
On Benchmarking of Deep Learning
Systems: Software Engineering Issues

and Reproducibility Challenges

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Antonio Maffia

aus Italien

Basel, 2023

Originaldokument gespeichert auf dem Dokumentenserver

der Universität Basel

edoc.unibas.ch

cbna
Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung -

Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz.

https://edoc.unibas.ch/
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de


Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. em. Dr. Helmar Burkhart, Fakultätsverantwortlicher

Prof. Dr. Florina M. Ciorba, Fakultätsverantwortliche

Prof. Dr. Michael M. Resch, Korreferent

Basel, den 13.12.2022

Prof. Dr. Marcel Mayor, Dekan







To Rossana and Edoardo. You have filled my life,
giving it a greater meaning.





Abstract

Since AlexNet won the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012, Deep Learning (and Machine Learning/AI in general)
gained an exponential interest. Nowadays, their adoption spreads over nu-
merous sectors, like automotive, robotics, healthcare and finance.

The ML advancement goes in pair with the quality improvement de-
livered by those solutions. However, those ameliorations are not for free:
ML algorithms always require an increasing computational power, which
pushes computer engineers to develop new devices capable of coping with
this demand for performance. To foster the evolution of DSAs, and thus
ML research, it is key to make it easy to experiment and compare them.
This may be challenging since, even if the software built around these de-
vices simplifies their usage, obtaining the best performance is not always
straightforward. The situation gets even worse when the experiments are
not conducted in a reproducible way. Even though the importance of re-
producibility for the research is evident, it does not directly translate into
reproducible experiments. In fact, as already shown by previous studies
regarding other research fields, also ML is facing a reproducibility crisis.

Our work addresses the topic of reproducibility of ML applications. Re-
producibility in this context has two aspects: results reproducibility and
performance reproducibility. While the reproducibility of the results is
mandatory, performance reproducibility cannot be neglected because high-
performance device usage causes cost. To understand how the ML situation
is regarding reproducibility of performance, we reproduce results published
for the MLPerf suite, which seems to be the most used machine learning
benchmark.

Because of the wide range of devices and frameworks used in different
benchmark submissions, we focus on a subset of accuracy and performance
results submitted to the MLPerf Inference benchmark, presenting a detailed



analysis of the difficulties a scientist may find when trying to reproduce such
a benchmark and a possible solution using our workflow tool for experiment
reproducibility: prova!. We designed prova! to support the reproducibil-
ity in traditional HPC experiments, but we will show how we extended it
to be used as a “driver” for MLPerf benchmark applications. The prova!
driver mode allows us to experiment with different versions of the MLPerf
Inference benchmark switching among different hardware and software com-
binations and compare them in a reproducible way.

In the last part, we will present the results of our reproducibility study,
demonstrating the importance of having a support tool to reproduce and
extend original experiments getting deeper knowledge about performance
behaviours.



Acknowledgments

All these years spent working on my PhD have not always been easy, and
if I reached this point, the first thanks I owe to Prof. Burkhart. From
the moment he reassured me about starting this experience when we first
met to the guidance he gave me over the years regarding research and life
advices. He always supported me and continues to do so even in this last
tough period. I didn’t learn much German tough, but I wanted to say:
Danke vielmals!

Thanks are also due to Prof. Dr. Michael M. Resch, who was always
kind and helpful. I’m glad he invited me to Stuttgart to present my work
to his research group and willingly accepted the request to be the co-referee
for my PhD.

I want to thank the members of the former HPWC research group.
Alexander, who helped me settle in Basel. I don’t know how well this
worked, but I certainly appreciated the attempt (especially the beers on
Friday afternoon). Moreover, he honoured me with a great speech (in Ital-
ian) at my wedding, which is a moment I won’t forget. Dominic, who helped
me with the skeleton and the first version of prova! web UI, initiating me
at Node.js :). Robert, with his fundamental help in managing and trou-
bleshooting our cluster (a big part of my experience with HPC clusters
comes from him). Bas supported me in the university and outside (I’m glad
the football evenings keep going even after the PhD). And Yvonne, with her
aid in both university and general administrative matters.

I had the opportunity to meet great people also in the new HPC group.
Prof. Dr. Florina Ciorba has always been there when I needed help, making
me feel an integral part of the group. In this last part of my PhD she did even
more becoming my second supervisor to support me and prof. Burkhart in
an unforeseen situation. Thank you so much!



Thanks also to the other guys in the HPC group: Ali and Ahmed, with
whom I had the pleasure of many interesting conversations, as well as with
Aurelian (with also a shared passion for Formula 1) and Jonas, an authentic
Brazilian (especially for the way he cooks).

Outside of the University environment, I would like to thank Valentina
and Francesco: they were always kind, took an interest in the progress of
the thesis, and made themselves available on every occasion.

And, almost at the end, I thank the one who has been with me since
day one. I moved to Basel because of him, and I have to say this was a
perfect call. He helped and advised me countless times; I feel lucky to have
such a friend. Grazie Danilo.

I thank my family who have always been close to me. The best thing
that ever happened to me was having Rossana next to me. She has shared
with me the weight of this doctorate with all its difficulties; I know it wasn’t
easy for her. She constantly pushed me and gave me the strength to reach
my objective. This milestone is as much mine as it is hers. However, she
was assisted by my little Edo: he is the only one who can get a smile out
of me in every situation, even the worst. An infinite thanks to you two!

Finally, one last thought goes to Martin. I could write pages about all
the times he supported me, was kind and helpful, and all the good times we
had together, as well as how deeply sad it makes me that he is gone, but
I’ll just write one simple sentence: he was a really good friend.



Contents

Abstract vii

Acknowledgments ix

List of Figures xv

List of Tables xix

List of Abbreviations xxi

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I High-Performance Computing Meets DL 7

2 Beyond Moore’s Law 9
2.1 Semiconductors’ trends . . . . . . . . . . . . . . . . . . . . 9
2.2 DSAs and HW accelerators . . . . . . . . . . . . . . . . . 12

3 Deep Learning and the Need for HPC 19
3.1 AI, machine learning, deep learning: Definitions . . . . . . 19
3.2 Deep learning applications’ landscape . . . . . . . . . . . . 22
3.3 HW and SW for DL . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 ML Architecture . . . . . . . . . . . . . . . . . . . 23
3.3.2 ML Frameworks . . . . . . . . . . . . . . . . . . . 25



xii CONTENTS

II Deep Learning HW/SW Analysis 29

4 Reproducibility Challenges 31
4.1 Experiment taxonomy . . . . . . . . . . . . . . . . . . . . 32
4.2 Reproducibility levels . . . . . . . . . . . . . . . . . . . . . 33

5 Deep Learning Benchmarks 35
5.1 Benchmarks overview . . . . . . . . . . . . . . . . . . . . . 35
5.2 Case study: MLPerf . . . . . . . . . . . . . . . . . . . . . 37

6 Benchmarking with MLPerf 43
6.1 Reproducing MLPerf Inference: A user journey . . . . . . 44
6.2 Support tools . . . . . . . . . . . . . . . . . . . . . . . . . 45

III prova! 2.0: A Benchmark Driver 47

7 Experiment Challenges in HPC 49
7.1 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Environment modules . . . . . . . . . . . . . . . . 49
7.1.2 Linux containers . . . . . . . . . . . . . . . . . . . 50

7.2 HPC Systems Interaction . . . . . . . . . . . . . . . . . . 53
7.3 Experiment Workflow . . . . . . . . . . . . . . . . . . . . 54

8 prova! 1.0 57
8.1 Definition and Motivation . . . . . . . . . . . . . . . . . . 57

8.1.1 Contributions to the Project . . . . . . . . . . . . . 57
8.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.2.1 The prova! Framework . . . . . . . . . . . . . . . 60
8.2.2 The prova! Web Application . . . . . . . . . . . . 66

9 prova! 2.0: Extensions 73
9.1 Feature enhancements . . . . . . . . . . . . . . . . . . . . 73

9.1.1 Job scheduler management . . . . . . . . . . . . . . 73
9.1.2 Experiment reproduction . . . . . . . . . . . . . . . 75
9.1.3 Experiment visualization and graph builder . . . . 76

9.2 Containers support . . . . . . . . . . . . . . . . . . . . . . 78
9.3 Driver mode . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 prova! as DL Benchmark Driver 85
10.1 Driver design . . . . . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS xiii

10.2 Driver Configuration . . . . . . . . . . . . . . . . . . . . . 88
10.2.1 Driver descriptor . . . . . . . . . . . . . . . . . . . 88
10.2.2 Driver execution scripts . . . . . . . . . . . . . . . 90

10.3 Driver Usage . . . . . . . . . . . . . . . . . . . . . . . . . 93

IV Measurements and Results 99

11 Experimental Testbeds 101
11.1 Edge devices . . . . . . . . . . . . . . . . . . . . . . . . . 102

11.1.1 MLPerf submission . . . . . . . . . . . . . . . . . . 102
11.1.2 prova! reproduction . . . . . . . . . . . . . . . . . 103

11.2 Data center devices . . . . . . . . . . . . . . . . . . . . . . 104
11.2.1 MLPerf submission . . . . . . . . . . . . . . . . . . 104
11.2.2 prova! reproduction . . . . . . . . . . . . . . . . . 107

12 MLPerf Inference Benchmark Exp. 111
12.1 MLPerf v0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 112

12.1.1 Object Detection Lightweight task . . . . . . . . . 113
12.1.2 Image Classification Heavyweight task . . . . . . . 123
12.1.3 Image Classification Lightweight task . . . . . . . . 127
12.1.4 Reproducibility considerations . . . . . . . . . . . . 130
12.1.5 Performance considerations . . . . . . . . . . . . . 132

12.2 MLPerf v0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . 133
12.2.1 Image Classification Heavyweight task . . . . . . . 133
12.2.2 Reproducibility considerations . . . . . . . . . . . . 139
12.2.3 Performance considerations . . . . . . . . . . . . . 140

12.3 MLPerf v1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 140
12.3.1 Image Classification Heavyweight task . . . . . . . 141

V Conclusions and Future Work 143

13 Conclusion and Future Work 145

A MLPerf containers 151
A.1 MLPerf Inference v0.5: OpenVINO example . . . . . . . . 151
A.2 MLPerf Inference v0.7: OpenVINO example . . . . . . . . 156

Bibliography 161





List of Figures

2.1 Transistor evolution vs. Moore’s law . . . . . . . . . . . . . . 10
2.2 Accelerators’ performance contribution to TOP500 . . . . . . 15
2.3 Trend of compute usage in training AI systems . . . . . . . . 17

3.1 Venn diagram for AI/ML/DL concepts . . . . . . . . . . . . . 20
3.2 Example of a Deep Neural Network (DNN) . . . . . . . . . . 21
3.3 Visual representation of TF32 data format . . . . . . . . . . . 25

4.1 Space of Computational Experiments . . . . . . . . . . . . . . 32

8.1 prova! architecture: High-level view . . . . . . . . . . . . . . 59
8.2 Structure of the prova! framework . . . . . . . . . . . . . . . 61
8.3 Structure of a prova! workspace . . . . . . . . . . . . . . . . 63
8.4 prova! web application architecture . . . . . . . . . . . . . . 66
8.5 prova! web UI: Configuration view . . . . . . . . . . . . . . 68
8.6 prova! web UI: Method creation . . . . . . . . . . . . . . . . 68
8.7 prova! web UI: Method edititing . . . . . . . . . . . . . . . . 69
8.8 prova! web UI: Experiment’s configuration . . . . . . . . . . 71
8.9 prova! web UI: Results graph . . . . . . . . . . . . . . . . . 72

9.1 Experiment job management . . . . . . . . . . . . . . . . . . 74
9.2 prova! web UI: Experiment selection . . . . . . . . . . . . . 75
9.3 prova! web UI: Reproduced experiment . . . . . . . . . . . . 77
9.4 prova! web UI: Reproduced experiment graph . . . . . . . . 77
9.5 Structure of a driver folder in prova! . . . . . . . . . . . . . 80
9.6 prova! web UI: New project in driver mode . . . . . . . . . . 83
9.7 prova! web UI: Driver method’s type for a new method . . . 83

10.1 MLPerf prova! driver: Compilation steps. . . . . . . . . . . 92



xvi LIST OF FIGURES

10.2 MLPerf prova! driver: Execution steps. . . . . . . . . . . . . 93
10.3 MLPerf prova! driver: Results presentation steps. . . . . . . 93
10.4 prova! web UI: OpenVINO method creation . . . . . . . . . 94
10.5 prova! web UI: Experiment configuration and execution for

OpenVINO ODL task . . . . . . . . . . . . . . . . . . . . . . 96
10.6 prova! web UI: Configuration and generation of the accuracy

graph for the OpenVINO ODL task . . . . . . . . . . . . . . 97

12.1 MLPerf Inference v0.5 reproduction: High level view of the ele-
ments in original experiment submitted to the benchmark con-
test and our reproduced experiments . . . . . . . . . . . . . . 112

12.2 MLPerf Inference v0.5: ODL task, Single-Stream scenario. Intel
submission compared to the experiment reproduction on our
system using different values of threads. . . . . . . . . . . . . 114

12.3 MLPerf Inference v0.5: ODL task, Offline scenario. Intel sub-
mission compared to the experiment reproduction on our sys-
tem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

12.4 MLPerf Inference v0.5: ODL task, Offline scenario. Perfor-
mance tuning for OpenVINO version 2019 pre configured with
OpenMP threading: running on our system using code submit-
ted by Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12.5 MLPerf Inference v0.5: ODL task, Single-Stream scenario. Per-
formance comparison of OpenVINO version 2019 pre configured
with OpenMP and TBB threading: running on our system using
code submitted by Intel and different values of threads . . . . 117

12.6 MLPerf Inference v0.5: ODL task, Offline scenario. Compar-
ison of performance behavior of OpenVINO version 2019 pre
configured with OpenMP and TBB threading when changing
the number of streams and batch sizes: running on our system
using code submitted by Intel . . . . . . . . . . . . . . . . . . 118

12.7 MLPerf Inference v0.5: ODL task, Offline scenario. Comparison
of performance behavior of OpenVINO version 2019 pre config-
ured with OpenMP threading when using a variable number of
streams and a combination of a different number of threads and
inference requests: running on our system using code submitted
by Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.8 MLPerf Inference v0.5: ODL task. Dell submission compared
to the experiment reproduction on our system using code sub-
mitted by Intel . . . . . . . . . . . . . . . . . . . . . . . . . . 120



LIST OF FIGURES xvii

12.9 MLPerf Inference v0.5: ODL task, Single-Stream scenario. Com-
parison of different versions of OpenVINO framework running
on different processor architectures using code submitted by In-
tel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.10 MLPerf Inference v0.5: ODL task, Offline scenario. Compar-
ison of different versions of OpenVINO framework when using
a different number of streams, threads and inference requests:
running on our system using code submitted by Intel . . . . . 122

12.11 MLPerf Inference v0.5: ODL task, Offline scenario. Compar-
ison of different versions of OpenVINO framework when using
a different number of streams, threads and inference requests:
running on our system using code submitted by Intel . . . . . 123

12.12 MLPerf Inference v0.5: ODL task. Comparison of model accu-
racy for different versions of OpenVINO framework running on
different processor architectures using code submitted by Intel 124

12.13 MLPerf Inference v0.5: ODL task, Offline scenario. Compar-
ison of different versions of OpenVINO framework when using
a different number of streams, threads and inference requests:
running on our system using code submitted by Intel . . . . . 125

12.14 MLPerf Inference v0.5: ICH task. Model accuracy of Intel sub-
mission compared to the experiment reproduction on our system 126

12.15 MLPerf Inference v0.5: ICH task, Single-Stream scenario. Intel
submission compared to the experiment reproduction on our
system using both CPU-only and GPU systems with different
model precision . . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.16 MLPerf Inference v0.5: ICH task, Offline scenario. Intel submis-
sion compared to the experiment reproduction on our system
using both CPU-only and GPU systems with different model
precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.17 MLPerf Inference v0.5: ICH task, Offline scenario. Perfor-
mance comparison of OpenVINO version 2019 pre configured
with OpenMP and TBB threading: running on both CPU-only
and GPU systems using code submitted by Intel and different
model precision . . . . . . . . . . . . . . . . . . . . . . . . . . 128

12.18 MLPerf Inference v0.5: ICL task. Model accuracy of Intel sub-
mission compared to the experiment reproduction on our system 129

12.19 MLPerf Inference v0.5: ICL task. Intel submission compared to
the experiment reproduction on our system . . . . . . . . . . 130



xviii LIST OF FIGURES

12.20 MLPerf Inference v0.5: ICL task, Offline scenario. Performance
of OpenVINO version 2019 pre built with OpenMP and TBB
threading using different paramters configurations running on
CPU and GPU systems using code submitted by Intel . . . . 131

12.21 MLPerf Inference v0.7 reproduction: High level view of the ele-
ments in original experiment submitted to the benchmark con-
test and our reproduced experiments . . . . . . . . . . . . . . 134

12.22 MLPerf Inference v0.7: ICH task. Model accuracy of Intel sub-
mission compared to the experiment reproduction on our system 135

12.23 MLPerf Inference v0.7: ICH task, Server scenario. Intel submis-
sion compared to the experiment reproduction on our system
using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

12.24 MLPerf Inference v0.7: ICH task, Offline scenario. Intel sub-
mission compared to the experiment reproduction on our system
using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

12.25 MLPerf Inference v0.7: ICH task. Dell submission compared to
the experiment reproduction on our system . . . . . . . . . . 138

12.26 MLPerf Inference v0.7: ICH task, Offline scenario. Performance
comparison of OpenVINO version 2021.1 PR configured with
OpenMP and TBB threading using a variable batch size: run-
ning on our system using code submitted by Intel . . . . . . . 139

12.27 MLPerf Inference v1.1: ICH task. Model accuracy of different
OpenVINO versions running on our system using code submit-
ted by Intel for MLPerf Inference v0.7 . . . . . . . . . . . . . 142

12.28 MLPerf Inference v1.1: ICH task. Performance of different
OpenVINO versions using a variable inference requests number
and batch size: running on our system using code submitted by
Intel for MLPerf Inference v0.7 . . . . . . . . . . . . . . . . . 142



List of Tables

2.1 Overview of main accelerator categories. . . . . . . . . . . . . 14

3.1 A list of deep learning applications and datasets grouped by
research area. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Examples of machine learning hardware grouped by category. 26
3.3 List of main machine learning frameworks. . . . . . . . . . . . 28

5.1 A list of AI benchmarks . . . . . . . . . . . . . . . . . . . . . 40
5.2 MLPerf benchmark suites. . . . . . . . . . . . . . . . . . . . . 41

12.1 MLPerf Inference Benchmark v0.5 scenarios submitted for the
Intel and Dell EMC systems selected . . . . . . . . . . . . . . 112

12.2 Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.5 ODL task for
Single-Stream and Offline scenarios . . . . . . . . . . . . . . . 113

12.3 Reproduction of OpenVINO experiments submitted by Dell as
part of the MLPerf Inference Benchmark v0.5 ODL task for
Single-Stream and Offline scenarios . . . . . . . . . . . . . . . 120

12.4 Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.5 ICH task for
Single-Stream and Offline scenarios . . . . . . . . . . . . . . . 124

12.5 Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.5 ICL task for
Single-Stream and Offline scenarios . . . . . . . . . . . . . . . 128

12.6 MLPerf Inference Benchmark v0.7 scenarios submitted for the
Intel and DELL EMC systems selected . . . . . . . . . . . . . 133

12.7 Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.7 ICH task for
Server and Offline scenarios . . . . . . . . . . . . . . . . . . . 134



xx LIST OF TABLES

12.8 Reproduction of OpenVINO experiments submitted by Dell as
part of the MLPerf Inference Benchmark v0.7 ICH task for
Server and Offline scenarios . . . . . . . . . . . . . . . . . . . 137

12.9 OpenVINO experiments using MLPerf Inference Benchmark v1.1
prova! driver: ICH task for Offline scenario . . . . . . . . . . 141



List of Abbreviations

Abbreviation Description Definition

AGI Artificial General Intelligence page 19
AI Artificial Intelligence page 19
ANI Artificial Narrow Intelligence page 19
ANN Artificial Neural Network page 21
ASI Artificial Super Intelligence page 19
ASIC Application-Specific Integrated Circuit page 13
BF16 Brain Floating Point 16 bit page 24
CD Continuous Delivey/Deployment page 140
CEQIP Cryogenic Electronics and Quantum Informa-

tion Processing
page 11

CI Continuous Integration page 45
CNN Convolutional Neural Network page 22
CUDA Compute Unified Device Architecture page 14
DL Deep Learning page 19
DNN Deep Neural Network page 21
DSA Domain-Specific Architecture page 12
DSL Domain-Specific Language page 14
DSP Digital Signal Processor page 26
FPGA Field-Programmable Gate Arrays page 13
GAAFET Gate-All-Around FET page 10
GPGPU General-Purpose Graphics Processig Unit page 13
GPU Graphics Processig Unit page 13
HDL Hardware Description Language page 13
IC Integrated Cirtuit page 9
ICH Image Classification Heavyweight page 112
ICL Image Classification Lightweight page 112
iGPU Intel Integrated Graphics Processig Unit page 26



xxii LIST OF ABBREVIATIONS

Abbreviation Description Definition

IPU Intelligence Processing Unit page 25
IRDS International Roadmap for Device and Sys-

tems
page 10

ITRS International Technology Roadmap of Semi-
conductors

page 10

LoadGen Load Generator page 38
ML Machine Learning page 19
OCI Open Container Initiative page 51
ODH Object Detection Heavyweight page 112
ODL Object Detection Lightweight page 112
ORD Open Research Data page 148
SUT System Under Testing page 38
TDP Thermal Design Power page 9
TF TensorFlow page 26
TF32 TensorFloat-32 page 24
TPU Tensor Processing Unit page 13
TTA Time-To-Accuracy page 36
UDSS User-Defined Software Stack page 52
VPU Vision Processing Unit page 24
WfMS Workflow Management Systems page 55
WSE Wafer Scale Engine page 25



Chapter 1

Introduction

Over the last decade, the interest in machine learning and AI had a signifi-
cant rise. Thanks to the improvement reached by the quality of its solutions,
nowadays, ML/AI is used to solve problems in many different fields. Their
adoption goes from transportation to finance to manufacturing to healthcare
and more.

The increase in ML algorithms accuracy is linked to the growth in com-
plexity and, thus, the computational power required. Since AlexNet won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012,
marking a breakthrough in the field of ML, the number of petaflop/s-days
needed by AI applications to train changed its trend, passing from a dou-
bling every two years (similar to Moore’s law) to a doubling every 3/4
months [1]. To cope with this increase in computational power, we are
witnessing a proliferation of hardware and software in the form of domain-
specific architecture (DSA) devices and frameworks trying to provide the
necessary performance while traditional hardware struggles as Moore’s law
slows down. However, those devices are usually built upon novel architec-
tures, making them tricky to operate and even more problematic when it
comes to squeezing the best performance out of them.

Making it easy to experiment with those domain-specific devices and
frameworks is fundamental to fostering their evolution and, therefore, ad-
vancements of ML research, but it can become extremely challenging when
the experiments are not conducted in a reproducible way. In fact, as for
other research fields, ML is also facing a reproducibility crisis, mainly due
to the lack of proper documentation and explanation of experiment con-



2 CHAPTER 1. INTRODUCTION

figuration and execution. The efforts for helping reproducibility in ML
are focusing on experiment outputs but not considering the differences in
performance obtainable by using different hardware and software. Repro-
ducibility in this context has two aspects: result reproducibility and per-
formance reproducibility. While reproducibility of the results is mandatory,
performance reproducibility cannot be neglected because high-performance
devices usage causes cost.

Another critical factor for advancements in ML is to have a benchmark
that can push for performance improvements, just as the Linpack bench-
mark led to the evolution of HPC systems while drawing up the TOP500
ranking. The designing of a good benchmark for ML is not an easy task.
On the one hand, it involves the selection of applications that are relevant
for such a rapidly evolving field and, on the other, the definition of metrics
that can reward the performance that does not go to the detriment of qual-
ity. There has been much effort to define an ML benchmark, but MLPerf
seems to be the one that became state of the art, promoting experiment
reproducibility and fair comparison.

Furthermore, the execution of the experiment can also become quite
complex, especially when it involves several steps in addition to its config-
uration and the communication with the execution system, which, in the
case of HPCs, is most likely to be only remotely accessible. In this case, it is
helpful to use tools like workflow management systems supporting the whole
execution flow [2]. To address those reproducibility issues, we start defining
a taxonomy of the experiment, which we use as the base to build our re-
producibility level definitions (as theoretical support), and our experiment
management tool: prova! (as practical support).

prova! was born to manage traditional high-performance computing
experiments [3]. Still, we could extend it to support a different research
field, i.e., Machine Learning, thanks to its simple and flexible design. This
new prova! version allows us to study the performance reproducibility in
ML by running the MLPerf benchmarks.

However, the range of devices and frameworks used in different MLPerf
benchmark submissions is massive, and fully reproducing all of them would
be dispersive. Instead, focusing on one benchmark, i.e., the MLPerf In-
ference, and only on a subset of the submissions, we could have a deeper
analysis of the performance behaviour and show the many experiment cus-
tomization possibilities given by using prova!.

Nevertheless, predefined experiments like a benchmark can be repeti-
tive in terms of configuration and parameters to set. In this situation, it



1.1. RESEARCH QUESTIONS 3

is helpful to have a template that allows users to have a base working ex-
periment that can be customized and used as a starting point for possible
experiment variations and, once created, can be shared with others having
similar needs.

In prova!, we created a specific “driver” (template) for the MLPerf
Inference benchmark, which helped us with the reproducibility difficulties
we faced during our performance reproducibility study. Finally, prova!
assisted us to run the experiments using different hardware and software
combinations and across multiple versions of the benchmark in a repro-
ducible way, allowing us not only to reproduce the original experiments but
also to expand the results and get more insight.

1.1 Research Questions

• The importance of the experiment’s reproducibility is undebatable.
Still, we face a reproducibility crisis in different research fields, in-
cluding machine learning. In this field, most efforts aim at the results’
reproducibility without paying much attention to the reproducibility
of the performance. How can we support performance reproducibility
in a fastly evolving field like machine learning?

• Accelerators overperform legacy CPU systems in specific domains.
Their performance highly depends on optimized configuration and
programming, which are not always obvious. How can we simplify ac-
celerator experimentation and lower the learning curve by promoting
greater collaboration between experts and machine learning scientists?

• Several machine learning benchmarks strive to compare hardware and
software performance in the best way with the ultimate goal of pushing
their improvements. How can we help manage predefined applications
like benchmarks in a reproducible way so that scientists can use them
as a base for creating custom experiments generating new insights?

1.2 Outline

The thesis is structured as follows. The first part discusses the motivations
that led the HPC field towards domain-specific architectures and specialized
frameworks for supporting machine learning applications and the difficul-
ties encountered while carrying on experiments in a reproducible way. Our



4 CHAPTER 1. INTRODUCTION

three-level taxonomy of performance reproducibility defined in 2014 will
be used in the experiments reported in Part IV. The second part debates
the importance of benchmarks for machine learning hardware and software
evolution with a survey on the main existing ML benchmarks and a more
detailed introduction to the MLPerf benchmark suite, complemented by
a user journey when ML Inference benchmark results are inspected. To
address the challenges discussed in Part I and experiment with the bench-
mark applications presented in Part II, in the third part, we introduce our
experiment management tool, prova!. We will provide a comprehensive de-
scription of it, including the architectural aspects and the approach used to
extend it to support MLPerf benchmark experiments. Part 4 is the central
part of the thesis. A well-defined sequence of experiment variants compares
the performance values gathered to the original benchmark data. Finally,
in Part 5, we summarize the outcomes of our study and possible future
research steps.

1.3 Publications

The following list represents publications I contributed which are covering
part of the contents of this doctoral dissertation

[4] A. Maffia. Reproducing ML Benchmarks: What Works What Doesn’t
Work. In review on the 32nd International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), –, 2023.

[3] D. Guerrera, A. Maffia, and H. Burkhart. Reproducible Stencil Com-
piler Benchmarks Using prova!. Journal of Future Generation Com-
puter Systems (FGCS), 92:933–946, 2019.

[5] D. Guerrera, H. Burkhart, and A. Maffia. Reproducible Stencil Com-
piler Benchmarks Using prova!. In Proceedings of the 7th Interna-
tional Workshop on Performance Modeling, Benchmarking and Sim-
ulation of High Performance Computer Systems (PMBS), pages 108–
115, 2016.

[6] H. Burkhart, D. Guerrera, and A. Maffia. No more Believe Me : Make
Your Informatics Experiments Reproducible. Presented as a poster in
the 11th European Computer Science Summit (ECSS), 2015.

[2] A. Maffia, H. Burkhart, and D. Guerrera. Reproducibility in Practice:
Lessons Learned from Research and Teaching Experiments. In Pro-



1.3. PUBLICATIONS 5

ceedings of the Euro-Par 2015: Parallel Processing Workshops, pages
592–603, 2015.

