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ABSTRACT
Understanding mechanistic aspects of reactivity lies at the heart of chemistry. Once the potential energy surface (PES) for a
system of interest is known, reactions can be studied by computational means. While the minimum energy path (MEP) between
two minima of the PES can give some insight into the topological changes required for a reaction to occur, it lacks dynamical
information and is an unrealistic depiction of the reactive process. For a more realistic view, molecular dynamics (MD) simula-
tions are required. However, this usually involves generating thousands of trajectories in order to sample a few reactive events
and is therefore much more computationally expensive than calculating the MEP. In this work, it is shown that a “minimum
dynamic path” (MDP) can be constructed, which, contrary to the MEP, provides insight into the reaction dynamics. It is shown
that the underlying concepts can be extended to directly sample reactive regions in phase space. The sampling method and the
MDP are demonstrated on the well-known 2-dimensional Müller-Brown PES and for a realistic 12-dimensional reactive PES for
sulfurochloridic acid, a proxy molecule used to study vibrationally induced photodissociation of sulfuric acid.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5082885

I. INTRODUCTION

Understanding the mechanistic details of a reaction is one
of the central goals of chemistry. In particular, one aim is
to identify “active” degrees of freedom, which correspond to
internal motions promoting the reaction to occur. Once such
modes are identified, they can be used to answer questions
such as: (i) which initial conditions lead to a reaction within a
given time to reaction tr or (ii) how likely is a reaction to occur
from a given set of initial conditions?

Knowledge of the active modes could even be exploited
to drive a reaction forward, which is the aim of (coherent)
control in chemistry.1,2 Given the advances in laser technol-
ogy, it is now possible to deposit energy selectively in specific
internal degrees of freedom and to follow redistribution of
this energy.3,4 Controlling chemical reactions in such a way
is already possible for specific systems at low temperatures
(T < 1 K).5 Unfortunately, identifying the degrees of freedom
relevant for a reaction is not an easy task.6,7

Chemical reactions are driven by the underlying, multidi-
mensional potential energy surface (PES). Once the (reactive)

PES for a system is known, its topography and the dynamics
on it can be studied by computational means. Starting from
two minima on the PES (e.g., reactant and product states),
it is a common practice to construct the so-called minimum
energy path (MEP) connecting them, for example, using the
nudged elastic band (NEB) method.8 A modified algorithm,
the climbing image nudged elastic band (CINEB)9 method also
allows to find the transition state (TS) connecting both min-
ima. Alternatively, a method like conjugate peak refinement10
could be used to locate the TS. However, the MEP is merely a
convenient mathematical construct to connect reactant and
product states and has little relevance for the dynamics on
the PES.11 While the MEP can provide insight into the over-
all reaction mechanism, it hides important features pertaining
to the reaction dynamics, such as the participating internal
or active degrees of freedom and how energy flows between
them.

In order to construct a realistic dynamical path, different
approaches can be followed. For example, it is possible to for-
mulate the task of finding a path connecting a reactant and
product state as a two-point boundary value problem.12 Such
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an approach has been formulated successfully in terms of a
minimization problem involving the Onsager-Machlup (OM)
action (which requires second derivatives)13 or a modified tar-
get function Θ, that serves as an approximation to the OM
action (involving first derivatives only14), for which the tra-
jectory is expanded in a Fourier series, known from Fourier
path integral simulations.15 The OM action can be thought of
as a measure for the violation of Newton’s equations of motion:
Every Newtonian trajectory has an OM action of exactly
zero. However, starting from arbitrary boundary values, paths
determined by minimizing the OM action were found to not
necessarily conserve energy, whereas the Θ trajectories do,
but are quite similar to a MEP for the Müller-Brown PES.14

Alternatively, molecular dynamics (MD) simulations based
on accurate energy functions can be used to gain insight into
dynamical processes governing a reaction.16–21 However, for a
realistic description of a chemical reaction, a statistically sig-
nificant number (104 or more) of such simulations is required.
This is usually not possible with the most accurate approach
which would be ab initio MD simulations at a sufficiently high
level of theory. Therefore, energy functions fitted to electronic
structure calculations at a relatively high level of theory (mul-
tireference CI for triatomic systems22 or Møller-Plesset per-
turbation theory for larger molecules23,24) have been used in
the past. Running such a large number of MD trajectories is,
however, computationally considerably more expensive than
calculating the MEP.

