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Despite the ever-increasing computer power, accurate ab initio calculations for large systems (thou-
sands to millions of atoms) remain infeasible. Instead, approximate empirical energy functions are
used. Most current approaches are either transferable between different chemical systems, but not par-
ticularly accurate, or they are fine-tuned to a specific application. In this work, a data-driven method
to construct a potential energy surface based on neural networks is presented. Since the total energy
is decomposed into local atomic contributions, the evaluation is easily parallelizable and scales lin-
early with system size. With prediction errors below 0.5 kcal mol�1 for both unknown molecules and
configurations, the method is accurate across chemical and configurational space, which is demon-
strated by applying it to datasets from nonreactive and reactive molecular dynamics simulations and a
diverse database of equilibrium structures. The possibility to use small molecules as reference data to
predict larger structures is also explored. Since the descriptor only uses local information, high-level
ab initio methods, which are computationally too expensive for large molecules, become feasible for
generating the necessary reference data used to train the neural network. Published by AIP Publishing.
https://doi.org/10.1063/1.5017898

I. INTRODUCTION

In 1929, Dirac1 noted that the (electronic and nuclear)
Schrödinger equation (SE) contains all that is necessary to
describe chemical phenomena and processes. As the underly-
ing equation (SE) is too complicated to be solved in closed
form but for the simplest systems, computational and numer-
ical methods have been devised to find approximate solutions
such that meaningful information about a system and/or a
process can be obtained. Depending on the observable of
interest, the meaning of “accuracy” may change, though.
A total number of several ten thousand atoms are “large”
from the perspective of what system size can be realisti-
cally investigated at the single-point energy level using den-
sity functional theory (DFT).2 With increasing accuracy, or
when considering optimized structures, vibrations, or even
(classical) nuclear dynamics, the size of the system that
is computationally tractable by explicitly solving the elec-
tronic SE (i.e., by “ab initio” rather than semiempirical meth-
ods) reduces to less than thousand atoms.3 These limitations
have spurred the development of alternative, more empirical
methods.

For small systems (few atoms), it is common practice to
directly interpolate a set of known and precomputed reference
energies (obtained from a pointwise solution of the electronic
SE) to construct a continuous functional form. Popular interpo-
lation techniques include the modified Shepard algorithm,4–6

the moving least-squares method,7–9 permutational invariant

a)Authors to whom correspondence should be addressed: oliver.unke@
unibas.ch and m.meuwly@unibas.ch

polynomials,10–12 and the reproducing kernel Hilbert space
method.13–16

For big systems (proteins or condensed matter), a typ-
ical approach is to fit a large number (>103) of parame-
ters of an empirical functional form, a so-called force field
(FF), either to best reproduce reference energies, experimen-
tal data that can be derived from them (e.g., thermodynamic
or spectroscopic observables), or both.17 While some param-
eters can be determined from experiment, others (e.g., par-
tial atomic charges) require electronic structure calculations
for fragments or explicit molecular dynamics (MD) simula-
tions (e.g., van der Waals parameters). Once parametrized,
the total energy and corresponding forces required for MD
simulations can be evaluated much more efficiently than by
directly (and approximately) solving the SE.18,19 With cur-
rently available computer power, it is, for example, possible
to run explicit atomistic MD simulations for small parts of a
cell for several 100 ns.20 However, general empirical FFs21–25

also have a number of drawbacks,26 including their limited
accuracy, or the fact that most of them do not allow bond-
breaking/bond-formation to be described. Even though FF
parameters can be tuned for single, isolated systems to reach
accuracies within fractions 1 kcal mol�1 and special potentials
for metals,27–32 bond-order based (reactive) potentials,33–36

and reactive force fields for particular systems37–41 or pro-
cesses (e.g., proton transfer),42 have become available, it would
be desirable to generalize this to larger classes of problems,
irrespective of the particular type of application one has in
mind.

One possible step in this direction has been taken dur-
ing the past decade when machine learning (ML) approaches,
which give computers the ability to learn without being
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explicitly programmed,43 have been applied to train a com-
puter system using large amounts of precomputed data (typi-
cally energies) to estimate properties for unknown compounds
or structures.44–47 Hence, instead of approximately solving
the electronic SE or representing its solution through a ball-
and-spring model as in a FF, a computer system learns to
predict energies based on an increasing amount of data. Such
an approach is motivated by the observation that the electronic
Hamiltonian Ĥ is uniquely determined by the external poten-
tial, which in turn depends only on the set of nuclear charges
{Z i} and atomic positions {ri} of the system. Therefore, all
information necessary to determine E is contained in {Z i, ri}
and there must exist an exact mapping f : {Z i, ri} 7→ E, which
returns the energy E given {Z i, ri}. If the mapping f (Z i, ri) was
known, directly solving the SE could be circumvented. This
situation is reminiscent of density functional theory (DFT) in
that the existence of a suitable functional is guaranteed but
its actual form is not known. As such, the fundamental object
of interest in the present work is the potential energy surface
(PES), an approximation to f : {Z i, ri} 7→E, which corresponds
to a 3N�dimensional hypersurface that returns the total poten-
tial energy of a system Etot(ri) given the positions ri of all N
nuclei.

Artificial neural networks (NNs)48–54 are a popular class
of ML algorithms which have been used to tackle various diffi-
cult problems, including speech,55 image,56 and face recogni-
tion.57 In particular, feed-forward NNs have been proven to be
general function approximators,58,59 which makes them suit-
able for approximating f : {Z i, ri} 7→ E. Ideally, the resulting
PES should be accurate, rapid to evaluate, analytically differ-
entiable, systematically improvable, scalable, and applicable
to bond-breaking/bond-formation problems (“reactive PES”).
Additionally, it should be transferable between different sys-
tems and configurations.60 Existing PESs typically fulfill only
some of these requirements and the “ideal PES” does not exist
yet, probably due to the difficulty of finding a functional form
that would satisfy all needs simultaneously. In contrast, NNs
do not assume a predefined functional form and could offer
important advantages.

NNs have been used previously to fit PESs for molecu-
lar systems in the spirit of many-body expansions.61–64 While
being accurate, they typically involve a large number of indi-
vidual NNs (one for each term in the many-body expansion),
making the method scale poorly for large systems. Recently,
there have also been efforts to predict bond energies using a
NN.65

An alternative approach, known as high-dimensional NN
(HDNN) and first proposed for bulk silicon,66 decomposes
the total energy of a system into atomic contributions, which
is appealing, because “energy” is an extensive property and it
allows us to apply the same network to systems of different
sizes. In an HDNN, an atomic descriptor vector (the “finger-
print for the atomic environment”) is provided as input and
yields the atomic energy Ei as output. All atomic contribu-
tions are added to give the total energy Etot of the system for
a particular configuration {ri}.

It is useful to introduce an atomic descriptor because the
dimensionality of the input vector xin needs to be fixed in
a feed-forward NN and using Cartesian coordinates as input

would limit the applicability of the network to specific system
sizes. The descriptor combines the influence of all neighboring
atoms up to a cutoff radius R (e.g., 6 Å)60 with a continu-
ous behaviour at the boundary. Introducing a cutoff allows the
method to scale linearly with respect to the number of atoms.
Another disadvantage of using Cartesian coordinates is that
they are not invariant with respect to translation and rotation.
Since NNs are purely numerical algorithms, they would out-
put different values if the input coordinates changed due to
such transformations of the system. In contrast, the descrip-
tor is designed to be identical for all symmetry equivalent
representations by construction.

