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Abstract: The identification and use of structure–property relationships lies at the heart of the chemical sciences. 
Quantum mechanics forms the basis for the unbiased virtual exploration of chemical compound space (CCS), 
imposing substantial compute needs if chemical accuracy is to be reached. In order to accelerate predictions 
of quantum properties without compromising accuracy, our lab has been developing quantum machine learn-
ing (QML) based models which can be applied throughout CCS. Here, we briefly explain, review, and discuss 
the recently introduced operator formalism which substantially improves the data efficiency for QML models of 
common response properties. 
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1. Introduction
Chemical compound space (CCS) comprises all the theo-

retically possible molecules and materials one can conceive of. 
Just for medium-sized organic drug-like molecules it was esti-
mated to exceed 1060,[1] more than atoms in our solar system. [2] 
Corresponding thermodynamic and kinetic stability, as well 
as most other observable properties can be calculated, often to 
a fair degree of accuracy, using well established approxima-
tions and frameworks of quantum and statistical mechanics.[3,4] 
Unfortunately, however, the resulting numerical complexity is so 
dramatic that a first principles based exploration of representative 
swaths of CCS remains prohibitive for all but its smallest subsets. 
This computational burden can be reduced through the use of ma-
chine learning (ML) which, after regressing on a sufficiently large 
training data set, affords models with controlled test errors and 
milli-second prediction speed. 

While ML has had a long tradition in the chem- and bio-
informatics communities for a long time, its application to 
potential energy surface fitting for the purpose of vibrational 
analysis, reaction dynamics, or molecular dynamics already 
started in the nineties using neural networks (NN),[5–9] and ker-
nel methods. [10–13] By contrast, inferring solutions of the elec-
tronic Schrödinger equation throughout compound space was 
only made possible using Kernel Ridge Regression (KRR) and 
neural networks (NN) in 2012[14] and 2013,[15] respectively. 
Corresponding demonstrations for crystals followed shortly 
after[16–19] and ever since, a substantial number of papers on 
this topic has been published in this rapidly growing field. For 
more details, we refer interested readers to the recent machine 
learning issues in the Int. J. Quantum Chem.[20] and J. Chem. 
Phys.,[21] as well as the overviews given in refs. [22–27]. Due 
to the rigorous link to the underlying physical laws of quan-
tum and statistical mechanics, we have dubbed this approach 
‘Quantum Machine Learning’ (QML), implying that we aim to 
model quantum properties using classical ML algorithms. This 
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 3. Operator Approach
In 2015, we demonstrated that using the same representation 

and kernel, KRR-based QML models can account for any QM 
property.[42] By analogy with basic quantum mechanics (knowl-
edge about a single wave-function enables evaluation of expec-
tation values for any property’s operator) this finding suggests 
that the kernel assumes the role of the wavefunction, while KRR 
regression coefficients carry the units of the property in question. 
These results represent a meaningful baseline with all QML mod-
els being functional for all properties (all learning curves indi-
cated constant and negative slopes b). We noticed, however, that 
slope and off-set were more favorable for some properties than 
for others. In 2017, similar observations were also made for other 
representations and regressors, including KRR, NNs, and random 
forests.[35]

It is known that learning curves improve upon explicit encod-
ing of invariant relationships between input features and labels. 
For example, it is beneficial to use rotational invariant features in 
order to predict the energy of molecules accurately.[43] Motivated 
by the apparent discrepancy of QML models for atomization 
energies of small organic molecules reaching predictive power 
after training on only thousands of examples, and the relative-
ly worse performance of the same models for predicting other 
properties,[35] we developed and introduced the Operator QML 
(OQML) framework.[44] Within kernel-based regression,[45–48] we 
decompose the total potential energy U* of a query molecule in 
its electronic ground-state, into a sum of atomic contributions E

I
 

for each atom I, 

2

indicates severe problems and can be due to at least one
of any of the following short-comings:

(i) Not all input variables are being accounted for (e.g.
due to overly coarse representations), resulting in
lack of uniqueness.

(ii) The model is underdetermined due to lack of model
complexity (too few parameters, too rigid func-
tional form).

(iii) Noisy or inconsistent data.