[7] H. Burkhart, D. Guerrera, and A. Maffia. Trusted High-Performance
Computing in the Classroom. In Proceedings of the Workshop on
Education for High-Performance Computing (EduHPC), pages 27–33.
2014.

[8] D. Guerrera, H. Burkhart, and A. Maffia. Reproducible Experiments
in Parallel Computing: Concepts and Stencil Compiler Benchmark
Study. In Proceeding of the Euro-Par 2014: Parallel Processing Work-
shops, pages 464–474, 2014.





Part I

High-Performance Computing
Meets Deep Learning





Chapter 2

Beyond Moore’s Law

2.1 Semiconductors’ trends

Moore’s law drove performance improvements in the High-Performance
Computing (HPC) field for more than 50 years. Even though the end of
Moore’s law has been wrongly announced many times, the gap between the
predicted and the actual chip performance is rapidly growing, especially in
the last decade, showing a concrete slow down [9]. The power of this law
is given not only from the possibility of providing a performance prediction
for semiconductor chips but also for their manufacturer to plan production
costs. For this reason, there has always been a significant effort to try to
keep it alive.

Nowadays, the total number of transistors in ICs is still growing at a pace
of 2x every two years, as shown in Figure 2.1a. Still, the transistor density
graph tells a different story: the semiconductor industry could not keep
transistor density improving at the same speed, and the situation got even
worse after the end of Dennard’s scaling. Figure 2.1b shows a prominent
slowdown after the mid 2000s leading to a difference of almost 19 times
between actual and Moore’s trend transistor density. The main problem is
still related to containing power dissipation while increasing the transistor
density, and this brings ICs into the “dark silicon” era where processors
must reduce their clock frequency or even turn off components to keep the
device working below its thermal design power (TDP) [10]. It follows that
manufacturers can increase the number of components, but this does not
necessarily correspond to the same increase in performance.



10 CHAPTER 2. BEYOND MOORE’S LAW

1980 1990 2000 2010 2020

1

10

100

1000

10k

100k

1M

10M

Moore's trend

Transistors count

years

R
el

at
iv

e 
sc

al
in

g

(a) Transistors count evolution vs.
Moore’s law since 1974.

1980 1990 2000 2010 2020

1

10

100

1000

10k

100k

1M

10M

Moore's trend

Transistor density

years

R
el

at
iv

e 
sc

al
in

g
(b) Transistors density evolution vs.
Moore’s law since 1974.

Figure 2.1: Transistor evolution vs. Moore’s law. The trend for Moore’s
law has been based on the Intel 8080 (introduced in 1974), and the density
derived from the number of transistors and chip area. Data source [11].

A further signal that Moore’s law is approaching its end is the closing in
2016 of the International Technology Roadmap of Semiconductors (ITRS).
Since the 1990s, ITRS has provided biannual reports about the semiconduc-
tor technology situation and future views that helped keep alignment be-
tween the semiconductor industry and Moore’s law. However, ITRS mainly
concentrated on silicon technology [12]. For this reason, thanks to the IEEE
Rebooting Computing initiative, the International Roadmap for Device and
Systems (IRDS) was created to focus on different aspects of computer tech-
nology evolution like application benchmarking, systems and architectures,
regarding not only further developments of Moore’s law but also CMOS
alternatives.

The most promising directions for the “More Moore” IRDS category in-
clude using different materials and evolving finFET transistor design. For
example, using materials from group III-V of the periodic table to replace
or combine with silicon can improve electron mobility allowing a faster gate
switch and a reduced operating voltage, thus reducing generated power and
heat [13]. On the transistor design side, the next step is to move from
finFET to GAAFET (gate-all-around FET), like nanosheet technology, in
which the gate wraps around the channel, further improving its control com-
pared to what happens with finFET. To move those approaches forward,



2.1. SEMICONDUCTORS’ TRENDS 11

the semiconductor industry needs an improvement its manufacturing pro-
cess; in a recent conference, Intel presented the road to a 50-fold transistor
density improvement using a 3D design with stacked GAAFETs [14] and
even IRDS, in its latest report [15], forecasted a transistor technology with
a feature size equivalent to 0.7nm (using the 3D design) by 2034.

GAAFET will most likely not only be the next technology chosen to
advance Moore’s law but also the last one [13]. What is instead less clear is
if shrinking the transistor until the size forecasted by Intel and IRDS will
eventually happen. Even though a path to keep shrinking transistors seems
to exist, reducing feature sizes is generating more and more an explosion
of design and manufacturing costs in the face of a not so significant per-
formance improvement [16]. The economic aspect is key for Moore’s law
survival: in his paper [17], Moore emphasized on being able to increase the
number of components in an IC, reducing the cost per transistor, and this
seems to be not the case anymore [18].

Alternatives presented by IRDS in the “Beyond CMOS” category are go-
ing from Analog Computing which is meant to exploit physical phenomena
(like in the case of neuro-inspired computing) to Probabilistic/Stochastic
circuits, which implement “real” nondeterminism and randomness in hard-
ware, helping with problems like Monte Carlo simulation and Simulated
Annealing to Quantum Computing. Quantum Computing uses quantum
mechanics phenomena like superposition, entanglement, and tunnelling to
solve specific computational problems in cryptography, quantum optimiza-
tion, machine learning, search, and quantum chemistry.

Using this kind of machine is not a recent idea [19], but, only in the last
decade, the approach started to make good progress. Several manufacturers
are building a quantum computer with an increasing number of quantum
bits (qubit) with the final aim of demonstrating the advantage against a
classical computer, the so-called quantum supremacy [20]. Quantum com-
puter vendors and researchers are now in this race; whether we have already
reached quantum supremacy [21] or not [22] is something still under discus-
sion, but there is no doubt this is a real promising path to follow, even the
IRDS since 2018 dedicates a separate category to Cryogenic Electronics and
Quantum Information Processing (CEQIP).

Though different candidates are vying to be the next leading technology,
there is no clear winner yet; moreover, a solution demonstrated in the lab
today would probably need at least a decade to meet industry standards and
start to be used for mass production as it happened in the case of the Fin-
FET[23]. The IRDS alternatives are pretty different, but they seem to have



12 CHAPTER 2. BEYOND MOORE’S LAW

a common denominator: being engineered with a specific problem or class
of problems in mind. The Domain-Specific Architecture (DSA) approach
looks the most promising one, not only if applied to novel technologies for
the future “post-silicon” era but also to drive the design of CMOS-based
architecture, which can already bear substantial performance advantages.

2.2 DSAs and HW accelerators

The idea of using supplementary hardware to offload specific operations
not suited for the “main” processor (or too expensive for it) is not really
new. Already in the 1960s, General Electric was selling an “Auxiliary Arith-
metic Unit” (AAU) to compute operations with a higher arithmetic precision
(floating point). This was considered an extension of the basic arithmetic
unit present in the central processor and was provided as a “two-cabinet”
size component (AAU and its controller)[24]. To execute FP operations, the
central processor was granting the AAU access to the instructions stored in
the main memory, and the AAU was accessing those using an I/O channel
controller and subsequently decoding/executing them without further cen-
tral processor intervention, similar to the way a modern CoProcessor uses
the DMA. Floating-point units continued to evolve from AAU to smaller
components, first as “Arithmetic Processing Unit” (APU) with the Intel
8231/AMD Am9511 and “Floating-point Processor Unit” (FPU) with the
Intel 8232/AMD Am9512, and later on as “Math CoProcessor” with the
Intel 8087, before getting eventually integrated into the CPU chip starting
with the Intel 80486 processor.

In the beginning, keeping the CPU executing only the most common
operations also had a “complexity” motivation. In fact, the number of tran-
sistors of a CoProcessor (ex. 45k for the Intel 8087) could be higher than the
ones of the CPU (ex. 29k for the Intel 8086). Later on, with the evolution
of the semiconductor industry and thanks to Dennard’s scaling, integrating
specific hardware in the same IC became possible without significant effort
and, therefore, an obvious choice[25].

Clearly, CPU architectures improved during the years not only due to
Dennard’s scaling and clock frequency increment but also due to the intro-
duction of hardware and software optimization techniques like instruction
pipelining, speculative execution, and very long instruction word (VLIW),
cache hierarchies, and more. Even the idea of integrating components to
exploit data-parallelism, one of the most common approaches in the mod-



2.2. DSAS AND HW ACCELERATORS 13

ern DSAs to boost performance, has been successfully applied to the world
of High-Performance computing (HPC) since the 1970s by Cray with their
Cray-1 (1976)[26], which, thanks to the help of an integrated “vector pro-
cessor", become the fastest supercomputer of its time.

Nowadays, the power consumption and the costs for designing improved
traditional general-purpose ICs are not sustainable anymore. In addition,
the renewed idea of separating hardware capabilities in different special-
ized devices can help deliver performance in a more energy-efficient way.
Those ICs are, most of the time, devices working in combination with the
main CPU of a computer only when there is the need to accelerate a spe-
cific problem they are designed for. That is why they can also be called
accelerators.

An accelerator does not necessarily need to be a single-purpose device
(even though that is true most of the time). Its main goal is to target the
performance improvement of a specific aspect of a problem, which may be
helpful in multiple fields, that is, for example, the idea behind the graphics
processing units (GPUs). Born to address computer graphics workloads
related to the manipulation of images and videos and their visualization on
display devices, GPUs started moving towards the era of general-purpose
computing on graphics processing units (GPGPUs) when, in the early 2000s,
NVIDIA (currently the leading GPU vendor) added some “programmable”
components to its devices[27]. In fact, GPGPUs are currently used for a vast
range of applications like Artificial Intelligence, finance, climate, molecular
dynamics, and more, with a clear focus on extensively using data-parallelism
through SIMD/SIMT(single instruction, multiple data/threads) execution
model.

Other accelerators can be more tailored to a specific application, as
in the case of the ASICs (Application-Specific Integrated Circuits), which,
focusing just on a tight aspect of a problem, can deliver a tremendous
performance per watt like the tensor processing units (TPUs) designed by
Google. TPU v1[28], in fact, implements the systolic array execution model
to improve only matrix-matrix multiplication and speed up machine learn-
ing inference. An accelerators’ architecture approach, somehow between
GPGPU and ASIC, is the field-programmable gate array (FPGA), which
can be programmed at the hardware level, usually through a hardware de-
scription language (HDL), and provide both flexibility and a specialized/op-
timized IC. If, on the one hand, FPGAs can also reduce the time and cost of
the chip design, on the other, they cannot provide a complete optimization
since the hardware provided by the device can be “just” configured but not



14 CHAPTER 2. BEYOND MOORE’S LAW

GPGPU FPGA ASIC

Description
General-purpose
computing on graphics
processing units

Field-programmable
gate arrays

Application-specific
integrated circuit

Focus General-purpose, Data-
parallelism (SIMT) General/Single-purpose Single-purpose

Strenghts
++ Programmability
++ Flexibility
+ Memory Bandwidth
+ Peak performance

+ Performance/Watt
+ Flexibility
+ I/O Bandwidth
- I/O Latency
- Clock Frequency

++ Peak performance
++ Energy efficient

Weaknesses + Power consumption
- Clock Frequency
- Peak performance
- Programmability

+ Design costs
+ Design complexity
- Flexibility
- Programmability

Table 2.1: Overview of main accelerator categories.

designed ad-hoc as it happens with an ASIC. Another aspect of FPGAs
is that they usually operate at a low clock frequency and, thus, have no
high peak performance. This can be a weakness if targeting ML training
but can be a strength when used for ML inference since this case does not
request high computation, and FPGA, using less power, provides a higher
performance/watt. Table 2.1 reports an overview of the main accelerator
categories.

The possible need for implementing the applications using an approach
different from the one used for the traditional CPUs could be a drawback of
using specific architectures: reaching the optimal performance of an acceler-
ator may require deep and specific expertise. For this reason, the success of
an accelerator may depend on the software ecosystem built around it, and
this was for sure one of the reasons behind NVIDIA GPU’s success. Their
Compute Unified Device Architecture (CUDA) language allowed them to
hide the GPU’s execution model complexity and integrate it with well-
established languages like C and Fortran.

For example, in [29], they show how, starting from an algorithm written
in a high-level language like Python, it is possible to easily get up to 62k-fold
improvement using a lower-level language and applying architecture-specific
optimization. A domain-specific language (DSL) simplifies how a developer
can program the device and provides abstract functions and operations im-
plemented in the most optimized way to get the best performance from the
hardware. Hennessy and Patterson [9] consider DSL one of the four rea-
sons motivating the use of DSAs; the further three are, instead, related to
the specialization of the components. Optimization techniques like out-of-
order speculative execution, implemented to improve performance on the



2.2. DSAS AND HW ACCELERATORS 15

2006 2008 2010 2012 2014 2016 2018 2020
0

10

20

30

40

50

60

70

80

90

100

None Clearspeed IBM Cell NVIDIA Fermi

ATI Radeon Intel Xeon Phi NVIDIA Kepler Hybrid

PEZY-SC NVIDIA Pascal NVIDIA Volta NVIDIA Ampere

Matrix-2000 AMD Vega MN-Core N/A

Accelerator/CP Family - Performance Share

Sh
ar

e

Figure 2.2: Evolution of accelerators’ performance contribution to
TOP500 machines since their first adoption in June 2006. Data source
[30].

traditional CPUs, may cause a significant overhead when unnecessary in-
structions get executed and need to be reverted. The specific nature of the
DSA architecture narrows down the possible instructions making the exe-
cution flow more predictable and allowing, for example, to use of a different
instruction set architecture (ISA) like VLIW to exploit 1○more effective
parallelism. A similar discussion is valid for the cache management effort,
which can be reduced by favouring a 2○memory bandwidth increment (low-
ering the costly memory access). Finally, also the 3○data representation
may require a reduced amount of bits (lower precision) like 4-,8- and 16-bit
integers for machine learning inference and 16- to 32-bit floating-point for
the training, so 64-bit double-precision FPs (and in most cases even 32-bit
single-precision FPs) are not needed.

An example of how accelerators can be effective for the growth of com-
puters and HPC’s performance evolution can be observed by looking at the
TOP500 list. This list, updated twice a year, represents the existing HPC
systems ranked by their performance on the Linpack benchmark. Since
the accelerator’s inception in 2006, the HPC systems’ performance depends
more and more on those devices. Figure 2.2 shows the evolution of the total



16 CHAPTER 2. BEYOND MOORE’S LAW

performance given by all systems in the list based on the accelerators used:
todays’ performance of the list is given by accelerators for almost 40% of
the total, and, looking at the trend, this value is going to keep increasing in
the next future. Different accelerators were added to HPC systems during
the years, but it seems Nvidia GPUs are dominant today. Figure 2.2 also
shows that the only other accelerator able to compete with GPGPUs, so
far, was Intel Xeon Phi [31]. This specialized architecture focuses on ex-
ploiting data parallelism (like GPUs) but keeping compatibility with CPU
architecture and just extending the x86 ISA with some specific instructions.
In principle, the code did not need any change to run on this new device
(because of the instruction compatibility), but it did need some changes to
get a performance boost. This, together with the Intel difficulties with the
10 nm process (planned for the Xeon Phi evolution), made the project move
towards a more specialized architecture to address machine learning [32] and
eventually discontinued in favour of a more diversified DSA-oriented strat-
egy. In fact, Intel lately acquired AI chip companies [33] and developed
a GPGPU architecture(Intel Xe PonteVecchio [14]), adding those to their
existing FPGA products.

Other fields are requesting high computational power that not even HPC
systems can provide or, at least, not in an efficient way. A great example
comes from molecular dynamics, where an ASIC device like Anton can
deliver impressive results. In 2014, the enhanced version of Anton, Anton
2[34], provided a speedup that, for different molecules, could go from a
minimum of 21x up to 800x compared to different GPUs and HPC systems
using an even lower power consumption.

A similar situation is that observed in ML. Although machine learn-
ing algorithms such as neural networks already existed at the end of the
1950s, until the adoption of DSAs for their resolution, the results generated
were not sufficiently accurate and, for example, applications such as image
recognition had a percentage of error of five times worse than that of a
human [25]. A specific architecture provided the necessary performance to
add more layers to neural networks, called deep neural networks (DNNs),
to generate much more accurate results, making these algorithms finally
useful. The ability to cope with the computation required by deep learning
(DL) has led to the evolution of algorithms that are becoming increasingly
demanding from a computational point of view (Figure 2.3), which in turn
has seen a proliferation of new ML- and DL-specific architectures. There is
a clear need for tools to manage device complexity and specific benchmarks
to compare these different architectures.



2.2. DSAS AND HW ACCELERATORS 17

F
ig

u
re

2.
3:

T
he

to
ta

l
am

ou
nt

of
co

m
pu

te
,

in
pe

ta
flo

p/
s-

da
ys

,
us

ed
to

tr
ai

n
se

le
ct

ed
A

I
ap

pl
ic

at
io

ns
.

A
pe

ta
flo

p/
s-

da
y

(p
fs

-d
ay

)
co

ns
is

ts
of

pe
rf

or
m

in
g
10

1
5

ne
ur

al
ne

t
op

er
at

io
ns

pe
r

se
co

nd
fo

r
on

e
da

y,
or

a
to

ta
l
of

ab
ou

t
10

2
0

op
er

at
io

ns
.

Im
ag

e
co

ur
te

sy
of

[1
].





Chapter 3

Deep Learning and the Need
for HPC

3.1 AI, machine learning, deep learning: Def-
initions

The terminology around artificial intelligence is often a source of confusion.
Deep Learning (DL), Machine Learning (ML) and Artificial Intelligence (AI)
themselves represent “nested” sets (figure 3.1). So, on the one hand, it is
true that DL is also ML, and ML is also AI, on the other, it is not always
true the opposite.

AI is the largest set and includes all the “science and engineering of
making intelligent machines, especially intelligent computer programs” [35].
The current AI applications can only solve specific target tasks and, thus,
are categorized as Artificial Narrow Intelligence (ANI). Instead, we talk
about Artificial General Intelligence (AGI) and Artificial Super Intelligence
(ASI), referring to AI solutions that can reach or even surpass the human
intelligence level. Even though research and projects about AGI exist [36],
there are currently no concrete examples of AGI or ASI.

Within AI, ML represents algorithms that are not directly programmed
to solve a specific problem but can instead “learn” how to do it: they extract
knowledge from the input data to predict outcomes. The final behaviour
results from the gradual improvements achieved after each “learning” process
step, similarly to what happens for a living being.

ML consists of three main categories:



20 CHAPTER 3. DEEP LEARNING AND THE NEED FOR HPC

Artificial 
Intelligence

Machine
Learning

Deep
Learning

Figure 3.1: Venn diagram for Artificial Intelligence, Machine Learning
and Deep Learning concepts

• Supervised Learning: ML algorithms trained on labeled data. The
labels are information added to the data that define the input values
corresponding to the desired output to be used during the training
to refine the model. Those algorithms can classify input data into
predefined categories (classification) or find equations that better ap-
proximate the relation between the provided input and output data
(regression).

• Unsupervised Learning: ML algorithms trained to identify pat-
terns on unlabeled data. Those algorithms can group input data based
on common characteristics (clustering) or discover relationships be-
tween variables in a dataset (association), or also reduce the number
of features in a dataset without losing helpful information (dimen-
sionality reduction). The last example is mainly used as data pre-
processing.

• Reinforcement Learning: ML algorithms trained on reward got for
correct behaviour. The “agent” to be trained will take some actions in
a specific “environment” and, based on the correctness of the action
taken, he may get a reward. After several iterations, the agent should
be able to perform the task he was trained for correctly. Examples of
this category are the algorithms used in automatic game playing (e.g.
AlphaGO [37]) or in self-driving cars.

For instance, in the case of the image classification task, the so-called



3.1. AI, MACHINE LEARNING, DEEP LEARNING: DEFINITIONS 21

feature engineering can improve the quality of the results: a domain ex-
pert “extracts” the features, i.e., a set of characteristics, which the algorithm
should focus on during the training. Nonetheless, this process becomes im-
practicable when the number of features increases or when those features
are not clear a priori. Using the artificial neural network (ANNs) will help in
such situations. The ANNs, or just neural networks (NNs), are inspired by
the human brain functioning and define artificial neurons (nodes) which
can communicate with each other using connections called edges. The data
in the NNs pass through different layers that represent the steps of the algo-
rithm. The structure of the NNs, in figure 3.2, includes an input layer that
acquires the data, an output layer that generates the results and a variable
number of hidden layers. An NN that has more than one hidden layer is
considered a DNN.

Input
layer

Output
layer

Hidden
layers

Figure 3.2: Example of a Deep Neural Network (DNN)

NNs do not require human intervention for the feature extraction step,
as they will learn the feature only starting from the input data, which
means they can use unstructured input data. Nevertheless, to provide a
good result, they need to train on a much more significant amount of data
than the classic ML, which translates into higher complexity and, thus,
computational power required. The computation required gets even higher
in the case of DL, where the larger number of layers can further increase
the algorithm complexity.

Research involving NN originated in the 1950s [38] and got an increasing
interest in the 1980s [39] [40] [41] but the learning process was still too slow



22 CHAPTER 3. DEEP LEARNING AND THE NEED FOR HPC

for the hardware available at that time. The situation changed in the last
decade.

In 2012, AlexNet [42] was the first Deep Learning algorithm (CNN∗) to
win the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) with
a considerable improvement compared to the previous solutions. This was
achieved thanks to the algorithm’s optimization and a hardware accelerator
(Nvidia GPU), which provided a relevant speed up to the training. Since
then, every competition winner has used Deep Learning algorithms and
accelerators.

3.2 Deep learning applications’ landscape

The increasing quality of results provided by machine learning algorithms,
especially deep learning, pushed the adoption of those solutions in many
diverse fields, from transportation to finance to agriculture to manufacturing
to healthcare.

Even though the fields applying machine learning solutions are quite
diverse, the same problems may be reoccurring in more than one field.
For example, ML applications, like object detection from the Computer
Vision area (table 3.1), can be used for social media and automotive. The
actual difference usually resides in the requirements and constraints of a
solution, which leads to the choice of one model instead of another: an
object detection model recognizing the people we want to tag on a social
media platform has, clearly, different asks in terms of accuracy or result
latency compared to a model solving the same object detection tasks used
by a self-driving vehicle to recognizing a pedestrian walking on the zebra
crossing.

As discussed in [43] and [44], the different models trained to solve the
same ML application, like image recognition, show a tradeoff between ac-
curacy and complexity: a more accurate model will need more features and
computational and memory requirements. Moreover, the possible datasets
utilized to train a single model can vary and affect the results of the learning
process. Sometimes, using different datasets could be a requirement of the
application: in the aforementioned self-driving vehicle example, recognizing
a road sign is be more important than spotting a fish breed, which may pull
weight in other research areas.

∗Convolutional Neural Network



3.3. HW AND SW FOR DL 23

Area Application Dataset

Computer
Vision

Image Classification, Object De-
tection, Semantic Segmentation,
OCR, Facial recognition, Pattern
Detection, Content-based Tmage
Retrieval

ImageNet, CIFAR, MNIST,
Cityscapes, ADE20K, PASCAL
VOC, COCO, LFW, Adience,
WIDER FACE, FDDB, INRIA
Holidays Dataset

Automatic
Speech
Recognition

Audio Recognition, Audio Seg-
mentation, Audio Generation,
Computer Human Dialogue
Systems, Text-to-Speech

LibriSpeech, TIMIT, Medi-
aSpeech, SLUE, TUDA, Persona-
Chat, UDC, Reddit, LJSpeech

Natural
Language
Processing

Natural Language Generation,
Text Summarization, Topic
Analysus, Sentiment Analy-
sis/Opinion Mining, Question
Answering

WikiText, Penn Treebank, WMT,
SQuAD, WikiQA, bAbI, SST,
IMBd, MATH, DART

Recommendation
Systems

Collaborative Filtering, Content-
based Filtering, Context-aware
Recommender Systems, Hybrid
Recommender Systems

MovieLens, MIND, Criteo

Medical Medical Image Segmentation,
Drug Discovery, Medical Diagno-
sis

BraTS, CVC-ClinicDB, Kvasir,
ACDC, Tox21, QM9, MIMIC-III

Robotics Motion Planning, Robot Naviga-
tion, Human-Robot Interaction,
Visual Odometry, Visual Naviga-
tion

Gibson 3D scenes, Matterport3D
scenes, R2R

GameAI Object Tracking, Continuous Con-
trol, Atari Games, OpenAI Gym

BIRDSAI, PyBullet, DMCS, Atari
2600, LunarLander

Table 3.1: A list of deep learning applications and datasets grouped by
research area.

However, selecting the best model in terms of accuracy is not always the
obvious choice. We may have further restrictions coming from the device
we want to use, like keeping a low power consumption. In this case, the
most accurate model will probably be prohibitive in terms of complexity.
That is why the hardware selected for the learning task has a crucial role.

3.3 HW and SW for DL

3.3.1 ML Architecture

As discussed in the chapter 2.2, machine learning applications push adoption
and performance improvements in DSAs. Within the machine learning field,
deep learning plays a key role, as shown by the many applications using
it (see section 3.2). Deep learning algorithms are computational hungry



24 CHAPTER 3. DEEP LEARNING AND THE NEED FOR HPC

because of larger models, i.e., more features and layers, and datasets (see
(section 3.1)) and that is confirmed by OpenAI, which showed an increase
of 300,000x for computing need of algorithms developed between 2012 and
2018 (see figure 2.3)

Table 3.2 shows examples of DSAs for neural networks, and thus deep
learning, from ASIC to FPGA to devices targeting specific application ar-
eas, i.e., Vision Processing Unit (VPU), or even more innovative architec-
tures. They can focus on the learning process in general or only on specific
phases, e.g., inference. Those devices will work with low data representation
precision and include hardware components that can speed up the main op-
erations present in the neural network in terms of computation, like matrix
and vector multiplications.

For example, the Tensor Processing Unit (TPU), launched by Google in
2015, was designed for inference-only and working with int8 data format.
It was built around a systolic array to reduces the “slow” read/write ac-
cess to memory: a Unified Buffer (UB) feeds a Matrix Multiplication Unit
(MXU) of 256x256 Multiply Accumulate (MAC) units performing 8-bit in-
teger operations with a performance of 92 Teraops per second (running at
700MHz).

Working with 8-bit integers is only possible for inference after a process
of quantization that approximates a model trained with a higher precision
floating-point data format. Even the training process does not usually need
high precision, but this process requires at least half-precision (FP16) to
produce acceptable results.

To increase the device performance by reducing the data format preci-
sion without significantly loose model accuracy, device manufacturers are
proposing additional custom data formats. With the TPU v2, Google in-
troduced the Brain Floating Point (BF16), which is a “truncated” FP32
(IEEE 754 single-precision) with the same number range (8-bit exponent)
and reduced the precision (mantissa reduced from 23 to 7-bit). The BF16
format showed to be effective for deep learning applications [45], and also
CPU and GPU added the support to this data type in their latest architec-
tures [46][47].

Nvidia also added the support for another custom floating-point for-
mat used by the Tensor Cores on their GPUs: the TensorFloat-32 (TF32).
Despite the name, it is a 19-bits format that uses the same “truncation” ap-
proach of the BF16: the exponent is, again, represented using 8 bits, while
the mantissa uses, instead, 10 bits. The format can represent the same
precision as the FP16 (IEEE 754 half-precision standard) (see figure 3.3).



3.3. HW AND SW FOR DL 25

Figure 3.3: Visual representation of TensorFloat-32 (TF32) data format.
Original picture from [48].

Besides, we have devices mainly focusing on accelerating the training
phase using some different approaches like the Intelligence Processing Unit
(IPU) [49] from Graphcore and the Wafer Scale Engine (WSE) [50] from
Cerebras. Those devices have a massive amount of processing elements (PE)
equipped with on-chip memory to guarantee a higher bandwidth and the
possibility to be separately programmed following a MIMD approach.

All the devices mentioned have specific characteristics that may make
them tricky to operate and even more problematic when trying to get the
best performance out of them. For this reason, they must come with soft-
ware frameworks optimized and easy to program.

3.3.2 ML Frameworks

With the complex landscape of specific hardware and the multitude of ap-
plications and models, having an easy way of developing deep learning al-
gorithms was one of the main drivers for the evolutions in the field.

Those frameworks provide some building blocks from basic operations
to functions, possibly optimized for specific hardware, to simplify the neu-
ral network implementation. At low-level, they usually leverage other opti-
mized math libraries, for example, like MKL when running on CPU, cuDNN
for GPU and even framework-specific optimization for execution on multiple
hardware like the Accelerated Linear Algebra (XLA) from TensorFlow†.

