
Deep Learning in Clinical
Dermatology

Inaugural dissertation

to
be awarded the degree of

Dr. sc. med.

presented at the Faculty of Medicine of the University of Basel

by
Ludovic Hadrien Amruthalingam

from Plan-les-Ouates, Canton of Geneva

Basel, 2023

Original document stored on the publication server of the University of Basel
edoc.unibas.ch

edoc.unibas.ch


ii

Approved by the Faculty of Medicine on application of
Prof. Dr. Alexander A. Navarini, University of Basel – primary advisor
Prof. Dr. Marc Pouly, Lucerne University of Applied Sciences and Arts – secondary advisor
Prof. Dr. Philipp Tschandl, Medical University of Vienna – external expert
Prof. Dr. Thomas Koller, Lucerne University of Applied Sciences and Arts – advisor
Prof. Dr. Philippe C. Cattin, University of Basel – defense chair

Basel, the 28. Juni 2022

Prof. Dr. Primo Schär – Dean



Contents

Acknowledgements vii

Summary / Zusammenfassung ix

1 Introduction 1

2 Clinical Dermatology 5
2.1 Morphology of the Skin and its Efflorescences . . . . . . . . . . . . . . . 5
2.2 Differential Diagnosis of Skin Diseases . . . . . . . . . . . . . . . . . . . . 7
2.3 Severity Grading of Skin Diseases . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Treatment of Skin Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Imaging Modalities in Dermatology . . . . . . . . . . . . . . . . . . . . . 10

3 Deep Learning 13
3.1 Machine Learning Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Training in Machine Learning . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Data in Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Supervised and Unsupervised Learning . . . . . . . . . . . . . . . 15

3.2 Deep Learning Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Training Artificial Neural Networks . . . . . . . . . . . . . . . . . 19
3.2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 23
3.2.4 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Deep Learning in Clinical Dermatology 35
4.1 Deep Learning Applications in Dermatology . . . . . . . . . . . . . . . . 35

4.1.1 Lesion Differential Diagnosis . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Lesion Segmentation and Severity Grading . . . . . . . . . . . . . 36
4.1.3 Common Technical Approaches . . . . . . . . . . . . . . . . . . . 37

4.2 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Comparison with Dermatologists . . . . . . . . . . . . . . . . . . 39
4.3.2 Lack of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Bias in Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



iv CONTENTS

4.3.4 Deployment of Deep Learning Models . . . . . . . . . . . . . . . 41
4.3.5 Adoption of Deep Learning Models . . . . . . . . . . . . . . . . . 42

5 Anatomy Mapping of Clinical Images of Patients 45
5.1 Automated Anatomical Mapping of Skin Photographs . . . . . . . . . . 45
5.2 Micro-Anatomical Region Mapping of the Human Body . . . . . . . . . 59

5.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Differential Diagnosis of Skin Lesion Images 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 Severity Grading of Skin Diseases 71
7.1 Quantification of Efflorescences in Pustular Psoriasis using Deep Learning 71
7.2 Segmentation of Ichthyosis with Confetti Lesions . . . . . . . . . . . . . . 86

7.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Objective Hand Eczema Severity Assessment with Automated Lesion
Anatomical Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 Generation of Synthetic Dermatology Images 103
8.1 Generative Adversarial Networks for Dermatologic Imaging . . . . . . . 103

9 Teledermatology 117
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.2 The PASSION Project: Pediatrics in Africa . . . . . . . . . . . . . . . . . . 119
9.3 Medical Image Collection in Sub-Saharan Africa . . . . . . . . . . . . . . 120

10 Training and Evaluation Framework 123
10.1 Dataset Preparation and Preprocessing . . . . . . . . . . . . . . . . . . . . 123
10.2 Training and Performance Evaluation . . . . . . . . . . . . . . . . . . . . 124
10.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.4 Planned Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

11 Discussion and Conclusion 127

References 131

Publications 151



Acronyms

AI artificial intelligence.
ANN artificial neural network.

CNN convolutional neural network.

DL deep learning.
DLM deep learning model.

GAN generative adversarial network.
GDPR general data protection regulation.

ISIC international skin imaging collaboration.
IWC ichthyosis with confetti.

ML machine learning.

PASI psoriasis area and severity index.
PPP palmoplantar pustular psoriasis.

v



vi Acronyms



Acknowledgements

I would like to thank Alexander Navarini and Marc Pouly for their precious supervi-
sion and for providing a great work environment throughout this thesis. I also thank
Thomas Koller for his expert advising in machine vision, Philipp Tschandl for review-
ing the full thesis and Philippe Cattin for chairing the defense. I want to thank all my
colleagues from the Digital Dermatology group, Navarinilab, ABIZ group, DBE and
USB for their ideas, suggestions, reviews, and recommendations. I also thank our in-
terns and students who made our projects possible thanks to their hard work. Finally, I
want to thank my family for their advice and precious support.

vii



viii ACKNOWLEDGEMENTS



Summary / Zusammenfassung

Summary

The prevalence of skin diseases is high. A recent survey reported that half of the Eu-
ropean population was afflicted with skin conditions. However, the resulting demand
for dermatological care cannot be met satisfactorily because of a general shortage of
dermatologists that will realistically not be filled by the healthcare sector. Alternative
solutions should therefore be pursued to increase the capacities of the current health-
care workforce.

The recent progress of machine vision enabled by deep learning has allowed re-
searchers to automate parts of dermatologists’ workflow with an effective scale-up po-
tential. In this work, we present different approaches based on deep learning that either
include aspects of dermatologists’ workflow or whose predictions can easily be verified
by clinicians. We propose a method for the generation of anatomical maps from patient
photographs to assist dermatologists with lesion documentation and enable lesion de-
tection and segmentation systems to stratify their predictions anatomically. Based on
key features from lesion dermatological description, we develop an approach for the
differential diagnosis of skin diseases. To enable objective severity assessment, we
propose a method for the segmentation and quantification of palmoplantar pustular
psoriasis, ichthyosis with confetti and hand eczema. Combined with the anatomy ap-
proach, we generate the anatomical stratification of hand eczema lesions. To concretize
our research efforts, we present an African teledermatology initiative aiming to pro-
vide semi-automatic triage of the six most prevalent local skin diseases. Finally, we
introduce our framework to enable researchers with medical background to train and
evaluate deep learning models.

Zusammenfassung

Die Prävalenz von Hautkrankheiten ist hoch. Einer kürzlich durchgeführten Umfra-
ge zufolge leidet die Hälfte der europäischen Bevölkerung an Hautkrankheiten. Die
daraus resultierende Nachfrage nach dermatologischer Versorgung kann jedoch nicht
erfüllt werden, da ein allgemeiner Mangel an Dermatologinnen und Dermatologen be-
steht, der realistischerweise nicht durch den Gesundheitssektor ausgeglichen werden
kann. Daher sollten alternative Lösungen angestrebt werden, um die Kapazitäten des

ix



x SUMMARY / ZUSAMMENFASSUNG

derzeitigen Gesundheitspersonals zu vervielfachen.
Die jüngsten Fortschritte im Bereich des maschinellen Sehens dank Deep Learning

haben es ermöglicht, Teile der Arbeitsabläufe von Dermatologinnen und Dermatologen
zu automatisieren, und zwar mit einem effektiven Skalierungspotenzial. In dieser Ar-
beit stellen wir verschiedene auf Deep Learning basierende Ansätze vor, die entweder
Aspekte des Arbeitsablaufs von Dermatologinnen und Dermatologen einbeziehen oder
deren Vorhersagen leicht überprüft werden können. Wir schlagen eine Methode zur
Erzeugung anatomischer Karten aus Patientenfotos vor, um die Dokumentation von
Läsionen zu unterstützen und es Systemen zur Läsionserkennung und -segmentierung
zu ermöglichen, ihre Vorhersagen anatomisch zuzuordnen. Auf der Grundlage von
Schlüsselmerkmalen aus der dermatologischen Beschreibung von Läsionen entwickeln
wir einen Ansatz für die Differentialdiagnose von Hautkrankheiten. Um eine objektive
Bewertung des Schweregrads zu ermöglichen, schlagen wir eine Methode zur Segmen-
tierung und Quantifizierung von palmoplantarer pustulöser Psoriasis, Ichthyose mit
Konfetti und Handekzemen vor. In Kombination mit dem anatomischen Ansatz im-
plementieren wir die feingranulare anatomische Zuordnung von Handekzemläsionen.
Um unsere Forschungsbemühungen zu konkretisieren, stellen wir eine afrikanische
Teledermatologie-Initiative vor, die eine halbautomatische Triage der sechs häufigsten
lokalen Hautkrankheiten ermöglichen soll. Schließlich stellen wir unser Framework
vor, das es Forscherinnen und Forschern mit medizinischem Hintergrund ermöglicht,
Deep-Learning-Modelle zu trainieren und zu bewerten.



Chapter 1

Introduction

Motivation

The skin is the largest organ of the human body, serving as barrier against pathogens
and physical harm. There are over two thousand different skin conditions, some of
which are highly prevalent. Half of the adult European population [50] suffers from
skin diseases, resulting in a high demand for dermatological care. However, it takes
twelve years of education to train dermatologists to diagnose skin diseases and treat
them. These tasks are time-intensive. They are performed without decision support,
and quality depends on the practitioner’s skills and experience. Proficiency comes with
practice and the experience of thousands of patient cases. Currently, there is a general
shortage of dermatologists [97] even in high-income countries, where patients can face
important delays [161].

The skin is easily accessible and diseases can be photographed with standard cam-
eras. Since the analysis of skin diseases is based on visual inspection, there is an in-
creasing adoption of teledermatology as an effective mean to scale-up patient care and
serve remote geographical regions [102, 149, 191]. However, the number of attended
patients remains bounded by the limited number of dermatologists, who need to pro-
cess each patient case individually. The recent progress of machine vision, especially
with deep learning, has paved the way for automation, which seems today the most
promising solution to scale-up dermatological care in general [9]. Based on available
dermatology databases, deep learning models can be trained to automatically perform
repetitive tasks such as triage, severity grading and differential diagnosis of simple pa-
tient cases. Deep learning synergizes well with teledermatology and has the potential
to expand patient coverage with the same workforce. Automation also improves the
quality of care, as it reduces variability between dermatologists and increases precision
and reproducibility.

1



2 CHAPTER 1. INTRODUCTION

Contribution

In this thesis, we present deep learning methods to automate and improve parts of
dermatologists’ workflow:

1. Anatomy mapping: We propose a method to automatically map anatomical re-
gions in patient photographs at different levels of precision, starting from the
main body regions to surgery-relevant anatomical description. This system can
assist in medical education, support dermatologists with lesion documentation,
and synergize with lesion detection and segmentation applications to produce
anatomical stratification. In addition, we can generate the anatomical metadata
of dermatology databases and enable targeted image retrieval based on specific
anatomical regions.

2. Differential diagnosis: Inspired by dermatologists’ decision processes, we present
a hybrid approach based on lesion images and features from their dermatological
description to automate differential diagnosis. We show that training deep learn-
ing models with both lesions’ locations and images can improve their diagnosis
performance. Similarly, we show that leveraging lesions’ morphology also has
a positive effect on performance. Since both lesion location and morphology can
be verified by dermatologists, our approach enables them to validate or correct
these features, thereby gaining some control and understanding of the models’
workflow.

3. Severity grading: Aiming for automated disease severity assessment, we present
a method to objectively quantify the lesions of pustular diseases with a specific fo-
cus on palmoplantar pustular psoriasis. Our system generates pustule counts and
surface estimates, both of which are surrogate markers of disease severity. Fur-
thermore, we apply this method to automatically segment lesions of ichthyosis
with confetti and hand eczema. In synergy with our anatomy system, we par-
tially automate the hand eczema severity index and present novel results on the
disease anatomical distribution.

4. Synthetic data generation: To solve the general problem of dermatology data
availability, we explore the capacities of generative adversarial networks to gen-
erate synthetic clinical and dermoscopy images of skin lesions.

5. Teledermatology: We describe our research teledermatology initiative in sub-
Saharan countries, where we aim to deploy automated triage solutions for the
most frequent skin conditions. All collected data will be anonymized and made
available to the research community.

6. Model development framework: Finally, we give an overview of our training
and evaluation framework, which enables researchers with medical background
to participate in the development of deep learning models.



3

The methods described in this work are all based on patient’s photographs. They
were developed under the constraint to only use models with relatively low computa-
tional requirements that could realistically be deployed in clinical practice and main-
tained over time. We intentionally avoided very deep and therefore resource intensive
neural networks as well as complex ensemble models for ease of industrialization. Our
research did not include the use of text data, since we aimed to develop methods that
could be used in clinical or teledermatology consultations without prior knowledge
about the patient. Text data was also not readily available and would have needed a
specific ethical permission.

Outline

We start by introducing both the fields of clinical dermatology and deep learning with
chapters 2 and 3. Chapter 4 presents a review of deep learning applications in der-
matology, together with the opportunities and challenges of the field. The anatomical
mapping method is introduced in chapter 5, our approach to differential diagnosis in
chapter 6 and the disease quantification systems in chapter 7. We continue with the
generation of synthetic dermatology images in chapter 8, a presentation of our teleder-
matology research initiative in chapter 9, a description of the proposed model develop-
ment framework in chapter 10 and conclude with a final discussion in chapter 11.
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Chapter 2

Clinical Dermatology

Dermatology is the branch of medicine studying the skin and its accessory structures,
namely hair, nails, sweat glands and sebaceous glands. Experts are called dermatol-
ogists. They are medical doctors who followed an additional five years specialized
education to understand, diagnose and treat skin disorders. Research in dermatology
focuses on understanding the mechanisms underlying skin conditions and develops
adapted treatments and surgery procedures.

Skin diseases are highly prevalent. 47.9% of the adult European population suf-
fers from a skin disorder [50]. Society pays a hefty price to treat dermatology patients.
In Europe, the costs related to occupational skin diseases alone well exceed five bil-
lion euros per year [90]. On the other hand, skin conditions contribute to 1.79% of the
global burden of diseases measured in disability-adjusted life years [92, 100] and are
rarely lethal. However, they can be physically incapacitating and also have adverse
psychological consequences such as depression, anxiety or suicidal ideation [39]. Thus,
treatments should always consider both physical and psychological dimensions in pa-
tients.

2.1 Morphology of the Skin and its Efflorescences

Efflorescences, also called skin lesions, are changes in the skin resulting from diseases.
Before reviewing them, it is useful to first understand the morphology of the skin itself.
The skin is composed of three layers, epidermis, dermis, and hypodermis as illustrated
in figure 2.1. The epidermis is the outer layer of the skin. It provides a barrier against
the outside environment, is waterproof and protects against ultraviolet radiations. The
dermis lies beneath the epidermis. It gives the skin its elastic structure and contains the
blood vessels, hair follicles and various glands. The innermost layer of the skin is the
hypodermis. It is ticker than the other two layers, acts as a shock absorber, contains the
fat reserves and helps regulate the body temperature.

The different efflorescences are separated into four main categories: flat lesions,
raised solid lesions, fluid-filled lesions and lesions due to broken epidermis. While flat

5



6 CHAPTER 2. CLINICAL DERMATOLOGY

Figure 2.1: Skin morphology. Open Learning Initiative1, CC BY-NC-SA, no changes.

lesions exclusively affect the epidermis, the others can also affect the dermis, in which
case a scar can remain after healing. Dermatologists also differentiate between primary
lesions, which are changes appearing directly on healthy skin, and secondary lesions,
the subsequent evolution of the latter. The main types of skin lesions are shown in
figure 2.2.

Figure 2.2: Lesions morphology. Osmosis [13], CC BY-NC-ND, no changes.

1Image source: https://www.coursehero.com/study-guides/cuny-csi-ap-
1/integumentary-structures-and-functions/ (Accessed: 2nd February 2023)

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.coursehero.com/study-guides/cuny-csi-ap-1/integumentary-structures-and-functions/
https://www.coursehero.com/study-guides/cuny-csi-ap-1/integumentary-structures-and-functions/
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2.2 Differential Diagnosis of Skin Diseases

There exist over two thousand different skin disorders, the most prevalent in Europe
being fungal skin infections, eczema, alopecia, and acne [50]. To diagnose them, the
first step is to understand the anamnesis or, in other words, the history of patients.
This involves learning how and under what conditions the lesions appeared and how
they evolved since then. It is also necessary to know about patients’ family and social
environment, their past health record and the eventual treatments used.

The second step consists in describing lesions following a standardized procedure
to collect all relevant features: location, count, distribution, arrangement, consistency,
morphology, texture, color, shape, and appearance of lesions. For example, the lesions
in figure 2.3 would be described by table 2.1.

(a) Gianotti-Crosti syndrome (b) Basal cell carcinoma

Figure 2.3: Examples of skin lesions. DermaCompass2, CC BY-NC-SA, no changes.

Based on the observed features, dermatologists follow appropriate decision trees to
make the differential diagnosis. In unclear or high-risk cases, the diagnosis is verified
by taking skin biopsies, which are analyzed in laboratory by a dermatopathologist. To
learn and train this process, dermatologists are exposed during their education to sev-

2Image source: https://www.dermacompass.net (Accessed: 2nd February 2023)

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.dermacompass.net


8 CHAPTER 2. CLINICAL DERMATOLOGY

Figure Location Number Distribution arrangement consistency
2.3a lower legs multiple localized - soft
2.3b trunk single localized nummular hard

Figure morphology texture color shape appearance
2.3a papule smooth light red round symmetrical
2.3b tumor, crust crusty erythema, brown round asymmetrical

Table 2.1: Description of skin lesions from figure 2.3.

eral thousands of lesion pictures from as many conditions as possible. They are con-
fronted with typical as well as rarer patient cases that could be encountered in practice.
Proficiency comes with practice and experience, making the whole process dependent
on dermatologists’ individual skills.

2.3 Severity Grading of Skin Diseases

After a disease has been diagnosed, dermatologists evaluate its progression and sever-
ity. There is no generic severity grading system since conditions have different pheno-
types. Disease-specific scoring systems have been proposed instead, enabling derma-
tologists to make more objective assessments than if they relied on their personal evalu-
ation. Another advantage is that the evolution of patients’ conditions can be quantified
over time more robustly, allowing to compare the efficacy of different treatments.

Scoring systems usually rely on disease-specific clinical signs and efflorescence quan-
tification, such as lesion counts or surface estimates. For example, the severity of vi-
tiligo is evaluated by estimating the size of lesions with hands surface units, one unit
corresponding roughly to one percent of the body, and depigmentation in percentage
[71]. Another well-known system is the psoriasis area and severity index (PASI) [56]
(cf. figure 2.4). This score considers the four main body regions (head, upper limbs,
trunk, lower limbs) and evaluates the skin surface covered by psoriasis from 1 (below
10%) to 6 (above 90%). Each region is graded separately from 0 (none) to 4 (very severe)
for erythema, induration, and desquamation (psoriasis clinical signs). The final PASI
score is a weighted average of the evaluated ratings.

Although these systems have advantages and benefits in practice, they also present
several challenges. More complex scoring systems like PASI necessitate training and ex-
perience to be performed efficiently and reliability. They usually cannot be performed
by physician extenders, requiring dermatologists to spend part of their consultations on
this time-consuming task. Another issue is that these methods remain subjective and
suffer from inter-observer and even intra-observer variability [18, 66, 210, 219]. In other
words, two dermatologists (or even the same dermatologist after some time) may not
necessarily score the same patient equivalently. Finally, these systems remain relatively
imprecise due to the scores’ discrete nature. For example, two patients, both graded as
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Figure 2.4: Psoriasis Area Severity Index Calculator [128], GNU GPL, no changes.

mild for the same disease, may still present notable differences. While this may be suf-
ficient to decide on a treatment recommendation in clinical settings, it is too coarse for
precise disease evolution monitoring, drug development experiments or personalized
medicine.

2.4 Treatment of Skin Diseases

After diagnosis and severity grading, dermatologists can decide whether treatment is
advisable and, in the positive case, make a prescription. They should also consider
psychological aspects on top of the disease’s physical burden. When needed, psychi-
atric treatment should also be recommended. There are three main kinds of standard
treatments in dermatology: topical, systemic and physical.

Topical treatments are applied to specific locations on the body, usually the lesion’s
site. They consist of two components: the base (lotions, pastes, ointments) and an active
agent. While the latter is chosen according to the disease characteristics (e.g. steroids
against inflammation), the base is chosen mainly depending on the hydration of the
skin. For example, ointments will be applied on dry skin while lotions will be used on
wet lesions. Thus, topical treatments can take various forms from ointments, creams,
gels to lotions and pastes.

Systemic treatments target the whole body. They are used when the affected regions
are either too large or not easily accessible, e.g. psoriasis and lesions on the scalp. Der-
matologists also resort to systemic treatments when topical treatments are ineffective or
when a disease has systemic effects. Examples of such treatments are antibiotics, anti-
histamines and antiviral agents. When prescribing systemic treatments, it is important
to consider side effects, as they are more likely to cause undesired complications than
topical treatments.

Physical treatments use physical means to treat skin lesions. For example, cryother-
apy freezes the skin to induce necrosis of the abnormal lesions, iontophoresis can be
used to reduce excessive sweating and phototherapy uses lights with specific wave-
lengths to treat certain inflammatory skin diseases. Like with any treatment, it is im-

https://www.gnu.org/licenses/gpl-3.0.txt


10 CHAPTER 2. CLINICAL DERMATOLOGY

portant to determine first the correct diagnosis, if needed by taking a biopsy, before
deciding on the appropriate therapy.

Aside from the inherent development and prescription challenges, dermatologists
also face the lack of patient adherence to their treatment. In the case of acne therapy, a
worldwide observational study reported an adherence rate of only 50% [46]. Adherence
varies depending on the skin condition, but it was observed overall that topical treat-
ments’ adherence was poorer than systemic treatments [5]. Adherence is an important
topic to consider both in the prescription and development of treatments.

2.5 Imaging Modalities in Dermatology

Imaging is widely used in dermatology for teaching and patient documentation [81]. It
is an efficient mean to archive and exchange information, both for patients and derma-
tologists. Imaging makes skin disease monitoring simpler and more precise, as changes
can be compared between exact timestamped snapshots of the lesions. This is particu-
larly useful for skin conditions such as skin cancer, where the evolution of a mole can
be a strong indicator for malignancy [137]. Precise comparison requires that pictures
are properly standardized. Depending on the imaging technique, standardization is ei-
ther “built-in” or needs to be enforced with protocols [80]. One regulatory concern with
imaging is the need for patients’ consent, similar to other kinds of medical data. This
is particularly important with non-anonymous images, especially when data should
be shared or used for research. Another challenge lies in the organization of collected
pictures in medical databases and the creation of annotations and metadata necessary
for research. While technical platforms are made available by commercial firms, the
creation of metadata requires dermatologists’ intervention, which is often not possible
in practice due to the associated costs.

The most common modality in dermatology is medical photography with standard
cameras (e.g. figure 2.3). It is simple to perform, does not require specialized or expen-
sive hardware, and the produced pictures are easily shareable. A survey including 153
board-certified dermatologists from the US reported that 61.8% used this modality ev-
ery day [129]. The simplicity of medical photography comes with the disadvantage that
captured pictures are often poorly standardized, for example in terms of patient pos-
ture, captured anatomical region, camera distance, and zoom level. The same survey
reported that only 23.7% of dermatologists followed a predefined photography proto-
col. This modality can also be used by patients themselves with mobile phone cameras,
making it particularly suited for teledermatology. However, picture standardization is
often much worse than in clinical settings.

A recent extension of medical photography is full-body imaging, which can be
performed with commercial products. This modality consists in taking multiple pho-
tographs of the patient from different angles using several cameras placed at predefined
positions. The acquired pictures are then stitched together either as a panorama or 3D
model of the patient body, enabling easier interaction with the data. These products
have the advantage to produce relatively standardized images.
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Dermatoscopy, also known as dermoscopy, is another modality commonly used in
dermatology especially for the diagnosis of skin cancer but also for non-pigmented skin
disorders and inflammatory diseases. A dermatoscope or dermoscope is a simple de-
vice, which allows to locally magnify lesions (usually tenfold) such as moles with stan-
dardized lighting conditions using polarized or unpolarized lights in real time. Studies
have shown that dermatologists’ differential diagnosis performance for skin cancer im-
proved with this modality [204]. However, it requires specific training to be properly
interpreted. Thus, while dermoscopes are accessible and simple to use (they also exist
as mobile phone accessories), they are mainly used by clinicians. The produced images
are standardized, but may vary depending on the device manufacturer.

Other modalities are less accessible and require specific training, which restricts
their use to clinics. Ultraviolet reflectance imaging is useful to assess superficial cuta-
neous infections and changes in pigmentation [135]. It creates new contrasts and helps
with the analysis of skin conditions. Reflectance confocal microscopy can image the
skin until superficial dermis with subcellular resolution using near-infrared light. To-
gether with dermoscopy, this modality was shown to improve diagnosis accuracy of
skin cancer [55, 116]. Optical coherence tomography can image the skin up to 1.5 mm
depth in real time. It is also useful to diagnose skin cancer and can help assess other
disorders such as burns or ultraviolet damages.

Finally, an important modality is the imaging of histology slides, which show the
microscopic anatomy of biological tissues (e.g. figure 2.5). They are produced using tis-
sue scanners reaching micron-level resolution. These devices produce extremely high-
resolution images of several gigabytes each. Their appearance depends on the acqui-
sition procedures and chosen stainings. For several skin conditions, the differential
diagnosis clinical gold standard is to take lesion biopsies and create the corresponding
histology slides for histopathology analysis.

Figure 2.5: Histology slide of a patient with extramammary Paget disease, Michael
Bonert [16], CC BY-SA, no changes.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Chapter 3

Deep Learning

Intelligence could be defined as the faculty of reasoning and abstraction. The idea to
mechanize intelligence and endow tools or machines with this capacity goes all the way
back to antiquity, with mentions already in Greek mythology. Philosophers from many
countries and times have attempted to formalize reasoning, giving birth to various log-
ical systems and frameworks. An intuition behind artificial intelligence (AI) is that if
reasoning could be reduced to operations over abstract symbols, it could theoretically
be performed by machines. In its modern history, AI research aimed at different yet
overlapping objectives [169]: the development of agents with human-like behavior and
thought process and the development of rational agents able to reason and act logically
with respect to an objective. While the latter is based on mathematics and engineering,
the former also leverages findings from empirical psychological and biological sciences,
resulting in intuitions and heuristics useful for both branches. Today, rational agent ap-
proaches such as machine learning (ML) and its sub-field deep learning (DL) are the
most successful in terms of practical applications, although they are only capable of
restricted tasks and thus belong to weak AI (with respect to general AI on par with hu-
man intelligence). In this chapter, we introduce the main concepts of ML and DL with
a focus on topics relevant for image-based applications in dermatology.

3.1 Machine Learning Concepts

Machine learning studies algorithms that autonomously learn to perform tasks from
data. In this context, an algorithm is considered to “learn” if its performance improves
as it processes data. Instead of manually defining specific steps and procedures, these
algorithms are designed to automatically extract patterns and statistical relationships
from data that are useful to complete the task. The term “learn” is used because the
exact operations required may be impractical to define explicitly or even unknown.

For example, dermatologists have methods to screen moles for skin cancer. How-
ever, automation with traditional algorithms is infeasible because of the large variety
of moles’ phenotypes and the difficulty to translate dermatologists’ workflow into ma-

13
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chine instructions. For this task, ML algorithms are more suitable and were even able
to achieve performance on par with human experts [54]. In this example, the algorithm
“learned” as long as its malignancy sensitivity increased while it was training over pic-
tures. This learning phase is called the training phase.

3.1.1 Training in Machine Learning

Let us consider a task t : X → Y with X the input data domain, Y the corresponding
output domain and let us define X̃ ⊆ X as the available training data. Typical ML
algorithms consist of two parts, the training and the prediction procedures.

The training procedure optimizes the parameters θ of the algorithm’s model mθ

with respect to a performance measure P, which for a given x ∈ X, quantifies how well
mθ(x) matches t(x):

θ∗ = min
θ

∑
∀x∈X̃

P(mθ(x), t(x)) (3.1)

The information extracted from the data X̃ is encoded within θ∗, which minimizes the
difference as measured by P between mθ∗ and t over X̃. The optimization process is
specific to the algorithm and should be guided by a performance metric suitable for
task t.

Theoretically, if the task is feasible, sufficient training samples are available and
the chosen model has enough capacity, it will be able to approximate t. When the
model is too complex, the risk is to end up learning training samples, reproducing
X̃ perfectly, and to perform poorly on new samples from X \ X̃. This phenomenon
is called overfitting and can be mitigated by using models with lower capacities or
with regularization approaches to ensure that the optimization problem is solved with
simple and flexible solutions. The opposite situation is called underfitting. It happens
when the model is too simple to learn any useful patterns from the data and performs
poorly in general. In these cases, a model with larger capacity is required.

The prediction procedure simply applies the model mθ to a sample x ∈ X producing
mθ(x) as output. While specific algorithms may expect different kinds of data format,
they are designed to be agnostic to what the data represents, which makes their applica-
tion range very wide from medical to financial applications. Thus, the same algorithm
can produce models able to solve various tasks, the only difference being the data used,
and the parameters learned during training.