In an HDNN, the entries of the descriptor vector are the
values of several so-called symmetry functions, which alge-
braically combine distances and/or angles between the atom
of interest and all other atoms in its neighborhood such that the
resulting value is invariant with respect to translation, rotation,
and permutation of equivalent atoms. The individual symme-
try functions are manually designed to respond differently to
distinct combinations of distances and/or angles such that a
sufficient number (≈50)66 of symmetry functions provide a
unique fingerprint for an atomic environment.60

Alternative methods to construct atomic environment
descriptors as input for a NN based on orthonormal 3-D
Zernike basis functions67 or radial and angular distribution
functions68 have been discussed in the literature. In contrast,
the smooth overlap of atomic positions (SOAP) approach69

directly introduces a distance metric and a similarity kernel
for atomic environments such that it is not necessary to explic-
itly calculate the descriptor. Therefore, the SOAP approach is
more suited for kernel-based ML methods.70

In order to apply HDNNs to multi-component systems,71

the symmetry functions are duplicated for each species and a
separate NN is trained for each element.60 Unfortunately, due
to the rapidly increasing complexity of chemical space, this
approach is still limited to systems containing only few chem-
ical elements.72 Furthermore, such NNs are not transferable
across chemical space and have to be retrained for every new
system of interest.

A conceptually different approach, the deep tensor NN
(DTNN),73 allows us to reuse the same NN to predict ener-
gies of systems with different compositions across chemical
space. Similar to HDNNs, the DTNN accumulates atomic
energy contributions to predict the total energy Etot. How-
ever, instead of an environment descriptor based on symme-
try functions, it receives a vector of nuclear charges and a
matrix of atomic distances as input. A tensor layer74–76 then
builds a coefficient vector ci for each atom i, which acts as
the environment-dependent fingerprint. To do so, the coef-
ficient vector ci is initialized depending on the species of
atom i and recursively refined in T steps by adding interaction
vectors vij, which depend on the pairwise distance between
atoms i and j , i, as well as the current cj of atom j. After
T refinements, the final ci is passed as input to a fully con-
nected layer to determine the atomic energy contribution Ei of
atom i.

Because each refinement step considers all pairwise dis-
tances, the evaluation of the DTNN scales quadratically with
respect to the number of atoms. Although introducing a
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distance cutoff to achieve linear scaling has been proposed,73

it is important to note that even with a cutoff, the network
still requires information about all atoms present in the system
in order to recursively refine the coefficient vectors ci (every
refinement step requires knowledge about the current cj of
other atoms). Using T = 3 interaction passes and 100k refer-
ence structures, the DTNN predicts the energy of structures
in the QM9 dataset77 accurately with a mean absolute error
(MAE) of 0.84 kcal mol�1.73

More recently, the SchNet architecture was proposed,78

which improves upon the DTNN. Instead of refining the coef-
ficient vectors ci with a tensor layer, they are iteratively updated
by residual connections79 between three interaction blocks.78

The interaction blocks utilize interatomic continuous-filter
convolutions78 and fully connected layers to couple different
coefficient vectors based on pairwise interatomic distances.
The final coefficient vectors ci are passed through two fully
connected layers, which output atomic energy contributions
Ei. Similar to the DTNN, SchNet requires information of all
atoms present in the system to update the coefficient vectors
ci, even if a cutoff radius was introduced (the current version
of SchNet does not employ a cutoff).78 When trained on 100k
reference structures, SchNet predicts the energy of structures
in the QM9 dataset77 with a MAE of 0.34 kcal mol�1. For a
more detailed description of SchNet, the reader is referred to
Ref. 78.80

Because both DTNN and SchNet require global informa-
tion about all atoms in a system for the iterative refinement
of ci, individual atomic contributions cannot be evaluated
independently without communicating intermediate results.
While such approaches are the method of choice for individual
molecules or small systems, it might be difficult to apply them
routinely to condensed phase systems containing thousands of
atoms with a multitude of chemical environments such as in
proteins.

In the present work, a NN-based method tailored for accu-
rate energy evaluations, which can be applied to construct
PESs for nonreactive and reactive dynamics of chemically
heterogeneous systems in the condensed phase, is introduced.
While being inspired by high-dimensional NNs, the descriptor
does not rely on hand-crafted symmetry functions and encodes
atomic species and environment simultaneously, similar to the
coefficient vectors ci in the DTNN and SchNet. This allows
us to train a single NN to predict the atomic energy contri-
butions Ei of all elements in their chemical environments.
In contrast, high-dimensional NNs require separate NNs for
each element. Contrary to iterative approaches based on ten-
sor layers73 or convolution,78 the descriptor contains strictly
local information and is calculated in a single step. Thus,
the proposed method scales linearly with respect to the sys-
tem size and can even be evaluated in parallel because each
atomic descriptor is independent of other descriptors and needs
no iterative refinement. When applied to the QM9 dataset,77

the proposed approach yields predictions with errors below
0.5 kcal mol�1, transferable across chemical space. The pre-
dictions are also transferable across configurational space,
as is demonstrated by applying the same method to several
MD datasets.81 When trained with appropriate reference data,
the method is also able to describe reactions. By analyzing

individual atomic energy contributions Ei, it is shown that the
network predicts energies in a chemically intuitive and inter-
pretable way. Furthermore, the possibility to train the network
on small molecules to predict the energies of larger systems
is demonstrated. Finally, possible future improvements are
discussed.

II. METHODS

In order to predict the energy of a system of interest,
such as a molecule, a descriptor for each atom is supplied
to a NN, which predicts an atomic energy contribution Ei. The
individual contributions are added to obtain the total energy
Etot. Figure 1 gives a schematic overview of the computational
protocol.

In the following, the atomic descriptor (Sec. II A), the
NN (Sec. II B), and the process for training the NN (Sec. II C)
are described in more detail. It is important to note that only
total energies are required as reference data during training, as
the NN automatically learns to perform the energy decompo-
sition into atomic contributions. This way, only true quantum
mechanical observables are used as reference data and no, ulti-
mately arbitrary, energy decomposition scheme82–84 needs to
be imposed.

A. Atomic descriptor

Individual atoms and their local environment are repre-
sented by a descriptor, which needs to encode all information
relevant to predicting its atomic energy contribution (relative
positions and species of neighboring atoms). Furthermore, due
to the way feed-forward NNs are designed (see Sec. II B), the
descriptor must be of fixed size, no matter how many atoms are

FIG. 1. Schematic representation of predicting the energy Etot of a chemical
system. (a) The local atomic environment of every atom i, consisting of its type
(e.g., C, H, O, . . .) and information about the relative positions rj and nuclear
charges Z j of all neighboring atoms j inside the cutoff sphere (indicated by a
red circle), is encoded in a fixed-size numeric descriptor vector ci. (b) Since
the descriptor is rotationally, translationally, and permutationally invariant, all
symmetry equivalent atoms are encoded in the same way. (c) The descriptor
vector ci is supplied to a NN, which (d) outputs an atomic energy contri-
bution Ei . Finally, the individual contributions are (e) accumulated to give
Etot =

∑
iEi. Since addition is commutative, Etot is automatically invariant

with respect to atom permutations.
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present. Finally, it is advantageous if the descriptor is invariant
with respect to transformations which do not alter the energy
of the system. This way, translational invariance, rotational
invariance, and invariance with respect to the permutation of
equivalent atoms need not be learned explicitly by the neural
network.