For this reason, computational methods were devised to
improve the sampling of such rare events. For example, in
transition path sampling (TPS), once the dynamical bottleneck
of a reaction—its transition state surface—is identified, reactive
trajectories can be generated efficiently using Monte Carlo
sampling.25,26 Another example is milestoning, which aims to
compute the time scale of complex processes with predeter-
mined “milestones” (slices of the transition path, which are
sampled with short trajectories) along a reaction coordinate.27
Other methods to sample rare events are, for example, the
minimum action method,28 or the string method,29 which is
based on transition path theory.30 Reaction rates can also
be estimated from methods such as transition interface sam-
pling,31 transition state theory, and extensions thereof,32–35
which estimate the reactive flux through a so-called dividing
surface.

In the present work, the concept of a “minimum dynamic
path” (MDP) is considered as an alternative approach and
related to the underlying structure of phase space. The MDP
corresponds to the lowest energy dynamical (following New-
ton’s equations of motion) reactive path in phase space. Con-
trary to the MEP, it provides insight into the reaction dynamics
and has, by definition, an OM action of zero. Once the transi-
tion state of a reaction is known, the MDP can be readily con-
structed with a computational effort comparable to running
a single trajectory (requiring only one additional evaluation of
the Hessian). The construction method can easily be extended
to generate reactive initial conditions for a microcanonical
ensemble of trajectories with arbitrary excess energy ∆E. It
is further shown that insights obtained from the MDP are also
relevant for reactive trajectories at higher energy.

First, these concepts are investigated for the well-known
2-dimensional Müller-Brown PES36 for which exhaustive sam-
pling is possible and serves as a validation of the results from
the MDP. It is found that particular initial conditions can
be prepared which lead to crossing the transition state with
certainty. In a next step, the reactive dynamics for a real-
istic, 12-dimensional reactive PES describing the dissocia-
tion dynamics of sulfurochloridic acid23 is investigated. This
molecule is a proxy to study vibrationally induced photodisso-
ciation of sulfuric acid.37,38

II. THE MINIMUM DYNAMIC PATH AND SAMPLING
REACTIVE INITIAL CONDITIONS

Since the transition state of a PES is defined as the con-
figuration xTS with the highest potential energy V(xTS) = ETS

FIG. 1. Schematic representation of the sampling procedure to generate reactive
initial conditions with arbitrary energy Etot > ETS. The topology of the potential
energy surface is indicated by contour lines and colours, with red tints signifying
high energy regions and blue tints low energy regions. (A) The position of the tran-
sition state is xTS, I and II label the basins of attraction of the respective minima
and the solid black line indicates the separating hypersurface that must be crossed
by every trajectory in order to react. (B) Starting from xTS + εe⊥, the direction of
steepest ascent (red arrows) is followed until the desired potential energy V(x0)
= Epot ≤ Etot is reached at x0. Note that the small displacement εe⊥ from xTS
is necessary, because at the TS, the direction of steepest ascent is undefined.
(C) A momentum vector p0 with random direction is drawn from a uniform distri-
bution and scaled such that Ekin + Epot = Etot. Two short trajectories (indicated
by dotted lines) are started from the initial conditions (x0, p0) (red) and (x0, −p0)
(blue) in order to confirm that both trajectories evolve towards different basins of
attraction. If not, a new combination (x0, p0) is generated. (D) Either of the trajec-
tories is followed up to time τ and its final state (xτ , pτ) is recorded. Due to time
reversal symmetry, a trajectory starting from (xτ , −pτ) will pass the separating
hypersurface after time τ and is therefore reactive.
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along the minimum energy path (MEP), every reactive trajec-
tory with constant energy must have a total energy Etot = Epot
+ Ekin ≥ ETS. Consequently the reactive trajectory with the
lowest possible total energy Etot = ETS must pass through the
TS exactly and have a kinetic energy Ekin = 0 at the TS. The
path this special trajectory follows through configurational
space will henceforth be referred to as the minimum dynamic
path (MDP). Note that the MDP and the MEP differ because
a dynamical system is not only guided by forces, i.e., the gra-
dient of the PES (which solely determines the MEP), but also
keeps a “memory” of past gradients in its current momenta.
In the over-damped limit, this memory is completely lost and
trajectories approach the MEP (see also Sec. S1).