Meeting the uniqueness criterion is a necessary condi-
tion for meaningful models in chemistry (proof is given
in Ref. [31]). This is is not always obvious, however,
since it also depends on subtleties in the nature of the
target property which defines which degrees of freedom
are being sampled. For example, molecular graph based
representations, such as SMILES strings, can be appro-
priate for generating QML models of free energies of
solvation for those temperature and pressure combina-
tions for which all conformational degrees of freedom are
being averaged out while all covalent bonds are being
conserved. However, when it comes to properties which
are functions of instantaneous geometries (clamped nu-
clei), e.g. HOMO/LUMO eigenvalues or atomic forces,
SMILES are too coarse, and representations encoding all
degrees of freedom in a unique fashion are necessary.
Low QML model off-sets log(a) and steep slopes b

are highly desirable in order to maximize data efficiency
and thereby minimize training data needs in order to
maximize transferability through CCS. A considerable
amount of recent work has been devoted to this en-
deavour, demonstrating how to lower off-sets through
ever improving representations [32–36], the use of hi-
erarchies among more approximate base line quantum
chemistry models [37, 38], or optimal training data-
selection [39]. Steeper slopes have also been obtained
through use AMons (training on local building-blocks se-
lected on the fly) [40], as well as through the operator
QML approach discussed below.

III. OPERATOR APPROACH

In 2015, we demonstrated that using the same repre-
sentation and kernel, KRR based QML models can ac-
count for any QM property [41]. By analogy with ba-
sic quantum mechanics (knowledge about a single wave-
function enables evaluation of expectation values for any
property’s operator) this finding suggest that the kernel
assumes the role of the wavefunction, while KRR regres-
sion coefficients carry the units of the property in ques-
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forests [34].

It is known that learning curves improve upon explicit
encoding of invariant relationships between input fea-
tures and labels. For example, it is crucial to use ro-
tational invariant features in order to predict the energy
of molecules accurately [42]. Motivated by the apparent
discrepancy of QML models for atomization energies of
small organic molecules reaching predictive power after
training on only thousands of examples, and the rela-
tively worse performance of the same models for predict-
ing other properties,[34] we developed and introduced the
Operator QML (OQML) framework [43]. Within kernel-
based regression,[44–47] we decompose the total potential
energy U⇤ of a query molecule in its electronic ground-
state, into a sum of atomic contributions EI for each
atom I,

U⇤ =
X
I2C

EI (q
⇤
I ) =

X
I2i

X
J

αJk(qJ , q
⇤
I ) (1)

where q is an atomic environment in some chosen rep-
resentation basis, J is training atom J , and αJ is its
regression weight. As a side note, a comparative discus-
sion of energies of atoms in molecules based on QML,
basis-set overlap, and alchemical perturbation DFT has
just recently been published [48].

The OQML approach extends this KRR model while
still ensuring that regression coefficients are also obtained
in closed-form. Within this framework, the relationship
between a property, typically the energy, and any of
its derivatives up to any order (typical response proper-
ties) is explicitly enforces through the application of re-
sponse operators to the learning formalism. More specif-
ically and using matrix notation, the response property
ω, i.e. an observable which can be computed by applying
a differential operator O acting on the energy U⇤, can be
approximated by a finite kernel as

ω = O[U] ⇡ O[K]↵. (2)

Here, we assume that the regression coefficients do not
depend on the perturbation (in complete analogy to
force-field parameters, or the electron density for first
order perturbation theory within quantum mechanics).

Then, the set of regression coefficients, ↵ minimizes
the Lagrangian

(1)

where q is an atomic environment in some chosen representation 
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over some training set of known derivative values of
O[Uref ]. Ωγ is the domain over which the corresponding
operator should be minimized, e.g. all rotational degrees
of freedom if the operator acts on a SO(3) group. γ de-
notes the specific perturbation, so that the model can be
trained for multiple properties simultaneously, for exam-
ple energies, gradients, and dipole moments. Assuming
only one perturbation, the resulting expression for the re-
gression coefficients ↵ which solves the associated normal
equations reads,

↵ =

✓Z

Ω

O[K]TO[K]

◆−1 ✓Z

Ω

O[Uref ]TO[K]

◆
(4)