In this work, the atomic descriptor consists of two parts:
one part encoding the atomic species (C, H, O, . . .) and the
second part which encodes the local environment up to a
cutoff radius R. Note that an atomic descriptor that encodes
species and environment separately has been proposed pre-
viously.68 There are several reasons for introducing a cutoff.
First, the energy prediction scales linearly with respect to the
number of atoms present in the system of interest. Second,
while the network can be trained on rather small systems, it
can then be applied to much larger systems because locally
atomic environments of small and large systems are equiva-
lent. Finally, it is a valid assumption that most (but not all)
chemical interactions, which are relevant to the energy of the
system, such as bonding, are inherently short ranged. Meth-
ods to correct for long-range interactions are well known in
the literature60,66,71,72 and are discussed in Sec. III. Hence
the descriptor used here combines computationally advan-
tageous aspects with a design based on physical/chemical
principles.

1. Species descriptor

In principle, the atomic species could be encoded by a
single number, either by an integer identifier (e.g., H = 1,
C = 2, N = 3, . . .) or by the nuclear charge Z (e.g., H = 1,
C = 6, N = 7, . . .). However, this introduces an ordinal rela-
tionship (e.g., H < C < N) between different atomic species,
which can be detrimental to the network performance. Since
neural networks are a purely numerical algorithm, ordinal rela-
tions in inputs directly correlate with the network response,
which is not meaningful for atomic species. Alternatively, a
one-hot85 encoding (e.g., H = [1 0 0· · · ], C = [0 1 0· · · ], and
N = [0 0 1· · · ]) would be possible. However, two potential
disadvantages of a one-hot encoding are that (1) the dimen-
sionality of the encoding vector must necessarily be equal to
the cardinality of the set of atomic species present in the data
and (2) all encodings are equidistant by construction. Since
it is intuitive to expect, e.g., atomic species from the same
group in the periodic table to behave similar to one another,
an optimal encoding should be able to directly represent these
similarities.

For these reasons, the atomic species are rather encoded
by embeddings. An embedding is a mapping from a discrete
object i to a vector of real numbers vi ∈ I RD, where D is the
dimensionality of the embeddings. For example, word embed-
dings86 find wide spread use in the field of natural language
processing. Here, words are mapped to a comparatively low-
dimensional vector space such that semantically similar words
(e.g., “red,” “green,” and “blue” or “king,” “monarch,” and
“emperor”) appear close to each other (||vred � vblue|| < ||vred

� vking||). During the training process of the NN, the entries of
the embedding vectors vi are free parameters such that mean-
ingful embeddings are directly learned from data. In this work,
the dimensionality D of the embeddings is set equal to the

number Ng of distinct groups (columns) in the periodic table
which are present in the reference data. For example, in the
QM9 dataset, Ng is 5. Note that a lower dimensionality would
still allow a unique encoding of each element (albeit intro-
ducing an ordinal relation in the extreme case of D = 1).
However, elements from the same group in the periodic table
are expected to have similar properties and choosing D = Ng

principally allows us to encode every distinct group in orthogo-
nal directions, thus avoiding ordinal relations between species.
For more details on the concept of embeddings, the reader is
referred to the literature.87

2. Environment descriptor

All information about the local environment of a given
atom i up to a cutoff radius R is contained in the neighborhood
density function ρi given by

ρi(r) =
∑

j,‖rj ‖≤R

Zjδ(‖r − rj ‖), (1)

where the position r = (x, y, z)T ∈ R3 is relative to atom i,
Z j and rj are nuclear charge and relative position of neigh-
boring atom j, δ is the Dirac delta function, and the sum runs
over all atoms j closer than R. The concept of a neighborhood
density function has been used previously in the derivation
of the SOAP similarity kernel.69 Note that the use of relative
positions ‖r � rj ‖ makes ρi translationally invariant and the
commutativity of addition ensures permutational invariance.
By construction, ρi is zero everywhere except for positions
rj of neighboring atoms j, where the function value encodes
the atomic species of j by its nuclear charge. Thus, ρi com-
pletely describes the local atomic environment of atom i up to
a distance R.

In order to obtain a fixed length input xin for use in a
feed-forward layer, ρi is expanded into a basis set of fixed
dimension

ρi(r) ≈
K−1∑
k=0

L−1∑
l=0

l∑
m=−l

cklmψklm(r) (2)

with expansion coefficients cklm and basis functions
ψklm(r) = gk(r; R)Y lm(θ, φ), where gk(r; R) (with k ∈ [0, K � 1])
are radial basis functions and Y lm(θ, φ) are spherical harmon-
ics (with l ∈ [0, L � 1]). The Zernike descriptor67 also relies
on a basis set expansion but uses different basis functions. K
and L define the maximum degree of the radial and angular
parts of the expansion, respectively, and R defines the cutoff
radius. In order to be consistent with the commonly used nota-
tion of spherical harmonics, the Cartesian coordinate vector r
is transformed88 to spherical coordinates,

r = ‖r‖ =
√

x2 + y2 + z2,

θ = arctan 2(y, x),

φ = arccos *
,

z√
x2 + y2 + z2

+
-

.

(3)

Many different choices for the radial basis functions gk(r; R)
are possible. Here

gk(r; R) = s(r; R) · exp *
,
−

K2

R2

(
r − (k − 1)

R
K

)2
+
-

(4)
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is chosen which ensures that basis functions are evenly spaced
inside the cutoff sphere. Due to the cutoff function s(r; R),
gk(r; R) is zero whenever r > R. Choosing

s(r; R)

=




1 if r ≤ rs

1 − 6
(

r−rs
R−rs

)5
+ 15

(
r−rs
R−rs

)4
− 10

(
r−rs
R−rs

)3
if rs < r < R

0 if r ≥ R

(5)

as cutoff function, with rs = R − R
K , ensures that gk(r; R)

has smooth first and second derivatives such that no numer-
ical artifacts are introduced when an atom enters or leaves
the cutoff sphere, while leaving the Gaussian part of gk(r; R)
largely unaffected (see Fig. S1 of the supplementary material).
The cutoff function s(r; R) is a smooth approximation to the
step function and influences the value of gk(r; R) only when
r > rs. Although it would be possible to use a non-sigmoid
cutoff function that starts decaying as soon as r > 0,
this would lead to largely different numerical influences of
gk(r; R) on the network predictions depending on the value of
k, therefore effectively introducing an a priori distance-based
weighting. In contrast, the present choice of s(r; R) allows that
the NN learns to weigh the influence of different distances in
a data-driven manner.