Transition states are mathematically defined as first-
order saddle points of the potential energy surface V(x), i.e.,
saddle points at which the Hessian has only one negative
eigenvalue λn with corresponding eigenvector en. The MDP
can be readily approximated by starting two trajectories at
the TS with initial momenta p0 = ±εen (where ε is small) and
following their paths through phase space until the desired
reactant or product state of the reaction is reached. Since the
equations of motion are symmetric under time reversal, both
paths can be combined to give the MDP.

It is also possible to extend this procedure to generate
reactive initial conditions (x, p) in phase space with Etot ≥ ETS.

For this, the concept of a “separating hypersurface” is intro-
duced: Consider a PES with two minima labelled I and II and a
saddle point TS separating them. Starting at an arbitrary point
P in configuration space and following the direction of steep-
est descent, every path initiated at P will reach either I, II, or
rarely the TS. The sets of points that converge to I or II form
the basin of attraction for the respective minima, whereas the
set of points that converges to TS forms a hypersurface sep-
arating those basins of attraction [see Figs. 1 and 2(A)]. This
hypersurface must be crossed by every reactive trajectory
going from I to II at some point and is referred to as the sepa-
rating hypersurface. Note that points on this hypersurface do
not react equally likely to either I or II, i.e., this surface differs
from the isocommittor surface.6,7,39 It is also distinct from the
concept of a dividing surface used in TPS. The dividing sur-
face is the hypersurface with the lowest number of recross-
ings for which trajectories reach educt and product states
equally likely.26 The topology of the separating hypersurface
on the other hand does not contain any dynamic information
and depends solely on the underlying PES. It is important to
point out that while the sampling method presented here does
generate reactive initial conditions, they do not correspond
to a thermal ensemble. In the limit of infinite sampling, rates
from a microcanonical and a canonical treatment are identical
though, even for a few-particle system.40

FIG. 2. (A) Topology of the Müller-Brown PES.36 Contour lines are drawn every 10 energy units starting at E = −145. The minima marked with 1, 2, and 3 correspond
to energies of E1 ≈ −80.768, E2 ≈ −108.167, and E3 ≈ −146.700, respectively, whereas the TS is at ETS ≈ −40.665. The solid black and red lines depict the minimum
energy path (MEP) and the minimum dynamic path (MDP) of a particle with mass m = 1 between minima 2 and 3, respectively. The dotted black line indicates the separating
hypersurface between the basins of attraction of minima 1 and 2 and minimum 3. Panels (B)–(F): Depiction of the subspace of phase space with constant energy E = ETS
+ ∆E for trajectories of a particle with mass m = 1 that evolve from the reactant state (red ellipsis) to the product state (blue ellipsis) in time t ≤ 20. Black regions are
energetically inaccessible. The colours encode the average direction of reactive trajectories in momentum space for a given point in coordinate space according to the colour
legend shown in the top right corner of each panel. More saturated colours indicate a stronger preference for a particular direction in momentum space, whereas completely
white regions contain no reactive trajectories at all. For small ∆E, the overall shape of the reactive part of phase space closely resembles the MDP (see the solid red line
in panel A). For large ∆E, alternative “reaction channels” become accessible, but pathways resembling the MDP remain dominant. Both, exhaustive unbiased sampling
and the procedure described in Sec. II converge to the same reactive subspace [shown as coloured regions in panels (B)–(F)]. See Fig. S1 for a variant of this figure with
oversaturated colours that increase visibility of reaction channels.
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To sample a reactive initial condition (x, p) in phase space
with energy Etot ≥ ETS, these steps are followed:
1. A point x0 with potential energy Epot ≤ Etot is gener-

ated on the separating hypersurface as follows: Starting
at configuration x = xTS + εe⊥ [see Fig. 1(A)], where xTS is
the configuration of the TS, ε is a small number and e⊥
is a random direction perpendicular to en, the gradient is
followed along the direction of steepest ascent until the
desired energy Epot is reached at point x0 [see Fig. 1(B)].
The small initial displacement by εe⊥ is required because
at the transition state, the direction of steepest ascent is
undefined. Following the gradient ensures that the point
x0 lies on the separating hypersurface, which generally is
curved.