3.1.2 Data in Machine Learning

In practice, the success of the training phase depends for a large proportion on the
data available to train the model. Usually, only limited data is available, so θ∗ may
be optimal on X̃ but suboptimal on X. This is usually observed by measuring poor
performance when the model is applied on new unseen data, in which case we say that
the model does not generalize well. To prevent this, X̃ should be as representative as
possible of X with the same underlying data distribution. For example, if a differential



3.1. MACHINE LEARNING CONCEPTS 15

diagnosis model is trained on pictures from skin lesions collected in hospitals, we can
expect its performance to remain stable for future hospital patients. However, there
are no guarantees if we start using this model outside the hospital. In this case, X̃
corresponds to patients visiting hospitals with a disease distribution certainly different
from the general population.

The typical ML training workflow starts by splitting the available data X̃ in three
sets: the training X̃train, validation X̃val and testing X̃test sets. Here again, splitting
should be performed in a way ensuring that all three sets remain as representative of X
as possible. Then the model is trained on X̃train while the performance is evaluated on
X̃val. Typical ML algorithms have hyperparameters that are optimized by comparing
the measured performance on X̃val. Once the training procedure is completed, mθ∗ is
“frozen” and applied on X̃test to evaluate the actual performance. X̃test must contain
new data samples different from the ones used to train the model. In clinical settings,
it is usually necessary to ensure that a patient’s data is only present in one of the splits.

3.1.3 Supervised and Unsupervised Learning

The selection between ML algorithms depends on the available training data and the
task to be automated. There are two main families of algorithms used in dermatology
applications, which can be defined based on the kind of data available.

Supervised learning concerns situations where both the input data and the task’s
output data are available. The fundamental tasks in this context are classification where
the input should be mapped to a finite set of categories (e.g. benign versus malignant
moles) and regression where the input is mapped to a continuous range (e.g. predicting
the weight of a patient). Other types of tasks are usually based on either of the two or
both, such as learning similarity or ranking. Acquiring both input and output data
is often challenging and expensive, especially for tasks in the medical domain, where
only experts can create the necessary labels. A subtype of supervised algorithms called
active learning focuses on optimizing, which data samples should be labeled to balance
this cost while still being able to train models efficiently.

Unsupervised learning refers to algorithms designed for situations where the avail-
able data does not contain any output targets. In this context, the algorithms’ aim is to
find an underlying structure allowing to organize, refine or summarize data. Typical
tasks involve clustering, denoising, dimension reduction, anomalies, and outliers iden-
tification. In practice, the available data usually comprises a mix of both labeled and
unlabeled samples, the latter being often more numerous. This context is called semi-
supervised learning and is usually addressed by a combination of algorithms from both
categories.

The remaining context, notable for being one of the three basic ML paradigms to-
gether with supervised and unsupervised learning, is reinforcement learning. Algo-
rithms in this field aim to train intelligent agents to interact with an environment and
find the optimal behavior maximizing a reward scheme. There are many practical ap-
plications, especially in robotics.
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3.2 Deep Learning Concepts

Deep learning is a sub-field of machine learning studying both supervised and unsu-
pervised algorithms based on the artificial neural network (ANN) architecture. All con-
siderations discussed for ML are also valid in the context of deep learning (DL). While
ML algorithms require structured data, typically in the form of handcrafted features,
DL algorithms can autonomously learn hierarchies of features from unstructured data
(e.g. plain text, images, video, or audio). The underlying drawback being that the latter
often require much more data than the former to converge.

Although the inception of ANN algorithms dates back to the 1940s, it was only in
1989 that a practical training method [168] was established based on the backpropaga-
tion algorithm [109]. ANN remained rarely used due to their computational costs and
the competition of other ML algorithms until an inflection point in 2009, when graphi-
cal processing units made training practical, enabling breakthrough results in machine
vision and other fields. This led to a revolution of DL with the development of countless
ANN architectures customized for different types of applications and data.

3.2.1 Artificial Neural Networks

ANNs are derived from the human brain’s organization. Their base building block is
the artificial neuron, a mathematical model of biological neurons.

Figure 3.1: Schema of an artificial neuron. The grey circles represent the input layer.

An artificial neuron (figure 3.1), as inspired from the definition of Minsky and Pa-
pert [132], takes an input x ∈ Rk, performs a weighted sum of its dimensions with
weights wi ∈ R for 1 ≤ i ≤ k, adds a bias term b ∈ R and passes the resulting logits
z ∈ R to a non-linear activation function ϕ : R → Y mapping them to a range Y ⊆ R:

ŷ = ϕ(z) = ϕ(

k∑
i=1

wixi + b)

An ANN is built from several interconnected artificial neurons and can be repre-
sented by a directed graph where the nodes are neurons and the edges are connections.
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There are two main types of ANNs depending on the nature of these connections: feed-
forward and recurrent networks. Feed-forward ANNs comprise all networks designed
as directed acyclic graphs, i.e. there are no connections between neurons forming loops.
Recurrent ANNs are networks containing loops, which enable them to learn sequential
data such as time series or natural language, their internal states serving as memory.
Recurrent networks are rarely used in dermatology applications, mainly because se-
quential data is seldom available. For this reason, we will focus on feed-forward ANNs
in this thesis.

Multi-layer Perceptron

In practice, ANNs are built by stacking disconnected neurons in layers. Connections
depend on the layer type, the most common being dense layers (also called fully con-
nected layers) where each neuron is connected to every input’s element. This layer
does not introduce loops, so a network built only from dense layers is a feed-forward
network.

A single-layer perceptron is a network built from one dense layer containing a sin-
gle neuron. It can perform binary classification and find a linearly separable pattern
in the training data [132]. For more complex patterns, additional layers with multi-
ple neurons can be stacked one after the other (hence the name “deep” learning) such
that a layer’s output becomes the following layer’s input. The first and last layers of a
network are called the input and output layers, while layers in-between are called hid-
den layers. A network with several dense layers is called a multi-layer perceptron and
can theoretically learn any continuous real function according to the universal approx-
imation theorem [82]. Learning is hierarchical, with the successive layers extracting
features of increasing complexity. The first layers extract basic features, which are then
combined into more complex features that determine the network’s output.

In figure 3.2 we present an example multi-layer perceptron with two dense layers
of respectively c and c ′ neurons. Taking x ∈ Rk as the network input, W(1) ∈ Rk×c and
b(1) ∈ Rc as the weights and biases of the first hidden layer’s neurons, their output can
be written as:

h(1) = ϕ(1)(z(1)) = ϕ(1)(W(1)⊤x + b(1))

Similarly with W(2) ∈ Rc×c ′ and b(2) ∈ Rc ′ the weights and biases of the second hidden
layer, the output of the network is:

ŷ = ϕ(2)(W(2)⊤h(1) + b(2)) (3.2)

Where ϕ(i) is the activation function of layer i.

Activation Functions

Without activation functions, the operations of an ANN could be reduced to a single
linear transformation since artificial neurons would only compute the weighted sum of
their input. Activation functions are thus an essential component, enabling ANNs to
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Figure 3.2: Schema of a two layers multi-layer perceptron. The white circles represent
full neurons (including bias and activation function) as described in figure 3.1. The
subscript indexes are composed of two numbers identifying respectively the source
and destination, while the exponent indexes in parentheses are the layer identifiers.

learn non-linear patterns in data (when the activation functions are non-linear them-
selves). The main requirements for activation functions are that they should be efficient
computationally, continuous, differentiable and produce informative gradients for the
learning process. Several functions have been proposed to meet these objectives. We
present in the following some of the most frequently used in practice.

Sigmoid The sigmoid function maps logits between 0 and 1, which can be interpreted
as a probability distribution. For this reason, it is often used at the output layer in binary
or multi-label classification tasks. An issue faced with the sigmoid function is saturation
for large input logits, i.e. the output values are close to the asymptotic bounds of the
function leading to the vanishing gradients problem.

σ(z) =
1

1+ exp{−z}

∂σ(z)

∂z
= σ(z)(1− σ(z))

ReLU The rectified linear unit [141] clips negative logits to zero. It is efficient compu-
tationally and mitigates the vanishing gradients problem as it does not saturate. How-
ever, it has the drawback to produce zero gradients for negative logits (called the dying
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units problem).

ReLU(z) = max(0, z)

∂ReLU(z)

∂z
=

{
0, if z < 0

1, otherwise

ELU The exponential linear unit [37] activation function is an extension of ReLU,
which mitigates the dying units problem by ensuring that gradients remain non-zero
for negative logits. Given a positive real hyperparameter α, it is defined as follows:

ELUα(z) =

{
z, if z > 0

α(exp{z}− 1), otherwise

∂ELUα(z)

∂z
=

{
1, if z > 0

α exp{z}, otherwise

Swish The swish activation function [159] is based on the sigmoid function and a
learnable parameter β. It does not cause the dying units problem and has the property
to be non-monotonic.

Swishβ(z) = zσ(βz)

∂Swishβ(z)

∂z
= βSwishβ(z) + σ(βz)(1− βSwishβ(z))

Softmax The softmax function is mostly used on the output layer for multi-class clas-
sification tasks. Whereas other activation functions perform element-wise operations,
the softmax function produces a probability distribution from all layer’s logits taken
together. Given a layer’s output logits z ∈ RN, the softmax function is computed as
follows:

S(z, i) =
exp(zi)∑N
j=1 exp{zj}

∂S(z, i)
∂zj

=

{
S(z, i)(1− S(z, j)), if i = j

−S(z, i)S(z, j), otherwise

3.2.2 Training Artificial Neural Networks

ANNs are trained following the ML training paradigm (cf. section 3.1.1), based on two
key elements: a loss function as the performance measure to be optimized and a proce-
dure to update the network’s parameters. In deep learning, the most common update
procedures are variations of the gradient descent algorithm, which is based on the com-
putation of gradients determined using the backpropagation algorithm [109, 168]. The
training procedure consists in optimizing the network’s weights such that the loss func-
tion is minimized given the training samples.
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Loss Functions

The aim of loss functions (also called objective functions) is to quantify the difference
between expected ground truth targets y and the observed model predictions ŷ. The
design of a loss function depends on the task to be solved. In the following, we present
a selection of frequently used loss functions for classification and segmentation tasks
in a context with N training samples and C classes. With ŷ

(c)
i , we denote the predicted

probability that data sample i belongs to class c. We use y
(c)
i to represent the same for

the ground truth.

Cross Entropy Loss This loss function compares the difference between predicted and
expected probability distributions of the task’s targets.

LCE(y, ŷ) = −
1

N

N∑
i=1

C∑
c=1

y
(c)
i log

(
ŷ
(c)
i

)

Focal Loss The focal loss [107] extends the cross entropy loss to mitigate class imbal-
ance by focusing on hard training samples based on a hyperparameter γ ≥ 0.

LF(y, ŷ) = −
1

N

N∑
i=1

C∑
c=1

y
(c)
i (1− ŷ

(c)
i )γ log

(
ŷ
(c)
i

)

Dice loss The dice loss [130] is used mainly in segmentation tasks to measure the
overlap between the predictions and ground truth masks.

LD(y, ŷ) = 1− 2

∑N
i=1

∑C
c=1 y

(c)
i ŷ

(c)
i∑N

i=1

∑C
c=1 y

(c)
i + ŷ

(c)
i

Gradient Descent Algorithm

Gradient descent is an optimization algorithm that minimizes a function by iteratively
updating its parameters in the opposite direction of its gradients. In the case of ANNs,
the algorithm minimizes a loss function with respect to the network’s parameters (the
weights and biases) over the training samples. In its simplest form, this update at iter-
ation step t+ 1 is performed by subtracting the loss gradients scaled by a learning rate
hyperparameter η > 0 from the network parameters θt at step t:

θt+1 = θt − η∇L(θt)

When a function is convex, the algorithm is guaranteed to converge to its global
minimum. However, the loss function of an ANN is non-convex due to the non-
linearities introduced by the activation functions and convergence may occur at a local
minimum. To improve convergence rate and reduce the tendency to remain at local
minima, more complex update rules were proposed, mainly based on statistics of gra-
dients from previous iteration steps.
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Momentum This approach [186] consists in updating the network’s parameters based
on both the loss gradients at step t and the exponential moving average of the first
moment of previous iterations’ gradients. The percentage of retained past gradients
is controlled with a hyperparameter β. The intuition is to keep track of the general
downward direction of the loss surface and not get stuck in flat regions or local minima.

mt+1 = βmt + η∇L(θt)

θt+1 = θt − mt+1

Adam The adaptive moment estimation optimizer [98] leverages momentum and ad-
justs the learning rate for each network’s parameters based on the combined exponen-
tial moving average of the first and second past gradient moments. It uses two hyper-
parameters β1 and β2 to control the decay of respectively the first and second gradient
moments.

mt+1 = β1mt + (1− β1)∇L(θt)

vt+1 = β2vt + (1− β2)(∇L(θt))
2

θt+1 = θt − η
mt+1/(1− βt+1

1 )√
vt+1/(1− βt+1

2 )

Backpropagation Algorithm

The key of gradient descent is to efficiently compute the loss function’s gradients with
respect to every trainable parameters of the ANN. This is achieved with the backprop-
agation algorithm [109], which operates in two main phases. First, the network pre-
dictions are computed in the forward propagation phase (with operations similar to
equation 3.2) and used to compute the loss function. Second, the loss gradients are
computed. Since the forward propagation can be reduced to a composition of opera-
tions, and provided that all operations are differentiable, the chain rule from calculus
can be applied to compute the loss partial derivative with respect to each of the net-
work’s parameters. Taking the network in figure 3.2 as an example, the loss L partial
derivative with respect to the weight w(1)

11 is calculated as follows:

∂L
∂w

(1)
11

=

( c ′∑
j=1

∂L
∂ϕ(2)

× ∂ϕ(2)

∂z
(2)
j

×
∂z

(2)
j

∂ϕ(1)

)
× ∂ϕ(1)

∂z
(1)
1

×
∂z

(1)
1

∂w
(1)
11

Similarly, the loss L partial derivative with respect to the bias b(1)
1 is obtained by:

∂L
∂b

(1)
1

=

( c ′∑
j=1

∂L
∂ϕ(2)

× ∂ϕ(2)

∂z
(2)
j

×
∂z

(2)
j

∂ϕ(1)

)
× ∂ϕ(1)

∂z
(1)
1

×
∂z

(1)
1

∂b
(1)
1
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Performance Evaluation Metrics

The evaluation of a network’s performance is achieved by comparing its validation or
test set predictions with the expected ground truth labels. Several metrics have been
devised to perform this comparison objectively. Their choice depends on the target
application. In the following, we present a selection of metrics frequently used in the
context of image classification and segmentation tasks. Given a class c, we use the no-
tation TP, TN, FP, FN for, respectively, the true positive, true negative, false positive and
false negative counts. In this context, true and false correspond to whether a model pre-
diction matches the ground truth, and positive or negative whether a sample belongs
to class c.

Accuracy The accuracy measures the proportion of correct predictions. The drawback
of this metric is that it will be dominated by the most prevalent classes, which becomes
problematic in the context of severe class imbalance. In this case, other metrics should
be selected.

ACCc =
TPc + TNc

TPc + TNc + FPc + FNc

Precision Precision measures the proportion of true positives among all positive pre-
dictions.

Pc =
TPc

TPc + FPc

Sensitivity Sensitivity (also called recall or true positive rate) measures the propor-
tion of correct positive predictions among all samples actually belonging to class c.

Senc =
TPc

TPc + FNc

Specificity Specificity (also called true negative rate) measures the proportion of cor-
rect negative predictions among all samples that do not belong to class c.

Spec =
TNc

TNc + FPc

Balanced Accuracy The balanced accuracy mitigates the drawback of plain accuracy
and can be used in imbalanced context.

BACCc =
Senc + Spec

2

F1 Score The F1 score is the harmonic mean of the precision and sensitivity.

F1c = 2
Pc ∗ Senc

Pc + Senc
=

2TPc

2TPc + FPc + FNc
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Intersection over Union Intersection over union (IoU or Jaccard index) is used in seg-
mentation tasks to evaluate the proportion of overlapping pixels between predictions
and ground truth.

IoUc =
TPc

TPc + FPc + FNc

Dice Score The dice score is mainly used in segmentation tasks. It is equivalent to
the F1 score and measures the overlap of predicted pixels with the ground truth. The
main difference with the intersection over union arises when averaging predictions
over multiple samples. In this case, the IoU will penalize poor segmentation of individ-
ual samples more than the dice score.

Dicec = F1c =
2TPc

2TPc + FPc + FNc

3.2.3 Convolutional Neural Networks

An issue of dense layers is their exploding computation and memory footprints when
applied to high dimensional inputs such as images or videos. For example, to process
a 4K image, a dense layer with ten neurons would need to store almost 250 million
weights and perform the corresponding number of operations. While images are often
resized to much smaller dimensions in practice, learning relevant features from such
input data with dense layers remains inefficient. The solution comes from the observa-
tion that object detection in images can be broken down into the detection of simpler
elements. Objects can be decomposed into parts, which can be divided into shapes, all
the way down to simple corners and edges. Since such basic elements do not span
over the whole image but occur in delimited regions, it is not necessary that the model
considers the full image altogether. Instead, it only needs to process neighboring pix-
els together and focus on local regions to identify features relevant for the hierarchy of
constituent elements composing the objects of interest. It should thus be possible to use
only sparse connections, which require less memory and computations. This concept
is called local connectivity [65] and can be achieved with the convolution operation.
An ANN based on this operation is called a convolutional neural network (CNN). This
architecture was first introduced to perform handwritten digits recognition [101].

Convolution Layers

The convolution operation (figure 3.3) takes a kernel K ∈ RM×N with a bias b ∈ R and
applies them on the input image I to produce a feature map F. For valid i and j values
within the image dimensions, this corresponds to the following operation:

F(i, j) = (K ∗ I)(i, j) =
M∑

m=1

N∑
n=1

I(i+m, j+ n)K(m,n) + b
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The steps in the image dimensions (successive i, j coordinates) are determined by a
hyperparameter called the stride. Furthermore, the image can be padded with zero
elements (the number is controlled with a hyperparameter) to accommodate the kernel
dimensions, enabling to process the image boundaries.

Figure 3.3: Convolution operation with padding 1, 3 × 3 kernel size and stride 1. Ya-
mashita et al. [215] CC BY 4.0, Springer, no changes.

Convolutional layers are layers performing several convolution operations. Since
they essentially consist of a list of kernels and biases, the computation and memory
requirements are much smaller than dense layers. Kernels are much smaller than the
input image. Their size determines the connection of a neuron with its input, where
for the first layer, this corresponds to a region in the original image. A larger kernel
will connect neurons to a larger region. For subsequent layers, these are regions in the
output features of previous layers. Projected back to the input image, these connected
regions are called receptive fields. The deeper a neuron is located in a network, the
larger grows its receptive field, eventually up to the full image size.

An important property of the convolution operation and convolutional layers is
that they are equivariant to translation. In other words, a translated input will result in
the same features as if the translation operation was applied on the features extracted
from the original untranslated input. In the context of images, moving an object will
similarly move the associated features in the feature map.

Pooling Layers

Once features are extracted by convolutional layers, they go through a non-linear ac-
tivation function and can be aggregated using pooling layers (figure 3.4). The pooling

https://creativecommons.org/licenses/by/4.0/
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operation consists in summarizing a fixed neighborhood of features, for example by
keeping the maximum value. The neighborhood size and stride (steps within the fea-
ture map) are predefined hyperparameters. This operation is useful to reduce the fea-
tures’ dimension, thereby decreasing the memory and computation requirements, and
as a regularization mean to constrain the network’s solution space and prevent over-
fitting. The side effect of the pooling operation is to make the features approximately
invariant (i.e. independent) to small translations on top of the convolution translation
equivariance, which becomes problematic if object location is relevant for the task. from
another perspective, while the features gain semantic information as the network gets
deeper, the pooling operation causes a loss of object location and shape information.

Figure 3.4: Pooling operations. Alzubaidi et al. [8] CC BY 4.0, Springer, no changes.

Transposed Convolutions

While convolutions down-sample the input’s dimensions (or keep them unchanged),
transposed convolutions (also called deconvolutions) up-sample them, as shown in fig-
ure 3.5. They are often used in segmentation tasks to expand the features back to the
original size of the input image. Given an input feature map F and a kernel K, the trans-
posed convolution’s output will have the same shape (but not values) as the original
convolution input I satisfying F = K ∗ I.

Atrous Convolutions

Similarly to transposed convolutions, atrous convolutions (also called dilated convo-
lutions) up-sample their input (cf. figure 3.6). This is performed by inserting d − 1

zeros in-between kernel elements, where d is a hyperparameter called the dilation rate.

https://creativecommons.org/licenses/by/4.0/
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Figure 3.5: Transposed convolution of a 2× 2 feature map with 2× 2 kernel with stride
1 and no padding. Zhang et al. [222] CC BY SA 4.0, arXiv, no changes.

This method increases the receptive field of the kernel without additional memory and
computational costs.

Figure 3.6: Atrous convolutions of a 7× 7 input with 3× 3 kernel, dilation factor of 2,
stride 1 and no padding. Dumoulin et al. [48] MIT License, arXiv, no changes.

Classification CNNs

Image classification consists in processing an image to predict a category among mul-
tiple possibilities. A variation of this task called multi-label classification involves pre-
dicting multiple categories per input image. Many CNN architectures have been de-
vised [8, 94] and benchmarked using public datasets such as ImageNet [44]. In the
following, we discuss a selection of landmark architectures that introduced important
innovations.

VGG The virtual geometry group’s network [182] is one of the early very deep ANNs
based only on convolutional and pooling operations. The final classification predictions

https://creativecommons.org/licenses/by-sa/4.0/
https://opensource.org/licenses/MIT
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are obtained by passing the extracted feature maps through fully connected layers.
VGG popularized the use of small 3 × 3 kernel sizes and 1 × 1 convolutions to re-
duce complexity and computation requirements, although this remains a drawback of
this architecture due to its large number of parameters (over 140 millions).

Inception A series of architectures with iterative improvements, starting with Incep-
tion v1 (GoogleLeNet) [188], which introduced the inception block (figure 3.7). This
block is composed of parallel convolutions with different filter sizes to extract features
at different scales. The network was very deep at the time and used intermediate aux-
iliary classifiers and loss functions to prevent the gradient vanishing problem. In com-
parison with VGG, this network was optimized to reduce computations with 1 × 1

convolutions, bottleneck and global average pooling layers, resulting in 5 million pa-
rameters.

Inception v2 and v3 [189] introduced several optimizations to decrease further com-
putation requirements, mainly replacing 5×5 convolutions with two 3×3 convolutions
and factorizing n × n convolutions into successive 1 × n and n × 1 convolutions. To
reduce representational bottleneck, the authors widened the inception blocks with par-
allel factorized convolutions. In Inception v3, they improved performance further by
introducing factorized 7× 7 convolutions, batch normalization and label smoothing.

Figure 3.7: Inception block. Szegedy et al. [188] ©2015 IEEE, no changes.

Inception v4 and Inception-ResNet [187] are currently the latest iteration of the ar-
chitecture. The authors mainly applied various simplifications to the network and
changed the stem (initial convolution layers following the input layer) preceding the
inception blocks. In Inception-ResNet, they updated the inception blocks to include
scaled residual connections inspired from the ResNet architecture [77].

ResNet To alleviate the gradient vanishing problem, the authors [77] introduced resid-
ual blocks (figure 3.8), enabling them to train very deep ANNs. These blocks leverage
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skip connections that allow gradients to directly flow through the network. An exten-
sion of ResNet is the ResNeXt architecture [214], which uses parallel residual blocks
(figure 3.8) similarly to how the inception network performs parallel convolutions.

Figure 3.8: Residual block (left) and 32 parallel residual blocks (right). Xie et al. [214]
©2017 IEEE, no changes.

SENet This architecture [86] introduced the squeeze-and-excitation block (figure 3.9),
which scales each feature channel with learnable factors and enables the network to
weight channels adaptively instead of equivalently. This relatively simple innovation
improved performance of ResNet and Inception networks with very little computa-
tional overhead.

EfficientNet The development of new ANN architectures typically involves tuning a
network’s width, depth, and resolution. This process is usually performed according
to researchers’ empiric intuition rather than systematically. Tan et al. [190] introduced
a compound coefficient to methodically scale (figure 3.10) these dimensions in a simple
network called EfficientNet-B0, which leverages residual and squeeze-and-excitation
blocks. With this approach the authors proposed seven different networks EfficientNet-
B1 to EfficientNet-B7 able to process input images of increasing size with improving
performance and computation requirements.
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Figure 3.9: Inception block (left) and squeeze-and-excitation inception block (right). Hu
et al. [86] ©2018 IEEE, no changes.

Figure 3.10: EfficientNet’s approach to model scaling. Tan et al. [190] ©2019 JMLR, no
changes.
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Segmentation CNNs

While overall image categories are predicted in classification tasks, semantic segmen-
tation performs pixel-level classification of semantic categories. The result of this oper-
ation is called a segmentation mask. Common variations of this task include instance
segmentation where distinct objects are segmented separately and panoptic segmenta-
tion, a combination of semantic and instance segmentation. Several approaches have
been proposed to solve these tasks [8, 131]. They are mostly based on two steps, starting
with the extraction of image features, and followed by the expansion of these features to
produce the segmentation mask. In the following, we discuss a selection of important
segmentation architectures.

FCN Long et al. [115] proposed a fully convolutional architecture applicable to any
classification CNN, where the final fully connected layers are replaced with 1× 1 con-
volutions. The coarse semantic features extracted by the network are fused with better
localized appearance features from a selection of the middle layers (connected via skip
connections, see figure 3.11) and then up-sampled with transposed convolutions. The
segmentation mask is obtained by applying a final 1× 1 convolution to adjust the up-
sampled features to the number of semantic classes. One downside of this approach is
its high computational requirements, which preclude real-time inference.

Figure 3.11: FCN feature fusion approaches: FCN-32s (first row from top) does not use
earlier layers’ features, FCN-16s (second row) uses the fourth pooling layer’s features,
FCN-8s (third row) uses features from both pooling layers 3 and 4. Long et al. [115]
©2015 IEEE, no changes.

U-Net This encoder-decoder architecture was introduced by Ronneberger et al. [164]
to segment biomedical images based on small training datasets. First, the encoder it-
eratively down-samples the input image with convolution and pooling operations to
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extract compressed context features. Then, the decoder performs symmetric expansion
steps to enlarge the features back to the input dimensions, resulting in the final segmen-
tation mask. In the expansion steps, the features are up-sampled, convolved, then con-
catenated with corresponding down-sampled features from the encoder branch (con-
nected via skip connections) and finally convolved again. The skip connections enable
the network to retain appearance information while expanding the features. This archi-
tecture can be modified to leverage any classification backbone (CNN stripped down
from its final fully connected layers) as encoder provided the decoder is adapted to
match the down-sampling steps with corresponding up-sampling steps (e.g. U-Net
with ResNet backbone, figure in section 7.1).

Mask R-CNN Based on Faster R-CNN [62, 160], an architecture devised to solve the
task of object detection in images, Mask R-CNN [76] performs instance segmentation of
the detected objects. The network starts with a CNN backbone, which extracts image
features. Then it operates in two phases. First, the region proposal network predicts
regions containing objects candidates (regions of interest, RoI). Second, the RoI features
are extracted and used to predict the object categories together with their bounding box
coordinates. In parallel, the object instance segmentation mask is created by expanding
the RoI features with transposed convolutions (see figure 3.12).

Figure 3.12: The Mask R-CNN’s head architectures (left uses a ResNet backbone and
right a Feature Pyramid Network backbone [106]). The heads predict the objects’ cat-
egories, bounding boxes and instance segmentation masks. He et al. [76] ©2017 IEEE,
no changes.

DeepLab The first iteration [30] of this architecture used a CNN backbone where
the last layer’s features were concatenated with features from early layers. The re-
sulting features were then expanded with atrous convolutions and bi-linear interpola-
tion. Furthermore, the authors used fully connected conditional random fields (CRF)
to iteratively refine the resulting masks and recover detailed local structures in a post-
processing step. This probabilistic graphical model aims to maximize agreement be-
tween similar pixels, while leveraging semantic class context.

DeepLabv2 [31] used atrous spatial pyramid pooling (ASSP) as a mean to better
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segment objects at different scales. This method consists in performing multiple atrous
convolutions with different dilation rates and finally pool the results together.

DeepLabv3 [32] up-samples the backbone’s image features with cascaded blocks,
each of them based on two convolutions and modified ASSP. ASSP was modified by
applying 1 × 1 convolution before three atrous convolutions with different dilation
rates, appending global average pooled features of the preceding block’s features and
applying batch normalization. These changes enabled the authors to discard the CRF
post-processing step without loss of performance.

DeepLabv3+ [33] is based on an encoder-decoder architecture (cf. figure 3.13). The
encoder is similar to DeepLabv3 with a single up-sampling block. To decrease com-
putation costs, convolutions are factored with a depth-wise convolution and a 1 × 1

convolution. Then, the decoder consists in concatenating the 1 × 1 convolved back-
bone’s features with the up-sampled features of the last encoder’s block followed by
convolutions and another up-sampling operation.

Figure 3.13: DeepLabv3+ architecture. Chen et al. [33] ©2018 IEEE, no changes.

3.2.4 Embeddings

An embedding is a mapping of a discrete input domain X to a continuous vector space
EX called the embedding space. It can be understood as a continuous representation of
X encoding relationships between samples that are meaningful in the learning context.
Embedding samples enables to evaluate their similarity and to perform operations such
as addition, subtractions, or interpolation.

Training ANNs consists in learning such a representation, the features extracted
from the data samples being their embedding vectors. Dimension reduction methods
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can then be applied to visualize embedded data samples, which enables to identify clus-
ters or outliers, and assess how well the ANNs separates the data (e.g. figure 3.14). In
most cases, EX has lower dimension than X especially when considering unstructured
data such as text, images, or videos. It can also have higher dimension, for example
when embedding categorical variables with the aim to fuse them with unstructured
data features. In this case, the embedding is trained along the rest of the network, with
a mutual influence on the feature extraction process [24, 104].

