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ABSTRACT
High-temperature, reactive gas flow is inherently nonequilibrium in terms of energy and state population distributions. Modeling such con-
ditions is challenging even for the smallest molecular systems due to the extremely large number of accessible states and transitions between
them. Here, neural networks (NNs) trained on explicitly simulated data are constructed and shown to provide quantitatively realistic descrip-
tions which can be used in mesoscale simulation approaches such as Direct Simulation Monte Carlo to model gas flow at the hypersonic
regime. As an example, the state-to-state cross sections for N(4S) + NO(2Π)→O(3P) + N2(X1Σ+

g ) are computed from quasiclassical trajectory
(QCT) simulations. By training NNs on a sparsely sampled noisy set of state-to-state cross sections, it is demonstrated that independently
generated reference data are predicted with high accuracy. State-specific and total reaction rates as a function of temperature from the NN
are in quantitative agreement with explicit QCT simulations and confirm earlier simulations, and the final state distributions of the vibra-
tional and rotational energies agree as well. Thus, NNs trained on physical reference data can provide a viable alternative to computationally
demanding explicit evaluation of the microscopic information at run time. This will considerably advance the ability to realistically model
nonequilibrium ensembles for network-based simulations.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5097385

There are numerous situations in physical chemistry which
involve a potentially large number of states and transitions between
them. Examples include complete line lists for polyatomic molecules
in hot environments [e.g., high-resolution transmission molecular
absorption (HITRAN)1 database] or state-to-state (STS) cross sec-
tions in reactive and nonreactive molecular collisions. Exhaustively
probing and enumerating all relevant combinations or creating
high-dimensional analytical representations is usually impossible.
On the other hand, it has been shown for spectroscopic applica-
tions that omission of certain crucial states makes prediction or
modeling of the spectroscopic band difficult or even impossible.2
Another example is hypersonic flow around a space vehicle reen-
tering the atmosphere. Temperatures can easily reach 20 000 K, for

which reliable experimental data are sparse and the energy distri-
butions are out of equilibrium. In such an environment, the space
vehicle is exposed to a collisionally dense environment which gener-
ates an immensely diverse population of rovibrational states between
which collisions take place.3 An accurate, fast, and reliable method is
required to include this information in more coarse grained models
to study the associated dynamics. The question thus is how to best
probe and represent a function with >107 values for discrete input
data, without explicitly computing each entry which may require
thousands to millions of samples to statistically converge each of the
entries.

The present work attempts to develop such a model for state-
to-state cross sections σv ,j→v ′ j′ (Et) between initial (v, j) and final
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(v′, j′) rovibrational states at given relative translational energy Et .
For this, the N(4S) + NO(2Π)(v, j)→ O(3P) + N2(X1Σ+

g )(v′, j′) reac-
tion is considered because (a) it is relevant in the hypersonic flight
regime characterized by temperatures T ≤ 20 000 K at which a multi-
tude of the available rovibrational states are occupied and accessible
and (b) an accurate, fully dimensional, and reactive potential energy
surface (PES) is available.4 Specifically, N2-formation rates from
simulations on the 3A′ and 3A′′ PESs are in favorable agreement with
experiments for temperatures T ≥ 2000 K and N2-formation below
5000 K is dominated by processes on the 3A′′ surface.4 State-to-state
cross sections are typically required when modeling the reactive flow
around a re-entry object with macroscopic dimensions using tech-
niques such as direct simulation Monte Carlo (DSMC)5 as the flows
are usually not in thermal equilibrium. However, it should be noted
that the present ansatz will be applicable to other relevant simula-
tions and hypersonic flow is merely chosen because the occupation
number of the available states is high and the number of states is
large as well.

Scattering cross sections can be determined from quasiclas-
sical trajectory (QCT) simulations.6–8 Here, Hamilton’s equations
of motion are solved using a fourth order Runge-Kutta numerical
integration in reactant Jacobi coordinates. The analytical represen-
tation of the 3A′ potential energy surface (PES) is a reproducing
kernel Hilbert space (RKHS)9,10 based on MRCI+Q/aug-cc-pVTZ
calculations. The two possible reactive channels are (I) nitrogen
exchange (NO + N′ → N′O + N) and (II) N2 molecule formation
(NO + N → N2 + O). Besides these two channels, the elastic or
inelastic collisions can also lead to kinetically or internally excited
reactants.