2. A momentum vector p0 with random direction is drawn
from an unbiased distribution and its magnitude scaled
such that Etot = Ekin + Epot. It should be noted that draw-
ing momenta from an unbiased distribution and scaling
their magnitude generates reactive initial conditions cor-
responding to a microcanonical ensemble. In order to
obtain thermal reactive initial conditions, the momenta
would have to be drawn from a flux-weighted distribu-
tion.41

3. A trajectory is started with initial conditions (x0, ±p0). A
short MD simulation with both initial conditions [Fig. 1(C)]
is necessary in order to verify that the two trajecto-
ries move towards the two different basins of attraction,
which is not guaranteed a priori.

4. If this requirement is met, a longer trajectory is run until
time τ (which is chosen arbitrarily) starting from either
(x0, p0) or (x0, −p0) and the final positions and momenta
(xτ , pτ ) are recorded [Fig. 1(D)]. Since the equations of
motion are time reversal symmetric, a trajectory start-
ing from the initial condition (xτ , −pτ ) is reactive and will
pass the separating hypersurface after the chosen time τ.
All reactive trajectories generated in this fashion form the
“reactive phase space,” i.e., a subset of productive initial
conditions which lead to the reaction (cross the separat-
ing hypersurface). Note that this sampling procedure is
conceptually similar to “shooting” in TPS,42 but here, tra-
jectories are always started on the separating hypersur-
face instead of a point in configurational space reached
after a random time.

III. THE MDP FOR THE MÜLLER-BROWN SURFACE
In order to verify that the procedure described in Sec. II

can be applied and used to extract information about the
underlying dynamics, the well-known 2-dimensional Müller-
Brown PES36 is considered

V(x, y) =
4∑
i=1

Aieai(x−x0,i)2+bi(x−x0,i)(y−y0,i)+ci(y−y0,i)2 (1)

with A = [−200, −100, −170, 15], a = [−1, −1, −6.5, 0.7], b = [0, 0, 11,
0.6], c = [−10, −10, −6.5, 0.7], x0 = [1, 0, −0.5, −1], and y0 = [0, 0.5,
1.5, 1]. The PES features three minima of increasing depth with
energies E1 ≈ −80.768, E2 ≈ −108.167, and E3 ≈ −146.700. The

transition state (TS) connecting the deepest minimum with the
shallower minima corresponds to an energy of approximately
ETS ≈ −40.665 [see Fig. 2(A)].

Since the phase space corresponding to the Müller-
Brown system is only 4-dimensional ((x, y, px, py)), it is possible
to determine all regions in phase space that lead to reaction
by exhaustive sampling. In order to test whether the method
described in Sec. II samples the same regions as such an unbi-
ased sampling, an unambiguous definition of a reactive trajec-
tory is required. For this purpose, the trajectory of a particle
with mass m = 1 and total energy Etot = ETS + ∆E is considered
to be reactive if it reaches minimum 2 (product state) within
time tmax = 20 starting from minimum 3 (reactant state). A tra-
jectory is terminated when it reaches the product state within
t ≤ tmax in which case it is “reactive” or after tmax in which case
it counts as “unreactive”, even if it could react at a later time.
Reactant and product states are defined to be the set of points
(x, y) enclosed by ellipses centered around the corresponding
minima given by the parametric equations

x(s) = x0 +
1

10
cos(s) cos(φ) −

1
20

sin(s) sin(φ),

y(s) = y0 +
1

20
sin(s) cos(φ) +

1
10

cos(s) sin(φ)
(2)

with x0 ≈ −0.56, y0 ≈ 1.44, and φ = π/4 defining the reac-
tant state and x0 ≈ 0.62, y0 ≈ 0.028 and φ = 0 defining the
product state [see blue and red ellipses in Figs. 2(B)–2(F)].
These definitions are largely arbitrary, but needed in order to
define unambiguous reactant and product states. The equiva-
lence between exhaustive unbiased sampling and the method
described in Sec. II can be tested with any arbitrary definition
of states and choice of tmax.