Figure 3.14: Comparison of embeddings learned by ANNs at different stages of their
training process (nth epoch). Gong et al. [64], CC BY, no changes.

https://creativecommons.org/licenses/by/4.0/
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Chapter 4

Deep Learning in Clinical
Dermatology

One of the first modern applications of artificial intelligence (AI) algorithms to medicine
was based on experts systems in the 1970s [22]. These algorithms consisted of a knowl-
edge base and an inference engine, which users could query by answering a set of pre-
defined questions. At this period, medical data was scarce, making algorithms based
on physician expertise the preferred approaches. This situation gradually evolved
with time as data availability and computing power steadily increased. The ensuing
progress of machine learning and deep learning enabled researchers to leverage this
data and create new applications reshaping medicine in every specialty [53, 158, 193].

Dermatology is a field of medicine particularly suited to AI thanks to the visual
accessibility of the skin and the relative facility to acquire image data. The recent
breakthroughs in computer vision, especially with convolutional neural networks, have
been followed by a myriad of dermatology applications described in several review
articles [47, 147, 151, 156]. These applications mostly target dermatologists and gen-
eral practitioners, but some commercial solutions even aim to advise patients directly
[152, 172, 198]. In this chapter, we cover image-based deep learning applications in
dermatology, mainly lesion diagnosis and severity grading, highlighting landmarks
papers and common technical approaches. Finally, we discuss the opportunities and
challenges of the field.

4.1 Deep Learning Applications in Dermatology

4.1.1 Lesion Differential Diagnosis

The majority of studies aimed to support skin cancer screening motivated by the find-
ing that patients’ life expectancy strongly improves [177] with the early detection of
dangerous forms of cutaneous neoplasia. While cancer screening is an already old re-

35
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search topic [25], the release of public datasets [166] and the organization of challenges1

by the international skin imaging collaboration (ISIC) in 2016 attracted the attention of
the machine learning community as it provided both the data and incentive for re-
searchers to tackle the problem. The best algorithms of the first competition [119] still
performed worse than dermatologists, but in 2017, the publication from Esteva et al.
[54] was a breakthrough that sparked the interest of both clinicians and researchers. It
was the first study of the field to leverage a massive dataset (129’450 clinical and der-
moscopy pictures) and achieve performance on par with twenty-one dermatologists for
binary classification of benign and malignant lesions. Several publications followed, re-
porting equivalent or better performance than experts on similar tasks [19, 20, 120, 121].
The top three algorithms of the 2018 ISIC competition outperformed a panel of 511 ex-
perts (283 of them board-certified dermatologists) [194] on the diagnosis of seven skin
cancer related conditions, illustrating the progress since the first edition of the chal-
lenge.

Since the clinical gold standard for skin cancer diagnosis is to perform a biopsy
histopathology test, researchers have trained deep learning models (DLMs) to classify
histology slides [74, 88, 89, 213]. Heckler et al. [79] even reported better performance
than eleven pathologists on a hundred slides for malignancy test, although the publi-
cation was received with concerns regarding the study design [60] such as the use of
cropped slides.

Researchers have also aimed to perform differential diagnosis beyond skin cancer
[224], notably Liu et al. [113] who trained a DLM on 16’114 teledermatology patient
cases. Their model was able to diagnose lesion pictures within a list of twenty-six com-
mon skin conditions and a larger list counting 419 different diseases. They observed
that their DLM was on par with dermatologists but superior to general practitioners
and nurses, and concluded that it could perform triage and improve referrals.

The classification of more specific diseases has also been investigated, for example
inflammatory skin diseases [212], facial disorders [63] or subtypes of eczema [91] and
psoriasis [6, 217]. Chan et al. [27] performed a prospective clinical validation of a
classification method for wounds and ulcers, among other publications on the same
topic [7, 67, 165]. The diagnosis of onychomycosis was studied based on clinical [73, 96],
dermoscopy [225] and histology [43] images.

4.1.2 Lesion Segmentation and Severity Grading

Following the diagnosis of a skin disease, dermatologists evaluate its progression stage
by grading its severity. Clinical scoring systems consist in weighting categorical sever-
ity scores of disease efflorescences with coarse estimates of lesions’ surface, for example
using hand surface units [162] (one hand unit corresponds to ∼1% of the body surface).
There have been three main approaches to automate these systems with deep learn-
ing: classification of lesions into severity levels, segmentation of lesions (delineation
of their boundaries) to quantify their surface or hybrid classification and segmentation

1ISIC Challenge: https://challenge.isic-archive.com (Accessed: 2nd February 2023)
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methods.
Automation of the psoriasis PASI index [56] has been widely studied with all three

approaches. Schaap et al. [174] trained a classification DLM for each of the PASI fea-
tures (erythema, desquamation, induration and area) and main body regions (trunk,
arms and legs) to predict discrete scores. Meienberger et al. [127] along with other
studies [41, 108, 157] segmented psoriasis lesions from patients’ pictures and produced
precise estimates of their surface. Mooen et al. [136] proposed algorithms for both
psoriasis segmentation and severity classification.

Similarly, researchers created classification DLMs for acne severity grading [105,
216]. Seite et al. used a combination of classification and segmentation DLMs to rate
acne based on mobile phone pictures [178]. Medela et al. performed a comparable
study to grade atopic dermatitis [126] and made their model accessible via a web plat-
form. Other studies targeted skin cancer [110], wounds and ulcers [28, 143, 155], eczema
[144], vitiligo [117] and rosacea [15]. Segmented lesions were compared following the
ugly duckling concept [68] to find abnormalities [134]. Researchers have also worked
on histology slides [89, 202], mainly for skin cancer. Based on lesion segmentation,
counts could be inferred and used as markers for severity [125, 176] or to monitor the
evolution of diseases.

4.1.3 Common Technical Approaches

The main data sources used in deep learning applications are clinical photographs, der-
moscopy images and histology slides. The usual preprocessing procedures involve im-
age resizing, centering, cropping, color calibration and artifacts removal (color scales,
clinical markings, etc.). During training, data is usually augmented with random ro-
tations, flips, translations, scaling, color transformations, cutouts, brightness, and con-
trast changes.

While most published models use transfer learning with ImageNet [44] pretrain-
ing, recent works have started to use self-supervised pretraining on datasets from the
medical domain instead [14, 29, 134].

Most studies analyze a single image per lesion, but some approaches process several
images from the same lesion [113], in which case the image features are first extracted
independently and then combined, for example by averaging. When clinical metadata
is available, it is either one-hot encoded (unique encoding with sequence of 0 and 1) or
embedded before being merged with image features [70, 218].

DLMs in dermatology are usually based on popular convolutional neural network
(CNN) architecture such as ResNet [77], Inception [189] or EfficientNet [190] for lesion
diagnosis and variations of U-Net [164], Mask R-CNN [76], DeepLab [32] for lesion
segmentation. Every winning algorithm [61, 70, 122, 145] of the ISIC competitions was
based on ensembles of CNNs, except for the first edition in 2016 [220]. In such config-
urations, the networks’ predictions are usually combined through averaging or voting
strategies, although some researchers have also combined them with machine learning
algorithms [196].
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To guide the training process, researchers usually use variations of the cross-entropy
and focal loss for classification with the addition of dice loss for segmentation. The
main classification performance metrics are sensitivity (recall), specificity, area under
the ROC curve, positive predictive value (precision) and balanced accuracy. For lesion
segmentation researchers have used sensitivity, specificity, positive predictive value,
intersection over union and dice score.

4.2 Opportunities

While deep learning applications can only tackle restricted tasks, they enable “aug-
mented intelligence” and have the potential to “enhance and scale human expertise”
[9, 192]:

• DLMs can assist experts for decision support. A study reported improved skin
cancer screening diagnostic accuracy for clinicians assisted by DLMs, especially
for general practitioners and dermatologists with less experience [195]. This result
also indicates that DLMs can support clinician education.

• Primary care clinicians can be empowered to perform triage [87], improving the
accuracy of expert referrals and the adequacy of proposed treatments. The fre-
quency of misdiagnoses and subsequent erroneous treatments could be reduced.

• Teledermatology applications will benefit from an important scale-up by leverag-
ing deep learning (cf. chapter 9). Their synergy could help alleviate the shortage
of dermatologists [97, 161], and extend health services to new geographical re-
gions [124, 211].

• Due to their algorithmic nature, DLM predictions are fully automated and repro-
ducible. Repetitive tasks such as mole assessment or histopathology analysis of
histology slides can be automated with high precision, thus reducing costs and
enabling dermatologists to spend more time with patients.

• Intra- and inter-experts variations [18, 66, 219] can be reduced with DLMs, which
generate objective and reproducible quantitative metrics. This enables more pre-
cise disease monitoring, benefiting drug development trials and opening the path
to personalized medicine.

Overall, if DLMs are implemented as per the recommendations of the American
Medical Association [9, 192], the general quality of healthcare services should improve
to the advantage of all stakeholders [34].
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4.3 Challenges

4.3.1 Comparison with Dermatologists

The fairness of performance comparisons between DLMs and dermatologists is de-
bated, as most studies operate in settings that strongly differ from practice. Researchers
have raised concerns on recurring biases [40, 47, 60, 170]. For instance, studies artifi-
cially restrict the list of admissible diagnoses, unlike practice where any conditions can
arise. Skin cancer screening, for example, is often reduced to a binary malignancy test
and other diagnoses are ignored without any considerations on the risks associated to
future evolution of the lesions. Furthermore, comparisons are performed on test im-
ages, usually from the same source as the training images, which does not reflect the
actual generalization capacity of DLMs [45, 194] that is expected from dermatologists.

Dermatologists follow a holistic approach, considering each patient’s condition as
a whole, while DLMs only analyze a lesion’s picture or specific aspects of the patient’s
condition. Comparing differential diagnosis performance on sole images without giv-
ing dermatologists access to patients, their history, or other relevant clinical information
differs from what they were trained for and are used to in practice.

Published DLMs are mostly designed to diagnose diseases equivalently, while der-
matologists, on the other hand, take particular care to detect diseases with high impact
on patients’ lives. They can argue in favor of their decisions, while the decision pro-
cesses of DLMs remain opaque as they are too complex to analyze [206]. Overall, it
remains unclear whether DLMs trained from experts’ labels can ever be said to outper-
form dermatologists.

4.3.2 Lack of Data

DLMs can autonomously learn hierarchical features from unstructured data, provided
they are trained over sufficiently large datasets. The quality of data is key. Otherwise,
training will not converge or predictions will be unreliable [59]. To achieve robust per-
formance, training data should include sufficient samples for every variation (diseases,
phenotypes, skin types, picture capture settings, etc.) that could be encountered during
inference. This implies that the more general the application range of a model is, the
more training data will be required. The extreme case being teledermatology [113].

Conversely, restricting the model application’s scope eases these requirements. Im-
posing protocols on data acquisition [80] by defining constraints on captured body re-
gions, patient posture, zoom level, background also reduces the necessary quantity of
data. The use of standardized devices such as full-body imaging systems facilitates this
process. For legacy unstandardized datasets, data augmentations can be a mitigation
solution [180]. Another possibility is to use generative models to produce synthetic
data [2, 58].

Pretraining DLMs with large public datasets such as ImageNet [44] is a popular
and effective method to palliate data scarcity [140]. It relies on the assumption that
basic features (edges, corners, shapes, etc.) learned by the early convolutional layers
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will accommodate any vision problem, including dermatology-specific tasks. While
clinical data becomes more and more available, it often remains unlabeled due to the
lack of resources. In these cases, it is still possible to leverage this data by applying
self-supervised pretraining techniques [14, 29, 134].

Data acquisition is also challenging due to the legal and ethical constraints of the
medical field. Patients should provide informed consent, and clinical datasets cannot
be shared easily between institutions. Consequently, researchers often develop their
DLMs based on private monocentric datasets and cannot compare achieved results
with their peers. A solution to this problem is to establish public datasets through
initiatives like DataDerm [148] and ISIC, or at least, publish anonymized test sets to en-
able researchers to report comparable performance. When this is not possible, multiple
research institutions can collaborate and train DLMs together with federated learning
[173]. This method allows to leverage multicentric datasets, improving DLMs robust-
ness, without requiring patient data sharing.

4.3.3 Bias in Data

Any dataset only mirrors facets of reality, and thus introduces biases that need to be
mitigated. Since DLMs are trained through the optimization of proxy performance
measures, they tend to learn shortcuts rather than solving tasks as expected [54, 209].
Biases can arise from technical artifacts such as clinical markings, device-specific set-
tings, picture background or secondary recurring objects like rulers and color charts.
The impact of these artifacts can usually be attenuated using preprocessing techniques
such as cropping, manual removal or color calibration.

Most public dermatology datasets contain patients with Fitzpatrick skin type I to IV
[3, 4, 103]. This implies that the performance of DLMs trained over such datasets cannot
be guaranteed for patients with different skin types [72, 154]. An aggravating factor
is that diseases’ phenotypes may differ between skin types and introduce additional
confusion [38]. Collecting sufficient data from every skin type is thus required.

Another bias is the distribution and development stage of skin diseases. Typical
European datasets contain patients afflicted with local diseases [50], usually at an early
stage since most patients have the opportunity to receive appropriate care before their
state worsens. However, the distributions observed in teledermatology settings or in
low-income countries with restricted healthcare systems definitely differ. Diseases’
phenotypes also vary depending on the stage of the disease [38]. While these varia-
tions can still be recognized by dermatologists, they may be problematic for DLMs.
Thus, researchers should validate whether the spectrum of diseases, their development
stage and phenotypes are covered appropriately in their training set.

Expert label acquisition is challenging in dermatology context. Many differential
diagnosis studies use annotations that do not follow clinical gold standards, which de-
pending on the targeted diseases vary from histopathology biopsy tests to anamnesis-
based diagnoses including full skin examination and laboratory tests. Due to practical
constraints (costs, retrospective studies, etc.), many studies resort to diagnoses based
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on sole lesion images, in the best case, by multiple experts from whom a consensus is
evaluated [113]. With the inevitable inter-raters variations [18, 66, 219] compounded
by the unfamiliarity of most dermatologists with image-based diagnosis, there may be
cases where expert’s annotations do not match actual clinical diagnoses, introducing
noise and raters’ bias. Adding to this, Heckler et al. [78] showed, in the context of skin
cancer, that DLMs were highly sensitive to label noise. The ideal solution would be to
only use data samples with labels produced following clinical gold standards.

In practice, there are also “normal” biases that cannot be fully mitigated. Some dis-
eases have specific predilection sites such as rosacea and onychomycosis, which exclu-
sively affect the head and nails regions respectively. This implies that all pictures from
these diseases will inevitably involve these body regions. Depending on the training
set, a DLM could learn to recognize these specific body regions rather than the actual
diseases. It is important to identify such biases, decide whether they are acceptable,
and adopt appropriate verification processes. For rosacea and onychomycosis, a pos-
sible mitigating measure would be to include pictures of healthy patients’ heads and
nails, as well as pictures from other diseases affecting the same regions. To detect bi-
ases, it is usually helpful to analyze, which parts of an image have the most influence
on DLMs predictions using visualization techniques such as Grad-CAM [179], saliency
maps [181] and attention [95]. In general, full automation should be restricted to easily
verifiable tasks with controlled negative outcomes. For more complicated cases, it is
safer to keep experts in the loop.

4.3.4 Deployment of Deep Learning Models

There are various practical challenges faced during the deployment of DLMs [75], the
most obvious being the necessary technical infrastructure with sufficient computational
capacity. The complexity and means depend on the context. Launching a deep learn-
ing service for a city hospital will entail different challenges than setting-up a teled-
ermatology service in the countryside. Aside from these technical considerations, the
translation of DLMs from the research environment to the real world can raise several
issues.

We already discussed that training data should reflect the situations where DLMs
will be applied and ideally be acquired from the same source. Researchers should also
consider that these datasets are fixed in time, whereas the data distribution encountered
in practice may change over time [197] (e.g. pandemics). This implies the need to
monitor any evolution and update the deployed DLMs accordingly.

Public challenges’ winning approaches (e.g. ISIC) are mostly based on ensembles of
complex DLMs. These have very high computational requirements and cannot realisti-
cally be industrialized for deployment in practice. Furthermore, each of the ensemble’s
models would need to be maintained and updated over time, which is impractical.

Except for well-studied conditions such as skin cancer, rare diseases are often un-
derrepresented in dermatology datasets or simply ignored due to missing data. This is
an issue for most studies’ DLMs, as they cannot handle unknown classes and would in-
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stead predict the most similar skin condition among the diseases they were trained for.
Thus, deployed DLMs should be able to recognize such cases [167] and warn clinicians
when needed.

Study design should ensure that both research and practical clinical objectives align.
For example, skin cancer screening researchers aim to predict lesion malignancy and
usually tune their DLMs to balance sensitivity with specificity. In clinical settings, sus-
picion of malignancy translates to taking a biopsy for histopathology analysis. When
considering the actual need of a biopsy, dermatologists are trained to balance estimated
risks with the operation burden for patients. Should these DLMs be deployed in prac-
tice, it is unclear whether the chosen sensitivity and specificity compromise could result
in an increase in unnecessary biopsies. To prevent such situations, studies should re-
port all metrics relevant for clinical utility, in this case, the precision.

Although it is still a subject of debate [205], the European general data protection
regulation (GDPR) requires automated decision to be explainable (art. 22, recital 71)
[26]. However, the explainability of DLMs is a well-known problem and open topic
of research [183, 201]. With the current American legal framework [199], DLMs are
considered as medical devices, implying that they can only aid dermatologists, who
keep the full liability of their decisions. Another legal challenge introduced by GDPR
is data ownership and privacy. It is required that patients are properly informed on
the usage of their data and be able to request both corrections and erasures (art. 12-19).
Forgetting data samples is also an open topic of research [114], so it is still unclear how
this could be implemented in practice. Furthermore, it was shown that training data
could be extracted from deployed DLMs [112], which could put patient data at risk.
Data privacy in deep learning and the protection against such attacks is again an open
topic of research [17].

4.3.5 Adoption of Deep Learning Models

The advent of new technologies or methods is always met with contrasting opinions,
including a certain degree of scepticism and resistance. deep learning applications in
dermatology are not an exception.

Some dermatologists are wary that AI imposes a threat to their profession [52, 123],
while patients may dread to be treated by machines in the future [142, 223]. Such fears
come from generalized misconceptions on the actual capacities of deep learning meth-
ods and should fade with better education, starting with dermatologists [139, 151, 175].
Patients should be reassured that dermatologists, on the contrary, will be more avail-
able for them as time-consuming tasks are automated [192]. They should understand
that automation will reduce inter-experts variations and improve overall care quality. It
would be beneficial for research projects to systematically include dermatologists to en-
sure that clinical utility is among research goals and outcomes. In their review, Zakhem
et al. [221] observed that only 41% of pre-February 2019 machine learning publications
related to skin cancer included dermatologists among their authors.

Many dermatologists do not believe that the performance of DLMs on research
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datasets will translate to practice [45, 133]. Freeman et al. [57] analyzed studies on
six different skin cancer screening mobile phone applications and concluded that they
could not be relied on to detect every melanoma cases and that practice performance is
likely poorer than measured in laboratory. This idea is further reinforced by the opacity
of DLMs, which are so complex that their decisions cannot be explained [206]. In com-
parison, dermatologists can explain the rationale behind their choices. To overcome
this problem and gain the trust of both clinicians and patients, studies should fulfill
the position statement of the American Medical Association [9, 192] on augmented in-
telligence in health care, which especially advocates that clinical trials must validate
actual benefits in practice. Extensions of existing clinical protocols have already been
proposed to accommodate for AI-based methods [111, 163]. So far, one of the rare
prospective diagnostic accuracy study for melanoma [118] compared the performance
of dermatologists with several medical devices including a deep learning based com-
mercial solution on a total of 184 patients whose lesions were excised and assessed by
2 pathologists. The authors concluded that the top device in terms of sensitivity and
specificity was the deep learning solution and suggested it could be used to aid clini-
cians with diagnosis, but would not replace clinical decision-making. While the scope
of this finding was contested in a letter [170], which highlighted among other concerns
that a sensitivity and specificity analysis was not sufficient to fully assess diagnostic
added value, this is already a step in the right direction.
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Chapter 5

Anatomy Mapping of Clinical
Images of Patients

In this chapter, we propose a method to generate an anatomical region mapping from
patients’ photographs. The determination of lesions’ locations on the body is key for
the analysis of skin diseases. However, its automation has not been researched so far.
Our mappings can be combined with existing dermatology applications such as lesion
detection or segmentation, enabling new kinds of research analysis (e.g. lesion anatom-
ical stratification in section 7.3).

Section 5.1 presents our research article on the macro- and micro-anatomy map-
ping of patient’s photographs. In section 5.2, we extend the micro-anatomy mapping
method to other regions of the body.

5.1 Automated Anatomical Mapping of Skin Photographs

This research article was published [11] at the journal of the European Academy of
Dermatology and Venereology 1. Our work was based on two main hypotheses. First,
we hypothesized that a deep learning model could be trained to recognize anatomy
regions in patches of skin photographs with at least the same performance as humans.
Second, we hypothesized that including the lesion location in the training of an image-
based differential diagnosis classifier would benefit performance.

Both hypotheses were confirmed: we propose an approach to perform coarse local-
isation of the main body regions and observe improved differential diagnosis perfor-
mance when leveraging this information together with lesion images. Furthermore, we
suggest a method to produce fine anatomical mapping of the ear region with sufficient
precision to assist dermatologists in lesion documentation. The location information is
one of the first features of lesion dermatological description and has an influence on
differential diagnosis since skin diseases may have predilection sites. Its determination
is thus an important preliminary step in the analysis of skin lesions.

1Full text via DOI: https://doi.org/10.1111/jdv.18476 (Accessed: 2nd February 2023)
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Abstract
Background The exact location of skin lesions is key in clinical dermatology. On one hand, it supports differential diag-

nosis (DD) since most skin conditions have specific predilection sites. On the other hand, location matters for dermato-

surgical interventions. In practice, lesion evaluation is not well standardized and anatomical descriptions vary or lack

altogether. Automated determination of anatomical location could benefit both situations.

Objective Establish an automated method to determine anatomical regions in clinical patient pictures and evaluate the

gain in DD performance of a deep learning model (DLM) when trained with lesion locations and images.

Methods Retrospective study based on three datasets: macro-anatomy for the main body regions with 6000 patient

pictures partially labelled by a student, micro-anatomy for the ear region with 182 pictures labelled by a student and DD

with 3347 pictures of 16 diseases determined by dermatologists in clinical settings. For each dataset, a DLM was trained

and evaluated on an independent test set. The primary outcome measures were the precision and sensitivity with 95%

CI. For DD, we compared the performance of a DLM trained with lesion pictures only with a DLM trained with both pic-

tures and locations.

Results The average precision and sensitivity were 85% (CI 84–86), 84% (CI 83–85) for macro-anatomy, 81% (CI 80–

83), 80% (CI 77–83) for micro-anatomy and 82% (CI 78–85), 81% (CI 77–84) for DD. We observed an improvement in DD

performance of 6% (McNemar test P-value 0.0009) for both average precision and sensitivity when training with both

lesion pictures and locations.

Conclusion Including location can be beneficial for DD DLM performance. The proposed method can generate body

region maps from patient pictures and even reach surgery relevant anatomical precision, e.g. the ear region. Our method

enables automated search of large clinical databases and make targeted anatomical image retrieval possible.
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Introduction
In clinical practice, the differential diagnosis (DD) of a skin

lesion is influenced to a great extent by its anatomical location.

Certain body regions are more likely than others to be affected

by skin diseases, some of which have specific predilection sites.1

Although this information is straightforward to obtain manually

in clinical settings, it is more difficult to infer from patient pic-

tures only, for example, in teledermatology context. The

complexity increases the more zoomed-in the pictures and the

less visible the anatomical landmarks are. An example of skin

patches that are increasingly difficult to localize for human raters

from image alone is shown in the Fig. S2. The ability to auto-

matically localize small skin patches would also be useful for the

automation of anatomical region mapping in skin photographs,

as smaller skin patches are less likely to contain overlapping

body parts, for example, folded arms over the trunk.

� 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
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To be relevant in clinical settings, automated anatomical map-

pings should be more detailed than the main body regions and

ideally reproduce the established international surface anatomy

terminology.2 Mohs micrographic surgery is a common operation

in dermatology to remove cancerous lesions. In practice, surgeons

are regularly confronted with situations where lesion’s locations

defined in a patient’s profile are imprecise, sometimes wrong.3

These mistakes happen due to the sheer number of different

regions in the human anatomy and the difficulty of remembering

them all, even for experienced clinicians. To avoid wrong site sur-

gery, the anatomical description of biopsy sites is crucial as they

may heal scar-free and the remaining tumour may become invisi-

ble.4 Photographs might be unavailable to the surgeon, and

patients may not be able to clarify biopsy sites, especially after sev-

eral weeks delay for surgical appointment. With Mohs micro-

graphic surgery, these issues are even more critical as it is a

margin-controlled surgery, where there might not be a positive

histological confirmation of the tumour right after the first stage

of surgery. An automated system to assist clinicians with precise

localization could benefit the documentation of biopsy locations.

Finally, another aspect to consider is the ever-increasing size

of patient records and image databases kept for disease monitor-

ing, future reference or research. The metadata of these images is

often limited, restricting the usability of this data. To improve

flexibility of these databases and accommodate new purpose of

use, targeted image retrieval should be possible. Anatomical

metadata would enable searching for specific regions of interest.

However, producing such metadata manually is too costly in

practice. With no automation in place, these valuable data

sources remain underused.

Our study aimed to solve these challenges. We proposed a

macro-anatomical deep learning model (DLM) to localize small

skin patches on the main body regions, compared its perfor-

mance with experts and showed that lesion location could

improve classical DD DLM performance. Then, we trained a

micro-anatomical DLM to segment the ear in its sub-regions, an

approach that could assist dermatologists in lesion documenta-

tion. Both DLMs enable the generation at scale of the anatomical

metadata required to perform targeted image retrieval.

Materials and methods
All images were obtained at the University Hospital of Zurich

mainly from adult patients, type 1 to 3 on the Fitzpatrick scale. The

data were anonymized by the removal of metadata and all personal

identifying information. Subsequently, pictures were split and stored

in small tiles (patches) precluding patient identification. Clinical

images were taken at the same hospital with standard camera by a

professional photographer. Capturing conditions were standardized:

similar backgrounds and distances, controlled lighting and illumina-

tion. The visible anatomical region depended on lesions locations

and were photographed mostly systematically. There were no arte-

facts such as pen markings, rulers or markings. We did not perform

post- or pre- processing such as colour normalization, filtering or

cropping (aside for the macro-anatomy location dataset).

Macro-anatomy

Body regions dataset The full dataset contained 6000 high-

resolution patient’s pictures showing the main body regions

(Fig. S1): arms, legs, feet, hands, heads, and trunks. The initial

training set, referred to as expert labelled (EL), contained 600

images (100 per body region) manually cropped to a single region.

The remaining pictures composed the DL labelled (DLL) dataset.

Their annotations were generated iteratively during the training

process. We also included an “other” category of randomly

selected pictures from the ImageNet5 dataset to make the DLM

robust against non-skin pictures such as clothes and background.

The images were cut into square patches with side length of

512 pixels corresponding to squares of 5–15 cm side length. This

resulted in a training set composed of 277 122 DLL patches and

27 685 EL patches.

The DLM performance was evaluated on a separate test set of

140 independent images divided in 3570 strongly labelled

patches. The body region distribution of the patches is available

in the supplementary material. An example of a picture along

with the DLM predictions is shown in the Fig. S3.

DLM training. The DLM was trained to localize each patch indi-

vidually without having access to the rest of the image. We fine-

tuned an EfficientNet6 B2 DLM pre-trained on the ImageNet

dataset with batch size 32 and input size 260 pixels for 40

epochs. We adopted a cyclic training approach inspired from

Yalniz et al.7 The DLM was first trained on EL patches with pro-

gressive resizing and used to predict the DLL set labels. Then, we

retrained the DLM over the larger DLL dataset and fine-tuned

with the EL patches. We repeated this cycle three times until the

performance over the validation set stopped improving. During

training, we scheduled the learning rate by applying the one

cycle policy as suggested in Smith.8

Differential diagnosis from lesion image and
macro-anatomical location

DD dataset We selected 16 skin diseases (detailed in Table 2)

known to have specific predilection sites for a total of 3347 pic-

tures. Diagnosis labels were provided by the photographer fol-

lowing dermatologists instructions who diagnosed patients in-

person. The pictures repartition and usual predilection sites are

presented in Table S5. The test set was generated by randomly

sampling 20% of the pictures per disease ensuring no patient

leak, which resulted in a total of 670 images.

DLM training We trained two DLMs based on the ResNet9

architecture to perform the DD. Model A used only the

� 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
on behalf of European Academy of Dermatology and Venereology.
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lesion image, while Model B also had access to the lesion

location predicted by the macro-anatomy DLM. To include

this information, Model B learned a 128 dimensions embed-

ding of the location, which was appended to the extracted

lesion features (the following layer’s size was adapted to

account for this change). This is the only difference between

both DLMs, which were trained following similar procedure,

ImageNet pretraining, one cycle scheduling for the learning

rate, with a batch size of 32, an input size of 512 pixels for

40 epochs.