For the 3A′ surface of N2O, a maximum of 47 and 57 vibra-
tional states are available for NO and N2, respectively, while the
maximum rotational quantum numbers for NO and N2 are 241 and

273. Altogether, there are 6329 rovibrational states for the N + NO
channel and 8733 states for the O + N2 channel. For one defined ini-
tial state (v, j), there are >104 possible final states (v′, j′). To converge
each of the σv ,j→v ′ j′ (Et) for given Et with a statistical significance of
∼10%, an estimated ≥1013 trajectories would be required (107 trajec-
tories to converge one cross section, see below; ∼104 initial states;
∼104 final states per initial state). Hence, using QCT simulations
to directly sample all possible rovibrational initial states is com-
putationally impractical, even for this simple 3-body system which
also ignores the complexity of electronic states.11 Thus, alternative
approaches need to be explored.

To better define the QCT sampling problem, state-to-state cross
sections for σv=6,j=30→v ′ ,j′ (Et = 2.5 eV) were considered. A total of
2 × 107 trajectories were run initially, which is considered as the
reference. Out of the 3784 energetically accessible states, 3420 final
states are found as products, i.e., 90.4%. Compared to this, running
fewer trajectories (8 × 104, 1.6 × 105, 1.6 × 106, and 9.6 × 106) finds
37%, 54%, 83%, and 90% of the final states, respectively, see Fig. S1,
which converges at approximately the cube root of the number of
trajectories. In addition, running too few trajectories leads to highly
oscillatory cross sections due to the limited statistics of the final
state.

Some computational gain can be obtained from exploring the
fact that cross sections often vary smoothly with v and j. This allows
us to locally average computed cross sections according to

σav
v,j→v′ ,j′ = 1

2nv + 1
1

2nj + 1

v′+nv

∑
v∗=v′−nv

j′+nj

∑
j∗=j′−nj

σv,j→v∗,j∗, (1)

where nv and nj are the bin widths for vibration and rotation over
which the state to state cross sections are averaged. Figures 1(a)
and 1(b) report the raw data from 1.6 × 106 trajectories and locally

FIG. 1. State-to-state cross sections
(σv , j→v ′ , j ′ ) for N + NO(v = 6, j = 30)
→O + N2(v′, j′) at Et = 2.5 eV computed
from different Ntot. Cross sections shown
in the top right (b) and bottom left (c) pan-
els are averaged using Eq. (1). In panel
(c), cross sections are obtained from tra-
jectories sampled in b space via impor-
tance sampling which are close to those
in panel (d) from 2 × 107 trajectories.
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averaged cross sections from the same data set with nv = 2 and nj = 3,
respectively. Comparison with the unaveraged result from
Ntot = 2 × 107 trajectories in Fig. 1(d) illustrates the benefit of
local averaging; see also Fig. S4, for example (v = 10, j = 60 and
Et = 1.8 eV). Convergence of the state-to-state cross sections with
respect to Ntot and the effect of local averaging are shown in Figs. S2
and S3. Averaging over neighboring states reduces the noise and
also decreases the number of trajectories required approximately
by the square root of the number of states averaged over, i.e.,√(2nv + 1)(2nj + 1) = √

35. Besides that, local averaging also pro-
vides values for σv ,j→v ′ ,j′ > 0 for unsampled transitions and reduces
local oscillations while correctly describing the broad features (see
Fig. 1 and Fig. S4). However, sharp resonances, for which the width
is comparable to the size of the averaging window, are washed out in
this approach, and depending on the application, this point would
need to be considered separately.

Concerning the sampling strategy for choosing initial condi-
tions, it is worthwhile to note that large impact parameters b mostly
lead to nonreactive collisions. A straightforward approach to sam-
pling b is to draw it from b2/b2

max with 0 ≤ b ≤ bmax (see Fig. S5) and
the number of trajectories sampled in the interval b + db increases
with increasing b, which leads to a larger fraction of nonreactive tra-
jectories when b increases. For such situations, importance sampling
(IS)12 can provide a more advantageous protocol as those values of
b for which reactive trajectories are more likely to occur are chosen
with higher probability, which causes the cross section of all of the
exit channels to converge at the same rate.