The reactive part of phase space is sampled exhaustively
by generating trajectories with unbiased random initial con-
ditions (x, y, px, py) such that the total energy corresponds
to Etot = Epot + Ekin = ET + ∆E. If a trajectory starting from
(x, y, px, py) reaches the product state in time t1 and a tra-
jectory starting from (x, y, −px, −py) reaches the reactant state
in time t2 such that t1 + t2 ≤ tmax, the initial condition (x, y,
px, py) belongs to the reactive part of the phase space [see
Figs. 2(B)–2(F)]. Note that with increasing excess energy ∆E,
more states on the separating hypersurface become energet-
ically accessible, which leads to a widening of the transition
region, which is also known from explicit reactive MD simula-
tions.43 Furthermore, while the MDP remains representative
for most of the reactive part of phase space, with increas-
ing excess energy additional “reaction channels” open up [see
Figs. 2(B)–2(F)] for which the time until the product state is
reached can differ significantly (see Fig. S2). It is interest-
ing to note that, depending on ∆E, the tubes emanating from
either A or B do not cover the entire boundary of the ellipses
but rather correspond to discrete regions in phase space (see
Fig. S1).

In summary, the method described in Sec. II is able to
efficiently sample the reactive regions in phase space and con-
verges to the same set of initial conditions as unbiased sam-
pling (see Fig. 2). This is also the reason why the results from
explicit sampling are not reported separately. Comparing the
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reactive part of phase space (even for large excess energy ∆E)
with the MDP also shows that the MDP is representative for
the reactive phase space explicitly sampled by the system; see,
e.g., Figs. 2(A) and 2 (C).

It should be noted that a decomposition of phase space
into reactive and non-reactive subspaces has been observed in
earlier work and is even possible in the absence of an imposed
maximum reaction time tmax due to the presence of trapped
orbits.44

IV. APPLICATION TO MOLECULAR SYSTEMS:
SULFUROCHLORIDIC ACID

In order to study the MDP for a concrete molecular sys-
tem, the dissociation of sulfurochloridic acid (HSO3Cl) into
HCl and SO3 is considered for which a fully, 12-dimensional
reactive PES,23 constructed with the MS-ARMD method,18 is
available. The transition state for the HSO3Cl → SO3 + HCl
dissociation reaction lies at ETS ≈ 31.5 kcal/mol above the
energy minimum. Both, MEP and MDP for the reaction were
constructed. Because phase space is now much higher dimen-
sional than for the Müller-Brown surface, it is not possible
to compare MEP and MDP by a simple projection onto the
PES. To still be able to highlight differences, the evolution

of the distance d of the sulfur atom to the plane defined by
the three oxygen atoms (pyramidalization), as well as the dis-
tance between sulfur and chlorine atom rS−Cl, is considered
along with molecular structures sampled at a fixed interval
(snapshots of the trajectories), see Fig. 3.

While both MEP and MDP display comparable overall
movement, the MEP lacks important dynamical information:
In the MDP, the SO3 moiety oscillates between a pyramidal
and a planar arrangement, which suggests that this “umbrella
motion” plays a key role in the reaction (see d and rS−Cl
in Fig. 3). While it would be possible to guess the impor-
tance of this mode from the MEP alone, the MDP reveals the
order and time scale when different modes become active
prior to the reaction and when they mix with other modes.
This is particularly relevant in the context of ultracold and
controlled chemistry: For example, conformer-specific reac-
tions have been investigated where, depending on the con-
former and the activating mode considered, the coupling
to the remaining degrees of freedom changes and there-
fore the reaction outcome depends on how and how much
energy is deposited in the system.45 As such, the MDP pro-
vides time-resolved information into the energetics and struc-
tural dynamics prior to the reaction when approaching the
transition state. For example, the MDP in Fig. 3(a) reveals