In comparison to the expression for regression coefficients
within conventional KRR, it is clear from these equa-
tions that kernel derivatives must play a crucial role in
the loss function and thereby constraining the resulting
regression solution towards a more meaningful manifold
of solutions from which the most probable is being ob-
tained. For further details and discussions, we refer the
reader to the original work [43, 49].
Maybe the most frequent application concerned deals

with derivatives with respect to atomic displacement, i.e.
forces. Much improved learning curves for forces are ob-
tained when compared to KRR based QML force models
which were trained directly on labels corresponding to
each force vector elements after rotating each atom into a
common reference frame with unique handiness, as done
for atoms displaced along normal modes for the first time
in 2015 [50]. Within the most recently revision of FCHL,
FCHL19 [49], we have provided a detailed analysis of the
OQML based force model which can be applied through-
out CCS. Using the correct operators to generate ap-
propriate loss-functions ensures that important physics
is automatically being enforced, such as rotational co-
variance of forces, and that the resulting force models
conserve energy. A comparative discussion of other state
of the art KRR force models, such as SOAP [12, 51] and
GDML [52, 53] has also been included in Ref. [49].
Learning curves on display in Fig.1 exemplify the im-

provements gained when exploiting the differential re-
lationships through OQML. Learning curves are shown
for QML models of the dipole norm of small organic
molecules with up to nine atoms of the elemental types
CNOF from the QM9 dataset, saturated with hydro-
gen atoms [54]. The corresponding response operator
to the dipole is the negative derivative with respect to
a change in an external electric field. Results for two
kernel based models are shown, both using the FCHL
representation[36, 43] for the molecules and a Gaussian
kernel function. When training the conventional KRR

FIG. 1: Improvement of learning curves of dipole moment pre-
dictions in QM9 data set [54] with (blue) and without (red)
response formalism. Both QML models use the FCHL⇤ rep-
resentation and a Gaussian kernel function, and differ only
by their loss function and the resulting choice of regressor,
i.e. KRR (red) and OQML (blue). Figure reproduced from
Ref. [43], licensed under a Creative Commons Attribution
(CC BY) license.

model, the dipole norm is the only scalar label and the
loss function merely regresses its deviation from refer-
ence. By contrast in the case of OQML, the operator is
applied to the loss function of the energy property before
the regression (requiring the extension of the represen-
tation to also include a simplified electric field model,
denoted as FCHL⇤). This results in a loss function with
very different terms which trivially reproduces the orien-
tational dependence of the applied field and which yields
QML models with much improved off-set and slope of
learning curve: The OQML-based machine learns the
dipole norm to the same accuracy as KRR with 20 times
less data.
Similarly, in Ref. [43] we have also demonstrated how

OQML can be applied to the second order derivatives
defining Hessians which, together with dipole-moments,
has enabled the first QML based direct prediction of an
infrared spectrum from vibrational analysis.

IV. CONCLUSIONS

We have briefly motivated the use of QML models,
and highlighted the role of learning curves. There-
after, the OQML approach was described, and illustrated
for the case of dipole moment predictions. We stress
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𝒪𝒪 Symb a

𝒪𝒪 𝐔𝐔 Symb b. Ωγ 
is the domain over which the corresponding operator should be 
minimized, e.g. all rotational degrees of freedom if the operator 

usage of terms is in complete analogy to Quantum Monte Carlo 
(using classical Monte Carlo to sample electron configuration 
space), or Quantum Molecular Dynamics (integrating Newton’s 
equations of motion with quantum chemically computed forc-
es). Note, however, that this is not to be confused with ML algo-
rithms implemented on quantum computers. 