There are few commonalities among the frameworks, such as providing
support to Python and C++ as programming languages or CPU and GPU
architectures as hardware (see table 3.3). Specific hardware may provide

†https://www.tensorflow.org/xla

https://www.tensorflow.org/xla


26 CHAPTER 3. DEEP LEARNING AND THE NEED FOR HPC

Category Name Data
format

Learning
phase

Software /
Framework

Supported
Framework

ASIC

TPUv1,
Edge TPU

INT8 Inference TFLite ONNX

TPUv2/3/4 FP32, BF16,
INT32

Training,
Inference

TensorFlow PyTorch

Habana
Goya

FP32, INT32,
INT16, INT8

Inference SynapseAI TensorFlow,
MXNet, Caffe2,
CNTK, Py-
Torch, ONNX,
Glow

Habana
Gaudi

FP32, BF16,
INT32,
INT16, INT8

Training,
Inference

SynapseAI TensorFlow,
PyTorch

Hailo-8 INT8 Inference Hailo AI TensorFlow,
ONNX

Alibaba
HanGuang

INT16, INT8 Inference HanGuangAI Caffe, MxNet,
TensorFlow,
ONNX

DSP Qualcomm
Hexagon

INT8 Inference SNPE SDK Caffe, Caffe2,
ONNX and
TensorFlow

FPGA Xilinx Alveo INT8 Inference Vitis AI TensorFlow,
PyTorch, Caffe

FuriosaAI
Warboy

INT8 Inference FuriosaAI
SDK

-

VPU Intel Movid-
ius

FP16 Inference OpenVINO TensorFlow,
PyTorch, Caffe,
ONNX, MXNet

IPU Graphcore FP32, FP16 Training,
Inference

Poplar SDK TensorFlow,
PyTorch,
ONNX, Paddle
Paddle

WSE Cerebras FP32, BF16 Training,
Inference

Cerebras
SDK

TensorFlow,
PyTorch

Table 3.2: Examples of machine learning hardware grouped by category.

optimized libraries and SDK to help using them, like with Cerebras and
Graphcore devices, but they also provide support/integration with the most
used ML frameworks such as PyTorch and Tensorflow (see table 3.2).

Having this level of integration is essential to cope with device diversity.
For example, if we want to run a model on an Intel integrated GPU (iGPU),
we may need to use OpenVINO (see table 3.3), but thanks to the integration
with TF, we can reuse a model trained on TF with a simple translation step.

Especially for inference, a concrete joint effort from the principal ML
companies to have a unified way of expressing ML models is made with



3.3. HW AND SW FOR DL 27

ONNX [65]. This makes it possible to directly port models from one frame-
work to another if the framework accepts the ONNX format as input or
indirectly after a translation process.

Still, even if almost all devices are compatible with the significant ML
frameworks, they can be supported differently by the framework in terms
of optimization, making it important to have a performance comparison.
Moreover, managing that software and its installation and configuration
can be present challenges that we will address in the next chapter.



28 CHAPTER 3. DEEP LEARNING AND THE NEED FOR HPC

N
am

e
(A

ffi
liation

)
L
au

n
ch

L
an

gu
age

A
P

I
S
u
p
p
orted

H
W

N
ote

T
ensorF

low
(G

oogle)
2015

P
ython,

C
+

+
,

C
U

D
A

P
ython,

C
+

+
,

JavaScript,
Java,

m
ore

from
the

com
m

unity
[51]

C
P

U
,G

P
U

,T
P

U
T

F
L
ite

variant
used

for
Infer-

ence
on

M
obile

devices

P
yT

orch
(Facebook)

2016
P

ython,
C

+
+

,
C

U
D

A
P

ython,C
+

+
,Java

[52]
C

P
U

,G
P

U
,T

P
U

O
N

N
X

R
T

(M
icrosoft)

2018
P

ython,
C

+
+

,
C

U
D

A
,C

#
P

ython,C
/C

+
+

,Java,C
#

,W
inR

T
,

O
bjective-C

,JavaScript
[53]

V
ariuos

devices
throught

externalbackends
[54]

Supports
inference,

initial
sup-

port
for

training
[55]

O
penV

IN
O

(Intel)
2018

P
ython,C

+
+

P
ython,C

/C
+

+
[56]

Intel
devices:

C
P

U
,
G

P
U

,
iG

P
U

,V
P

U
,F

P
G

A
P

rovide
a

unified
interface

for
in-

ference
on

Inteldevices

T
ensorR

T
(N

vidia)
2016

P
ython,

C
+

+
,

C
U

D
A

P
ython,C

+
+

[57]
G

P
U

Speedup
inference

on
N

vidia
G

P
U

devices

T
heano

(U
niversity

of
M

ontreal)

2007
P

ython
P

ython
[58]

C
P

U
,G

P
U

D
eprecated,

forked
into

A
esara

library
[59]

C
affe

(U
C

B
erkeley)

2013
C

+
+

P
ython,M

A
T

L
A

B
,C

+
+

C
P

U
,G

P
U

Inactive
(since

Feb-2020)

C
affe2

(Facebook)
2017

C
+

+
P

ython,C
+

+
[60]

C
P

U
,G

P
U

A
ctive

as
part

of
P

yT
orch

C
hainer

(P
referred

N
et-

w
orks)

2015
P

ython
P

ython
[61]

C
P

U
,G

P
U

D
eprecated,com

pany
m

oving
to

P
yT

orch

M
X

N
et

(A
pache)

2015
C

+
+

,
P

ython,
C

U
D

A
P

ython,
Java,

C
+

+
,

R
,

Scala,
C

lo-
jure,G

o,Javascript,P
erl,Julia

[62]
C

P
U

,G
P

U

C
N

T
K

(M
icrosoft)

2016
C

+
+

P
ython,C

+
+

,C
#

,Java
[63]

C
P

U
,G

P
U

D
eprecated,

it
contributes

to
O

N
N

X
/O

N
N

X
runtim

e

M
indspore

A
I

(H
uaw

ei)
2020

C
+

+
,P

ython
P

ython,C
+

+
[64]

C
P

U
,G

P
U

,H
uaw

eiN
P

U
P

rovide
support

to
H

uaw
eiN

P
U

devices

T
ab

le
3.3:

List
of

m
ain

m
achine

learning
fram

ew
orks.



Part II

Deep Learning HW/SW Analysis





Chapter 4

Reproducibility Challenges

The importance of reproducibility for the research is evident but not directly
translating into reproducible experiments. As already shown by previous
studies regarding other research fields [66], ML also faces a reproducibility
crisis [67].

If, on the one hand, reproducibility in machine learning experiments
can be challenging because of dealing with the randomness found in the
data initialization or some atomic operation or the numerical approxima-
tion or even in the machine learning framework itself, on the other hand,
good practices like defining and documenting the specific seed used for ini-
tialization can help reproducibility [68]. Besides the intrinsic randomness,
other elements affecting reproducibility the most can be found in the lack
of code (or pseudo-code) or poor explanations or detailed documentation of
the experiment configuration and execution [69][70].

To improve results reproducibility, in the machine learning field, some
scientific conferences started requesting fulfilment of submission policies and
checklists when submitting a paper [71]. Along this line, the Paper With
Code∗ initiative, currently supported by Meta AI (formerly Facebook AI),
collects research papers in the machine learning field together with the code
implemented for each paper and the results achieved to help understanding
the state of the art of machine learning algorithms.

Those efforts mainly focus on the reproducibility of an ML experiment
in terms of final results but do not consider the differences in performance
obtainable by using different hardware and software.

∗https://paperswithcode.com

https://paperswithcode.com


32 CHAPTER 4. REPRODUCIBILITY CHALLENGES

4.1 Experiment taxonomy

To help address reproducibility challenges for a computational experiment,
it is essential to precisely identify the fundamental characteristics of an
experiment: this is the driver behind the experiment taxonomy we defined.
Computational problem solving, in general, can be described as follows: A
computational problem is solved by an algorithmic method on a compute
system. As we presented in [8], a micro-experiment can be thought of as a
3-tuple <Problem, Method, System>, which can be considered as being one
point in the space of experiments (see figure 4.1):

• Problem : Solve a (random) dense system of linear equations in IEEE
double-precision arithmetic.

• Method : A two-dimensional block-cyclic data distribution using the
right-looking variant of the LU factorization with row partial pivoting
(see [72]).

• System : Distributed-memory computer with Message Passing In-
terface (MPI 1.1 compliant) and Basic Linear Algebra Subprograms
(BLAS) installed.

S
y
st

em

Meth
od

ProblemPro1

Met1

Met2

Met3
macro-experiment

Sys1

micro-experiment 1

micro-experiment 2

micro-experiment 3

Figure 4.1: Space of Computational Experiments

The common experimentation need is to compare data resulting from
more than a single micro-experiment. Keeping two out of the three dimen-
sions fixed, we get an experiment that is a function of the third one: the
red line shown in Figure 4.1 identifies such a macro-experiment, which is a



4.2. REPRODUCIBILITY LEVELS 33

collection of micro-experiments (e.g., the black dots in Figure 4.1). Macro-
experiments can be categorized as being either system-oriented, method-
oriented, or problem-oriented.

4.2 Reproducibility levels

Based on the experiment taxonomy presented, in 2014, we initially defined
3 levels of reproducibility for an experiment [8], which we later refined in [5]
as follows:

• Repetition: run the original micro- or macro-experiment without
any variation of the parameters used. This should drive to the same
results, which guarantees a certain level of credibility (completeness
of documentation).

• Replication: run the original experiment on a different system. An
experiment should not be bound to a specific computing environment
(portability).

• Re-experimentation: run the original experiment changing only
the method used. When this drives to the same outputs, the scientific
approach is proven (correctness of the approach).

In 2018, the Association for Computing Machinery (ACM) also felt the
need for terminology that could standardize the concepts around “repro-
ducibility”, proposing the first version of their Repeatability, Reproducibil-
ity, and Replicability definitions [73] lately reviewed following the conven-
tion explained in [74].

Even though the ACM terminology is now aligned with the National In-
formation Standards Organization (NISO) Recommended Practice [75] and
is actively used to review and assign badges to scientific research papers,
its focus is mainly on the team running the experiment and the experi-
mental setup. Instead, in our classification, we focus on the experiment
elements <problem, method, system> (see figure 4.1), which may change in
a usual “reproduction excercise”: from simply re-executing an experiment
to changing the computational environment or the approach used to run it.

In [69], the authors present 3 degrees of reproducibility for experiments
in the AI field based on the experiment factors they identified: from the
basic experiment reproducibility (R1), applying no variation to the original



34 CHAPTER 4. REPRODUCIBILITY CHALLENGES

experiment, to the data reproducibility (R2), changing the method imple-
mentation, to the method reproducibility (R3), changing both implementa-
tion and data used for the experiment. While R1 degree overlaps with our
repetition level of reproducibility, both R2 and R3 degrees map to our re-
experimentation; in fact, we make no differentiation based on the data used.
Instead, our classification focuses on the “system” (hardware/software) per-
formances defining a replication level of reproducibility when changing the
system, which is missing in the degrees of reproducibility introduced in [69].

Clearly, it doesn’t matter if an experiment runs faster when the results
are wrong. For this reason, we consider the reproducibility of results em-
bedded in the “performance reproducibility” and, thus, a prerequisite when
comparing experiments in terms of performance: ensuring reproducibility
of performance should automatically guarantee reproducibility of results.

By the way, our idea is not to stick with a specific reproducibility levels
terminology but rather discuss the fundamental components that need to
be considered to achieve reproducibility (and its acceptance) as a broader
concept. First, re-run an experiment and get the same results (or, more
generally speaking, insights) is a basic need for a scientist to ensure exper-
iment value, as already stated by Karl Popper in 1934, “Non-reproducible
single occurrences are of no significance to science” [76]. Second, setting
up an experiment in a different computational environment is key on the
one hand to increase trust and, on the other hand, to demonstrate that the
experiment does not rely only on a specific system. Finally, an experiment
that is not the outcome of a single occurrence and is trustable can be used to
compare and validate other approaches that solve the same initial problem.

To compare the performance of different ML-specific hardware and soft-
ware, it is fundamental to reproduce the experiments built by the DSAs
experts to have a solid starting point for the comparison. A comparison
of different experiments is what we call macro-experiment, which means to
move an experiment in the space of experiments changing problem, method
or system components. If we cannot reproduce the base experiment, it
will be impossible to change the experiment components and create a new
experiment to study the performance behaviour.



Chapter 5

Deep Learning Benchmarks

5.1 Benchmarks overview

As discussed in chapter 3, the accuracy improvement for AI solutions does
not come for free but translates into a higher complexity: working with an
increasing number of parameters and more extensive datasets makes the
ML algorithms eager for performance improvements. In effect, to increase
AI adoption, it is fundamental not only that the solution reaches a higher
accuracy but also that it gets it in a reasonable amount of time.

The performance improvements can come from both algorithmic and
system (both hardware and software) enhancements: it is critical to have
a benchmark that can help adequately evaluate these ML solutions and,
eventually, foster AI adoption and evolution.

In 2012, one of the first ML benchmarks, BenchNN [77], reimplemented
a subset of Recognition, Mining, and Synthesis (RMS) applications from
the PARSEC benchmark suite [78] replacing some target tasks with neural
networks (NN) and comparing the quality of the “approximate” results given
by the NN version with the original ones. BenchNN results showed how the
NN version of the implemented applications was reaching a good quality in
terms of output. However, poor execution time performance demonstrates,
on the one hand, the potential of ML and, on the other, the need for specific
hardware tailored to NNs. Nevertheless, the applications evaluated were not
relevant as ML solutions [79].

Afterwards, benchmarks like DeepBench [80] have been explicitly cre-
ated for evaluating ML considering the basic operations predominant in ML



36 CHAPTER 5. DEEP LEARNING BENCHMARKS

algorithms, e.g., GEMM or convolution. Even though it is essential to im-
prove low-level operations, this benchmark does not clearly show how good
the approach solves a problem. For this reason, other ML benchmarks ap-
peared to cover tasks solving specific ML problems, like image recognition,
object detection, recommendation systems, language processing, and more
(see section 3.2). In other cases, a benchmark may go further and even
cover end-to-end scenarios composed of both AI and non-AI tasks [81].

Even when running complete ML apps, a benchmark may focus on a
specific ML framework (see section 3.3) as in Fathom [79] or PerfZero [82],
limiting the possibility of comparing how specific hardware behaves using
different software. The same can happen on the hardware side with bench-
marks targeting a single device type, e.g., the GPU for the TBD benchmark.

Another critical element for a benchmark is the metric used. Most
benchmarks look at the performance using the throughput (e.g., sample/s)
or time (e.g., time-per-epoch), while others look at the accuracy (e.g., top-5
accuracy) but both in an isolated way. However, an optimization may im-
prove a specific “proxy” metric while adversely affecting another [83]. To
remedy this situation, benchmarks like DAWNBench [84] started using the
time-to-accuracy TTA metric, which measures the time needed by a system
to reach a predefined accuracy value.

Beyond the differences mentioned, the aim of a benchmark is not to run
an experiment merely to get a performance number. Instead, it should allow
a fair comparison of systems and algorithms to foster a healthy competition,
similar to how the Linpack [85] benchmark (HPL[72]) has been used since
1993 to draft the list of the faster 500 HPC systems in the world, driving
their evolution.

Considering all the points about AI benchmarks we discussed, our de-
sired benchmark should:

• Include workloads representative of problems relevant to the field.

• Evolve hand in hand with enhancements in both algorithms and sys-
tems.

• Use a metric that measures performance concerning accuracy.

• Enable a fair comparison of hardware and software technologies.

• Take into account reproducibility as a fundamental requirement.

Table 5.1 presents a list of AI benchmarks and their main characteristics.
Among the ML benchmarks proposing a competition, MLPerf [86] seems the



5.2. CASE STUDY: MLPERF 37

most prominent, promoting experiment reproducibility and fair comparison.
Some teams leading other benchmarks decided to stop and move to MLPerf,
like DAWNBench, while in other cases, such as TBD, DLBS, and MLMark,
they are still active though also contributing to the MLPerf benchmark.

Another newsworthy benchmark suite for AI is the AIBench [87], which
covers a broader range of ML tasks, i.e., 19 (as of today), and workload
types, i.e., basic operations to end-to-end scenarios. In this work, we will fo-
cus on MLPerf and, in particular, on the Inference benchmark. However, we
believe the approach is generic enough to be applied to other MLPerf bench-
marks and different benchmark suites like AIBench or even benchmarks in
other domains where performance reproducibility is equally important [88].

5.2 Case study: MLPerf

MLPerf is a collection of machine learning benchmark suites started in 2018
as a joined effort from industry and researchers [89] to provide representa-
tive benchmarks for a fair system performance evaluation [90]. Since its
formation in 2020, the MLCommons Association has maintained MLPerf to
help the adoption of AI/ML by providing benchmarks, extensive open data
sets and best practices [86]. As of today, MLPerf includes Training [90],
Inference [44], HPC [91] (training), Tiny [92] (inference) and Mobile [93]
(inference) benchmark suites.

MLPerf defines multiple categories and subcategories for each suite to
allow a fair comparison, requesting them to comply with specific submission
rules. Training and inference benchmarks are organized into two divisions:
Closed and Open. The Closed division is defined to enable a fair comparison
of software and hardware, fixing the model the benchmark need to use,
which should be the same adopted in the reference implementation. While
the Open division, relieving the model constraint, enable novel solutions
which can reach the same target quality [90].

MLPerf divides the systems as well into different categories based on
their availability to general users: available systems only include pur-
chasable or rentable components, a system can be in preview if will become
“available” in the following benchmark round, Research, Development,
or Internal (RDI) category involves hardware or software which is experi-
mental, underdevelopment or for internal-use only.

On the workload side, the applications part of the benchmarks may
change from one suite to the other. However, they mainly solve tasks from



38 CHAPTER 5. DEEP LEARNING BENCHMARKS

common areas like vision, language processing, commerce, game AI or, in
the case of the HPC training benchmark, tackling particular tasks from
a so-called Scientific area. MLPerf selected a specific ML model for each
workload (fixed for the Closed division), which should represent the state-of-
the-art solution for the ML task in terms of both performance and accuracy;
that is why a chosen model may change with the benchmark versions. Both
Closed and Open divisions define a fixed dataset.

The metrics may change from one benchmark to the other, but they
need to reach a specific quality/accuracy target to be considered valid; that
has applied to the time and throughput metrics of the training benchmarks
as well as the latency and throughput of the inference ones (see table 5.2).

Finally, differently from the training, for the inference benchmarks,
MLPerf does not only define the tasks to run and the rules to fulfil but
also a complete benchmark framework for the inference. The structure is
composed of the LoadGen in charge of generating the inference queries
and the System Under Testing (SUT), which will receive and solve the
requests. Such a benchmark architecture allows the LoadGen to simulate
different realistic situations, the so-called scenario, which the SUT may
deal with [44]:

• Single-Stream: the LoadGen sends a one-sample query after another
as soon as the SUT completes them.

• Multi-Stream: the LoadGen sends an n-sample query based on a
latency constraint, counting the queries the SUT can complete within
the assigned constraint.

• Server: the LoadGen sends a new one-sample query to the SUT
according to a Poisson distribution.

• Offline: the LoadGen sends all samples in a single query to the SUT
at the start.

Based on the scenario, the metrics considered are different. For the
stream scenario, it is essential to look at the latency the system can achieve
while processing those streams. Instead, the other scenarios will focus on
the throughput reached by the SUT.

Starting with the version v1.0 of the inference benchmark, MLPerf added
measurements and metrics regarding Power consumed by the system to
evaluate its efficiency. The metric depends on the specific scenario consid-
ered for these results (Table 5.2).



5.2. CASE STUDY: MLPERF 39

To promote a fair comparison, MLPerf defines some more rules for the
results submission, e.g., schedule for the submission or mandatory scenarios
for a specific device category or hyperparameters tuning [94]. After a cou-
ple of years from the launch of the benchmarks, we can already see some
exciting trends for hardware and software improvements. For example, in
the training benchmark, with the fourth submission round (v1.0) from June
2021, the performance improvement was 6.8 to 11 times higher than Moore’s
law advancing [95], which is an excellent example of how a benchmark con-
test and specific hardware and software usage can advance research fields
like machine learning.



40 CHAPTER 5. DEEP LEARNING BENCHMARKS

B
en

ch
m

ark
P

h
ase

M
etric

R
an

k
W

orkload
M

od
el

D
ataset

F
ram

ew
ork

D
evice

R
elease

D
eepB

ench
T

/I
P
erf

no
M

L
operations

(conv,
G

E
M

M
,
etc.)

N
A

N
A

N
A

-
N

V
idia/A

M
D

G
P

U
,

Intel
K

N
L

(train)
-

N
V

idia
G

P
U

,
E

m
bedded

devices
(infer)

2016-2020

D
A
W

N
B

ench
T

/I
T

T
A

yes
A

pps
O

pen
F
ixed

O
pen

O
pen

2018-2020
(stopped)

Fathom
T

/I
P
erf

no
A

pps
F
ixed

F
ixed

T
ensorF

low
C

P
U

,
G

P
U

2016-2019

T
B

D
T

P
erf,

A
cc

no
A

pps
F
ixed

F
ixed

T
ensorF

low
,

M
X

N
et,

P
yT

orch,
C

N
T

K
(deprecated)

G
P

U
2018-2020

D
L
B

S
T

/I
P
erf

no
A

pps
F
ixed

F
ixed

C
affe,

C
affe2,

P
yT

orch,
T
ensor-

F
low

,
T
ensorR

T
,

M
X

N
et,

O
pen-

V
IN

O
(experim

ental)

C
P

U
,

N
vidia

G
P

U
,

A
M

D
G

P
U

(lim
ited)

2017-2021

A
IM

atrix
T

/I
P
erf

no
O

ps,
A

pps
(A

libaba
D

C
s)

F
ixed

F
ixed

T
ensorF

low
,
C

affe
N

V
idia

G
P

U
,
C

am
bricon

2017-2020

M
L
M

ark
I

P
erf,

A
cc

yes
A

pps
F
ixed

F
ixed

O
penV

IN
O

,
T
ensorR

T
,
A

R
M

N
N

,
T
ensorF

low
,
T

F
L
ite

C
P

U
,
G

P
U

,
A

R
M

,
T

P
U

2019-2020

T
F

bench
(P

erfZ
ero)

T
/I

P
erf

no
A

pps
F
ixed

F
ixed

T
ensorF

low
C

P
U

,
G

P
U

,
T

P
U

2016-2021

A
IB

ench
T

/I
P
erf,

A
cc

yes
O

ps,
A

pps,
E

2E
scenarios

F
ixed

F
ixed

T
ensorF

low
,

P
thread,

P
yT

orch,
O

pen
C

P
U

,
N

V
idia

G
P

U
,

T
P

U
,

O
pen

2018-2021

M
L
P
erf

T
/I

P
erf,

A
cc

yes
A

pps
F
ixed

F
ixed

O
pen

O
pen

2018-2021

T
ab

le
5.1:

A
listofA

I
benchm

arks.
B
en

chm
ark

is
the

nam
e

ofthe
benchm

ark,P
hase

is
the

training
face

the
benchm

ark
focus

on,w
hich

could
be

training
(T

)
or

inference
(I),M

etric
is

the
m

etric
type

considered
(perform

ance/accuracy),R
an

k
setto

“yes”
for

the
benchm

arks
used

to
build

a
ranking,W

orkload
lists

the
categories

ofw
orkloads

in
the

benchm
ark,M

odel
and

D
ataset

are
set

to
O

pen
if

decided
by

the
user

or
F
ixed

w
hen

defined
by

the
benchm

ark,
F
ram

ew
ork

is
O

pen
w
hen

defined
by

the
used

for
perform

ance
ranking

or
a

specific
one

if
the

benchm
ark

provides
a

fixed
reference

im
plem

entation,
D

evice
is

the
list

of
the

devices
supported

by
the

benchm
ark,

R
elease

show
s

w
hen

the
benchm

ark
creation

date
and

w
hat

is
the

current
stable

release.



5.2. CASE STUDY: MLPERF 41

N
am

e
W

or
k
lo

ad

A
re

a
T
as

k
M

o
d
el

D
at

as
et

T
ar

ge
t

q
u
al

it
y

M
et

ri
c

T
ra

in
in

g

V
is

io
n

Im
ag

e
cl

as
si

fi
ca

ti
on

R
es

N
et

-5
0

v1
.5

Im
ag

eN
et

75
.9

0%
cl

as
si

fi
ca

ti
on

•
T

im
e-

to
-t

ra
in

Im
ag

e
se

gm
en

ta
ti

on
(m

ed
ic

al
)

3D
U

-N
et

K
iT

S1
9

0.
90

8
M

ea
n

D
IC

E
sc

or
e

O
b
je

ct
de

te
ct

io
n

(h
ea

vy
w

ei
gh

t)
M

as
k

R
-C

N
N

C
O

C
O

0.
37

7
B

ox
m

in
A

P
an

d
0.

33
9

M
as

k
m

in
A

P
O

b
je

ct
de

te
ct

io
n

(l
ig

ht
w

ei
gh

t)
SS

D
C

O
C

O
23

.0
%

m
A

P

L
an

gu
ag

e
Sp

ee
ch

re
co

gn
it

io
n

R
N

N
-T

L
ib

ri
Sp

ee
ch

0.
05

8
W

or
d

E
rr

or
R

at
e

N
L
P

B
E
R
T

-l
ar

ge
W

ik
ip

ed
ia

20
20

/0
1/

01
0.

72
M

as
k-

L
M

ac
cu

ra
cy

G
am

eA
I

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g
M

in
i
G

o
G

o
50

%
w

in
ra

te
vs

.
ch

ec
kp

oi
nt

H
P
C

(t
ra

in
in

g)
Sc

ie
nt

ifi
c

C
li
m

at
e

se
gm

en
ta

ti
on

D
ee

pC
A

M
C

A
M

5+
T

E
C

A
si

m
ul

at
io

n
IO

U
0.

82
•

T
im

e-
to

-t
ra

in
(s

tr
on

g
sc

al
in

g)
•

T
hr

ou
gh

pu
t,

i.
e.

,
nu

m
b
er

of
tr

ai
ne

d
m

od
el

in
st

an
ce

s
(w

ea
k

sc
al

in
g)

C
os

m
ol

og
y

pa
ra

m
et

er
pr

ed
ic

-
ti

on
C

os
m

oF
lo

w
C

os
m

oF
lo

w
N

-b
od

y
si

m
u-

la
ti

on
M

ea
n

av
er

ag
e

er
ro

r
0.

12
4

Q
ua

nt
um

m
ol

ec
ul

ar
m

od
el

in
g

D
im

eN
et

+
+

O
p
en

C
at

al
ys

t
20

20
(O

C
20

)
F
or

ce
s

m
ea

n
ab

so
lu

te
er

ro
r

0.
03

6

In
fe

re
nc

e
(D

at
ac

en
te

r
/

E
dg

e)

V
is

io
n

Im
ag

e
cl

as
si

fi
ca

ti
on

R
es

N
et

-5
0

v1
.5

Im
ag

eN
et

99
%

of
F
P
32

(7
6.

46
%

)
(S

ce
na

ri
o-

de
p
en

de
nt

)

P
er

fo
rm

an
ce

m
et

ri
cs

:
•

90
%

-i
le

L
at

en
cy

(S
in

gl
eS

tr
ea

m
)

•
99

%
-i
le

L
at

en
cy

(M
ul

ti
St

re
am

)
•

Q
ue

ri
es

/s
th

ro
ug

ht
pu

t
(S

er
ve

r)
•

Sa
m

pl
es

/s
th

ro
ug

ht
pu

t
(O

ffl
in

e)

P
ow

er
m

et
ri

cs
:

•
E
ne

rg
y-

p
er

-s
tr

ea
m

(S
in

gl
e/

M
ul

ti
St

re
am

)
•

Sy
st

em
p
ow

er
co

ns
um

pt
io

n
(S

er
ve

r,
O

ffl
in

e)

Im
ag

e
se

gm
en

ta
ti

on
(m

ed
ic

al
)

3D
U

-N
et

B
ra

T
S1

9
99

%
of

F
P
32

an
d

99
.9

%
of

F
P
32

(0
.8

53
00

m
ea

n
D

IC
E

sc
or

e)
O

b
je

ct
de

te
ct

io
n

(h
ea

vy
w

ei
gh

t)
SS

D
-R

es
N

et
34

C
O

C
O

99
%

of
F
P
32

(0
.2

0
m

A
P
)

O
b
je

ct
de

te
ct

io
n*

(l
ig

ht
w

ei
gh

t)
SS

D
C

O
C

O
99

%
of

F
P
32

(0
.2

2
m

A
P
)

Sp
ee

ch
Sp

ee
ch

re
co

gn
it

io
n

R
N

N
-T

L
ib

ri
Sp

ee
ch

de
v-

cl
ea

n
99

%
of

F
P
32

(1
-

W
E
R

,
w

he
re

W
E
R

=
7.

45
22

53
71

48
52

64
5%

)

L
an

gu
ag

e
N

L
P

B
E
R
T

-l
ar

ge
SQ

uA
D

v1
.1

99
%

of
F
P
32

an
d

99
.9

%
**

of
F
P
32

(f
1

sc
or

e=
90

.8
74

%
)

C
om

m
er

ce
R

ec
om

m
en

da
ti

on
**

D
L
R

M
1T

B
C

li
ck

L
og

s
99

%
of

F
P
32

an
d

99
.9

%
of

F
P
32

(A
U

C
=

80
.2

5%
)

M
ob

il
e

(i
nf

er
en

ce
)

V
is

io
n

Im
ag

e
cl

as
si

fi
ca

ti
on

M
ob

il
eN

et
E
dg

eT
P
U

Im
ag

eN
et

98
%

of
F
P
32

(T
op

1:
76

.1
9%

)
O

b
je

ct
de

te
ct

io
n

(l
ig

ht
w

ei
gh

t)
M

ob
il
eD

E
T
s

C
O

C
O

95
%

of
F
P
32

(m
A

p:
0.