FIG. 3. Evolution of distance rS−Cl of sulfur and chlorine atom (a) and distance d of the sulfur atom to the plane defined by the three oxygen atoms (b) for the minimum
dynamic path (MDP, solid black line), averaged over 100 trajectories with excess energy ∆E = 5 kcal/mol above the saddle point (average, dashed blue line) and minimum
energy path (MEP, dashed red line). This excess is an illustrative value but is also close to the zero-point energy of the OH stretch vibration. For the MDP and the averaged
results, the point in time at which the trajectory crosses the separating hypersurface is set to zero and the time relative to the crossing point is indicated. For the MEP, the
notion of time is meaningless and relative progression from the start point (0.000) to the end point (1.000) is indicated instead. The MEP lacks important dynamical features
that promote the reaction, e.g., the oscillation of the SO3 moiety between a pyramidal (d > 0) and a planar (d = 0) structure. See also the snapshots depicting the overall
motion for both paths (c, top row: MDP; bottom row: MEP; sampled at the intervals given on the x-axis). Note that on average, reactive trajectories follow a motion comparable
to the MDP. However, the oscillation period of d (and rS−Cl) is shortened due to increased kinetic energy.
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that the S–Cl bond (solid black for MDP and dashed blue
for average over 100 reactive trajectories) breaks at a later
point in time during the reaction than the MEP would sug-
gest (dashed red). In this example, the MEP evidently only
provides time-averaged information, whereas the MDP pro-
vides insights on how relevant modes communicate; i.e., the
MDP is sensitive to the underlying couplings as the system
approaches the transition state. Consider, for example, the
pyramidalization d: Between the progression coordinate 0.0–
0.5, the value of d in the MDP oscillates around an average
value of 0.29 ± 0.25 Å, whereas reactive trajectories oscil-
late on average around a mean value of 0.33 ± 0.20 Å. In
the MEP on the other hand, d remains constant at ∼0.37 Å.
Similar observations can be made for the Müller-Brown PES,
where the MDP oscillates around the MEP [see Fig. 2(A)].
Such dynamics occurs on a time scale (sub-picosecond)
that should be amenable to state-of-the art, controlled
experiments.46

In order to verify that the umbrella motion—found to be
an important degree of freedom in the MDP—is also rele-
vant in reactive trajectories with excess energy, 100 initial
conditions that lead to dissociation within 175 fs were run
with an excess energy of ∆E = 5 kcal/mol; see Sec. II. MD
simulations using a custom code were run with the velocity

Verlet integrator47 and a time step of 0.1 fs for a total of 2000
time steps. All these trajectories follow a similar motion com-
pared to the MDP prior to the elimination reaction (see Fig. 3):
Averaging all reactive trajectories exhibits the same oscilla-
tory behaviour as observed for the MDP. For short time-scales
(∼0.2 ps) prior to the reaction, it appears that reactive trajec-
tories all exhibit a similar “concerted” motion, at least for this
particular case, and that this coupling can be visualized and
analyzed. Of course, the details of this observation depend on
the underlying PES.

For quantifying key aspects of the underlying motion, the
total energy of the MDP trajectory and the 100 reactive tra-
jectories is decomposed into normal mode48 contributions.
Table I reports the harmonic frequencies ω of all 12 normal
modes corresponding to internal degrees of freedom together
with their associated motion.

The normal mode decomposition analysis is performed
as follows: Given Cartesian coordinates x and corresponding
momenta p for a specific snapshot, first, x and p are trans-
formed to the Eckart frame,49 which removes translational
and rotational contributions. Next, the potential and kinetic
energies are separately projected onto normal modes. For the
potential energy, the normal mode coordinates q are calcu-
lated from x. Then, for every normal mode i a new coordinate

TABLE I. Normal modes of HSO3Cl in energetically ascending order. The first 6 normal modes correspond to translational and rotational motions and are omitted. The
corresponding atomic displacements for each normal mode are shown as motion trace (H: white, O: red, Cl: cyan, S: yellow) and normal mode frequencies for the optimized
structure on the MS-ARMD PES23 are reported.

