one volume of carbonate buffer (60 mM Na2CO3, 40 mM NaHCO3) at 60◦C for 7 min.

Time of hydrolysis was chosen in pilot experiments to generate fragments with length

of 50– to 100–nt. After neutralization with 200 mM HCl, probes were further purified

by gel filtration through G–25 columns (Amersham). The hybridization using these

probes was performed at 50◦C in 5x SSC, 20 mM Na2HPO2, pH 7.2, 7% SDS, 1x

Denhardt’s solution, 30% (v/v) formamide. The membrane was washed twice with

2x SSC, 1% SDS solution and twice with 0.5x SSC 1% SDS at 50◦C.

RACE. For 5’ RACE, 2 µl of the mixture of reverse transcription reaction from

the small RNA cloning step was amplified with a universal forward primer that

matches the 5’ adapter sequence and reverse primer to chr. 17 piRNA (5’ TC-

CTTGTTAGTTCTCACTC). For 3’ RACE, a specific sense primer (5’ TAAAAGAC-

GAGTGAGAACTA) and a universal reverse primer to the 3’ adapter were used. The

primers shown above were labelled by T4 polynucleotide kinase with [γ −32 P ]-ATP
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and added to the PCR reaction at 0.06 µM final concentration together with 0.5 µM

of forward and reverse non–labelled primers. 25 cycles of PCR amplification were

performed at 94◦C for 50 s, 50◦C for 40 s and 72◦C for 30 s. PCR products were

mixed with formamide loading buffer, denatured briefly at 90◦C and resolved on 8%

polyacrylamide gel and the resolved bands were examined by phosphorimaging. For

cloning and sequencing, RACE PCR products prepared with unlabelled primers were

ligated into pCR2.1–TOPO (Invitrogen).

Genome mapping and functional annotation of cloned small RNA. Cloned small

RNAs were mapped to the mm6 assembly of the mouse genome and to sequences with

known function, to infer the likely origin of the cloned RNAs. The genome assembly

and some functional annotation are available from the genome browser at the UCSC

(http://genome.ucsc.edu). The mappings were performed using the Washington Uni-

versity implementation (http://blast.wustl.edu, W. Gish, 1996–2004) of BLAST as

well as in–house sequence alignment programs. For each small RNA sequence we only

used the best matches up to maximum three differences (mismatch, insertion or dele-

tion) for subsequent analyses. The functional annotation was done as described before

[13,31,39]. The database of sequences with known function was assembled from rRNA,

tRNA, snRNA, snoRNA, scRNA (small cytoplasmic RNA) and mRNA sequences ob-

tained by querying GenBank (http://www.ncbi.nih.gov/Genbank/index.html), with

the appropriate feature key. We additionally used a data set of non–coding RNAs from

the NONCODE database (http://noncode.bioinfo.org.cn), the miRBase database of

miRNAs (ftp://ftp.sanger.ac.uk/pub/mirbase/sequences/CURRENT/), the snoRNA

database (http://www-snorna.biotoul.fr), predicted miRNA sequences [40–42]. For

the repeat annotation, we used the repeat masker results from the UCSC database.

To count the number of sequences derived from a particular class of repeats, we inter-

sected the genomic loci of the clones with the genomic regions that were annotated

with that class of repeats. The genomic locus was considered to be repeat–associated

if it overlapped by at least 15 nucleotides with an annotated repeat element. Se-

quences that mapped to piRNA clusters (defined below), and did not match other

known functional RNAs or repeat elements were called piRNAs.

Definition of piRNA clusters. piRNA clusters for mouse were defined using the

following criterion: two genomic loci corresponding to small RNAs cloned from the
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MILI IP library were placed in the same cluster if they were less than 15 kb apart in

the genome, irrespective of their strand. Once the cluster boundaries were identified

this way, we determined the number of small RNAs that originated in each cluster,

and retained only those regions with at least 4 sequences. Given that some small

RNAs map to multiple locations in the genome, we assumed that each of these lo-

cations is equally likely to have produced the small RNA. Therefore, the number of

sequences originating in each of these locations was defined as the number of times

the sequence was cloned divided by the number of genomic loci in which the sequence

could have originated. For human piRNAs, the 24– to 33–nt library was used to define

initial piRNA clusters. We first eliminated the sequences derived from rRNA, tRNA,

snRNA, snoRNA and miRNAs, and then we clustered the remaining sequences as we

did for mouse.

Coverage of piRNA clusters by repeat elements. To reveal the fraction of piRNA

regions covered by repeat elements we used the repeat masker results from the UCSC

database to determine the proportion of nucleotides within the piRNA clusters and

within 200 kb (100 kb on each side) around the piRNA regions that are covered

by repeat elements. 450141 of the total 1534522 nucleotides in the piRNA regions

(29.3%) and 3016211 of the 7992650 (37.7%) in the flanking regions overlapped with

annotated repeat elements.

Precision of mouse piRNA processing at the 5’ end and the 3’ end. Partially over-

lapping clones from three libraries (52%) were aligned to form miniclusters. We then

determined the most frequently observed location of the 5’ and 3’ end, respectively,

in each minicluster, and we constructed the histogram of the distances between the

location of the 5’ and 3’ end of each sequence in the minicluster (not including the

reference sequence) and the reference location of the 5’ and 3’ ends. We verified that

our results hold even when we use only one copy of each sequence that was cloned

multiple times within a give library, thus excluding the possible effects of multiple

amplification products of the same RNA within a library.

Propensity of regions around miRNAs and piRNAs to form secondary structures.

The set of mouse miRNAs was extracted from http://microrna.sanger.ac.uk/. The

genomic location of the small RNA sequences (piRNAs or miRNAs) was used to

extract 225 nt sequences, with 100 nt upstream and 125 nt downstream of the 5’
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end of the small RNA (located at position 0). These regions were folded using the

RNAfold program of the Vienna package (http://www.tbi.univie.ac.at/ ivo/RNA),

and the minimum free energy structure was used to determine an average profile of

paired nucleotides along the sequence.

Cross–species conservation of the individual piRNAs and of the piRNA clusters.

The genomic mapping of the small RNA sequences (piRNAs or miRNAs) was used to

extract 225 nt sequences, with 100 nucleotides upstream and 125 downstream of the 5’

nucleotide of the small RNA (located at position 0). The phastCons [33] conservation

scores were obtained from the UCSC annotation of the mm6 assembly version of the

mouse genome (http://hgdownload.cse.ucsc.edu/downloads.html#mouse). We then

computed the average phastCons score at every position in the regions around miR-

NAs and piRNAs. We additionally obtained the phastCons [33] conserved elements

from the same source, and we extracted those that overlap piRNA regions. We then

determined the coverage of piRNA regions by conserved elements and compared it

with the coverage of CDS and intronic regions of mouse RefSeq mRNAs [34], com-

puted as described in a previous analysis [33]. To determine the human orthologs of

mouse piRNA clusters we used the following procedure. We focused on the mouse

piRNA–encoding regions that contained the putative bidirectional promoters, because

for these, the mapping of the cloned sequences gives us a good indication of the lo-

cation of the promoter. From the whole genome alignments provided on the Genome

Bioinformatics Site at UCSC we selected for each of the mouse promoters the largest

alignment block that overlaps with it, and we used this as an anchor in the orthol-

ogous region of the human genome. We were only able to extract human anchors

for 7 of the 10 mouse promoter regions. We then selected the regions extending 30

kb on each side of each of the human anchors to identify ESTs that overlap with,

and were therefore expressed from the human regions that are orthologous to the

mouse piRNA bidirectional clusters. We used the Genbank records for these ESTs to

identify those that appear to have been isolated from testis (based on the clone lib

or tissue type fields of the Genbank record). For comparison, we determined the pro-

portion of testis–expressed ESTs among all the ESTs that have been mapped to the

human genome by the UCSC Genome Bioinformatics Group.
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Table 1.1: Characterization of MILI IP and testis total small RNA libraries. Small

RNA clones sequenced from MILI IP and testis total RNA libraries were mapped to

the mouse or human genomes and annotated as described in Methods. The 18– to 26–

nt library from mouse displays a high rRNA content because its library preparation

protocol, in contrast to other libraries listed, did not require a 5’ phosphate on the

isolated RNAs to be represented in the library. 1Unique clones indicate the fraction

of sequences that were cloned only once in a given library. 2Two sequences were

clustered together if they mapped closer than 15 kb from each other. Clustering was

done independently for the five libraries. We selected only clusters containing at least

4 sequences.
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Table 1.2: The sequences that match to sense (+), antisense (-) of each repeat type

are indicated. For each repeat type, we considered all genome locations, which were

annotated with that repeat type in the UCSC database. Since a repeat–annotated

sequence maps to multiple locations in the genome, each of these loci was considered

to have potentially given rise to the sequence with probability 1/number of loci. We

then summed over all loci of a given type the probabilities of each sequence arising

from all these loci. Some genomic regions have multiple repeat annotations. Each of

these was considered separately, and thus the number of counted repeats is somewhat

larger than the number of sequences cloned from repeats.



Chapter 2

Oligomap: a program for fast

identification of nearly-perfect

matches of small RNAs in

sequence databases

Parts of this section will appear in a special issue on miRNAs of Methods in Enzy-

mology 2008.

2.1 Introduction

A keys step in the process of small RNA annotation requires the small RNAs to be

mapped to sequences of known function and to the corresponding genome. This pro-

cess has to be sensitive, meaning that all small RNAs that do have matches within

the specified quality constraints should be mapped, and efficient, meaning that the

program should not take longer than a day to map millions of small RNAs. Vari-

ants of the Blast algorithm [43], such as WU-BLAST (http://blast.wustl.edu) [15],

Blast [44, 45], or Megablast ( [46]) [47] have been used for this purpose as well.

Typically, the output of these programs is filtered to retain only very good align-

ments, with very few differences between small RNAs and targets. The programs

mentioned above are in fact very general, but they have been designed for mapping

27
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longer RNAs (such as ESTs), and in order to achieve good performance, they use

heuristics, such as initiating alignments from perfect contiguous matches of a mini-

mum length (”words”) between query and target sequence. Because sequencing errors

in 18-30-nucleotides long RNAs can easily reduce the length of the contiguous matches

to the target sequence, one would have to use a relatively small word size in order

to guarantee that 1-error hits are retrieved, thereby increasing the running time of

the programs. This becomes a problem when we need to map hundreds of thousands

of small RNAs to mammalian genomes. Moreover, if all we want to do in the end

is to identify very close matches of short RNA sequences, the complexity of these

general algorithms is not necessary. We therefore developed a special-purpose map-

ping algorithm that allows us to rapidly and exhaustively identify all the perfect and

1-error (where an error is defined to be a mismatch, insertion or deletion) matches of

large sets of small RNAs to target sequences. The program can be downloaded from

http://www.mirz.unibas.ch/software/.

2.2 Oligomap algorithm

A sketch of the main components of the algorithm is shown in Figure 2.1. The

approach is to build a tree from the input small RNA sequences (Figure 2.1C) and

then search this tree with subsequences starting at each position of the target sequence

(Figure 2.1D). Each node in the tree corresponds to a nucleotide, and each small RNA

is represented in the tree as a path that starts at the root and ends at either another

internal node or at a leaf. There are 4 possible links from a parent node to a child

node, one corresponding to each of the nucleotides. The identifier (ID) of each node

encodes information about the small RNA represented by the path starting at the

root and ending at the respective node (Figure 2.1A). The search stage is performed

through a number of ”walkers” (Figure 2.1B). A walker represents a suffix of the

target sequence that ends at the current position in the target. Every time a walker

visits a node that represents a small RNA, we report a match between that small

RNA and the target. When a walker ends in an internal node that does not represent

a small RNA, it is removed from the search.
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Figure 2.1: Schematic representation of the mapping algorithm.
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2.2.1 Estimation of the resource requirements

To gain insight into the resource requirements of our algorithm, it is instructive to first

consider the simple case in which we only want to identify perfect matches between

small RNAs and a target sequence. For simplicity, let us assume that all small RNAs

have the same length L. Then every small RNA will be represented as a path from

root to a leaf in the tree and to construct the tree from N input sequences we need

to visit N ∗ L nodes. Thus, the time needed for constructing the tree is proportional

to N ∗ L. The search phase consists of following paths in this tree starting from

every nucleotide in the target. To do this, we start at the root of tree and visit the

child which corresponds to the nucleotide currently observed in the target. We then

continue on this path using the next nucleotide in the target and so on, until we either

reach a leaf, or until the the internal node does not have a child that corresponds

to the current nucleotide in the target. The length of a path that starts at a given

nucleotide in the target determines the time needed to decide whether this path

specifies an input small RNA. With L being the length of a small RNA, the upper

bound on the path length is L, which for our applications is 20 − 35. The average

path length that we more typically encounter is however much shorter, as shown by

the following argument. Assume that we generate the tree from N random sequences

of length L defined over an alphabet of size A. Then the average length of a path

that we will traverse starting from a given position in the target is given by the sum

is over all possible path lengths l, the length of the path multiplied by the probability

that the search will stop precisely after l steps. This will happen when none of the N

sequences inserted in the tree had the prefix of length l + 1 of the sequence that we

are searching for, but did have the prefix of length l. The average number of steps is

thus given by:

S = L

(
1−

(
1− 1

AL

)N)

+
L−1∑
l=1

l

[(
1−

(
1− 1

Al

)N)
−
(

1−
(

1− 1

Al+1

N
))]

= L

(
1−

(
1− 1

AL

)N)
+

L−1∑
l=1

l

((
1− 1

Al+1

N
)
−
(

1− 1

Al

)N)
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= L−
L∑
l=1

(1− 1

Al
)N . (2.1)

As shown in Figure 2.2, this number grows approximately logarithmically with N .

For the values of A, L and N that are typical for our applications (4, 22, 500000,

respectively), the average path will be approximately 9. The search time thus depends

linearly on the target size and approximately logarithmically on the number of small

RNAs.

The memory requirements of this program are determined by the size of the tree

that we construct from the input small RNAs, an upper bound on this being k∗N ∗L,

with k a constant. An average estimate of the memory requirements can be obtained

as follows. Given a tree in which n − 1 sequences were already inserted, we want to

compute the number of new nodes that the insertion of the nth sequence will create.

When processing the nth sequence, a new node will be generated at level l in the tree

if none of the sequences observed up to that point had the same length l prefix as

sequence n. This happens with probability(
1− 1

Al

)n−1

.

Thus, inserting the nth sequence will result, on average, in the insertion of

m(n) =
L∑
l=1

(
1− 1

Al

)n−1

nodes. Inserting progressively a total of N sequences generates on average

M(N) =
N∑
n=1

m(n) =
N∑
n=1

L∑
l=1

(
1− 1

Al

)n−1

. (2.2)

Exchanging the two summations and applying the geometric series formula we obtain

M(N) =
L∑
l=1

1−
(
1− 1

Al

)N
1−

(
1− 1

Al

) . (2.3)

Finding 1-error matches requires that we either enumerate all these variants of

the input small RNAs and insert them in the tree, or that we search the tree in

such a way that we can identify matches with 0 or 1 error. The first option requires

considerable more memory, since for every small RNA of length L we will have 8∗L−4
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variants with 1 error (see Figure 2.1F). The search time would increase comparatively

little, because the path length increases very slowly with the number of small RNAs

represented in the tree. On the other hand, the second option requires little extra

memory, but has a considerably longer search time, since at each position in the

target we need to search not only for a perfect match starting at that position, but

also for all the possible matches with 1 error (Figure 2.1G). This means following 8

additional search paths from each node on the path representing a perfect match of

the target to a small RNA.

To achieve a good tradeoff between memory and CPU usage, we have combined

these two strategies (Figure 2.1H): we store in the tree only the small RNAs (which

we call P small RNAs) and their 1-nucleotide deletion variants (which we call Q

small RNAs). Then, in the search process we create walkers representing target

subsequences (P walkers) and their 1-nucleotide deletion variants (which we call T

walkers). The 0− and 1-error variants of the small RNAs will be detected as follows:

1. perfect match small RNA-target: P walker stops at P small RNA

2. deletion in small RNA: P walker stops at Q small RNA

3. deletion in target: T walker stops at P small RNA

4. mismatch small RNA-target: T walker stops at Q small RNA, and looped out

nucleotides do not match

Using the same argument that we used above, we can compute the average number of

steps required to decide whether a path that starts at a given nucleotide in the target

specifies an input small RNA. The difference is that the hybrid algorithm does not

use a single walker starting from a given nucleotide in the target, but it spawns new

ones from every point along the path of a perfect walker. The probability that these

stop at a particular level l is the same as for a perfect walker, but the number of steps

that they perform is smaller: if a T walker started at level h, it will only perform

l − h + 1 steps up to level l. Thus, the average total number of steps performed by

the P and T walkers initiated from a given position in the target is given by
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S =
L∑
h=1

[
(L− h+ 1)

(
1−

(
1− 1

AL−h+1

)N)]

+
L∑
h=1

[
L−1∑
l=h

(l − h+ 1)

((
1− 1

Al+1

)N
−
(

1− 1

Al

)N)]

=
L(L+ 1)

2
−

L∑
l=1

l
(

1− 1

Al

)N
. (2.4)

The behavior of these functions of N are shown in Figure 2.2A for A = 4 and L =

16, 20, 24, 28, 32, 36, 40.

2.2.2 Algorithm performance in a realistic setting

To illustrate the performance of our program particularly on very large sequence

datasets for which it was designed, we used instead of small RNAs, for which large-

scale data sets are only starting to be generated, the CAGE tag data generated by

the Riken Institute in Japan [48]. These are short (20-21 nucleotides) sequences

from the 5’ ends of capped mRNAs, and millions of such sequences are already avail-

able. We constructed from this dataset 5 random subsets of sizes from 1, 000 to

512, 000 sequences, which we then mapped to the mouse genome assembly using our

program. Figure 2.2C shows that the running time of the program increases only

by a factor of 10 as the number of sequences in the input increases by a factor of

512. Mapping half a million sequences to the entire mouse genome takes roughly 5

hours on a 2.2 GHz AMD Opteron, using 2.3 GB of memory. We use this program

to identify all close matches of small RNAs to their corresponding genome, and to

other RNAs whose function is already known. The program can be downloaded from

http://www.mirz.unibas.ch/software/ .