As long as K and L are sufficiently large, the information
stored in the coefficients cklm is comparable to that encoded
in ρi. Note that for predicting energies, some loss of informa-
tion is not problematic as long as the resulting descriptor can
distinguish different environments sufficiently well.

The expansion coefficients cklm for a general function f (r)
can be obtained from projecting cklm = ∫ f (r)ψklm(r)dr. Fortu-
nately, it is not necessary to calculate an integral to obtain the
expansion coefficients for the neighborhood density function.
Since ρi(r) is the sum of δ functions [Eq. (1)], the coefficients
are efficiently obtained by summation

cklm =

∫
ρi(r)ψklm(r)dr =

∑
‖rj ‖≤R

Zjψklm(rj). (6)

Note that the values of the coefficients cklm still depend on the
orientation of the chosen reference coordinate system because
the values of the 2l + 1 spherical harmonics for a particular l are
orientation dependent. Fortunately, the 2l + 1 coefficients for
given combination of k and l can be combined to a rotationally
invariant quantity akl according to the following equation:

akl = *
,

4π
2l + 1

m=l∑
m=−l

(−1)mcklmckl−m
+
-

1
2

. (7)

In total, there are K ·L different akl values, which are concate-
nated to the atom embedding vector v of dimensionality Ng to
form the descriptor vector c. Because akl has continuous first
derivatives with respect to the atom coordinates, derivatives
necessary for, e.g., force calculations are easily obtained by the
chain rule. Note that because a single vector c = xin ∈ RNg+K ·L

is supplied to the NN, it is not able to distinguish between
the species and environment descriptor. In this work, K = 7,
L = 7, and R = 3 Å are chosen for all datasets. Section S1.1 of

the supplementary material details how the values of K, L, and
R were chosen and how they influence the predictive accuracy
of the NN.

B. Neural network

A feed-forward NN consists of an input layer connected to
one or multiple hidden layers and an output layer. Every layer
can be considered as a function which takes an nin-dimensional
input vector x and transforms it to an nout-dimensional output
vector y. For most NNs, the transformation in each layer can
be written as

y = φ(xW + b), (8)

where W is an nin ×nout weight matrix, b is an nout-dimensional
bias vector, and φ(x) is the activation function. For simplic-
ity, the shorthand notation φ(x) is used, which symbolizes
the element-wise application of φ(x) to x (performed indepen-
dently on each vector entry). All entries of the weight matrix W
and the bias vector b are free parameters, which are initialized
randomly and optimized when the network is trained.

The output y of each layer is the input x to the next succes-
sive layer until the output layer is reached. Usually, the output
layer uses the identity function as the activation function and
its output yout is the prediction of the neural network (it is
possible to predict more than one quantity at once using the
same network). The input layer applies no transformation to
its input data xin at all (the activation function is the identity
function, W is the identity matrix, and the bias vector con-
tains only zeros) and is only used to provide data for the first
hidden layer. The complete NN can therefore be written as a
nested version of Eq. (8) with different weight matrices Wi,
bias vectors bi, and activation functions φi(x) for each layer
i. For example, a NN with two hidden layers can be written
as

yout = φout(φ2(φ1(xinW1 + b1)W2 + b2)Wout + bout). (9)

Note that it is not necessary to symbolically differentiate an
expression such as Eq. (9) if derivatives of yout with respect
to xin (or any weight or bias parameter) are required. Instead,
analytical derivatives are efficiently calculated using automatic
differentiation.89 The network architecture can be controlled
by choosing different numbers of hidden layers and nodes
(“neurons”) in each hidden layer (specified by nout) and the
choice of the activation function (usually, the same activa-
tion function is used for all hidden layers). Commonly used
activation functions are either sigmoidal functions [tanh (x)
or (1 + e−x)−1] or “rectifier”-like functions [max (0, x) or ln
(1 + ex)].90,91 Note that nout is the only hyperparameter for
choosing the size of the weight matrix and bias vector of each
hidden layer, as nin is determined by the previous layer’s nout,
whereas the dimensionalities of yout and xin are dictated by
the problem at hand.

In the present work, square unit augmented layers92 given
by

y = φ(xW1 + x2W2 + b) (10)

are used to construct the NN instead of ordinary layers [see
Eq. (8)]. Here, x2 is the shorthand notation for the element-wise
square of x. The independent weight matrices W1 and W2 are
of size nin × nout and b and φ are the bias vector and activation
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function, respectively [see Eq. (8)]. The reason for using square
unit augmented layers is that properties reminiscent of radial
basis function networks93–95 can be included at little additional
computational expense,92 provided that a sigmoidal activation
function is used (see Fig. S2 of the supplementary material for
an illustration).

The activation function for the hidden layers is φ(x)
= s·arcsinh(x), where s = 1.256 734 80 ensures that φ(x) has
self-normalizing properties96 (activations converge automati-
cally to zero mean and unit variance), similar to the recently
proposed SELU96 function. For the output layer, the identity
function is used. In the present work, arcsinh(x) was found to
give superior results compared to more commonly used acti-
vation functions such as tanh(x). One possible reason for the
improved performance is that the function does not saturate for
large or small values of x (see Fig. S2 of the supplementary
material), which alleviates the vanishing gradient problem97

and helps to improve learning.
In summary, the energy prediction consists of the follow-

ing steps (see also Fig. 1): (1) The descriptor ci for a specific
atom i with nuclear charge Z is generated by concatenating the
embedding vector vZ with the environment descriptor gener-
ated from the neighborhood density [Eq. (1)] of atom i (see
Sec. II A). (2) The descriptor ci is used as input xin for a NN,
which outputs the atomic energy contribution Ei. All NNs used
in this work consist of two hidden square unit augmented layers
[Eq. (10)] (see Sec. II B) with 100 and 50 nodes each. (3) Steps
1 and 2 are repeated for every atom i and the contributions Ei

are summed to give the total energy Etot.

C. Training

NNs are trained to predict energies on the QM9 dataset,77

several MD datasets,81 and a dataset for H-transfer in mal-
onaldehyde. The QM9 dataset forms a subset of the GDB-17
database98 and contains 133 885 molecules consisting of H,
C, N, O, and F with up to 29 atoms, including up to 9 heavy
atoms. The range of energies spans several thousand kcal
mol�1. All properties in the QM9 dataset were calculated at
the B3LYP/6-31G(2df,p) level of theory.77 The MD datasets
consist of ab initio MD trajectories for benzene, uracil, naph-
thalene, aspirin, salicylic acid, malonaldehyde, ethanol, and
toluene calculated at the PBE + vdW-TS99,100 level of theory.
They range in size from 150 000 to nearly 1 000 000 conforma-
tional geometries.81 The H-transfer dataset for malonaldehyde
was generated by sampling 250 000 geometries from a 5 ns MD
trajectory run at 750 K using CHARMM101 and a molecular
mechanics with proton transfer (MMPT)-based reactive force
field.42,102 These simulation conditions lead to ready hydro-
gen/proton transfer and constitute a set of reactive geometries.
The energy for each geometry was calculated at the MP2/6-
311++G(d,p) level of theory using Gaussian09103 and is used
as reference.