In order to determine the necessary weighting function w(b)
for a particular trajectory, the following strategy is used. For given
(v, j, Et), first a few thousand trajectories are run by uniformly

sampling 0 ≤ b ≤ bmax (see Fig. S5). The number of reactive trajecto-
ries as a function of b is fitted to

n(b) = a0 exp(−a1b) + a2 exp(− ln(2)b2

a2
3

). (2)

From this, the distribution of the cross sections, g(b) = 2πbn(b), is
determined. Next, 1.6 × 105 initial conditions are sampled from g(b)
(see Fig. S5), the trajectories are explicitly run, and the weight of
each trajectory is calculated according to w(b) = f (b)/g(b), where
f (b) = 2b/b2

max.
The performance of IS is illustrated in Fig. 1(c) and Fig. S4(C)

which report the locally averaged cross sections from 1.6 × 105 sam-
ples for σv=6,j=30→v ′ ,j′ (Et = 2.5 eV) and σv=10,j=60→v ′ ,j′ (Et = 1.8 eV),
respectively. For these two examples, 42 193 and 38 665 reactive tra-
jectories are found using IS from Ntot = 1.6 × 105 compared with
44 737 and 44 979 reactive trajectories for Ntot = 1.6 × 106 from con-
ventional sampling, respectively. This leads to an efficiency increase
by one order of magnitude when IS is used. The effect of IS on the
convergence of state-to-state cross section can also be seen in Figs. S2
and S3.

Overall, IS and local averaging lead to an estimated reduction
of the required number of QCT trajectories by a factor of ∼60 which
will be explored next to cover the entire state space for state-to-state
cross sections for different selected initial states. Those will then be
used for training a neural network (NN) to construct a model to
compute state-to-state cross sections.

To compute the necessary reference data to train the NN, 10
initial v-states (v = 0, 3, 6, 9, 12, 15, 19, 23, 28, and 34) and 12 initial
j−states (j = 0, 25, 50, 75 100, 125, 145, 160, 175, 190, 200, and 210)
were sampled. The relative translational energies (Et) for the N + NO

FIG. 2. 3D surface (upper panel) and contour color map (lower panel) of QCT calculated and NN-STS predicted state-to-state cross sections for N + NO(v = 6, j = 30)→ O
+ N2(v′, j′) at Et = 2.5 eV.
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collision were 0.05 0.1, 0.25, 0.5, 0.8, 1.2, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, and 5.5 eV. Thus, for a total of 1232 initial conditions in the
(v, j, Et) space, for each of them, 1.6 × 105 QCT trajectories were run
with IS of b. The cross sections from these ∼108 trajectories consti-
tute the training set for learning the NN to predict σv ,j→v ′ j′ (Et) for
any initial (v, j, Et).

The network architecture used here is inspired by ResNet.13

The NN transforms its input through four identical residual
blocks,13 after which a linear transformation followed by a scaled
sigmoid function is used to obtain the final output; see Fig. S6.
Before they can be used as input to the residual blocks, the raw
input features f ∈ RNin are first transformed by a linear transfor-
mation x = Wf + b to a vector x ∈ RF with the same dimensionality
F as the hidden features in the residual blocks in order to simplify
the formulation of skip connections.13 Here, W ∈ RNin×F (weight
matrix) and b ∈ RF (bias vector) are parameters to be optimized.
The residual blocks consist of two dense layers with the same num-
ber of nodes F (see Fig. S6) and transform their input xl according
to

xl+2 = xl + ReLU[Wl+1snasinh(Wlxl + bl) + bl+1], (3)

where the superscript l denotes parameters or feature representa-
tions of layer l and W ∈ RF×F and b ∈ RF are parameters. Two differ-
ent activation functions, one for rectified linear units (ReLU)14 and
a self-normalizing15 inverse hyperbolic sine (snasinh),16 are used in
the residual blocks. Use of residual blocks improves the flow of gra-
dients between layers13,17 and helps alleviate the “vanishing gradients

problem.”18 After the last residual block, the final output is obtained
from

y = C × sig(Woxl + bo), (4)

where C is a scaling constant, sig(x) = (1 + e−x)−1 denotes the
sigmoid function, and the superscripts o and l denote parame-
ters Wo ∈ RF×1 and bo ∈ R corresponding to the output layer
and the hidden features xl obtained after the last residual block,
respectively.