2.2.3 Implementation of oligomap

Oligomap is implemented in C++. The code is very compact and the program uses

no external library. Since oligomap indexes the query sequences, there is no need

to create chromosome index files. Both input files (targets and queries) have to

be provided in fasta format. Running oligomap with no parameters will return an
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Figure 2.2: Performance of the mapping algorithm. A: estimated average number of

steps performed by a walker as a function of the number of small RNAs represented

in the tree. Solid line corresponds to the case of perfect matches only, dashed line to

perfect and 1-error matches. The alphabet size was A = 4. The small RNA length

varied from from 16 to 40, but the number of steps remains virtually unchanged for

length > 28 nucleotides. B: estimated average memory requirements of the program

as a function of the number of small RNAs in the input. The small RNA length varied

from 16 to 40 nucleotides. C: Physical running time and D: memory requirements

of the program on a 2.2 GHz AMD Opteron as a function of the number of small

RNAs in the input. For each input size, we selected and mapped 5 random subsets

of CAGE tags.
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exhaustive list of all the alignment hits with up to one error. Since such an output

can become huge in size, we recommend to use the -m command line argument to

limit the number of hits per query sequence.

Command line arguments supported by oligomap:

1. -s scan only plus strand

2. -d scan all .fa target files in a directory

3. -r create a match report listing the number of hits for each query sequence

4. -m maximum hits to print for one query
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3.1 Abstract

MicroRNAs have emerged as important regulatory genes in a variety of cellular pro-

cesses and, in recent years, hundreds of such genes have been discovered in animals.

In contrast, functional annotations are available only for a very small fraction of these

miRNAs, and even in these cases only partially.

We developed a general Bayesian method for the inference of miRNA target sites,

in which, for each miRNA, we explicitly model the evolution of orthologous target

sites in a set of related species. Using this method we predict target sites for all known

36
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miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with

a reference set of experimentally tested miRNA-mRNA interactions we show that our

general method performs at least as well as the most accurate methods available to

date, including ones specifically tailored for target prediction in fly. An important

novel feature of our model is that it explicitly infers the phylogenetic distribution of

functional target sites, independently for each miRNA. This allows us to infer species-

specific and clade-specific miRNA targeting. We also show that, in long human 3’

UTRs, miRNA target sites occur preferentially near the start and near the end of the

3’ UTR.

To characterize miRNA function beyond the predicted lists of targets we further

present a method to infer significant associations between the sets of targets predicted

for individual miRNAs and specific biochemical pathways, in particular those of the

KEGG pathway database. We show that this approach retrieves several known func-

tional miRNA-mRNA associations, and predicts novel functions for known miRNAs

in nervous system development, inter-cellular communication and cell growth.

Our target prediction algorithm does not have any tunable parameters, and can

be applied to sequences from any clade of species. It automatically infers the phy-

logenetic distribution of functional sites for each miRNA, and assigns a posterior

probability to each putative target site. The results presented here indicate that our

general method achieves very good performance in predicting miRNA target sites,

providing at the same time insights into the evolution of target sites for individ-

ual miRNAs. The complete target site predictions as well as the miRNA/pathway

associations are accessible on the ElMMo web server [50].

3.2 Background

Since the initial discovery of the lin-4 miRNA [51], and then of the let-7 miRNA which

is highly conserved in evolution [12], combined experimental and computational ap-

proaches have resulted in the identification of hundreds of miRNAs in animal genomes,

some of the large-scale studies being [4, 5, 29, 31, 39–41, 47, 52–60]. In contrast, high-

throughput approaches for experimental identification of miRNA targets are only in

their infancy [61,62], and global properties of miRNA-dependent regulatory networks
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have mostly been inferred from computationally-predicted target sites [63–67].

Perhaps surprisingly, relatively little is known about the constraints on a func-

tional miRNA target site. Mutational studies [68, 69] confirmed initial observations

of Lai [70] and Lewis et al. [71] that perfect base pairing between the 5’ end of

the miRNA and its target is essential. As a consequence, some of the computational

methods for miRNA target prediction require [63,72] or can enforce the constraint [73]

that 6-8 nucleotides at the 5’ end of the miRNA, the so-called miRNA “seed”, are

perfectly base paired with its mRNA target, or give a higher weight to the base pairs

formed in this region [66, 74]. Since every 6mer occurs on average once every 4, 096

nucleotides in random sequence, the number of target sites for each miRNA would

be very large if matching of the seed were the only requirement for functional target

sites. Although there are indications that miRNAs do have a large number of tar-

gets [61–63, 69, 72, 75], experimental studies typically do not confirm that every seed

match constitutes a functional target site. It seems therefore that additional factors

contribute to the functionality of target sites. To improve the specificity of prediction

of functional target sites, most computational studies make use of evolutionarily con-

servation [63, 66, 72, 76] or at least flag conserved putative targets [73, 74]. However,

currently available methods generally use conservation statistics in an ad hoc manner.

In particular, existing methods do not explicitly take the phylogenetic relationships

into account when weighing the evidence of conservation between related species. In

addition, current methods treat all miRNAs identically and ignore that the selection

pressures for conserving functional target sites between related species may differ

significantly between miRNAs. That is, functional target sites for one miRNA may

be preferentially conserved in one subset of species, whereas the functional sites for

another miRNA may be preferentially conserved in another subset of species. Incor-

porating conservation statistics in a general, rigorous and miRNA-dependent manner

are the main features of the miRNA target prediction method that we present here.

From the very early stages of miRNA target prediction it became clear that reg-

ulatory proteins such as transcription factors are preferentially subjected to miRNA-

dependent regulation. Yet, beyond a few well-characterized miRNA-target interac-

tions, there is still very little known about the place of individual miRNAs in the

regulatory networks of cells and organs. Several groups [64, 71, 77] have used Gene
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Ontology categories in an attempt to characterize the biological roles of different miR-

NAs. Here we present a new analysis based on the association of targets for individual

miRNAs with molecular pathways annotated in the KEGG database. This approach

recovers some of the known miRNA-mRNA associations, and makes new predictions,

in particular it predicts the for the involvement of specific miRNAs in nervous system

development, inter-cellular communication, and cell growth.

3.3 Results and Discussion

3.3.1 miRNA-target interactions: the importance of differ-

ent ‘seed types’

Several lines of evidence [63,68–70,78] suggest that complementarity of the target site

to the first 8 bases at the 5’ end of the miRNA are of crucial importance for target site

recognition. Lewis et al. [63] have investigated the importance of the miRNA “seed”,

defined as the positions 2-7 of the miRNA, by comparing conservation statistics of

mRNA segments that are complementary to miRNA seeds with those of randomized

control sets. They concluded that conserved 3’ UTR regions predicted to hybridize

perfectly with positions 2-8 of the miRNA or with positions 2-7 of the miRNA, but

having an A nucleotide flanking the seed match at the 3’ end are likely to be miRNA

target sites. Inspired by these methods we decided to re-investigate the conservation

statistics of different “seed types” across different clades of organisms.

In all cases, we only focused on the first 8 positions of the miRNA, and we analyzed

the following 9 “seed types” (see Figure 3.1):

1. Perfect complementarity with Watson-Crick interactions between positions 1-8

of the miRNA and the mRNA target site.

2. Perfect complementarity at positions 1-7 but not at position 8.

3. Perfect complementarity at positions 2-8 but not at position 1.

4. Perfect complementarity at 2-7 but not at 1 and 8.
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5. Complementary at positions 1-8 with a single G-U pair occurring with the U in

the miRNA (GUM).

6. Complementary at positions 1-8 with a single G-U pair occurring with the U in

the target (GUT).

7. Complementarity with a single bulged nucleotide on the miRNA side (BM).

8. Complementarity with a single bulged nucleotide on the target side (BT).

9. Complementarity with a single internal loop involving one nucleotide in both

miRNA and target (LP).

For each of these 9 seed types t, and each of the four clades (mammals plus chicken,

fishes, flies, and worms), we determined the fraction ft of putative target sites that

are perfectly conserved in all species of the clade (see Methods for details). We only

considered miRNAs that were themselves conserved in all species of the clade. We

also determined the “background” conservation fraction, of randomly chosen 3’ UTR

sequence segments of the same length as the respective seed types that are conserved

in all species of the clade. Figure 3.1 shows the ratio of these two fractions, which we

called “conservation fold enrichment”.

As expected, octameric sites show most evidence of functionality. The conserva-

tion fold enrichment decreases dramatically as the extent of complementarity that

we require between miRNA and putative target site decreases. In particular, sites in

which only the nucleotides 2-7 of the miRNA are predicted to form base pairs with the

mRNA, as well as sites predicted to form G-U base pairs or to contain internal loops

show relative little evidence of conservation enrichment. This is not to say that such

sites are never functional. Indeed, functional target sites of this type are known, in

particular in worms [79], for which, interestingly, we observe the strongest evidence of

selection on these seed types. However, for our target prediction method we decided

to focus on the three seed types that show strong evidence of conservation enrichment

across all clades: those with perfect Watson-Crick complementarity with positions 1-

7, 2-8, or 1-8 of the miRNA. As a result, we predict the same set of target sites for

different miRNAs with the same first 8 nucleotides. In reality, even though the seed is

probably most important for targeting, the 3’ ends may also contribute to the target
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Figure 3.1: MiRNA seed types and conservation fold enrichment Schematic repre-

sentation of the different “seed types” of miRNA target sites that we consider and

conservation fold enrichment for each of them. a. Seed type interactions of miRNA-

mRNA hybrids (see text). b. Conservation fold enrichment for the 9 different seed

types in the four clades.

selection and this could differentiate the target sets for different miRNAs with the

same seed. This possibility, which has been studied experimentally by Brennecke et

al. [69], and is explicitly incorporated in other target prediction models [66], is not

captured by our model. Note, however, that because the miRNA-mediated targeting

depends on the expression of both miRNA and targets, distinct miRNAs that have

the same seed sequence may still have different target sets simply due to differences

in their expression profile, even though in principle they recognize the same set of

target sites. Note also that we do not use a model in which the mRNA position

corresponding to the first nucleotide in miRNA is an adenosine, because we did not

find this constraint to consistently improve the conservation fold enrichment across

all clades (not shown).

3.3.2 Bayesian phylogenetic model for miRNA target sites

We have developed a Bayesian probabilistic model for assigning, to each putative

“site” in a 3’ UTR that is complementary to a miRNA seed, a posterior probability

that the site is a functional target site for the miRNA, meaning that the site has been
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selected in evolution for its ability to bind the miRNA. The details of the model are

described in the Methods section, but the main ingredients are the following.

For each miRNA and each seed type t we collect all putative sites in the 3’ UTRs

of the reference species of the clade in question, i.e. the 3’ UTR sequence segments

that are complementary to the given miRNA seed. For each of these putative sites we

then determine the conservation pattern ~c, defined as a binary vector with ci = 1 if

the site is conserved in species i and ci = 0 if it is not conserved in species i. We then

count the number of times n(~c, t) that conservation pattern ~c is observed for putative

target sites of seed type t. To compute the posterior probabilities for individual sites,

the model then compares these numbers n(~c, t) with those that would be expected

given the “background” frequencies p(~c|t, bg) with which randomly chosen 3’ UTR

sequence segments of the same length as the miRNA seed show conservation pattern

~c.

Generally, if conservation patterns with many ci = 1 are much more abundant

among putative miRNA sites than among background sites, then we infer that a

fraction of the putative target sites must be functional and that selection has main-

tained these sites in some of the species. However, conserved target sites need not

be functional in all species in which they occur. The conservation pattern of a given

site is typically the result of selection maintaining the site in some of the species in

combination with chance conservation of the site in other species, in particular those

that are evolutionarily close. Our model flexibly and explicitly takes this into ac-

count. The model considers all possible “selection patterns” ~s, which are also binary

vectors, with si = 1 if the site is under selection in species i, and si = 0 if it is not.

For each miRNA we then determine the frequencies p(~s) of different selection pat-

terns that maximize the overall likelihood of the observed counts n(~c, t). That is, we

determine the distribution of selection patterns p(~s) that best explains the observed

counts n(~c, t) of conservation patterns for this miRNA.

Using the estimated frequencies p(~s) we can then determine, for each putative

target site, the posterior probability that the site is functional given its conservation

pattern ~c. Finally to determine an overall probability that a given 3’ UTR is targeted

by a given miRNA we combine the posterior probabilities of all sites for the miRNA

occurring in the 3’ UTR. The reader is again referred to the Methods section for the
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details of all these procedures.

3.3.3 Phylogenetic distribution of functional target sites across

miRNAs

Note that the estimated distribution over selection patterns p(~s) quantifies what frac-

tion of putative sites in the reference species is under selection in each of the possible

subsets of other species. That is, p(~s) estimates how functional target sites are dis-

tributed over the phylogenetic tree. Since we estimate p(~s) independently for each

miRNA, our method allows us to compare how functional sites are distributed across

the phylogenetic tree for different miRNAs. In Figure 3.2 we show the inferred phy-

logenetic distribution of functional target sites for 4 different human miRNAs. The

genes of these miRNAs are conserved across all vertebrates shown in the figure. The

precise parameters of the distributions p(~s) are represented by the bars at each node

with red indicating the fraction of sites that remains under selection in the left de-

scending branch only, blue the fraction that remains under selection in the right

descending branch only, and green the fraction that remains under selection in both

descending branches. The distribution p(~s) is also summarized in the thickness of the

branches of each tree. Starting from the root (human) the thickness of each branch

indicates what fraction of functional target sites is under selection along that branch.

Note that the initial branch leading away from human has the same thickness for all

four miRNAs, meaning that the fraction of human target sites that is under selection

in at least one of the other species is roughly equal for these 4 miRNAs. However,

as the figure shows, the two miRNAs on the left and the two miRNAs on the right

differ significantly in the inferred pattern of selection across the tree. In particular,

whereas the target sites for the miRNAs on the right (miR-9 and miR-124a) tend

to be shared between all mammals, and to some extent with chicken and opossum,

the target sites for the miRNAs on the right (miR-544 and miR-205) are shared

mostly among primates, but not with other mammals. This suggests that, whereas

the target repertoires of miR-9 and miR-124a have been largely conserved since the

common ancestor of the mammals, significant changes have occurred in the target

repertoires of miR-544 and miR-205 since that time. In Figure 3.3 we show the pa-
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Figure 3.2: Examples of inferred phylogenetic distributions of functional target sites

Comparison of the inferred phylogenetic distribution of functional target sites across

vertebrate species (human - H. sapiens, chimp - P. troglodytes, rhesus maccaque -

M. mulatta, mouse - M. musculus, rat - R. norvegicus, cow - B. taurus, dog - C.

familiaris, opossum - M. domestica, chicken - G. gallus) for 4 different miRNAs.

Starting from human at the root the thickness of the branches of the tree represents

the fraction of putative target sites inferred to be selected along that branch of the

tree. The bars at each internal node indicate what fraction of sites remains under

selection in both descending branches (green), only the left descending branch (red),

and only the right descending branch (blue). For each of the human miRNAs shown

in this figure, there exists at least a miRNA with the same 1-8 “seed” sequence in all

vertebrates in the tree.
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rameters of the inferred selection distributions p(~s) for all miRNAs that are conserved

across all warm-blooded vertebrates that we considered. These results provide a first

comprehensive look into the species-specific targets of miRNAs.

Because we infer different distributions p(~s) for different miRNAs, and these dis-

tributions enter as priors in the Bayesian procedure, we generally assign different

posterior probabilities to sites for different miRNAs, even if these sites have exactly

the same conservation pattern. For example, in the example above a site for miRNA

miR-544 that is only conserved in primates would get considerably higher posterior

probability than a site for miR-9 with the same conservation pattern. This is be-

cause this conservation pattern corresponds better to the inferred selection pattern

of miR-544 than the inferred selection pattern of miR-9.

One of the issues that has been extensively discussed in the miRNA literature is

the question of the typical number of functional targets per miRNA, and the related

question of what fraction of seed matches in 3’ UTRs corresponds to functional target

sites. Previous work has indicated that the number of targets per miRNA varies

across miRNAs [64]. We believe that the ability of our method to infer species-

specific miRNA targeting for each miRNA, allows for a more sensitive and accurate

estimation of the total number of functional target sites of each miRNA.

There are two independent contributions to the total number of functional target

sites for a given miRNA. First, the total number of miRNA seed matches varies

from miRNA to miRNA and second, the fraction of seed matches that correspond to

functional sites may vary from miRNA to miRNA. The latter can be estimated from

the conservation evidence. In particular, the inferred parameter ρ of the distribution

p(~s), corresponds to the fraction of miRNA seed matches that is under selection in

the reference species and at least one of the other species in the clade. This provides a

lower bound on the fraction of seed matches that is functional in the reference species

(see Methods). By multiplying this fraction ρ by the total number of seed matches

for the miRNA we obtain a lower bound on the absolute number of functional target

sites for the miRNA. For simplicity we will refer to these as the estimated fraction of

functional sites, and the estimated total number of functional sites. Figure 3.4 shows

the estimated fraction of functional sites as a function of the estimated total number

of functional target sites, for each clade of species and each miRNA. We infer that the
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Figure 3.3: Phylogenetic distribution of functional target sites. Inferred selection

pattern distributions p(~s) for all miRNAs that are conserved in all vertebrate (panel

a) and all fly (panel b) species. Each row corresponds to a miRNA seed and each

column corresponds to one of the variables ρω(k) – where k indicates the internal

node in the tree and ω indicates which of the subtrees are under selection – that

parametrize p(~s) (see Methods). The miRNAs are sorted by the inferred total fraction

ρ of putative target sites that is under selection in at least one other species.
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Figure 3.4: miRNA seed matches under functional selection The fraction ρ of seed

matches inferred to be under selection (vertical axis) vs. the total number of sites

inferred to be under selection in the entire set of mRNAs (horizontal axis) for indi-

vidual miRNAs. Each star corresponds to one miRNA and each panel corresponds

to one clade of species, with the reference species indicated at the top.
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number of functional target sites varies very widely across miRNAs, i.e. from almost

zero to several thousands. Similarly, the fraction of target sites under selection varies

from close to zero to almost 50% in human, or even more in worms and flies. Overall

we find that the average of ρ is about 30% for human, fly, and worm, meaning that

we predict that at least 30% of miRNA seed matches in these species is functional.