Prior to training, each dataset is split into three parts: the
training set, the validation set, and the test set. During training,
the squared error per atom (SEpA)

SEpA =
1
N

*
,
Eref −

N∑
i=1

Ei
+
-

2

(11)

is minimized via Adam optimization in minibatches104 of ten
reference structures, using a learning rate of 10�4. Eref is the
reference energy of a structure from the training set, and Ei

are the predicted atomic contributions of the N atoms of the
reference structure. During one so-called epoch of training, the
network trains once on each datum in the training set. After
each training epoch, the mean SEpA is also calculated for
the structures in the validation set. Every network is trained
between 5500 and 10 000 epochs, and the model which per-
forms best on the validation set is selected to predict the test
set. As such, although the validation set is not directly used
in training, it indirectly influences which model is selected.
This method is also known as early stopping and is frequently
used to prevent overfitting.92 Since the test set is not used at
all during the training process, the mean absolute error (MAE)
and root mean squared error (RMSE) of predictions on the
test set indicate how well the model generalizes to unknown
data.

In order to speed up the training process and to improve
convergence, all inputs (apart from embeddings) to the net-
work are transformed to their z-score105 according to the mean
and standard deviation of the respective inputs in the train-
ing set. This ensures that the numerical range of input values
is close to the regions where the activation function is most
responsive. Note that all numbers needed for calculating the
z-scores are constants that only depend on the chosen train-
ing set and can be considered to be part of the descriptor. The
transformation to z-scores or similar normalization methods
have only numerical reasons and are standard practice when
working with NNs.92

Similarly, instead of directly interpreting the output yout

of the NN as atomic contribution to the energy, Ei = σ·yout

+ µ is used instead, where σ and µ are additional scale and
shift parameters that are optimized during training. However,
instead of initializing them randomly like the other trainable
parameters, they are initialized according to the standard devia-
tion (σ) and mean (µ) of the per-atom average of the reference
energies in the training set. Note that introducing σ and µ
is redundant because both scaling and shift operations can
already be equivalently expressed through the parameters in
Wout and bout of the output layer. However, networks are found
to converge faster when σ and µ are introduced because a
larger learning rate can be used due to the network predictions
starting with the correct range of values. After training is fin-
ished, it is possible to incorporate σ and µ directly into Wout

and bout to save the additional computational step required
by introducing Ei = σ·yout + µ instead of simply choosing
Ei = yout.

NNs are trained with Tensorflow106 using training set sizes
of 1k, 2.5k, 5k, 10k, 25k, 35k, 50k, 75k, and 100k for the
QM9 dataset and training set sizes of 25k, 50k, and 100k for
the MD and H-transfer datasets. In all cases, 2k additional
structures are used as the validation set, whereas the remaining
structures constitute the test set. For every training set size
in the QM9 dataset, five different NNs are trained based on
a different randomly chosen training, validation, and test set.
This provides a means to obtain statistics on their performance.

Furthermore, to investigate whether the predictions of a
NN also scale to larger systems, a single network is trained on
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the QM9 dataset only on reference structures that contain 15
atoms or less (26 328 structures). Out of the remaining struc-
tures, 2k are reserved as the validation set during training and
the generalization error is estimated by predicting the energies
of all other structures in the QM9 dataset with more than 15
atoms.

III. RESULTS AND DISCUSSION
A. Atomic energies

Since the NNs are trained to decompose energies of a
system into atomic contributions, it is instructive to visualize
the “energy spectrum” for each atomic species in the QM9
dataset (Fig. 2).

The spectra are non-uniform and contain multiple peaks
at well-defined energies. Intuitively one would associate dif-
ferent peaks to different clusters (“types”) of atoms, where
atoms in the same cluster are similar in energy Ei due to sim-
ilar atomic environments. In order to verify this hypothesis,
atoms with similar environments are clustered based on chem-
ical graphs,108 where nodes correspond to atoms and edges
represent bonds. Different atoms are distinguished by a string
(similar to a SMILES string109), which is obtained by concate-
nating labels for all nodes encountered in a depth-first110 tree
traversal of the chemical graph up to depth two, starting from
the atom of interest. The node labels consist of atomic species
and the number of edges to other nodes. Atoms with identi-
cal strings are assigned to the same cluster. A more detailed
description of the clustering method is available in Sec. S4 of
the supplementary material.

In total, the QM977 dataset contains 1 230 122 H atoms,
846 557 C atoms, 139 764 N atoms, 187 996 O atoms, and
3314 F atoms which reduces to 168 (H), 34 647 (C), 4271
(N), 1130 (O), and 22 (F) after clustering (for detailed
results, see Sec. S4 of the supplementary material). The large

number of different clusters is not surprising, considering the
vast number of theoretically possible combinations for con-
structing bonding graphs of depth two, given five different
atomic species and diverse possible bonding patterns for each
of them (see Table S1 of the supplementary material for an
illustration of the exponential growth of possible combinations
when traversing the bonding graph). Interestingly, however,
most atoms can be assigned to just a few clusters (see Fig.
S5 of the supplementary material). For example, more than
half of all C atoms belong to the 331 most common C-atom
clusters.

Since only graph-based information (but no geometric
information such as distances and angles) is considered in
the clustering approach, it is not evident that atoms belonging
to the same cluster are energetically similar. As a qualitative
test for how meaningful the clustering is, the cluster statistics
(mean and variance of atomic energies for each cluster) from
the raw data are considered (see Fig. 2). For this, every clus-
ter is represented by a Gaussian distribution with mean and
variance equal to the corresponding cluster statistics and nor-
malized according to the atom count. Even though assuming a
Gaussian distribution is a crude approximation, the sum of all
Gaussians (see Fig. S6 of the supplementary material) closely
resembles Fig. 2, so the graph-based clustering approach is
considered to be meaningful.

In order to interpret the data, chemical similarities
between different clusters are analyzed and they are summa-
rized based on functional groups into different atom types.
Apart from allowing interpretation of the network predic-
tions, the energies of different atom types can be tabulated
and used for a rapid estimate of the energy of a molecule,
given only its chemical structure, similar to how NMR-
chemical shifts can be estimated.111 Table I lists atomic ener-
gies (relative to a free atom) of functionally different C atom
types.

FIG. 2. “Spectra” of atomic energies in
the QM9 dataset for different species
(relative to the energy of a free
atom). In order to obtain the spec-
tra, the atomic energy predictions of
all five NNs trained on 100k struc-
tures were averaged and the curves
are obtained by kernel density esti-
mation with the Sheather-Jones band-
width selection method.107 Figures S7–
S11 of the supplementary material show
the respective unaveraged results. The
atomic energies of C atoms span the
widest range (>100 kcal mol�1), fol-
lowed by N (>60 kcal mol�1), O (>40
kcal mol�1), H (>20 kcal mol�1), and F
(>15 kcal mol�1).
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TABLE I. Environment-dependent atomic energies of selected C atom types
(mean plus or minus one standard deviation).