No. Motion ω (cm−1) No. Motion ω (cm−1) No. Motion ω (cm−1)

7 258 11 510 15 1143

8 317 12 523 16 1176

9 325 13 555 17 1407

10 384 14 814 18 3773
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vector q̃i is generated, where all entries q̃ij,i are set to the equi-

librium values and q̃ii corresponds to the ith entry of q. Finally,
q̃i is transformed back to Cartesian coordinates x̃i to obtain
the contribution of the potential energy along a specific nor-
mal mode i. The potential energy Ei

pot of normal mode i is then
defined as

Ei
pot =

Epot(x̃i)∑
i Epot(x̃i)

Epot(x) (3)

which ensures that the true potential energy Epot(x) of con-
figuration x is divided exactly among the normal modes, such
that

∑
i Ei

pot = Epot(x).
For the kinetic energy, the velocities v derived from the

momenta p are transformed to a vector w in normal mode
space in the same way x is transformed to q. Note that due
to the way the transformation into normal modes is defined,
the entries wi of w correspond to the “momentum” of each
normal mode i divided by the square root of the associated
effective mass. The kinetic energy Ei

kin of normal mode i is
defined accordingly as

Ei
kin =

w2
i∑

i w2
i

Ekin(p), (4)

where Ekin(p) is the true kinetic energy according to the
momenta p, which ensures that it is divided exactly among the
normal modes.

The total energy of a normal mode is then simply the sum
of its kinetic and potential energy. It should be noted that the
method described above does not guarantee Etot =

∑
i Ei

kin+Ei
pot

because of rovibrational coupling, which leads to some vibra-
tional energy being unaccounted for in the transformation to
the Eckart frame. Nonetheless, the total energy is conserved
approximately and will fluctuate around a constant mean with
a typical amplitude of <0.1 kcal/mol, which is sufficient for
the present purpose. Also, it should be noted that the normal
mode decomposition assumes a harmonic PES and is thus only
strictly valid close to the equilibrium geometry. When the nor-
mal mode decomposition is performed in highly anharmonic
regions, results can get distorted and should therefore always
be considered with care. Still, the decomposition provides a
quantitative comparison of the relative importance of normal
modes between different trajectories. Note that other meth-
ods to decompose the energy into normal mode contributions
are possible.50,51

Figure 4 shows the normal mode energy decomposition
for different times prior to the reaction for the MDP and an
average for an ensemble of 100 reactive trajectories. While
the MDP and the ensemble statistics differ slightly, they both
follow qualitatively similar trends. Furthermore, the analysis
confirms that mode 13, which corresponds to an “umbrella
motion” of the SO3 moiety, and mode 18, which corresponds
to the OH stretch vibration, are excited prior to the reaction,
a trend which could already be deducted from a visual inspec-
tion of the MDP. Thus, the molecular picture that arises from
this analysis suggests that energy flows from other degrees of
freedom into these modes, which promote dissociation. This

FIG. 4. Normal mode decomposition analysis of the total (kinetic and potential)
energy for reactive trajectories for HSO3Cl. For clarity, only the four modes with
the highest fluctuations are shown: (top panel) modes 13 (black) and 18 (red), and
(bottom panel) modes 14 (blue) and 16 (orange). Modes 14 and 16 are the SOH
bend and the SO stretch modes, respectively. Trajectories reach the separating
hypersurface at t = 0 fs. Solid lines indicate the results for the minimum dynamic
path (MDP), whereas dashed lines are averaged over 100 trajectories with a total
energy corresponding to∆E = 5 kcal/mol above the transition state energy. Around
t = −175 fs, modes 13 and 14 carry more energy than other modes. Some of this
energy is transferred to mode 16 during the next 100 fs. Between −75 fs and
−50 fs before the reaction, modes 14 and 16 start to lose energy, whereas mode
18 becomes excited. Around t = −30 fs, modes 13 and 18 contain by far the
largest fraction of the total energy (33% and 30% for the MDP, 34% and 20% for
the averaged results). Note that while it is difficult to directly correlate time points
between MDP and the averaged results due to a difference in kinetic energy of
up to ∆E = 5 kcal/mol, both results show similar trends and the dynamics of the
energy flow between modes is comparable.

is consistent with a previous study which demonstrated that
vibrationally induced photodissociation can be promoted via
vibrational energy redistribution by exciting the -OH stretch-
ing motion.23

V. REACTIVE TRAJECTORIES VERSUS VIBRATIONAL
ENERGY RELAXATION

In order to test whether the insights about the reac-
tion dynamics gathered from analysis of the MDP are appli-
cable in a more general context, the differences between
non-reactive and dissociative trajectories of HSO3Cl after OH-
stretch overtone excitation were studied using the normal
mode decomposition scheme described earlier. The reactive
MD simulations (with the exception of using the velocity Verlet
integrator47), were carried out along the same lines as in the
previous study.23 The change of the integrator was neces-
sary to allow a meaningful normal mode energy decomposition
analysis.