The inferred fractions ρ are significantly lower in fish. This is most likely because the

reference species (Danio rerio) is relatively far (around 120 million years [80,81]) from

the other species in the clade (Fugu rubripes and Tetraodon nigroides), so that there

is a smaller fraction of sites that is under selection in at least one of the other species.

It is intriguing that, for all four clades, there seems to be a correlation between the

fraction ρ and the inferred total number of functional sites at small values of ρ, but

no correlation at high values of ρ.

The number of predicted sites under selection does not appear to correlate with

the breadth of miRNA expression, as among the miRNAs with the largest number of

predicted target sites we find some that are highly tissue specific (miR-9 and miR-

124 that are expressed in the nervous system [39], and miR-155 that is specific to

lymphoid cells [39]) as well some that have broad expression (e.g. the families of miR-

29 [3, 53, 54, 82] and miR-30 [3, 82]). miR-16, which is ubiquitously expressed [3, 39]

has an intermediate number of targets (Additional file 2 [49]).

3.3.4 Performance comparison with other methods

To assess the quality of our predictions relative to other methods that have been

published to date, we built on the results recently published by Stark et al. [66], who

have performed a detailed comparison of the performance of most of the prediction

methods that are currently in use on a relatively large set of experimentally tested

miRNA-mRNA interactions. This experimental data set has been mostly obtained

by the Cohen lab, with a small number of interactions having been tested by other

groups. The issues concerning the biases involved with the assembly of this data set

have already been discussed by Stark et al. [66], and we will not belabor them here.

We will only caution the reader that the accuracy of various different methods on this

data set should not be taken as an indication of their accuracy on a random set of

miRNA-mRNA interactions. Unfortunately, this unbiased experiment has not been
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done.

Since our method assigns a posterior probability to each predicted site, sets of

predictions at different levels of confidence can be obtained by including only sites

over a given posterior probability. We created such sets at different thresholds in

posterior probability and computed the sensitivity ( TP
TP+FN

, i.e. the fraction of all

true targets that were indeed predicted) and the specificity ( TN
FP+TN

) i.e. the fraction

of all the correct negative predictions) for each set. The results are shown as the

black line in Figure 3.5, which also shows the sensitivities and specificities of other

prediction methods [73,77,77,83–85], as inferred from the published results.

The figure indicates that our method performs as well as the most accurate pre-

diction methods available to date, while maintaining a very high specificity even for

high sensitivities. We observe a large overlap between our predicted targets and those

predicted by Stark et al. [66] and Grün et al. [64] although there are also substantial

numbers of predicted sites that are either specific to our method or specific to one of

the other methods. The significant overlap is most likely a reflection of the similarity

in the definition of target sites: 7/8-nucleotide seed matches that are conserved across

at least some of the other flies account for a large fraction of the predicted sites in all

three methods. However, these other methods also consider putative sites with fewer

matches in the seed region if they are sufficiently conserved [64] or compensated by

matches to the 3’ end of the miRNA [66]. The very good accuracy of our predic-

tions indicates that appropriately weighing the evolutionary information enables us

to achieve a good performance even with more restrictive definition of putative target

sites compared to thee other methods. In particular, we note that from a total of

12,155 high confidence predicted sites (posterior probability p ≥ 0.5), a substantial

proportion, namely 1,953 (16%), are not perfectly conserved in Drosophila pseudoob-

scura, but are conserved in many of the other flies. Such sites will be missed by

methods that only consider strict conservation in D. pseudoobscura.

In Additional file 3 [49] we show a detailed comparison of our predicted target

sets for fly miRNAs and those reported by Stark et al. [83] and Grün et al. [64]. We

defined a UTR to be a predicted target of a specific miRNA if it had at least 0.5

probability of containing a functional site for the miRNA (see Methods). Because

the UTR data sets used by different groups differs to some extent, we have used
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a conservative scheme of computing the overlap: we have assumed that whenever

another method predicted a site in a splice variant of a given gene, all the variants

would share the site. Thus, the numbers below represent upper bounds on the extent

of overlap between the different methods. Note additionally that the total number of

predictions made by other methods may not be the number of predictions reported in

the respective studies, but include all the splice variants known to date. The overlap

between our predictions and those of Stark et al. [83] and Grün et al. [64] varies

significantly between miRNAs. For example, for the bantam miRNAs, which has

shown to be involved in the regulation of cell growth [86,87], the overlap is quite large.

We predict 140 targets of which 106 (76%) and 121 (86%) occur in the predictions of

Stark et al. [66] and Grün et al. [64], respectively. The discrepancy is higher for miR-

1, a miRNA required for muscle development [88]. We predict 362 targets of which

252 (70%) and 271 (75%) occur among the predictions of Stark et al. [66] and Grün et

al. [64], respectively. Finally, for another microRNA, miR-281, we make only a total

of 34 predictions of which only 13 (38%) and 17 (50%) occur among the predictions of

Stark et al. [66] and Grün et al. [64], respectively. That is, at least half of our predicted

targets are not predicted by the other two algorithms. Unfortunately, the data set

of experimentally tested miRNA-mRNA interactions is too small to meaningfully

compare the predictions of the different methods for individual miRNAs.

3.3.5 Location bias of predicted miRNA target sites in UTRs

We next turned to the high-confidence (posterior probability ≥ 0.5) subset of our

predicted miRNA target sites and we asked whether we could identify a bias in the

location of evolutionarily selected miRNA target sites in the 3’ UTRs. Figure 3.6

shows a heat map representation of the location of these sites along the 3’ UTRs in

the different clades. In this plot, each predicted miRNA target site is represented as a

dot with its x-coordinate being the total length of the 3’UTR in which it resides and

its y-coordinate being the relative, normalized position of the site in the UTR. We

infer that in all clades, the high-confidence sites tend to avoid the regions immediately

after the stop codon as well as the end of the transcript. At the 3’ end, this effect

could be due to the presence of polyA tails in some of the Refseq transcripts. In

human, where the UTRs are much longer than in the other species considered (3,300
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Figure 3.5: Performance comparison with other methods Comparison of the perfor-

mance of our method and other published methods on a set of 120 experimentally

tested miRNA-mRNA interactions in fly. Specificity (fraction of negatives that are

not predicted) is shown as a function of sensitivity (fraction of positives that are

predicted) for our method at different cutoffs in posterior probability (black line) and

for other methods (colored dots).
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Figure 3.6: Location bias of predicted miRNA target sites in UTRs Distribution of

predicted miRNA target sites in the 3’UTRs. Each predicted miRNA target site

is represented by a dot with the x-coordinate corresponding to the length of the

associated 3’UTR and the y-coordinate corresponding to the localization of the site

within the 3’UTR normalized from 0 (start) to 1 (end). Gaussian kernels around all

the dots were used to create a smooth interpolating density surface. Since the general

UTR length distribution is not uniform, we normalized the vertical slices through the

2-D density surface p(x, y) at each x-coordinate to obtain p(y|x).
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of the 22,459 of the human UTRs in our data set were longer than 2kb), conserved

miRNA target sites also tend to avoid the regions in the middle of long UTRs. This

pattern is mirrored in the conservation profile across long UTRs, i.e. long UTRs tend

to be less conserved in the middle than toward their ends (data not shown). The

pattern is also observed at the level of predicted target sites for individual miRNAs

(Figure 3.7), i.e it is not caused by one or two miRNAs with an aberrant target site

distribution.

A conceivable explanation for the observed pattern of enrichment of miRNA sites

toward the start and end of long UTRs is that a non-negligible proportion of long

Refseq UTRs erroneously contains introns. To test this hypothesis we obtained all

EST sequences that overlap Refseq UTRs and calculated, for each UTR base, the

fraction of all overlapping ESTs in which the base is intronic. As shown in Additional

file 4 [49], there is almost no difference between the intron-inclusion profiles for long

and short 3’ UTRs. That is, the observed enrichment of miRNA sites toward the

ends of long 3’ UTRs cannot be explained by intron inclusion.

The observed pattern is interesting because it has been argued [66,67] that miR-

NAs are a major factor driving the evolution of UTR lengths: ubiquitously-expressed

genes have short UTRs, while genes whose expression is more restricted and regulated

by miRNAs have longer UTRs. Our result suggests a more complicated scenario, in

which more strongly conserved miRNA target sites, which have most likely emerged

early, are located towards the boundaries of the 3’ UTR, the stop codon and the

polyadenylation site. This particular location of target sites may influence the like-

lihood of interaction between the miRNA-containing ribonucleoproteins and other

complexes involved in RNA processing and regulation.

3.3.6 Inference of miRNA function using pathway analysis

To analyze the role that individual miRNAs play in the regulatory networks in hu-

man, we have used the KEGG database in which a large fraction of the human genes

are assigned to pathways. KEGG provides a mapping between genes and pathways,

as well as a reference to the identifier of each of the genes in the Gene database of

NCBI. Based on this mapping, as well as on the assignment of Refseq identifiers to

Gene identifiers which we obtained from NCBI, we have constructed an assignment
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Figure 3.7: Location of predicted target sites of individual miRNAs in the 3’ UTRs.

Histogram of the relative position (0(start) to 1(end)) of high-probability predicted

target sites (posterior probability ≥ 0.5) for 6 individual miRNAs in the human

3’UTRs longer than 4kb. The identity of the miRNAs and their corresponding seed

sequences (positions 1-8 from the 5’ end of the mature miRNA) are indicated on each

panel.
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Figure 3.8: Pathway analysis. Representation of individual pathways among the pre-

dicted targets of a given miRNA. Each column corresponds to a KEGG pathway and

each row to a group of miRNAs with the same seed sequence. Red indicates overrep-

resentation of the targets of a specific miRNA among the genes in the corresponding

pathway, whereas blue indicates depletion. The intensity of the color indicates the

posterior probability of the dependent model (see Methods). Pathways have been

grouped in larger functional categories according to the KEGG annotation. Only

miRNAs with at least one significant association are shown.

between putative miRNA targets and pathways. The resulting dataset consisted of

4, 011 human Refseq transcripts. Using putative target sites with posterior prob-

ability of ≥ 0.5, we have determined which pathways are significantly associated

with each individual miRNA (see Methods). In particular, for each miRNA/pathway

combination we calculated the log-likelihood ratio, given the observed data, of two

models: one that assumes that pathway membership and being a predicted target of

the miRNA are independent, and one that assumes that these are generally dependent

properties.

Figure 3.8 shows the results of this analysis for the subset of miRNAs that had

at least one significant association (Additional file 5 [49] shows the entire miRNA

set). The color scale is centered around a log-likelihood ratio of 0 (white), and the

intensity of the color is proportional to the posterior probability of the dependent
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model. Enrichment of targets in a pathway is shown in red, and depletion of targets

in a pathway is shown in blue.

The first thing to note is that, as reported previously [66], genes that are ubiq-

uitous and are involved in basic metabolic functions, tend to be depleted in miRNA

target sites. Also noted before is that miRNAs tend to target genes involved in

transcription regulation, intercellular communication, cell growth and death and de-

velopment [63,64,66,71,74,77]. For example, we find that the targets of 19 of the 119

unique miRNA seeds are significantly enriched in the axon guidance pathway. This

does not necessarily imply, however, that all these miRNAs are specifically involved in

axon guidance. Many of the molecules involved in axon guidance are also involved in

delivering spatial cues during the development of other systems, such as for example

the cardiovascular system. So it is plausible that, whereas many miRNAs are associ-

ated with the axon guidance pathway, different miRNAs may act on different subsets

of the mRNAs from this pathway in different tissues. Below we describe some of the

most notable associations that we found between specific miRNAs and pathways.

Our method yields the expected associations for miRNAs which are specifically

expressed in certain tissues (and presumably regulate processes that are specific to

these tissues), or for miRNAs for which targets are already known. miR-124a, whose

expression is highly specific to the nervous system, is one of the miRNAs most sig-

nificantly associated with the axon guidance pathway. Its corresponding targets in

this pathway include players with known involvement in nervous system development

such as the ephrins B1, B2, and B3, ephrin receptors A2, A3, and B4, semaphorins

5A, 6A, 6C, and 6D, and plexins A3 and B2. As miR-124 is highly expressed in

mature neurons, it is possible that its function is to maintain previously established

neuronal circuits.

Our results also suggest an involvement of the miR-181 family of miRNAs in ner-

vous system. These miRNAs, whose expression in zebrafish appears to be restricted

to the nervous system, thymus and gills [56], have so far been shown to play a role in

lymphocyte [89] and muscle [90] development. In our data, they have a set of high

confidence targets in the long term potentiation pathway, among which glutamate

receptors, calcium/calmodulin-dependent protein kinase II, adenylate cyclate 1, and

calmodulin. In fact, calcium/calmodulin kinase II 2γ appears to play a role in both
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memory performance [91] and in activation-induced T cell differentiation [92]. These

results may explain the up-to-now puzzling expression pattern of these miRNAs.

The let-7 miRNA, which was recently shown to regulate the let-60 gene in C.elegans

and is presumed to regulate the human homologs of let-60, i.e. the Ras genes [76],

is most significantly associated with the MAPK pathway, with the NRAS gene and

the Ras guanyl releasing protein 1 RasGRP1 being predicted as high confidence tar-

gets. Additionally, let-7 is predicted to target several kinases and phosphatases in

this pathway, and, importantly for the postulated involvement of let-7 in malignancy,

the Fas ligand, TGFβ receptor I, nerve growth factor and fibroblast growth factor 11.

miR-9 has been described as a brain-specific miRNA [39], and recent evidence

suggests that its expression is highest in fetal brain and oligodendrogliomas [93].

The top pathway associated with this miRNA is that of glutamate metabolism, in

which miR-9 appears to target glutamate decarboxylase, glutamate dehydrogenase,

glutamase, glutamate-cysteine ligase, glutamic-oxaloacetic transaminase 1, as well

as glucosamine-phosphate N-acetyltransferase 1, 4-aminobutyrate aminotransferase,

and phosphoribosyl pyrophosphate amidotransferase. The second most significant

association for miR-9 is with with the focal adhesion pathway, in which many more

genes appear to be targeted, among which collagen V α1, collagen IV α2, integrin 6,

tenascin C, talin, trombospondin 2, and vinculin. These targets suggest that miR-9

may be involved in regulating the intercellular communication in the brain and the

function of neural circuits.

Another group of miRNAs for which we suggest a role a development, in par-

ticular in the nervous system, is that of the embryonic miRNAs exemplified by

miR-372, initially identified in a study of human embryonic stem cells [54]. These

miRNAs appear to be primate-specific. However, the nucleotides at position 2-7,

AAGUGC, are shared by the 5’ ends of several other miRNAs that are embryonically-

expressed and of restricted phylogenetic distribution such as the rodent miR-290

(AAAGUGCC 1-8), miR-291 (AAAGUGCU 1-8), miR-292 (AAAGUGCC 1-8), and

miR-294 (AAAGUGCU 1-8), zebrafish miR-430’s (U/AAAGUGCU at 1-8), as well

as the human miR-302 group (UAAGUGCU at 1-8), miR-373 (GAAGUGCU at 1-8),

and most miRNAs of the miR-520 group (AAAGUGCU at 1-8). Of these miRNAs,

the study of [94] implicated miR-430 in the nervous system development in zebrafish,



3.3 Results and Discussion 58

although in a subsequent study the authors showed that miR-430 plays a role in

the clearance of maternal RNAs [2]. Our results speak to the first proposed role of

this class of miRNAs, namely in nervous system development. The miR-372-related

miRNAs (AAAGUGCU at 1-8) have a strong predicted association with the axon

guidance pathway, where it is predicted to target, among others, the ephrin B2,

ephrin receptors A4, A5 and A7, semaphorin 4B, LIM kinase 1, and p21-activated

kinase 7. Moreover, at least some of the Smad genes that are part of the top pathway

predicted to be targeted by these miRNAs, the TGFβ pathway, have been implicated

in the growth of neurites [95]. Interestingly, the difference A vs. U or G at the first

position between the miR-372 and other families mentioned above leads to quite dif-

ferent predictions of targeted pathways. For none of these other miRNAs have we

found a pathway that appears to be significantly targeted.

Finally, we were very interested in understanding the function of miR-16 (which

shares its seed with the miR-15 group of miRNAs), a miRNA that appears to be

ubiquitously expressed at least in mouse [39], and has been implicated in regulation

of apoptosis [96] and of mRNA stability [97]. We find that the most significant associ-

ation of miR-16 is with the mTOR signaling pathway [98], which integrates nutrient-

derived signals and controls cell growth. miR-16 appears to target the rapamycin-

insensitive companion of mTOR, several ribosomal protein kinases, components of

the eukaryotic translation initiation factor 4 (B and E), insulin-like growth factor 1

and others. The second most significant association of this miRNA is with the Wnt

pathway, in which it targets several Wnt (Wnt2B, Wnt3A, Wnt5B, Wnt7A), a Wnt

inhibitor (WIF1) and cyclin (D1, D2, D3) proteins, and the third most significant

association is focal adhesion, where miR-16 appears to target a large number of tran-

scripts that have fundamental role in cell division and cell-cell communication. Some

examples are again the cyclins D1, D2, and D3, cell division cycle 42, p21-activated

kinase 7 (PAK7), v-akt murine thymoma viral oncogene homolog 3 (AKT3), v-crk

sarcoma virus CT10 oncogene homolog (avian)-like (CRKL), mitogen-activated pro-

tein kinase kinase 1 (MAP2K1), laminin gamma 1, B-cell CLL/lymphoma 2 (BCL2),

and others. These suggest a fundamental role of miR-16 in controlling cell growth

and maintaining cell-cell interactions. These functions may explain the observed as-

sociation between miR-16/miR-15a deletions and chronic lymphocytic leukemia [99],
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and the slower progression of CLL in mice treated with rapamycin [100].