The initial states of the reactants are described by N in = 12 input
features f, namely: (i) internal energy, (ii) vibrational energy, (iii)
vibrational quantum number, (iv) rotational energy, (v) rotational
quantum number, (vi) angular momentum of the diatom, (vii) rela-
tive translational energy, (viii) relative velocity, [(ix) and (x)] turning
periods of the diatom, (xi) rotational barrier height, and (xii) vibra-
tional time period of the diatom. For state-to-state cross sections,
the same 12 features for the final states of the products are also
included as input (i.e., N in = 24). The loss functions (Lf ) were defined
as

Lf = 1
N

N
∑

1
[log(y′ + 1.0) − log(y′ + ∣y − y′∣ + 1.0)]2, (5)

where y′ and y are the reference (QCT) and predicted values
(NN), respectively. This loss function penalizes all relative errors
in the prediction of cross sections approximately equally irrespec-
tive of the absolute magnitude of the reference value. This is

FIG. 3. Rotationally averaged, vibrational distributions of the cross sections, σ(v), calculated from QCT (blue) and predicted from NN-STS (red) for the N + NO(v, j)
→ O + N2(v′) reaction.
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important because for small values of the cross section, a small
absolute error corresponds to a large relative error. All parame-
ters of the NN are initialized according to the Glorot initialization
scheme18 and optimized using Adam optimization19 with an expo-
nentially decaying learning rate. From all state-to-state cross sec-
tions (∼8 × 106), different numbers (Ntrain) of training samples were
randomly chosen for training and Ntrain/10 data were used for val-
idation. From the remaining data, 2 × 105 values constitute the
test data set. The convergence of the model with training set size
is reported in Fig. S7. Training the NN for state-to-state cross sec-
tions (referred to as NN-STS) was done with N in = 24, F = 24, and
C = 0.4.

Since trajectories were calculated for different initial reactant
states (v, j, Et), the total cross sections (σtot(v, j, Et)) for the N + NO
→ N2 + O reaction are also available. On these data, another NN
(with N in = 12, F = 8, and C = 85.0) was trained using 1122 training
data and 110 validation data to get a model for σtot(v, j, Et) (referred
to as NN-Tot). Both networks were trained using TensorFlow.20 The
models with the lowest validation losses [Eq. (5)] are selected and
used to predict different observables in the following and compared
with values from explicit QCT simulations.

FIG. 4. Initial state specific rates calculated and predicted from QCT and NN,
respectively, for the N + NO(v, j)→ O + N2 reaction at different temperatures. The
symbols represent the QCT results, while the solid lines are the NN-STS results.
The top, middle, and bottom panels show the results for v = 5, 10, and 20, while
the magenta, olive, green, blue, and red colors represent j = 20, 40, 60, 85, and
110, respectively.

The entire reference state-to-state data set (∼107) has an aver-
age cross section of 0.00246 a2

0. To test the quality of model NN-STS,
2 × 105 state-to-state cross sections were randomly chosen from
the test data. The root-mean-square error (RMSE) is 0.000 328 a2

0
for those data with a maximum deviation of 0.008 a2

0 (for σQCT
= 0.211 a2

0, σNN−STS = 0.219 a2
0), and the correlation coefficient is R2

= 0.993; see Fig. S8. A similar analysis was carried out for model
NN-Tot which has an average cross section of 16.18 a2

0 for all 1232
data points. The RMSE is found to be 0.1552 a2

0, and the correlation
between NN-Tot and QCT is R2 = 0.9997, see Fig. S9, indicative of
the high quality of the fit.

To quantify the accuracy of the NN, additional QCT calcula-
tions were performed for independent initial conditions at fixed Et .
Total QCT cross sections are then compared with the NN predic-
tions; see Figs. 2 and 3 and Table S1. Again, the NN results describe
the explicit QCT simulations which validate the use of such a model
to predict microscopic information for such a reaction.