Micro-anatomy

Ear segmentation dataset This dataset consisted of 182 ear

photographs, each annotated for 12 different regions: anti-helix,

anti-tragus, concha cavum, concha cymba, external auditory

canal, helical root, helix, lobule, notch, scaphoid fossa, tragus,

and triangular fossa. We also included the “non-ear” class to

represent anything but ears. We kept 37 randomly selected pic-

tures for the test set (ensuring no leak) to evaluate performance.

An example of ear picture with its ground truth annotation is

presented in Fig. 1.

DLM training We fine-tuned a U-Net10 DLM with a ResNet

backbone pre-trained on ImageNet. The training procedure was

similar to the macro-anatomy DLM if we consider only the EL

part of the cycle. The DLM was trained with an input size of 380

pixels, a batch size of 4 for 40 epochs.

Analysis
The performance of all DLMs was evaluated on the respective

test sets using the average precision and sensitivity metrics

(specificity available in the supplementary material) with 95%

confidence interval determined using the non-parametric boot-

strap resampling method.

In addition, for the macro-anatomy experiment, we randomly

sampled 175 patches (25 per body region + the other category)

from the test set, requested 6 dermatologists and 12 medical stu-

dents to localize them and evaluated their performance similarly

to the DLM.

For the DD experiment, we applied the McNemar’s test to

confirm whether the DLMs had significant difference in error

proportions, following established practice for experiments with

limited data.11

In the case of the micro-anatomy experiment, the average per-

formance was evaluated on every pixel of the test images.

Results

Macro-anatomy
The DLM and experts performance are presented in Table 1,

while Fig. 2 shows both confusion matrices. There was no

Figure 1 Ear test sample (a) with expert’s annotations (b) and DLM’s predictions (c). Picture randomly selected from the test set. The
original image is shown in (a), the expert’s annotation in (b) and the DLM’s predictions in (c). The regions are coloured as follows: anti-
helix in violet, anti-tragus in light violet, concha cavum in blue, concha cymba in light blue, external auditory canal in green, helical root in
light green, helix in light yellow, lobule in yellow, notch in light orange, scaphoid fossa in orange, tragus in red, triangular fossa in light
brown, non-ear in dark shade.

� 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
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significant difference between the performance of dermatologists

and medical students (Table S2).

The DLM reached an average precision of 85% (CI 84–86)
and an average sensitivity of 84% (CI 83–85). In contrast, the

average of experts’ precision was 62% (CI 56–70) and for sensi-

tivity 57% (CI 52–65).
Unsurprisingly, the DLM could almost flawlessly differentiate

skin picture from non-skin pictures. The different body regions

were well discriminated by the DLM, the best example being the

patches coming from the head region, which were rarely con-

fused (~6%) with any other classes. Leg was the worst perform-

ing class, confused with either arms or trunk and vice versa.

The experts’ large standard deviation (Fig. 2b) for each region

indicates an important inter-individual variation and thus high-

lights the lack of consensus. The confusion matrix shows diffi-

culties with the trunk, arm and leg regions. The relatively higher

sensitivity of the trunk region and its lower precision when com-

pared with the legs and arms indicates that participants tended

to default to the trunk region when no clear cues were available.

The confusion of the trunk with the head region was due to

patches showing skin from the cheeks. Feet were also mistaken

with hands, but the opposite occurred less frequently. Two to

three patches from the head containing mainly hairs were mis-

taken with the non-skin class.

Table 1 Macro-anatomy performance

Region DLM Experts

Test images Precision Sensitivity Test images Precision Sensitivity

Arm 510 75% (72–80) 77% (74–80) 25 44% (24–83) 35% (13–54)

Leg 510 80% (75–84) 69% (65–72) 25 49% (34–65) 42% (26–57)

Feet 510 86% (83–89) 88% (86–91) 25 78% (50–97) 50% (31–66)

Hand 510 93% (90–95) 84% (80–87) 25 62% (44–82) 71% (49–90)

Head 510 89% (86–92) 94% (92–96) 25 68% (42–90) 48% (28–77)

Other 510 100% (100–100) 99% (98–99) 25 91% (79–100) 100% (100–100)

Trunk 510 70% (66–74) 80% (77–84) 25 39% (27–59) 55% (22–81)

Average - 85% (84–86) 84% (83–85) – 62% (56–70) 57% (52–65)

Performance evaluated on the full test set for the DLM and on a stratified random sample of the test set for the expert panel composed of 6 dermatologists
and 12 students. The values in parentheses are the 95% confidence interval. For the experts, the performance reported is the average of all individual perfor-
mances.

(a) (b)

Figure 2 Confusion matrices for the macro-anatomy DLM (a) and the experts (b). The values show the proportion of patches � SD. The
average proportion � SD of the patches localized among the six body regions and the “other” class. The vertical axis shows the true
labels of the patches while the horizontal axis shows the predicted labels. The diagonal values correspond to the sensitivity for the body
regions.

� 2022 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd
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Differential diagnosis from lesion image and
macro-anatomical location
The performance of both DLMs is presented in Table 2. Model

B reached an average precision and sensitivity of 82% (CI 78–
85) and 81% (CI 77–84). Compared with model A, which

achieved 76% (CI 73–80) and 75% (CI 72–79) for average preci-
sion and sensitivity, this represents an average improvement of

6% for both metrics.

The McNemar’s test applied to the full test set confirmed that

both classifiers had significant difference in error proportions

with P-value 0.0009.

We observed a reduction of the sensitivity for acne, ony-

chomycosis and vitiligo in model B. This was due to confusions

with diseases sharing similar predilection sites (see confusion

matrices in Figs. S4-S5), for example, the head for acne with

rosacea, melasma and impetigo. The drop in precision for mel-

asma and rosacea can be explained similarly.

Micro-anatomy
The performance of the ear segmentation DLM is presented in

Fig. 3.

The DLM reached an average precision of 81% (CI 80–83)
and an average sensitivity of 80% (CI 77–83). The most chal-

lenging classes were the external auditory canal, notch and sca-

phoid fossa. These were also the smallest regions with less

training samples in comparison to the other classes. Depending

on the ear type and orientation, they could be absent or very

small in comparison with neighbouring regions.

Discussion
We addressed the challenge to automatically map skin pictures

to their corresponding anatomical regions. A macro-anatomy

DLM was trained using a dataset of 60000 patient images to map

small skin patches to the corresponding body regions. An expert

panel of 18 dermatologists and medical students performed a

similar task with lower precision and sensitivity and with high

inter-rater variability. We showed that lesions location could

improve DD DLM performance. Finally, we presented a micro-

anatomy DLM able to segment ear pictures precisely enough for

surgery applications.

Previous studies on anatomy segmentation with DL have

focused on 3D CT scans to identify body parts and organs.12,13

While there have been studies on geographical mapping of pho-

tographs’ origin using DL on a global scale,14 our study is to the

best of our knowledge the first attempt to do the same on the

human body surface from standard photographs. The combined

use of lesion location and image for DD were limited so far to

skin cancer studies,15,16 which also leveraged other patient clini-

cal features such as age and gender, yielding improved DD accu-

racy. Lesion location was also used as secondary objective in

multi-task learning context to improve performance of lesion

morphology classification.17

One design limitation of this study is to restrict the DD exper-

iment to diseases with specific predilection sites. In future work

we will confirm if the reported performance improvement also

holds when including other diagnoses without this constraint.

This study is also limited by its choice of macro-anatomy body

Table 2 Differential diagnosis performance

Disease Test images Precision A Sensitivity A Precision B Sensitivity B

Acne 48 84% (74–94) 77% (66–88) 88% (74–96) 73% (63–83)

Drug eruptions 43 85% (74–94) 79% (66–89) 97% (93–100) 86% (73–95)

Darier disease 14 64% (33–89) 50% (24–72) 67% (33–91) 57% (32–83)

Dyshidrotic eczema 50 77% (66–88) 88% (80–96) 87% (78–96) 94% (88–100)

Nummular dermatitis 34 79% (68–90) 88% (75–97) 84% (72–93) 91% (78–100)

Hand eczema 50 74% (63–84) 74% (62–85) 76% (66–86) 82% (70–92)

Impetigo 19 76% (56–97) 68% (44–92) 88% (71–100) 79% (55–98)

Melasma 42 60% (44–74) 67% (51–80) 57% (41–69) 74% (58–89)

Morphea 68 84% (75–91) 75% (66–84) 97% (91–100) 88% (81–96)

Onychomycosis 60 81% (72–91) 90% (83–97) 85% (79–94) 88% (81–96)

Palmoplantar keratoderma 45 85% (73–93) 73% (60–84) 92% (83–98) 76% (64–85)

Pityriasis rosea 50 74% (62–83) 84% (75–92) 78% (67–88) 94% (84–99)

Rosacea 49 79% (67–91) 69% (55–83) 75% (63–87) 73% (63–84)

Tinea pedis 27 71% (49–89) 56% (40–74) 84% (71–98) 78% (63–94)

Ulcer 41 90% (81–99) 93% (79–100) 95% (87–100) 93% (79–100)

Vitiligo 40 61% (49–72) 70% (58–82) 62% (49–76) 62% (47–75)

Average – 76% (73–80) 75% (72–79) 82% (78–85) 81% (77–84)

Performance evaluated on a 20% random sample of the images for each diagnosis (ensuring no patient leak). Model A was trained with lesion pictures only,
while model B also had access to the lesions’ locations. The 95% confidence interval is shown in parentheses.
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regions, which is not sufficiently precise for dermatological

description of lesions. The natural improvement is to refine the

taxonomy. Approaches similar to the proposed micro-anatomy

DLM for ears can be applied to other regions, which we plan to

do in future work as well. Finally, another limitation of this

study comes from the standardized nature of the data used to

train the DLMs. All training images came from the same hospital

and were taken with similar lighting, zoom and patient posture.

Following the CLEAR guidelines,18 we determined the follow-

ing bias sources in our study. There was a relative class imbal-

ance between some of the diagnoses, which we mainly mitigated

during dataset preparation by capping the total number of

images per diagnoses (images were selected randomly). We

chose not to vary the class distribution between the train and test

set due to the limited amount of available pictures. The achieved

performance showed that the minority classes (Darier disease,

Impetigo and Tinea pedis) were not overlooked by the DLM and

did benefit from the addition of lesions location.

Patients included in our datasets mainly had skin type 1 to 3

on the Fitzpatrick scale, implying that our DLM performance

are valid only on patients with this skin pigmentation. Unfortu-

nately no patient-level image metadata was available, which pre-

cluded the evaluation of related biases and constitutes a

theoretical limit of this study.

Finally, since the chosen diseases had specific predilection

sites, the images showed different anatomical parts, e.g., acne

pictures always included patients heads, causing a bias. This was

mitigated by selecting skin diseases such that each of the main

body regions were among the predilection sites of at least four

different diseases.

In direct application of our study, we generated both the

macro- and micro-anatomical metadata of our institutes derma-

tology database (over 180 000 images), fully automatically and

with no time-consuming manual intervention, illustrating the

scalability and applicability of our approach. While the whole

analysis was performed in <6 h with our DLMs, we estimate that

one human annotator would require a minimum of 763 working

days for the macroanatomical mapping (2 min per images) and

32 days for the microanatomical mapping of the ear pictures (10

min per images). With this metadata, the dermatology institute

can now query its database for full or cropped pictures contain-

ing specific body regions or ear sub-regions. Since diagnosis is

usually kept as metadata, a practical example of image retrieval

would be to look for cases of eczema located on the leg: a first fil-

ter would return the available images diagnosed with eczema,

followed by a second filter, which would extract the leg region.

An error analysis revealed that the DLMs performance were

lower when images were captured in too dissimilar conditions

or from specific regions (genitals, tongue, etc.). This drawback is

faced by all deep learning (DL) approaches and can be tackled

by fine-tuning the DLM on an external validation set acquired

under the same conditions. This process would directly start

(a) (b)

Figure 3 Ear segmentation DLM’s micro-anatomical performance. The values show the proportion of images� SD. (a) Precision and sen-
sitivity: the average pixel precision and sensitivity reached on the test set by the DLM. (b) Confusion matrix: the average pixel proportion
segmented among the 12 ear regions and the “non-other” class achieved by the DLM. The vertical axis shows the true pixel labels while the
horizontal axis shows the pixel labels predicted by the DLM. The diagonal values correspond to the sensitivity for the ear regions.
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with the DLMs’ parameters learned in this study instead of the

ones obtained on ImageNet, effectively reducing training costs

and dataset size requirements.

While lesions locations could theoretically also be extracted

by text mining patients records, this information should be

accurately documented and properly linked to the correspond-

ing patients images, which is not usually the case in clinical prac-

tice where reported locations can be imprecise.3,4 One of our

DLMs purposes is especially to assist clinicians in reporting

accurate locations. The DLMs presented in this work can be

regarded as a building block for future automated DD systems.

One open issue with current photo diagnosis systems is that by

fully relying on the capacities of DLMs to autonomously find

features and learn how to combine them, researchers are not

able to understand the algorithms’ decision process anymore as

the complexity of the DLMs grow. An alternative would be to

base DL systems on the actual DD processes (usually decision

trees) followed by dermatologists and use different DLMs for

each step in the decision tree. Clinicians could then inspect and

validate the intermediate DLMs’ predictions to better under-

stand the final recommendation of the system. As with any dif-

ferential diagnosis, this starts with the location on the body.
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SUPPORTING INFORMATION 

Performance Metrics 
Precision and sensitivity are metrics used to evaluate the performance of deep learning 
models (DLM). For a given body region X, precision corresponds to the fraction of valid 
predictions for location X, while sensitivity is the fraction of patches from location X that 
were correctly detected by the model. They are computed as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃
 

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑆𝑆 =
𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝐹𝐹𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃
 

Body regions separation 

 
Figure S1 Body regions 
 

Example of skin patches with increasing localization difficulty 

 
Figure S2 Examples of skin patches with increasing localization difficulty. 
From left to right, the patches come from the following body regions: hands (a), head (b), feet 
(c), arms (d), legs (e) and trunk (f). 
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Table S1 Body regions dataset patch distribution 
 Arm Leg Foot Hand Head Trunk Other Total 
Weak labels 40029 43212 45046 32375 61987 24495 29978 277122 
Strong labels (train) 4155 2656 3374 3585 3879 3467 2999 24115 
Strong labels (test) 510 510 510 510 510 510 510 3570 
The weak labels’ distribution is included for completeness but varied during the training 
process, as the labels were continuously re-evaluated. 

Table S2 Macro-anatomy experts performance 
 Dermatologists Students 
Region Precision Sensitivity Precision Sensitivity 
Arm 47% (33-60) 29% (20-36) 42% (23-86) 38% (11-55) 
Leg 49% (42-61) 43% (28-59) 49% (34-65) 42% (25-52) 
Feet 82% (50-99) 53% (28-63) 76% (58-93) 49% (40-66) 
Hand 70% (43-83) 75% (65-87) 58% (49-70) 69% (47-89) 
Head 67% (39-91) 49% (29-80) 68% (49-88) 47% (29-68) 
Other 90% (81-100) 100% (100-100) 91% (80-99) 100% (100-100) 
Trunk 39% (29-48) 65% (45-83) 40% (27-62) 49% (21-73) 
Average 63% (58-68) 59% (53-63) 61% (56-70) 56% (52-65) 

There were 6 dermatologists and 12 medical students. The value in parentheses correspond to 
the 95% confidence interval. 

Table S3 Macro-anatomy DLM performance using only strongly labeled 
data 
Region Precision Sensitivity 
Arm 76% (72-80) 73% (69-76) 
Leg 75% (72-79) 69% (65-73) 
Feet 86% (83-89) 79% (75-82) 
Hand 88% (86-91) 80% (76-83) 
Head 80% (76-82) 90% (87-92) 
Other 98% (97-99) 98% (97-99) 
Trunk 66% (62-69) 78% (74-81) 
Average 81% (80-83) 81% (80-82) 

The model was trained using strongly labeled data only, without any weakly labeled data. The 
values in parentheses correspond to the 95% confidence interval. 
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Generation of macro-anatomical body regions mapping 
Image randomly selected from the test set. The patches are drawn as white dashed squares 
and their corresponding top two predictions are written in yellow. The model predicted the 
localization of each of these patches independently without using the rest of the image. 
Although some patch predictions are wrong, the main body regions, in this picture the legs 
and feet, can be correctly determined. 
The first label corresponds to the most probable location predicted by the DLM. The second 
corresponds to the second most probable among the remaining regions. 

 
Figure S3 Generation of macro-anatomical body regions mapping 
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Differential diagnosis with/without lesion localization metadata 

 
Figure S4 Confusion matrix of DLM trained with lesion’s pictures only. The values show 
the proportion of images +/- SD. 
 

 
Figure S5 Confusion matrix of DLM trained with both lesion's locations and pictures. The 
values show the proportion of images +/- SD. 
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Table S4 Differential diagnosis specificity 
Diseases Test images Specificity A Specificity B 
Acne 48 99% (98-100) 99% (98-100) 
Drug eruptions 43 99% (98-100) 100% (100-100) 
Darier disease 14 99% (99-100) 99% (99-100) 
Dyshidrotic eczema 50 98% (97-99) 99% (98-100) 
Nummular dermatitis 34 99% (98-100) 99% (98-100) 
Hand eczema 50 98% (97-99) 98% (97-99) 
Impetigo 19 99% (99-100) 100% (99-100) 
Melasma 42 97% (96-98) 96% (95-98) 
Morphea 68 98% (97-99) 100% (99-100) 
Onychomycosis 60 98% (97-99) 99% (98-99) 
Palmoplantar keratoderma 45 99% (98-100) 100% (99-100) 
Pityriasis rosea 50 98% (96-99) 98% (97-99) 
Rosacea 49 99% (98-99) 98% (97-99) 
Tinea pedis 27 99% (98-100) 99% (99-100) 
Ulcer 41 99% (99-100) 100% (99-100) 
Vitiligo 40 97% (96-98) 98% (97-99) 
Average - 98% (98-99) 99% (99-99) 

Specificity evaluated on a 20% random sample of the images for each diagnosis (ensuring no 
patient leak). Model A was trained with lesion pictures only, while model B also had access to 
the lesions’ locations. The 95% confidence interval is shown in parentheses. 

Table S5 Predilection sites of the different diagnoses 
Diagnoses Train images Test images Predilection sites 
Acne 189 48 Head, trunk 
Drug eruptions 168 43 Trunk, arms, legs 
Darier disease 55 14 Trunk, head 
Dyshidrotic eczema 195 50 Feet, hands 
Nummular dermatitis 135 34 Legs, trunk, head, arms 
Hand eczema 196 50 Hands 
Impetigo 74 19 Head, trunk, arms 
Melasma 165 42 Head 
Morphea 271 68 Trunk, arms, legs 
Onychomycosis 231 60 Feet, hands 
Palmoplantar keratoderma 177 45 Feet, hands 
Pityriasis rosea 195 50 Trunk 
Rosacea 192 49 Head, trunk 
Tinea pedis 104 27 Feet 
Ulcer 162 41 Legs 
Vitiligo 158 40 Hands, feet, head, trunk 
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5.2 Micro-Anatomical Region Mapping of the Human Body

With the ambition to map the whole human body, we extended the micro-anatomy
approach to other anatomical regions. In this section, we present the results achieved
so far. Except for the ear and hand anatomy models, these results were not published
yet.

5.2.1 Materials and Methods

Data We created datasets for the different body regions (cf. table 5.1) and organized
the labeling process with medical students under the supervision of a board-certified
dermatologist specialist in the human anatomy. The test sets were generated by ran-
domly sampling 20% of the images, ensuring no leaks of pictures from the same pa-
tient.

Body Region # Images # Sub-regions Status
Eye 129 10 Completed
Ear 182 13 Completed
Mouth 131 9 Completed
Nose 215 14 Labeling
Head 220 19 Labeling
Hand 215 37 Completed
Nail 200 11 Completed

Table 5.1: Overview of micro-anatomy datasets.

Models For each dataset, we trained separate U-Nets [164] with ResNet50 [77] back-
bones, and an input size of 380 pixels following the micro-anatomy segmentation ap-
proach described in section 5.1. To reduce computation costs and with the aim to di-
rectly generate anatomical mappings from full-body images, we also tested training a
single deep learning model (DLM) on all datasets grouped together.

5.2.2 Results

We present the performance achieved for the different body regions (tables 5.2 to 5.6)
together with sample predictions (figures 5.1 to 5.5).
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Eye DLM All regions DLM
Region Precision Sensitivity Precision Sensitivity
Non-eye 83% (76-89) 93% (89-95) 82% (74-89) 91% (87-94)
Conjunctiva 94% (91-95) 90% (85-92) 93% (91-95) 89% (84-92)
Eye margin (lashes root) 67% (62-73) 87% (84-90) 70% (64-75) 84% (81-86)
Eyebrow 84% (77-89) 75% (59-85) 85% (79-89) 73% (57-83)
Iris 92% (85-95) 95% (93-96) 91% (83-95) 94% (92-96)
Lateral canthus 74% (62-84) 60% (51-69) 59% (47-72) 67% (57-74)
Lower eyelid 83% (74-90) 81% (77-84) 80% (71-86) 78% (71-84)
Medial canthus 71% (63-78) 73% (63-83) 71% (64-79) 67% (55-76)
Pupil 89% (85-91) 96% (94-98) 90% (86-93) 97% (95-98)
Upper eyelid 90% (86-92) 75% (69-82) 93% (91-96) 66% (57-73)
Average 83% (80-85) 82% (80-85) 81% (78-84) 81% (77-83)

Table 5.2: Eye anatomy DLMs performance.

(a) Patient’s image (b) Eye DLM’s predictions

Figure 5.1: Micro anatomy of the eye.

Ear DLM All regions DLM
Region Precision Sensitivity Precision Sensitivity
Non-ear 98% (97-99) 99% (99-99) 98% (98-99) 98% (98-99)
Antihelix 86% (82-91) 81% (76-85) 87% (83-92) 79% (74-84)
Antitragus 86% (81-90) 80% (75-85) 85% (80-89) 81% (78-84)
Concha cavum 87% (84-90) 82% (75-89) 88% (84-91) 82% (75-89)
Concha cymba 85% (82-89) 79% (71-87) 82% (78-87) 81% (71-91)
External auditory canal 62% (52-71) 61% (47-75) 62% (52-72) 64% (50-79)
Helical root 80% (77-84) 73% (66-81) 79% (75-83) 72% (66-81)
Helix 88% (84-91) 87% (83-89) 89% (87-92) 85% (83-88)
Lobule 85% (81-88) 90% (86-93) 88% (84-91) 88% (85-91)
Notch 66% (58-72) 76% (71-82) 69% (64-75) 72% (67-77)
Scaphoid fossa 68% (60-74) 70% (65-77) 65% (58-70) 75% (71-80)
Tragus 82% (79-85) 83% (80-86) 81% (78-85) 84% (79-87)
Triangular fossa 73% (65-84) 76% (71-81) 68% (59-82) 79% (76-84)
Average 80% (78-82) 80% (76-83) 80% (78-82) 80% (77-84)

Table 5.3: Ear anatomy DLMs performance.
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(a) Patient’s image (b) Ear DLM’s predictions

Figure 5.2: Micro anatomy of the ear.

Mouth DLM All regions DLM
Region Precision Sensitivity Precision Sensitivity
Non-mouth 80% (64-91) 62% (50-70) 62% (45-76) 67% (51-76)
Lower lip 73% (62-79) 74% (61-84) 76% (64-85) 66% (51-75)
Upper lip 80% (70-86) 75% (64-82) 90% (85-94) 62% (50-71)
Inside mouth 81% (71-88) 82% (71-90) 74% (61-82) 86% (77-92)
Oral commissure 13% (8-21) 15% (9-25) 14% (10-18) 7% (3-17)
Teeth 96% (93-98) 85% (79-92) 95% (90-97) 77% (67-87)
Tongue 75% (46-91) 90% (85-96) 77% (50-88) 88% (81-94)
Lower vermilion 65% (51-77) 81% (75-88) 65% (49-79) 85% (80-89)
Upper vermilion 65% (57-74) 63% (51-77) 67% (56-79) 62% (49-74)
Average 70% (65-73) 70% (65-74) 69% (63-73) 67% (62-71)

Table 5.4: Mouth anatomy DLMs performance.

(a) Patient’s image (b) Mouth DLM’s predictions

Figure 5.3: Micro anatomy of the mouth.
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Hand DLM All regions DLM
Region Precision Sensitivity Precision Sensitivity
Non-hand 99% (99-99) 97% (97-98) 99% (99-99) 98% (97-98)
DIP2 71% (58-79) 82% (72-88) 75% (66-82) 82% (74-89)
DIP3 77% (72-81) 84% (74-90) 78% (73-82) 85% (79-89)
DIP4 72% (67-78) 84% (73-90) 74% (68-81) 82% (72-89)
DIP5 75% (69-80) 85% (80-90) 77% (70-82) 85% (81-89)
IP 79% (76-82) 84% (81-87) 82% (78-84) 84% (81-86)
MCP1 64% (57-71) 79% (74-84) 66% (58-72) 78% (73-83)
MCP2 74% (69-79) 82% (74-86) 78% (75-82) 83% (79-86)
MCP3 75% (69-79) 84% (79-88) 74% (65-81) 83% (79-86)
MCP4 68% (60-75) 77% (69-83) 71% (65-76) 76% (70-81)
MCP5 72% (65-77) 79% (75-84) 74% (69-78) 81% (78-85)
PIP2 84% (75-90) 88% (82-92) 85% (77-90) 89% (86-92)
PIP3 87% (84-90) 85% (72-91) 85% (80-89) 86% (73-92)
PIP4 84% (78-88) 87% (84-90) 86% (84-88) 88% (83-91)
PIP5 84% (79-87) 86% (82-89) 85% (80-88) 87% (83-91)
Dorsal mid 72% (67-77) 76% (69-81) 76% (72-80) 73% (63-80)
Dorsal radial 86% (81-89) 85% (82-88) 88% (84-91) 86% (84-89)
Dorsal ulnar 87% (85-89) 77% (69-81) 87% (84-89) 81% (77-84)
Hypothenar 87% (84-90) 89% (81-95) 88% (86-91) 89% (83-94)
Index distal 85% (78-92) 88% (82-92) 86% (80-92) 88% (83-93)
Index middle 84% (74-91) 88% (83-92) 89% (84-92) 87% (82-91)
Index proximal 87% (81-92) 89% (83-93) 87% (82-92) 91% (88-93)
Little f. distal 90% (87-93) 89% (82-93) 91% (89-94) 90% (84-94)
Little f. middle 91% (89-93) 85% (82-88) 90% (86-93) 86% (83-89)
Little f. proximal 87% (85-90) 88% (86-91) 87% (85-90) 91% (89-92)
Middle f. distal 91% (87-94) 87% (80-93) 91% (87-94) 88% (80-93)
Middle f. middle 92% (87-94) 88% (82-92) 89% (81-94) 91% (88-93)
Middle f. proximal 89% (85-92) 88% (80-92) 86% (79-91) 90% (82-94)
Nail 89% (86-91) 83% (78-86) 90% (88-92) 83% (78-87)
Palm 89% (86-93) 86% (84-89) 89% (86-92) 88% (84-91)
Ring f. distal 87% (82-92) 87% (76-93) 87% (81-92) 88% (80-95)
Ring f. middle 89% (83-94) 86% (78-91) 90% (85-94) 86% (76-91)
Ring f. proximal 88% (84-91) 88% (84-91) 88% (85-90) 89% (85-91)
Thenar 88% (83-91) 89% (85-92) 90% (85-93) 88% (84-91)
Thumb distal 92% (90-93) 89% (86-92) 92% (90-94) 91% (89-93)
Thumb proximal 87% (83-90) 80% (76-83) 88% (85-89) 82% (76-85)
Wrist 69% (64-74) 86% (83-89) 70% (66-76) 86% (82-90)
Average 83% (80-85) 85% (82-88) 84% (82-86) 86% (83-88)

Table 5.5: Hand anatomy DLMs performance.



5.2. MICRO-ANATOMICAL REGION MAPPING OF THE HUMAN BODY 63

(a) Patient’s image (b) Hand DLM’s predictions

Figure 5.4: Micro anatomy of the hand.

Nail DLM All regions DLM
Region Precision Sensitivity Precision Sensitivity
Non-nail 99% (99-100) 98% (98-99) 99% (99-99) 93% (90-96)
Cuticle 65% (59-69) 72% (69-76) 62% (56-67) 68% (65-72)
Distal edge plate 60% (37-79) 77% (70-82) 57% (37-74) 73% (67-79)
Distal groove 57% (51-63) 59% (47-77) 54% (47-60) 58% (49-74)
Hyponychium 18% (0-47) 60% (0-65) 18% (0-100) 0% (0-0)
Lateral fold 67% (62-72) 80% (77-83) 63% (58-67) 78% (74-82)
Lunula 81% (65-89) 82% (74-90) 78% (62-87) 81% (72-88)
Onychodermal band 38% (28-48) 48% (37-62) 31% (20-42) 50% (41-62)
Plate 90% (86-93) 81% (73-86) 90% (87-94) 78% (69-84)
Proximal fold 64% (57-71) 75% (70-80) 63% (56-69) 72% (66-78)
Pulp 83% (79-87) 85% (81-88) 81% (76-84) 80% (77-84)
Average 66% (62-69) 74% (67-77) 63% (59-70) 67% (64-69)

Table 5.6: Nail anatomy DLMs performance.