3.4 Conclusions

As the number of miRNA genes has been growing steadily, especially through high-

throughput cloning techniques, the number of experimentally validated targets has

been lagging markedly behind. Recently, studies that take advantage of the fact

that miRNAs appear to also induce partial degradation of their mRNA targets have

used microarray methodology to identify genes whose expression changes upon over-

expression or knock-down of individual miRNAs. Typically hundreds of putative

targets are identified in such studies but there is only partial overlap between these

sets of putative targets and those that are computationally predicted using compara-

tive genomics methods. Computational modeling of miRNA-mRNA interaction and

accurate prediction of miRNA target sites therefore remains an important and chal-

lenging problem in bioinformatics. In particular, it is still poorly understood what

constraints beyond matching of the miRNA seed determine functionality of putative

target sites.

In this study, we developed a general method for miRNA target prediction that

extends the already available methods in several ways. First, we treat the phylo-

genetic relationships between species in a rigorous and general way, without any

tunable parameters. That is, the Bayesian procedure uniquely determines the poste-

rior probabilities for each conservation pattern and seed type in terms of the observed

conservation patterns of target sites for each miRNA. Thus, in contrast to many other

target predictions methods which are specifically tailored to operate on a particular

clade of species, our method can be applied to any clade of species, and the phylo-

genetic relations between the species will be automatically taken into account when

assessing the significance of the site conservation patterns. This will, for example,

enable us to easily update our predictions as more genomes become available, without

the need of adapting the method.

Note also that our Bayesian procedure for incorporating information from conser-

vation statistics is generally independent from the “site” definition that we employ and

can easily be applied to other target site definitions (see Methods for details). Thus,
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if a better definition of target sites is developed in the future, for example through a

better understanding of the requirements on functional miRNA target sites, then we

can easily adapt the method to incorporate conservation statistics in essentially the

same way. Most generally put, given a binary function that distinguishes “sites” from

“non-sites” in RNA sequences, and given a set of “background frequencies” p(~c|bg)

with which sites defined by such a function show conservation pattern ~c by chance,

we can apply the same methodology to assign posterior probabilities to all putative

sites, incorporating the information from the conservation statistics of these sites.

Second, we estimate the evolution of selection pressures on target sites in a

miRNA-specific manner. This enables us to correctly treat miRNAs that appeared

at different stages in evolution, and whose targets may have undergone different se-

lection pressures in different lineages. In particular, we show that different miRNAs

show markedly different distributions of functional target sites across the phylogenetic

tree and provide the first comprehensive picture of species-specific and clade-specific

miRNA targeting. We have additionally shown that, especially in long 3’ UTRs that

occur in vertebrates, miRNA target sites show a significant bias toward occurrence

near the start and end of the 3’ UTR. This suggests the possibility that the choice

of a distal polyadenylation site may reduce the activity of a miRNA target cassette

in the center of the 3’ UTR, while introducing other miRNA target sites close to the

new polyA tail.

With respect to the performance of our algorithm, we have shown that in fly, where

extensive comparisons of the performance of target prediction algorithms have been

done, our method performs at least as well as the most accurate methods available

today, with a high specificity over a relatively large range of sensitivities.

Finally, to more robustly infer the function of individual miRNAs, each of whom

may target hundreds of transcripts, we developed a method for identifying biochemical

pathways that are significantly enriched or depleted in targets of a specific miRNA. We

showed that, for well-studied miRNAs, this approach recovers the known functional

associations. In addition, this analysis predicts novel pathway associations for a

significant number of miRNAs.
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3.5 Methods

3.5.1 Conservation fold enrichment of different seed types

For the data shown in Figure 3.1 we focused, for each clade, on all miRNAs that

occur in all species of the clade. Given that the seed sequence is so important for our

inference, we used small RNA cloning data in human to determine the most abundant

form of each mature miRNA (Pfeffer et al. [13, 14] and M.Zavolan & T.Tuschl, un-

published data), and we used this form in our prediction (Additional file 6 [49]). To

determine which miRNAs are conserved in the clade we started with miRNA genes

annotated in miRBase and searched the genomes of the other species for matches to

the mature miRNA. Whenever the mature miRNA mapped with at most one mis-

match we consider the mature miRNA conserved in that species. Since our inferences

only uses the first 8 nucleotides of a miRNA, we then consider a miRNA seed to be

conserved in a species if there exists at least one mature miRNA in that species with

the corresponding seed.

For each seed type t we located all sites in the 3’ UTRs of the reference species

that are complementary to a seed of type t for any of the conserved miRNAs and

then computed the fraction ct of these sites that are conserved in all other species of

the clade. We also determined the “background” conservation frequencies bt for each

seed type by scanning all 3’ UTRs of the reference species and computing the fraction

of all sequence segments of the same length as the seed that are conserved in all other

species of the clade. Note that all seeds of the same length have the same background

frequency bt. This is because we found that this frequency is largely independent of

the number of occurrences of a particular sequence segment in the reference species.

Finally, the conservation fold enrichment ft of seed type t is defined as the ratio of

observed and background conservation rates: ft = ct/bt.

3.5.2 Bayesian phylogenetic miRNA target identification al-

gorithm

For each miRNA and each of the three seed types we identify putative target sites

separately and assign a posterior probability to each target site as follows. First we
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Figure 3.9: Modeling the selection pressure on miRNA target sites. a. The phyloge-

netic tree of the species in the clade (here flies) is rooted at the reference species (here

melanogaster) and selection is modeled starting from the root and moving down the

tree (see Methods for details). At each internal node k there are probabilities for se-

lection to be maintained in one or both children of the node (see Methods for details).

b. Relationship between selection and conservation patterns: Example of a selection

pattern on a particular set of orthologous target sites in flies. Open circles indicate ab-

sence of selection pressure, closed circles indicate presence of selection pressure. Selec-

tion pressure is absent in Drosophila ananassae, mojavensis and virilis (D.ananassae,

D.mojavensis, and D.virilis). The possible conservation patterns consistent with the

selection pattern for this target site are listed in the table. The site needs to be con-

served in all species in which selection pressure operates, namely Drosophila simulans,

yakuba and pseudoobscura (D.simulans, D.yakuba, D.Pseudoobscura). In the species

in which selection pressure does not operate, the site may or may not be conserved.
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find all “sites” that are complementary to the seed in the 3’ UTRs of the reference

species. Using pairwise alignments between the reference species and the other species

we determine, for each putative site, which other species have the site conserved.

An individual site was considered conserved if all the base pairs predicted to form

between the miRNA and this site in the reference species could also be formed with

the corresponding sites, extracted from the genome alignments, in the other species.

This defines a “conservation pattern” for each site, which is a binary vector ~c with

ci = 1 if the site is conserved in species i and ci = 0 if the site is not conserved. For

example, for the triplet of worms C. elegans, C. briggsae, and C. remanei, using C.

elegans as the reference species, the vector ~c = (1, 1) indicates a C. elegans site that

is conserved in both other worms, the vector ~c = (1, 0) a site conserved only in C.

briggsae, the vector ~c = (0, 1) a site conserved only in C. remanei, and the vector

~c = (0, 0) a site conserved in neither of the other two worms.

The fact that a putative target site is conserved does not necessarily imply that the

site is functional. Especially for closely-related species short sequence segments, such

as the 7-mers and 8-mers of miRNA seeds, can easily be conserved by chance. This

evolutionary dependency between orthologous sites can be taken into account in a

number of different ways. For example, in RNAhybrid [73] the p-values for orthologous

target sites are combined by fitting an “effective” number of orthologous sequences

to the observed p-value distribution for randomly generated miRNAs. Here we aim

to incorporate the conservation statistics in a Bayesian framework that takes the

phylogeny of the species explicitly into account and recognizes that a conserved site

may be under selection in any of the subsets of species in which the site is conserved.

That is, to infer how likely it is that a given putative site with conservation pattern ~c

is functional, we want to calculate how likely it is to observe this conservation pattern

~c given that the site is functional and has been maintained by selection in one or more

species, and how likely it is to observe ~c in the absence of selection for maintenance

of the site.

To this end we first define a “background model” that gives the probabilities

p(~c|t, bg) to observe conservation pattern ~c “by chance” for a seed of type t, i.e. a

particular 7-mer or 8-mer. By “conservation by chance” we mean that there is no spe-

cific selection for maintaining the complementarity of the region in question to the 5’
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end of the miRNA. We did not, however, use a background model that simply reflects

the probabilities to observe different conservation patterns under neutral evolution.

Any particular putative target site may overlap or be part of a site that is functional

for some other reason, and may therefore be more conserved than would be expected

under neutral evolution alone. Therefore, to estimate the background probabilities

p(~c|t, bg) we calculated the overall frequencies with which all conservation patterns ~c

occur in the alignments, averaged over all 8-mers for the 1-8 seed type, and averaged

over all 7-mers for the 1-7 and 2-8 seed types. In previous work others [63] have

estimated background frequencies of conserved seed matches independently for seeds

that have different absolute frequencies in the 3’ UTRs of the reference species. We,

in contrast, only require the relative frequencies of different conservation patterns,

and we have observed that these are largely independent of the absolute frequency of

the seed match. Note that for a clade consisting of the reference species and g other

species, we are estimating the relative frequencies of 2g possible conservation patterns

for each seed type. Further subdividing these 2g different conservation patterns by

the absolute frequency of the seed match would reduce the amount of data available

per seed too much for an accurate estimation of all the parameters.

We next calculated how likely it is to observe different conservation patterns ~c

given that the putative target site is functional in at least one of the species. To

this end we had to quantify the effect of selection on functional target sites. This is

very difficult to do in complete generality. For example, one would generally expect

that mutations that destroy functional target sites can have wildly varying effects on

fitness with some sites being almost lethal when destroyed and others having only

very mild deleterious effects. In addition these fitness effects will generally differ

from species to the species, even for orthologous functional target sites. Of course

target sites can also be spontaneously created through mutations in 3’ UTRs, and

in some cases these will act as functional target sites that can have either beneficial

or deleterious effects. Thus, the rates at which orthologous target sites appear and

disappear through evolution is a complex function of fluctuating selection pressures

of which we know virtually nothing.

In order to be able to calculate meaningful probabilities for observing different

conservation patterns ~c for functional sites we therefore make the following simplifying
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assumptions. First, we assume that given a set of conserved putative target sites, each

of the conserved sites can be either “functional” or “nonfunctional”. In this context

“functional” means that selection has acted to ensure that the target site remains

conserved and “nonfunctional” means that the target site has evolved according to

the background model. To take the worm example, if a functional C. elegans site is

functional in both other worms as well, than the site will necessarily be conserved in

both, i.e. we will have ~c = (1, 1). If the site is functional in C. briggsae only, then we

might observe either ~c = (1, 0) or ~c = (1, 1), because the site is necessarily conserved

in C. briggsae, and it may still remain unmutated by chance in C. remanei.

Thus, in general we consider all possible “selection patterns” for the site across

the different species. Like the conservation pattern, a selection pattern ~s is a binary

vector with si = 1 if the site is functional (under selection) in species i, and si = 0

otherwise. We calculate the probabilities p(~c|t, ~s) to observe conservation pattern ~c

given selection pattern ~s (and seed type t) as follows. Let C(~s) denote the set of

all conservation patterns ~c that are consistent with the selection pattern ~s. To be

consistent with the selection pattern, the site needs to be conserved in all species in

which it is presumed to be under selection, i.e. for all ~c in C(~s) we have that ci = 1

for all i for which si = 1. The probability p(~c|t, ~s) is then given by

p(~c|t, ~s) =
p(~c|t, bg)∑

~c′∈C(~s) p(~c′|t, bg)
. (3.1)

Note that p(~c|t, ~s) is just the probability that the site is conserved by chance in those

species which have ci = 1 but are not under selection, i.e. si = 0.

Finally, we need to quantify how likely it is a priori that a target site in the

reference species will be under selection in a particular subset of the other species.

That is, we need a prior probability distribution p(~s) that gives the probability that

a miRNA site will be under selection in all species i for which si = 1. One of the

key novel features of our model is that we allow this prior distribution p(~s) to vary

between different miRNAs. We thus take into account the species- or clade-specific

conservation of functional targets, i.e. that the reference species may share functional

target sites with different subsets of species for different miRNAs.

For each miRNA we need to estimate the prior probabilities p(~s) of all possible

selection patterns. That is, we need to estimate what fraction of putative sites in the
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reference species is under selection in each possible subset ~s of the other species. To

do this we can first use the conservation of the miRNA gene. That is, if the miRNA

gene is not conserved in a given species i, then we will assume that sites for this

miRNA cannot possibly be under selection in species i. Thus, for every miRNA in

the reference species we check which of the other species contains a miRNA with the

same seed. When then set p(~s) = 0 for all vectors ~s in which the site is presumed

under selection in a species that does not contain the miRNA. Note that, although

unlikely, it is in principle conceivable that problems with the genome assembly of

one of the species causes us to miss the ortholog of a particular miRNA gene. This

will result in the conservation information from this species to be ignored for this

particular miRNA.

The most general approach to estimating p(~s) would now be to simply find the

distribution p(~s) that has overall maximum likelihood given the data. Formally, the

probability p(~c, t) to observe the conservation pattern ~c for a given putative target

site of seed type t is given by summing over all possible selection patterns ~s:

p(~c, t) =
∑
~s∈S

p(~c|t, ~s)p(~s), (3.2)

where S is the set of all selection patterns that are consistent with the miRNA gene

conservation pattern, p(~c|t, ~s) is given by equation (3.1), and p(~s) is the prior prob-

ability distribution over selection patterns which we want to estimate. Let n(~c, t)

denote the number of occurrences of putative target sites of seed type t that have

conservation pattern ~c. The likelihood L given the data, i.e. the observed counts

n(~c, t), is then given by

L =
∏
~c,t

p(~c, t)n(~c,t). (3.3)

Given sufficient data, i.e. n(~c, t)� 0 for all ~c, we could estimate p(~s) by maximizing

L with respect to p(~s). The amount of data is limited, however, and the distribution

p(~s) generally has a large number of independent components (2g for g species). As

we believe that it is not possible to robustly fit the entire distribution p(~s) without a

significant risk of over-fitting, we instead aimed to parametrize reasonable distribu-

tions p(~s) using a much smaller set of parameters, i.e. on the order of g rather than

2g parameters.
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A second piece of information that can help us estimate p(~s) consists of the phy-

logenetic relationships between the species. That is, one would generally expect that

functional target sites in the reference species are more often also functional in closely

related species than they are in distantly related ones. It is thus natural to model

the evolution of selection patterns along the branches of the phylogenetic tree of the

clade. In analogy with evolutionary models for the evolution of gene sequences one

might consider models in which selection for a site may “mutate” from “on” to “off”

along each branch of the tree, with a probability of “mutation” proportional to the

length of the branch. However, in contrast to such simple evolutionary events as

point mutations in sequences, the “mutations” in our model correspond to changes in

selection pressures and we see no reason to assume that these occur at a constant rate

along each branch of the phylogenetic tree. Indeed, as we will see below, our results

suggest that the rate of turnover of selection along a given branch of the tree differs

significantly between miRNAs. To reasonable parametrize p(~s) we would therefore

have to fit independent rates of loss and gain of selection along each branch of the

tree for each miRNA. In addition, for every selection pattern ~s we would need to

consider all evolutionary histories of selection loss and gain that are consistent with

the resulting selection pattern at the leaves of the tree. Finally, note that we inher-

ently treat the species in the clade asymmetrically. That is, we look for putative sites

in the reference species only and then use pairwise genome alignments to determine

the conservation pattern of each putative site in the reference species. We thus by

definition never consider conservation patterns in which the site is conserved in some

of the species but not in the reference species.

In summary, we looked for a parametrization of p(~s) that is flexible enough to allow

for different rates of turnover of selection along each branch of the tree, that respects

the topology of the phylogenetic tree, that takes into account our inherent asymmetric

treatment of the reference species, and that minimizes the number of free parameters

needed, so that over-fitting is avoided as much as possible. The parametrization that

we chose is the following. We take the phylogenetic tree of the set of related species,

and take the reference species as the root of the tree, as illustrated in Figure 3.9a

for the Drosophila species. Starting from a functional site in the reference species we

now move along the tree from top to bottom and assume that in each branch the
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“functionality” of the site can only be lost. That is, if the site is not under selection

at a given internal node of the tree, we assume that it is also not under selection in

any of its descendants. The probabilities p(~s) can then be parametrized by giving,

at each node k, the probabilities ρ11(k), ρ10(k) and ρ01(k) that the functionality is

maintained in both descendants, in the left descendant only, or the right descendant

only (Figure 3.9b). Note that we assume that if the site was not under selection in

either descendant then the site was already not under selection in the parent, and that

at each node k the probabilities sum to one, ρ11(k)+ρ10(k)+ρ01(k) = 1. There are thus

10 independent parameters for the Drosophila tree of Figure 3.9a which has 5 internal

nodes. A final parameter ρ gives the probability that functionality is maintained in

going from the reference species to the first internal node. Thus, with probability ρ the

site is conserved in at least one of the other species, and with probability (1− ρ) it is

specific to the reference species. The tree in Figure 3.9a shows a selection pattern with

selection in D. simulans, D. yakuba and D. pseudoobscura. Using our parametrization

the prior probability of this selection pattern is ρρ11(1)ρ11(2)ρ01(3)ρ10(4) (we number

the nodes from top to bottom). A nice feature of this parametrization of p(~s) is that

the selection at all internal nodes of the tree is uniquely determined by the selection

at the leaves of the tree, i.e. no sum over different evolutionary histories is required.

Note that by using only conservation information, we cannot possibly distinguish

sites that are only functional in the reference species from sites that are not functional

at all. That is, we do not know what part of the fraction (1− ρ) corresponds to sites

that are functional, reference-specific sites and what fraction is nonfunctional. The

inferred fraction ρ therefore provides a lower bound on the fraction of functional sites.

For simplicity, we will make the conservative assumption that only the fraction ρ of

sites is functional, and refer to these sites as the fraction of “functional” sites.