Type Diagram E (kcal/mol)

Hydrocarbyls

Primary alkyl �101.8 ± 0.7

Secondary alkyl �114.3 ± 4.8

Tertiary alkyl �129.5 ± 6.3

Quaternary alkyl �151.3 ± 5.9

Primary alkenyl �110.0 ± 6.2

Secondary alkenyl �128.6 ± 2.1

Tertiary alkenyl �150.2 ± 8.3

Primary alkynyl �112.5 ± 1.0

Secondary alkynyl �137.1 ± 3.0

Secondary conjugated alkenyl �134.0 ± 3.0

Tertiary conjugated alkenyl �156.9 ± 5.6

Bound to nitrogen

Methyl amine �108.6 ± 0.5

Primary-C amine �120.2 ± 7.4

Secondary-C amine �134.0 ± 8.1

Tertiary-C amine �156.7 ± 7.1

Nitrile �144.0 ± 1.9

Primary-C imine �142.0 ± 2.2

Secondary-C imine �165.6 ± 3.7

Bound to oxygen (may also be bound to nitrogen)

Methoxy �110.3 ± 0.1

Primary ether �126.8 ± 6.0

Secondary ether �141.2 ± 8.4

TABLE I. (Continued.)

Type Diagram E (kcal/mol)

Tertiary ether �161.4 ± 7.5

Primary hydroxyl �130.3 ± 1.3

Secondary hydroxyl �149.3 ± 4.0

Tertiary hydroxyl �168.0 ± 4.7

Aldehyde �146.0 ± 1.3

Formyl amide �161.6 ± 1.4

Formyl ester �164.5 ± 1.1

Ketone �167.2 ± 2.3

Amide �184.1 ± 4.0

Carboxyl ester/acid �188.9 ± 4.7

Bound to fluorine

“Aza-conjugated” fluoro �181.1 ± 1.3

“Oxy-conjugated” fluoro �182.9 ± 1.5

“Aza-aza-conjugated” fluoro �188.0 ± 1.3

“Aza-oxy-conjugated” fluoro �192.9 ± 1.0

Fluoro methyl �200.2 ± 0.5

Several trends can be observed: For pure hydrocarbyls,
C atoms with a triple bond are more stable than C atoms
with double or single bonds, in accordance with the increased
bond strengths. An exception is conjugated sp2-hybridized
C atoms, which are even more stable due to their “aro-
matic” nature. When bound to electronegative atoms, such
as N, O, and F, the stabilization energy of carbon atoms
appears to be correlated with the electronegativity of the bond-
ing partner. A physically appealing interpretation is that a
large difference in electronegativity increases the ionic char-
acter of the bond and therefore increases the stabilization
energy.

While such trends may be obvious to chemists, a some-
what more subtle effect can be seen in the increasing stability
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from primary to quaternary C-atoms. This can be explained
by hyperconjugation108 (electron density from occupied σ-
bonds is donated to unoccupied orbitals, also known as the
positive inductive or +I effect112). Such a resonance stabiliza-
tion is well known for carbocations and carbon radicals, which
become more stable with the increasing number of neigh-
boring alkyl groups. A related trend is found from chemical
shift measurements in 13C-NMR experiments, where typi-
cal shifts increase from 15 to 30 ppm, to 22-45 ppm, and
further to 30-58 ppm when going from primary to tertiary C-
atoms.113 This is usually attributed to the increased nuclear
shielding due to the additional electron density around the
nucleus.

Similar observations are made for H, N, O, and F atoms
(see Tables S2–S5 of the supplementary material). Note that
some of the previously discussed trends can be reversed for
the other elements. For example, instead of being stabilized
by neighboring alkyl groups, O atoms typically are destabi-
lized by the +I effect. However, this is to be expected since O
atoms are already partially negatively charged due to their high
electronegativity. The +I effect then leads to an amplification
of this charge and therefore destabilization.

B. Errors
1. QM9 dataset

Mean absolute errors (MAEs) and root mean squared
errors (RMSEs) for the NNs trained with different training
set sizes are summarized in Table II and compared with the
performance of the DTNN73 and SchNet.78

The NN trained on 100k reference structures predicts
structures in the QM9 dataset77 accurately with a MAE of
0.41 kcal mol�1 and an RMSE of 0.86 kcal mol�1. Note that
SchNet has lower errors for larger training set sizes but is out-
performed by the present approach for smaller training sets.
Also, SchNet does not employ a cutoff radius R and therefore
uses significantly more information in its prediction. Figure 3
shows the convergence of MAE and RMSE with increasing
training set size.

TABLE II. Prediction errors for the QM9 dataset. MAE and RMSE (given
in kcal mol�1) on the test set for different training set sizes. Results for this
work and Refs. 73 and 78 are compared.

Training set MAE RMSE

1 000 1.85 ± 0.09 3.53 ± 0.57
2 500 1.23 ± 0.03 2.45 ± 0.14
5 000 0.95 ± 0.01 1.94 ± 0.10

10 000 0.73 ± 0.01 1.59 ± 0.08
This work 15 000 0.63 ± 0.01 1.40 ± 0.08

25 000 0.55 ± 0.01 1.22 ± 0.07
35 000 0.50 ± 0.00 1.06 ± 0.02
50 000 0.46 ± 0.01 0.98 ± 0.04
75 000 0.43 ± 0.01 0.89 ± 0.06

100 000 0.41 ± 0.00 0.86 ± 0.14

25 000 1.04 ± 0.02 1.53 ± 0.02
DTNN73 50 000 0.94 ± 0.01 1.37 ± 0.01

100 000 0.84 ± 0.02 1.21 ± 0.02

50 000 0.59 . . .

SchNet78 100 000 0.34 . . .

110 462 0.31 . . .

While MAE and RMSE are useful measures for the overall
performance of a method, it can also be instructive to consider
how errors are distributed. Figure 4 reveals that for all train-
ing set sizes starting from 10k, more than half of all errors
are below 0.5 kcal mol�1, with most errors being as small
as <0.1 kcal mol�1. However, all distributions exhibit long
tails, which implies that there are rare but extreme outliers.
The question remains whether reasons for the outliers can be
identified.

The energies of particular structures could be difficult to
predict simply because they contain rare atomic environments
which are underrepresented in the training set. In order to quan-
tify how well a structure in the test set is represented by struc-
tures in the training set, the concept of a representation number
is introduced. For every structure, the relative frequency of the
atom clusters (see Sec. III A) in the training set are combined

FIG. 3. MAE (blue) and RMSE (red) depending on the
size of the training set, averaged over five independent
runs per training set size. The error bars indicate one
standard deviation.
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FIG. 4. Normalized error distribution (gray) depending
on the size of the training set (test errors from five inde-
pendent runs per training set size are combined). A white
box spans between the 25% and 75% quantiles, with a
black horizontal line indicating the median and a black
dot indicating the mean of the distribution. The whiskers
mark the 5% and 95% quantiles.

via a harmonic average to form the structure’s representa-
tion number. Structures with a small representation number
therefore contain one or several uncommon atomic environ-
ments, which the network could not necessarily learn to predict
accurately from the data it was presented during training.
Notable examples for such structures are very small molecules,
including water, methane, and fluoromethane (all part of the
QM9 dataset), which contain unique atomic environments
not found in any other structure. For example, oxygen and
hydrogen atoms in a water molecule are chemically very dif-
ferent to oxygen and hydrogen atoms found in other hydroxyl
groups. This is highlighted by noting that the bond dissoci-
ation energy of an O–H bond in water is 119.2 kcal mol�1,
whereas for a typical O–H bond in hydroxyl groups, it is
only 102.3 kcal mol�1.114 Similarly, the dissociation energy
of the C–H bond in methane is around 103.0 kcal mol�1,
compared with 113.0 kcal mol�1 for a typical C–H bond to
a primary carbon.114 Figure S3 of the supplementary material
reveals that particularly large prediction errors occur almost
exclusively for structures with a low representation number.
However, low representation numbers do not necessarily lead
to large prediction errors. Since outliers follow the same pat-
terns, it is possible to systematically improve the prediction
capabilities of the network for structures with a low repre-
sentation number by simply including appropriate reference
structures in the training set and it may even be possible
to use the present approach for database curation and qual-
ity tests of databases, which is essential for meaningful ML
applications.