(a) Patient’s image (b) Nail DLM’s predictions

Figure 5.5: Micro anatomy of the nail.
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5.2.3 Discussion

The performance of the DLM trained on all regions is remarkably close to the region-
specific DLMs. The main challenging regions were the relatively smaller ones such
as the external auditory canal for the ear, the oral commissure for the mouth and the
hyponychium for the nails. These regions have the particularity that they can be hidden
depending on the position of the patient. Their small size also results in a high pixel
imbalance in favor of the other regions, which prevents effective learning despite the
customized loss function guiding the training process. The annotation of the images
was also a challenge as the boundaries of the anatomical regions are not well-defined
theoretically and can vary in the literature. Unclear cases were validated with a board-
certified dermatologist, specialist of the human anatomy.

As we already discussed in section 5.1, our approach can assist with lesion descrip-
tion and differential diagnosis. Other practical applications include supporting med-
ical education and enabling targeted image retrieval of specific anatomical regions in
dermatology databases. Our method can also be combined with disease segmentation
DLMs to determine lesions’ anatomical stratification and refine clinical severity grading
systems (cf. section 7.3).



Chapter 6

Differential Diagnosis of Skin
Lesion Images

6.1 Introduction

The usual differential diagnosis process followed by dermatologists is composed of
several steps including the study of patient history, the dermatological description of
lesions and, if necessary, additional laboratory tests (cf. section 2.2). Based on the infor-
mation determined at each stage, dermatologists follow decision trees to determine the
differential diagnosis of the disease. When only lesion images are available (e.g. tele-
dermatology context), the usable information for differential diagnosis is reduced to
a partial dermatological description since features such as temperature or consistency
cannot be assessed.

In similar context, researchers have trained deep learning models (DLMs) to classify
lesion images and automate differential diagnosis (cf. section 4.1.1). These approaches
are based solely on image statistical features (autonomously extracted by the DLMs)
and do not leverage any aspect of dermatologists’ differential diagnosis process. Fur-
thermore, it is not possible to interpret these features (cf. section 4.3 and the lack of
explainability of DLMs [183, 201]), which are very different from the features used by
dermatologists. The consequence is that DLMs’ predictions cannot be justified in der-
matologists’ terms, creating suspicion and precluding adoption.

We propose a hybrid approach to mitigate this issue by letting DLMs leverage both
image statistical features and some dermatological description features that can be in-
ferred from a lesion’s image. To the best of our knowledge, this direction was not
explored in the scientific literature, where models are trained based on lesion images
only, eventually with patient metadata (cf. section 4.1.1). Section 5.1 showed that com-
bining lesion location with images features could benefit performance. Here, we hy-
pothesized that the inclusion of efflorescence information would also lead to improved
performance. The following sections describe an approach to train a DLM with both
lesion image and efflorescence information, together with the achieved performance.
These results were not published yet.
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6.2 Materials and Methods

Data In this retrospective study, a dataset composed of 1098 hand pictures of patients
either healthy or afflicted by eczema, lentigo, psoriasis or vitiligo was labeled by a stu-
dent for visible efflorescences. The dataset distribution is shown in figure 6.1. Picture
diagnoses were obtained from the hospital database. All patients had skin type 1 to 3
on the Fitzpatrick scale. 20% of the images were selected for the test set using stratified
sampling on the diagnoses. In addition, 100 images similarly sampled from the test set
were labeled by three dermatologists both for diagnosis and efflorescences.

Figure 6.1: Efflorescence dataset distribution. The dataset includes in addition 163
healthy pictures without any efflorescences.

Models Four different differential diagnosis models were trained to assess the benefit
of using lesion efflorescence information:

(M1) Gradient boosting classification algorithm trained only with the efflorescence la-
bels.

(M2) ResNet18 [77] trained only with the lesion images.

(M3) ResNet18 trained with both lesion images and efflorescences. The efflorescences
were one-hot encoded and appended to the image features extracted by the model
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backbone.

(M4) ResNet18 trained with both lesion images and embedded efflorescences. The
model learned a 64 dimensional embedding for efflorescences, which was ap-
pended to the image features extracted by the model backbone.

6.3 Results

The models’ precision and sensitivity with bootstrapped 95% confidence interval are
shown in table 6.1, while the confusion matrices are presented in figure 6.2. The most
confused classes are eczema with psoriasis followed by vitiligo and then lentigo, which
is very well identified.

As could be expected, the healthy class is perfectly identified by M1. However, the
convolutional neural networks achieve this result only when the efflorescence informa-
tion is embedded. This is probably caused by the large dimension difference between
image features and the one-hot encoded efflorescences. While M3 surpasses M2, there
is no clear benefit in training using both lesion image and efflorescence when compared
with the performance achieved by M1.

The best performing DLM is M4. To compare this model with the others, we applied
the McNemar’s test on the respective test set predictions and could confirm a signifi-
cant difference in error proportions with p-value below 0.05 in every case. Furthermore,
we tested the randomness of our results on twenty different initialization seeds (sum-
mary available in table 6.2) and observed a systematic superiority of M4 over the other
models.

To put these results in perspective, we evaluated the dermatologists’ differential di-
agnosis performance on a sample of 100 test images and measured an average precision
of 76% and sensitivity of 74.6%.

6.4 Discussion

The results illustrate that leveraging both image lesion and efflorescence information
can benefit differential diagnosis DLM performance. Taken together with a similar ob-
servation for lesion location (cf. section 5.1), this indicates that the hybrid approach
of combining statistical features with traditional differential diagnosis features has po-
tential to improve DLM performance and should be further tested, starting with other
dermatological description features.

Dermatological features are easier to infer than differential diagnosis since their de-
termination is part of standard lesion assessment. They can be provided to the system
directly by the dermatologist or be predicted either in multitask settings or by a sepa-
rate DLM. Dermatologists can then validate these intermediate predictions, eventually
correct them if needed, and observe the impact on the resulting differential diagnosis.
Thus, besides the performance gain, our hybrid approach enables dermatologists to in-
teract and better understand aspects of the DLM decision process. Theoretically, this
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M1 M2

Disease Precision Sensitivity Precision Sensitivity
Eczema 57% (44-70) 49% (38-65) 55% (40-67) 51% (36-62)
Healthy 100% (100-100) 100% (100-100) 52% (32-69) 48% (31-66)
Lentigo 58% (48-70) 95% (90-100) 76% (65-89) 98% (92-100)
Psoriasis 60% (45-77) 59% (50-71) 62% (46-74) 67% (52-79)
Vitiligo 95% (89-100) 65% (54-78) 82% (69-90) 67% (54-77)
Macro avg 74% (71-79) 74% (70-79) 65% (59-71) 66% (60-72)
Weighted avg 73% (70-79) 70% (66-76) 67% (61-72) 67% (59-72)

M3 M4

Disease Precision Sensitivity Precision Sensitivity
Eczema 62% (48-77) 60% (47-74) 72% (56-81) 72% (59-86)
Healthy 66% (53-80) 79% (68-95) 100% (100-100) 97% (88-100)
Lentigo 78% (69-90) 98% (93-100) 84% (73-93) 95% (90-100)
Psoriasis 72% (55-84) 67% (52-80) 72% (60-84) 75% (63-84)
Vitiligo 89% (77-96) 73% (59-83) 88% (79-95) 78% (66-88)
Macro avg 73% (67-79) 75% (69-81) 83% (79-87) 83% (79-88)
Weighted avg 74% (67-81) 74% (67-80) 82% (77-87) 82% (77-86)

Table 6.1: Performance of the differential diagnosis models.

Model Precision mean Precision std Sensitivity mean Sensitivity std
M1 74.1% 0.00% 73.6% 0.00%
M2 60.0% 2.24% 59.9% 2.04%
M3 74.4% 2.56% 73.4% 2.62%
M4 82.3% 1.44% 82.3% 1.39%

Table 6.2: Evaluation of the performance randomness.

idea could be extended to a fully automated and explainable system, which would pre-
dict every feature of the differential diagnosis process and combine them following the
same decision trees used by dermatologists.
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Figure 6.2: Confusion matrices of the differential diagnosis models.
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Chapter 7

Severity Grading of Skin Diseases

Severity grading of skin conditions is an important part of dermatology consultations,
which determines subsequent decisions including treatment recommendation. It is also
the procedure that enables dermatologists to assess the evolution of a disease and the
success of their actions (cf. section 2.3). In this chapter, we propose methods to auto-
mate the severity evaluation of several diseases based on patients’ photographs. Sec-
tion 7.1 presents our research article on the quantification of palmoplantar pustular
psoriasis (PPP) lesions. We show the applicability of our approach in restricted data
availability settings by training a deep learning model (DLM) to segment ichthyosis
with confetti (IWC) lesions in section 7.2. Finally, we present our research article on
hand eczema anatomical stratification in section 7.3.

7.1 Quantification of Efflorescences in Pustular Psoriasis using
Deep Learning

This research article was published [10] at the journal of Healthcare Informatics Re-
search 1. We hypothesized that PPP lesions could be automatically quantified using a
segmentation approach at high correlation (> 0.75) with experts’ annotations. In this
work, we confirm this hypothesis and propose an approach to automatically quantify
PPP lesions in terms of counts and surface. The high correlation of our method’s pre-
dictions with experts’ labels shows its potential to improve objectivity and precision of
current clinical severity grading systems.

1Full text via DOI: https://doi.org/10.4258/hir.2022.28.3.222 (Accessed: 2nd Febru-
ary 2023)
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I. Introduction

Pustular psoriasis (PP) can impair the quality of life by 
producing innumerable painful pustules (white or yellow 
vesicles) on weight-bearing areas, or lead to uncontrollable 
systemic inflammation and malaise. Both localized and 
generalized forms exist. Palmoplantar PP (PPP) is the most 
frequent form and produces numerous pustules on an ery-
thematous base in the palmoplantar region. With time, these 
pustules dry, and their subsequent secondary efflorescences 
are termed brown spots. Generalized PP affects the whole 
body; it is rarer than localized forms and more dangerous in 
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cases with systemic complications. There is no established 
standard treatment, and the available options are still limited [1].
 The severity of a skin disease is traditionally evaluated 
based on its physical impact on patients’ health. Several dif-
ferent metrics exist for psoriasis, of which the Psoriasis Area 
and Severity Index (PASI) is considered the most established 
[2]. For PP, there is no universally used grading system. Ob-
jective grading systems such as the PPPASI [3] are based on 
the quantity and intensity of important disease features, most 
prominently the pustules. As these scoring systems were de-
signed for manual assessment, they use an imprecise grading 
system from “no disease” (0) to “very severe” (4), integrating 
pustules, erythema, and scaling. Similarly, the area covered 
by efflorescences is also graded using discrete categories. 
Even though such scales are clinically useful and efficient in 
practice, they clearly constrain precision for severity grading 
and disease monitoring. As shown by the PrecisePASI for 
plaque-type psoriasis [4], this limitation can be overcome by 
developing tools for fine-grained assessments. These precise 
grading systems are especially important for monitoring pa-
tients’ conditions and determining the required treatments, 
as PP is a relapsing disease with varying degrees of severity 
across flare episodes. Dermatologists usually evaluate PP 
activity by coarse estimations, which have inevitable disad-
vantages such as inter-individual variation among raters [5]. 
Hence, an automated and reliable alternative would benefit 
clinical practitioners, facilitate medical studies, and could be 
smoothly integrated into tele-dermatology applications.
 In comparison to other inflammatory skin diseases, PP 
presents distinct and easily identifiable skin lesions: pustules 
and brown spots. This special characteristic could enable 
machine learning (ML) algorithms to automatically perform 
counting and surface estimation, a very daunting task in 
manual settings. For example, the reader may visually assess 

the quantity of lesions in the patient’s hand shown in Figure 1, 
which tallies 118 pustules and 272 brown spots and surface 
percentages 2.11% and 3.14%, respectively. Clearly, such fine-
grained assessments can only be achieved through automation. 
 Current state-of-the-art image recognition models are 
based on deep learning (DL) architectures. DL is a branch 
of ML aiming to develop models that autonomously learn 
relevant discriminating features from data sources to infer 
predictions on new unseen data samples. These deep learn-
ing models (DLMs) can be used in automated pipelines and 
have the advantage of producing deterministic and therefore 
reproducible results. They have repeatedly achieved super-
human performance in image recognition tasks, progressing 
to general images today. Successful applications to medical 
image analysis include skin cancer classification [6], pso-
riasis or brain tumor segmentation [7,8] and even synthetic 
medical data generation [9].
 In this study, we propose a DLM to automatically quantify 
PP efflorescences (lesion count and surface percentage) and 
evaluate its predictions against experts’ labels.

II. Methods

1. PPP Dataset
The dataset consisted of 151 anonymized high-resolution 
photographs obtained at the University Hospital Zurich from 
PPP patients with active lesions. Two board-certified derma-
tologists and a student independently labeled the images for 
pustules and brown spots. Figure 1 shows an example of a 
PPP image from our dataset along with its expert labels.
 We randomly divided the dataset into 121 photographs to 
train the DLM and 30 photographs to test its performance, 
ensuring that the training and test set did not contain any 
data from the same patient. The training set was further 

A B C

Figure 1.   Sample image (A) with expert labels (B) and the DLM prediction (C). This picture came from the test set used to evaluate the 
DLM and was not used in the training process. The original image is shown in (A), while (B) shows the image overlaid with 
expert labels and (C) the image overlaid with the DLM predictions. The pustules are colored in yellow, the brown spots in 
red, the patient’s skin in blue, and the background in violet. DLM: deep learning model.



224 www.e-hir.org

Ludovic Amruthalingam et al

https://doi.org/10.4258/hir.2022.28.3.222

divided into five folds for cross-validation to determine the 
optimal DLM (hyper-)parameters and to evaluate the variabil-
ity of the DLM performance across the different training splits.
 To leverage the full resolution of the photographs, we tiled 
the images in square patches with a fixed side length of 512 
pixels (approximately 3 cm × 3 cm). This pre-processing step 
resulted in 6,799 patches for the training set and 819 for the 
test set. Finally, only the training set was further augmented 
to improve DLM generalization using random transforma-
tions such as flips, rotations, zoom, and contrast and bright-
ness changes. The full test set lesion distribution is displayed 
in the supplementary materials.

2. DLM Training
The suggested DLM is composed of two subunits, both 
based on the U-Net [10] architecture with a ResNet [11] 
backbone to extract image features. The workflow is as 
follows: first, the M1 subunit separates the skin and back-
ground from the full picture, while the M2 subunit splits the 
picture into patches and segments pustules and brown spots. 
The M1 predictions take priority over M2 predictions in the 
sense that we consider M2-predicted pustules and spots only 
when they overlap with M1-predicted skin. The lesions are 
counted and the surface percentage (the total lesions’ pixel 
size multiplied by 100, then divided by the total skin’s pixel 
size) is calculated.
 Due to the relatively small size of our dataset, the training 
process was preceded by two pretraining steps. First, we ap-
plied transfer learning on both subunits’ backbones using 
the pretrained weights from the ImageNet dataset [12]. Next, 
we pretrained the M2 subunit’s backbone on a simpler clas-
sification task: separating patches containing lesions from 
patches with only background or healthy skin.
 Finally the training of the DLM was performed for each 
subunit independently on the same training set using a 
learning rate scheduler with a one-cycle policy [13]. 
 As the lesions are very small, there is a large imbalance 
between lesion pixels and irrelevant pixels from the skin or 
background. To ensure that the DLM properly learns to rec-
ognize very small lesions, we used the mixed focal loss func-
tion [14], combining the focal loss [15] and the dice focal 
loss [16], both of which are known to mitigate semantic class 
imbalance and are popular in medical image segmentation 
[17]. The implementation was done with PyTorch [18] and 
the fastai library [19].

3. Pustular Diseases Dataset (PDD)
This dataset used for out-of-distribution testing consisted of 

213 unstandardized pictures from four pustular diseases (Ta-
ble 1) with at least 15 images per diagnosis (Supplementary 
Tables S1–S3). The diseases were selected because they also 
produce pustules and brown spots. One of the four diseases 
was again PPP, but the pictures were derived from a distinct 
patient population and were less standardized. In compari-
son to the training dataset, the PDD pictures varied greatly 
in terms of resolution, zoom level, focus, brightness level, 
patient posture, and so on. One dermatologist assessed the 
images for actual disease severity using a physician’s global 
assessment ranking from 0 (no disease) to 4 (very severe). 
In contrast, one student graded the images for lesion count 
only, with results ranging from 0 (no lesions) to 4 (very large 
count) for the estimated lesion count. Consistent estimation 
of the lesion surface percentage by human raters was tried, 
but proved to be too difficult and was therefore abandoned. 

4. Analysis
To evaluate the agreement between the experts’ labels and 
the DLM predictions, intraclass correlation coefficients 
(ICCs) with 95% confidence intervals (CIs) were measured. 
For the PDD experiment, we computed Spearman correla-
tion (SC) coefficients with a 95% CI instead, since ranking 
labels are ordinal variables. The computed correlation coef-
ficients reflect how well the DLM predictions relate to the 
experts’ labels: <0.4 for weak agreement, 0.4–0.6 for moder-
ate, 0.61–0.8 for strong, and >0.8 for very strong agreement.
 Following the recommendations by van Stralen [20] we 
created Bland-Altman (BA) plots to analyze the agreement. 
As the data were not normally distributed, the BA limits of 
agreements were computed with the 2.5th and 97.5th per-
centiles (to cover 95% of the data samples). We also created a 
Q3P plot to show the third quartile of (absolute and relative) 
differences between experts’ labels and DLM predictions. 

Table 1. Correlation coefficients of DLM predictions

ICC

Surface Count

Pustules 0.88 (0.87–0.90) 0.96 (0.96–0.97)
Brown spots 0.92 (0.91–0.93) 0.97 (0.97–0.98)
All lesions 0.93 (0.92–0.94) 0.97 (0.97–0.98)

The values in parenthesis correspond to the 95% confidence in-
terval.
Performance of the deep learning model (DLM) surface and 
count predictions evaluated on 819 image patches from the 
test set using the intraclass correlation coefficient (ICC). All p-
values are below 0.05.
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Thus, for both the BA and Q3P plots, a positive difference 
means that the DLM underestimates the efflorescence quan-
tity while a negative difference implies the opposite.
 Finally, in order to better understand the DLM’s divergence 
from the experts’ labels, we randomly selected 100 patches 
from the PPP test set and manually analyzed the lesions 
missed by the DLM and the lesions that it detected but were 
missed by the experts. A student then analyzed each case 
individually and determined if the discrepancy reflected a 
mistake by the DLM or the experts.

III. Results

The results presented in this section were obtained from the 
PPP test set patches (Supplementary Figures S1–S3).

1.  PPP Test Set: Prediction of Pustule and Brown Spot 
Counts

 As shown in Figure 2F, the DLM predictions differed by 
at most 1 pustule or brown spot in 75% of the patches with 
up to 6 lesions (corresponding to the third quartile [Q3] 
of the test set for lesion count). For the remaining patches 
(i.e., in 18.8% of all cases), the difference increased to 2 le-
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Figure 2.   Agreement of DLM lesion 
count predict ions with 
expert labels. The figure 
shows the Bland-Altman 
plots of the predicted count 
for pustules (A), spots (C), 
and combined lesions (E). 
The plots for pustules (B), 
spots (D), and both lesions 
(F) show the third quartile 
of the mean difference and 
the mean absolute differ-
ence of the predicted count 
for patches with up to the 
number of lesions specified 
on the horizontal axis value. 
DLM: deep learning model.
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sions. The DLM’s bias (full line in BA plots) was 0.24 lesions 
(Figure 2E), indicating that the DLM tended to detect fewer 
lesions than the experts did. The BA plots did not reveal a 
systematic bias in the DLM predictions; the patches were 
concentrated on the left of the x-axis because most of them 
contained only a few lesions. The mean absolute difference 
(MAD) was 1.68 lesions, and although we observed several 
outliers, the ICC was 0.97 with (95% CI, 0.97–0.98) (Table 2), 
implying very strong agreement with the experts’ labels.

2.  PPP Test Set: Prediction of Pustule and Brown Spot 
Surface Percentage

Considering the test image patches with lesion surface per-
centages up to 1.31% (PPP test set’s surface Q3), the DLM 
surface predictions differed by less than 0.15% in 75% of the 
cases (Figure 3F). This difference plateaued at 0.42% for 75% 
of the patches with higher surface percentages. The predict-
ed surface ICC was 0.93 with (95% CI, 0.92–0.94) (Table 2). 
The DLM bias was 0.27% and the MAD was 0.47%, implying 
that the DLM tended to underestimate the surface of lesions. 
Again, the BA plots did not reveal any systematic bias in the 
DLM predictions.

3. PPP Test Set: Review of DLM Divergence
The DLM predictions for all 100 patches yielded 486 lesions, 
of which 76.6% matched the experts’ labels. However, 23.4% 
were absent from the experts’ labels. Manual verification 
determined that 88.5% were indeed real pustules or brown 
spots missed by the experts, and only 11.5% were structures 
mistakenly identified by the DLM.
 The experts labeled a total of 579 lesions, of which 63.6% 
were identified by the DLM, 30.6% were missed, and the re-
maining 5.8% were upon manual verification identified to be 
expert label errors; thus, they were correctly classified to be 
healthy skin by the DLM.

 We infer from these observations that from these 100 
patches, the correct lesion count should have been 645, im-
plying a combined sensitivity for experts of 84.4% with a 
labeling error rate of 5.8%, and for the DLM a sensitivity of 
73.3% with a detection error rate of 2.6%.
 The usual mistakes both for the experts and DLM were 
caused by lesion-mimicking structures, such as small lentigi-
nes or dirt for brown spots and scales for pustules. Concern-
ing the missing lesions from the experts’ labels, these were 
mainly small pustules or brown spots that a human could 
barely see without sufficient zooming in.

4. PDD Set: DLM Evaluation for Pustular Diseases
We applied the DLM to 213 unstandardized pictures from 
four different pustular diseases to predict the lesion count 
and surface. Table 2 shows the corresponding SC coefficients 
with the experts’ grading. With respect to the dermatologist’s 
severity grading, the overall SC coefficient for all diagno-
ses was 0.66 (95% CI, 0.60–0.74) for lesion count and 0.80 
(95% CI, 0.75–0.83) for lesion surface, indicating strong 
agreement. Regarding the medical student’s estimated lesion 
count, the observed agreement was strong (SC coefficient = 
0.77; 95% CI, 0.72–0.81).

IV. Discussion

This work addressed the task of automatically measuring 
disease intensity in PPP patient photographs. The presented 
DLM was able to quantify both pustules and brown spots in 
patient images, reaching very strong agreement with experts’ 
labels, as shown by an ICC range of 0.97–0.98 for lesion 
count and an ICC range of 0.92–0.94 for lesion surface per-
centage. An analysis of a randomly selected subsample of the 
test set revealed a combined expert sensitivity of 84.4% with 
an error rate of 5.8%, while the DLM showed a sensitivity of 

Table 2. Pustular diseases dataset

Diagnosis
Spearman correlation coefficient

Surface A Count A Count B

All diagnoses 0.80 (0.75–0.83) 0.66 (0.60–0.74) 0.77 (0.72–0.81)
Acropustulosis of infancy 0.83 (0.61–0.96) 0.71 (0.50–0.92) 0.66 (0.31–0.89)
Palmoplantar pustular psoriasis 0.76 (0.69–0.85) 0.70 (0.60–0.79) 0.78 (0.73–0.86)
Pustulosis palmoplantaris 0.78 (0.70–0.85) 0.67 (0.52–0.79) 0.74 (0.63–0.84)
Pustulosis subcornealis 0.75 (0.60–0.82) 0.75 (0.61–0.87) 0.87 (0.82–0.91)
The values in parenthesis correspond to the 95% confidence interval.
Performance of the deep learning model (DLM) surface and count predictions evaluated on the 213 images from the pustular dis-
ease dataset with the Spearman correlation coefficients. The columns labeled A correspond the dermatologist’s disease severity 
ranking and B, the medical student’s lesion count ranking. All p-values are below 0.05.
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73.3% with an error rate of 2.6%. 
 The DLM was further evaluated on photographs taken 
from patients with four pustular diseases. It showed strong 
agreement with the dermatologist’s severity evaluation (on 
a range from 0 to 4) and the student’s lesion count (likewise 
on a scale from 0 to 4). To the best of our knowledge, this is the 
first attempt to automatically quantify efflorescences from pus-
tular psoriasis; as such, this is the first step toward a precise, 
reproducible, and objective evaluation of this disease activity.
 Related to the task of automating existing disease scoring 
systems, most of the literature has focused on the automa-
tion of the PASI index. Some studies [21-23] chose to rely on 

classification DLMs, thus capping the achievable precision 
to discrete scores in contrast to our DLM, which predicts 
continuous metrics. Various segmentation approaches have 
also been applied to ulcers [24], skin cancer [25,26], eczema 
[27], and psoriasis [7,28], and therefore could also be used to 
produce metrics similar to our study. However, they all tar-
geted diseases with plaques, single lesions, or lesions larger 
than PP efflorescences. The segmentation of small objects in 
imbalanced settings is a well-known technical challenge [29], 
which we successfully addressed here in the context of PP 
with our patch-based approach and an additional pretraining 
task. This patch-based approach was the main motivation 
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Figure 3.   Agreement of DLM lesion 
surface predictions with 
expert labels. The figure 
shows the Bland-Altman 
plots of the predicted sur-
face percentage for pustules 
(A), spots (C) and combined 
lesions (E). The plots for 
pustules (B), spots (D), and 
both lesions (F) show the 
third quartile of the mean 
difference and the mean 
absolute difference of the 
predicted surface percent-
age for patches with up to 
the lesion surface specified 
on the horizontal axis value. 
DLM: deep learning model.
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behind our design choice to segment skin separately from 
lesions, since the first task is performed better when the full 
image context is available. Another PP-specific difficulty 
was caused by the inevitably limited sensitivity of experts in 
cases with a large number of lesions and the tedious nature 
of the labeling task. To illustrate the impact on the clinical 
workload, the image shown in Figure 1 required 30 minutes 
for the human expert to fully label, whilst the same took 
less than 15 seconds for the DLM. The produced labels were 
bound to miss some lesions, penalizing the DLM training 
and evaluation process. Indeed when analyzing the quantita-
tive DLM segmentation performance (see Supplementary 
Figures S4 and S5), around 40% of lesion pixels were mis-
taken for healthy skin, matching the observed positive bias 
in the counts and surface Bland-Altman plots. However, the 
high intra-class correlation with experts’ labels implies that 
the disease lesions were quantified according to the experts’ 
annotations, aligning with the study’s main objective.
 Due to its algorithmic nature, the error rate of the DLM 
should remain constant in time across different patient cases. 
We expect the DLM’s performance to be at least as stable as 
human evaluation over the course of various follow-up visits. 
Both hypotheses should be validated in future studies.
 While our DLM was trained exclusively on PPP patients’ 
pictures, we demonstrated that our approach of counting 
lesions and measuring their surface to evaluate the disease 
severity is also applicable to relatively unstandardized, out-
of-distribution (coming from a different source with differ-
ent capturing conditions) photographs of patients with other 
pustular disorders. 
 This remarkable generalization is possible without retrain-
ing the DLM as long as the different diseases’ lesions have 
a similar appearance. Whilst the pictures showed very dif-
ferent patient postures and body regions, the DLM’s perfor-
mance remained robust, presumably due to its training on 
small image patches instead of full images.
 Dermatologists’ workflow currently consists of either an 
informal subjective global assessment or manually grading 
disease activity with an objective score such as the PPPASI. 
The latter, however, requires time and expertise to perform 
in a reproducible manner. Improving on this situation, our 
approach for PP grading does not have such constraints. The 
DLM could be integrated into a smartphone app enabling 
physician extenders to photograph and quantify lesions be-
fore patients consult with dermatologists. To allow a system-
atic comparison of the DLM predictions, it is important to 
standardize the conditions under which pictures are taken, 
such as a patient’s posture, zoom level, and so forth. This 

could be achieved via a guided picture-taking process in the 
smartphone app and proper training of medical personnel. 
 Image standardization is a common pitfall for DLMs. 
When photographs are taken with very different settings 
(lighting, posture, or zoom level), the quality of DLM pre-
dictions can degrade despite training with extensive data 
augmentation. Such variations can be reduced by following 
photograph collection procedures such as the guidelines 
proposed by Finnane et al. [30] for dermatology. Although 
our DLM showed robust performance on unstandardized 
pictures, they were taken by photographers and medical 
personnel in relatively controlled conditions (hospitals and 
studies). For extreme cases such as tele-dermatology (where 
untrained people take images with different devices, resolu-
tion, zoom, exposure to sunlight, and so forth) the DLM 
should be retrained using transfer learning on a subset of 
the new data source. Another limitation to consider is that 
the DLM was trained in this study mainly with Caucasian 
patient pictures and must therefore be retrained before it is 
applied to patients with different skin pigmentation. Once 
a new dataset has been collected, DLM retraining is usually 
not a challenging task since it is possible to leverage the al-
ready learned knowledge with transfer learning.
 Another common criticism of DL applications in medicine 
is the difficulty of explaining the rationale behind model 
predictions, which makes them unsafe for use in tasks such 
as differential diagnosis. Here, this issue is not critical since 
the presented approach can be validated with little effort and 
training by visualizing the predicted lesions (a single glance 
would be sufficient).
 Our DLM enables new, previously impractical analyses, 
including systematic studies of pustules’ growth, shapes, 
evolution, and treatment response. In practice, our approach 
is particularly suited for automatically generating patient re-
ports, disease monitoring, and analyzing treatment efficacy. 
It synergizes well with standardized full-body photography 
solutions and their respective image analysis pipelines. In 
the future, our method could be utilized to develop tools 
that would help dermatologists better monitor patients af-
flicted with any type of pustulosis or disseminated mono-
morphic rashes and therefore improve the quality of follow-
up consultations. The DLM is well-suited for integration into 
tele-dermatology applications, provided it is retrained to 
match the expected types of inputs and complemented with 
systems to ensure picture quality and verify the output. This 
could reduce hospital loads and be deployed in geographical 
regions where physical access to dermatologists is difficult or 
even impossible.
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Table S1. Dermatologists’ disease severity grading (A) distribution