28
5)

Se
gm

en
ta

ti
on

D
ee

pL
ab

V
3+

(M
ob

il
eN

et
V

2)
A

D
E
20

K
97

%
of

F
P
32

(3
2-

cl
as

s
m

IO
U

:
54

.8
)

L
an

gu
ag

e
N

L
P

M
ob

il
e-

B
E
R
T

SQ
uA

D
v1

.1
93

%
of

F
P
32

(F
1

sc
or

e:
90

.5
)

T
in

y
(i

nf
er

en
ce

)

V
is

io
n

Im
ag

e
cl

as
si

fi
ca

ti
on

R
es

N
et

-8
C

IF
A

R
-1

0
85

%
(T

op
1)

V
is

ua
l
W

ak
e

W
or

ds
M

ob
il
eN

et
V

1
0.

25
x

V
is

ua
l

W
ak

e
W

or
ds

D
at

as
et

80
%

(T
op

1)

Sp
ee

ch
/

A
ud

io
K

ey
w

or
d

Sp
ot

ti
ng

D
S-

C
N

N
G

oo
gl

e
Sp

ee
ch

C
om

m
an

ds
90

%
(T

op
1)

A
no

m
al

y
D

et
ec

ti
on

D
ee

p
A

ut
oE

nc
od

er
T
oy

A
D

M
O

S
0.

85
(A

U
C

)

*
E

dg
e

on
ly

.
**

D
at

ac
en

te
r

on
ly

T
ab

le
5.

2:
M

LP
er

f
be

nc
hm

ar
k

su
ite

s.





Chapter 6

Benchmarking with MLPerf

To understand ML experiments’ challenges, we tried to reproduce some of
the results submitted during the first “round” of the MLPerf benchmark
and, in particular, the Inference one.

MLPerf provides access to the benchmark in a git repository which in-
cludes:

• the Load Generator (LoadGen) used to feed the inference query to
the model.

• information regarding the model calibration process.

• the tools for validating the submission.

• the information for all the benchmarks in the suite, including reference
implementations and scripts, to validate the model accuracy.

MLPerf LoadGen is provided as a C++ library with Python bindings,
while the reference implementations and their helper scripts are only meant
to “familiarize” with the benchmark.

After the benchmark round is open, the participants will get the bench-
mark and reimplement the code, optimizing it for their specific software
and hardware. Before the deadline, they will submit all the requested files,
peer-reviewed by the other submitters. Finally, the accepted submissions
will be published in a separate git repository.

The submission structure, defined by the benchmark policies[94], in-
cludes information about the system used, code and instructions to run



44 CHAPTER 6. BENCHMARKING WITH MLPERF

the submission, scripts and configurations used for the submission, and
benchmark results. Looking into these submissions was the first step to try
reproducing the results for the MLPerf Inference benchmark v0.5.

6.1 Reproducing MLPerf Inference: A user
journey

Among the submissions, the Intel OpenVINO framework provides an in-
teresting case. It is an inference engine optimized for Intel devices (CPU,
GPU, VPU, FPGA) [96] which aims to run transparently on any supported
devices with minimal configuration effort.

The original OpenVINO experiments run on Windows or Linux OS sys-
tems. Some README files document the steps to configure the environ-
ment and the experiment to run: reproducing the submission requires an
entirely manual process.

Using the instructions provided, we decided to build the environments
as containers. Starting from the container definition file, it was possible, on
the one hand, to always initiate our tries from a clean environment and, on
the other, to have better confidence about the correctness of the environ-
ment. However, with our little knowledge about the OpenVINO software
and a not completely clear list of actions, e.g., there was no clear indica-
tion about the OpenVINO version to use, it was not easy to understand
the different configurations. For this reason, the first decision was to try
getting more familiar with the tool, installing it following the official docu-
mentation (instead of the MLPerf submission instructions), and adding the
MLPerf LoadGen on top of it.

MLPerf provides the model as part of the inference benchmark, but in
the case of OpenVINO, the user needs to translate the model in a different
format. Still, creating an OpenVINO model starting from the one provided
is well documented and relatively straightforward, thanks to the official
prebuilt OpenVINO Docker containers.

With this first combination of software, i.e. standard OpenVINO +
Intel code + ML LoadGen, the build of the experiment failed because of
some incompatibilities with the OpenVINO version. After acquiring more
knowledge regarding OpenVINO and the errors, we could slightly change
the code to have a first working version.

Nevertheless, changing both hardware and software simultaneously made
it impossible to compare the experiments in terms of performance. So, we



6.2. SUPPORT TOOLS 45

decided to look at the code which Intel submitted to the sequent MLPerf
inference round: v0.7. This time, the instructions like software versions and
steps were more explicit. Thanks to these instructions and the increased
OpenVINO knowledge, it was possible to reproduce the same environment.
In this submission, Intel used the OpenVINO code only to run the Offline
scenario. Still, since the scenario is just a parameter in their code, we could
use it to run the Single-Stream scenario and compare it with our previous
experiment.

At this point, we could go back to the original experiment and comple-
ment some information we missed in our first try: the MLPerf LoadGen used
was not the standard one, but a version “patched” with two pull requests
in the GitHub repo. Using this different version of MLPerf LoadGen and
building from the OpenVINO version available at the submission time, we
could reproduce the environment configuration of the original experiment
for version v0.5 of MLPerf.

While a machine learning scientist would probably only look for (1) run-
ning the code on his hardware and (2) understanding results compared with
the ones available in the MLPerf submission, would he/she be able or even
interested in going through all these steps to reproduce this experiment?

For each container, we generated both a Docker and a Singularity ver-
sion. A CI pipeline connected to a GitHub repository builds the containers
and pushes them to a container registry. Providing the environment as a
container is helping to reproduce the experiments, but a user would still
need to manage changes manually to both experiment configuration and
systems to use. Those aspects can be simplified using a workflow system.

6.2 Support tools

As discussed in section 7.3, many tools address experiments complexity and
assist reproducibility. In addition, people have already used some of them
to reproduce machine learning experiments and MLPerf benchmarks.

Popper∗ is a framework that helps define and run scientific workflows
leveraging container technology. The tool is built upon the Popper Conven-
tion [97], which suggests following a DevOps approach: (1) select a DevOps
tool for each stage of the experiment, (2) use a Version Control System
to for all the scripts involved and (3) document the experiment changes in
the version control commits. The tool looks mature and follows a similar

∗https://getpopper.io



46 CHAPTER 6. BENCHMARKING WITH MLPERF

approach and motivation we had for our work on [8]. Still, Popper was not
available back then. There is an example on GitHub† using Popper for the
MLPerf training benchmark, but it does not seem more than a try.

Another tool focused on machine learning experiments is the Collective
Knowledge framework (CK) [98]. The idea behind CK is to consider an
experiment as a collection of components that capture the experiment arti-
facts (code, scripts, datasets, models, ...) to be managed through CLI/API
and, thus, easily reused. Moreover, the components are organized as a
database to enable the FAIR‡ principles. Finally, CK officially collaborates
with MLPerf/MLCommons and provides reproducibility studies about the
benchmarks and is actively used for some submissions.

Even the MLPerf community itself has realized the need to have a way to
simplify the execution of the benchmark and help reproducibility. So they
started the development of MLCube™ [99]. [100] describes MLCube as
“a consistent interface to machine learning models in containers like Docker.
Models published with the MLCube interface can be run on local machines,
on various major clouds, or in Kubernetes clusters, all using the same code”.
MLCube aims to help researchers and developers build ML models that
can be easily shared and reproduced. However, even though MLCube is
promising and is currently growing with more and more “runners” added
(ssh, Docker, Singularity, Kubernetes, cloud), it is still at its early stage.

The next chapter will discuss how we overcome the issues faced dur-
ing the MLPerf inference benchmark reproduction using our workflow tool:
prova!. prova! have many aspects in common with other tools managing
the experiment “flow”. Nevertheless, the main difference is for prova! to
have micro-/ and macro-experiment as central concepts: reproducing an ex-
periment and helping users vary one or more of the experiment dimensions
to characterize the software/hardware performance [8]. Furthermore, on the
one hand, its web interface helps manage the experiments and connections
to different remote systems. On the other hand, it shows how it can interact
and extend the prova! backend [101].

†https://github.com/getpopper/mlperf-training-workflows
‡findable, accessible, interoperable, and reusable



Part III

prova! 2.0: A Benchmark Driver





Chapter 7

Experiment Challenges in HPC

7.1 Software Stack

With the increasing complexity of the architecture, the software needed to
use and manage them is getting more and more complex. This complexity
comes not only from the software itself but also from all its dependencies.

7.1.1 Environment modules

To help deal with the software complexity in the HPC world, HPC cen-
ters are extensively using Linux modules. A user can quickly “load” and
“unload” a module for specific software and version, being sure that the
“environment” required gets set in the right way. System admins can write
the file describing Environment modules, called modulefile, using the Tool
Command Language (Tcl) or later alternatives. Among those Linux mod-
ules alternatives, it is worth mentioning Lmod: the solution developed at
Texas Advanced Computing Center (TACC) and based on Lua language.

Even though Environment Modules/Lmod helps manage software in an
HPC environment, they are not trivial to write and update. Furthermore,
manually writing modules representing complex software with many depen-
dencies can become very tedious. For this reason, tools like EasyBuild and
Spack have been built. Both EasyBuild and Spack help automatically in-
stall the software (with all its dependencies) and produce the correspondent
modulefiles for configuring, cleaning, or changing the environment. They
also provide templates for standard software build and installation proce-



50 CHAPTER 7. EXPERIMENT CHALLENGES IN HPC

dures and an extensive database of software “recipes” which can be used
as-is or customized based on the need.

7.1.2 Linux containers

Using environment modules, the user must install different software and
versions on a system to switch from one version to another and run var-
ious experiments. This process may take some time and even end up in
conflicts when loading multiple software with different versions of the same
dependency. In this case, a cleaner approach to software management can
be achieved using Linux containers.

From Chroot to Docker revolution

Containers are an OS-level virtualization technology. Unlike Virtual Ma-
chines, they do not require a complete OS and hardware virtualization but
share OS kernel (with other containers) and include all the packages, binary,
and libraries the software users want to run.

The first container technology appeared back in 2000 with FreeBSD
adding their container concept, the Jails, to the OS; this followed the first
OS feature usually considered part of the container world: chroot. Chroot
was introduced in 1979 within the Unix V7 development and added to BSD
in 1982 to test its installation. It allows changing the root directory for
the calling process and its children processes to a different path, creating a
separate and isolated environment called chroot jail.

Later on, the container technologies evolved: the processes running
within a Linux container are isolated from the rest of the system using
namespaces and control groups features provided by the kernel. The
different namespaces will limit the resources, e.g. process IDs (pid), mount
points (mnt), network stack (net), a process can see, while the cgroups limit
the amount of a particular resource (e.g. Memory, CPU, I/O) the process
can use.

If, on the one hand, container solutions like OpenVZ [102], Solaris Con-
tainers [103] and LXC [104] raised the interest in containers, on the other,
the real breakthrough came with Docker.

Docker is an open platform for developing, shipping, and running ap-
plications [105]. It started in 2013, focusing on containers running a single
application/service (application container) instead of combining multiple



7.1. SOFTWARE STACK 51

services like in OpenVZ or LXC (OS container), making Docker containers
lighter and more suitable for a microservices architecture.

While previous container technology like LXC may need machine-specific
configuration [106], Docker containers are both hardware and platform ag-
nostic, allowing great portability. Docker containers are built from a “Dock-
erfile”, including the steps (mainly shell commands) needed to configure the
environment in the container. Each of the Dockerfile steps will produce a
layer of the final Docker image, which stores the changes (diff) to the pre-
vious layer. After being built, the container can be easily shared through a
remote registry, both public or private, and re-used or extended by others.

Docker is based on a client-server architecture composed of a daemon
and a client: a Docker daemon process runs on all the hosts used by Docker,
serving the client requests for building, running and distributing the con-
tainer. Only a user with elevated privileges can use Docker CLI commands
by default.

Despite being the most adopted container technology is a clear sign of
its reliability in managing software applications, its usage in the HPC field
shows some concerns like the need for a running daemon and root privileges,
the system overhead [107], and the missing support for workload managers
and parallel storage driver [108].

Containers in HPC

Several technologies appeared to cope with the HPC needs, which Docker
lacks.

Podman Podman [109] is defined as an open-source, “daemonless con-
tainer engine for developing, managing, and running Open Container Ini-
tiative (OCI) [110] containers and container images on your Linux Sys-
tem” [111]. Podman is fully compatible with both the Docker CLI and the
Docker container image format. However, unlike Docker, it does not need a
daemon and, using user namespace mapping of UID/GID, can run in root-
less mode. Podman also has more features not related to the HPC field, like
integration with systemd, which, for example, allows enabling the Podman
API [112] to use Docker-compatible remote container management. At the
same time, it lacks some HPC-related features like easy integration with
MPI or the rootless mode for distributed filesystems [113].



52 CHAPTER 7. EXPERIMENT CHALLENGES IN HPC

Shifter Shifter [114] is one of the first attempts to enable Docker con-
tainers in HPC environments, particularly Cray systems. Started back in
2015 by NERSC, it builds a complete architecture to manage the acquisi-
tion and conversion of Docker containers to a common format and be then
used through the workload manager leveraging the Linux chroot operation.
With such an architecture, Shifter shields the system from the security im-
plication of Docker execution without requiring the user to change their
Docker images. Still, its installation/configuration is not straightforward
and highly tight to Cray systems, making it hard to use in other environ-
ments.

Charliecloud Charliecloud is a lightweight, open-source user-defined
software stack (UDSS) implementation for HPC centers with the design
goals of (1) providing a standard, interoperable and reproducible workflow,
(2) running on existing HPC hardware and software with minimal changes,
and (3) be straightforward [115].

The UDSS get built as a container starting from a standard Dockerfile
using Docker or other container builder tools, e.g. Buildah [116], as an
independent Linux filesystem tree. To manage the UDSS container, Char-
liecloud leverages only two Linux namespaces, i.e. user and mount, and no
control groups at all: the user namespace allows to map UID/GID used in
the container to the real UID/GID for the user on the host, while the mount
can bind-mount path from the host to the container. This approach guar-
antees the minimum functionalities needed in HPC environments without
needing a daemon or elevated privileges.

Singularity Singularity is an open-source project started in 2015 at
Lawrence Berkeley National Laboratory to “bring containers and repro-
ducibility to scientific computing” [117]. The Singularity container tech-
nology specifically targets HPC systems providing support for MPI, Infini-
band, GPU, integration with workload managers, and avoiding privilege
escalation. As for the other Docker HPC alternatives, it does not need a
daemon.

Singularity containers are usually built starting from a Singularity def-
inition file, equivalent to a Dockerfile, and stored as a single file using the
so-called Singularity Image Format. Moreover, Singularity provides support
to Docker containers, which gets automatically translated prior to their ex-
ecution.

It supplies three configurations for non-root execution:



7.2. HPC SYSTEMS INTERACTION 53

• setuid: the runtime binary “temporarily” gains root privileges to ex-
ecute operations that need privileges like filesystem loop mounts.

• user namespace: it maps all files in the container filesystem to the
same unprivileged user running on the host and all the bind-mounted
paths belonging to other users to nobody/nogroup. It only works with
a Linux filesystem tree container (sandbox mode).

• fakeroot: still uses user namespace but need UID/GID mapping for
the user to allow acting as a different user (including root) in the con-
tainer. It only works with a Linux filesystem tree container (sandbox
mode).

SARUS A more recent effort for an HPC-specific container technology
is called Sarus [108]. Developed at CSCS in 2019, Sarus aims to run Linux
containers compatible with open standards, i.e. Open Container Initiative
(OCI), and address HPC systems needs.

Like Shifter, Sarus can start from Docker containers (based on OCI
standard), converting them to a custom format (Sarus-specific in this case).
On top of this, it adds the OCI Hook to the OCI Runtime to add support for
HPC-related needs like support for MPI, GPU, SSH or workload manager.

Even though the described container technologies can present different
pros and cons, they all have an explicit interest in integrating this technology
into the HPC world, showing a firm trust in this approach for software stack
management.

7.2 HPC Systems Interaction

Beyond the complexity given by configuring and programming specific hard-
ware used for deep learning experiments (see section 3.3), a challenge for
an experiment can be related to how users access and interact with those
devices. These specific deep learning devices are typically available in data
centers or HPC clusters and accessible via a remote connection. The most
common way to access them is through an SSH connection and interact us-
ing shell commands which not all users may be familiar with and probably
not even something they would like to deal with. Scientists working with
machine learning are used to powerful workstations (possibly equipped with
GPU accelerators) under their desks and high-level support such as given by



54 CHAPTER 7. EXPERIMENT CHALLENGES IN HPC

Python and R environments. Using a remote system can be challenging for
them. For instance, tools like Jupyter Notebook and RStudio can expose a
web application as an “interface” to the execution system to alleviate those
issues. In this case, the users can access and program systems remotely
using their favourite application through a simple web browser.

The other challenge related to the execution environment is managing
the resources needed for the experiment. In the case of an owned system
and with exclusive access granted, this issue may not be critical. However,
it may still be helpful to have a way to limit resources used by the exper-
iment so that the user can, for example, test how effectively the resources
are being used (scaling analysis). Instead, when dealing with HPCs, the
massive amount of the computational power provided will be assigned to
various workloads. Rarely a single experiment will need to access the entire
pool of resources and certainly not in a continuous manner. For example,
even if the single phases of an experiment may require different amounts of
resources: generating data is likely to have a greater demand for resources
than analyzing it.

The access to these shared resources is usually managed through a work-
load manager, also called a scheduler, and the user is asked to interface
with it, which may not be an easy task for all users. In addition, more
workload management solutions exist, and the user may have to handle
different schedulers when interfacing with multiple systems. Even though
Slurm seems to be the scheduler taking the lead [118], not all users might
find it trivial to deal with it. Moreover, the growing interest in Linux
containers, discussed in the previous section, is driving the adoption of
container-focused workload managers, such as Kubernetes, also in the HPC
field [119][120][121][122]. A possible solution is to provide a scheduler-
agnostic way to allocate resources to help users interact with current HPC
systems and support the possible evolution of workload managers.

7.3 Experiment Workflow

We can manage the steps needed to carry on an experiment in different
ways based on their complexity: we could use from a few simple scripts to
complicated tool-managed workflow. A usual experiment workflow includes
multiple phases, from the preparation (data, code, parameters) to the actual
execution, to gathering the results and generating a report. Furthermore,
each phase may be composed of multiple steps and need to exchange infor-



7.3. EXPERIMENT WORKFLOW 55

mation, raising the workflow complexity. Moreover, we need to store the
precise configuration of the experiment so that we can (1) reproduce, (2)
analyze, and (3) customize it. In fact, if we want to understand the perfor-
mance behaviour of an experiment, we cannot only analyze the results for
a specific fixed configuration but need to test various combinations.

There are many workflow tools available with different characteristics
and focus. In our previous work [2], we analyzed several workflow manage-
ment systems (WfMS) proposed to describe the workflow of an application
and make it reproducible.

Some WfMSs, mainly spread in natural science, like Galaxy [123], can
manage complex computational biology and bioinformatics workflows by
integrating data acquisition, derivation, analysis, and visualization as ex-
ecutable components throughout the scientific exploration process, while
others may have a focus on the HPC field: Pathway [124] is a tool for
designing and executing performance engineering workflows for HPC appli-
cations, DataMill [125] is a community-based easy-to-use services-oriented
open benchmarking infrastructure for performance evaluation, which facil-
itates producing robust, reliable, and reproducible results. It provides a
platform for investigating interactions and composition of hidden factors
affecting the performance measurements, such as binary link order, process
environment size, compiler-generated randomized symbol names, or group
scheduler assignments. Besides the ones discussed in our previous work, also
in the machine learning field, there are many workflow tools available, such
as Airflow [126] or MLFlow [127], which are defined as “platforms” created
to manage the workflows and enhance reproducibility.

Since working with complex systems and architectures, a workflow tool
should also help to collect system information during the experiment execu-
tion, which can be later used to (1) understand the experiment outcomes,
(2) detect possible sources of misbehaviours. While these tools identify
many useful features one needs, none of them enables one to undertake per-
formance experiments, targeting both reproducible results and reproducible
performance and easy access to the resources.





Chapter 8

PROVA! 1.0: Performance
Reproduction of Various
Applications

8.1 Definition and Motivation

The challenges regarding experiments (Chapter 7) and their reproducibility
(Chapter 4), together with the necessity of having a way to manage different
and increasingly complex post-moore hardware (Chapter 2), are the main
reasons behind the tool we developed.

The prova! project aims to help the user in his journey to deliver re-
producible research by hiding the complexity of the environment and the
maintenance of the software stack, storing valuable information about the
system used to carry on an experiment and the experiment configuration
details.

prova! was born to manage high-performance computing experiments
like stencil experiments [3][128]. Still, we recently added some new features
such as the container (see Section 9.2) support and the driver mode (see
Section 9.3) to make it more flexible for other research fields.

8.1.1 Contributions to the Project

prova! is a project started within the high-performance and web com-
puting team with the collaboration of Danilo Guerrera. The definitions of



58 CHAPTER 8. PROVA! 1.0

the experiment taxonomy and reproducibility levels were produced together
with him. In the initial version of prova!, he concentrated on managing
the software environment through Linux modules and scientific software
management tools and executing the jobs on a parallel machine. At the
same time, I implemented the code around the collection of results and
performance graph generation for the experiment and the design and im-
plementation of the prova! web application (Section 8.2.2). Chapter 9 will
discuss the new version of prova!, which I designed and implemented, im-
proving some existing features and adding new ones like container support
and driver mode.

8.2 Architecture

prova! does not require any specific configuration of the remote systems
and can interface different systems: from an HPC cluster with both tra-
ditional and accelerators resource requestable through a job scheduler to a
single node machine possibly, as well, connected to some accelerators to an
HPC cluster with only CPU nodes (see figure 8.1).

The prova! architecture is mainly composed of an Experiment Man-
agement Tool and a web application. The Experiment Management
Tool represents the core of prova!. It must be installed on each system
the user wants to run an experiment and needs to be accessible through an
SSH connection, usually to a front-end machine. The web application com-
prises an Experiment and Analysis Server, which manages the experiment
by communicating with the remote prova! installation, and a web inter-
face. Differently from the Experiment Management Tool, the deployment of
the prova! Experiment and Analysis Server is not needed for each remote
system since it can access multiple of those, and, likewise, the same remote
system can be accessed by multiple prova! web servers. Finally, a prova!
web application can serve multiple users, which means that, in principle, it
could even be deployed by a third-party and provided as-a-Service so that
users only need to create an account and start setting up their remote con-
nections. Even though the prova! web application provides a default web
UI, this is just a “view” for the information generated by the Experiments
and Analysis Server. That is why it would be possible to replace the web
UI with a different existing tool that communicate to the web server using
HTTP requests. We presented this possibility in [101] using Jupyter [129]
as a proof-of-concept interface integrated with prova!.



8.2. ARCHITECTURE 59

C
o

m
p

u
te

 n
o

d
e

s

s
s
h

G
P

U

F
P

G
A

A
S

IC

A
c

c
e

le
ra

to
rs

P
R
O
V
A
!

E
x
p

e
ri

m
e

n
t 

a
n

d
 

A
n

a
ly

s
is

 S
e

rv
e

r

P
R
O
V
A
!

E
x
p

e
ri

m
e

n
t 

m
a

n
a

g
e

m
e

n
t 

to
o

l

L
o

g
in

 n
o

d
e

R
e
m

o
te

 s
y
s
te

m

J
o

b

s
c
h

e
d

u
le

r

G
P

U

F
P

G
A

A
S

IC

A
c

c
e

le
ra

to
rs

P
R
O
V
A
!

E
x
p

e
ri

m
e

n
t 

m
a

n
a

g
e

m
e

n
t 

to
o

l

C
o

m
p

u
te

 n
o

d
e

R
e

m
o
te

 s
y
s
te

m

ss
h

C
o

m
p

u
te

 n
o

d
e

s

s
s
h

h
tt

p
s

P
R
O
V
A
!

W
e

b
 U

I

P
R
O
V
A
!

E
x
p
e

ri
m

e
n

t 
a

n
d

 
A

n
a

ly
s
is

 S
e

rv
e

r

P
R
O
V
A
!

E
x
p

e
ri

m
e
n

t 
m

a
n

a
g

e
m

e
n

t 
to

o
l

L
o

g
in

 n
o

d
e

R
e

m
o
te

 s
y
s
te

m

J
o

b

s
c
h

e
d

u
le

r

ss
h

h
tt

p
s

P
R
O
V
A
!

W
e

b
 U

I

Figure 8.1: prova! architecture: High-level view



60 CHAPTER 8. PROVA! 1.0

8.2.1 The PROVA! Framework

The remote system where the user wants to run his experiment needs to
have the prova! framework installed in a path accessible by all the machines
which will need to run the experiment (usually a shared filesystem). The
user with a valid account on the remote system can connect and use the
prova! CLI to manage his projects and experiments.

The framework consists of a collection of bash and python scripts that
can be installed at the system level (by a superuser/admin) and shared
with all the users or in a private path (by a normal user). The user needs to
specify if he wants to use prova! with EasyBuild modules (section 7.1.1):
he can either install EasyBuild through prova! or specify another existing
EasyBuild installation. Instead, if the user only wanted to use software
through Linux containers (section 7.1.2), the prova! installer will download
its dependencies as a container. The details for the container support in
prova! will be discussed in Section 9.2.

After the prova! framework installation is over, the user can start exe-
cuting the workflow command and its subcommands. As shown in figure 8.2,
the main prova! folder contains the workflow command, which will call a
script from the scripts folder based on the action a user wants to execute.
Using the web UI, the user can execute most of the commands. The only
commands which need to be executed from the prova! CLI are the ones
related to the methodTypes’ installation.

The role of a methodType is to manage the software needed by a specific
method. Apart from installing the software and its dependencies, it defines
the scripts used by prova! to set up, compile and run the method with
that methodType (see figure 8.2). For example, suppose a user develops a
method using the C language, the correspondent methodType could (1) in-
stall a GCC compiler through a procedure defined in the install script, (2)
define a setup params script which creates a header file with the parame-
ters’ values, (3) include a compile script which runs the GCC command to
compile the code and (4) a run script which runs the executable generated
by the compile script.



8.2. ARCHITECTURE 61

� prova!
workflow
� driver
� methodType avail

� methodType x
.methodType
compile - optional
install - optional
run
setup params - optional
� src

� ...
� methodType installed
� scripts

build graph
compile
experiment
gather outputs
job manager
method
methodType
project
run
run exp
� scheduler

� sched i
compile
run
gather
submit
manage exp - optional

� ...
� software
� util

install prova
...

Figure 8.2: Structure of the prova! framework



62 CHAPTER 8. PROVA! 1.0

The methodType information used by those scripts are stored in the
methodType descriptor file, named .methodType, which is structured as
follow:

• name: A unique name for the methodType.

• eb modules: The list of EasyBuild modules needed by the method-
Type.

• container: The object containing the information about the con-
tainer needed by the methodType (Section 9.2).

• version: A string representing the methodType version.

• comment: A comment/description for the methodType.

The methodType subcommand, by default, acts on methodType avail
and methodType installed folders in the prova! root directory and, thus,
may need to be run by the system admin. Any user on the system may
utilize the methodTypes installed in the prova! root directory, but prova!
also gives the possibility to create them in the user workspace (figure 8.3).
In this case, the methodTypes will be private to the user and not shared.

A user can also execute the other commands after being connected to
the remote system. However, in the majority of the cases, those run from
the prova! web application (Section 8.2.2): based on the value selected in
the prova! UI, the prova! commands get built and sent for execution on
a remote system. This way, the user will be shielded from the commands’
complexity. The only requirement is for the remote system to be accessi-
ble by the web application. We can logically divide the possible workflow
subcommands (see scripts folder in figure 8.2) into groups based on the
functionalities provided: development (project, method), experiment (com-
pile, run, gather output, run exp), scheduler (job manager, scheduler) and
visualization (experiment, build graph).

The commands used for developing an experiment are project and
method, which serve the CRUD actions. Following our experiment tax-
onomy (Section 4.1), to solve a problem, a user can create a project in
prova!, including the specification of its parameters. The project informa-
tion is stored in a descriptor that has the following fields:

• name: A unique name for the project.

• type: A string to define if the project is using a driver.

• parameters:
– names: An ordered list of the parameters’ names.



8.2. ARCHITECTURE 63

� prova! workspace
� methodType - optional

� methodType avail
� methodType installed

� project x
.project
� experiments

� exp x date/exp x time
.experiment
results.json
� out

� method i
� params combination 1

epilogue
prologue
run.out

� ...
� params combination n

� ...
� src

� method i
� params

� params combination 1
param

� ...
� params combination n

� ...
� ...