For each miRNA we estimate the parameters ρ, and ρ11(k), ρ10(k) and ρ01(k)

for each node k, by maximizing the likelihood of the distribution given the observed

data, i.e. equation (3.3). Let ω denote one of the possible selection patterns for

the two descending branches, i.e. ω ∈ {01, 10, 11}, and define the indicator function

δ(~s, ω, k) such that δ(~s, ω, k) = 1 whenever the parameter ρω(k) occurs in p(~s) and

δ(~s, ω, k) = 0 when it does not. We then have for the derivatives

dp(~s)

dρω(k)
= δ(~s, ω, k)

p(~s)

ρω(k)
. (3.4)
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Using this it is easy to show that L can be maximized with respect to the parameters

ρω(k) by an expectation maximization (EM) procedure. If we define

Xω(k) =
∑
~c,t

n(~c, t)

∑
~s∈S

δ(~s, ω, k)
p(~c|t, ~s)p(~s)∑

~σ∈S p(~c|t, ~σ)p(~σ)

 (3.5)

then the EM update equations are given by

ρω(k) =
Xω(k)∑

ω̃∈{01,10,11}Xω̃(k)

. (3.6)

By iterating these equations we can determine the optimal ρω(k). Since, as can also

be shown by taking second derivatives, the likelihood L is a concave function of the

parameters ρω(k), the EM procedure is guaranteed to converge to the unique global

optimum of the likelihood.

Once all ρω(k) have been determined for a given miRNA we can calculate posterior

probabilities of functionality for each putative target site as follows. As mentioned

above, we consider a target site functional if it is under selection in the reference

and at least one other species. The nonfunctional sites are then by definition those

sites that are not under selection in any of the other species. We will denote this

no-selection pattern as ~0. For a site of seed type t and conservation pattern ~c the

posterior probability that the site is functional is then given by

p(~s 6= ~0|t,~c) = 1− p(~c|t,~0)p(~0)∑
~s∈S p(~c|t, ~s)p(~s)

. (3.7)

Note that the prior probability of no selection is simply (1 − ρ), i.e. p(~0) = 1 − ρ,

and that the probability for conservation pattern ~c given no selection is simply the

background probability

p(~c|t,~0) = p(~c|t, bg). (3.8)

We can thus also write the posterior as

p(~s 6= ~0|t,~c) = 1− p(~c|t, bg)(1− ρ)∑
~s∈S p(~c|t, ~s)p(~s)

. (3.9)

The parameter ρ thus corresponds to the estimated fraction of all putative target sites

in the reference that are functional, i.e. under selection in at least on other species.

Finally, note that the sums in equations (3.1) and (3.2) involve a number of terms

that grows exponentially with the number of species in the clade. We believe that this
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will not cause any computational problems in clades with less than 20 or so species.

For much larger sets of species these sums can become computationally prohibitive.

In those circumstances one could reduce the number of species by choosing, for each

set of closely-related species, only a single representative. For species that are so

closely-related that most putative target sites are conserved between them, choosing

a single representative per group would hardly affect the predictions.

3.5.3 Sequence data

We carried out miRNA target predictions for all available human, fly, fish and worm

RefSeq transcripts present in the 17th release of the Refseq database. We mapped all

transcripts to the corresponding genomes using the Spa cDNA-to-genome alignment

program [101], and the genome assemblies hg17 (human), dm2 (fly), ceWB05 (worm)

and danRer3 (fish) provided by the Genome Bioinformatics group at the University

of California, Santa Cruz [102]. From the same source we also downloaded pairwise

alignments of several genomes with the genome of reference species, as follows: for

human we downloaded hg17-to-panTro1, hg17-to-rheMac2, hg17-to-canFam2, hg17-

to-bosTau2, hg17-to-mm7, hg17-to-rn3, hg17-to-monDom1 and hg17-to-galGal2; for

fly we used dm2-to-droSim1, dm2-to-droYak1, dm2-to-droAna1, dm2-to-dp3, dm2-to-

droMoj1, dm2-to-droVir1; for fish we used danRer3-to-fr1 and danRer3-to-tetNig1.

Finally, for worm we used the software Threaded Blockset Aligner (TBA) [103] to

align C. briggsae and C. remanei to C. elegans.

3.5.4 Pathway enrichment analysis

We used the KEGG database to infer pathways preferentially targeted by individ-

ual miRNAs. The KEGG database (ftp.genome.jp) contains mappings from NCBI

Gene identifiers to pathway IDs (data files: [org] ncbi-geneid.list, with [org] being

the species code)), while the Gene database of NCBI (ftp://ftp.ncbi.nih.gov/gene/)

provides mappings from Gene IDs to Refseq IDs (gene2refseq). By intersecting these

data sets we obtained the mappings from Refseq IDs to pathways. We then used a

Bayesian method to determine the significance of the overlap between the targets of

each seed-equivalent set of miRNAs and each specific pathway.
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For a given pathway and miRNA let n01, n10, n00 and n11 denote respectively

the number of predicted targets of the miRNA that are not part of the pathway, the

number of genes in the pathway that are not targeted by the miRNA, the number of

genes that are neither targets of the miRNA nor members of the pathway, and the

number of genes in the pathway that are predicted to be targeted by the miRNA.

While pathway membership is a simple boolean variable (a gene is either a member

of a given pathway or it is not), we can only assign probabilities for a given gene to

be a miRNA target. Assume that a given gene has n putative target sites for a given

miRNA and let pi denote the posterior probability of the ith site. The probability

that at least one of the sites is functional is then given by ptar = 1−∏n
i=1(1− pi). We

use ptar as the probability that the gene is targeted by the miRNA and obtain n01

and n11 by summing ptar over all genes that are not in the pathway and all genes in

the pathway respectively. Similarly we sum (1 − ptar) over all genes that are not in

the pathway and all genes in the pathway to obtain n00 and n10 respectively.

Finally we calculate the probability of the observed counts n00, n10, n01, and

n11 under an “independent model”, in which the probability to be targeted by the

miRNA is independent of pathway membership, and a “dependent model” in which

the probability of miRNA targeting is generally dependent on pathway membership.

The likelihood under the independent model is given by

Lindep =
∫ 1

0
(pq)n11(p(1− q))n10 (3.10)

((1− p)q)n01((1− p)(1− q))n00dpdq

=
Γ(n1. + 1)Γ(n0. + 1)Γ(n.0 + 1)Γ(n.1 + 1)

Γ(n+ 2)Γ(n+ 2)
,

where Γ(x) is the gamma function, a dot indicates summation over the variable in

question, i.e. n1. = n10 + n11 and n is the total number of genes. For the dependent

model the likelihood is given by

Ldep =
∫
pn00

00 p
n10
10 p

n01
01 p

n11
11 dp00dp01dp10dp11 (3.11)

=
Γ(4)Γ(n11 + 1)Γ(n10 + 1)Γ(n01 + 1)Γ(n00 + 1)

Γ(n+ 4)
,

where the integral is over the simplex p00 +p10 +p01 +p11 = 1. The ratio of likelihoods

Ldep/Lindep quantifies the amount of evidence for association between the miRNA
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targets and the pathway. This association can either be positive (miRNA targets are

enriched in the pathway) or negative (miRNA targets are depleted in the pathway).

In Figure 3.8 we plotted the quantity sign(n11n..−n1.n.1)pdep, where pdep =
Ldep

Lindep+Ldep

is the posterior probability of the dependent model (assuming a uniform prior).
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Chapter 4

Off-targets of siRNAs

4.1 SiRNA off-targets resemble miRNA targets

4.1.1 Introduction

SiRNA off-target studies based on microarray data like [104] revealed the presence

of siRNA off-target signatures. These are defined as sets of transcripts that are not

the targets for which the siRNA was designed, yet are reproducibly downregulated

upon transfection of a given siRNA. Subsequent studies [105,106] showed that a large

fraction of these transcripts harbor siRNA seed complementary sites in their 3’ UTRs,

suggesting that siRNAs systematically enter the miRNA pathway and bind with their

5’ ends to 3’ UTRs. This opens, in principle, the possibility to learn about additional

determinants of miRNA target site functionality, beyond the seed complementarity,

from siRNA off-target data, which is available in larger amounts. From this point of

view, we set to analyze 17 siRNA transfection experiments collected from [106–108].

Figure 4.1 documents that siRNAs exert a seed-dependent regulation by depicting

mRNA response curves for transcripts with no, one or more seed hits in their 3’

UTRs.

73
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4.1.2 Identifying miRNA targets using microarray technol-

ogy

Several lines of evidence suggest that a substantial fraction of human genes is subject

to post transcriptional regulation by miRNAs. Indeed, a large fraction of the strongly

conserved regions of human 3’ UTRs are complementary to the 5’ end (“seed”) of

miRNAs [63, 72], indicating that miRNAs exert an important selection pressure on

the 3’ UTRs. On the other hand, microarray studies [61, 62] suggest that only a

6-8 nucleotide complementarity between the 5’ end of the miRNA and the target

site frequently suffices for miRNA-dependent downregulation of mRNAs, and that

many more, less conserved, targets exist. While there is a clear correlation between

the presence of seed-complementarity sites in the 3’ UTR and miRNA-dependent

downregulation of mRNA levels [61, 62], this correlation is far from perfect. Many

transcripts with seed-complementary sites do not appear to respond miRNA over-

expression [61] or antagomir-dependent downregulation [62]. Figure 4.1 shows the

response of various classes of mRNAs in the antagomir-122 transfection experiment

(mir-122 knockdown) in mouse liver [62]. Transcripts that harbor a mir-122 seed

complementary site in their 3’ UTR have a higher propensity to be upregulated than

transcripts with no seed hit. Still the peak of the distribution of the mRNAs that

carry one or even more seed hits is centered around zero which indicates that most

of the transcripts (80-90%) that have one seed hit change only slightly or not at all.

This suggests that additional miRNA binding determinants exist beyond the presence

of seed complementarity.

4.1.3 Positional bias of miRNA targets in 3’ UTRs

In Chapter 3 we discussed a method to computationally identify miRNA targets based

on extensive cross species conservation information. There we found that predicted

miRNA target sites in human are not uniformly distributed across the 3’ UTRs.

For long 3’ UTRs (greater 2000 nt) they tend to accumulate at the beginning (after

the stop codon) and at the end of the transcript. This effect was not observed

in 3’ UTRs with lengths less than 2000 nt. To validate this hypothesis with an

independent data set, we decided to analyze microarray off-target data from 17 siRNA
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Figure 4.1: Distribution of the fold-change of various classes of mRNAs in the

antagomir-122 transfection experiment(left panel) and 17 siRNA transfection expre-

riments [106–108] (right panel). The curves reflect the expression changes in sub-

populations of transcripts which are defined by the presence or absence of certain

types of seed complementary sites in their 3’ UTRs. There exist 6 mutual exclusive

subpopulations: transcripts with no seed hit, one 7mer seed hit to nucleotides 1-7

of the miRNA, one 7mer seed hit to nucleotides 2-8 of the miRNA, two 7mer seed

hits (1-7 or 2-8), one 8mer (1-8) and one 8mer (1-8) plus one 7mer (1-7 or 2-8). The

numbers close to the seed definitions reflect the number of transcripts within each

group. Note that the right panel is a summary of 17 siRNA transfection experiments

where all the datapoints were pooled together. Therefore the number of data points

is much larger than in the left panel which just reflects one single experiment.
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transfection experiments collected from [106–108]. We determined the off-targets of

each individual siRNA by selecting all the transcripts that were downregulated with

p < 0.01 on the microarray. Then we scanned the 3’ UTRs of all the transcripts for

words that were complementary to the seed region of the siRNA. We considered three

types of seed binding, namely Watson-Crick base pairing to nucleotides 1-7, 2-8 and

1-8 of the 5’ end of the siRNA. We collected siRNA off-target sites which were all the

seed complementary sites located in 3’ UTRs of transcripts that were downregulated

(p < 0.01) upon siRNA transfection. To test for the location bias which we predicted

to emerge at about 2000 nt we selected all the off-target sites that resided in 3’ UTRs

that were longer than 2000 nt and shorter than 4000 nt. We then monitored their

position across the 3’ UTR and compared them to the location bias that we computed

from our predictions based on conservation (see Chapter 3). Figure 4.2 shows the

results. Like predicted miRNA targets, siRNA off-targets determined experimentally

seem to share this location bias in long 3’ UTRs and tend to accumulate at the start

and the end. Off-targets of siRNAs unlike miRNA target sites did not coevolve with

the 3’ UTRs so the fact that we observe this bias indicates that there could be a

mechanistic reason for which RISC avoids the center part of long 3’ UTRs such as

e.g. mRNA looping between the stop codon and the end of the transcript.

4.1.4 Analysis of siRNA off-target site pairs

The analysis of miRNA/siRNA transfection data (Figure 4.1) showed that most of the

transcripts that carry a seed match in their 3’ UTR do not alter their expression (80-

90%). Only about (10-20%) are significantly downregulated. We wondered whether

the responding transcripts represent a random subset of the transcripts that carry

seed-complementary sites, or whether the same subset of transcripts that carry seed

complementary sites responds reproducibly in different experiments. To gain more

insight we analyzed three siRNA transfection experiments from [106–108] for which

we had two biological replicates, namely MAPK14-pos4-mismatch, MAPK14-pos5-

mismatch and MPHOSPH1-202. The results are shown in Figure 4.3. Considering

all transcripts, the Pearson correlation coefficient between the expression of mRNAs

in the replicates varies between 0.49 and 0.77. When we only consider transcripts

with at least one seed complementary site we detect correlations between 0.64 and
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Figure 4.2: Positional bias of siRNA off-target sites. The left panels shows the density

of sites along the 3’ UTRs for predicted miRNA targets based on conservation pt(x)

(black line) and siRNA off-targets determined by microarray experiments (histogram).

To quantify the significance of the match, we generated random siRNA off-target sites

xi drawn from a uniform distribution and computed the log likelihood of the data

given the distribution of sites computed from the predicted targets l =
∑
i log(pt(xi)).

The right panel shows the log likelihood for 10000 randomly generated datasets. The

red triangle denotes the score of the original siRNA off-targets.
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0.86. Thus, the data suggest that the miRNA/siRNA target machinery does not

pick its targets randomly from the pool of seed complementary sites, but rather that

additional determinants contribute to reproducible targeting of the same transcripts.

Generally one could envision many different types of determinants. These might

act globally on the whole mRNA level or locally for a given target site. Globally

means that they control the overall potential of the mRNA to be targeted by the

RISC. An example of such a determinant could be mRNA localization. Some mRNAs

might be transported to a particular location in the cell where RISC has no access.

As a consequence all the seed sites in their 3’ UTR would not be functional and

therefore would not respond in a transfection experiment. On the other hand, local

determinants are defined to act in the immediate vicinity of a single target site.

They could activate or inactivate single seed sites but their effect would not spread

over the whole transcript. Examples for such determinants could be local secondary

structure or auxiliary binding sites for instance for RNA-binding proteins. Whether

the binding determinants are global or local can be determined because in the case of

global effects all seed sites residing in the same 3’ UTR should be either responding

or not responding whereas in the case of local effects we expect seed sites located in

the same 3’ UTR to respond in a distance dependent fashion. One possible measure

for this effect is the correlation of the fold changes for pairs of seed sites residing in

the same 3’ UTR. We plotted this quantity as a function of the distance between the

two sites in a pair. The results are shown in Figure 4.4 (left panel). We can identify

a clear peak for short distances which starts decreasing at a distance of about 150-

200 nucleotides. This supports the idea that there might be local signals that act as

enhancer elements. If two sites are located in the vicinity of such signals they will tend

both to work. Two sites located in an unfavorable environment will tend both not to

work. A close look at distances greater 150 nt reveals a somewhat puzzling plateau

at the level of about 0.1 which is significant and persists over very long distances.

This plateau argues for a global determinant because it means that no matter the

distance between two sites they are somewhat coupled with respect to their response.

Unfortunately we cannot determine what the nature of the global determinant is. It

could be for instance the mRNA location, but it can also be that some mRNAs have

been selected in evolution to be highly regulated by miRNAs, accumulating many
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Figure 4.3: Reproducibility of siRNA transfection experiments. All panels depict

scatter plots of expression fold changes for two independent siRNA transfection ex-

periments. Panels 1-3 show all the transcripts that are on the array and that are

expressed, panels 4-5 show only the subset of transcripts that contain at least one

1-7, 2-8 or 1-8 seed hit in their 3’ UTR. The r values denote Pearson correlation

coefficients. The p-values in the lower panels denote the significance of the increase

in correlation with respect to the correlation for all the transcripts (upper panels).
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Figure 4.4: Correlation of the fold change for pairs of seed sites separated by a given

distance. We determined all seed complementary sites to the 17 siRNAs for which we

had microarray data [106–108]. We then enumerated all pairs of seed sites that were

located in the same 3’ UTR and recorded their relative distance. In the case where a

3’ UTR contained two or more sites for the same siRNA we removed those sites from

the pool. Furthermore we also removed all transcripts that were not expressed. Since

those do not respond to the treatment they would induce global response correlations.

Finally we also excluded transcripts that systematically respond in all of the 17 siRNA

transfection experiments assuming that those changes are caused by the transfection

procedure. We then sorted the pairs of sites (3375 in total) based on their distance.

Using a window with the size of 500 we walked through this list of pairs and computed

the Pearson correlation coefficient between the fold changes of the two pairs. The left

panel shows these correlation as a function of the distance between pairs of sites (the

distance is the average distance of all the pairs in a given window). The right panel

shows a histogram of all distances present in the list of site pairs.
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enhancer elements over their whole length. Identifying the molecular basis for these

effects remains to be done in future work.