Diagnosis S0 S1 S2 S3 S4 Total

Acropustulosis of infancy 1 9 5 2 0 17
Palmoplantar pustular psoriasis 11 20 21 39 4 95
Pustulosis palmoplantaris 0 27 20 14 0 61
Pustulosis subcornealis 0 9 19 12 0 40
All diagnoses 12 65 65 67 4 213

Table S2. Medical student’s lesion count ranking (B) distribution

Diagnosis S0 S1 S2 S3 S4 Total

Acropustulosis of infancy 2 7 6 1 1 17
Palmoplantar pustular psoriasis 10 35 21 21 8 95
Pustulosis palmoplantaris 0 27 21 8 5 61
Pustulosis subcornealis 0 20 6 10 4 40
All diagnoses 12 89 54 40 18 213

Table S3. Correlation coefficients of predictions aggregated on full images

ICC

Surface Count

Pustules 0.94 (0.89–0.97) 0.99 (0.98–1.00)
Brown spots 0.96 (0.93–0.99) 0.98 (0.98–0.99)
All lesions 0.98 (0.96–0.99) 0.99 (0.98–1.00)
The values in parentheses correspond to the 95% confidence 
interval. Results obtained from the 30 images in the test set.
ICC: intraclass correlation coefficient.
All p-values are below 0.05. 
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Figure S1.   PPP test set lesion distribution. Plots (A) and (B) show, respectively, the count and surface distribution for image patches in 
the test set. Plots (C) and (D) show the same for the corresponding full images. PPP, palmoplantar pustular psoriasis.
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Figure S2.   Agreement of count pre-
dictions with expert labels 
on full images. The DLM 
predictions differed by at 
most 22.5 lesions in 75% 
of the patches with up to 
97 lesions (the test set’s 
Q3). For the remaining 
patches, the difference 
increased to 29 lesions 
in 75% of the cases. The 
DLM’s bias was -11.1 for 
both types of lesions, its 
MAD was 23.96, and the 
ICC was 0.99 (95% CI, 0.98- 
1.00). DLM: deep learn-
ing model, MAD: mean 
absolute difference, ICC: 
intraclass correlation co-
efficient, CI: confidence 
interval.
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Figure S3.   Agreement of surface pre-
dictions with expert labels 
on full images. Consider-
ing the test image patches 
with up to 2% (the test 
set Q3) of the skin surface 
covered by pustules and 
brown spots, the DLM was 
able to determine the sur-
face with less than 0.22% 
difference from dermatol-
ogists in 75% of the cases. 
This difference plateaued 
at 0.42% for 75% of the 
images with higher surface 
percentages. The predicted 
surface ratios of lesions 
related to the experts’ 
labels with an ICC of 0.98 
(95% CI, 0.96–0.99). The 
DLM bias was 0.33% while 
the MAD was 0.35%. DLM: 
deep learning model, MAD: 
mean absolute difference, 
ICC: intraclass correlation 
coefficient, CI: confidence 
interval.
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Figure S4.   Pixel-wise performance of the DLM in segmentation. Plot (A) shows the pixel precision and recall reached on the test set by 
the DLM. The first two bars, for the “all” category, represent the macro average of the classes’ individual performance. Plot 
(B) is a confusion matrix showing the mean proportion of pixels classified among the different classes. Its vertical axis rep-
resents the true pixel labels, while the horizontal axis shows the predicted labels. The error bars and values in parentheses 
represent the 95% confidence interval. The evaluation of the DLM’s pixel-wise performance showed a precision and a recall 
of 69% and 59% respectively for pustules, and 68% and 54% for brown spots. The DLM missed 41% of pustules pixels and 
45% of brown spots pixels, matching the previous observation that it underestimated the lesion sizes. These relatively low 
scores are a direct consequence of the idiosyncrasy of the experts’ labels. We also evaluated the segmentation performance 
without ImageNet pretraining and observed a drop in performance. For pustules, we calculated a precision of 35% and re-
call of 36%, while for brown spots the precision was 48% and the recall was 47%. According to the DLM hyperparameters, 
with cross-validation, we selected the following hyperparameters for both skin and lesion segmentation DLMs: the batch 
size was 16, the initial learning rate was 1e-4, the input size was 380 × 380 pixels, and the number of epochs was 40. 
DLM: deep learning model.



Figure S5.   Architecture of the deep 
learning segmentation 
model. This figure presents 
the structure of the seg-
mentation models, based 
on the U-Net and ResNet 
architectures. The final mask 
channel dimension was c = 
2 for skin segmentation (M1 
subunit) and c = 3 for lesion 
segmentation (M2 subunit).
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7.2 Segmentation of Ichthyosis with Confetti Lesions

IWC is a congenital disease causing the skin to thicken and develop a red appearance as
well as different clinical signs including ear deformities or excessive hair growth. The
disease is persistent, although its severity evolves throughout patients’ growth [23]. It
is recognizable by its white spots, which correspond to regions of the skin that sponta-
neously healed from the ichthyosis. This healing is limited but durable and white spot’s
appearance remains stable excepting external transformation such as weight gain. Only
40 cases were reported worldwide [69] making IWC a very rare disease with little avail-
able data. Currently, no treatment exists, and the disease is an open topic of research.
Researchers aim to better understand the disease and follow its evolution. The quan-
tity and anatomical distribution of white spots are useful information in this regard.
However, they are too numerous to be precisely estimated manually.

In this section, we present an approach (inspired from section 7.1) to automatically
segment white skin and red skin in IWC patients pictures. These results were not pub-
lished yet.

7.2.1 Materials and Methods

Due to the rarity of the disease, only thirty-five high-resolution pictures of IWC patients
were available. Pictures were provided by Dr. Bettina Burger and her team. The images
were annotated by a medical student for background, red skin and white skin and then
divided into square patches of side-size 512 pixels. Setting aside six images for testing,
we trained a ResNet18 [77] following the approach described in section 7.1 for PPP
lesions.

7.2.2 Results

The DLM achieved a precision of 81% (95% confidence interval 73-85) and a sensitivity
of 80% (CI 73-84) (table 7.1). One test sample with student’s annotations and DLM
predictions is shown in figure 7.1. Furthermore, we also present predictions for out-of-
distribution pictures scanned from research articles in figure 7.2.

Region Precision Sensitivity
Background 98% (96-99) 94% (90-97)
White spot 81% (73-85) 80% (73-84)
Red skin 93% (89-97) 95% (92-97)
Average 91% (89-92) 90% (88-90)

Table 7.1: Performance of the IWC segmentation DLM.
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(a) Patient’s image (b) Expert’s labels (c) DLM’s predictions

Figure 7.1: Test sample of the IWC dataset.

(a) Patient image with DLM’s predictions. Dvorakova et al. [49] 2016, Wiley

(b) Patient image with DLM’s predictions. Hotz et al. [83] 2016, Medical Journals Sweden AB.

Figure 7.2: Predictions of out-of-distribution samples from previous publications.
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7.2.3 Discussion

The high performance of the DLM suggests that the proposed training approach is ap-
plicable also in restricted data availability regimes. This is confirmed by the quality of
predictions on out-of-distribution samples, which illustrates the generalization capac-
ity of the trained DLM. The performance’s large confidence intervals can be explained
by the small size of the test dataset. Our approach enables researcher to automatically
determine the surface and counts of white spots in patients’ photographs. Combined
with the anatomy DLMs of chapter 5, their anatomical distribution could also be eval-
uated similarly to the anatomical stratification of hand eczema in section 7.3.

7.3 Objective Hand Eczema Severity Assessment with Auto-
mated Lesion Anatomical Stratification

This research article was published [12] at the journal of Experimental Dermatology 2.
Our work was based on two hypotheses. First, we hypothesized that the surface of
hand eczema lesions could be automatically estimated using a segmentation approach
at high correlation (> 0.75) with experts’ annotations. Second, we hypothesized that
the anatomical distribution of hand eczema lesions could be automatically determined.

Both hypotheses were confirmed: we combine our anatomy mapping approach (cf.
section 5.2) with our lesion segmentation method (cf. section 7.1) to automatically strat-
ify the surface of hand eczema lesions on the anatomical subregions of the hand. This
approach enables objective and precise assessment of the disease and illustrates how
features from dermatological lesion description can synergize with deep learning ap-
plications in dermatology.

2Full text via DOI: https://doi.org/10.1111/exd.14744 (Accessed: 2nd February 2023)

https://doi.org/10.1111/exd.14744
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1  |  INTRODUC TION

Hand eczema (HE), also called hand dermatitis, is an inflammatory 
disease, often chronic, causing a wide spectrum of symptoms includ-
ing redness (erythema), scaling, hyperkeratosis, fissures, vesicles and 
erosions.1 All these features are visible on digital pictures. It is one 

of the most frequent dermatoses with 15% life prevalence and 10% 
1- year prevalence in the general population. It has a multifactorial 
aetiology including both environmental and genetic factors.2 HE 
severity range spans from mild to severe cases, the latter causing 
adverse physical and psychological effects, both in private and pro-
fessional activities, and significant impairment to patients' quality 
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Abstract
Hand eczema (HE) is one of the most frequent dermatoses, known to be both relaps-
ing and remitting. Regular and precise evaluation of the disease severity is key for 
treatment management. Current scoring systems such as the hand eczema severity 
index (HECSI) suffer from intra-  and inter- observer variance. We propose an auto-
mated system based on deep learning models (DLM) to quantify HE lesions' surface 
and determine their anatomical stratification. In this retrospective study, a team of 
11 experienced dermatologists annotated eczema lesions in 312 HE pictures, and a 
medical student created anatomical maps of 215 hands pictures based on 37 anatomi-
cal subregions. Each data set was split into training and test pictures and used to train 
and evaluate two DLMs, one for anatomical mapping, the other for HE lesions seg-
mentation. On the respective test sets, the anatomy DLM achieved average precision 
and sensitivity of 83% (95% confidence interval [CI] 80– 85) and 85% (CI 82– 88), while 
the HE DLM achieved precision and sensitivity of 75% (CI 64– 82) and 69% (CI 55– 81). 
The intraclass correlation of the predicted HE surface with dermatologists' estimated 
surface was 0.94 (CI 0.90– 0.96). The proposed method automatically predicts the 
anatomical stratification of HE lesions' surface and can serve as support to evaluate 
hand eczema severity, improving reliability, precision and efficiency over manual as-
sessment. Furthermore, the anatomical DLM is not limited to HE and can be applied to 
any other skin disease occurring on the hands such as lentigo or psoriasis.
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anatomy, computer- assisted, diagnosis, deep learning, eczema, severity of illness index
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2  |    AMRUTHALINGAM et al.

of life.3,4 Globally, HE induced socio- economic burden on society is 
considerable.5

Hand eczema is a remitting and relapsing disease that can acutely 
flare but also persist in a chronic form. The majority of cases are char-
acterized as occupational, and although current treatments may im-
prove patient's conditions, the disease remains very often chronic, 
oscillating between acute and subacute stages.6,7 It is therefore crit-
ical that clinicians can monitor its evolution precisely and efficiently 
to adapt treatment in consequence. A review reported the use of 45 
different grading systems in HE research studies.8 While all of them 
were based on a selection of morphological patterns and physiolog-
ical abnormalities, the most accurate in terms of lesion distribution 
analysed the subregions of each hand separately. One of the most es-
tablished systems is the hand eczema severity index (HECSI),9 which 
consists in combining the rankings of six clinical signs (erythema, in-
duration/papulation, vesicles, fissures, scaling and oedema) with the 
estimated surface of eczema lesions on five hand subregions (finger-
tips, fingers without tips, palm of hands, back of hands and wrist). The 
large variety of clinical signs is caused by the existence of many sub-
types of the condition such as dry fissured HE, pulpitis HE, nummular 
HE, vesicular HE and hyperkeratotic palmar HE.1

In clinical practice, severity grading is not performed systemati-
cally as it is a time- consuming process (especially when grading is not 
performed on a regular basis) requiring both training and experience. 
An overall acute or chronic, mild, moderate to severe grading, even-
tually with photo documentation, is preferred instead. In situations 
where precise assessment is required such as the evaluation for fit-
ness to work or reimbursement for expensive drugs, more objective 
methods like the HECSI score should be performed. Such assess-
ments and the monitoring of disease evolution can only be per-
formed on patients' follow- up (in- person) visits by trained clinicians. 
Furthermore, precision remains bounded by the discrete nature of 
the rankings, which induce inevitable inter-  and intra- observer vari-
ations.9 This issue was recently illustrated by two independent stud-
ies, which reported remarkably different minimal important change 
values for the HECSI score (41 points10 vs. 6.3 points11 on a theoret-
ical maximum of 360 points).

Machine learning algorithms have the potential to assist clinicians 
with HE severity assessment and monitoring, improving on the ef-
ficiency, precision and simplicity of the process. Being automated, 
they are reproducible and promise to reduce the problem of inter-  and 
intra- observer variations. The best results for machine vision are cur-
rently achieved with deep learning models12,13 (DLM). In this study, 
we trained two separate DLMs to automatically segment HE lesions 
and generate the anatomical maps of patients' hands pictures. By 
combining these predictions, we could generate the anatomical repar-
tition of HE lesions, which can assist with patient documentation and 
support the determination of severity gradings such as HECSI score.

2  |  METHODS

All hand pictures were obtained at the university hospital of Zurich 
from adult patients, skin type 1 to type 3 on the Fitzpatrick scale 

over a period of 4 years starting in 2014. The hospital's dermatolo-
gists diagnosed patients with HE lesions and then sent them for im-
aging. Pictures were captured within the same hospital using either 
a dedicated device under nurse supervision (a closed box equipped 
with camera where patients could fit their hands) or by the hospital 
photographer. In both cases, capturing conditions were standardized: 
both hands facing up/down, fixed background (green for the device 
and grey for the photographer), controlled lighting and zoom levels. 
An aspect that was not standardized was the portion of the wrists to 
be included as the imaging focus was the hands. Pictures were an-
onymized by the removal of all patient- identifying information.

2.1  |  Hand eczema data set

The HE data set was composed of 312 high- resolution pictures (156 
front and back hands pairs) annotated by a team of 11 experienced 
dermatologists for eczema lesions, healthy skin and background. 
When annotations for the same picture were available, the majority 
consensus was computed. The data set was randomly split into 249 
pictures for training and 63 for testing, ensuring no leak of pictures 
from the same patient. To leverage the full pixel resolution, all pic-
tures were divided into square patches of size 512 pixels resulting in 
7755 training patches and 1937 test patches.

2.2  |  Hand eczema DLM training

The HE DLM was based on the U- Net14 architecture with a ResNet15 
backbone pretrained on ImageNet.16 HE training patches were re-
sized to squares of 256 pixels size and the DLM was trained for 40 
epochs, with a batch size of 16, the Adam17 optimizer and one cycle 
scheduling18 for a learning rate initialized at 1 e- 4. To mitigate data 
set imbalance, we used a combination of the dice loss19 and the focal 
loss.20 Data augmentation operations consisted in random rotations, 
flips, brightness, contrast, perspective and zoom changes.

2.3  |  Hand anatomy data set

The anatomy data set comprised 215 high- resolution hand pictures 
with 99 front hands and 116 back hands. Each picture was anno-
tated by one medical student with 37 anatomical regions presented 
in Figure 1, including the wrist and “non- hand” (anything else) re-
gions. The correspondence between these anatomical regions and 
the HECSI regions is presented in the Table S1. The data set was 
randomly divided into 171 pictures for training and 44 pictures for 
testing performance, ensuring no leak.

2.4  |  Anatomy DLM training

The architecture of the anatomy DLM was similar to the HE DLM. 
We used the same training conditions except that the anatomy 
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    |  3AMRUTHALINGAM et al.

training pictures were resized to squares of 380 pixels side- size and 
that the batch size was fixed to 4.

2.5  |  Hand eczema assessment workflow

The workflow of our HE severity assessment system (Figure 2) 
essentially consists of five steps. First, the patient's hands are pho-
tographed from both sides. Then, the HE DLM predicts the eczema 
lesions in the pictures, followed by the mapping of the anatomical 
regions by the anatomy DLM (these two steps could be executed in 
parallel). Finally, the predictions are merged and a disease report is 
generated, providing a textual description of the disease together 
with a quantification of eczema surface per anatomical regions.

2.6  |  Analysis

The performance of the HE and anatomy DLMs were evaluated on 
the respective test data sets using the precision and sensitivity met-
rics with 95% confidence interval (CI). The CI were determined using 
the non- parametric bootstrap resampling method. In the case of the 
HE DLM, the full picture predictions were first reconstructed from 
the individual test patches predictions before computing the perfor-
mance metrics. Furthermore, we evaluated the intraclass correlation 
(ICC) of the predicted HE surface with experts' annotations.

We also analysed the performance of both DLMs after aggre-
gating their predictions over the HECSI anatomical regions. In the 
case of the anatomy data set, we could merge the anatomical regions 
labelled by the student into HECSI regions (as per Table S1), while for 
the HE DLM, we used the HECSI regions obtained from the anatomy 
DLM predictions.

To gain insights on the HE data set, we computed the aver-
age eczema surface per anatomical region with standard deviation 
and median. This analysis was performed based on the anatomy 
DLM predictions of the full HE data set and the dermatologists' 
HE labels.

Finally, taking an example patient case from the HE test set, we 
automatically generated a textual disease report with corresponding 
eczema anatomical stratification tables.

3  |  RESULTS

3.1  |  Hand eczema

The performance of the HE DLM was evaluated on the HE test set 
pictures (Table 1). When evaluating the performance over the full 
pictures, the DLM achieved a precision of 75% (CI 64– 82) and a sen-
sitivity of 69% (CI 55– 81). The ICC of the predicted HE surface was 
0.94 (CI 0.90– 0.96) indicating a very strong correlation with experts' 
annotations.

F I G U R E  1  Hands' anatomical regions. his schema presents the different hands' anatomical regions used in this work: nail (1), 
fingers II- V distal (2), fingers II- V middle (3), fingers II- V proximal (4), thumb distal (5), thumb proximal (6), interphalangeal (IP) joint I (7), 
metacarpophalangeal (MCP) I- V (8), proximal IP (PIP) II- V (9), distal IP (DIP) II- V (10), thenar (11), hypothenar (12), palm (13), wrist (14), dorsal 
radial (15), dorsal middle (16) and dorsal lateral (17).

 16000625, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exd.14744 by H

ochschule L
uzern, W

iley O
nline L

ibrary on [07/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4  |    AMRUTHALINGAM et al.

Considering the HECSI regions (predicted by the anatomy DLM) 
separately, we observed that the HE DLM was more precise but less 
sensitive on the palm of hands, fingers and fingertips similar to the 
average performance on full pictures. However, the opposite oc-
curred for the wrist and back of hands, both of which tended to be 
covered by hairs, a known source of confusion for segmentation ap-
proaches in such settings.

The analysis of eczema anatomical stratification of the HE 
data set (for HECSI regions in Table 2 and for all anatomical re-
gions in Table S2) revealed, that the regions mostly covered by 
eczema lesions were the fingers and fingertips with 13.1% and 
12%, respectively, followed by palm of hands with 11.6%. The 
wrist and back of hands had the least coverage with an average 
of 4.7% and 5.8% and a median close to 0%. Thus, more than half 
of the pictures did not have any eczema lesions on these regions, 
which explains the relatively large confidence intervals of the 

predictions. For all regions, the eczema surface standard devia-
tion was high, above 15%.

3.2  |  Hand anatomy

The performance of the anatomy DLM was evaluated on the anat-
omy test set pictures (Table 3). In average the DLM achieved a preci-
sion of 83% (CI 80– 85) and a sensitivity of 85% (CI 82– 88). The limits 
of wrists with arms were challenging to determine due to the lack of 
standardization of this particular region in the training pictures. The 
DLM also had difficulties for some of the MPCs (especially MPC1 on 
the thumb) and DIPs regions, because of their small size and unclear 
boundaries with respect to the other anatomical regions.

For the combined experiment using both the anatomy and HE 
DLMs, the regions were aggregated over the HECSI regions. This 

F I G U R E  2  Hand eczema assessment 
workflow. This figure presents a patient's 
front and back hand pictures (A), the 
corresponding hand eczema deep learning 
model (DLM) predictions (B), the hands 
anatomical regions (aggregated over the 
same regions assessed in the hand eczema 
severity index system for visual clarity) 
mapped by the anatomy DLM (C) and the 
combination of both DLMs predictions 
(D). In (B), the background is violet, the 
skin is green and the eczema lesions are 
red. In (C), the non- hand region is violet, 
the wrist is red, the palm of the hand is 
yellow, the fingers (without tips) is light 
blue, the fingertips are dark blue and the 
back of hand is orange.
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yielded a high performance since the regions' separations are more 
clearly defined: the average precision and sensitivity were 91% (CI 
90– 92) and 94% (CI 93– 94).

3.3  |  Disease report generation

Figure 1 presents a random patient case from the HE test data set 
with the predicted eczema lesions and HECSI anatomical regions. 
Our system automatically generated the following textual descrip-
tion for this patient's condition: “The patient's hands show eczema 
lesions on both the palmar and back sides, namely on 4.8% of the 
fingertips, 11% of the fingers (without tips), 1.5% of the palms, 3% of 
the back of hands and 1.1% of the wrists”.

4  |  DISCUSSION

Hand eczema is a highly prevalent disease that is often chronic and 
requires diligent and detailed clinical follow- up. Objective disease 

quantification is key for judging the success of clinical management 
but is challenging to perform in practice, as it requires time and ex-
pertize. In this work, we present an automated method to analyse the 
anatomical repartition of HE lesions from patients' hands pictures. 
Our approach leveraged two DLMs, one to segment HE lesions with 
precision and sensitivity 75% (CI 64– 82) and 69% (CI 55– 81), the 
second to segment hands anatomical regions with precision and sen-
sitivity 83% (CI 80– 85) and 85% (CI 82– 88). In application of our ap-
proach, we could automatically generate the quantitative and textual 
description of a test patient's condition as well as compute statistics 
on the anatomical repartition of eczema lesions in our data set.

Commenting on the reported model performance, the sensitivity 
of a DLM is always a trade- off with its precision. The large confi-
dence intervals are explained by the small size of the test data set 
together with the observation that a large proportion of the pictures 
had little to no eczema in certain anatomical regions. Given addi-
tional training data, the model sensitivity and precision could the-
oretically be improved. It is important to consider that the perfect 
segmentation of eczema lesions is not the most important objective 
of this study but rather the robust quantification of eczema lesions 
in a reproducible manner to enable precise disease monitoring in 
time and patient follow- up.

To the best of our knowledge, this study is the first to generate a 
mapping of hands' anatomical regions from patients' pictures as well 
as the anatomical stratification of HE lesions. Other work related to 
hand segmentation focused either on hand detection,21 palm region 
extraction for biometrics,22 gesture recognition23 or bone segmen-
tation from ultrasound and MRI scans.24,25 Previous work on auto-
mated eczema severity assessment were based on smaller data sets 
and mainly proposed lesion segmentation approaches,26 some with 
classification of the overall severity level.27– 29 One study's approach 
consisted in the detection (as opposed to segmentation) of atopic 
eczema lesions based on 1393 patients' pictures followed by the se-
verity classification of seven clinical signs.30 Segmentation and clas-
sification of eczema lesions was also performed on histopathological 
slides.31

Regions Category Precision Sensitivity

Full pictures Background 100% (100– 100) 100% (100– 100)

Skin 95% (92– 98) 97% (96– 98)

Eczema 75% (64– 82) 69% (55– 81)

Fingertips Eczema 74% (65– 79) 70% (63– 77)

Fingers (without tips) Eczema 78% (68– 84) 69% (59– 79)

Palm of hand Eczema 78% (64– 86) 84% (69– 90)

Back of hand Eczema 66% (23– 85) 50% (20– 85)

Wrist Eczema 68% (27– 87) 44% (19– 86)

Average of HECSI 
regions

Eczema 71% (53– 80) 62% (50– 78)

Note: Performance evaluated on the hand eczema test set by comparing the eczema deep learning 
model predictions with the dermatologists' lesion annotations. Parentheses indicate the 95% 
confidence interval. The hand eczema severity index (HECSI) regions were predicted by the 
anatomy deep learning model.

TA B L E  1  Performance of the eczema 
deep learning model.

TA B L E  2  Anatomical stratification of eczema lesions.

Regions
Surface 
average

Surface 
standard 
deviation

Surface 
median

Surface 
interquartile 
range

Back of hand 5.8% 17.4% 0.2% 1.9%

Fingertips 12% 19.2% 4% 13.3%

Fingers 
(without 
tips)

13.1% 21.8% 3.9% 12.8%

Palm of hand 11.6% 22.8% 1.6% 10.7%

Wrist 4.7% 16.5% 0% 0%

Note: Eczema surface repartition over the hand eczema severity index 
anatomical regions. Evaluated on the full hand eczema data set using 
dermatologists' lesion annotations and the anatomy deep learning 
model predictions.
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A particular challenge faced in this study concerned the 
boundaries of the different hand anatomical regions. These are 
not clearly defined in the anatomy literature and are subject to 
personal interpretation in practice. In this work, unclear region 
frontiers were clarified with a board- certified dermatologist. The 
difficulties of the anatomy DLM with the determination of wrists' 
limits on arms were caused by variations in the training set pic-
tures of the visible portion of wrists. This aspect was not fully 
standardized in the collection protocol as the photographer's goal 
was to capture full hands.

Further clinical studies are required to robustly differentiate 
mild, moderate and severe HE. Our method can be used to sup-
port clinicians in this regard by providing precise quantification 
of the anatomical repartition of eczema surface. These estimates 
have the advantage to be automated and reproducible, indepen-
dent from experience or training, eliminating inter-  and intra- 
observer variance. The results can be automatically translated to 
disease reports and thus assist in the documentation of patients' 
conditions. This approach enables less experienced clinicians to 
produce objective and comparable evaluation of their patients. 
Follow- ups can be performed remotely, either by directly integrat-
ing DLMs into mobile phone apps or by serving predictions via a 
web server. In this case, the picture acquisition process should be 
guided to ensure the captured pictures are sufficiently standard-
ized and similar to this study's data sets. When HECSI scores are to 
be computed, predicted surface estimates can be combined with 
dermatologist's manual severity grading of HE clinical signs, all of 
which can be achieved remotely with classic store- and- forward 
teledermatology.32

With our method, the typical anatomical stratification of eczema 
lesions could be evaluated from large HE databases (similarly to 
Table 2 and Table S2) to help determine the regions that are more 
prone to develop eczema lesions and to which proportions. Similarly, 
the clinical evolution of individual patients' HE, and the effects of 
treatment could be monitored with high precision and benefit drug 
development efforts.

The presented hand anatomy DLM is not restricted to HE and 
can be equivalently used to determine the anatomical repartition of 
other diseases affecting hands such as lentigo, psoriasis, vitiligo or 
palmoplantar pustulosis. Furthermore, our anatomical segmentation 
approach can be applied equivalently to other body regions enabling 
similar applications.

4.1  |  Limitations

One limitation of this study was caused by the data sets' char-
acteristics, which only comprised hands from skin type 1 to 3 on 
the Fitzpatrick scale photographed in a standardized position (cf. 
Figure 1). As a result, the DLMs presented in this study will un-
derperform on pictures from patient with other skin types or with 
hands in different position, for example, closed fists. Furthermore, 
the DLM could mistakenly segment benign skin lesions such as seb-
orrheic keratoses since they were not included in the training data 

TA B L E  3  Performance of the hand anatomy deep learning 
model.