While most outliers can be explained by underrepresented
environments in the training data, some of the largest pre-
diction errors are probably due to a different reason. They
belong to a group of eleven molecules in the QM9 dataset
for which the electronic structure calculation did not con-
verge at all (three molecules) or only using loose conver-
gence criteria (eight molecules).77 Most of these structures
feature unconventional chemical bonding, and their electronic
structure potentially has multi-reference character. Therefore,

it is possible that the quantum mechanical reference ener-
gies themselves are erroneous for these structures, explaining
the large prediction errors. At the very least, they seem to
be particularly difficult to predict for ab initio methods as
well.

The ability of the NN to identify problematic structures
can even be advantageous to detect failures of the ab initio
method used to obtain the reference energy and can be used to
automatically identify inconsistencies in a reference database.
It might turn out that the predictions by the network are closer
to experiment than the reference values. Some of the difficult-
to-converge structures are shown in Fig. 5 along with their
average prediction errors.

FIG. 5. Structures (C = black, N = blue, O = red, H = white) with particularly
large prediction errors (in kcal mol�1) are shown along with their correspond-
ing ID in the QM9 dataset. They all belong to a group of eleven molecules
for which the reference electronic structure was difficult to converge.77 The
structures with the IDs 129 158 and 117 523 could not be converged at all.77

Prediction errors are averaged across neural networks trained on 100k refer-
ence structures (only NNs that contain a given structure in the test set were
considered). Note that, even though many of the structures contain a motif
reminiscent of 1,2,3-oxadiazole, the presence of this motif alone cannot be
the cause for the large prediction errors: the QM9 dataset contains close to 1k
structures with similar motifs, for which accurate predictions are possible.
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TABLE III. Prediction errors for the MD datasets. MAE and RMSE (given
in kcal mol�1) on the test sets are given for different training set sizes. Values
in brackets are results for gradient-domain machine learning (GDML).81 Note
that the GDML approach uses different reference data and training set size
(see text).

Molecule Training set MAE RMSE

25 000 0.45 0.61
Aspirin 50 000 0.34 (0.27) 0.44 (0.36)

100 000 0.27 0.35

25 000 0.11 0.14
Benzene 50 000 0.10 (0.07) 0.13 (0.09)

100 000 0.09 0.12

25 000 0.21 0.30
Ethanol 50 000 0.18 (0.15) 0.24 (0.20)

100 000 0.15 0.20

25 000 0.44 0.60
Malonaldehyde 50 000 0.38 (0.16) 0.51 (0.25)

100 000 0.32 0.43

25 000 0.41 0.54
Naphthalene 50 000 0.37 (0.12) 0.47 (0.15)

100 000 0.32 0.42

25 000 0.44 0.59
Salicylic acid 50 000 0.37 (0.12) 0.48 (0.15)

100 000 0.32 0.42

25 000 0.45 0.60
Toluene 50 000 0.40 (0.12) 0.52 (0.16)

100 000 0.35 0.46

25 000 0.30 0.40
Uracil 50 000 0.24 (0.11) 0.31 (0.14)

100 000 0.20 0.26

While the results with randomly chosen training sets are
promising, it is interesting to see whether representations
learned from small structures can be used to predict energies
for larger structures. A NN trained on all structures in the

TABLE IV. Prediction errors for the H-transfer dataset. MAE and RMSE
(given in kcal mol�1) on the test sets are given for different training set sizes.

Training set MAE RMSE

25 000 0.36 0.49
50 000 0.30 0.40
100 000 0.25 0.34

QM9 dataset containing up to 15 atoms (26 328 structures) is
able to predict structures with more than 15 atoms (107 557)
with a MAE of 1.01 kcal mol�1 and an RMSE of 1.69 kcal
mol�1. The distribution of errors is similar to the error dis-
tributions of networks trained with randomly chosen training
sets but based on all molecules (with up to 29 atoms) (see Fig.
S4 of the supplementary material). This demonstrates that the
learned representations are transferable and can be used to
accurately predict larger structures. Nonetheless, the perfor-
mance is inferior compared to a randomly chosen training set
drawn from the full dataset. One possible physical explanation
is that this is due to the lack of an adequate description of long-
range interactions, which are more important for extended
structures containing many atoms. These deficiencies could
be addressed by explicitly including long-range contributions
into the prediction.

2. MD datasets

MAEs and RMSEs for the NNs trained with different
training set sizes are summarized in Table III and com-
pared with results for gradient-domain machine learning
(GDML).81

Predictions are accurate for all molecules and can be sys-
tematically improved by increasing the training set size. Even
though the present approach is outperformed by GDML in
some cases, it is important to keep in mind that GDML does not
employ a spatial cutoff. Therefore, it is questionable whether
GDML scales well to larger systems. Furthermore, while the
GDML models are trained on only 1000 structures, they use
the atomic forces instead of total energies as reference data,

FIG. 6. First 10 ps of a MD trajectory of malonaldehyde
with intramolecular H-transfer. Top panel: Energy differ-
ence (absolute error) between MP2/6-311++G(d,p) ref-
erence energies and energies predicted by the NN trained
on 100k reference structures. The error rarely exceeds
1 kcal mol�1. Bottom panel: The solid black curve corre-
sponds to the reference energies, and the dotted red curve
corresponds to the energies predicted by the NN. It is able
to describe transition geometries and geometries close to
equilibrium structures equally well.
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which enhances their predictive power.81 It has been shown
previously that NNs benefit as well from including forces in
their loss function [see Eq. (11)].78 Hence, it is likely that pre-
dictions from the NN could be further improved by including
force information during training.

3. H-transfer dataset

MAEs and RMSEs for the NNs trained with differ-
ent training set sizes for malonaldehyde are summarized in
Table IV. The results show that accurate predictions are pos-
sible with rather small training set sizes and can be systemat-
ically improved by increasing the number of reference struc-
tures. Malonaldehyde has been used previously as a model
reactive system in machine learning applications for bypassing
the solution of the Kohn-Sham equations.115 Figure 6 shows
a 10 ps MD trajectory of malonaldehyde. Note that the NN
approach automatically leads to a reactive PES. A direct com-
parison of the NN-learned and MP2-reference energies yields
a correlation coefficient of 0.997.