Individual trajectories were started from a geometry opti-
mized structure of HSO3Cl. The system was heated to 300 K.
The equations of motion were propagated using the leapfrog
Verlet algorithm with a time step of ∆t = 0.1 fs during 50 ps
and equilibrated for 50 ps, followed by 50 ps of free dynamics
simulations.
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FIG. 5. Average energy analysis for modes 13 (black—reactive; blue— nonre-
active) and 18 (red—reactive; green— nonreactive) for 205 dissociative and 364
non-reactive HSO3Cl trajectories after OH-stretch excitation.

Because the previous study indicated that the reaction
time is on the nanosecond time scale when five quanta of
OH stretch are excited, the reactive MD simulations were run
with the corresponding excitation energy of 50.5 kcal/mol.23
A total of 764 simulations were run with a time step of
∆t = 0.1 fs for a maximum simulation time of 2.5 ns. Of those, a
total of 205 directly dissociating trajectories (HCl elimination
without prior H-transfer23), and 364 non-reactive trajectories
(no HCl elimination and no H-transfer within 2.5 ns of simula-
tion time), were analysed. For both of these sets of trajectories,
the total energy was decomposed following the normal mode
procedures outlined above.

Figure 5 shows the average normal mode energy for
modes 13 and 18 for reactive and non-reactive trajectories
including fluctuations. The energy content and flow within
and between these modes does not differ for the two classes of
trajectories when ensemble averages and fluctuations around
them are considered. Hence, contrary to the dynamics on the
Müller-Brown PES the initial conditions do not decompose
phase space into two types of trajectories that could be distin-
guished after initial preparation (here vibrational excitation),
at least when energy content in the participating modes is
used to differentiate between them. This is consistent with
the intuitive notion that the fate of a trajectory— whether it
leads to reaction or not—is decided in the phase immediately
before bond breaking occurs; see also Fig. 4. The reason for
this is most likely the high dimensionality of phase space which
leads to mixed, chaotic dynamics (the Lyapnuov time52 for this
system was determined to lie between 2 and 5 ps).

VI. CONCLUSION
The concept of an MDP was introduced, which is related

to the MEP but includes dynamical effects due to inertia. It was

shown that the MDP resembles the dynamics of an ensem-
ble of reactive trajectories, thus providing valuable insight
into the reaction dynamics of a system of interest with a sin-
gle trajectory. Furthermore, a method was described which
allows direct sampling of reactive phase space, making the
generation of reactive initial conditions for MD simulations
more efficient. The techniques were demonstrated for the 2-
dimensional Müller-Brown model system and a more realistic
12-dimensional reactive PES for sulfurochloridic acid. Conclu-
sions drawn from the MDP about which modes promote disso-
ciation in HSO3Cl also hold for OH-stretch overtone induced
photodissociation, which was confirmed by energy decom-
position analysis for reactive and non-reactive trajectories of
HSO3Cl.

The techniques discussed here can also be applied to
ab initio molecular dynamics simulations in the gas phase.
Because for an initial assessment of a particular reactive
trajectory between a given reactant and product state only
one MDP simulation is required, it will be possible to use
high-level electronic structure theory methods (MP2 or even
CCSD(T) depending on system size) to obtain information
about the participating degrees of freedom. Similarly, applica-
tions to condensed phase systems, e.g., to investigate compet-
itive ligand rebinding53 or bimolecular reactions in solution54

should be possible to determine relevant degrees of free-
dom accompanying the reaction. Once such active degrees
of freedom are known, they could be used to drive a chem-
ical system by controlled excitation of the corresponding
motions.

SUPPLEMENTARY MATERIAL

See supplementary material for additional figures. This
material is available free of charge via the Internet at
http://pubs.acs.org/.
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