Regions Precision Sensitivity
Non- hand 99% (99– 99) 97% (97– 98)

DIP2 71% (58– 79) 82% (72– 88)

DIP3 77% (72– 81) 84% (74– 90)

DIP4 72% (67– 78) 84% (73– 90)

DIP5 75% (69– 80) 85% (80– 90)

IP 79% (76– 82) 84% (81– 87)

MCP1 64% (57– 71) 79% (74– 84)

MCP2 74% (69– 79) 82% (74– 86)

MCP3 75% (69– 79) 84% (79– 88)

MCP4 68% (60– 75) 77% (69– 83)

MCP5 72% (65– 77) 79% (75– 84)

PIP2 84% (75– 90) 88% (82– 92)

PIP3 87% (84– 90) 85% (72– 91)

PIP4 84% (78– 88) 87% (84– 90)

PIP5 84% (79– 87) 86% (82– 89)

Dorsal mid 72% (67– 77) 76% (69– 81)

Dorsal radial 86% (81– 89) 85% (82– 88)

Dorsal ulnar 87% (85– 89) 77% (69– 81)

Hypothenar 87% (84– 90) 89% (81– 95)

Index distal 85% (78– 92) 88% (82– 92)

Index middle 84% (74– 91) 88% (83– 92)

Index proximal 87% (81– 92) 89% (83– 93)

Little f. distal 90% (87– 93) 89% (82– 93)

Little f. middle 91% (89– 93) 85% (82– 88)

Little f. proximal 87% (85– 90) 88% (86– 91)

Middle f. distal 91% (87– 94) 87% (80– 93)

Middle f. middle 92% (87– 94) 88% (82– 92)

Middle f. proximal 89% (85– 92) 88% (80– 92)

Nail 89% (86– 91) 83% (78– 86)

Palm 89% (86– 93) 86% (84– 89)

Ring f. distal 87% (82– 92) 87% (76– 93)

Ring f. middle 89% (83– 94) 86% (78– 91)

Ring f. proximal 88% (84– 91) 88% (84– 91)

Thenar 88% (83– 91) 89% (85– 92)

Thumb distal 92% (90– 93) 89% (86– 92)

Thumb proximal 87% (83– 90) 80% (76– 83)

Wrist 69% (64– 74) 86% (83– 89)

Average 83% (80– 85) 85% (82– 88)

HECSI regions Precision Sensitivity

Non- hand 99% (99– 99) 97% (97– 98)

Fingertips 96% (95– 96) 94% (92– 95)

Fingers (without tips) 94% (93– 95) 94% (93– 95)

Palm of hand 96% (95– 97) 98% (96– 98)

Back of hand 93% (90– 94) 93% (92– 95)

Wrist 69% (64– 74) 86% (83– 89)

Average 91% (90– 92) 94% (93– 94)

Note: Performance evaluated on the anatomy test set by comparing the 
anatomy deep learning model predictions with the medical student's 
annotations. Parentheses indicate the 95% confidence interval. HECSI 
stands for the hand eczema severity index, IP for interphalangeal joint 
I, MCP for metacarpophalangeal, PIP for proximal IP, DIP for distal IP, f 
for finger.
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set. These issues can be mitigated by retraining the DLMs on more 
complete data sets. Another limitation by design is that our ap-
proach does not evaluate the severity of eczema clinical signs, nec-
essary to fully automate the HECSI score. This choice was caused by 
the lack of necessary data (each feature is ranked on four severity 
levels, all of which would require corresponding pictures to train a 
DLM for automation) and is planned as future work together with a 
prospective study on how HECSI scores correlate with this study's 
surface predictions. Finally, picture- based approaches such as ours, 
must inevitably base their predictions on limited information. Thus, 
for applications with high precision requirements, it is of interest to 
explore other image modalities that provide additional information 
such as multispectral imaging.33

5  |  CONCLUSION

Taken together, by quantifying aspects of patients' conditions, our 
approach translates information that could so far, only be inferred 
and interpreted by dermatologists, into an easily shareable, objec-
tive and accessible digest. The determination of condition- specific 
actionable rules is the next step to empower less specialized clini-
cians and scale- up HE care.
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SUPPORTING INFORMATION 
In these supplementary materials we provide additional information and results for the 
following: 

• Mapping of the hand’s anatomical regions 
• Patient sample detailed anatomy predictions 
• Confusion matrix of the HE DLM 
• Detailed anatomical stratification of HE lesions in the full HE dataset 
• Extended results on disease report generation 
• Robustness of the DLMs performance: randomness and data augmentation 
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Mapping of the hand’s anatomical regions 
Table S1 HECSI regions correspondance with anatomical regions 

HECSI region Anatomical region 
Non-hand Non-hand 

Fingertips 

Index distal 
Little f. distal 
Middle f. distal 
Nail 
Ring f. distal 
Thumb distal 

Fingers (without tips) 

DIP2 
DIP3 
DIP4 
DIP5 
IP 
PIP2 
PIP3 
PIP4 
PIP5 
Index middle 
Index proximal 
Little f. middle 
Little f. proximal 
Middle f. middle 
Middle f. proximal 
Ring f. middle 
Ring f. proximal 
Thumb proximal 

Palm of hand 

Hypothenar 
Palm 
Thenar 
MCP2 
MCP3 
MCP4 
MCP5 

Back of hand 

Dorsal mid 
Dorsal radial 
Dorsal ulnar 
MCP1 
MCP2 
MCP3 
MCP4 
MCP5 

Wrist Wrist 
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Patient sample detailed anatomy predictions 

 
Figure S1 Patient’s front hands anatomy predictions 

 
Figure S2 Patient’s back hands anatomy predictions 
In both Figures S1 and S2, the sample pictures are shown in (a), anatomical predictions in (b) 
and the aggregated HECSI regions in (c). 

Confusion matrix of the HE DLM 

 
Figure S3 HE DLM confusion matrix 
The confusion matrix shows the average proportion of pixels classified between the 
background, skin and eczema classes. The vertical axis represents the true pixel labels, while 
the horizontal axis shows the predicted labels.  
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Detailed anatomical stratification of HE lesions in the full HE dataset 
Table S2 HE lesions’ surface repartition on the hand’s anatomical regions 

Region Average 
surface 

STD 
surface 

Median 
surface 

IQR 
surface 

Non-hand 0.2% 0.4% 0.1% 0.2% 
DIP2 19.4% 30.6% 0% 29.5% 
DIP3 18.3% 30.7% 0% 24.4% 
DIP4 16.4% 28.5% 0.1% 17.6% 
DIP5 16% 27.3% 0.9% 17.4% 
IP 13.8% 24.9% 0.3% 16.2% 
MCP1 6.6% 20.4% 0% 0% 
MCP2 11.8% 25.3% 0% 6.4% 
MCP3 11.3% 25% 0% 7.7% 
MCP4 10.8% 24.3% 0% 7.5% 
MCP5 12.6% 26% 0% 11.7% 
PIP2 16% 28% 0% 18.4% 
PIP3 13.2% 26.2% 0% 10.2% 
PIP4 12.1% 24.1% 0.4% 9.1% 
PIP5 15.1% 27.1% 1.6% 14.3% 
Dorsal mid 4.1% 17.6% 0% 0% 
Dorsal radial 4.7% 17.9% 0% 0.3% 
Dorsal ulnar 5.4% 19.4% 0% 0% 
Hypothenar 11.7% 24.3% 0.8% 8.1% 
Index distal 16.4% 25.6% 1.6% 24.2% 
Index middle 15.5% 27.4% 0% 18.7% 
Index proximal 12% 25% 0% 8.9% 
Little f. distal 11.7% 20.9% 2% 12.6% 
Little f. middle 14.6% 26.2% 1.3% 14.7% 
Little f. proximal 10.9% 23.8% 0% 7.2% 
Middle f. distal 14.9% 26.6% 0% 15.6% 
Middle f. middle 14.9% 28.5% 0% 12.6% 
Middle f. proximal 10.1% 23.9% 0% 5% 
Nail 8.3% 19.6% 0.1% 5.1% 
Palm 10.8% 23.5% 0.6% 7.4% 
Ring f. distal 12% 22.3% 0.8% 11.4% 
Ring f. middle 13% 25.1% 0.5% 11.2% 
Ring f. proximal 9.6% 22.2% 0% 5.5% 
Thenar 11.4% 23.9% 0.7% 8.5% 
Thumb distal 14.9% 26.5% 0% 18.5% 
Thumb proximal 11.3% 22.2% 0.8% 10.6% 
Wrist 4.7% 16.5% 0% 0% 

Eczema coverage of the hand anatomical regions. Evaluated on the full HE dataset and 
based on the DLM anatomical predictions. 
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Extended results on disease report generation 
Here we detail the predicted eczema anatomical stratification for the patient presented in the 
paper. 
Table S3 Anatomical stratification over HECSI regions of patient’s HE lesions 

Region Predicted surface 
Fingertips 4.8% 
Fingers (without tips) 11% 
Palm of hand 1.5% 
Back of hand 9% 
Wrist 1.1% 

Table S4 Detailed anatomical stratification of patient’s HE lesions 

Region Predicted surface 
Non-hand 0.3% 
DIP2 4.6% 
DIP3 6.5% 
DIP4 18.8% 
DIP5 9.6% 
IP 4.7% 
MCP1 43.5% 
MCP2 3.6% 
MCP3 34.4% 
MCP4 23.3% 
MCP5 10.4% 
PIP2 20.7% 
PIP3 4.2% 
PIP4 24.2% 
PIP5 28.4% 
Dorsal mid 5.7% 
Dorsal radial 1.0% 
Dorsal ulnar 2.0% 
Hypothenar 0.9% 
Index distal 12.6% 
Index middle 6.2% 
Index proximal 6.9% 
Little f. distal 5.4% 
Little f. middle 5.3% 
Little f. proximal 11.8% 
Middle f. distal 4.9% 
Middle f. middle 10.3% 
Middle f. proximal 25.6% 
Nail 3.5% 
Palm 3.4% 
Ring f. distal 6.9% 
Ring f. middle 4.7% 
Ring f. proximal 8.4% 
Thenar 0.6% 
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Thumb distal 1.7% 
Thumb proximal 4.0% 
Wrist 1.1% 

Robustness of the DLMs performance: randomness and data augmentation 
The performance of DLMs can be influenced by the random initialization of their parameters, 
especially when training datasets are small with respect to DL standards. To quantify the 
randomness of the reported performance, we trained each DLM with twenty different random 
seeds and evaluated the mean, median and standard deviation (std) of the achieved precision 
and sensitivity (Table S5). For the HE DLM, we measured a precision std of 1.17% and a 
sensitivity std of 1.25% while for the anatomy DLM the std amounted to 0.22% for the 
precision and 0.18% for the sensitivity. 
 
 Table S5 Evaluation of randomness in DLMs' performance  

HE DLM Anatomy DLM 
Precision Sensitivity Precision Sensitivity 

Mean 74.7% 67.3% 83.5% 84.7% 
STD 1.17% 1.25% 0.22% 0.18% 
Median 74.65% 67.47% 83.53% 84.76% 

 
To increase the DLMs’ generalization capability, we applied random rotations, flips, contrast, 
brightness, perspective and zoom augmentations during training. An interesting experiment 
illustrating how well the DLMs handle transformed images is to evaluate their test 
performance after applying the different transformations separately. We performed this 
analysis based on twenty different random seeds and calculated the mean, median, std of the 
precision and sensitivity for both DLMs (Table S6).  
Table S6 Evaluation of DLMs' performance robustness against data augmentation  

HE DLM Anatomy DLM 
Transforms Precision Sensitivity Precision Sensitivity 
Original Mean 75.1% 68.6% 83.1% 85.4% 

STD 0.0% 0.0% 0.0% 0.0% 
Median 75.1% 68.6% 83.1% 85.4% 

Rotation Mean 76.6% 66.1% 79.2% 81.4% 
STD 0.5% 0.6% 0.6% 0.6% 
Median 76.6% 66.1% 79.0% 81.2% 

Flip Mean 74.7% 67.0% 80.9% 83.6% 
STD 0.7% 0.2% 0.3% 0.2% 
Median 74.9% 67.0% 81.0% 83.5% 

Brightness 
and 
contrast 

Mean 74.5% 67.6% 77.6% 76.9% 
STD 1.0% 0.8% 1.7% 2.7% 
Median 74.5% 67.8% 78.0% 77.2% 

Perspective Mean 76.1% 70.2% 80.5% 81.1% 
STD 0.5% 1.3% 0.0% 0.0% 
Median 76.5% 71.0% 80.5% 81.1% 

Zoom Mean 76.3% 67.4% 83.1% 85.0% 
STD 0.4% 0.4% 0.1% 0.2% 
Median 76.3% 67.5% 83.1% 85.0% 

 
 



Chapter 8

Generation of Synthetic
Dermatology Images

One of the main challenges faced in the development of deep learning applications for
dermatology is the availability of data, as we illustrated in section 4.3.2. Public datasets
are necessary to reproduce and compare published research results. However, this is
often not possible due to legal constraints or commercial interests around medical data.
The generation of synthetic data is a promising approach to create publicly shareable
datasets, even when the original available data is sensitive and must remain private. In
section 8.1, we present our conference paper on the generation of artificial dermatology
images.

8.1 Applications of Generative Adversarial Networks to Der-
matologic Imaging

This conference paper was accepted [58] at the 2020 International Association of Pattern
Recognition Workshop on Artificial Neural Networks in Pattern Recognition 1. We
hypothesized that synthetic skin lesion images could be produced using generative
adversarial networks. In this work, we validate this hypothesis and generate artificial
data for the two main dermatology image modalities, namely photography of eczema
lesions and dermoscopy imaging of melanocytic lesions. After verification for patient
identifying features, this synthetic data could be shared to establish standard evaluation
datasets. It could also be used to improve performance of deep learning models by
training on a combination of original and synthetic data.

1Full text via DOI: https://doi.org/10.1007/978-3-030-58309-5_15 (Accessed: 2nd Febru-
ary 2023)
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Abstract. While standard dermatological images are relatively easy to
take, the availability and public release of such data sets for machine learn-
ing is notoriously limited due to medical data legal constraints, avail-
ability of field experts for annotation, numerous and sometimes rare dis-
eases, large variance of skin pigmentation or the presence of identifying
factors such as fingerprints or tattoos. With these generic issues in mind,
we explore the application of Generative Adversarial Networks (GANs) to
three different types of images showing full hands, skin lesions, and vary-
ing degrees of eczema. A first model generates realistic images of all three
types with a focus on the technical application of data augmentation. A
perceptual study conducted with laypeople confirms that generated skin
images cannot be distinguished from real data. Next, we propose models
to add eczema lesions to healthy skin, respectively to remove eczema from
patient skin using segmentation masks in a supervised learning setting.
Such models allow to leverage existing unrelated skin pictures and enable
non-technical applications, e.g. in aesthetic dermatology. Finally, we com-
bine both models for eczema addition and removal in an entirely unsu-
pervised process based on CycleGAN without relying on ground truth
annotations anymore. The source code of our experiments is available on
https://github.com/furgerf/GAN-for-dermatologic-imaging.

Keywords: Generative Adversarial Networks · Dermatology

1 Introduction

Generative Adversarial Networks (GANs), initially proposed in [8] have since
then produced impressive results in a variety of synthetic data generation tasks.
In contrast to other deep learning methods, which are notoriously data-intensive,
GANs achieve good results even with relatively small data sets [2,7]. This makes
GANs attractive for domains where training data is difficult or expensive to
obtain. A standard example is the medical field, where specialized machinery

c© Springer Nature Switzerland AG 2020
F.-P. Schilling and T. Stadelmann (Eds.): ANNPR 2020, LNAI 12294, pp. 187–199, 2020.
https://doi.org/10.1007/978-3-030-58309-5_15



188 F. Furger et al.

may be needed or occurrences of pathologies may be hard to find. Using data
sets augmented with GAN-generated synthetic data to train machine learning
models has improved performance in a variety of medical domains [3,9,12].

Dermatology is one domain particularly suited for the application of deep
learning models, but with far too few publicly-available data sets compared to
the diversity of the cases encountered in clinical practice. Therefore, the idea
to leverage the GAN framework to generate new samples is very promising.
However, applications in dermatology are to this date still rare. One example
is MelanoGAN [2], which generates images of skin lesions from ISIC 2017 [5].
The authors compare the results of different GAN models by training a lesion
classifier on synthetic data only. In another work, [3] generate skin lesions from
ISIC 2018 by translating lesion segmentation masks to images. The resulting
images are thus directly associated with ground truth segmentations, which can
be leveraged for further applications.

In this paper we present our results for two different types of skin lesions:
eczema and moles. For eczema we use a private data set (due to identifying
patient information) but for moles we use an established public data set for
reproducibility and as an example of the generality of our approach.

Besides technical applications such as data augmentation or the creation of
paired data, image transformation also enables domain-specific use cases such as
prediction of a skin lesion evolution or the evaluation of aesthetic effects of treat-
ment. With this in mind, we train our GAN models to add or remove eczema
from skin pictures pursuing two different strategies: a supervised approach where
we use ground truth lesion segmentation masks to target modifications to pre-
cisely defined areas as well as an unsupervised process entirely freed from the
availability of training data.

2 Materials and Methods

2.1 Data Sets

We conduct experiments on 3 different types of dermatologic images:

Sets of Hands. The first set of experiments is conducted on photos of hands.
Each of the 246 individual pairs of hands was photographed from the front and
the back side, for a total of 492 photos. They were taken under uniform condition
with green background and downscaled to 640 × 480 pixels.

Patches of Skin. Most of the remaining experiments leverage high-resolution
photos (3456 × 2304 pixels) of the back side of hands from the EUSZ2 data set
collected in the SkinApp project [17]. There are 79 photos available for training
and we use a test set of 52 photos to analyze the overfitting of the discriminator.
The photos are annotated with segmentations marking the contour of the hands
and eczema lesions. From these photos, we extract patches of skin fulfilling the
following criteria: a patch consists of skin only (no background) with a specified
amount of skin being afflicted with eczema. We create a data set with healthy
skin patches and a data set with skin with eczema patches, where 10–80% of the
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skin pixels are annotated as eczema. For these experiments, patches of 128×128
pixels are used. This procedure yields 51023 patches of healthy skin and 2872
patches of skin with eczema. Larger patch sizes yield smaller data sets and
significantly increase overfitting, especially in the case of skin with eczema.

Skin Lesions. The final data sets consist of dermoscopic images of skin lesions
from the ISIC archive 2018 [5,22]. In particular, we generate new lesion images
of Dermatofibroma (DF) and Melanoma (MEL) with 115 and 1113 samples
available for training, respectively. These different data set sizes allow to analyze
the effects on GAN performance. The original images have varying sizes and are
resized to a common resolution of 256 × 256 pixels.

2.2 Model Architecture

This section describes the architecture of the generator and discriminator models
for the experiments. Our models are based on the architecture of DCGAN [19]
with the changes described in the following paragraphs. All models are optimized
using Adam [16] with a learning rate of 5 · 10−5 and default moment decays
β1 = 0.9, β2 = 0.999 (values determined experimentally for model convergence).
The training was organized in batches of varying size depending on the image
resolution and was stopped when the training metrics converged.

Unconditional Generator. The generator for unconditional image synthesis
receives a 100-dimensional input vector (drawn independently from a standard
Gaussian), which is first passed through a dense layer to produce 64 initial feature
maps. The layer’s output is reshaped based on the desired aspect ratio of the
generated images with lower resolution. Then, a sequence of fractionally-strided
convolutions (deconvolutions) increases the image size until the desired output
resolution is achieved.

Following common practice, the number of feature maps per convolution are
halved at each resolution stage. After each convolution, the output is passed
through batch normalization [13] and activated with LeakyReLU [18]. Finally, a
regular convolution with 3 output feature maps is activated with tanh to produce
the RGB-channels of the generated image.

The hand images generator benefits from unstrided convolutions after each
deconvolution to refine the intermediate representations. This is attributed to
the comparatively large complexity of these images and does not help with the
generation of patches of skin and skin lesions. The size of the initial dense layer
and the number of deconvolutions determine the image resolution. Table 1 sum-
marizes the model parametrizations.

Table 1. Unconditional generator: image resolution overview.

Experiment Dense layers Deconvolution Resolution

Full hands (Sect. 3.1) 20 × 15 × 64 5 640 × 480

Skin patches (Sect. 3.1) 8 × 8 × 64 4 128 × 128

Skin lesions (Sect. 3.1) 8 × 8 × 64 5 256 × 256
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Image Translation Generator. The image translation model is based on the
U-Net architecture [20]: an encoder with increasing number of features, which
reduces the image resolution, and a decoder to reverse the process. Additionally,
the encoded representation is translated with a sequence of residual blocks [10].
We find experimentally (with the FID score and a qualitative review of the
results) that 2 strided convolutions in the encoder and 2 deconvolutions in the
decoder yield the best results. Consequently, the residual blocks translate fea-
tures with a resolution of 32 × 32 pixels. We find that 4 residual blocks are
ideal, which is surprisingly low but can be attributed to the fact that the skin
images are small and relatively simple. Skip connections between the encoder
and the corresponding decoder stages are used as suggested by [14]. These con-
nections forward intermediate features from the encoder that are combined with
the decoder features by concatenation.

Finally, we task the image translation generator with image modification. To
that end, the input image is added to the 3 output channels of the generator,
so that it is essentially tasked with generating an image residual. The generated
residual contains the information to modify the input photo in the desired way.

Discriminator. All experiments leverage the same multi-scale discriminator
architecture [23]: two individual discriminators process an input image and
a downscaled version of the image. Afterwards, their outputs are averaged.
This improves the sensibility to low-level details and high-level structures. We
observed that more than two discriminators do not improve results, which can
be explained by our images’ lower resolution when compared with [23].

Both discriminators have the same architecture: a sequence of strided con-
volutions with batch normalization and LeakyReLU activation, followed by a
dense layer with one output neuron to produce the prediction. The features are
doubled after each convolution and the number of convolution layers matches the
deconvolution layers of the corresponding generators, as summarized in Table 1.
All the image translation experiments operate on patches of skin image with
4-convolution discriminators. As the generators produce normalized images, the
channels of the real images are also normalized before discrimination.

Model Balance and Selection. The balance between the generator and dis-
criminator is difficult to maintain, as neither should overpower the other [25].
Model balance is adjusted by selecting the number of initial features of the gen-
erator and discriminator. Table 2 summarizes the initial features of all models in
this work’s experiments. The ideal numbers of features are determined empiri-
cally with the restriction of the available GPU memory.

Besides visual inspection, we minimize the Fréchet Inception Distance (FID)
[11] to select the best model. The FID measures the dissimilarity between real
and generated images, it is commonly used to quantitatively compare the results
of GAN models. In our experiments, this metric works well with unconditional
generation, but not with image translations showing that the generator’s sec-
ondary objective of retaining certain image regions penalizes image realism.
Furthermore, we observe that FID scores computed on different data sets should
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not be compared as the data set’s inherent statistics and variability greatly
influence the FID scores.

Model selection is additionally guided by the discriminator’s predictions con-
fidence and consistency, which indicate whether the discriminator requires addi-
tional capacity to adequately distinguish real and generated samples, and thus,
to better guide generator learning.

3 Experiments

3.1 Unconditional Dermatology Data Synthesis

The first experiments concern the unconditional generation of dermatology data.
The objective is to explore the quality of generated images for different target
data sets. The findings indicate the expected performance when the GAN task
is not restricted and serves as a baseline for later comparisons with the results
of restricted tasks.

Table 2. Initial features for the generator and discriminator models.

Experiment Generator Discriminator

Full hands (Sect. 3.1) 512 32

Healthy patches (Sect. 3.1) 1024 128

Eczema patches (Sect. 3.1) 1024 256

Skin lesions (Sect. 3.1) 512 64

Targeted eczema (Sect. 3.2) 1024 256

Untargeted eczema (Sect. 3.3) 1024 256

Sets of Hands. There are two central aspects to the quality of the generated
images: high-level structures like anatomy and low-level details like textures.
Here, the multi-scale discriminator architecture proves useful, as the two dis-
criminators each focus on one of these aspects. However, many of the generated
images still contain visible defects such as hands with more than 5 fingers. These
issues are linked to unlikely generator input vectors and can be mitigated using
the truncation trick [23] to improve the quality of the generated images.

The truncation technique includes the truncation of the input below some
a priori defined threshold. Every exceeding component of the input vector is
re-sampled. Truncation trades sample variability for quality: aggressive trunca-
tion significantly reduces variability, while sample quality increases. We deter-
mine empirically that a threshold of 0.1 is suitable for the generation of hands,
based on the generated samples and FID scores. These scores are summarized
in Table 3. Figure 1 shows the results with a truncation threshold of 0.1.

While the samples do not show great variability, their quality is generally
high. The hands’ textures look realistic, the side (front or back) of most pairs of
hands can be determined in most samples and most hands consist of four fingers
and a thumb.
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Table 3. Truncation threshold selection with FID score.

Threshold 0.01 0.02 0.05 0.1 0.2 0.5 1 None

FID 111.4 94.5 75.0 69.5 69.5 70.3 74.1 74.2

Fig. 1. Samples of the unconditional generation of hands.

This application shows that high-resolution dermatology images can be gen-
erated with a relatively small data set. These images could be mistaken for real
photos at short glance. The model obtains a FID score of 74.2 without trun-
cation, a significantly lower value than in all other experiments. This indicates
that FID scores on different data sets should not be compared.

Patches of Skin. We further experiment with the unconditional generation of
images of healthy skin and of skin that contains eczema. These experiments are
a prerequisite for later eczema modification experiments.

Healthy Skin. With the large data set of 51023 patches of skin that do not
contain any eczema, our GAN is able to generate high-quality images. Samples
are shown in Fig. 2. The generated samples look very realistic and are also very
diverse. Different types of skin, as well as creases and wrinkles are generated.
The selected model achieves a FID score of 538.7.

Fig. 2. Samples of the unconditional generation of healthy skin (first line) and skin
with eczema (second line).

Skin with Eczema. We observe that the discriminator’s task becomes more
difficult when classifying patches of skin with eczema, so that the best results
are achieved when the discriminator contains more feature maps. Sample results
are shown in Fig. 2. The quality of the generated images is comparable with
the synthetic healthy skin. The skin is detailed and contains different kinds of
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wrinkles and eczema. Overall, there are more creases than in the patches of
healthy skin, which is attributed to the increased prevalence of eczema in such
areas of the hand. The model achieves a FID score of 599.6 for this task.

Perceptual Study. We further evaluate the generated images quantitatively in
a perceptual study. The results are presented in Sect. 3.1 along with the analysis
of synthetic skin lesion images.

Overfitting. Finally, we analyze the models’ overfitting, quantitatively for
the discriminator and qualitatively for the generator. For patches of skin with
eczema, the discriminator increasingly overfits over the course of the training.
Samples from the training set are predicted as real with high likelihood, while
testing samples are increasingly being rejected as generated. We observe that this
is not the case for the discriminator of healthy skin. As the discriminator for skin
with eczema has greater capacity, it is more prone to overfitting. However, we
find that overfitting is mainly linked to the data set size. Low-capacity discrim-
inators also overfit to the set of 2872 images, while high-capacity discriminator
do not overfit on larger data sets.

We further investigate how the overfitting of the discriminator for patches of
skin with eczema impacts the generator. We perform a qualitative assessment of
the generator overfitting with the common method of comparing generated sam-
ples with their nearest training samples [4,6,15]. In our experiments, the struc-
tural similarity index [24] yields more similar samples than the mean squared
error. We find that the generated samples do not contain memorized parts of
the training set, so we can conclude that the discriminator’s overfitting is not
leading the generator to overfit as well.

Skin Lesions. Finally, we generate images of skin lesions. Samples of generated
DF and MEL lesions are shown in Fig. 3.

Fig. 3. Samples of the unconditional generation of DF (first line) and MEL (second
line) lesions.

Dermatofibroma. While these images resemble the samples of the training set,
they lack variability. Furthermore, they show clear tiling artifacts, i.e. patterns
that are repeated within a generated image. In this case, the discriminator is
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trained with only 115 real samples and overfits severely. This visibly impacts
the generator: we observe structures, such as lesion shapes or the hairs in the
bottom left corners across different samples. With these negative aspects, the
generator achieves a FID score of 822.9.

Melanoma. The generated images of MEL lesions contain far greater variability
but also suffer from significant tiling. In this case, the generator’s FID is 607.8.
There is significantly less overfitting, as this data set contains 1113 samples.
However, some of the hairs are still repeated. We hypothesize that such specific
and distinctive hairs are prone to be copied, as they are rare among the real
samples.

Fig. 4. Perceptual study: the box plots show the three quartiles of the obtained F1-
scores for each data set.

Perceptual Study. We assess the realism of the generated patches of skin lesions
with a perceptual study, where we ask 104 participants (laymen without prior
training) to determine whether a given image is real or generated. The partici-
pants are asked to discriminate 20 images from one of four sets: patches of healthy
skin, patches of skin with eczema, DF lesions, and MEL lesions. They have 2–3 sec-
onds observation time per image and do not receive intermediate feedback. Such
experiments are often conducted to assess if the generated images are easily identi-
fied [14,21,23]. The classifications are evaluatedwith theF1-score and the distribu-
tion of the results are visualized per data set in Fig. 4. The majority of participants
are unable to distinguish real and generated patches of skin, regardless of the pres-
ence of eczema: the mean F1-scores are just above random guessing, with 0.58 and
0.53. The third quartiles are also very low, with 0.63 and 0.59. This result confirms
that the models are able to generate realistic skin patches. On the other hand, skin
lesions are simpler to distinguish, with a mean F1-scores of 0.65 and 0.71. This
reflects the observations of the qualitative analysis, where generated lesions look
less realistic than synthetic patches of skin. Interestingly, DF lesions are perceived
as slightly more realistic than MEL lesions.
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3.2 Targeted Eczema Modification

We formulate eczema addition and removal as an image translation task: the
generator receives a skin photo and an eczema segmentation mask as input and
should either remove or add eczema within the indicated areas. This is performed
by generating a residual, which is added to the input image. To encourage pairing
between the generator’s input and output, its adversarial objective is combined
with the relevancy loss [1].

The translations are performed between the data sets of skin with and with-
out eczema, two data sets with very different sample sizes. Thus, the set of
patches of healthy skin is truncated to 2872 samples, to match the smaller data
set. We use additional healthy skin images to train the discriminator for eczema
removal, which effectively prevents overfitting. Furthermore, we use the same
segmentation with multiple photos of healthy skin. This also helps with gener-
alization, though the effects of this technique are less pronounced.

Eczema Removal. In Fig. 5 we show the translation results of removing eczema
from afflicted skin. Columns 3 and 6 still show the same parts of hands as the
input photos in columns 1 and 4, but they no longer contain the structures
and skin disruptions associated with eczema. However, the generated patches
generally lose some fine details such as creases, which are often less visible,
compared to the inputs. We observe that the FID score applies poorly to the
results of image translation. For these experiments, the FID is often oscillating, in
this case between 600 and 1100. Thus, we rely on the visual qualitative evaluation
of the generated samples.

Fig. 5. Eczema removal (first line) and addition (second line) from afflicted skin:
columns 1 and 4 show the input photos, columns 2 and 5 the input segmentations
and columns 3 and 6 the generation results.