� method i
.method
� src
� tmp

� out
� params
� src

� ...
� ...

Figure 8.3: Structure of a prova! workspace



64 CHAPTER 8. PROVA! 1.0

– defaults: An ordered list of the parameters’ defult values.

• threads: The default value for the total number of processes re-
quested by the experiment.

• metrics: The list of possible metrics available as output of the ex-
periment execution.

• lineselector: A string used to identify the line containing the output
results.

• comment: A comment/description for the project.

The second step is to create one or more methods that represent the
solution to the problem, which we identify with a method. A method in
prova! includes a specific methodType which defines the software needed
by the method (software part of a system) and the scripts to manage the
phases of an experiment on the remote system (hardware part of a system).
Apart from the actual implementation, which completely depends on the
user, the descriptor of a method includes the follows:

• name: A unique name for the method.

• type: A string defining the name of the methodType used.

• local: A “true”/“false” string defining if the method is using a local or
system methodType

• comment: A comment/description for the method.

After the user adds a method, he can test it by running a compile/run
command: prova! will use the compile and run scripts together with the
corresponding compile and run scripts specific to the methodType and ex-
ecute the test against the default parameter values specified in the project
descriptor. The user can repeat this for all the methods added to the project
and start a micro-/macro-experiment.

The command to run the experiment, i.e., run exp, will take the user-
defined list of parameters and values and run the experiment workflow (com-
pile → run → gather outputs) for each possible combination of the parame-
ters’ values. The gather outputs script will use the lineselector string and
the metrics list to build a JSON object with the results, while the last step
of the run exp script will be saving an experiment descriptor including all
the experiment details needed to reproduce it in the future (Section 9.1.2):

• date: A unique “date/time” string to identify the experiment

• project name: The name of the project used for the experiment.



8.2. ARCHITECTURE 65

• methods: The list of methods used for the experiment.

• par names: An ordered list of parameters’ name used for the exper-
iment.

• parameters: An ordered list of the parameters’ values used for each
of the experiment’s parameters.

• nthreads: A list of the total number of processes to request for dif-
ferent runs on the experiment.

• pin strat: A string defining different possible pinning strategies for
the threads/processes to the system cores.

• executions: The number of times to repeat an experiment execution.

• scheduler: The name of the scheduler available on the system.

• use mt: A “0”/“1” string specifying if the experiment used (1) or not
(0) multithreading.

• reproid: A “date/time” string identifying the master experiment if
the current experiment has been reproduced from another experiment.

• reproduced: An array of “date/time” strings identifying the exper-
iments reproduced from the current one in case the this is a master
experiment.

If a remote system requires a job scheduler, prova! can run all the
experiment-related commands through the scheduler adding the “job ” pre-
fix to the command. In this case, the job manager script will figure out the
scheduler configured for the remote system and use the proper job scheduler
interface from the scheduler folder (see figure 8.2). A job interface should
include a wrapper for the compile, run, and gather commands to create
the corresponding job script and submit it to the job queue. Moreover,
prova! can provide advanced job management whose logic can be added
to the manage exp script for some job schedulers. More details about the
advanced job scheduler management will be discussed in Section 9.1.1.

Once the experiment terminates and its results are written, it is possi-
ble to use the experiment command to visualize, delete or reproduce it
(Section 9.1.2) and the build graph command to visualize the experiment
results (Section 9.1.3).



66 CHAPTER 8. PROVA! 1.0

8.2.2 The PROVA! Web Application

The prova! web application uses the Node.js runtime environment [130],
allowing the server and client-side of a web application to use one pro-
gramming language: Javascript. The web application architecture is based
on MVC pattern: the user accesses the web application through a web
browser, the HTTP requests get routed (Express.js [131]) to the appropri-
ate controller, which will get the model information either from the DB
(user information) or sending a request to the prova! backend installed on
the remote system (experiment information). The controller uses then the
model and the view template to build the final view and send the response
to the browser (figure 8.4).

Router

Controller

ssh module

DB

Client

Remote 
system

Experiment model

Session 
information

View 
template

Persistence 
handlerDB

User model

Figure 8.4: prova! web application architecture: MVC pattern.

To access the prova! web application, the user needs to create an ac-
count: the user credentials and the remote system connections configura-
tions are the only information stored in the web application DB.

The primary function of the web application is delivered by the Ex-
periment and Analysis Server (server-side of the application), which needs
to communicate to the remote system to send commands to execute and
receive back the data to visualize. After an authenticated user configures
an ssh connection to the remote system, the Node.js server can use it to



8.2. ARCHITECTURE 67

send both synchronous and asynchronous commands. The synchronous
commands get “static” information regarding the remote prova! installa-
tion, e.g., the methodTypes installed, and the user workspace, e.g., existing
prova! projects. In contrast, the asynchronous ones are used to start com-
mands which require a longer execution time, e.g., experiment execution.

The outputs of the synchronous commands appear directly into the
view. However, for the asynchronous commands, we implemented a publish-
subscribe pattern using socket.io [132]: after firing the remote command,
the view only receives a confirmation that the command was started and
joins a room (subscribe action), in the meantime, the server keeps listening
to the command output forwarding the outputs as messages in the room
(publish action) as soon as it receives it. The view gets the messages from
the room and updates the page content. Even if the user closes the browser
and comes back later to the web application, the first action done by the
view is to subscribe again to its room to check if there is any previous
command still executing.

The web application has seven view pages:

• Profile: CRUD operations for a user

• Configurations: CRUD operations for an ssh remote connections

• Project: CRUD operations for a project

• Method: CRUD operations for a method

• Experiments: Configure and submit an experiment

• Visualization: Visualize, reproduce or delete an existing experiment

• RemoteShell: Open a shell view on the remote system

The profile and configuration pages map to the user object stored in the
web application persistence layer, while the other pages are specific to each
connection configured by a user and populated with the information from
the remote system. When the user gets access to the web application, he
should first configure a remote connection entering the information in the
configuration view page (see figure 8.5). The ssh module of the web appli-
cation will try to establish a connection using the configuration provided
and, in case of success, store the configuration for future usage.

After the user configures a proper connection to a remote system and
connects to it, he can start working on his remote workspace directly from
the UI, creating a project from the and then adding new methods using
the correspondent views. Figure 8.6 shows an example of the method view.



68 CHAPTER 8. PROVA! 1.0

Figure 8.5: prova! web UI: Configuration view

There is information about the current systems in use on the right side,
while on the left side, there is the main content of the page: the method.
The user needs to specify the name for the project to which he wants to
add the method and the method type. That information is based on the
current connection and retrieved from the remote system.

Figure 8.6: prova! web UI: Method view for the method creation

From the “Edit Method” tab in the method view (see figure 8.7a), the
user has the details of the method he created and can edit the sources in
the method directly in the web browser (see figure 8.7b). Instead, it is not



8.2. ARCHITECTURE 69

possible to change the methodType used during the method creation since
the default files and configurations depend on it: in this case, the user would
need to create a new method.

(a) Method view for editing an existing
method.

(b) File editor in the method view.

Figure 8.7: Example of method settings and sources edit in the prova!
web UI.

In order to test the method he created, the user has “Compile” and
“Compile&Run” buttons in the same method view (figure 8.7a) he can use.
The web application will build the correspondent commands described in
the previous section and send them for execution on the remote machine
showing the results on the page in an output area.

After implementing and testing the methods, the user can proceed with
the experiment configuration and execution. The different sections of the
experiment view page are mapping out experiment taxonomy: Problem
(project + parameters), Method (one or more methods implemented) and
System (threads configuration for the resources to request on the remote
system) as shown in figure 8.8. The experiment configuration includes the
threads/processes pinning configuration (already discussed in [128]) and
the job scheduler. The latter allows the user to define the settings for the
scheduler specified during the remote connection creation:

• #ofNodes: The total number of nodes to request.

• Configuration: A string in [“Thread only”, “MPI only”, “Hybrid”] to
manage the processes/threads configuration.

• Multithread: A “ON”/“OFF” string to activate/deactivate simulta-
neous multi-threading.



70 CHAPTER 8. PROVA! 1.0

• Partition: A string representing the partition/queue name to use.

• Walltime: A string representing the time expected the job will need.

• Memory: A string representing amount of memory to request for the
job.

• #ofGPUs: Total number of GPUs to request.
In case of direct execution of the experiment, the output will be

prompted into the “Command Response” area while generated. Otherwise,
in the case of using the job scheduler, prova! will show the IDs of the jobs
created so that the user can check the job in execution from the interface
to know when the experiment terminates.

The last step for the user is to check the experiment results from the
visualization page. When selecting an experiment choosing a date and time,
the experiment details show (figure 8.9a), and the user can configure the
parameters/methods/threads combinations to visualize in the graph and the
chosen metric. After selecting more graph options like the kind of values
(min/max vs std.dev.) or what to show as Series or Category to use for the
final plot, the graph view will look similar to figure 8.9b.



8.2. ARCHITECTURE 71

Figure 8.8: prova! web UI: Example of an experiment’s configuration



72 CHAPTER 8. PROVA! 1.0

(a) Configure the experiment result data
to show in the graph.

(b) Configure the graph format.

Figure 8.9: Configuration and generation of the result graph from the
prova! web UI.



Chapter 9

PROVA! 2.0: Extensions

9.1 Feature enhancements

9.1.1 Job scheduler management

As shown in section 8.2, prova! can interface with different execution sys-
tems using a job scheduler. That is fundamental since the default way of
interacting with an HPC system is through a job scheduler. prova! can
pack the experiment to execute into a job script and submit it to one of the
supported schedulers: Slurm, SGE/UGE and PBS. Since using only a few
scheduler commands to submit, list, and kill jobs, it is trivial to add more
schedulers.

Even though three job schedulers are supported, when using prova!
with Slurm, it is possible to get some more advanced job scheduling be-
haviour for the experiment. Using job the dependency feature in Slurm,
prova! splits the experiment steps for different methods and system con-
figurations into multiple independent jobs, which improves (1) the system
resource utilization since each job can customize the amount of resources
requested and, because of the possibility of the jobs running in parallel, (2)
the overall execution time (especially for experiments requesting a small
subset of the complete system resources).

Following the experiment taxonomy of section 4.1, let us consider a
problem Exp consisting of two methods, M1 and M2 and two systems,
S1 and S2. Let the problem also have two parameters, Px and Py, which
can take two values. Figure 9.1 shows how prova! would manage the job
submission in such a situation.



74 CHAPTER 9. PROVA! 2.0: EXTENSIONS

Exp

M1

S1

Results

RunCompile

Job 1

Job 3

Job 7

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

S2

S1

S2

M2

Parameters 
configuration

Job 2

Job 4

Job 5

Job 6

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

Px1/Py1

Px1/Py2

Px2/Py1

Px2/Py2

Gather

Figure 9.1: prova! experiment job management in case of two methods
(M1, M2), two parameters (Px, Py) with two possible values each, and two
system configurations (S1, S2).

The first two job scripts (Job 1 and Job 2) will contain the steps to
compile each experiment’s method using all the possible parameters com-
binations. Since the compilation may not require the same resources re-
quested by the execution step of the experiment, these jobs can allocate a
different amount of resources for each step, i.e., a lower amount in case of
the compilation, which optimize the system usage.

Job 1, compiling the method M1, is a dependency for Job 3 and Job 4,
which will execute the same method M1 only after Job 1 has successfully
terminated. Also, for the run phase, prova! can set up different jobs based
on the system configuration S1 or S2 and submit those jobs in parallel:
if the system configurations require a different amount of resources, the
experiment will have a better resource allocation and, most likely, a shorter
execution time. Furthermore, for the method M2, prova! will generate two



9.1. FEATURE ENHANCEMENTS 75

jobs for the run phase (Job 5 and Job 6) which depend on the job executing
the compilation phase (Job 2).

Finally, the jobs submitted for the run step are considered a dependency
for the Job 7, which will gather all the logs/outputs from the different
execution and create a “results” file. To avoid an error occurring in one of
the experiment runs, the dependencies defined for the last job (Job 7) is
different from the rest: it get satisfied at the end of all the previous jobs,
like in the previous case, but even if only one of the jobs it depends on end
successfully.

9.1.2 Experiment reproduction

The way prova! manages the experiment and their reproduction has im-
proved. Even though experiment reproduction has always been the main
focus of prova!, in the first version of prova!, a scientist who wanted to
reproduce a prova! experiment had to get the information contained in the
prova! experiment descriptor and use them to reconfigure the experiment
manually.

In the new version, it is possible to repeat (see section 4.2) an experiment
with a single command and compare the reproduced experiments against
the original and among them. prova! creates a bi-directional reference
between the “master” and the “reproduced” experiment(s) to simplify their
comparison through the experiment visualizer, as shown in figure 9.2.

Figure 9.2: prova! web UI: Experiment selection in the visualization page

Figure 9.2 shows the different parts of the experiment selection in the
prova! UI: after selecting an experiment based on the date and time of its
execution (box 1), it is possible to delete or reproduce it using some action
buttons (box 2). For reproduced experiments, the information appears on
the page, and an action button can help the user switch to the master
experiment (box 3).



76 CHAPTER 9. PROVA! 2.0: EXTENSIONS

When the user selects the “Reproduce Experiment” action, prova! clones
the experiment structure (see figure 8.3) into a new experiment and exe-
cutes it applying the same workflow commands used for the original ex-
periment, including, in case of scheduled executions, the submission of the
same job scripts used in the original execution flow. At the end of the
execution, prova! updates the dependencies among the reproduced exper-
iments, which can be then used in the visualization page to build a new
performance graph.

9.1.3 Experiment visualization and graph builder

The enhanced version of the experiment visualizer allows the scientist to
specify the experiment characteristics like parameters, methods, system (see
figure 8.9a), and other possible executions of the same experiment allowing
comparison as discussed in the previous section.

The experiment elements a user can choose for the graph builder are:
• Parameters: List of parameters’ configurations run against the ex-

periment.

• Method: List of methods executed during the experiment.

• Threads: List of processes number combinations requested by the
experiment.

• Reproduced experiments: List of repetitions for an experiment (if
present).

Since the graph builder will create a 2D histogram graph, only 2 of those
elements can vary. For all the others, the user must select a specific fixed
value. It is then possible to choose which “variable” element will be used
as “category” (different groups for the X-axes) and which as ‘series” (bars
for each category on the X-axes) in the generated graph. Figure 9.3 shows
how to configure the graph builder to compare different replication of the
experiment; selecting a reproduced experiment (box 1), the graph builder
will show the “Reproduced experiments” as a selectable entry for Series or
Category (box 2).

Figure 9.4 shows an example of a graph generated using reproduced ex-
periments as series and methods as category: at the top, we find the
project parameters and their values (fixed elements) followed by the selected
experiments (series), and at the bottom, on the X axes, the implemented
methods (categories).



9.1. FEATURE ENHANCEMENTS 77

Figure 9.3: prova! web UI: Reproduced experiment in the visualization
page

Figure 9.4: prova! web UI: Example of graph comparing different repro-
duction of an experiment



78 CHAPTER 9. PROVA! 2.0: EXTENSIONS

9.2 Containers support

The way prova! provide to handle the experiment software complexity
(see section 7.1) is through the definition of a method type. Initially, a
method type in prova! could manage the software needed by the exper-
iment only using the Linux environmental modules leveraging EasyBuild
(see section 7.1.1).

As discussed in section 7.1.2, there are quite some benefits in using
containers when dealing with software complexity which convinced us to
add container support in prova!. In the meantime, EasyBuild integration
is still available, and, if needed, it is possible to use it in combination with
containers (for example, if the container software requires to load a specific
module for it).

In the methodType descriptor, we need a container section that includes
the following information:

• executable: Container client executable (ex. docker, singularity).

• cmd: Command to pass to the container client executable (ex. run,
exec).

• runtime: Option needed by a specific runtime (ex. “--nv/--gpus” to
enable GPU usage in “Singularity/Docker”).

• options: Other options to pass to the container command.

• url: Remote container location (ex. “docker://ubuntu” to use public
docker image of Ubuntu OS in Singularity).

• imgdir: Path where to download the container image (Singularity
only).

• img: Name of the downloaded container image (Singularity only).
Based on those values, prova! exports the environment variables used

by compile and run scripts during the experiment compilation and execution
phases.

For instance, prova! constructs and exports the CONTAINER CMD
environment variable (see listing 9.1), which a user can prepend to the
command running the experiment and use other container variables like
IMAGE URL and IMAGE PATH to pull the container before using it (see
listing 9.2).

Listing 9.2 shows how to use the CONTAINER CMD environment vari-
able, constructed and exported by prova! (see listing 9.1), to adapt the
command used to run the experiment and other container variables like



9.3. DRIVER MODE 79

...
CONTAINER_EXE=`echo ${container_info} | jq -r '.executable '`
CONTAINER_CMD=`echo ${container_info} | jq -r '.cmd'`
CONTAINER_RTM=`echo ${container_info} | jq -r '.runtime '`
CONTAINER_OPTS=`echo ${container_info} | jq -r '.options '`
export CONTAINER_CMD="${CONTAINER_EXE} ${CONTAINER_CMD} \
${CONTAINER_RTM} ${CONTAINER_OPTS}"
...

Listing 9.1: CONTAINER CMD variable constructed by the prova! com-
pile script.

IMAGE URL and IMAGE PATH to pull the container before the command
execution.

Since primarily targeting HPC systems, we focus on Singularity con-
tainer technology, the most used in the field. Nevertheless, prova! container
support has been developed to be generic and used directly (or with minor
adaptations) with other container technologies like Docker or Podman (see
section 7.1.2).

...
if [ ! -f ${IMAGE_PATH} ]; then

echo "Singularity image not found , pulling it from library"
if [ ! -d ${IMAGE_PATH %/*} ]; then

mkdir -p ${IMAGE_PATH %/*}
fi
singularity pull ${IMAGE_PATH} ${IMAGE_URL} > /dev/null
echo "singularity pull completed"

fi
${CONTAINER_CMD} ${IMAGE_PATH} mycommand
...

Listing 9.2: An example of using Singularity command in a prova! run
script.

9.3 Driver mode

An experiment expressed as a ⟨Problem, Method, System⟩ 3-tuple can be
implemented as a micro-/macro-experiment in prova! (Section 4.1). How-
ever, predefined experiments like a benchmark can be repetitive in terms
of configuration and parameters to set. In this situation, it is helpful to
represent the experiment as a “driver”.

A driver in prova! is a predefined project type (similar to a template)
that allows users to have a base working experiment that can be customized
and used as a starting point for possible experiment variations. It includes



80 CHAPTER 9. PROVA! 2.0: EXTENSIONS

the default experiment configurations, the output/metrics generated by the
experiment, and the scripts needed to manage the whole experiment work-
flow. Once created, the user can share the prova! driver with others having
the same needs.

The driver structure is shown in figure 9.5: the mandatory elements for
a driver are the descriptor and the script used to run the experiment, the
other scripts are optional, and prova! will not check for their presence. For
example, by default, prova! copies the driver files to the installation folder
and possibly run the driver install script. If that driver does not require
any particular installation step, the install script can be omitted.

� driver/version

descriptor.json

install - optional

� methodType
� MT 1

.methodType
compile - optional
install - optional
run - optional
setup params - optional
writeoutput - optional

� src
� ...
� MT N

� scripts
compile - optional
run
setup params - optional
writeoutput - optional

Figure 9.5: Structure of a driver folder in prova!

A driver descriptor includes all the information related to a driver. This
JSON file extends the prova! project descriptor presented in section 8.2.1.

Besides the fields inherited from the project, i.e., name, version, pa-
rameters, threads, metrics and lineselector, a descriptor may contain more
driver-specific information needed for handling the experiment, e.g., it can
be helpful to define the different possible datasets to be used or also the
code repository URL.



9.3. DRIVER MODE 81

After the self-explanatory name and version in the driver descriptor, we
have the parameters block, which includes all the parameters used as input
or as configuration for the experiment and the details for each of them.

The parameters are, obviously, driver-specific, but their structure usu-
ally includes:

• default: A default value for the parameter.

• values: A list of predefined values for the parameter (optional).

• mode: A string defining how to use the parameter (optional). For
example, use "export" to specify to export the parameter as an envi-
ronment variable.

• type: A string defining the parameter’s data type (optional).
The only parameter’s information used directly by prova! are the list

of possible values and the default: the first suggests to the user the possi-
ble selectable values in the prova! UI for a specific parameter, the second
defines the default values for the parameter in case the user does not specify
them. Even though the prova! workflow is not directly using other param-
eters’ information from the parameter’s block, it will read those values and
make them available to the driver-specific experiment scripts.

The number of threads represents a particular parameter since it helps
request the proper amount of resources for the experiment execution, that is
why prova! treats it separately, and the driver descriptor defines a default
value for it. Moreover, prova! will always expect the Threads parameter
to be defined.

The driver descriptor continues with another critical driver-specific ele-
ment: the metrics field. The way a metric gets extracted from the output
depends only on the driver, and the structure of a metric cannot, as well,
be generalized and need to be custom to the specific driver.

Finally, the lineselector field defines the string used to filter the output,
telling prova! which output lines contain the results to parse.

Since the driver can be a collection of multiple applications (like in the
case of a benchmark suite), all the software needed to run each driver appli-
cation or different implementation of an application is managed by defining
a methodType. Like for a usual prova! methodType (see section 8.2.1),
it includes the installation script and the experiment workflow scripts spe-
cific to a software/hardware combination: setup params, compile, run, but
also a writeoutput script which makes use of the lineselector and metrics
information to filter the “raw” logs and generate the final output file used
during the gather step to produce the result data.



82 CHAPTER 9. PROVA! 2.0: EXTENSIONS

When a methodType does not require special steps for managing the
experiment workflow, the script in the methodType path is not needed,
and prova! will use the ones present in the scripts folder of the main
driver path (see figure 9.5). In a driver, the methodType contains a basic
implementation of the driver application managed by it, which prova! will
copy inside the source folder of a method during its creation as the starting
point for the final method implementation.

To create a project from an existing driver, the user will define the
project type as “driver” and select the name and version for the driver he
wants to use among the ones installed on the remote system, as shown in
figure 9.6 (box 1).

At this point, based on the driver selection, the information stored in the
driver descriptor is loaded into the prova! UI as shown in figure 9.6: they
can be either configured as for the default parameters (box 2) or customized
as for the user-defined parameters (box 3) or the “metric/output selector”
(box 4).

The creation of a project of driver type will also affect the method
creation, and the prova! method view in the web UI will only show the
methodTypes available for the driver selected in the project definition (see
figure 9.7)

Knowing all those configurations and information, prova! will distin-
guish its actions based on the project type following either the base or the
driver experiment workflow.



9.3. DRIVER MODE 83

Figure 9.6: prova! web UI: Driver mode configuration for a new project

Figure 9.7: prova! web UI: Driver method’s type for a new method





Chapter 10

PROVA! as Deep Learning
Benchmark Driver: MLPerf
Inference Example

10.1 Driver design

We needed to both adapt our framework add the driver mode support (see
section 9.3) and define the driver in a “generic” way so that the same ap-
proach can be reused for other drivers in the future. The decision for our
first prova! driver fell on the MLPerf Inference benchmark [44] for three
main reasons: (1) Involving not only the code to benchmark but also the
LoadGen component makes it more interesting from the “integration” per-
spective, (2) this benchmark provided, beyond the reference implementa-
tions, some “helper” scripts to run it which made it easier to start with
and (3) inference requires less powerful resources and time to execute, this
allowed us to test the new approach quickly.

We thought about different approaches with an increasing degree of inte-
gration with the prova! components: project, method (methodType) and
system.

Approach 1: MLPerf as a project

In this approach, the project is generic for an MLPerf benchmark which
could be any of the available suites, the method will represent the chosen



86 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

suite and the task, framework, device, and other settings are all considered
parameters to configure.

Here is an example of the prova! components mapping:
• Project: MLPerf

• Method: MLPerf Inference

• MethodType: MLPerf Inference

• System: GPU workstation

• Parameters
– Model: SSD-Mobilenet v1

– Framework: Tensorflow

– Device: GPU

– Dataset: coco2017

– Scenario: SingleStream
However, this mode is an evident “misuse” of prova! since we are not

mapping the experiments’ elements (Project, Method, System) to prova!
but just adding all to a script and running the whole experiment. The
other problem is to have a "golden" methodType that should be able to
manage any possible combination of ML tasks, frameworks and devices,
which would probably not be feasible, at least not if we want to have a
minimum of flexibility.

Approach 2: MLPerf Inference as project

In the second approach, we consider configuring a project for a specific
benchmark suite and moving one element of the benchmark experiment
into prova!, i.e., the ML task.

A possible mapping of the prova! components would look like this:
• Project: MLPerf Inference

• Method: Object Detection Light

• MethodType: Object Detection Light

• System: GPU workstation

• Model: SSD-Mobilenet v1

• Dataset: coco2017

• Parameters



10.1. DRIVER DESIGN 87

– Framework: Tensorflow

– Device: GPU

– Scenario: SingleStream
Since the ML task to execute is mapped as a method, both the model

and the dataset are no longer “open” parameters and can be inferred from
the method. Nevertheless, even in this second approach, we have an issue
regarding a MethodType managing any possible ML framework to run,
which is not quite handy and still does not have a good mapping with the
prova! experiment elements.

Approach 3: MLPerf Inference task as project

In the last approach, we configure a prova! project to manage single ML
tasks which represent the problem we want to solve, like in a usual prova!
project, and fixes the model and dataset at the project level. The method
is a single ML framework representing one possible solution to the problem,
like the method in the experiment taxonomy, and, in the meantime, it fixes
the MethodType, which can include a single software with a specific version
configured for a particular device.

The example of prova! components mapping using the final driver ap-
proach would be:

• Project: Object Detection Light

• Method: Tensorflow-2.4.0

• MethodType: Tensorflow-2.4.0

• System: GPU workstation

• Model: SSD-Mobilenet v1

• Dataset: coco2017

• Framework: Tensorflow

• Device: GPU

• Parameters
– Scenario: SingleStream

The only parameter left is the scenario we will configure during our
experiment. In the case of the MLPerf Inference benchmark, other param-
eters for the ML tasks are in a couple of configuration files: mlperf.conf

and user.conf . Those files should contain values that produce the best per-
formance and, for this reason, may not need to be treated as parameters.



88 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

That is probably not the same during the development phase when a user
may need to add more custom variables on top of the parameters defined
as default in the driver. Section 10.3 will show an example of how to use
the driver during the development of an experiment.

10.2 Driver Configuration

10.2.1 Driver descriptor

After defining the structure of the prova! driver for the MLPerf Inference
benchmark, we start configuring the components we discussed in section 9.3,
which the driver needs. Apart from the general elements, i.e. name, version,
parameters, threads, metrics and lineselector, the MLPerf Inference driver
descriptor defines as well some the other specific elements like:

• repo: URL to the git repo for the driver version

• results: URL to the results git repo for the driver version.

• categories: List of ML tasks for the driver version.

• datasets: List of datasets allowed for the driver version.

• container: Details for the benchmark suite container used for submis-
sions checks.

Except for the container element, which looks like the one of a method-
Type descriptor (see section 9.2), the other specific elements and the param-
eters and metrics have a custom structure based on the driver functioning.
prova! uses repo and results fields to download the correspondent git repos-
itories during the driver installation. Instead, each category of the categories
object includes information about the model and the dataset usable by the
benchmark application task.

Let us consider the Object Detection lightweight task: the task-
related entries in the driver descriptor are shown in listing 10.1.

The datasets field in the driver descriptor contains the details of each
dataset available for the driver, like the name, the version, the URL to
download it (when available), the path under the driver folder where to
store it and the script to check the accuracy of the results using that dataset.
In the case of the MLPerf Inference driver, the only predefined parameter
is the scenario which, for version v0.5 of the benchmark, could be one of
SingleStream, MultiStream, Server or Offline, but if needed, the user will
be able to add more parameters.



10.2. DRIVER CONFIGURATION 89

...
"categories": {

"OD_L": {
"area": "vision",
"name": "Object Detection Light",
"model": "ssd -mobilenet",
"dataset": "coco",
"dataver": "2017" ,
"path": "v0.5/ classification_and_detection"

},
...

},
"datasets": {

"coco": {
"2017": {

"path": "data",
"downloadable": "true",
"url": ["http :// images.cocodataset.org/zips/val2017.zip",

"http :// images.cocodataset.org/annotations/
annotations_trainval2017.zip"]

},
"acc_chk": "/inference -r0.5/v0.5/ classification_and_detection/

tools/accuracy -coco.py"
},
...

},
"parameters": {

"scenario": {
"default": "SingleStream",
"values": ["SingleStream", "MultiStream", "Server", "Offline"]

}
},
"metrics": {

"90.0": {
"description": "90.0" ,
"type": "f",
"mult": "1",
"dec": "0",
"text": "90.0",
"lineselector": ["90.00 percentile latency (ns)"]

},
"qps": {

"description": "Throughput",
"type": "f",
"mult": "1",
"dec": "2",
"text": "qps",
"lineselector": ["QPS w/o loadgen overhead",

"Samples per query",
"Samples per second",
"Scheduled samples per second"]

},
...