2. Learning Curves
For any QML model to be functional, it must learn, i.e. 

its predictive power must improve with increasing training set 
size N. Vapnik and others showed decades ago that ML models 
must, if set-up properly, exhibit this behaviour and converge 
down to arbitrary accuracy in the limit of infinite training set 
size.[28] In practice, however, arbitrary accuracy is neither re-
quired, nor do we operate in large data set limits. Therefore the 
relevant question for any distribution of data points consists 
of asking how much more predictive power is to be gained 
for each additional training instance. This dependence is mani-
fested in learning curves which report prediction (or test) error 
E as a function of training set size, as discussed for KRR,[29] 
as well as NNs.[30] 

In accordance with standard ML protocol,[31] we stress the 
importance of (i) prediction errors being obtained exclusively on 
hold-out data, i.e. for input and output samples which have never 
been seen during training, and (ii) hyper-parameters, noise-levels, 
and overfitting being accounted for through cross-validation prior 
to prediction error evaluation. Leading prediction error terms are 
known to be inversely proportional to training set size, E ∝ a/Nb, 
implying convenient linear behavior on log-log scales.[29] Off-set 
log(a) and slope b enable the assessment and comparison of dif-
ferent QML models, and imply that prediction errors of newly 
developed QML models have to be reported for at least three train-
ing set sizes in order to be (a) meaningful, and (b) demonstrate 
linearity. Absence of linearity on log-log curves typically indi-
cates severe problems and can be due to at least one of any of the 
following short-comings: 

(i) Not all input variables are being accounted for (e.g. due to 
overly coarse representations), resulting in lack of uniqueness. 
(ii) The model is underdetermined due to lack of model com-
plexity (too few parameters, too rigid functional form). 
(iii) Noisy or inconsistent data. 
Meeting the uniqueness criterion is a necessary condition 

for meaningful models in chemistry (proof is given in ref. [32]). 
This is is not always obvious, however, since it also depends 
on subtleties in the nature of the target property which defines 
which degrees of freedom are being sampled. For example, mo-
lecular graph based representations, such as SMILES strings, 
can be appropriate for generating QML models of free ener-
gies of solvation for those temperature and pressure combina-
tions for which all conformational degrees of freedom are be-
ing averaged out while all covalent bonds are being conserved. 
However, when it comes to properties which are functions 
of instantaneous geometries (clamped nuclei), e.g. HOMO/
LUMO eigenvalues or atomic forces, SMILES are too coarse, 
and representations encoding all degrees of freedom in a unique 
fashion are necessary. 

Low QML model off-sets log(a) and steep slopes b are highly 
desirable in order to maximize data efficiency and thereby mini-
mize training data needs in order to maximize transferability 
through CCS. A considerable amount of recent work has been 
devoted to this endeavour, demonstrating how to lower off-sets 
through ever-improving representations,[33–37] the use of hier-
archies among more approximate base line quantum chemistry 
models,[38,39] or optimal training data-selection.[40] Steeper slopes 
have also been obtained through use of AMons (training on lo-
cal building-blocks selected on the fly),[41] as well as through the 
operator QML approach discussed below.
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property which is a derivative of the energy (or any other reference 
property), as long as the representation of the molecule can be per-
turbed accordingly. If and how this framework can also be used for 
operators other than differential operators remains to be studied. 
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acts on a SO(3) group. γ denotes the specific perturbation, so that 
the model can be trained for multiple properties simultaneously, 
for example energies, gradients, and dipole moments. Assuming 
only one perturbation, the resulting expression for the regression 
coefficients α which solves the associated normal equations reads, 
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over some training set of known derivative values of
O[Uref ]. Ωγ is the domain over which the corresponding
operator should be minimized, e.g. all rotational degrees
of freedom if the operator acts on a SO(3) group. γ de-
notes the specific perturbation, so that the model can be
trained for multiple properties simultaneously, for exam-
ple energies, gradients, and dipole moments. Assuming
only one perturbation, the resulting expression for the re-
gression coefficients ↵ which solves the associated normal
equations reads,
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In comparison to the expression for regression coefficients
within conventional KRR, it is clear from these equa-
tions that kernel derivatives must play a crucial role in
the loss function and thereby constraining the resulting
regression solution towards a more meaningful manifold
of solutions from which the most probable is being ob-
tained. For further details and discussions, we refer the
reader to the original work [43, 49].
Maybe the most frequent application concerned deals