Eczema Addition. We modify photos of healthy skin by adding eczema to
specified areas. Figure 5 shows sample results of this translation. The generator
again produces realistic images, as we show in columns 3 and 6. Generally, the
structures of the skin are retained and fewer details are lost, compared to eczema
removal. Further, realistic-looking eczema is placed in the desired parts of the
images. These results show that convincing eczema can be in-painted accurately
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in the indicated locations, which enables applications such as simulating the
progression of untreated eczema.

3.3 Untargeted Eczema Modification

We experiment the cyclic translation between patches of skin with and without
eczema. No segmentation masks are used and the translations are learned with
the completely unsupervised CycleGAN framework [26]. The pairing between
generator input and output is achieved with the cycle consistency loss [26],
which penalizes differences between a generator’s input and its reconstruction.
While placing a greater emphasis on cycle consistency does increase the pair-
ing, this benefit comes at the cost of reduced sample quality. Sample results of
unsupervised eczema modification are shown in Fig. 6.

Fig. 6. Unsupervised cyclic eczema transformation: columns 1 and 4 show the sick and
healthy input photos, columns 2 and 5 the generated translations without and with
eczema and columns 3 and 6 the input reconstructions.

The results are realistic and the original inputs are reasonably reconstructed
although some details are missing. This is to be expected, as the generated
patches of healthy skin in column 2 should not contain any hints on where or how
to in-paint specific eczema. Eczema addition produces realistic-looking lesions,
however, it is no longer targeted and can not always be clearly determined.

The loss of details observed in previous translation experiments is barely
noticeable here, likely a positive effect of the cycle consistency objective. The
metrics of these cyclic translation experiments are more stable than those of the
individual translations. For completeness, we mention that the synthetic patches
of healthy skin have a FID of 654.7 to the real data, while the synthetic patches
of skin with eczema have a FID of 690.2. These scores are reasonably similar to
the scores of unconditional generation, with 538.7 and 599.6, respectively.

4 Conclusion

We present different applications of GANs on dermatologic images. First, uncon-
ditional image generation is performed successfully with photos of hands and
patches of skin in particular. This is also shown for skin patches in the percep-
tual study. The validity of our approach is therefore confirmed and our initial
objective to create realistic synthetic data achieved.
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In the case of generated skin lesions, the results do not look as realistic. This
could be corrected by further filtering of the images with rare features (such
as hair in our particular case), when compared to the other images in the data
set. Our analysis shows that the discriminator already overfits with data sets of
several thousand images. On the other hand, we only notice overfitting in the
generator when using smaller data sets of merely hundreds of samples. Thus, we
conclude that the discriminator complexity should be especially controlled when
working with small data sets

In the second part of this work, we explore the task of image modification,
with eczema addition or removal within a specified area. The obtained results are
again visually appealing but we observe that the FID score may be unsuitable
to assess the quality of image translation experiments. In particular, we demon-
strate the precise addition of eczema to the areas indicated by the segmentation
mask. These results open the door for new applications in dermatology such as
anomaly detection in a disease appearance or the visualization of the long term
aesthetic effects of a disease.

Finally, we also perform domain translation between healthy skin and skin
with eczema lesions in an entirely unsupervised experiment. In particular, the
eczema removal results may be interesting for future applications, such as
weakly-supervised eczema segmentation similar to [1]. This is certainly the most
probable case that researchers will encounter as labeling is a costly step. In
practice, before labeling is even considered, it is often necessary to first get pro-
totyping results which could be achieved following this approach.
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Chapter 9

Teledermatology

9.1 Introduction

The diversity and prevalence of skin diseases [50] naturally induce a large demand of
dermatology services that has been further fueled by public campaigns raising aware-
ness towards certain skin conditions such as skin cancer [185]. However, this de-
mand is currently not satisfactorily fulfilled given the general shortage of dermatol-
ogists [97, 161] and the inherent artisanal nature of dermatology services, which cannot
be effectively scaled. Dermatologist education is both demanding and expensive and
with an increasing proportion of the world population gaining access to health services,
the lack of experts is felt stronger in every country.

Thanks to the visual nature of skin diseases, patients’ condition can easily be doc-
umented with imaging and questionnaires, making teledermatology a promising ap-
proach, with first reports in the scientific literature dating back to 1995 [153]. Since then,
several reviews have extensively analyzed teledermatology publications [102, 149, 191].
As the sub-field of telemedicine focusing on skin conditions, teledermatology aims to
provide remote dermatology services such as diagnosis [208], triage [35] or follow-up
[36] to patients by leveraging available means of communication. Its adoption, both by
experts and patients, has been propelled by the COVID pandemic [51] and the general
availability of mobile phones able to capture high-quality photographs.

There are several categories of teledermatology, which are distinguished based on
the information flow and the actors involved [191]. Situations involving only patients
and nurses or general practitioners are called primary teledermatology. When the pa-
tient’s information needs to be forwarded to a dermatologist, this becomes secondary
teledermatology. In challenging cases, more specialized experts (e.g. dermatopatholo-
gist) may be contacted, in which case we talk about tertiary teledermatology. Patient-
assisted teledermatology occurs when the patient is in direct interaction with either
actors. Another defining characteristics of teledermatology is how information is ex-
changed between the involved actors. Three main modalities were identified: asyn-
chronous store-and-forward (the most frequent [21, 191]), real-time and hybrid. While
real-time teledermatology consultations offer direct interactions and enable dermatol-
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ogists to better analyze patients’ condition, they are more time-consuming and require
more technical resources. In comparison, store-and-forward teledermatology adjusts
better with experts’ schedule, is cheaper for patients and more scalable. Exchanged
images are usually of better resolution than what can be achieved with real-time con-
sultations. Hybrid teledermatology is a combination of both modalities adapted to fit
health centres’ workflows and specific business models.

Teledermatology benefits all stakeholders of the dermatology sector. It enables pa-
tients in remote areas or with limited mobility to receive care directly at home. With
store-and-forward teledermatology, dermatologists are more flexible and can optimize
their schedule. Triage shortens waiting lists for patients and avoid unnecessary face-to-
face consultations, reducing healthcare costs as a whole. Furthermore, teledermatology
assists in the continuous education of primary care health workers and even derma-
tologists, who are confronted with additional patients and can seek assistance of more
experienced peers in challenging cases. Overall, the result is a general, cost-effective
scale up of dermatology services [200] (even without the use of artificial intelligence).

Teledermatology also face some challenges and drawbacks. On the technical level,
it is dependent on the quality of the means of communication: a poor internet connec-
tion will decrease user experience for both patients and dermatologists. In comparison
to face-to-face consultations, dermatologists do not have access to the full patient con-
dition. The available information is limited and may introduce bias, causing dermatol-
ogists to overlook important considerations. In skin cancer screening, for example, pa-
tients may not include moles because they simply ignore their existence. Furthermore,
some information cannot be communicated, such as the one acquired by palpation. An
inherent downside of teledermatology is the reduction of interactions between patients
and dermatologists. This results in less empathy and more awkward exchanges, as pa-
tients cannot ask questions naturally. Finally, sharing information remotely introduces
new challenges regarding security and privacy of patient data.

Teledermatology combined with artificial intelligence (AI), has the potential to fur-
ther scale up dermatology health services [149]. However, the actual use of deep learn-
ing models in teledermatology settings is not yet common due to several challenges (cf.
section 4.3) and remains open research with ongoing initiatives [85]. The principal ex-
ception is skin cancer screening applications [42, 57, 172]. In this context, dermoscopy
images were shown to be beneficial [204] and can be acquired using commercial teleder-
moscopy mobile phone accessories. A study confirmed that dermoscopy deep learning
models (DLMs) achieved similar performance on images acquired in teledermatology
or in clinical settings [203]. However, none of the public skin cancer screening plat-
forms offer legal guarantees on the provided feedback, which is never framed as a real
diagnosis. So far, other applications consist in training deep learning models on teled-
ermatology patients’ data [87, 113, 138]. Again, none of them are deployed in practice
except for secondary non-medical applications such as the organization of dermatology
databases [207].

In the next sections, we present a research initiative aiming to create an AI-assisted
teledermatology platform in Africa.
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9.2 The PASSION Project: Pediatrics in Africa

The burden of skin diseases is especially heavy in Africa, where 21% to 87% of children
suffer from skin diseases [146] and the shortage of dermatologists is very severe [171].
Common skin conditions are often left untreated or worse, mistreated following wrong
diagnoses, which leads to critical degradation of patients’ quality of life and adverse
consequences physically, psychologically and socially. In a joint initiative funded by the
Fondation Botnar1, the University Hospital Basel together with the dermatology cen-
ters of Tanzania, Madagascar and Guinea, launched in 2020 the PASSION project (Pedi-
atrics in Africa — Enabling Wireless Diagnosis for Common Skin Diseases) [85], which
aims to democratize access to dermatology services in Africa with a particular focus on
children patients. The overarching goal of the project is to create an AI-assisted triage
and diagnosis teledermatology platform, which would empower general practitioners
and nurses to diagnose and treat skin conditions. Six conditions have been selected
among the most prevalent [93, 99]: atopic dermatitis (eczema), mycosis, bacterial in-
fections, impetigo, insect bites, scabies, and other/control. Our platform is envisioned
to serve both as an accessible primary point of care and to support local healthcare
service providers. Via a mobile phone application, patients will submit their pictures,
reply to questionnaires and receive the most likely diagnosis, counseling and follow-up
recommendations.

The project is composed of three successive phases, described in figure 9.1. First,
the data necessary to train DLMs is acquired via standard consultations performed in
partner clinical centers and teledermatology consultations performed by primary care
workers in remote areas. Due to the COVID pandemic and local challenges described
in the next section, this phase is still ongoing. We have developed a prototype DLM
mainly for eczema. Once the laboratory performance is sufficient for deployment, the
second phase will consist in running standard store-and-forward teledermatology con-
sultations and compare the DLM predictions with experts’ decisions. The success of
these consultations will be evaluated after a three months follow-up period. In the final
phase, provided phase two’s DLMs performance was on par with experts, we will scale
up the platform deployment and perform automatic triage of patients with treatment
recommendation. Success of consultations will be confirmed past a twelve months
follow-up period.

The project has been designed in a modular organization to maximize its possi-
ble outcomes. The first module is the creation of a database of skin conditions from
Africa, which will be made available to researchers after anonymization. The second
is to provide a store-and-forward teledermatology platform, which is currently tested
in our partner healthcare centers. The third is to create DLMs that can perform triage
of skin conditions on patients with type IV to VI on the Fitzpatrick scale. We expect
that the PASSION project will contribute to the general improvement of the local health
situation by improving the diagnosis and treatment of common skin conditions. Upon
the project completion, the models and teledermatology platform will be integrated in

1https://www.fondationbotnar.org/ (Accessed: 2nd February 2023)

https://www.fondationbotnar.org/
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Figure 9.1: Description of the PASSION [85] project’s phases.

established healthcare provider platforms.

9.3 Medical Image Collection in Sub-Saharan Africa

This short conference paper was submitted but rejected at the 2022 Swiss Conference
on Data Science. Peer reviews were positive but required additional experiments with
DLMs, which could not be performed at the time due to the lack of data. This issue
should be solved in the near future, enabling the resubmission of the paper. In this
work, we discuss the challenges faced in the data collection phase of our telederma-
tology research initiative and present the results achieved by our prototype DLMs for
eczema triage.
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Dermatology Clinic

Konakry, Guinea
trachimi@yahoo.fr

Marc Pouly
Lucerne University of

Applied Sciences and Arts
Rotkreuz, Switzerland

marc.pouly@hslu.ch

Alexander A. Navarini
University Hospital of Basel

Basel, Switzerland
alexander.navarini@usb.ch

Abstract—Skin diseases in Africa affect up to 87% of children.
Good treatments are available for the most prevalent diseases,
provided they are diagnosed at an early stage. However, there is a
severe shortage of dermatologists and lack of the necessary health
services. In 2020, a joint field initiative in Tanzania, Madagascar
and Guinea was launched to democratize access to dermatology
using AI and telemedicine to perform patient triage and diagnosis
on the 4 most prevalent skin conditions. We report challenges
and their successful mitigation on federated data collection in
developing countries and under exceptional conditions of an
ongoing global pandemic.

Index Terms—health, dermatology, Africa, telemedicine, arti-
ficial intelligence

I. INTRODUCTION

In Africa, up to 87% of children suffer from a skin disease
[1] but the local healthcare systems cannot provide the neces-
sary experts to diagnose and treat them. While in Switzerland,
there is a ratio higher than one dermatologist for 20000 people
[2], this ratio falls to less than 1 dermatologist per million
people in several African countries [3]. Consequently, common
skin conditions are often misdiagnosed or mistreated leading
to severe impairment of quality of life and chronic morbidity.

Atopic dermatitis/eczema, bacterial and fungal skin infec-
tions, scabies account for more than 80% of pediatric skin
disease patients in Tanzania Standard treatments are available
for each disease and often prevent further complications, if
initiated early enough [4], [5].

The PASSION project1, launched in 2020, is a joint ini-
tiative by the University Hospital Basel and several derma-
tology centers in Tanzania, Madagascar and Guinea funded
by the Fondation Botnar2. It aims to create an AI-assisted
teledermatology platform for pediatric skin conditions in sub-
Saharan countries. Triage of common and easily treatable skin
conditions shall be performed (semi-)automatically to allow
dermatologists to focus on the most severe and complex cases.

§Equal contribution
1https://www.telederm.ai
2https://www.fondationbotnar.org

II. DATA COLLECTION IN SUB-SAHARAN AFRICA

Training a machine learning based diagnostic system re-
quires a sufficient amount of high-quality data, which, in
this project, proved particularly hard to acquire. In recent
years, several public benchmark datasets of skin lesions were
made available: the most established is ISIC and consists
of dermatoscopic images, the most recent and largest is [6].
However, these and all other publicly available datasets differ
significantly from the PASSION use case:

• Skin pigmentation: public datasets were mainly collected
in European and Asian countries. They have very limited
pigmentation range, usually Fitzpatrick types 1 to 3,
whereas in sub-Saharan countries type 4 and 5 are most
frequent.

• Disease state: due to the lack of specialists, skin condi-
tions are diagnosed at rather late stages of their evolution,
when the patient’s life is already strongly impaired. This
is a fundamental difference from typical clinical datasets,
which mainly contain cases of patients already under
dermatologist care.

• Diagnoses: in contrast to Europe, infectious conditions
rank among the top reasons why people consult a medical
doctor in Africa. We cannot expect a similar distribution
of diagnoses in datasets collected in different parts of the
world.

A. Practical Challenges and Measures Taken

An international medical data collection initiative must re-
spect the different regulations of the involved countries. While
strict regulation may impede data collection and research use,
lax legislation comes with grey areas with room for inter-
pretation and risks of future restrictive evolution. The project
team imposed that all involved partners must follow GDPR
compliant procedures in order to have compatible processes
in all activities. Moreover, this ensured that all participants
were treated fairly concerning global standards. Finally, by
adopting the strictest regulations, the project is more likely to
be future proof against the evolution of legislation.



Establishing trust with local specialists and patients is
paramount. Global collaboration can be perceived as neo-
colonialism with richer countries looting data from emerging
countries. Collecting pictures can also be taken as offense by
certain populations. Consequently, local specialists can only do
successful data collection with established trust relationships
and are best aware of their patient’s cultural background and
tradition.

Transparency and fairness are guiding principles in this
initiative. All partners are directly involved in steering and
presenting the project to their local specialists and healthcare
workers. With the above mentioned ratio of one dermatologist
per million people in mind, we cannot afford a larger dropout
of local specialists. Data collection must be as effortless as
possible and smoothly integrated into their daily routine. Huge
efforts are being made to ease and structure the on-boarding
process, that specialists can communicate in their preferred
language, etc.

Every hospital collects data for its own purposes, but
unfortunately this existing data cannot be used. Typical issues
concern the lack of patient consent; inconsistent diagnostic,
patient and meta-data; incompatibilities related to file for-
mats and database systems; non-standardized images taken
under varying conditions and with heterogeneous devices,
etc. However, based on this analysis a standardized protocol
could be established for image capturing and documentation
of diagnoses including recommendations on relevant metadata
to be assessed. In particular, specialists of the International
Society of Teledermatology provided guidelines and training
for picture taking.

Finally, a dedicated app has been created to implement this
standardized data collection protocol and further reward local
doctors based on their contribution. As internet connection and
electricity are often unstable and weather dependent, much at-
tention was put on service and data transfer reliability. Mobile
phones are widespread in Africa [7], but devices and operating
systems are extremely heterogeneous. App requirements and
battery consumption needed to be as low as possible, image
resolution and low bandwidth balanced, etc. The app can
store images offline until an internet connection and sufficient
battery charge is available again.

B. The COVID-19 Pandemic

COVID-19 stroked Europe and Asia two months after the
start of the project, which drastically handicapped the so
important trust building process due to reduced travelling pos-
sibilities. Patients afraid of infection started to avoid medical
facilities and dermatologists where progressively reassigned to
COVID related tasks or became infected themselves. All this
impaired the first year of data collection and almost brought
the project to a complete full stop.

We bridged this period by acquiring existing private and
anonymized datasets to at least start the development of early
machine learning models while at the same time setting up
and institutionalize data quality processing with the support
of dermatology imagery specialist.

C. Early Results of AI Models

We developed two ResNet based models, one with data
acquired in the PASSION project (704 pictures, model A)
and the other with data available from Swiss hospitals (13748
pictures, model B). Due to the as yet unbalanced distribution of
diagnoses, we can only predict eczema against other conditions
for the moment. Model A achieves an F1 score of 0.87 while
model B achieves 0.79 on unseen test data.

III. CONCLUSION AND OUTLOOK

Organizing a project spanning two continents led to multiple
challenges and a series of unexpected problems had to be
overcome. We foresaw many problems related to technical and
cultural aspects, differences between developing countries and
central Europe, but still could have allowed for more project
time to build up trust, personal relationships and navigate cul-
tural differences. However, a global pandemic with a complete
breakdown of health systems, patients refusing consultation,
etc. was definitely not on the risk map. However, thanks
to a decentralized project organisation and the engagement
and enthusiasm of local partners, the project could recover
pretty much immediately from these setbacks. We are now
accumulating high-quality data of a kind that research has not
seen before. Once it reaches a sufficient size this database will
be made available to the research community after thorough
anonymization. We hope to be able to soon deploy a machine
learning based teledermatology service to help children in
remote areas of sub-Saharan Africa.
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Chapter 10

Training and Evaluation Framework

Our digital dermatology lab is composed of interdisciplinary researchers with mainly
medical and computer science backgrounds. Regularly, our team is reinforced by mas-
ter students, mainly from the medical faculty, who are eager to participate in the devel-
opment of deep learning based dermatology applications. While their medical training
enables them to curate the training datasets, they lack the engineering skills to develop
deep learning models (DLMs) and are completely reliant on other researchers with the
necessary technical skills. To reduce the technical entry barrier, we have developed
a modular framework based on the PyTorch [150] and Fastai [84] libraries simplify-
ing the development of typical image-based dermatology applications, which usually
follow this workflow: dataset preparation and preprocessing, training and evaluation
of classification and segmentation DLMs, inference on new data. In this chapter, we
briefly present how our framework can assist at each of these steps and conclude with
planned extensions.

10.1 Dataset Preparation and Preprocessing

Splitting Once a dataset has been labeled, the first step is to split it into a training
and test dataset that will be used to train and evaluate DLMs performance. This can be
performed with the general/split_dataset.py script, which also ensures that no
patient leaks between the test and train sets occurs.

Patching Due either to labeling costs or scarce data, we are often dealing with small
datasets for deep learning standards. In certain applications, dividing images into mul-
tiple smaller patches can be useful to leverage the full image resolution and increase
the effective size of the training dataset. This can be achieved using the general/
PatchExtractor.py script, which handles multiple fixed square patch sizes or dy-
namic patch sizes based on a specified image resolution.
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Reducing semantic class imbalance In segmentation tasks, we face situations where
the imbalance between semantic classes can be too high for effective training even when
using adapted losses. The script segmentation/crop_to_thresh.py creates a sec-
ond version of the training set by (randomly) cropping each images around the chosen
semantic classes. The script tries to ensure that the ratio between classes matches the
specified threshold.

Encryption When the training machine is located outside the hospital premises, all
medical data must be encrypted. This can be performed using the general/crypto.
py script.

10.2 Training and Performance Evaluation

The framework is developed in the object-oriented programming paradigm. The base
class, FastaiTrainer, fully abstracts the type of data as well as the task and defines
the following aspects:

• Common training arguments such as batch size, number of epochs, initial learn-
ing rate, etc.

• Procedure to split the training set and apply cross-validation.

• Generic training procedure, which consists in two phases: frozen training of the
last layer, then training of the full DLM with one cycle scheduling of the learning
rate [184].

• Prediction and correction of weak labels to leverage unlabeled data when it is
available.

• Procedure to alternate training between strongly labeled data (labels provided by
experts) and weakly labeled data (labels predicted during training).

• Prediction of the test set labels together with a generic procedure to evaluate per-
formance.

Specialized for images, the class ImageTrainer inherits from FastaiTrainer
and defines:

• Image specific arguments such as the input size, image location, specific losses,
etc.

• Image loading with generic image dataloader. Lazy loading is performed when
images are not encrypted.

• Splitting the training set for cross-validation, ensuring no leaks of patched images
between sets.
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• Procedure to apply progressive resizing of the training images.

• Generic metrics computations with visualization plots.

• Logging training losses and validation metrics with Tensorboard [1].

Finally, ImageClassificationTrainer and ImageSegmentationTrainer in-
herit from ImageTrainer and redefine:

• Task-specific arguments such as location of labels, metrics choice, etc.

• Loading expert’s labels with customized dataloaders.

• Creation of DLM based on popular architectures.

• Procedure to update predicted weak labels in the course of training.

• Task specific metrics.

To train a DLM, students can readily use the task-specific classes, ignoring imple-
mentation details, and evaluate different parameters’ configuration with the training
logs and performance reports. Depending on the project, it may be needed to rede-
fine aspects such as model creation and data loading within a child class, which can be
performed together with a more experienced researcher.

10.3 Inference

When it comes to DLM evaluation and testing, it is also useful to perform inference
on additional data and evaluate the predictions’ quality manually. Based on a similar
object-oriented approach, we created a base class ImageInference to perform the
following generic operations:

• Data loading.

• DLM loading with trained weights.

• Inference procedure

Inheriting from this base class, we defined two classes ImageClassification-
Inference and ImageSegmentationInference, which specify task-specific argu-
ments and visualization procedures for DLM predictions. Students can perform infer-
ence using these classes similarly to how they perform DLM training.
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10.4 Planned Extensions

Thanks to its object-oriented implementation, the presented framework can be extended
to different settings such as the multimodal inputs used in chapter 6 and even to other
types of tasks. In the future, we plan to extend the framework with instance segmenta-
tion and object detection.

In this thesis, we focused solely on images and did not leverage text data from med-
ical reports. Dermatologists have always documented patients’ condition with textual
descriptions, and there is great potential in creating natural language processing DLMs
based on this data. Similarly to how the framework was created for images, its base
class FastaiTrainer could be extended to handle natural language data with task-
specific child classes such as amamnesis summary generation.
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Discussion and Conclusion

Discussion

The main objective of this thesis is to automate and improve parts of dermatologists’
daily workflow. We present deep learning models leveraging dermatologists’ knowl-
edge to make their decision processes more understandable or at least verifiable so that
clinical adoption is simplified. We focused on a fundamental aspect of dermatologists’
analysis of skin conditions that can be inferred from pictures only: the dermatological
description of lesions. In particular, lesion location, morphology, distribution, counts
and surface estimation.

Any lesion description starts with its location. We created a method that can gener-
ate a map of anatomical regions from patient pictures, a problem not researched so far
in the literature. With a precision ranging from the main regions of the human body, to
every single anatomical units of the hands or the ears, the method can assist dermatol-
ogists in lesion documentation or be combined with other deep learning applications
such as lesion detection to produce detailed reports. Furthermore, the anatomy maps
can be used to perform targeted image retrieval for specific body regions in large hos-
pital databases.

The differential diagnosis processes followed by dermatologists are based on the
features collected in the dermatological description of lesions. We proposed a method
to combine lesion location with image features and showed that it could improve the
performance of differential diagnosis deep learning models. Similarly, we evaluated
the same approach with the morphology of lesions and observed a significant perfor-
mance improvement. Both approaches were never attempted before. These features are
easier to determine for clinicians than the lesion differential diagnosis and illustrate the
potential of combining expert’s knowledge with the capacity of deep learning models
to automatically extract relevant information. The features can be verified and updated
with ease, enabling clinicians to interact with the deep learning system and evaluate
the impact of their changes, as well as improving their understanding of the models’
decision process.

The distribution, counts and surface estimation of lesions can be determined from
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their segmentation in patients’ pictures. In this work, we proposed a method able to
segment palmoplantar pustular psoriasis, ichthyosis with confetti and hand eczema le-
sions, enabling automated quantification of their lesions for a more objective severity
assessment. These diseases have different types of distribution showing the general-
ity of our method, which is also applicable in restricted data availability regimes (e.g.
context with rare diseases) as we showed in the case of ichthyosis with confetti. Fur-
thermore, we were able to combine the hand anatomy and hand eczema models to
produce the first automated analysis of the disease anatomical stratification.

With the increasingly restrictive legal environment surrounding medical data, re-
searchers must find alternative approaches to share research datasets and enable peers
to reproduce results and compare different methods. The generation of artificial data
from private datasets being a promising solution to this issue, we illustrated how gen-
erative adversarial networks could be trained to produce synthetic data for the main
imaging modalities used in dermatology, namely photography and dermoscopy.

One of the broader benefits that deep learning applications bring to society is bet-
ter access to dermatology services. Following this ideal, we launched the first research
teledermatology initiative in Sub-Saharan Africa, aiming to support primary care with
semi-automatic triage of the six most prevalent local skin conditions. Despite the pan-
demic, we were able to establish collaboration with several health centers in three dif-
ferent sub-Saharan countries and launch an international data collection effort. This
data will be made available after thorough anonymization to researchers and enable
the development of useful deep learning applications for local patients.

The projects covered in this thesis fostered the development of a generic deep learn-
ing model training and evaluation framework based on the Fastai [84] and PyTorch
[150] libraries. The main motivation behind this effort was to enable collaborators with
non-technical backgrounds to participate in the model development process, while re-
quiring the least programming skills as possible. Currently, classification and segmen-
tation tasks are supported but the framework is designed to be extendable to new tasks.
We plan to release the code for this framework in the near future.

Future Work

We are already working towards automated anatomy mapping of the full human body.
Once achieved, it will enable the extension of our anatomical stratification approach to
generalized diseases such as psoriasis or vitiligo. Our aim is to establish an anatomical
distribution signature of the different diseases and evaluate how it can support their
differential diagnosis.

So far, our experiments on the development of differential diagnosis deep learning
models were limited to the separate use of lesion location and morphology, mainly due
to the lack of annotated data. We are planning to extend this approach to other features
from dermatological description of skin lesion, with the aim to reproduce and automate
parts of dermatologists’ current differential diagnosis processes.

Label scarcity and the associated challenges was encountered in every project. To
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mitigate this issue, we pretrained models on ImageNet [44], a large object recognition
dataset unrelated to the dermatology domain. We are currently testing semi-supervised
methods to pretrain our models on large unlabeled dermatology datasets and will de-
termine whether this brings a general improvement. This approach goes in the direc-
tion of learning from data directly rather than only from experts’ knowledge, which
remains subjective and is usually limited to the state of the art in dermatology at best.
Another idea we plan to evaluate is the combined use of original and synthetic data to
train models with larger datasets.

While the deep learning models presented in this work achieved satisfactory per-
formance, they were evaluated on pictures captured in hospitals and selected for their
relative standardization. These models cannot be applied in too different settings with-
out compromising their performance. Recently, we could start working on a different
data modality, mainly 3D full-body scans of very high resolution. With these scans,
we will be able to arbitrarily generate our datasets while simulating varied capturing
conditions. This should result in more robust and generally applicable models.

One of the limitation of this thesis was to consider only image data. Yet, dermatol-
ogists have been documenting diseases with text and drawings long before they could
photograph them. Thus, a large source of data has remained untapped so far, also in
the research literature. We plan to start training deep learning models to analyze pa-
tients medical reports with applications such as the automated identification of relevant
information in patients’ anamnesis.

Finally, all deep learning applications need to be tested and validated in prospective
studies, which is one of the requirements to legally establish them as medical device
and enable their deployment in practice. We plan to start a prospective study for our
hand eczema anatomical stratification approach. This will allow us to correlate the
model predictions with clinical severity grading systems and collect the necessary data
to fully automate them.

Conclusion

In this work, we tackled two of the most important tasks in diagnostic dermatology:
disease differential diagnosis and severity grading. We showed that letting deep learn-
ing models leverage experts’ knowledge was beneficial for differential diagnosis and
proposed a robust method to segment various skin diseases. Our anatomy mapping ap-
proach synergizes well with lesion detection and segmentation applications, improving
their predictions’ clinical relevance and enabling new research analysis. All methods
presented in this thesis either produce easily verifiable predictions or in the case of
differential diagnosis, offer clinicians a new level of interactivity. With our telederma-
tology initiative, we started acquiring the necessary data to adapt our prototype models
from clinical settings to real-world conditions with the aim to improve field healthcare
conditions and benefit society. To conclude, our thesis takes a step towards the future
of dermatology practice: AI-assisted dermatologists.
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