Listing 10.1: MLPerf Inference driver descriptor in prova!: Object
Detection Light section.



90 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

The last part of the descriptor defines the possible metrics. The metric
can have the following fields:

• Description: String representing the metric description.

• Type: Data type for the metric.

• Mult: Multiplier used to adapt the precision of the metric.

• Dec: Amount of decimal digits to show for the metric.

• Text: Default text to show in the performance graph for the metric.

• Lineselector: Array of strings to filter the output and retrieve the
metric.

Every workload have multiple metrics generated by the LoadGen log-
ger, and the user can gather all of them using prova!, but, depending on
the scenario, the metrics required by the benchmarks are changing (see ta-
ble 5.2). In the case of the Single-Stream scenario, the metric needed is
the 90%-ile latency which, in the results file, is always identified with the
same name that prova! can use as lineselector. While the QPS metric
(throughput) has different meanings based on the scenario and the strings
to identify it in the results file will change. In this situation, prova! will
look for any possible strings specified as lineselector to gather the proper
value (see listing 10.1) and store it.

10.2.2 Driver execution scripts

The information stored in the driver description will be used to run the
prova! experiment workflow. The main steps of the experiment workflow
for the driver are the same as for a standard prova! experiment: Compile,
Run, Gather output (see section 8.2.1) with a few minor adjustments.

As described in section 9.3, the methodTypes used in a driver are lo-
cal to the driver itself, i.e., stored in the driver folder, and not usable by
method created in generic prova! project but only in projects declared as
implementing the specific driver. Based on the approach chosen for the
driver implementation, a methodType for the MLPerf Inference benchmark
will be specifically managing a certain software and device, and it will be
composed of a descriptor and the scripts to manage it. Let us consider a
methodType for the OpenVINO framework (see section 3.3). Its prova!
methodType descriptor is shown in listing 10.2.

The descriptor contains some general information like the framework
name, the device type, the list of the driver categories the methodType can



10.2. DRIVER CONFIGURATION 91

"name":"OpenVINO -2019. R3.1 _src_c_omp",
"categories": ["OD_H", "OD_L", "IC_H", "IC_L"],
"device": "cpu",
"framework": "openvino",
"eb_modules": [],
"container": {

"executable": "singularity",
"cmd": "exec",
"runtime": "",
"options": "--contain",
"url": "https :// github.com/provarepro/mlperf_inference/releases/

download /0.0.1/ provarepro -mlperf_inference.v0.5-OpenVINO -2019
_R3.1_src_c_omp -py36 -gcc75 -ubuntu18.sif",

"img": "mlperf_inference -v0.5-OpenVINO -2019 _R3.1 _src_c_omp -py36 -
gcc75 -ubuntu18.sif",

"imgdir": "container"
},
"version":"1.0",
"comment":"OpenVINO -2019. R3_1 (compiled from source with OpenMP

support) with MLPerf Loadgen v0.5"

Listing 10.2: Example of methodType descriptor for OpenVINO
framework.

run, and the Linux container (using Singularity technology in the exam-
ple) specific to the ML framework. The workflow scripts will use all those
information to carry on the experiment.

Compile

In this first step, prova! uses the setup params to read the experiment
parameters and store them into a configuration file which will be exported
prior to the actual compilation of the benchmark code.

prova! configures the parameters in several steps: the parameters read
in one step can be used to build the ones of the following steps. First, it
reads the “fixed” experiment characteristics from the project and method-
Type descriptors. Second, it reads the values assigned by the user to the
default and custom project parameters for the experiment execution, and,
finally, it copies the MLPerf configuration files defined by the benchmark
(see figure 10.1).

Run

The run script is specific to a methodType and may require different pa-
rameters apart from the ones configured in the previous step. In the case
of OpenVINO, we use the execution command documented by Intel in the
MLPerf Inference benchmark submission to define the required parameters:



92 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

MethodType descr.
➢ DEVICE
➢ FRAMEWORK

Project descriptor
➢ MODEL
➢ DATASET
➢ DATAPATH

Project parameters
Default
➢ Scenario
Custom
➢ ...

MLPerf configuration files 
(mlperf.conf / user.conf )
➢ performance_sample_count
➢ seed
➢ target_latency_percentile
➢ min_duration
➢ min_query_count
➢ target_latency
➢ target_qps (Server, Offline)
➢ ...

export DEVICE=…
export MODEL=..
….

1001111000111110
0000001000010111
0000111000011010
1011001000100100
0001010010111111
1100111110111001
0010

Compilation 

setup_params

Parameters’ 
configuration Method’s 

executable

compile

Figure 10.1: MLPerf prova! driver: Compilation steps.

$ ov_mlperf.exe \
--scenario SingleStream \
--mode Performance \
--mlperf_conf_filename mlperf.conf \
--user_conf_filename user.conf \
--total_sample_count 50000 \
--data_path dataset -coco -2017 -val \
--model_path ssd -mobilenet_int8.xml \
--model_name ssd -mobilenet \
--batch_size 1 \
--nwarmup_iters 50 \
--dataset coco \
--device CPU \
--nireq 1 \
--nthreads 8 \
--nstreams 4

Listing 10.3: OpenVINO execution command for the Object Detection
(lightweight) task[135].

listing 10.3 shows the command used for the Object Detection (lightweight)
benchmark task (model: SSD-MobileNets-v1 [133][134]).

The missing parameters get exported directly as part of the method-
Type run script (see figure 10.2), applying either a default value defined in
the same script or a custom value. The user can add any method-specific
parameters as a custom project parameter, and the setup params script will
export it, overwriting the default value.

To develop the driver mode, we add a change to the run script to pre-
process the outputs generated before going to the final step of the workflow.
The default prova! gather output script expects the results file to have
specific formatting. For this reason, the run script of a driver method-
Type needs to run another script to adjust the raw output generated by
the MLPerf benchmark. A writeoutput script gets executed after the ex-
periment execution and uses the line selector for the desired metrics, as
mentioned in the previous section (see section 10.2.1). Finally, it writes
the values fetched to an output file, ensuring compatibility with the input



10.3. DRIVER USAGE 93

format used by the gather script (see figure 10.2).

MethodType run script
➢ MODEL_PATH
➢ MODEL_NAME
➢ MLPERF_MODE
➢ NSTREAMS
➢ NTHREADS
➢ NIREQ
➢ BATCH_SIZE
➢ TOTAL_SAMPLE
➢ WARMUP_ITERS

export DEVICE=…
export MODEL=..
….

1001111000111110
0000001000010111
0000111000011010
1011001000100100
0001010010111111
1100111110111001
0010

Execution

Parameters’ 
configuration

Method’s 
executable

run write_outputs

MLPerf Results 
Summary
===============
SUT name : SUT
Scenario : Single 
Stream
Mode: Performance
...

Output 
parsing

Prova gathered 
results:
qps=1.70
queries=1024
50.0=587561432
90.0=593423321 
95.0=594593737
...Raw output

Parsed 
output

" 90.0 " : {
" lineselector " : [ " 
90.00 percentile 
latency ( ns ) " ]
...

Metrics

Figure 10.2: MLPerf prova! driver: Execution steps.

Gather output

The gather output step used in the case of a driver project is the same as
for a traditional prova! project. The script needs the information from
the project parameter configuration to understand the methods executed
during the experiment. It then looks for the experiment results in all the
single outputs and merges the results in a JSON file. This final results file
will be accessed by prova! when the user wants to generate a performance
graph out of the experiment (see figure 10.3).

gather output visualization

Prova gathered 
results:
qps=1.70
queries=1024
50.0=587561432
90.0=593423321 
95.0=594593737
...

Parsed 
output

Results 
storage

Project parameters
Default
➢ Scenario
Custom
➢ ... "SingleStream": {

  "OpenVINO2019": {
    "qps": {
      "value":"1.70",
      ...},
    "queries": {
      "value":”1024",
      ...

Experiment 
results

Graph 
building

Parameters conf.
Scenario: Single Stream
#ofThreads: 4, 8, 16, 32
...

Results 
graph

Figure 10.3: MLPerf prova! driver: Results presentation steps.

10.3 Driver Usage

As for the basic project, prova! can also carry on complex experiments
(macro-experiments) in a driver project setup. In the case of a driver,
some common parameters are added by default when creating a new project
and can be integrated with more custom parameters based on the needs.
While the final goal of a “driver” project is to compare different approaches
on different systems, during the implementation of the code, it is helpful



94 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

to vary more method-specific parameters to tune them. Possible usage of
prova! is to set up a separate driver project with “compatible” methods
only and specify the parameters to tune as project parameters. After the
tuning phase, the user can set up another driver project keeping out the
“fixed” method-specific parameters, which he previously tuned, and use just
driver-specific parameters. This way, the user has great flexibility since
he can develop a method in an isolated way and later compare it with
others based on the driver characteristics, e.g., the task scenario for MLPerf
Inference benchmark.

As with the other prova! commands, the driver mode can be operated
directly through the CLI or using the prova! Experiment and Analysis
Server presented in Section 8.2. A user logged into the web server can
connect to a remote system and start creating a project: when a driver is
available, the user can select it in the interface and enter the base configu-
rations and custom parameters.

Based on the driver used for the project, the interface will show the
methodTypes available for the method creation (see figure 10.4).

Figure 10.4: prova! web UI: Method creation example for the OpenVINO
framework.

prova! will create the method from a base template included in the
methodType, which, in the case of the OpenVINO methodType example,
it is represented by the code Intel provided for the MLPerf Inference bench-
mark: this code can be modified or just used as-is to replicate the Intel sub-
mission. The same approach can be followed to provide the methodTypes
representing all the implementations available in the MLPerf benchmark
results.



10.3. DRIVER USAGE 95

As an example, let us consider a user who wants to evaluate the ac-
curacy achievable by the ML model used for a benchmark task: since by
default, MLPerf code runs in Performance mode, the user needs to over-
write the MLPERF MODE parameter (see figure 10.2) by adding it as a
project parameter and then set its value to Accuracy. Furthermore, to run
an OpenVINO experiment, the user needs to convert the model to the Open-
VINO Intermediate Representation (IR) composed of an XML and a binary
file. The OpenVINO methodType template already has a valid model in
the OpenVINO format. However, a user may want to experiment with how
the accuracy changes with different converted models: the user can add
the models to the default path (MODEL PATH) and set the correspondent
MODEL NAME values after configuring it as a project parameter.

Figure 10.5 shows the experiment configuration matching our Open-
VINO example: the experiment assesses the accuracy of the Object Detec-
tion (lightweight) benchmark task using two model versions, specified in the
MODEL NAME parameter, running a Single-Stream scenario. We gener-
ated the models by converting the official SSD-Mobilenet Tensorflow model
to OpenVINO format using INT8 precision mixed with either single (FP32)
or half (FP16) floating-point precision (for the operations not supporting
the INT8 precision).

The experiment execution (see section 9.1.1) and the results visualiza-
tion (see section 9.1.3) remain unchanged. The final performance graph
generated using the prova! UI shows the accuracy achieved by the two
models used, which, in this case, is relatively stable (see figure 10.6).



96 CHAPTER 10. PROVA! AS DL BENCHMARK DRIVER

Figure 10.5: prova! web UI: Experiment configuration and execution ex-
ample for the object detection (lightweight) task running OpenVINO frame-
work.



10.3. DRIVER USAGE 97

(a) prova! web UI: Results graph con-
figuration for the OpenVINO Accuracy
example.

(b) prova! web UI: Performance graph
for the OpenVINO Accuracy example.

Figure 10.6: prova! web UI: Configuration and generation of a
performance graph showing accuracy for the MLPerf Object Detection
(lightweight) benchmarks task using OpenVINO framework.





Part IV

Measurements and Results





Chapter 11

Experimental Testbeds

As for our experiment taxonomy (section 4.1) and prova! implementation
(section 8.2.1), we consider a system the hardware and software used to
carry on a specific micro-experiment. In this section, we will describe the
system details for the devices used in our experiments and the ones used by
the experiments we want to reproduce.

In terms of software, we set up a public GitHub project∗ to handle the
repositories containing the recipes, i.e. Dockerfile and Singularity definition
files, representing the containers used in our experiments. Each repository
includes some GitHub Actions [136], which, using the container recipes
committed, are automatically building new versions for both Docker and
Singularity containers and pushing them respectively to a public project
in DockerHub [137] and GitHub artifacts [138] within the same repository.
Each GitHub repository represents a specific prova! methodType (see sec-
tion 8.2.1) used to manage the software environment of an experiment on a
specific device. Some examples or the containers recipes used are shown in
Appendix A.

Whereas our work concentrates on running benchmarks from the MLPerf
Inference suite, we are going to follow their device classification splitting
between Edge and Datacenter devices.

∗https://github.com/provarepro

https://github.com/provarepro


102 CHAPTER 11. EXPERIMENTAL TESTBEDS

11.1 Edge devices

We consider part of the edge category the devices that are isolated instances,
in contrast with the datacenter ones. In the first round of MLPerf Infer-
ence, i.e. v0.5, there was no distinction between edge and datacenter and
no other category for the Inference benchmark. With the following bench-
mark submission rounds and the creation of more benchmark categories,
the policies were updated, and, for example, a device like a notebook would
be submitting its results to the MLPerf Inference Mobile benchmark (un-
der Notebook section). However, this is important mainly in the case of
submitting the results during the benchmark run: for our experiments and
discussions, we will consider the notebook part of the edge device category.

11.1.1 MLPerf submission

System: ICL i3 1005G1

Benchmark

• Version: MLPerf Inference benchmark v0.5

• Submitter: Intel

Hardware configuration

• CPU:
– Name: Intel i3-1005G1 @ 1.20 GHz†

– Architecture: Intel Ice Lake (mobile)
– Frequency: 1.20GHz/3.40 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 1/2/2

• Cache:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 48 KiB/core (12-way set associative)
– L2: 512 KiB/core (8-way set associative)
– L3: 4 MiB (16-way set associative)

• Memory: 1x 4GB DDR4 2666 MHz (MT/s)

• Accelerator
– Name: Intel UHD Graphics

†https://ark.intel.com/content/www/us/en/ark/products/196588/
intel-core-i31005g1-processor-4m-cache-up-to-3-40-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/196588/intel-core-i31005g1-processor-4m-cache-up-to-3-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/196588/intel-core-i31005g1-processor-4m-cache-up-to-3-40-ghz.html


11.1. EDGE DEVICES 103

– Frequency: 300/900 MHz (Base/Turbo)

Software configuration

• Framework: OpenVINO

• Version: 2019/pre-release (inferred from submission date)

• Note: OpenMP threading and GPU support

11.1.2 PROVA! reproduction

System: Flex i5 1035G1

Hardware configuration

• CPU:
– Name: Intel Core i5-1035G1 @1.00GHz‡

– Architecture: Intel Ice Lake (mobile)
– Frequency: 1.00GHz/3.60 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 1/4/2

• Cache:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 48 KiB/core (12-way set associative)
– L2: 512 KiB/core (8-way set associative)
– L3: 6 MiB (12-way set associative)

• Memory: 2x 8GB DDR4 3200 MHz (MT/s)

• Accelerator
– Name: Intel UHD Graphics
– Frequency: 300 MHz /1.05 GHz (Base/Turbo)

Software configuration

• Configuration 1:
– Framework: OpenVINO
– Version: 2019/pre-release
– Note: OpenMP threading and GPU support

• Configuration 2:
‡https://ark.intel.com/content/www/us/en/ark/products/196603/

intel-core-i51035g1-processor-6m-cache-up-to-3-60-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/196603/intel-core-i51035g1-processor-6m-cache-up-to-3-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/196603/intel-core-i51035g1-processor-6m-cache-up-to-3-60-ghz.html


104 CHAPTER 11. EXPERIMENTAL TESTBEDS

– Framework: OpenVINO
– Version: 2019/pre-release
– Note: TBB threading and GPU support

• Configuration 3:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: OpenMP threading and GPU support

• Configuration 4:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: TBB threading and GPU support

11.2 Data center devices

11.2.1 MLPerf submission

System: Xeon 8276

Benchmark

• Version: MLPerf Inference benchmark v0.5

• Submitter: Dell EMC

Hardware configuration

• CPU:
– Name: Intel(R) Xeon(R) Platinum 8276 CPU @ 2.20GHz§

– Architecture: Intel Cascade Lake-SP
– Frequency: 2.20 GHz/4.00 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 2/28/2

• Cache¶:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 1 MiB/core (16-way set associative)
– L3: 38.5 MiB (11-way set associative)

• Memory: 760GB DDR4-2933 MHz (MT/s)
§https://ark.intel.com/content/www/us/en/ark/products/192470/

intel-xeon-platinum-8276-processor-38-5m-cache-2-20-ghz.html
¶https://en.wikichip.org/wiki/intel/xeon_platinum/8276

https://ark.intel.com/content/www/us/en/ark/products/192470/intel-xeon-platinum-8276-processor-38-5m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192470/intel-xeon-platinum-8276-processor-38-5m-cache-2-20-ghz.html
https://en.wikichip.org/wiki/intel/xeon_platinum/8276


11.2. DATA CENTER DEVICES 105

Software configuration

• Configuration 1:
– Framework: OpenVINO
– Version: 2019/pre-release (inferred from submission date)
– Note: OpenMP threading

System: Xeon 6258R

Benchmark

• Version: MLPerf Inference benchmark v0.7

• Submitter: Intel

Hardware configuration

• CPU:
– Name: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz‖

– Architecture: Intel Cascade Lake-SP
– Frequency: 2.70 GHz/4.00 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 2/28/2

• Cache∗∗:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 1 MiB/core (16-way set associative)
– L3: 38.5 MiB (11-way set associative)

• Memory: 6x 32GB DDR4-2933 MHz (MT/s)

Software configuration

• Configuration 1[139]:
– Framework: TensorFlow
– Version: v2.3.0
– Note: Compiled with mkl optimization and AVX-512 arch sup-

port

• Configuration 2[140]:
‖https://ark.intel.com/content/www/us/en/ark/products/199350/

intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html
∗∗https://en.wikichip.org/wiki/intel/xeon_gold/6258r

https://ark.intel.com/content/www/us/en/ark/products/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html
https://en.wikichip.org/wiki/intel/xeon_gold/6258r


106 CHAPTER 11. EXPERIMENTAL TESTBEDS

– Framework: OpenVINO
– Version: 2021/1.pre
– Note: OpenMP threading

• Configuration 3[141]:

– Framework: MXNet
– Version: v1.8.0 (custom commit: 6ae469a)
– Note: Compiled with MKLDNN and BLAS=mkl

System: Xeon 8280

Benchmark

• Version: MLPerf Inference benchmark v0.7

• Submitter: Dell EMC

Hardware configuration

• CPU:

– Name: Intel(R) Xeon(R) Platinum 8280M CPU @ 2.70GHz††

– Architecture: Intel Cascade Lake-SP
– Frequency: 2.70 GHz/4.00 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 2/28/2

• Cache‡‡:

– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 1 MiB/core (16-way set associative)
– L3: 38.5 MiB (11-way set associative)

• Memory: 376GB DDR4-2933 MHz (MT/s)

Software configuration Same as Configuration 2 from Xeon 6258R system
(11.2.1)

††https://ark.intel.com/content/www/us/en/ark/products/192478/
intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html

‡‡https://en.wikichip.org/wiki/intel/xeon_platinum/8280

https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://en.wikichip.org/wiki/intel/xeon_platinum/8280


11.2. DATA CENTER DEVICES 107

11.2.2 PROVA! reproduction

System: Xeon 8280 (sciCORE)

sciCORE is a center of competence for scientific computing, providing in-
frastructures and services for high-performance computing and storage and
processing of scientific data [142] located at the University of Basel. From
this facility, we selected two different computing architectures for our experi-
ments to compare the evolution of the performance in the cluster. Moreover,
the AVX512 processor is the same as the Dell submission, which allows us
to conduct a precise reproduction experiment.

Hardware configuration

• CPU:
– Name: Intel® Xeon® Platinum 8280 Processor§§

– Architecture: Intel Cascade Lake-SP
– Frequency: 2.70 GHz/4.00 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 2/28/1 (HT dis-
abled)

• Cache¶¶:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 1 MiB/core (16-way set associative)
– L3: 38.5 MiB (11-way set associative)

• Memory: 12x 32GB DDR4-2933 MHz (MT/s) (ECC on)

Software configuration

• Configuration 1:
– Framework: OpenVINO
– Version: 2019/pre-release
– Note: OpenMP threading

• Configuration 2:
– Framework: OpenVINO
– Version: 2019/pre-release

§§https://ark.intel.com/content/www/us/en/ark/products/192478/
intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html

¶¶https://en.wikichip.org/wiki/intel/xeon_platinum/8280

https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/192478/intel-xeon-platinum-8280-processor-38-5m-cache-2-70-ghz.html
https://en.wikichip.org/wiki/intel/xeon_platinum/8280


108 CHAPTER 11. EXPERIMENTAL TESTBEDS

– Note: TBB threading

• Configuration 3:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: OpenMP threading

• Configuration 4:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: TBB threading

• Configuration 5:
– Framework: OpenVINO
– Version: 2021/1.pre
– Note: OpenMP threading

• Configuration 6:
– Framework: OpenVINO
– Version: 2021/1.pre
– Note: TBB threading

• Configuration 7:
– Framework: TensorFlow
– Version: v2.3.0
– Note: Compiled with mkl optimization and AVX-512 arch sup-

port

• Configuration 8:
– Framework: MXNet
– Version: v1.8.0 (custom commit: 6ae469a)
– Note: Compiled with MKLDNN and BLAS=mkl

System: Xeon E5-2630 v4 (sciCORE)

Hardware configuration

• CPU:
– Name: Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz∗∗∗

– Architecture: Intel Broadwell-EP
– Frequency: 2.20 GHz/3.10 GHz (Base/Turbo)

∗∗∗https://ark.intel.com/content/www/us/en/ark/products/92981/
intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html

https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/92981/intel-xeon-processor-e52630-v4-25m-cache-2-20-ghz.html


11.2. DATA CENTER DEVICES 109

• Sockets/Core per socket/Threads per core: 2/10/1 (HT dis-
abled)

• Cache†††:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 256 KiB/core (8-way set associative)
– L3: 25 MiB (20-way set associative)

• Memory: 8x 32GB DDR4-2667 MHz (MT/s) (ECC on)

Software configuration

• Configuration 1:
– Framework: OpenVINO
– Version: 2019/pre-release
– Note: OpenMP threading

• Configuration 2:
– Framework: OpenVINO
– Version: 2019/pre-release
– Note: TBB threading

• Configuration 3:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: OpenMP threading

• Configuration 4:
– Framework: OpenVINO
– Version: 2019/R3.1
– Note: TBB threading

System: Xeon 6258R (miniHPC)

MiniHPC is a small high-performance computing (HPC) cluster [143] lo-
cated at the University of Basel. For our experiments, we selected a pro-
cessor which happens to be the same used in the Intel submission, i.e., the
“1-node-2S-CLX” system, which allows us to try reproducing all the three
different software configurations for that specific MLPerf Inference submis-
sion.

†††https://en.wikichip.org/wiki/intel/xeon_e5/e5-2630_v4

https://en.wikichip.org/wiki/intel/xeon_e5/e5-2630_v4


110 CHAPTER 11. EXPERIMENTAL TESTBEDS

Hardware configuration

• CPU:
– Name: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz‡‡‡

– Architecture: Intel Cascade Lake-SP
– Frequency: 2.70 GHz/4.00 GHz (Base/Turbo)

• Sockets/Core per socket/Threads per core: 2/28/2

• Cache§§§:
– L1i: 32 KiB/core (8-way set associative)
– L1d: 32 KiB/core (8-way set associative)
– L2: 1 MiB/core (16-way set associative)
– L3: 38.5 MiB (11-way set associative)

• Memory: 12x 128GB DDR4-2933 MHz (MT/s) (ECC on)

Software configuration

• Configuration 1:
– Framework: TensorFlow
– Version: v2.3.0
– Note: Compiled with mkl optimization and AVX-512 arch sup-

port

• Configuration 2:
– Framework: MXNet
– Version: v1.8.0 (custom commit: 6ae469a)
– Note: Compiled with MKLDNN and BLAS=mkl

• Configuration 3:
– Framework: OpenVINO
– Version: 2021/1.pre
– Note: OpenMP threading

• Configuration 4:
– Framework: OpenVINO
– Version: 2021/4
– Note: OpenMP threading

‡‡‡https://ark.intel.com/content/www/us/en/ark/products/199350/
intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html

§§§https://en.wikichip.org/wiki/intel/xeon_gold/6258r

https://ark.intel.com/content/www/us/en/ark/products/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/199350/intel-xeon-gold-6258r-processor-38-5m-cache-2-70-ghz.html
https://en.wikichip.org/wiki/intel/xeon_gold/6258r


Chapter 12

MLPerf Inference Benchmark
Experiments

Our experiments will focus on the MLPerf Inference Benchmark Suite, and
in particular on the Computer Vision tasks: Image Classification and Object
Detection. This decision was taken mainly based on the submissions avail-
able for the framework and the systems we wanted to experiment with but
also since, especially for the first benchmark versions, these tasks represent
most of the total submissions [44].

The majority of the experiments will concentrate on the first two versions
of the benchmark, which were more interesting in terms of reproducibility
challenges, but will as well provide results of the newer benchmark versions,
thus investigating not only the evolution of frameworks/devices for machine
learning but also the benchmark itself.

Moreover, for each of the considered submission codes, we analyze dif-
ferent experiment configurations using different systems to have a better
understanding of the performance behaviour, which will cover the Repeti-
tion and Replication reproducibility levels (section 4.2). Even though we
can run different models changing, for example, the data format precision,
the method used to solve a task will remain unchanged (since defined by the
benchmark), meaning there will not be real Re-experimentation covered.

Beyond reproducibility, the experiments will also demonstrate some
properties of our prova! tool in terms of software engineering, such as
portability, extensibility, reusability, adaptability.



112 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

12.1 MLPerf v0.5

Following the discussion started in Chapter 6, we moved the manual ex-
periments regarding the OpenVINO submissions for the MLPerf Inference
benchmark v0.5 in prova!, using the driver mode (see chapter 10).

For the first benchmark round, two participants run the OpenVINO
framework to benchmark their devices: Dell EMC and Intel. The details of
the subset of scenarios submitted are summarized in Table 12.1.

Workloads

System Framework Image Classification Object Detection

ICL ICH ODL ODH

ICL i3 1005G1 OpenVINO SS, O SS, O SS, O —

CLX-9282-2S OpenVINO — — SS, S, O —

R740xd8276 OpenVINO — — SS, O —

R740xd6248 OpenVINO — — SS, O —

Table 12.1: MLPerf Inference Benchmark v0.5 scenarios submitted for the
Intel and Dell EMC systems selected (section 11.1 and 11.2): Single-Stream
(SS), Server (S) and Offline (O).

We selected the edge device used by Intel and the datacenter device used
by Dell EMC to compare against because they are similar to our systems.
This experiment reproduction will include three different benchmark tasks,
CPU and accelerator (GPU) devices and different versions and configura-
tions of the framework used, as shown in figure 12.1.

MLPerf Inference v0.5

ICH
ResNet50 v1.5

ICL
MobileNet v1

ODL
SSD-MobileNet v1

Edge
ICL i3 1005G1

Datacenter
R740xd8276

CPUGPU

OpenVINO

2019_PR

OpenMP

MLPerf Inference v0.5

ICH
ResNet50 v1.5

ICL
MobileNet v1

ODL
SSD-MobileNet v1

Edge
Flex i5 1035G1

Datacenter
SciCORE_8280

CPUGPU

OpenVINO

2019_PR / 2019_R3.1

OpenMP / TBB

Benchmark

Task

Category

Device

Framework

Version

Configuration

Problem
Method

HW

SW

System

Submission Reproduction

Figure 12.1: MLPerf Inference v0.5 reproduction: High level view of the
experiment elements we changed (red) for our reproduction. The method is
defined by the benchmark itself and bound to the task.



12.1. MLPERF V0.5 113

12.1.1 Object Detection Lightweight task

Table 12.2 shows a schematic view of the first MLPerf Inference experiment
we try to reproduce: the Problem and the Method are the ones defined by
the MLPerf Inference benchmark while the System changes from the original
to the reproduced. Intel used a laptop with four cores (2 physical + HT),
while our system has eight cores (4 physical + HT). For this reason, we
decided to configure our system to use only two cores in our first reproduced
experiment.

Still, in the second one, we used it without restriction, comparing the
original OpenVINO version configured to use OpenMP threading with a
version using TBB threading running the Object Detection task in a Single-
Stream scenario. Finally, we run the same benchmark task in the Offline
scenario to investigate the OpenVINO behaviour when changing some of
the parameters.