4.2 Strand-specific 5’-O-methylation of siRNA du-

plexes controls guide strand selection and tar-

geting specificity

Parts of this section will be published in RNA 2008

4.2.1 Abstract

Po Yu Chen1,2,#, Lasse Weinmann2,#, Dimos Gaidatzis3, Yi Pei1,4, Mihaela Zavolan3,

Thomas Tuschl1,∗ & Gunter Meister2,∗

1Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The

Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10021, USA.
2Munich Center for Integrated Protein Sciences (CIPS), Max Planck Institute of Bio-

chemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
3Biozentrum der Universität Basel & Swiss Institute of Bioinformatics, Klingelbergstr

50-70, CH-4056 Basel, Switzerland.
4present address: RNA Therapeutics Merck & Co. Inc. , 770 Sumneytown Pike,
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Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic se-

quencespecific cleavage of fully or nearly fully complementary target mRNAs or con-

trol translation and/or stability of many mRNAs that share 6 to 8 nucleotide (nt) of

complementarity to the siRNA and miRNA 5’ end. siRNA– and miRNA–containing

ribonucleoprotein silencing complexes are assembled from double–stranded 21– to 23–

nt RNase III processing intermediates that carry 5’ phosphates and 2–nt overhangs
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with free 3’ hydroxyl groups. Despite of the structural symmetry of a duplex siRNA,

the nucleotide sequence asymmetry can generate a bias for preferred loading of one

of the two duplex–forming strands into the RNA–induced silencing complex (RISC).

Here we show that the 5’ phosphorylation status of the siRNA strands also acts

as an important determinant for strand selection. 5’-O-methylated siRNA duplexes

refractory to 5’ phosphorylation were examined for their biases in siRNA strand se-

lection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy

of the silencing complex by the methylated strand with concomitant elimination of

its offtargeting signature and enhanced off–targeting signature of the phosphorylated

strand. Methylation of both siRNA strands reduced but did not completely abolish

RNA silencing, without affecting strand selection relative to that of the unmodified

siRNA. We conclude that asymmetric 5’ modification of siRNA duplexes can be useful

for controlling targeting specificity.

4.2.2 Introduction

Duplexes of 21–nt small interfering RNAs trigger RNA interference (RNAi) in mam-

malian cells and are widely used for functional genetic studies or screens in cultured

cells (for reviews, see [109–113]). siRNA duplexes are designed to mimic the RNase

III processing intermediates of naturally expressed dsRNAs, such as miRNAs, to ef-

fectively enter the RNAi pathway (for reviews, see [30,114–116]). Naturally processed

siRNAs or miRNAs carry 5’ phosphates and 3’ hydroxyl groups and have symmet-

ric 2–nt 3’ overhangs ( [117]). Synthetic siRNA duplexes with 5’ hydroxyl ends

are rapidly phosphorylated inside cells by the cellular kinase Clp1 ( [118]). Some

classes of small RNAs are additionally 2’-O-methylated at their 3’ ends, depend-

ing on the species [119–126]. Mammalian miRNAs or siRNAs are not methylated,

but the germline–specifically expressed piRNAs are 3’-end–modified [123, 124]. One

strand of the siRNA duplex or miRNA/miRNA* molecule is assembled into an ef-

fector complex or RISC, while the other strand is degraded during the assembly

process [127, 128]. The effector complex contains at its heart an Ago/Piwi protein

member [128, 129]. Ago/PIWI proteins contain a conserved PAZ (Piwi–Argonaute–

Zwille) and PIWI domain (for reviews, see [24,130]). The PAZ domain, which is also

present in Dicer, specifically binds the characteristic 2–nt 3’ overhangs of RNase–
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III–processed dsRNAs [131–134]. The PIWI domain contains a RNA 5’-phosphate

binding (MID domain) and a RNase H domain [135–142]. The MID domain anchors

the 5’ end of the guide small RNAs [137–139], and presumably also plays a role during

RISC–loading by receiving and binding the guide strand 5’ phosphate [143]. Protein

factors critically involved in siRNA or miRNA silencing complex assembly were first

identified in Drosophila melanogaster. Duplex siRNAs are recognized by the het-

erodimer of RNase III Dcr-2 and the dsRNA–binding–domain protein R2D2, both

of which are critical for formation of the Ago2–containing RISC [144, 145]. miRNA

maturation in D. melanogaster is catalyzed by a heterodimeric complex of RNase III

Dcr-1 and the dsRNA–binding–domain protein Loquacious/R3D1 [146–148]. R2D2

preferably binds the thermodynamically more stable end of the siRNA duplex and

thereby directs strand selection [149]. The assembly of RISC is ATP–dependent,

at least to a certain degree (for reviews, see [115, 150]). In mammalian systems,

Dicer, the dsRNA–binding proteins TARBP2 and/or PACT, and an Ago protein ap-

pear to form the RISC–loading complex [151–155]. Two pathways are known for

the transition of the duplex siRNAs or miRNA/miRNA* processing intermediate

into a single–stranded–RNA–containing effector complex [156–158]. The first path-

way requires near perfect base–pairing of the small RNA strands and depends on

the RNase H activity intrinsic to a subset of the siRNA–binding Argonaute pro-

teins [20,135–140,159–161]. RNase H active Ago proteins are able to receive the du-

plex siRNAs and guide the cleavage of the non–retained siRNA strand (often referred

to as passenger, non–guide or sense siRNA) [156–158]. Upon release of the cleavage

products, the retained guide (or antisense) siRNA is able to recognize complemen-

tary or partially complementary mRNA targets. The second RISC loading pathway

is used, when duplex siRNA or miRNA/miRNA* duplexes either encounter a RNase–

H deficient–Ago protein member, or when the duplexes are imperfectly paired across

the center and cleavage site (like most miRNA/miRNA* duplexes) thereby preventing

RNase H cleavage [156]. Presumably, a RNA helicase activity residing or transiently

associating with the RISC–loading complex catalyzes the second RISC loading pro-

cess [162–164]. The duplex–initiated RISC assembly process appears to be bypassed if

high concentrations of single–stranded siRNAs are added to cell lysates or transfected

into cells [165]. The role and the requirement for a 5’ phosphate in reconstituting



4.2 Strand-specific 5’-O-methylation of siRNA duplexes controls guide strand
selection and targeting specificity 84

RISC and its activity, however, remained somewhat controversial [136,137,159]. The

specificity of small–RNA–guided mRNA degradation was examined in detail including

mRNA array analysis [104–106,166]. These studies revealed ”off–targeting” activities

of siRNAs that could not be separated from the ”on–targeting” activity by simply

decreasing the siRNA concentration. Some of the off–targets contained sequence seg-

ments of extensive complementarity to the siRNA, but many other off–targets showed

only partial complementarity within their 3’ untranslated region (UTR) to the siR-

NAs, notably at the 5’ end of the siRNA guide strand. The latter observation was

reminiscent of miRNA seed sequence (comprising pos. 1 to 8) mediated target mRNA

regulation [61, 70, 71, 78, 83, 167]. Offtarget signatures can be identified for both the

sense and the antisense siRNA strands, although strand biases during the assembly

of RISC affect the targeting efficiencies of the two strands [168, 169]. In selecting

siRNA sequences one takes now into consideration the differential thermodynamic

stability of the siRNA ends to favor the incorporation of the target mRNA comple-

mentary guide siRNA (for review, see [170]. Other strategies proposed to control

off–targeting activities included the introduction of 2’-O-methyl–ribose residues into

the seed sequences of the siRNAs, which reduces off–targeting without detectable

drop in on–targeting [107]. Here we study the role of the 5’ terminal phosphate

during RISC assembly from duplex and single–stranded siRNAs using 5’-O-methyl

modified siRNAs. We show that the 5’ phosphorylation status within a duplex siRNA

is an important determinant of strand incorporation into RISC, and we demonstrate

that selective 5’-O-methylation can be used to control strand–specific off–targeting

activity. The phosphorylation status of single–stranded siRNAs has little impact on

the non–natural RISC assembly and the subsequent activity of RISC.

4.2.3 5’ phosphates are required for reconstitution of RISC

from double–stranded but not single–stranded siRNAs

To revisit the requirements for 5’ phosphates described for reconstituting RISC in

D. melanogaster [143] or human cell lysates [136, 137, 159, 165], we prepared single–

and double–stranded siRNAs with uridine and thymidine 5’ end modifications (Figure

4.5). 5’-O-methyl–thymidine is currently the only nucleotide readily available for solid
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phase synthesis to render the ribose 5’ ends of siRNAs refractory to phosphorylation

in cell lysates [143]. HeLa cells and lysates contain hClp1 kinase, which rapidly

phosphorylates 5’-hydroxyl termini of dsRNA or dsDNA as well as single–stranded

RNA [118, 165]. To control for the concomitant introduction of a 5-methyl group

with 2’-deoxy–thymidine incorporation into RNA, we also prepared siRNAs with 5’–

hydroxyl–2’–deoxy–thymidine, 5’– hydroxyl–uridine, and 5’ phosphorylated uridine–

containing siRNAs.

HeLa S100 cell lysates were incubated with double–stranded siRNA derivatives

followed by addition of 5’ 32P-labeled complementary target mRNA segments. Ir-

respective of the modification of the sense (passenger) strand, 5’-hydroxyl– or 5’-

phosphate–modified antisense strands mediate target RNA cleavage. In contrast, 5’-

O-methylated antisense siRNA showed substantially reduced activity (Figure 4.5B).

The siRNA duplexes were cognate to firefly luciferase (Pp-luc) mRNA, and they were

co–transfected with plasmids encoding the Pp-luc target and sea pansy control lu-

ciferase (Rr-luc) genes into HeLa cells. Consistent with the biochemical results, only

the duplex with 5’-O-methyl–modified antisense strand showed reduced silencing ac-

tivity (Figure 4.5C). Together, these observations were pointing to a role of the 5’

phosphate of the antisense strand during RISC loading or RISC activity.

Two possibilities can be envisioned responsible for the reduced silencing activity

of 5’-O-methylated antisense strand duplex siRNAs: (1) loading of the antisense

strand into RISC was compromised and/or (2) the antisense–strand–loaded RISC

had reduced activity because of conformational restraints imposed by an unoccupied

Ago2 5’ phosphate binding pocket [137–139,159]. We therefore tested if we were able

to load RISC using the single–stranded antisense siRNAs. Because single–stranded

siRNAs are more susceptible to nucleases present in cell lysates than duplex siRNAs,

we immunopurified FLAG/HA-affinity–tagged Ago2 protein complexes from HEK

293 cell lysates, and subsequently incubated them with single–stranded siRNAs and

target RNA substrate. Surprisingly, the single–stranded siRNAs reconstituted RISC

activity irrespective of their 5’ modification status (Figure 4.5D).

These data suggest that the 5’ phosphate plays an important role during the

process of RISC loading, that a 5’ phosphate–sensing mechanism can be bypassed

using single–stranded siRNAs and that the Ago2 5’ phosphate binding pocket does
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not need to be occupied to mediate target mRNA cleavage.

4.2.4 Asymmetric 5’-O-methylation of duplex siRNAs directs

strand selection during RISC formation

The loss of silencing activity of duplex siRNAs in which only the antisense strand

was 5’-Omethyl- modified could be due to either preferential loading of the sense

strand into RISC under these conditions, or to a defective recognition of the siRNA

duplex by some RNAi machinery protein at a stage prior to RISC assembly. To

monitor the asymmetry of siRNA strand incorporation and target RNA cleavage, we

synthesized two pairs of siRNA duplexes that were predicted to be symmetrically and

asymmetrically incorporated into RISC based on the differences in thermodynamic

stability at their duplex termini [168,169].

We first characterized biochemically the symmetric siRNA duplex (Figure 4.6A)

by incubating it in lysates from HEK 293 cells transiently transfected with FLAG/HA-

affinitytagged Ago2. HEK 293 cells were chosen because they are efficiently trans-

fected at large scale with FLAG/HA-Ago2 expression plasmids. The siRNAs that

co–immunoprecipitated with FLAG/HA-Ago2 were analyzed by Northern blotting

using probes complementary to either the antisense or the sense strand. Signals for

the antisense strand were detected when the siRNA duplex contained unmodified

or 5’-O-methyl sense strand, but not when the antisense strand was 5’-O-methylated

(Figure 4.6B). Signals for the sense strand were detected when the siRNA duplex con-

tained unmodified or 5’-O-methyl antisense strand, but not when the sense strand was

5’-O-methylated (Figure 4.6B). We then confirmed that symmetrically or asymmet-

rically loaded FLAG/HA-Ago2 immunoprecipitates cleaved siRNA–complementary
32P-cap–labeled target RNAs [171] as expected from their strand–loading ratios de-

termined by Northern blotting (Figure 4.6C).

To measure the cell–based silencing activities from the assembly of the anti-

sense and the sense siRNA strand into RISC, we introduced antisense– and sense–

complementary sequence segments into the 3’ UTR of EGFP as well as Pp-luc re-

porters. The results were consistent with our biochemical observations in HEK 293

lysates (Figure 4.7D, E). Symmetric 5’-O-methylation of both siRNA strands lead
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Figure 4.5: 5’ phosphates are required for reconstitution of RISC from double–

stranded but not single–stranded siRNAs. (A) Luciferase duplex siRNAs used in

(B) and (C). (B) HeLa S100 extract was incubated with the siRNAs shown in (A).

After preincubation, a 32P-cap labeled RNA substrate was added and the cleaved

RNA fragments were analyzed on a denaturing sequencing gel. T1 refers to partial

nuclease T1 digestion. The black line to the left indicates the target site. (C) The

effect of duplexes 1-5 and a control siRNA duplex on inhibition of the firefly luciferase

(Pp-luc) expression relative to Renilla luciferase (Rr-luc) in a dual–luciferase assay.

The ratios of the signals of Pp-luc/Rr-luc for duplexes 1-5 were normalized to that of

the control siRNA(three independent experiments s.d.) (D) FLAG/HA-tagged Ago2

was transiently transfected into HEK 293 cells. Tagged proteins were immunoprecip-

itated from the lysates using anti–FLAG beads and RISC activity was reconstituted

by adding singlestranded siRNA against the luciferase mRNA either with a 5’ phos-

phate (lane 1), without a 5’ phosphate (lane 2), with a 5’ hydroxyl-2’-dT (lane 3) or

a 5’ methoxy-2’-dT (lane 4). p, 5’ phosphate; Me, 5’-O-methyl group.
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to an overall reduced gene silencing activity in the luciferase reporter assay, with-

out changing the symmetry of the residual cleavage activity when compared with

the unmodified siRNA duplex. In contrast, a single asymmetric modification did

not alter the activity attributable to the unmodified siRNA strand. Together, these

observations indicate that the RISC assembly of symmetrical siRNA duplexes can

be influenced using asymmetric 5’-O-methylation, whereby the methylation of one

strand directs incorporation of the complementary strand into RISC.

We next evaluated whether strand selection of a thermodynamically asymmetrical

siRNA duplex could be controlled by 5’-O-methylation (Figure 4.8A). The activities

of the modified and unmodified siRNA duplexes were determined using the EGFP and

luciferase reporter assay described above (Figure 4.8B, C). The unmodified siRNA

duplex preferentially repressed the target complementary to the sense strand, as ex-

pected from the design of the siRNA. The 5’-O-methylation of the antisense siRNA

reduced its cleavage activity about 2- fold. Reciprocally, 5’-O-methylation of the

sense siRNA strand reduced its cleavage activity 2-fold, while the antisense strand

cleavage activity was significantly increased. Similar to the observations made for

the symmetric siRNA duplex above, double 5’-O-methylation weakened the silencing

activity of both the antisense and sense strands. These observations indicate that

5’-O-methylation of siRNA strands can influence siRNA strand incorporation into

RISC, even in the context of a thermodynamically asymmetric siRNA.

4.2.5 Strand–specific 5’-O-methylation also controls siRNA

off–targeting activity

Off–target effects are, like on–target effects, strictly sequence–specific and caused by

either near–perfect complementarity between the central region of the siRNA and its

targets or by seed–sequence complementarity between the siRNA and the target 3’

UTR [104–106]. To assess if strand selection from asymmetrically 5’-O-methylated

siRNA duplexes could be used for controlling siRNA offtargeting activity, we deter-

mined the gene expression profiles of HeLa cells transfected with 5’-O-methylated or

unmodified siRNA duplexes. The symmetrical siRNA duplex, whose both sense and

antisense strands are incorporated into RISC was selected for the analysis (Figure
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Figure 4.6: siRNA 5’-O-methylation inhibits RISC loading and RISC activity.

(A) Schematic presentation of the symmetric RISC loading siRNA duplexes. (B)

FLAG/HA-Ago2 and FLAG/HA-EGFP were transiently transfected into HEK 293

cells. Cell lysates were pre–incubated with siRNA duplexes allowing for RISC load-

ing. RISCs were immunoprecipitated using anti–FLAG antibodies and the precip-

itated proteins were analyzed using anti–HA antibodies (lower panel). Ig indicates

the heavy chain of the immunoglobulin. The bound siRNA strands were examined

by Northern blotting (upper panel). (C) HeLa cell extracts were pre–incubated with

the indicated siRNA duplexes allowing for RISC loading. Control (Ctrl) refers to

luciferase siRNA duplex. 32P-cap labeled substrates either complementary to the

sense strand or the antisense strand were subsequently added and the cleaved RNA

products were analyzed by 4% denaturing RNA PAGE. The bar to the left of the

image indicates siRNA target site.
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Figure 4.7: siRNA 5’-O-methylation inhibits RISC loading and RISC activity. (D)

5’-O-methylated siRNAs inhibits RNAi in living cells. Plasmids encoding EGFP,

EGFP fused to a complementary target site for the antisense strand or EGFP fused

to a complementary target site for the sense strand were co–transfected with control

(ctrl); luciferase siRNAs or the indicated siRNA duplex. A plasmid encoding the

DS Red gene was co–transfected and served as a transfection control. (E) Plasmids

containing either a Pp-luciferase gene fused to a complementary target site for the

antisense strand or a complementary target site for the sense strand of the siRNA

were co–transfected with Rr-luciferase and the indicated siRNAs. GFP siRNA was

utilized as control (ctrl) siRNA. The Pp-luc/Rr-luc ratios were normalized to that of

the control siRNAs.
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Figure 4.8: siRNA 5’-O-methylation inhibits RISC loading and RISC activity. (A)

Schematic presentation of the asymmetric RISC loading siRNA duplexes used in (B)

and (C). (B) The same experiments and controls described in (Fig. 2, D) were carried

out using the asymmetrically RISC loading siRNAs duplex as well as complementary

EGFP target constructs. (D) The same experiments and controls described in (Fig.