According to the method described in Ref. 11 (see also the
supplementary material), initial state specific rates for the reaction
were also calculated at temperatures between 2000 and 20 000 K for
a few selected reactant states using QCT simulations and compared
with the rates obtained from the NN models in Fig. 4 and Fig. S10.
The NN models successfully capture the trends as well as the magni-
tudes of the rates from QCT. Although maximum relative errors of
∼17% are found for v = 5, j = 85, and T = 2000 K from model NN-
STS and ∼13% for v = 5, j = 25, and T = 2000 K from NN-Tot, in
most cases, the relative errors are <5%. Good agreement between the
QCT and NN rates can be seen in the correlation diagrams shown in
Fig. S11.

As another test, total thermal rates k(T) were calculated from
QCT simulations and compared with the results obtained from the
NN models; see Fig. 5 and the supplementary material. The NN
rates are calculated from integrating the NN cross sections over
the (v, j)-state and translational energy phase space using Monte

FIG. 5. Total rates calculated from QCT (blue) and predicted by the NN models
(NN-STS—red and NN-Tot—black) for the 3A′ state of the N + NO → O + N2
reaction between 1000 and 20 000 K. N2-formation below 5000 K is dominated by
the 3A′′ PES which is indicated by the rapid falloff of the present data. The present
rates agree quantitatively with Ref. 4.
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FIG. 6. Distributions of product vibrational and rotational states and rovibrational energies calculated from QCT (blue) and predicted by model NN-STS (red), respectively, for
the 3A′ state of N + NO→ O + N2 at different temperatures.

Carlo integration. For NN-Tot, the agreement with QCT is partic-
ularly striking, whereas it is still good for NN-STS except for tem-
peratures 1000 K and 20 000 K. Here, it should be mentioned that
only a range of 0.05–5.5 eV in translational energy is covered by
the QCT calculations to generate the state-to-state data. Sampling
a broader range of energies will most likely further improve rates
determined from the NN model in the low and high temperature
regions.

As a final validation of the robustness of NNs, the distribution
of the final vibrational and rotational states and the rovibrational
energies of N2 after N + NO collisions at different temperatures
are calculated from QCT and compared with those from NN-STS;
see Fig. 6. The NN correctly captures the shape of all distribu-
tions but lacks the oscillatory features, in particular, for the rota-
tional distribution. Thus, the NN provides a physically robust model
based on validated, microscopic data from which information about
nonequilibrium systems can be obtained, obviating the construction
of models based on simple, empirical expressions.21

In this work, an NN-based model for state-to-state cross sec-
tions has been constructed. For this purpose, a total of ∼8× 106 state-
to-state cross sections have been explicitly determined from QCT
simulations for selectively chosen 1232 initial states. Local averaging
over (v′, j′) reduces the noise of the data set, and IS to sample impact
parameters for the trajectories further accelerates the convergence of
the cross sections. Typical training times for the NN-STS models are

a few days on a 64 bit 2.40 GHz Intel E5-2620 v3 central processing
unit (CPU) workstation using 8 processors, and the evaluation time
of the NN for 106 state-to-state cross sections is 24.4 s on the same
computer using only a single processor. This makes the technique
suitable for direct use in DSMC simulations where a large number
of collision cross sections are required to model hypersonic air flow.
The average error from the NN compared with the reference QCT
data is ∼5%. This compares with errors ranging from 25% to 60%
for vibrational relaxation rates and state-specific dissociation rates
from a maximum entropy model for O2 + O.22 Unfortunately, the
error for the state-to-state cross sections is not reported and cannot
be compared here.

In summary, the state-to-state cross sections for a reactive col-
lision relevant to the hypersonic flight regime has been success-
fully modeled using a neural network based on explicitly calculated
data from QCT simulations on an accurate, fully dimensional reac-
tive PES. Such an approach is general and demonstrates that for
situations in which large amounts of data constitute the relevant
state space, subsampling and subsequent machine learning can pro-
vide a viable, accurate, and computationally tractable alternative to
exhaustive computations.

See the supplementary material for the methodologies used
to compute QCT and NN rate coefficients, Figs. S1–S11 and
Table S1.
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