IV. DISCUSSION AND CONCLUSION

Although the results show that accurate predictions can be
obtained from training a NN with a descriptor based on encod-
ing the chemical environment of an atom, it is useful to discuss
potential problems and possible improvements to the predic-
tion method. For example, even though introducing a cutoff
radius R is necessary for computational efficiency, it can limit
the accuracy of the neural network. Since all atoms beyond the
cutoff radius of R = 3 Å are ignored in the descriptor by con-
struction, interactions extending over larger distances cannot
be captured by the present approach. Most interactions rele-
vant in chemistry are sufficiently short ranged that this is not an
issue, but there are important exceptions: Coulomb and disper-
sion interactions. These long-range contributions to the total
energy are especially important for the correct description of
intermolecular interactions and are therefore crucial for con-
densed phase systems. While it is always possible to increase
R until the error introduced by the cutoff is negligible, this is
not very efficient, as a larger number of atoms would need to
be considered for the calculation of the expansion coefficients
cklm [see Eqs. (1) and (6)]. Furthermore, it is likely that higher
order expansion terms [see Eq. (2)] are necessary to resolve
differences between atomic environments for larger R such
that the calculation of the descriptor becomes more expensive.
Fortunately, the physical laws governing Coulomb and disper-
sion interactions are well understood such that it is possible
to include both contributions explicitly without increasing the
cutoff R.

For better describing Coulomb interactions, separately
trained neural networks have previously been used116 to pre-
dict environment-dependent Hirshfeld charges.117 The elec-
trostatic contribution Eele is then simply subtracted from the
total energy Etot prior to training networks for predicting the
short-range contributions. The total energy can be recovered
by combining electrostatic energies calculated from the pre-
dicted charges and the short-range contributions. Note that
only charge-charge interactions are necessary for the calcula-
tion of the electrostatic energy, as interactions between higher

multipoles118,119 decay faster and can therefore be implicitly
described in the short-range contributions.60 In order to apply
a similar method to the approach presented in this work, it is
not necessary to introduce a second NN. Instead, the existing
network could simply be trained to predict an atomic energy
contribution Ei and an environment dependent charge qi simul-
taneously, by introducing a second network output and an
appropriate modification of the objective function [Eq. (11)].
Also, it is not necessary to rely on a charge decomposition
scheme such as Hirshfeld’s method117 to obtain a reference
value for qi. Recently, it was shown that a NN can be trained
to predict environment dependent charges such that the elec-
trostatic moments, a true quantum mechanical observable, are
reproduced.120 This way, no arbitrary decomposition scheme
needs to be imposed.

To account for long-range dispersion interactions, it was
shown121 that the D3 scheme in DFT calculations proposed
by Grimme122 can be used for NNs without modification.
Since the neural network is trained on DFT reference ener-
gies, the standard C6 coefficients122 for calculating the disper-
sion interaction can be reused. The possibility of predicting
environment-dependent C6 coefficients, instead of using con-
stant values, should be pointed out. That way the dispersion
correction is more flexible and can adapt to the reference data.
This would require the introduction of another network output
and a suitable modification of the objective function [Eq. (11)],
similar to the possible treatment of Coulomb interactions.

Recently, it was shown that van der Waals interac-
tions are essential for the understanding of the properties
of liquid water.123 These findings show the importance of
a correct treatment of long-range dispersion when studying
condensed-phase systems.

In the present work, a general atomic descriptor, which
is applicable to any chemical system was introduced. Using
the descriptor as input, NNs trained on 100k reference struc-
tures can learn to accurately predict energies of structures
in the QM9 dataset77 across chemical space with a MAE
of 0.41 kcal mol�1. Although the performance is slightly
worse than that of the SchNet architecture78 (a MAE of 0.34
kcal mol�1), the difference in accuracy is considered to be
an acceptable trade-off for the increased computational effi-
ciency, as the atomic descriptor developed here requires only
strictly local information (due to the introduction of a cut-
off radius R) and the network architecture is much simpler.
This allows efficient calculation of thousands of atomic con-
tributions in parallel, which is an advantage in the context of
a large molecular dynamics simulation. For smaller training
set sizes (e.g., 50k reference structures), the method pro-
posed in this work outperforms SchNet (Table II). As such,
fewer reference calculations are needed to obtain chemical
accuracy.

Since the QM9 dataset contains exclusively equilibrium
structures, it is only suited to assess transferability across
chemical space. In order to demonstrate the predictive power
of a NN across configurational space, the same method
was also applied to data sampled from MD simulations.
Using 100 000 reference structures, MAEs between 0.09 and
0.35 kcal mol�1 were obtained (see Table III). Finally, it was
also demonstrated that this network can be used to describe
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chemical reactions (here proton transfer), provided that
appropriate reference structures are included in the training
set. The NN is able to describe intramolecular H-transfer in
malonaldehyde with a similar quality as high-level ab initio
methods (Table IV).

The present approach is particularly suitable to evaluate
accurate energies. In principle, it also allows us to efficiently
evaluate forces, as is required in molecular dynamics simula-
tions. In addition, the method automatically leads to a reactive
PES (provided that appropriate structures around the transition
state are contained in the training set), as no notion of chemical
bonds is introduced in the construction of the atomic descrip-
tor. In the present work, it was demonstrated that NNs trained
on systems containing few atoms are transferable to larger sys-
tems which facilitates the possibility to train networks using
very accurate ab initio reference energies. While they are typ-
ically slower than empirical force fields by one to two orders
of magnitude, the energy prediction is several orders of mag-
nitudes faster than ab initio methods (the energy prediction of
a system with 17 atoms takes <1 ms on a desktop computer
equipped with an Intel Xeon Processor E3-1275 at 3.40 GHz)
and scales linearly with respect to the number of atoms. On
the same machine, training the NN takes approximately three
weeks and only needs to be performed once. Depending on
the system size and level of theory, this is approximately the
same time scale as a single ab initio calculation. While FFs
are still undisputedly the fastest approximate method, NNs
promise huge potential speedups and it might be feasible to
combine the two to a hybrid approach similar to QM/MM
methods.

The atomic energy contributions predicted by the network
are chemically intuitive and may offer new insights. For exam-
ple, they can be used as a guideline for designing novel types
of empirical force fields through atom types based on quan-
titative information instead of chemical intuition. Finally, it
is possible to systematically improve the predictions of the
neural network by simply adding new reference data to the
training set. As such, several properties of an “ideal PES” as
put forward in the Introduction are fulfilled by the present
approach.

In order to use the present approach in MD simulations
in a similar manner to FFs, an appropriate reference dataset
is necessary to train the NN. Ideally, this dataset should con-
tain a multitude of different chemical structures, representative
of both equilibrium and non-equilibrium geometries. For a
meaningful description of reactions, transition state geome-
tries need to be included as well. Future work will focus on
using the present technology in conventional and reactive MD
simulations together with a physically motivated treatment of
long-range contributions to the energy. This is necessary to
correctly describe the intermolecular interactions governing
the dynamics in condensed phase simulations.

SUPPLEMENTARY MATERIAL

See supplementary material for details on the choice
of hyperparameters, information about the graph-based clus-
tering method, environment-dependent atomic energies, and
additional explanatory figures.
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