with derivatives with respect to atomic displacement, i.e.
forces. Much improved learning curves for forces are ob-
tained when compared to KRR based QML force models
which were trained directly on labels corresponding to
each force vector elements after rotating each atom into a
common reference frame with unique handiness, as done
for atoms displaced along normal modes for the first time
in 2015 [50]. Within the most recently revision of FCHL,
FCHL19 [49], we have provided a detailed analysis of the
OQML based force model which can be applied through-
out CCS. Using the correct operators to generate ap-
propriate loss-functions ensures that important physics
is automatically being enforced, such as rotational co-
variance of forces, and that the resulting force models
conserve energy. A comparative discussion of other state
of the art KRR force models, such as SOAP [12, 51] and
GDML [52, 53] has also been included in Ref. [49].
Learning curves on display in Fig.1 exemplify the im-

provements gained when exploiting the differential re-
lationships through OQML. Learning curves are shown
for QML models of the dipole norm of small organic
molecules with up to nine atoms of the elemental types
CNOF from the QM9 dataset, saturated with hydro-
gen atoms [54]. The corresponding response operator
to the dipole is the negative derivative with respect to
a change in an external electric field. Results for two
kernel based models are shown, both using the FCHL
representation[36, 43] for the molecules and a Gaussian
kernel function. When training the conventional KRR

FIG. 1: Improvement of learning curves of dipole moment pre-
dictions in QM9 data set [54] with (blue) and without (red)
response formalism. Both QML models use the FCHL⇤ rep-
resentation and a Gaussian kernel function, and differ only
by their loss function and the resulting choice of regressor,
i.e. KRR (red) and OQML (blue). Figure reproduced from
Ref. [43], licensed under a Creative Commons Attribution
(CC BY) license.

model, the dipole norm is the only scalar label and the
loss function merely regresses its deviation from refer-
ence. By contrast in the case of OQML, the operator is
applied to the loss function of the energy property before
the regression (requiring the extension of the represen-
tation to also include a simplified electric field model,
denoted as FCHL⇤). This results in a loss function with
very different terms which trivially reproduces the orien-
tational dependence of the applied field and which yields
QML models with much improved off-set and slope of
learning curve: The OQML-based machine learns the
dipole norm to the same accuracy as KRR with 20 times
less data.
Similarly, in Ref. [43] we have also demonstrated how

OQML can be applied to the second order derivatives
defining Hessians which, together with dipole-moments,
has enabled the first QML based direct prediction of an
infrared spectrum from vibrational analysis.

IV. CONCLUSIONS

We have briefly motivated the use of QML models,
and highlighted the role of learning curves. There-
after, the OQML approach was described, and illustrated
for the case of dipole moment predictions. We stress
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Learning curves on display in Fig. 1 exemplify the improve-
ments gained when exploiting differential relationships through 
OQML. Learning curves are shown for QML models of the di-
pole norm of small organic molecules with up to nine atoms of 
the elemental types CNOF from the QM9 dataset, saturated with 
hydrogen atoms.[55] The corresponding response operator to the 
dipole is the negative derivative with respect to a change in an 
external electric field. Results for two kernel-based models are 
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cules and a Gaussian kernel function. When training the conven-
tional KRR model, the dipole norm is the only scalar label and 
the loss function merely regresses its deviation from reference. By 
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function with very different terms which trivially reproduces the 
orientational dependence of the applied field and which yields 
QML models with much improved off-set and slope of learning 
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Similarly, in ref. [44] we have also demonstrated how OQML 
can be applied to the second order derivatives defining Hessians 
which, together with dipole-moments, has enabled the first QML-
based direct prediction of an infrared spectrum from vibrational 
analysis.

4. Conclusions
We have briefly motivated the use of QML models, and 

highlighted the role of learning curves. Thereafter, the OQML 
approach was described, and illustrated for the case of dipole 
moment predictions. We stress that, in analogy to perturbation 
theory going beyond the Hellmann-Feynman theorem, OQML is 
sufficiently general to also go beyond first order derivatives. In 
fact, it is straight-forward to apply the OQML-approach to any 

Fig. 1. Improvement of learning curves of dipole moment predictions in 
QM9 data set[55] with (blue) and without (red) response formalism. Both 
QML models use the FCHL* representation and a Gaussian kernel func-
tion, and differ only by their loss function and the resulting choice of 
regressor, i.e. KRR (red) and OQML (blue). Figure reproduced from ref. 
[44], licensed under a Creative Commons Attribution (CC BY) license. 
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