2, E) were performed using the asymmetrical RISC loading siRNAs.
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4.6A).

The choice of cell line and transfection reagents was critical for identifying siRNA

strand– specific off–targets (see Methods). We first tested Lipofectamine 2000 Trans-

fection Reagent (Invitrogen) in HEK 293 cells but variations in gene expression,

caused presumably by mild toxicity of the formulated transfection reagent, made

it impossible to detect siRNA–sequence dependent off–target signatures. Next, we

tested Lipofectamine RNAiMAX Transfection Reagent (Invitrogen) in HEK 293 cells.

Though the siRNA and mock transfection yielded reproducible and stable expression

profiles, we did not detect any off–targeting signature using either Affymetrix or Ag-

ilent mRNA microarrays (data not shown). Finally, we examined HeLa cells trans-

fected with Lipofectamine RNAiMAX using Affymetrix microarrays and we were able

to identify the expected off–targeting effects. Using the same approach, we also de-

tected the previously reported off–targets of a siRNA duplex targeting the PIK3CB

gene (PIK3CB-6340) [106], indicating that our Affymetrix array platform was suffi-

ciently sensitive for off–target analysis in this cell type(see Methods).

The off–target effects were quantified by analyzing the frequency of seedcomple-

mentary sites (where the seed was defined as nucleotides 1-7, 2-8 or 1-8 of the siRNA)

for real and randomized siRNAs within the 3’ UTRs of mRNAs that were downregu-

lated one day after siRNA transfection (Figure 4.9). Consistent with our biochemical

analysis, which indicated that both strands of our unmodified siRNA duplex were

loaded into RISCs, we found seed–complementary site enrichment for both siRNA

strands. 5’-O-methylation of the sense strand increased the off–targeting activity of

the antisense strand, while decreasing its own off–targeting activity, and vice versa.

Note that the sense strand has intrinsically fewer off–targets compared to the an-

tisense strand. This is because the sense strand contains a CG dinucleotide in its

seed sequence and matches to CG-containing motifs that are underrepresented in

the genome. These analyses thus indicate that chemical modification can limit the

off–targeting activity to only one strand of the siRNA duplex.
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Figure 4.9: siRNA off–target analysis of the symmetric RISC loading siRNA duplexes.

Enrichment of seed–complementary sequences for sense (left panel) and antisense

(right 34 panel) strands relative to random controls in the 3’ UTRs of transcripts

that are downregulated upon siRNA transfection (see Methods). Dark grey and light

grey bars show the number of occurrences of seed–complementary sites for the siRNAs

used in the study, and random controls, respectively. Double and single stars indicate

enrichments that are significant at 0.01 and 0.05 level.
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4.2.6 Comparison of the effects of 5’-O-methylation and duplex–

destabilizing mutations on strand selection

The differential thermodynamic stability of siRNA duplex termini impacts siRNA

strand selection [168, 169]. Thermodynamic biases can be introduced by varying the

G/C content of the termini of the siRNA duplex or by placing destabilizing, non–

Watson–Crick base pairs (mismatches) at one of the termini. We therefore wanted

to compare the strand bias introduced by 5’-O-methylation with that introduced

by mismatches using the asymmetrical siRNA duplex described above, whose sense

strand is preferentially incorporated into RISC.

We placed mismatches in the G/C-rich terminus by altering the sequence of the

antisense siRNA from position 1 to 5 (Figure 4.10A). According to the current model

for of strand selection, destabilizing the G/C-rich termini should lower the bias for

incorporation of the sense strand of this siRNA duplex and should enhance the incor-

poration of the antisense strand into RISC. What we observed was that mismatches

only minimally reduced the activity of the sense siRNA–containing RISC measured

by the sense reporter, while 5’-O-methylation of the sense siRNA showed a more

pronounced effect (Figure 4.10B).

Antisense siRNA strand incorporation was determined by the antisense reporter

assay. Mismatches introduced by altering the sequence of the antisense siRNA triv-

ially lead to mismatches between the antisense siRNA and its reporter, resulting in

the lack of cleavage activity for mutants of position 3 to 5 of the antisense siRNA.

Mutations placed at position 1 or 2 of the antisense siRNA showed similar activity

as the unmodified siRNA duplex, consistent with unaltered behavior of the sense re-

porter, indicating that mismatches at pos. 1 or 2 were insufficient to alter asymmetry

of RISC assembly. In contrast, the 5’-O-methylation of the sense strand, led to a

much more pronounced activity of the antisense siRNA. Together, these experiments

showed that 5’-O-methylation of the 5’ end of siRNAs was more effective in changing

strand preferences compared to alterations of thermodynamic stability induced by

duplex–destabilizing mismatches.
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Figure 4.10: Influence of thermodynamic stability vs. 5’-O-methyl modification. (A)

Schematic presentation of the asymmetric RISC loading siRNA duplexes used in (B).

(B) Plasmids containing either a Pp-luciferase gene fused to a complementary target

site for the antisense strand or a complementary target site for the sense strand of

the siRNA were co–transfected with Rr-luciferase and the indicated siRNAs. GFP

siRNA was utilized as control (Ctrl) siRNA.
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4.2.7 Discussion

Our analysis describes for the first time the consequences of strand–specific 5’-O-

methylmodification of siRNA duplexes on the assembly and activity of RISC. 5’-O-

methylation of the terminal ribose blocked the phosphorylation of siRNAs by cellular

kinases [118, 128, 143]. The requirement for 5’ phosphates during the assembly of

RISC was noted previously using symmetrically 5’-O-methylated siRNA duplexes in

D. melanogaster embryo lysates [143], and similarly, we also found that double 5’-O-

methyl modification reduced RISC assembly in human cells. Strikingly, the placement

of a single 5’-O-methyl only reduced the incorporation of the methylated strand with-

out impairing the incorporation of the unmodified siRNA strand. It even appeared

that modification of the sense siRNA strand enhanced the incorporation of the un-

modified antisense strand, and vice versa. The effect of the 5’-O-methyl modification

was also strong enough to counteract the otherwise strong strand preference of an

asymmetrically loading siRNA duplex. This observation emphasizes the importance

of 5’ phosphate recognition during RISC assembly and its potential use for siRNA

design and application.

The molecular events responsible for 5’ phosphate recognition during RISC as-

sembly remain to be defined. Presumably the contacts are made while placing the 5’

phosphate of the guide siRNA strand into the 5’-phosphate–binding pocket of Arg-

onaute [137, 138]. The sensing of the 5’ phosphate also appears to take place in the

context of a duplex siRNA or a partially unwound duplex siRNA, because artificial

loading of RISC with single–stranded 5’-O-methyl–modified or unmodified siRNAs

was possible and led to similar RISC–mediated cleavage activities. Interestingly, a

bulky 5’ fluorescein modification coupled via a 5’ phosphodiester linkage to the guide

strand of a siRNA duplex did not affect its silencing efficiency [172]. It will be in-

teresting to explore the effects of other 5’-hydroxyl modifications, for example bulky

alkyl groups (e.g. tertiary butyl), on RISC assembly.

Although siRNA duplexes are widely used in research as reagents for gene si-

lencing, sequence–specific off–target effects can be problematic. Off–target effects

are typically caused by siRNA sense and antisense strands and the strand–specific

reduction of off–target effects using 5’-O-methyl modifications will help to improve

siRNA specificity. Although this may also lead to an enhanced off–target effect of
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the unmodified strand as its loading into RISC may increase, it should nonetheless

allow for lowering the dose of siRNAs needed in gene silencing experiments and will

aid in controlling potential side effects caused by competition of siRNA with miRNA

pathways [173].

Although it has been proposed that thermodynamic asymmetry can be readily

introduced into siRNAs using LNAs [174], minimizing the degree of chemical mod-

ification needed to control asymmetry may be beneficial from the point of view of

manufacturing or potential therapeutic use. It was also interesting to observe that the

introduction of conventional mismatches for destabilizing one of the siRNA termini

was less effective then the selective placement of a 5’-O-methyl group. In summary,

in this study we describe a novel approach of biasing siRNA strand selection from

duplex siRNA based on 5’ phosphate sensing during RISC assembly.

4.2.8 Materials and Methods

Oligonucleotide synthesis

siRNAs were chemically synthesized using RNA phosphoramidites (Pierce, USA) on

an Akta Oligopilot 10 DNA/RNA synthesizer (GE Healthcare Life Sciences) at 1-µmol

scale. The synthesis, deprotection and precipitation were performed according to the

manufacturer’s protocol. 5’-O-methylated siRNAs were purchased from Dharmacon.

The sequences of the siRNAs used in this study are as followed: luciferase siRNA an-

tisense strand, 5’ UCGAAGUAUUCCGCGUACGUU, sense strand, 5’CGUACGCG-

GAAUACUUCGAUU; GFP siRNA antisense strand, 5’ GGCAAGCUGACCCUGAA-

GUUT, sense strand, 5’ACUUCAGGGUCAGCUUGCCUT; symmetrically RISC–

loaded siRNA antisense strand, 5’ UUGUCUUGCAUUCGACUAAUT, sense strand,

5’ UUAGUCGAAUGCAAGACAAUT; asymmetrically RISC–load siRNA antisense

strand, 5’ UUAAGAUCUGUUAUCCGCAUT, sense strand, 5’ UGCGGAUAACA-

GAUCUUAAUT. For analysis of the importance of the 5’ phosphate, the 5’ uridine

residues were substituted by 5’-O-methyl-2’-deoxythymidine or 2’- deoxythymidine

as control.
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Plasmids

The mammalian expression plasmids for FLAG/HA-tagged Ago2 and GFP were pre-

viously described [114] and are available from www.addgene.org. Reporter plasmids

for measuring RISC activity of antisense and sense siRNA strands were generated as

follows: Complementary pairs of DNA oligonucleotides bearing the siRNA target se-

quence and flanking SacI and NaeI restriction sites were annealed, digested with SacI

and NaeI and cloned into the 3’ UTR of the reporter vectors, using the SacI and NaeI

sites of the pMIR16 REPORT plasmid (Ambion) or the SacI and SmaI sites of the

pEGFP-C2 plasmid (Clontech), respectively. Prior to this procedure, the pEGFP-C2

plasmid was modified by the insertion of a stop codon into the BglII site. The oligos

containing the siRNA target sequences were: target complementary to symmetric

RISC loading antisense siRNA strand, 5’CGCTGAGCTC ATCGCCACCT TGTT-

TAAGCC TTAGTCGAAT GCAAGACAAA TTAGACCTAC GCACTCCAGG CCG-

GCTCGC and 5’GCGAGCCGGC CTGGAGTGCG TAGGTCTAAT TTGTCTTGCA

TTCGACTAAG GCTTAAACAA GGTGGCGATG AGCTCAGCG; target comple-

mentary to symmetric RISC loading sense siRNA strand, 5’CGCTGAGCTC ATCGC-

CACCT TGTTTAAGCC TTGTCTTGCA TTCGACTAAA TTAGACCTAC GCAC-

TCCAGG CCGGCTCGC and 5’GCGAGCCGGC CTGGAGTGCG TAGGTCTAAT

TTAGTCGAAT GCAAGACAAG GCTTAAACAA GGTGGCGATG AGCTCAGCG;

target complementary to asymmetric RISC loading antisense siRNA strand, 5’CGCT-

GAGCTC ATCGCCACCT TGTTTAAGCC GCGGATAACA GATCTTAAAA TTA-

GACCTAC GCACTCCAGG CCGGCTCGC and 5’GCGAGCCGGC CTGGAGT-

GCG TAGGTCTAAT TTTAAGATCT GTTATCCGCG GCTTAAACAA GGTG-

GCGATG AGCTCAGCG; target complementary to asymmetric RISC loading sense

siRNA strand, 5’CGCTGAGCTC ATCGCCACCT TGTTTAAGCC TTTAAGATCT

GTTATCCGCA TTAGACCTAC GCACTCCAGG CCGGCTCGC and 5’GCGAGC-

CGGC CTGGAGTGCG TAGGTCTAAT GCGGATAACA GATCTTAAAG GCT-

TAAACAA GGTGGCGATG AGCTCAGCG. Plasmids for in vitro transcription of

RNA cleavage substrates were generated by cloning of the annealed oligodeoxynu-

cleotides into the SacI/SmaI sites of the pIVEX2.4d plasmid (Roche).
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In vitro transcription of RISC cleavage substrates

DNA templates for in vitro transcription of RNA cleavage substrates were generated

by linearization of the respective pIVEX2.4d plasmids using BamHI restriction en-

zyme digestion. The linearized plasmid was used for run–off in vitro transcription

using T7 RNA polymerase (Fermentas) according to the manufacturer’s protocol.

The transcripts were purified by denaturing PAGE, visualized by UV–shadowing, ex-

cised and eluted overnight in 0.3 M NaCl at 4◦C. The eluted RNA was precipitated by

addition of 3 volumes of ethanol and collected by centrifugation. The cleavage sub-

strate complementary to the luciferase targeting siRNAs was 32P cap labeled [165]

and the cleavage was assayed as described previously [114]. The sense and antisense
32P cap labeled cleavage substrates were 188 nt and 195 nt, respectively.

Northern blotting

The oligodeoxynucleotide probes 5’ TTAGTCGAATGCAAGACAA, and 5’ TTGTC-

TTGCATTCGACTAA were used for detection of the symmetrically RISC–loading

siRNAs. Probes were radioactively labeled with T4 polynucleotide kinase (New Eng-

land Biolabs) using [γ−32P]-ATP. RNA samples were separated by 15% denaturing

PAGE and transferred to a nylon membrane (Hybond-N+, Amersham) by semi–dry

electroblotting. The membrane was then subjected to UV crosslinking using the

auto–crosslink function on the Stratalinker (Stratagene) and subsequently baked for

1 h at 80◦C. The membrane was incubated with 15 ml of pre–hybridization buffer

(5xSSC/20 mM sodium phosphate buffer (pH 7.2)/7% SDS/1xDenhardt’s solution/3

mg of sonicated salmon sperm DNA) in a hybridization oven for 1 h rotating at

50◦C. The pre–hybridization solution was then replaced with 15 ml of hybridiza-

tion buffer containing 3,000,000 cpm of 32P-radiolabeled DNA probe and incubated

overnight at 50◦C. The membrane was washed twice with 100 ml of wash solution

I (5xSSC/1% SDS) at 50◦C for 10 min followed by a single wash step with wash

solution II (1xSSC/1% SDS) at 50◦C. The membrane was wrapped in plastic wrap

and exposed to a film for 2 days.
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Tissue culture and transfections

HEK 293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) sup-

plemented with 10% fetal bovine serum (FBS), 100 unit/ml penicillin, and 100 µg/ml

streptomycin at 37◦C in a 5% CO2-containing atmosphere. The stably transfected

HeLa S3 FLAG/HA-Ago2 cell line [114] was cultured under the same conditions with

the addition of 0.5 mg/ml G418. HEK 293 cells were co–transfected with reporter

or control plasmids and siRNAs using Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s protocol in a 24–well format 24 h after seeding. Transfected cells

were analyzed for luciferase activity or GFP fluorescence 24 h after transfection. For

immunoprecipitation experiments HEK 293 cells were transfected using the calcium

chloride method. Cells were plated to 40% confluency 3 to 4 h before transfection

on a 15 cm dish. 20 µg of plasmid DNA was diluted in 858 µl of water and 122 µl

2M CaCl2. 1 ml of 2x HEPES–buffered saline (274 mM NaCl, 1.5 mM Na2HPO4,

54.6 mM HEPES-KOH, pH 7.1) was added drop–wise under gentle agitation. The

transfection solution was then sprinkled onto the cells.

Microscopy

HEK 293 cells were seeded on coverslips and were co–transfected with either empty

pEGFP-C2 as control or pEGFP-C2 bearing the target complementary to siRNA

strand specific sequences (0.2 µg/well), pDsRedmonomer-C1 (Clontech) (0.1 µg/well)

and siRNA (20 pmol/well). After 24 h, cells were fixed in PBS with 4% formaldehyde

for 30 min at room temperature, washed twice with PBS and mounted to slides using

Vectashield mounting medium (Vector Laboratories, Burlingame, CA). Images were

recorded using a Leica TCS SP2 confocal laser microscope and a 20x immersion oil

objective. For GFP and DsRed images, 10 z–sections of the cells were recorded and

processed to average projections using the Leica confocal software.

Dual luciferase assays

For experiments described in Figure 4.5C, 7000 HEK 293 cells per well were trans-

ferred into 96-well plates the day before transfection. The cells were then co–transfected

with 0.2 µg pGL2-control (Promega), 0.02 µg pRL-TK (Promega), and 3.75 pmol
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siRNA duplexes (final concentration 25 nM) with Lipofectamine 2000 (Invitrogen,

0.75 µl). Luciferase activities were measured 20 h after transfection using the Dual

Luciferase Assay Kit (Promega) and a Bio-Tek Clarity luminometer. The ratios of

the signals of firefly (Pp) luciferase to seapansy (Rr) luciferase were calculated and

normalized by dividing by the ratio for control siRNA against FLJ30525.3. The plot-

ted data were averaged from triplicates s.d. For Figures 4.6 4.7 4.8 4.9 4.10, HEK

293 cells were cultured in 24 well plates and each co–transfected with either empty

pMIR-REPORT (Pp-luc) control plasmid or pMIR-REPORT bearing the target com-

plementary to siRNA strand specific sequences (0.2 µg/well), pRL-SV40 control vec-

tor (Rr-luc) (Promega) (0.1 µg/well) and siRNA (20 pmol/well). The cells were lysed

and assayed 24 h post transfection following the Dual-Luciferase Reporter Assay sys-

tem (Promega) instructions. Samples were analyzed on a Mithras LB 940 Multimode

Microplate Reader (Berthold Technologies). All samples were assayed in triplicates.