Original Exp. Reproduced Exp. 1 Reproduced Exp. 2

Problem Object detection (Single-Stream/Offline scenario) [44]
Dataset: COCO [144] (300x300)

Method Single Shot MultiBox Detector (SSD) [133]
Model: SSD-MobileNet-v1

• Device: ICL i3 1005G1 • Device: Flex i5 1035G1∗ • Device: Flex i5 1035G1
System • Framework: OpenVINO

(Configuration 1)
• Framework: Unchanged • Framework: OpenVINO

(Configuration 1-2)
∗ Used in a 2-core/4-thread configuration

Table 12.2: Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.5: object detection (lightweight)
task for Single-Stream and Offline scenarios. A detailed description of the
systems is available in section 11.1.

In the first reproduced experiment, we replicate the original experiment
applying the same parameters configuration documented in the submission.
The performance comparison is shown in Figure 12.2: the results are pretty
different for such a small execution. When using eight threads as in the
original experiment, our system performs much worse (-43%), which was
not expected since the systems are similar.

The system used by Intel to run this benchmark has four cores (including
HT): using more threads than the number of physical cores is not always
providing better performance. In this case, the number of threads used is
even higher than the number of virtual cores, which is not the best value
expected.



114 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

OpenVINO 2019_pre OpenMP

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream Scenario

Parameters (NTHREADS)

8 (Original)

1

2

4

8

Figure 12.2: MLPerf Inference v0.5: Object Detection lightweight, Single-
Stream scenario. Intel submission∗ compared to the experiment reproduction
on our system (see Reproduced Experiment 1, table 12.2) using different
values of threads.

To validate the parameters specified by Intel and fine-tune those for
our systems, we add parameters like the number of requests, threads, and
streams (nireq/nthreads/nstreams) to our prova! project. When running a
Single-Stream scenario, changing the number of requests and streams is not
affecting the results since MLPerf LoadGen sends the requests sequentially,
waiting for the previous to be completed [44]. That is why we consider
nthreads the only parameter to tune.

Figure 12.2 shows that, with two physical cores (4 virtual ones) on our
system, the best performance is achieved when the number of threads re-
quested is equal to the number of physical cores: our best result is still
worse than the original experiment’s one but now only by 5%.

To complete the experiment reproduction, we needed to run the bench-
mark in accuracy mode since MLPerf submission requires, for each bench-
mark task, a minimal accuracy to be met to consider the submission valid.

∗MLPerf v0.5 Inference Closed SSD-MobileNets-v1 Single-Stream. Retrieved
from https://mlcommons.org/en/inference-edge-05 18 April 2021, entry Inf-0.5-24.
MLPerf name and logo are trademarks. See https://mlcommons.org for more informa-
tion.

https://mlcommons.org/en/inference-edge-05
https://mlcommons.org


12.1. MLPERF V0.5 115

0

5

10

15

20

25

30

OpenVINO 2019_pre OpenMP

Accuracy

threshold

A
cc

ur
ac

y 
(m

A
P

)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream / Offline Scenario

Parameters (MODEL_NAME)

reverse_input_channels (Original)

22.627

reverse_input_channels

17.327

keep_input_channels

22.627

(a) Accuracy comparison.

0

50

100

150

200

OpenVINO 2019_pre OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

Parameters(NTHREADS,NSTREAMS,NIREQ): 4, 4, 4

System

(Original) i3 1005G1
217.93

i5 1035G1

154.807

(b) Performance comparison.

Figure 12.3: MLPerf Inference v0.5: Object Detection lightweight, Offline
scenario. Intel submission† compared to the experiment reproduction on our
system (see Reproduced Exp. 1, table 12.2).

When running the benchmark in accuracy mode, we noticed a big difference
from the one reported in MLPerf. Figure 12.3a shows both the original ac-
curacy (purple) and the reproduced one (green). This accuracy would be
too low for the submission to be accepted (see the accuracy threshold dashed
line). Based on a discussion on the official MLPerf GitHub repository [145],
the low accuracy seems to be related to the “--reverse input channels” option
used when generating the OpenVINO model as described by Intel in their
MLPerf submission [146]. Still, this explanation has not been validated
by the submitter. In our prova! project, we set the mode to accuracy
and added a MODEL NAME parameter to run the experiment with dif-
ferent models (w/wo “--reverse input channels” option). The blue bar in
figure 12.3a shows that we can achieve the same accuracy as the official
submission if we skip the option documented by Intel.

We did similar steps for the Offline scenario. We start comparing the
results we get using the same original parameter configuration, and we then
try to tune the parameters. In this case, the values for nireq/nthreads/n-
streams are set to the number of logical cores available on the system.
Figure 12.3b shows that our device performs worse than the original, even
in the Offline scenario (-30%). To tune the parameters, we first decided to

†MLPerf v0.5 Inference Closed SSD-MobileNets-v1 Offline. Retrieved from https://
mlcommons.org/en/inference-edge-05 18 April 2021, entry Inf-0.5-24. MLPerf name
and logo are trademarks. See https://mlcommons.org for more information.

https://mlcommons.org/en/inference-edge-05
https://mlcommons.org/en/inference-edge-05
https://mlcommons.org


116 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

50

100

150

200

OpenVINO 2019_pre OpenMP

S
am

pl
e 

pe
r 

se
co

nd
s

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

Parameters (NSTREAMS, NTHREADS, NIREQ)

1, 1, 4

1, 2, 4

1, 4, 4

1, 8, 4

(a) Threads tuning.

0

50

100

150

200

OpenVINO 2019_pre OpenMP

S
am

pl
e 

pe
r 

se
co

nd
s

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

Parameters (NSTREAMS, NTHREADS, NIREQ)

1, 2, 4

2, 2, 4

4, 2, 4

8, 2, 4

(b) Streams tuning.

Figure 12.4: MLPerf Inference v0.5: Object Detection lightweight, Offline
scenario. Performance tuning for OpenVINO 2019 pre-version configured
with OpenMP threading: running on our system (see Reproduced Exp. 1,
table 12.2) using code submitted by Intel[148].

try increasing only the number of threads, keeping the number of inference
requests fixed to the number of logical cores and the number of streams to 1.
As for the Single-Stream scenario, we notice the best performance achieved
using physical cores as the number of threads (Figure 12.4a).

In case of experiments with a short execution time, Intel suggests using
a throughput-oriented approach for the parallelization, especially if running
on CPUs: increasing the number of streams, OpenVINO will assign/pin
them to the execution resources to increase the throughput [147]. Fig-
ure 12.4b shows that the performance grows with the number of streams,
which is best when this number equals the logical cores: the performance
reached is close to the one achieved using the official parameters, which, in
this case, we can confirm to be effectively optimal.

After this first experiment mainly aimed at reproducing the original sub-
mission, in a second reproduced experiment, we tried to perform the same
benchmark task (Object Detection lightweight) using our system without
adding any resource limitation. We ran the Single-Stream scenario using
two different versions of the OpenVINO framework: one uses the OpenMP
library (same configuration suggested by Intel) and the other the Thread-
ing Building Blocks (TBB) library (the default in OpenVINO starting from
version 2019). As for the previous experiment, using the physical cores avail-
able as the number of threads provides the best performance (Figure 12.5).



12.1. MLPERF V0.5 117

Furthermore, even if the OpenMP version of OpenVINO performs better
than the TBB one, this difference is always less than 4%.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1 2 4 8

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Parameters (NTHREADS)

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream Scenario

Implemented Methods

OpenVINO 2019_pre OpenMP

OpenVINO 2019_pre TBB

Figure 12.5: MLPerf Inference v0.5: Object Detection lightweight, Single-
Stream scenario. Performance comparison of OpenVINO 2019 pre-version
configured with OpenMP and TBB threading: running on our system (see
Reproduced Exp. 2, table 12.2) using code submitted by Intel[148] and dif-
ferent values of threads.

When running the benchmark in the Offline scenario, we were able to
investigate the behaviour of OpenVINO for both versions (OpenMP/TBB)
by keeping the number of threads and inference requests constant (optimal
values) and varying both the number of streams and the batch size. Fig-
ure 12.6 shows that increasing the batch size value affects (albeit minimally)
the results but only when not using multiple streams (throughput-based
approach discussed previously). In fact, if we use the suggested number of
streams (number of logical cores available), the batch size does not play a
role, and the results obtained are the optimal ones. Again, the two versions
behave similarly with the TBB one, which seems slightly better when using
one stream and bigger batch size.

Finally, keeping out the batch size set to 1 (as suggested), we experiment
with how the parallelization works in the OpenMP version, analyzing its
behaviour with different combinations of threads and inference requests for
an increasing value of streams.



118 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

50

100

150

200

250

OpenVINO 2019_pre OpenMP OpenVINO 2019_pre TBB

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

NTHREADS=4, NIREQ=8

Parameters (NSTREAMS, BATCH_SIZE)

1, 1

1, 2

1, 4

1, 8

8, 1

8, 2

8, 4

8, 8

Figure 12.6: MLPerf Inference v0.5: Object Detection lightweight, Offline
scenario. Comparison of performance behavior of OpenVINO 2019 pre-
version configured with OpenMP and TBB threading when changing the
number of streams and batch sizes: running on our system (see Reproduced
Exp. 2, table 12.2) using code submitted by Intel[148].

As discussed previously, when the number of streams is set to 1, the par-
allelization happens in a traditional way using multiple threads for solving
each request coming to the stream. In this case, the number of inference
requests doesn’t matter for the performance, which is based on the number
of threads. Increasing the streams, we start parallelizing the “outer loop” of
the requests: the available resources are split/assigned to different streams
which are working in parallel. In the case of 2 streams, using 1 or 2 threads
provides the same performance since the total amount of cores used will
always be 2 (bounded either by the number of streams or threads). When
increasing the number of threads, the performance is not bounded anymore
since the system has four physical cores. We can already notice that the
overall performance is increasing when moving from 1-stream to 2-streams
configuration, showing how, in a benchmark like this with no heavy re-
quests, the throughput-approach parallelization works better. Moving to
4 streams, we can see that all four cores are used in each thread-request
configuration with always similar performance. Finally, in the 8-streams
run, the results are affected by the number of inference requests: creating



12.1. MLPERF V0.5 119

fewer requests than the number of available streams brings performance
down. In this case, the performance gets even worse than the run using
four streams because the 8-streams configuration will threaten all the cores
independently, which results in more requests to possibly go to the same
physical core, causing a high load imbalance (Figure 12.7).

0

50

100

150

200

250

1 2 4 8

S
am

pl
es

 p
er

 s
ec

on
d

NSTREAMS

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

Implemented Methods: OpenVINO 2019_pre OpenMP

Parameters (NTHREADS, NIREQ)

1, 4

1, 8

2, 4

2, 8

4, 4

4, 8

8, 4

8, 8

Figure 12.7: MLPerf Inference v0.5: Object Detection lightweight, Offline
scenario. Comparison of performance behavior of OpenVINO 2019 pre-
version configured with OpenMP threading when using a variable number of
streams and a combination of a different number of threads and inference
requests: running on our system (see Reproduced Experiment 2, table 12.2)
using code submitted by Intel[148].

For the same Benchmark task, i.e. Object Detection lightweight, we
also tried to reproduce the Dell submission in the datacenter category using
a machine hosted in the sciCORE data center at the University of Basel.
The processor we used is from the same generation as the one used in the
original submission (Cascade Lake) but has a higher base CPU frequency
(2.70 vs 2.20 GHz). Table 12.3 shows the experiment in terms of <Problem,
Method, System> 3-tuple.

The OpenVINO configuration of the Dell submission was the same as
the Intel one. For this reason, we reuse the ones we built for the previous
experiment. Moreover, such submission does not provide the scripts used
to run the experiments, and thus no experiment parameters are available.



120 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

Original Exp. Reproduced Exp. 1 Reproduced Exp. 2

Problem Object detection (Single-Stream/Offline scenario) [44]
Dataset: COCO [144] (300x300)

Method Single Shot MultiBox Detector (SSD) [133]
Model: SSD-MobileNet-v1

• Device: Xeon 8276 • Device: Xeon 8280 (sciCORE) • Device: Xeon E5-2630
System • Framework: OpenVINO

(Configuration 1)
• Framework: OpenVINO
(Configuration 1-3)

• Framework: OpenVINO
(Configuration 1-3)

Table 12.3: Reproduction of OpenVINO experiments submitted by Dell as
part of the MLPerf Inference Benchmark v0.5: object detection (lightweight)
task for Single-Stream and Offline scenarios. A detailed description of the
systems is available in section 11.2.

Since Intel submitted benchmark results using a datacenter machine with
the same socket/cores configuration, we used the parameters specified by
them. Our system performs around 11% better in both Single-Stream and
Offline scenarios (figure 12.8), which is somehow expected since, even though
the max frequency is the same, we have a 20% difference in base CPU
frequency.

0

500000

1e+06

1.5e+06

2e+06

OpenVINO 2019_pre OpenMP

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream Scenario

Paramters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE): 1, 28, 1, 1

System

Xeon 8276 (Original)

1.69e+06

Xeon 8280

1.52e+06

(a) Single-Stream scenario.

0

1000

2000

3000

4000

5000

6000

OpenVINO 2019_pre OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

Paramters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE): 56, 56, 56, 1

System

Xeon 8276 (Original)

4266.460

Xeon 8280
4837.230

(b) Offline scenario.

Figure 12.8: MLPerf Inference v0.5: Object Detection lightweight. Dell
submission‡ compared to the experiment reproduction on our system (see
Reproduced Exp. 1, table 12.3) using code submitted by Intel[148].

After reproducing the original configuration, we decided to change
some experiment elements like the software version, as well as varying

‡MLPerf v0.5 Inference Closed SSD-MobileNets-v1 Offline. Retrieved from https:
//mlcommons.org/en/inference-edge-05 18 April 2021, entry Inf-0.5-4. MLPerf name
and logo are trademarks. See https://mlcommons.org for more information.

https://mlcommons.org/en/inference-edge-05
https://mlcommons.org/en/inference-edge-05
https://mlcommons.org


12.1. MLPERF V0.5 121

NSTREAMS, NTHREADS and NIREQ parameters. We set up an experi-
ment using the final release of the OpenVINO framework version, i.e., 2019
R3.1, instead of the “pre-release” used by the submitters. For the Single-
Stream scenario (figure 12.9a), the performance gets worse when using all
the available physical cores, confirming the Intel parameters configuration
as the best possible. The Single-Stream scenario is not worth running us-
ing a datacenter machine: in fact, starting with the sequent benchmark
version, the submission for this category includes only Server and Offline
scenarios as mandatory. From the same experiment, we can see also how
the pre-release version performs better than the later version, even though
the difference is not much relevant. Different is the situation shown in
figure 12.9b: we executed the same experiment on an older Intel process
architecture (Broadwell) available in the same sciCORE data center (Re-
produced Exp. 2 of table 12.3), finding a huge difference in performance
when using the two OpenVINO versions. The performance of the final re-
lease of OpenVINO 2019 is more than 2.5 times slower compared to the
pre-release in the case of using 20 threads: such a difference goes up to
more more than three times when using 10 threads.

0

500000

1e+06

1.5e+06

2e+06

OpenVINO 2019_pre OpenMPOpenVINO 2019_R3.1 OpenMP

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream Scenario

System: Xeon 8280 (AVX512)

Parameters (NTHREADS)

10 20

(a) Performance on Cascade Lake
architecture.

0

5e+06

1e+07

1.5e+07

2e+07

OpenVINO 2019_pre OpenMPOpenVINO 2019_R3.1 OpenMP

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Single Stream Scenario

System: Xeon E5-2630 v4 (AVX2)

Parameters (NTHREADS)

10 20

(b) Performance on Broadwell ar-
chitecture.

Figure 12.9: MLPerf Inference v0.5: Object Detection lightweight, Single-
Stream scenario. Comparison of different versions of OpenVINO framework
running on different processor architectures (see Reproduced Exp. 1 (a)
and Reproduced Exp. 2 (b) columns of Table 12.3) using code submitted by
Intel[148].

The same comparison, based on versions, has been performed with the
Offline scenario as well. Using the Cascade Lake processor (figure 12.10), we



122 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

observe the same behaviour shown by the Single-Stream case: (1) a slightly
different performance (still in favour of the pre-release) and (2) the best
performance are achieved using the parameters configuration used by Intel.

0

1000

2000

3000

4000

5000

6000

OpenVINO 2019_pre OpenMP OpenVINO 2019_R3.1 OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

System: Xeon 8280 (AVX512)

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)

28, 56, 28, 1

28, 56, 56, 1

28, 112, 28, 1

28, 112, 56, 1

56, 56, 28, 1

56, 56, 56, 1

56, 112, 28, 1

56, 112, 56, 1

Figure 12.10: MLPerf Inference v0.5: Object Detection lightweight, Of-
fline scenario. Comparison of different versions of OpenVINO framework
when using a different number of streams, threads and inference requests:
running on our system (see Reproduced Experiment 1, table 12.3) using code
submitted by Intel[148].

Moving to the Broadwell processor, we experience a relevant perfor-
mance loss again for the newer OpenVINO version, especially for the pa-
rameters combinations that generate the best performance: in this case, the
newer software version is almost four times slower (figure 12.11).

Besides the performance, we can check if the processor version affects
the task accuracy as well. The accuracy reported in the official submission
is 22.627 mAP which we could exactly reproduce on our Cascade Lake
processor (figure 12.12) while we obtain a lower accuracy when changing the
processor and the software version (even below the acceptable threshold,
if using the old processor in combination with the OpenVINO 2019 R3.1
version).

In our last experiment related to this task, within the datacenter cat-
egory, we compared two versions of the OpenVINO 2019 pre-release com-
piled with different threading libraries, i.e., OpenMP and TBB. Figure 12.13



12.1. MLPERF V0.5 123

0

100

200

300

400

500

600

OpenVINO 2019_pre OpenMP OpenVINO 2019_R3.1 OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

System: Xeon E5-2630 v4 (AVX2)

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)

10, 20, 10, 1

10, 20, 20, 1

10, 40, 10, 1

10, 40, 20, 1

20, 20, 10, 1

20, 20, 20, 1

20, 40, 10, 1

20, 40, 20, 1

Figure 12.11: MLPerf Inference v0.5: Object Detection lightweight, Of-
fline scenario. Comparison of different versions of OpenVINO framework
when using a different number of streams, threads and inference requests:
running on our system (see Reproduced Experiment 2, table 12.3) using code
submitted by Intel[148].

shows how the best performance is still achieved by the OpenMP, but the
TBB version is not much worse and seems to better manage cases that use
more threads.

12.1.2 Image Classification Heavyweight task

As shown in figure 12.1, for the same benchmark submission round, Intel
provided results for other tasks using the same edge system. The experi-
ment details for the Image Classification (heavyweight) task are presented
in Table 12.4.

In this case, the system used also includes an Intel GPU device which
was used in the original experiment to accelerate the Offline scenario. As
documented in the Intel submission[146], we calibrated the official FP32
model to use INT8 precision after converting it from TensorFlow to Open-
VINO format. Following the Intel suggestion, we kept FP32 data type as a
base for calibrating INT8 to be executed on CPU (Single-Stream scenario)
while we used FP16 data type for the model used as the base for the GPU



124 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

5

10

15

20

25

30

OpenVINO 2019_pre OpenMP OpenVINO 2019_R3.1 OpenMP

Accuracy

threshold
A

cc
ur

ac
y 

(m
A

P
)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light

Systems

Xeon 8280 (AVX512)

22.627 22.590

Xeon E5-2630 v4 (AVX2)

22.617

20.798

Figure 12.12: MLPerf Inference v0.5: Object Detection lightweight. Com-
parison of model accuracy for different versions of OpenVINO framework
running on different processor architectures (see Reproduced Exp. 1 (a) and
Reproduced Exp. 2 (b) columns of Table 12.3) using code submitted by In-
tel[148].

Original Exp. Reproduced Exp. 1 Reproduced Exp. 2

Problem Image Classification (Single-Stream/Offline scenario) [44]
Dataset: ImageNet [149] (224x224)

Method Deep Residual Learning [150]
Model: ResNet-50 v1.5

• Device: ICL i3 1005G1 • Device: Flex i5 1035G1∗ • Device: Flex i5 1035G1
System • Framework: OpenVINO

(Configuration 1)
• Framework: Unchanged • Framework: OpenVINO

(Configuration 1-4)
∗ Used in a 2-core/4-thread configuration

Table 12.4: Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.5: image classification (heavy-
weight) task for Single-Stream and Offline scenarios. A detailed description
of the systems is available in section 11.1.

calibration (Offline scenario). The different base for the calibration slightly
affects the accuracy, which changes from one scenario to the other: we re-
peated all the steps described by Intel and could get the same behaviour
but not the identical results (figure 12.14).

§MLPerf v0.5 Inference Closed ResNet-50 v1.5 Offline. Retrieved from https://
mlcommons.org/en/inference-edge-05 18 April 2021, entry Inf-0.5-24. MLPerf name
and logo are trademarks. See https://mlcommons.org for more information.

https://mlcommons.org/en/inference-edge-05
https://mlcommons.org/en/inference-edge-05
https://mlcommons.org


12.1. MLPERF V0.5 125

0

1000

2000

3000

4000

5000

6000

OpenVINO 2019_pre OpenMP OpenVINO 2019_pre TBB

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Object Detection Light - Offline Scenario

System: Xeon 8280

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)

28, 56, 28, 1

28, 56, 56, 1

28, 112, 28, 1

28, 112, 56, 1

56, 56, 28, 1

56, 56, 56, 1

56, 112, 28, 1

56, 112, 56, 1

Figure 12.13: MLPerf Inference v0.5: Object Detection lightweight, Of-
fline scenario. Comparison of different versions of OpenVINO framework
when using a different number of streams, threads and inference requests:
running on our system (see Reproduced Experiment 2, table 12.3) using code
submitted by Intel[148].

In our tries, we saw a tiny variance in the accuracy calculated using the
Intel GPU, but that was never the case for the experiments run on the CPU.
That is why we were expecting to exactly reproduce the model accuracy (at
least for CPU) like in the object detection experiment.

To verify how the model data precision is affecting the performance, we
not only run the suggested configuration but also try using the different
models on both devices (CPU/GPU). The results from the Single-Stream
scenario are shown in figure 12.15: neither using GPU acceleration nor a
model built starting from FP16 data precision is bringing a performance
improvement, but, also for this task, we could not reproduce the original
results (∼25% worse performance).

The same happens when running the Offline scenario. As for the original
experiment, we reached the best performance using the Intel GPU hardware
and the model based on FP16 data precision, but we still have a performance
circa 25% worse than the Intel benchmark (figure 12.16).

¶See footnote for Figure 12.14
‖See footnote for Figure 12.14



126 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

20

40

60

80

100

SingleStream (CPU)

FP32_INT8

Offline (CPU/GPU)

FP16_INT8

To
p-

1 
ac

cu
ra

cy
 (

%
)

Scenarios

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Heavy

OpenVINO 2019_pre OpenMP

Systems

i3 1005G1 (Original)

76.234 76.400

i5 1035G1

76.286 76.409

Figure 12.14: MLPerf Inference v0.5: Image Classification heavyweight.
Model accuracy of Intel submission§ compared to the experiment reproduc-
tion on our system (see Reproduced Exp. 1, table 12.4).

0

5e+06

1e+07

1.5e+07

2e+07

(Original) i3 1005G1 CPU i5 1035G1 CPU i5 1035G1 CPU/GPU

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Systems

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Heavy - Single Stream Scenario

Implemented Methods: OpenVINO 2019_pre OpenMP

Model data precision

INT8_FP32

INT8_FP16

Figure 12.15: MLPerf Inference v0.5: Image Classification heavyweight,
Single-Stream scenario. Intel submission¶ compared to the experiment re-
production on our system using both CPU-only and GPU systems (see Re-
produced Exp. 1, table 12.4) with different model precision.



12.1. MLPERF V0.5 127

0

20

40

60

80

100

i3 1005G1 CPU/GPU

(Original)

i5 1035G1 CPU i5 1035G1 CPU/GPU

S
am

pl
es

 p
er

 s
ec

on
d

Systems

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Heavy - Offline Scenario

Implemented Methods: OpenVINO 2019_pre OpenMP

Model data precision

INT8_FP32

INT8_FP16

Figure 12.16: MLPerf Inference v0.5: Image Classification heavyweight,
Offline scenario. Intel submission‖ compared to the experiment reproduction
on our system using both CPU-only and GPU systems (see Reproduced Exp.
1, table 12.4) with different model precision.

To perform a parallel analysis with the previous benchmark experiment,
we compare performance using the TBB threaded implementation of both
pre and final versions of OpenVINO 2019. Figure 12.17 shows the GPU
executions perform better only when using INT8 precision in combination
with FP16 for all of the framework versions. Even in this experiment, the
difference between OpenMP and TBB is not impressive, but it is in favour
of the TBB variant, differently from before. The configuration applied is
the one used in the benchmark result submission, i.e., NSTREAMS=4,
NTHREADS=8, NIREQ=8, BATCH SIZE=1. As for the object detec-
tion task, we found the best configuration to be using NSTREAMS=1,
NTHREADS=2, NIREQ=4, BATCH SIZE=1. Nevertheless, the improve-
ment falls within a few percentage points.

12.1.3 Image Classification Lightweight task

The last benchmark experiment for MLPerf inference v0.5 is the Image
Classification (lightweight) task (table 12.5).

This task follows the same approach as the other image classification



128 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

20

40

60

80

100

120

INT8_FP32 INT8_FP16

S
am

pl
es

 p
er

 s
ec

on
d

Model data precision

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Heavy - Offline Scenario

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE,

target_metric, WARMUP_ITER, TOTAL_SAMPLE_COUNT): 4 8 8 1 1 10 50000

Implemented Methods (OpenVINO version)
2019_pre OpenMP CPU

2019_pre OpenMP CPU/GPU

2019_pre TBB CPU

2019_pre TBB CPU/GPU

2019_R3.1 OpenMP CPU

2019_R3.1 OpenMP CPU/GPU

2019_R3.1 TBB CPU

2019_R3.1 TBB CPU/GPU

Figure 12.17: MLPerf Inference v0.5: Image Classification heavyweight,
Offline scenario. Performance comparison of OpenVINO 2019 pre-version
configured with OpenMP and TBB threading: running on both CPU-only
and GPU systems (see Reproduced Exp. 1, table 12.4) using code submitted
by Intel[148] and different model precision.

Original Exp. Reproduced Exp. 1 Reproduced Exp. 2

Problem Image Classification (Single-Stream/Offline scenario) [44]
Dataset: ImageNet [149] (224x224)

Method MobileNet [134]
Model: MobileNet-v1 224

• Device: ICL i3 1005G1 • Device: Flex i5 1035G1∗ • Device: Flex i5 1035G1
System • Framework: OpenVINO

(Configuration 1)
• Framework: Unchanged • Framework: OpenVINO

(Configuration 1-2)
∗ Used in a 2-core/4-thread configuration

Table 12.5: Reproduction of OpenVINO experiments submitted by In-
tel as part of the MLPerf Inference Benchmark v0.5: image classification
(lightweight) task for Single-Stream and Offline scenarios. A detailed de-
scription of the systems is available in section 11.1.



12.1. MLPERF V0.5 129

experiment with CPU used for the Single-Stream and GPU for the Offline
scenario, as well as the calibration of the model to use INT8 data precision.
The accuracy of both CPU and GPU model versions could not be exactly
replicated even though quite similar (figure 12.18).

0

20

40

60

80

100

SingleStream (CPU)

FP32_INT8

Offline (CPU/GPU)

FP16_INT8

To
p-

1 
ac

cu
ra

cy
 (

%
)

Scenarios

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Light

OpenVINO 2019_pre OpenMP

Systems

i3 1005G1 (Original)

71.528 71.566

i5 1035G1

71.426 71.530

Figure 12.18: MLPerf Inference v0.5: Image Classification lightweight.
Model accuracy of Intel submission∗∗ compared to the experiment reproduc-
tion on our system (see Reproduced Exp. 1, table 12.5).

The first test ran the Single-Stream scenario using only the CPUs of the
device like in the original configuration (Reproduces Exp.1 in table 12.5).
Despite the fact that Intel uses eight threads for the benchmark submission,
we found the best amount of threads to be two (equal to the number of phys-
ical cores), confirming the behaviour we already observed with the object
detection experiment (figure 12.19a). With our optimal configuration, the
results are not far from the original (a bit less than 10%).

The difference with original results increases when running the Offline
scenario: our performance stops at a level 40% lower than the Intel bench-
mark (figure 12.19b).

To understand the best parameter configuration, we run various com-
binations testing as well the TBB version of OpenVINO. For all we could

∗∗MLPerf v0.5 Inference MobileNet-v1 Offline. Retrieved from https://mlcommons.
org/en/inference-edge-05 18 April 2021, entry Inf-0.5-24. MLPerf name and logo are
trademarks. See https://mlcommons.org for more information.

††See footnote for Figure 12.18

https://mlcommons.org/en/inference-edge-05
https://mlcommons.org/en/inference-edge-05
https://mlcommons.org


130 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

OpenVINO 2019_pre OpenMP

90
%

 p
er

ce
nt

ile
 la

te
nc

y 
(n

s)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Light - Single Stream Scenario

Parameters (NTHREADS)

8 (Original)

1

2

4

8

(a) Single-Stream scenario using
variable number of threads.