Western blotting, extract preparation and immunoprecipitation

Western blotting was performed as previously described [114]. For immunoprecipita-

tion, HEK 293 cells transiently transfected with FLAG-HA-tagged Ago2 and HeLa

S3 cells stably transfected with FLAG/HA-tagged Ago2 were harvested from 15 cm

plates 48 h post transfection. The cells were washed with PBS (pH 7.4) and subjected

to lysis with 700 µl of lysis buffer (150 mM KCl, 25 mM Tris-HCl (pH 7.4), 2 mM

EDTA (pH 8.0), 1 mM NaF, 0.5 mM DTT, 0.05% NP40, 0.5 mM AEBSF) at 4◦C for

10 min. The cells were subsequently scraped off of the plate and centrifuged at 17,200

g for 10 min. The supernatant was incubated with 15 µl of anti-FLAG M2 agarose

beads (Sigma), which were activated by washing once with 0.1 M glycine-HCl (pH

2.5) and equilibrated by washing with 1.5 M Tris- HCl (pH 8.8), for 3 h at 4◦C with

rotation. The beads were collected and washed three times with 300 mM NaCl/5

mM MgCl2/0.05% NP40/50 mM Tris-HCl (pH 7.5) and once with PBS (pH 7.5).

To isolate the RISC–incorporated siRNA, the beads were then incubated in 300 µl

of proteinase K solution consisted of 2x proteinase K buffer (300 mM NaCl/25 mM

EDTA (pH 8.0)/2% SDS/200 mM Tris-HCl (pH 7.5) and proteinase K at 1 mg/ml

concentration) 37◦C for 10 min. The RNA was phenol/chloroform–extracted and

ethanol precipitated.
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RNA cleavage assays

In vitro transcribed cleavage substrates were 5’ cap labeled as described previously

[165]. In a typical RNA cleavage reaction 100 nM of siRNA was incubated in a 15

µl reaction containing 50% HeLa S100 extract, 1 mM ATP, 0.2 mM GTP, 10 U/ml

RNasin (Promega), 100 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 10 mM HEPES-KOH

(pH 7.9) at 30◦C. After 30 min 5 nM of the cap–labeled cleavage substrate was added

and further incubated at 30◦C for 1.5 h. The reactions were stopped by adding 200

µl proteinase K buffer containing 1 mg/ml proteinase K. The RNA was subsequently

isolated using phenol/chloroform extraction and the cleavage products were analyzed

by 8% denaturing RNA PAGE. The labeled RNA was detected by phosphoimaging

and autoradiography.

Microarray mRNA expression analysis

HeLa cells were plated in a 6-well plate with a volume of 2.5 ml at a density such that

next day they are approximately 75% confluenent for transfection. A transfection so-

lution of 0.5 ml was utilized for transfection for the final siRNA duplex concentration

of 50 nM using RNAiMAX (Invitrogen). Total RNA was extracted 24 h post transfec-

tion with Trizol (Invitrogen) and purified using the RNeasy Mini Kit (Qiagen). 3 µg

of purified RNA was used to synthesize the first strand of cDNA using ArrayScript

reverse transcriptase (Ambion, Cat #1791) and an oligo(dT) primer bearing a T7

promoter. The single–stranded cDNA was converted into double–stranded DNA (ds-

DNA) by DNA polymerase I in the presence of E. coli RNase H and DNA ligase. After

column purification, the dsDNA was served as a template for in vitro transcription in

a reaction containing biotin–labeled UTP, unlabeled NTPs and T7 RNA Polymerase.

The amplified, biotin–labeled antisense RNA (aRNA) was purified and quality was as-

sessed using the Agilent 2100 Bioanalyzer and the RNA 6000 Nano kit. Twenty µg of

labeled aRNA was fragmented and fifteen µg of the fragmented aRNA was hybridized

to Affymetrix Human Genome U133 Plus 2.0 Array for 16 hours at 45◦C as described

in the Affymetrix Technical Analysis Manual (Affymetrix, Santa Clara, CA). After

hybridization, Gene Chips were stained with streptavidin–phycoerythrin, followed by

an antibody solution (anti–streptavidin) and a second streptavidin–phycoerythrin so-

lution, with all liquid handling performed by a GeneChip Fluidics Station 450. Gene
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Chips were then scanned with the Affymetrix GeneChip Scanner 3000. Agilent Whole

Human Genome Oligonucleotide Microarrays (Catalog-Nr. 4112F) were performed by

Cogenics.

Computational analyses of putative off–targets

We normalized the probe intensities for the five microarrays (transfection reagent

only, symmetric RISC loading sense/antisense, MeO-sense/antisense, sense/MeO-

antisense, MeO-sense/ MeO-antisense siRNA duplexes) using the bioconductor (see

http://www.bioconductor.org and Gentleman et al., 2004) and gcRMA software (Wu

et al., 2004). To quantify off–target effects based on the frequency of seed–complementary

sites in the 3’ UTRs, we selected, for each gene measured by the microarray, the tran-

script with median 3’ UTR length. This dataset consisted of 14,997 transcripts. From

all the probe sets corresponding unambiguously to a given gene, we selected the one

that responded best (exhibited the highest variance) across a large number of exper-

iments performed on the Affymetrix platform that we used. This probe set was used

to monitor the per–transcript expression level across our experiments. From each

experiment (sense/antisense vs. mock transfection, MeO-sense/antisense vs. mock

transfection, sense/MeO-antisense vs. mock transfection, MeO-sense/MeO-antisense

vs. mock transfection) we extracted the top 1%, i.e. 149, most downregulated tran-

scripts and computed the number of occurrences of matches to the 1-7, 2-8, 1-8

nucleotide positions of both the sense and the antisense strands in these set of tran-

scripts. We compared these numbers with the number of occurrences expected for

random siRNAs, which we calculated as follows. For each of the antisense and the

sense strand, we determined the number of occurrences of seed–complementary sites

in the entire set of 3’ UTRs. From all octameric sequences, we then selected the

5% (3277) whose reverse complements occurred with a frequency closest to that of

siRNA–complementary sites in the entire set of 3’ UTRs. These served as random

siRNA controls. We determined the number of occurrences of seed–complementary

sites of these random siRNAs in the downregulated set of 3’ UTRs, To correct for

slight variations in this number that can be expected simply because the frequency of

seed–complementary sites for real and random siRNAs in the 3’ UTRs overall are not

identical, we adjusted the observed counts by a factor equal to the ratio of observed
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occurrences of the real siRNA–complementary sites to the random siRNAcomple-

mentary sites in the entire set of 3’ UTRs. We used the distribution of the values

determined for random siRNAs to estimate the p-value of the number of occurrences

of real siRNA–complementary sites.

Control experiment:Transfection of the PIK3CB-6340 siRNA

Before starting transfecting siRNAs with chemical modifications we decided to first

try to reproduce the transfection experiments for the PIK3CB-6340 siRNA performed

by Jackson et. al [106]. We started off by using a HEK293 cell line and the Affymetrix

Human Genome U133 Plus 2.0 Array platform. They used an Agilent microarray

platform and performed all experiments in a HeLa cell line. Figure 4.11 shows the

comparison of the two transfection experiments. We could not detect an agreement

between their off–targets and the off–targets determined in our experiment. The

PIK3CB gene (main target of the siRNA) which has a perfect complementary site

served as a control. And even for the PIK3CB gene we detected substantial differences

between the knock down efficiency of our transfection experiment and the experiment

performed by them (see Figure 4.11). Taken together, the data show that we could not

reproduce the off targets of the PIK3CB-6340 siRNA, probably due to low transfection

efficiency or toxicity.

We then changed to a HeLa cell line and to an Agilent array platform which were

used in [106] and repeated the experiment. Furthermore we also tested two different

transfection reagents, namely oligofectamine and RNAi Max. Figure 4.12 shows MA

plots for the two transfection experiments as well as two controls. Both transfection

experiments (oligofectamine and RNAi Max) managed to downregulate the main tar-

get PIK3CB (see Figure 4.12 E1,E3). RNAi Max showed a slightly stronger potency

than oligofectamine. As a first control experiment we compared siRNA transfection

with oligofectamine to siRNA transfection with RNAi Max. If it is indeed the case

that RNAi Max has a greater potency then we should see an upregulation of the

PIK3CB gene in this control experiment. Figure 4.12 E2 shows that this is true. As

a second control experiment we compared Transfection control(RNAi Max) to Trans-

fection control(Oligofectamine) which should not affect the expression of PIK3CB.

Figure 4.12 E4 shows that this is case. The results indicate that the PIK3CB-6340
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Figure 4.11: PIK3CB-6340 off-target comparison. Right panel shows an MA plot

(log expression vs. log fold change) of the PIK3CB transfection experiment (Agilent

microarray platform) performed in [106]. Highlighted in red are all the off-targets

(p < 0.01). The left panel shows the MA plot of our transfection experiment with

the off targets from the right panel highlighted in red. The main target PIK3CB is

highlighted in black in both panels.

tranfection experiments in HeLa cells worked.

We compared our new Agilent PIK3CB-6340 transfection data (E1-4) to the data

from [106]. Figure 4.13 shows the results. We could detect a clear correlation for both

oligofectamine(E1) and RNAi Max(E3) transfection reagents (see Figure 4.13A,C).

In the case of the control experiment E2 where we compared two siRNA transfections

with different reagents we detected the expected anti–correlation (increased potency

of RNAi Max compared to oligofectamine). In the case of the control experiment

E4(only transfection reagents) we could detect no correlation as we would expect.

Taken together the data indicate that not only the transfections worked but that

we can also reproduce the off–targets of PIK3CB using HeLa cells and Agilent array

technology.

To test whether the array platform (Agilent vs. Affymetrix) could play a crucial

role we decided to hybridize the material from the PIK3CB-6340 transfection exper-

iment E3(RNAi Max) to an Affymetrix Human Genome U133 Plus 2.0 array and to

compare the results to the reference experiment [106] (see Figure 4.13E) as well as to

the data we obtained previously by hybridizing the same material to an Agilent array
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Figure 4.12: PIK3CB-6340 transfection in a HeLa cell line using Agilent array tech-

nology. All 4 panels represent MA plos with average expression (log10) on the x-

axis and fold change (log10) on the y-axis. E1:Transfection control(oligofectamine)

vs. siRNA (oligofectamine). E2: siRNA(RNAi Max) vs. siRNA(Oligofectamine).

E3:Transfection control(RNAi Max) vs. siRNA(RNAi Max). E4: Transfection con-

trol(RNAi Max) vs. Transfection control(Oligofectamine). The main target PIK3CB

is highlighted in red.
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(see Figure 4.13F). In both cases we detect a clear correlation indicating that the

array platform does not play a crucial role when measuring siRNA off–target activity.

Taken everything together, the data indicate that our siRNA transfection proce-

dure works, that the main target is knocked down, that the off–target activity can be

monitored in reproducible fashion and that the results do not depend on the array

technology platform(Affymetrix vs. Agilent).
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Figure 4.13: PIK3CB-6340 off-target comparison in HeLa cells. Panels A-D

show expression fold change scatter plots comparing PIK3CB-6340 from [106]

with our PIK3CB-6340 transfection experiments E1-4(Agilent). E1:Transfection

control(oligofectamine) vs. siRNA(oligofectamine). E2: siRNA(RNAi Max) vs.

siRNA(Oligofectamine). E3:Transfection control(RNAi Max) vs. siRNA(RNAi

Max). E4: Transfection control(RNAi Max) vs. Transfection con-

trol(Oligofectamine). In Panel E we compared the PIK3CB-6340 transfection ex-

periment from [106] to the RNAi Max experiment (E3) hybridized to an Affymetrix

Human Genome U133 Plus 2.0 array. Panel F shows a comparison between the Agi-

lent and the Affy platform using the same material for hybridization (RNAi Max).



Chapter 5

Conclusions

Presented in the previous chapters are the computational tools developed to annotate

and characterize small RNA genes and to identify their targets. One of these tools

is oligomap, a novel software for fast and exhaustive identification of nearly-perfect

matches of small RNAs in sequence databases. In contrast to sequence search pro-

grams that rely on heuristics (like e.g. Blast), oligomap is guaranteed to find all the

hits with zero or one error (mismatch or indel) to the target sequence. Given a large

number of query sequences (in the range between 105 and 106) oligomap will per-

form the search one or two orders of magnitude faster than general sequence search

tools. This enables fast annotation of large numbers of sequence tags typically gener-

ated by deep sequencing technologies. Oligomap is part of an automated annotation

pipeline used in our laboratory to annotate small RNA sequences. The application

of these tools to samples of small RNAs obtained from mouse and human germ cells

together with subsequent computational analyses lead to the discovery of a new class

of small RNAs which are now called piRNAs. The computational analysis revealed

that piRNAs have a strong uridine preference at their 5’ end, that unlike miRNAs,

piRNAs are not excised from fold-back precursors but rather from long primary tran-

scripts, and that the genome organization of their genes is conserved between human

and mouse even though piRNAs on the sequence level are poorly conserved. Piwi

proteins, the binding partners of piRNAs are known to be important for stem– and

germ–cell development in different animals. Therefore the identification of piRNAs

provides an important molecular link regarding the function of Piwi proteins. Re-
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cently is has been shown that at least a subpopulation of piRNAs in d.melanogaster

are involved in transposon silencing [9] and that an amplification loop exists that

could give rise to novel piRNAs once a starting population of piRNAs exists. This

suggests the presence of double stranded processing intermediates. Even though we

did not observe evidence for this in our initial study, more extensive data obtained

by deep sequencing technology [10] revealed a more detailed picture which now also

supports the idea of an amplification and a role for piRNAs in transposon silencing

in mouse.

In vertebrates, the most studied class of small regulatory RNAs are the miRNAs

which bind to mRNAs and block translation. A computational framework is intro-

duced to identify miRNA targets in mammals, flies, worms and fish based on exten-

sive cross species conservation information. It extends the already available methods

in several ways. First, it treats the phylogenetic relationships between species in a

rigorous and general way, without any tunable parameters. That is, the Bayesian pro-

cedure uniquely determines the posterior probabilities for each conservation pattern

and seed type in terms of the observed conservation patterns of target sites for each

miRNA. The method can be applied to any clade of species, and the phylogenetic

relations between the species will be automatically taken into account. Second, the

evolution of selection pressures on target sites is estimated in a miRNA-specific man-

ner. This enables the correct treatment miRNAs that appeared at different stages in

evolution, and whose targets may have undergone different selection pressures in dif-

ferent lineages. In particular, different miRNAs show markedly different distributions

of functional target sites across the phylogenetic tree. This provides the first compre-

hensive picture of species-specific and clade-specific miRNA targeting. Downstream

analysis of the predicted targets has revealed that, especially in long 3’ UTRs that

occur in vertebrates, miRNA target sites show a significant bias toward occurrence

near the start and end of the 3’ UTR. The algorithm performs at least as well as

the most accurate methods available today, with a high specificity over a relatively

large range of sensitivities. Finally to more robustly infer the function of individual

miRNAs, each of whom may target hundreds of transcripts, we developed a method

for identifying biochemical pathways that are significantly enriched or depleted in

targets of a specific miRNA. For well-studied miRNAs, this approach recovers the
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known functional associations. In addition, this analysis predicts novel pathway as-

sociations for a significant number of miRNAs. The result of this study boils down to

a long list of predicted miRNA targets. But it’s use goes beyond an in silico miRNA

target atlas. The data could also be used in the future to learn about the determi-

nants of miRNA targeting. In particular this would mean to locate features which

distinguish conserved seed complementary sites from non-conserved ones. As most

of the competitor miRNA target prediction methods our method focuses on the seed

type binding model and preferential binding in the 3’ UTRs of mRNAs. Several lines

of evidence suggest that this is the major miRNA targeting paradigm but it’s also

clear that there are many exceptions to the rule. A genome wide quantification of

the contribution of 3’UTR seed type binding compared to non seed type binding or

binding in the coding region still remains to be done. We and others have shown that

signals for non typical miRNA targeting are rather week but correct quantification

of the uncertainties associated with those types of predicted sites could still improve

the overall accuracy of the predictions. It has been shown that miRNAs can act by

mRNA degradation and/or translational repression. Computational predictions of

miRNA targets cannot distinguish between these two possibilities but the intersec-

tion with future proteomics data and mRNA degradation data from microrray studies

might shed light on the origin of the evolutionary pressure that governs the creation

and destruction of miRNA target sites.

SiRNAs have been shown to produce off-targets that resemble miRNA targets.

This opens, in principle, the possibility to learn about additional determinants of

miRNA target site functionality from siRNA off-target data, which is available in

larger amounts. Analysis of published microarray data obtained in siRNA experi-

ments suggests the presence of additional determinants of miRNA target site func-

tionality (beyond complementarity between the miRNA 5’ end and the target) in

the close vicinity (about 150 nucleotides) of the miRNA-complementary site. Even

though the molecular basis of possible determinants is not revealed, the analysis first

suggests the presence of additional features which justifies further investment in this

topic and second provides additional information about the unknown determinants

which can guide the search strategies in the future. We can envision different types

of determinants that are compatible with a model of short range dependencies. Local
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secondary structure, general compositional biases or auxiliary binding motives for ei-

ther components of the RISC complex itself or other RNA binding proteins that could

interact with RISC. Microarray methodology currently represent the only unbiased

and genome wide experimental procedure to learn about miRNA binding. But its

not clear yet how far these kind of results will generalize. All the experiments that

we have analyzed were performed in HeLa cell lines. In the case of auxiliary binding

partners of RISC one could imagine target requirements to change across tissues or

cell lines. Gaining insight into such processes is fundamental to the understanding of

miRNA targeting and we will learn about those processes as soon as the experimental

data will become available.

Finally, as part of a study aiming to reduce siRNA off-target effects by introduc-

ing chemical modifications in the siRNA, we performed microarray data analysis of

siRNA transfection experiments. Presented are the methods used to quantify off-

target activity of siRNAs carrying different types of chemical modifications. The

analysis revealed that off-targets caused by the passenger strand of the siRNA can be

reduced by 5’-O-methylation. Eliminating the incorporation of the passenger strand

of the siRNA into RISC does not only eliminate its off-targets, it also causes less

perturbation to the endogenous miRNA population in RISC. Taken together, this

approach can help in the future to design siRNAs with a higher quality than the ones

available today.
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