0

100

200

300

400

500

600

OpenVINO 2019_pre OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Light - Offline Scenario

Parameters(NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE): 4 8 8 1

System

(Original) i3 1005G1
507.708

i5 1035G1

306.900

(b) Offline scenario.

Figure 12.19: MLPerf Inference v0.5: Image Classification lightweight.
Intel submission†† compared to the experiment reproduction on our system
(see Reproduced Exp. 1, table 12.5).

identify a better parameters combination, the performance results are still
far from the benchmark, as one can see in figure 12.20.

12.1.4 Reproducibility considerations

During the reproduction of the Intel submission, we faced several issues with
the code and instructions provided, which forced us to make some changes.

Sample size Using the Windows OS version, the code requires to pass the
total sample count value as a parameter. In the script available as part
of the submission, the value used is 50000, which causes the failure of the
benchmark execution. Based on the Linux OS version of the code and the
logs for the Windows OS version, we figured out the correct value for Object
detection tasks, which uses the COCO dataset, is 5000. Instead, a value of
50000 is correct in the case of the Image processing tasks since using the
Imagenet dataset. We adapted the sample value accordingly.

Code discrepancies The common part of Windows and Linux code versions
is identical except for one function, namely the order of two input param-
eters. As a result, none of the code fails when running in Performance
mode, but the situation changes when running the code using the accuracy
mode: the code version developed for Windows OS fails. Since we used the



12.1. MLPERF V0.5 131

0

50

100

150

200

250

300

350

400

450

2019_pre OpenMP CPU/GPU 2019_pre TBB CPU/GPU

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.5

Image Classification Light - Offline Scenario

System: i5 1035G1 - Framework: OpenVINO

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)
2, 4, 4, 1

2, 4, 8, 1

2, 8, 4, 1

2, 8, 8, 1

4, 4, 4, 1

4, 4, 8, 1

4, 8, 4, 1

4, 8, 8, 1

Figure 12.20: MLPerf Inference v0.5: Image Classification lightweight,
Offline scenario. Performance of OpenVINO 2019 pre-version built with
OpenMP and TBB threading using a different parameters configurations
running on CPU and GPU systems (see Reproduced Exp. 2, table 12.5)
using code submitted by Intel[148].

Windows OS version of the code, we had to use the arguments the same
way they are used in the Linux version. Analysing the code used in the Dell
submission, one can spot the same “wrong” function call, but we didn’t test
its behaviour since using the same Intel code for all our experiments.

Software version The version of OpenVINO to use is not clearly mentioned
in the documentation attached to the submission. We run our initial tests
using the final realease from 2019, i.e., R3.1. Only after figuring out the un-
expected behaviour this version have on an older architecture (as discussed
earlier in this chapter), we decided to use the pre-release of OpenVINO
2019, which was available at the time of submission and re-run all the ex-
periments.

System priviledges The Intel submission for Linux systems, in the case of
Single-Stream and Server scenarios, requires the execution of some OS com-
mand to clean shared memory, caches and configure intel pstate. Those
commands require root privileges which we don’t have on any of the tested



132 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

devices in the datacenter category. Instead, we could run the commands to
clean the memory when using our edge device while the pstate configura-
tion cannot be applied because it results in an error. Anyway, the original
experiments run on the Intel edge device was using a Windows OS and,
thus, not considering the execution of those commands.

Number of executions While a valid submission to the MLPerf Inference
Benchmark does not require multiple runs of a task, we re-executed at least
5 time each of our experiments. Since we found the results to be consistent
from an execution to the other, we decided to include a single result for
each experiment configuration for our study.

12.1.5 Performance considerations

Container overhead All our experiments run through containers which may
produce an overhead. Based on past studies [151], we think this can’t
explain the performance discrepancies we have encountered during our ex-
perimentation.

Process pinning In its submission, Intel documented the usage of numactl
util for binding the processes to the cores. We did not experience any
improvement when using it. Setting KMP AFFINITY did not produce
any improvement either, with the best performance being obtained using
the default configuration. Moreover, pinning is only used in the Single-
Stream scenario while the performance constantly differs from the original
results, including the Offline scenario.

CPU frequency governor The process governor for the datacenter machines
was set on performance mode, and we could not test any different settings.
While on our edge device tested, we could test both the performance and
the default ondemand modes. The performance drops when forcing the
performance mode, and, consequently, we always kept the settings to the
ondemand mode. Since the edge device used for the original experiment
was running a Windows OS, none of those settings was discussed or even
mentioned.



12.2. MLPERF V0.7 133

12.2 MLPerf v0.7

There were no substantial changes in the newer versions of the MLPerf
Inference benchmark, and setting up the correspondent prova! driver did
not require much effort but updating the driver descriptor. The required
changes are the creation of the methodTypes (software and scripts) by fol-
lowing the documentation provided by the submitters of which we want to
reproduce the results.

The tasks included in the Intel and Dell submissions are the heavyweight
version of image classification and object detection problems (table 12.6),
but we will only cover the image classification one.

Workloads

System Framework Image Classification Object Detection

ICL∗ ICH ODL ODH

1-node-2S-CLX OpenVINO — S, O — —

1-node-2S-CLX MXNet — S, O — —

1-node-2S-CLX Tensorflow — S, O — —

R740xd8280 OpenVINO — S, O — S, O
∗ Deprecated since v0.7 of MLPerf Inference benchmark

Table 12.6: MLPerf Inference Benchmark v0.7 scenarios submitted for
the Intel and DELL EMC systems selected (section 11.1 and 11.2): Single-
Stream (SS), Server (S) and Offline (O).

Both the systems we consider are from the datacenter category and use
either a single ML framework, like for the Dell submission with OpenVINO,
or multiple ones, like for the Intel submission adopting OpenVINO, MXNet
and TensorFlow. The detailed experiment stack is presented in figure 12.21.

12.2.1 Image Classification Heavyweight task

To reproduce the results of the image classification task submitted by In-
tel, we used a machine that happens to be the same as the original one,
so even that is physically a different system, we can consider our experi-
ment a repetition from which we expect to have full reproducibility of the
performance results (table 12.7).

We configured the three ML frameworks used following the steps doc-
umented in the Intel submission for both the software configuration and
installation[152] as well as the model calibration[153]. In terms of accuracy,
our system configuration effort did not help to have the exact matching



134 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

MLPerf Inference v0.7

ICH
ResNet50

Datacenter

OpenVINO

OpenMP

MLPerf Inference v0.7

CPU

OpenMP

Benchmark

Task

Category

Device

Framework

Version

Configuration

Problem
Method

HW

SW

SystemMXNet TensorFlow

CPU

OpenVINO MXNet TensorFlow

2021.1_PR 1.8* 2.3.0

ICH
ResNet50

R740xd8280

1-node-2S-CLX

2021.1_PR 1.8* 2.3.0

Datacenter

SciCORE_8280

miniHPC_6258R

* use a specific commit

Figure 12.21: MLPerf Inference v0.7 reproduction: High level view of the
experiment elements we changed (red) for our reproduction. The method is
defined by the benchmark itself and bound to the task.

Original Experiment Reproduced Experiment

Problem Image Classification (Server/Offline scenario) [44]
Dataset: ImageNet [149] (224x224)

Method Deep Residual Learning [150]
Model: ResNet-50 v1.5

• Device: Xeon 6258R • Device: Xeon 6258R (miniHPC)
System • Framework: OpenVINO/MXNet/Tensor-

Flow (Configuration 1-3)
• Framework: Unchanged

Table 12.7: Reproduction of OpenVINO experiments submitted by Intel as
part of the MLPerf Inference Benchmark v0.7: image classification (heavy-
weight) task for Server and Offline scenarios. A detailed description of the
systems is available in section 11.2.

of the results, although extremely close (figure 12.22). The tiny differences
should not affect the final performance results: still, we cannot be fully con-
fident about the precision of the steps followed for the software and model
configuration.

In the case of the Server scenario, whose results are shown in figure 12.23,
our execution of the three frameworks precisely reproduced the original
values. As for the original submission, OpenVINO overperforms the other
two frameworks.

‡‡MLPerf v0.7 Inference ResNet-50 v1.5 Offline. Retrieved from https://mlcommons.
org/en/inference-datacenter-07 19 March 2022, entries 0.7-100, 0.7-101 and 0.7-
102. MLPerf name and logo are trademarks. See https://mlcommons.org for more
information.

§§See footnote for Figure 12.22

https://mlcommons.org/en/inference-datacenter-07
https://mlcommons.org/en/inference-datacenter-07
https://mlcommons.org


12.2. MLPERF V0.7 135

0

20

40

60

80

100

OpenVINO MXNet TensorFlow

To
p-

1 
ac

cu
ra

cy
 (

%
)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy

System

Xeon 6258R (Original)

76.292 76.086 76.046

Xeon 6258R (miniHPC)

76.302 76.082 76.096

Figure 12.22: MLPerf Inference v0.7: Image Classification heavyweight.
Model accuracy of Intel submission‡‡ compared to the experiment reproduc-
tion on our system (see Reproduced Experiment, table 12.7).

0

500

1000

1500

2000

OpenVINO MXNet TensorFlow

Q
ue

rie
s 

pe
r 

se
co

nd

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy - Server Scenario

System

(Original) Xeon 6258R2078.13

1798.38
1728.45

miniHPC Xeon 6258R

Figure 12.23: MLPerf Inference v0.7: Image Classification heavyweight,
Server scenario. Intel submission§§ compared to the experiment reproduction
on our system (see Reproduced Experiment, table 12.7).



136 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

We could not obtain similar reproducible results for the Offline scenario
(see figure 12.24): in such case, the performance is 7% to 10% lower.

0

500

1000

1500

2000

2500

3000

3500

OpenVINO MXNet TensorFlow

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy - Offline Scenario

System

(Original) Xeon 6258R

2810.92 2812.41
2714.17

miniHPC Xeon 6258R

2544.95
2623.78

2540.02

Figure 12.24: MLPerf Inference v0.7: Image Classification heavyweight,
Offline scenario. Intel submission¶¶ compared to the experiment reproduc-
tion on our system (see Reproduced Experiment, table 12.7).

If we did a ranking with the results from our experiments, we would
notice the same positions for the three frameworks with MXNet in the first
place and TensorFlow in the last like for the original results. However, the
performance obtained by OpenVINO in the original experiment was very
close to the MXNet ones, while in our execution, they are closer to the
performance of TensorFlow.

Dell used the same Intel’s OpenVINO code in its submission on a dif-
ferent machine which, like the previous case, we could use for an exact
repetition (table 12.7).

Similarly to the Intel example, the accuracy we obtained is marginally
different from the original, but it precisely confirms the previous value (fig-
ure 12.25c). It is worth specifying that we did not copy the previous model
to test over to the new system but reproduced all the same steps from
scratch on the second system.

As already happened with the Intel reproduction, the Server scenario
experiment produced an exact match with the original performance (fig-

¶¶See footnote for Figure 12.22



12.2. MLPERF V0.7 137

Original Experiment Reproduced Exp. 1 Reproduced Exp. 2

Problem Image Classification (Server/Offline scenario) [44]
Dataset: ImageNet [149] (224x224)

Method Deep Residual Learning [150]
Model: ResNet-50 v1.5

• Device: Xeon 8280 • Device: Xeon 8280 (sci-
CORE)

• Device: Xeon 8280 (sci-
CORE)

System • Framework: OpenVINO
(Configuration 1)

• Framework: Unchanged • Framework: OpenVINO
(Configuration 5-6)

Table 12.8: Reproduction of OpenVINO experiments submitted by Dell as
part of the MLPerf Inference Benchmark v0.7: image classification (heavy-
weight) task for Server and Offline scenarios. A detailed description of the
systems is available in section 11.2.

ure 12.25a). It is interesting how the Dell and Intel systems may have such
a substantial variation in performance running this scenario (almost a 30%)
while being similar in terms of the number and frequency of processors as
well as cache and memory specifications.

Finally, we run the Offline scenario, achieving a performance that differs
less than 1% from the original result (see figure 12.25b), meaning we can
reproduce all the Dell experiments (accuracy, Server and Offline scenario).

Analyzing the results, we notice that, unlike the Server scenario, the
performance difference of the Dell and Intel systems is not so relevant. The
Intel performance results show that the first system we benchmarked (Intel
Xeon 6258R) produces results around 10% better than the other system
(Intel Xeon 8280), and this difference becomes lower than 1% based on our
experiments.

Another difference between the OpenVINO submissions are the experi-
ment parameters: although in the Server scenario, the command used to run
the experiment is the same for both systems, for the Offline scenario, there
is a different workload “parallelization” approach. In the Dell submission,
the number of streams, threads and requests is set to the amount of physical
cores available, i.e. 56, and the batch size is kept to 1. Intel, instead, sets
only the number of threads equal to the number of the physical cores while
increasing the batch size to 4 and creating only half streams and requests
compared to the Dell example, i.e. 28. Applying the same Intel strategy to
the second system (Intel Xeon 8280), we fixed number of streams, threads
and requests varying only the batch size to look at the performance be-

∗∗∗MLPerf v0.7 Inference ResNet-50 v1.5 Offline. Retrieved from https://mlcommons.
org/en/inference-datacenter-07 19 March 2022, entry 0.7-94. MLPerf name and logo
are trademarks. See https://mlcommons.org for more information.

https://mlcommons.org/en/inference-datacenter-07
https://mlcommons.org/en/inference-datacenter-07
https://mlcommons.org


138 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

500

1000

1500

2000

OpenVINO 2021.1_PR

Q
ue

rie
s 

pe
r 

se
co

nd

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy - Server Scenario

System

Xeon 8280 (Original)

1523.63

Xeon 8280 (sciCORE)

1523.63

(a) Performance comparison for
Server scenario

0

500

1000

1500

2000

2500

3000

3500

OpenVINO 2021.1_PR

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy - Offline Scenario

System

Xeon 8280 (Original)

2562.40

Xeon 8280 (sciCORE)

2560.17

(b) Performance comparison for Of-
fline scenario

0

20

40

60

80

100

OpenVINO 2021.1_PR

To
p-

1 
ac

cu
ra

cy
 (

%
)

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy

System

Xeon 8280 (Original)

76.292

Xeon 8280 (sciCORE)

76.302

(c) Accuracy comparison

Figure 12.25: MLPerf Inference v0.7: Image Classification heavyweight.
Dell submission∗∗∗ compared to the experiment reproduction on our system
(see Reproduced Experiment, table 12.8).

haviour. Furthermore, we tried not only the OpenMP implementation but
also the TBB one.

Figure 12.26 shows how it is still the parameters’ combination suggested
by Intel that generates the best results, but in our case, it is the TBB
variant of the OpenVINO software reaching the best overall performance.
This last parameters combination reaches a performance of 2635 samples
per second which, even though not a huge improvement, is better than the
original Dell result.



12.2. MLPERF V0.7 139

0

500

1000

1500

2000

2500

3000

3500

OpenVINO 2021.1_PR OpenMP OpenVINO 2021.1_PR TBB

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods

Performance Comparison of Project: MLPerf Inference v0.7

Image Classification Heavy - Offline Scenario

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)

28, 56, 28, 1

28, 56, 28, 2

28, 56, 28, 4

28, 56, 28, 8

Figure 12.26: MLPerf Inference v0.7: Image Classification heavyweight,
Offline scenario. Performance comparison of OpenVINO 2021.1 pre-
version configured with OpenMP and TBB threading using a variable batch
size: running on our system (see Reproduced Exp. 2, table 12.8) using code
submitted by Intel[152].

12.2.2 Reproducibility considerations

Configuration effort Although the information for re-run the code submit-
ted was more complete, the effort to prepare and execute the experiments
was remarkable. Because of the simplicity and flexibility of the prova! ap-
proach, we could integrate all the software configurations in some method-
Types definition. Still, the lack of a common way of setting the experiments
seems to be one of the obstacles to reproducibility.

Imprecise configuration Since we could not get the same results as in the
original experiment, we think we may have some misconfiguration in our
experiment. Except for these, during the configuration of the TensorFlow
code, we found an error affecting the compilation, which is still present in the
newer MLPerf Inference v1.0 submission [154]. After solving this problem,
we could continue but found another issue with a missing configuration
file[155]. We had this issue using the scripts provided in the submission
version v0.7 (the one we wanted to reproduce). We only later figured out



140 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

that Intel updated the file in the sequent version v1.0, which we eventually
used to execute the experiment.

Failing executions The scripts provided for the execution of the TensorFlow
experiment create a “framework within the framework”. Based on the pa-
rameters defined by the user, the execution script virtually splits the host
in different instances, which are used either to send or elaborate requests.
From our experience with it, we found this whole experiment architecture
to be as nice as unstable. It was not easy to find all the valid parameters
combinations, and, even for the valid ones, the executions were randomly
failing (mainly for the Offline scenario).

12.2.3 Performance considerations

Performance vs configuration effort Configuring the three ML frameworks,
i.e. OpenVINO, TensorFlow, MXNet, required a very different amount
of work. Compiling a CPU-optimized TensorFlow is, on its own, time-
consuming and difficult to automate in a CI/CD pipeline since a pipeline
executor usually gets a couple of cores and a limited amount of memory
as resources. On top of this, integrating into prova! the aforementioned
complex scripts built by Intel was not quick, and the misconfigurations made
it even more tedious. On the other hand, MXNet worked almost out of
the box thanks to the precise instructions provided. Still, the steps included
a few patches, and the calibration process was not extremely easy since it
needed an extra step for the dataset preprocessing. From our tests, the
easiest software to set up is OpenVINO. Having simple tools for conversion
and calibration made all the steps trivial, and switching from one version to
another was as easy as changing a line in the container recipe. It is essential
to consider the configuration efforts when looking at the results. Not only
did we get better accuracy and much better performance for the Server
scenario, but even the slightly worse performance in the Offline scenario
may not justify using one of the other frameworks.

12.3 MLPerf v1.1

At the time of writing, the last completed MLPerf Inference benchmark
round is version v1.1. In our experiments, we are not reproducing any
submission from it but use the new benchmark version to run the OpenVINO
submission from MLPerf v0.7 and execute it with both the previous and the



12.3. MLPERF V1.1 141

most recent version of the framework. This experiment aims to show how we
can port the old experiment on a newer prova! driver version and compare
the evolution of the performance in terms of software enhancements.

12.3.1 Image Classification Heavyweight task

As for the other prova! driver version, updating it to the latest benchmark
version took almost no effort and as well on the methodType side, we di-
rectly reuse the one prepared for the previous driver version with a mere
copy/paste. Finally, having all the previous versions of OpenVINO built as
a container, also building the newer OpenVINO version we want to com-
pare against was truly straightforward. Table 12.9 presents the details of
the system used for experimenting the version v1.1 of the MLPerf Inference
benchmark.

Experiment 1 Experiment 2

Problem Image Classification (Server/Offline scenario) [44]
Dataset: ImageNet [149] (224x224)

Method Deep Residual Learning [150]
Model: ResNet-50 v1.5

• Device: Xeon 6258R (miniHPC) • Device: Unchanged
System • Framework: OpenVINO (Configuration 3) • Framework: OpenVINO (Configuration

4)

Table 12.9: OpenVINO experiments using MLPerf Inference Benchmark
v1.1 prova! driver: image classification (heavyweight) task for Offline sce-
nario. A detailed description of the systems is available in section 11.2.

The first check is for any change in accuracy using different versions of
OpenVINO with the old and new models. Figure 12.27 shows a slight change
that is not surprising, but it is curious to see that the model generated
using the new OpenVINO version reaches the exact accuracy shown in the
previous MLPerf benchmark submission (see figure 12.22).

Lastly, in the Offline scenario results, we can see how, on the one hand,
the performance behaviour with different combinations of experiment pa-
rameters did not change and, on the other, the new version of OpenVINO
brings a 2 to 6% improvement regardless of whether using the previous or
current model.



142 CHAPTER 12. MLPERF INFERENCE BENCHMARK EXP.

0

20

40

60

80

100

old (MLPerf v0.7) current

To
p-

1 
ac

cu
ra

cy
 (

%
)

Model

Performance Comparison of Project: MLPerf Inference v1.1

Image Classification Heavy

System

OpenVINO 2021.1pre

76.302

0

OpenVINO 2021.4

76.300 76.292

Figure 12.27: MLPerf Inference v1.1: Image Classification heavyweight.
Model accuracy of different OpenVINO versions running on our system (see
Experiment 1, table 12.9) using code submitted by Intel[152].

0

500

1000

1500

2000

2500

3000

2021.1pre OpenMP 2021.4 OpenMP (old model) 2021.4 OpenMP

S
am

pl
es

 p
er

 s
ec

on
d

Implemented Methods (OpenVINO version)

Performance Comparison of Project: MLPerf Inference v1.1

Image Classification Heavy - Offline Scenario

Parameters (NSTREAMS, NTHREADS, NIREQ, BATCH_SIZE)

28, 56, 28, 1

28, 56, 28, 2

28, 56, 28, 4

28, 56, 28, 8

28, 56, 56, 1

28, 56, 56, 2

28, 56, 56, 4

28, 56, 56, 8

Figure 12.28: MLPerf Inference v1.1: Image Classification heavyweight.
Performance of different OpenVINO versions using a variable inference re-
quests number and batch size: running on our system (see Experiment 2,
table 12.9) using code submitted by Intel[152]. With “old model” we indicate
the model built using the version 2021.1pre of OpenVINO.



Part V

Conclusions and Future Work





Chapter 13

Conclusion and Future Work

There is a long debate around the end of Moore’s law and whether it may
be really at its end or just facing a slowdown. Nevertheless, the increasing
request for computation for a fastly evolving field like machine learning is
undebatable, same as the fact that the traditional CPU architecture strug-
gles to provide such computational power. As machine learning devices and
frameworks are improving to keep up with the increasing request for com-
putation, likewise, all its experimentation needs to happen in a reproducible
manner. Bearing in mind the fundamental importance of reproducibility of
results, using these highly optimized ML-specific hardware architectures to
carry on experiments whose performances are not reproducible is a waste
of time, money and, above all, opportunities.

We discussed the importance of having a benchmark competition in
the machine learning field to push for improvements like it happens for
Linpack benchmark and high-performance computing. For this reason, we
decided to perform a reproducibility study of the most prominent machine
learning benchmark, i.e., MLPerf, taking into account both accuracy and
performance. Our first try was to manually reproduce code written and
documented by a domain expert from a “naive” user point of view. The
main challenges came from manually recreating both the environment and
the setup needed by the experiments. In fact, the documented instructions
may look easy to the expert who wrote them but, obviously, more difficult to
the user who sees them for the first time. If, on the one hand, it is clear that
reproducing an experiment from two years before can always be challenging,
on the other, it would be beneficial to build experiment’s artifacts (code,



146 CHAPTER 13. CONCLUSION AND FUTURE WORK

scripts, documentation) with reproducibility in mind to avoid specifying,
for example, a link to the “latest” version of the documentation, which may
create issues even after a few months. This is just an example of an easily
avoidable bad practice that prevented us from having a smoothly running
experiment and, instead, requested us additional effort to acquire extra
knowledge about the tool we wanted to reproduce, even just to re-run an
existing experiment.

Those challenges relate to our research question about performance re-
producibility in machine learning. To overcome them and answer our ques-
tion, we propose an experiment workflow tool: prova!. With the support
of our experiment taxonomy, we could precisely describe the original ex-
periments and eventual variations as <Problem, Method, System> 3-tuple,
which maps directly into prova!. Using a tool like prova! indeed helps
follow best practices regarding reproducible research. Still, the most chal-
lenging obstacle to overcome on the road to reproducible science is creat-
ing habits in scientists, emphasizing the importance of reproducibility and
adding it to the curricula. There are already efforts in this direction like
the one from the Center for Reproducible Science∗(University of Zurich),
whose mission is precisely to train the next generation of researchers in good
research practices. A further example is given by The Turing Way hand-
book[156]: a collection of guides on reproducible research, project design,
communication, collaboration and ethical research with the aim to “provide
all the information that researchers and data scientists in academia, indus-
try and the public sector need at the start of their projects to ensure that
they are easy to reproduce at the end”.

From the technical point of view, needing enough expertise to deal with
novel devices and get the best performance out of them is unexceptional.
In effect, having a solid base for an experiment does not mean the user will
bypass acquiring the right expertise, but only that he can avoid wasting
time trying to solve naive errors. Regardless, the manual configuration of
software and experiments is an error-prone process even for the expert. We
also had errors during our study, but by automating our workflow, we could
reduce these errors in the first instance and sped up the “re-execution” of
wrong experiments when necessary. Having specific software frameworks to
manage DSAs is undoubted of great help, but this is usually not enough. In
addition, users typically have different interests, which means they may be
highly interested in using optimized code to solve their problems without

∗https://www.crs.uzh.ch/en.html



147

necessarily caring about the detailed explanation of how the optimization
is performed.

These thoughts motivated us to dig into the challenges one faces dur-
ing the experimentation on HPC systems, showing the need for software,
connection and workflow management. We implemented our solutions in
prova! by extending the first version of the tool, adding the support for
containerized software, which supplies an environment “as-Code”, signifi-
cantly sustaining reproducibility and representing implicit documentation.
We also improved aspects like the interaction with the job scheduler and
the experiment workflow management. Those updates allowed us to demon-
strate how a scientist can configure an experiment to run on different sys-
tems and accelerators seamlessly. This ability to re-run an experiment built
on a different system by a different person dramatically lowers the learning
curve, boosts collaboration, and, thus, answers our research question.

Despite being created to support typical HPC applications, prova! can
be used for running various applications thanks to its simple and flexi-
ble design. In the case of the MLPerf benchmark, we went a step further
by adding the “driver” concept to manage the execution of predefined ap-
plications. With the prova! driver for the MLPerf Inference benchmark,
we empowered an easy configuration of the benchmark applications with
the possibility of adding ready-to-run experiments based on the benchmark
submissions. Through prova!, we could compare the original accuracy and
performance benchmark results against both the results obtained using the
same experiment configuration and execution systems as well as against
custom ones.

At the end of our experiments, we can say that we could re-run the
benchmark experiment using the code and the instructions provided by the
original submitter; this worked. However, many other aspects did not work,
like reproducing the configuration steps, which required acquiring informa-
tion from other submissions and examples not part of the benchmark or
providing scripts with values that do not seem correct. As discussed in our
reproducibility considerations of section 12.1.4, we also needed to produce
some fixes that we assume are right, while we got no official confirmation.
Those issues we found for the first benchmark version are absent in the
following versions, but in section 12.2.2, we discussed other issues found in
the newer versions. Even though we most likely found the right solution for
those last issues, we cannot be sure we correctly reproduced all the experi-
ments’ configurations. We think that the effort required by a scientist who
wants to reproduce an existing experiment should not be comparable with



148 CHAPTER 13. CONCLUSION AND FUTURE WORK

the ones needed to produce the original one: this is not reflecting the situ-
ation we faced during our work. Instead, we could show how we automated
the experiment configuration and execution using prova! as a driver to pro-
vide the basic blocks to configure and run the MLPerf benchmark. At the
same time, the code developer builds his experiment defining a methodType
in prova! (environment and scripts needed), which will be an easy task for
the code expert. This way, a different user can reproduce the experiment
by pressing a button in an interface and, most importantly, even build new
experiments to get more insights and not just threaten someone else’s code
as a black box, which is the answer we provide to our last research question.

Besides the reproducibility of an experiment, we also need to consider
the importance of the results generated and how researchers can use them.
Recently, the Swissuniversities organization developed a national strategy
and an action plan for Open Research Data (ORD) activities [157], funding
initiatives for ORD practices by researchers across disciplines and higher ed-
ucation institutions in Switzerland [158]. They aim to support reproducible
research findings by open access and reuse of research data. Nevertheless,
it is fair to point out the importance of not only making data available but
also defining the steps needed to regenerate them. If, on the one hand,
reproducibility increases the credibility of the research, on the other, an in-
dependent research group that reproduces this data make it sounder or even
richer when it performs variations of the initial experiment and contributes
the new data generated back.

Finally, from a software engineering perspective, we demonstrated some
prova! proprerties like the extensibility with the enhancements presented
in section 9.1, the adaptability to the MLPerf benchmark support using
the driver mode (see section 9.3), the portability, principally to Linux/U-
nix systems, using the container support (see section 9.2) and, in general,
reusability.

The work accomplished in this thesis can be viewed as support to raise
awareness of the importance of reproducibility for scientific research and,
particularly, the machine learning field. Still, there are many possible ex-
tensions to it. We showed how the MLPerf prova! driver could be used
to reproduce some of the results submitted. To experiment with all the
submissions, a user will need access to several different systems, which is
not practicable. Nevertheless, there are still numerous submissions that can
be configured into the driver. Some of the latest submissions are leveraging
other frameworks like Triton Inference Server [159] from NVidia, which will
need to be tested in prova! to understand how it would be possible to in-



149

tegrate it. Moreover, the Inference benchmark has added other metrics like
power/energy consumption which would be extremely important to test to
cover ML inference on tiny devices.

Among the MLPerf benchmark suites, the Inference one is the less ex-
pensive in terms of computation and, thus, usually, execute on one node
only. Instead, benchmarks like the MLPerf Training and the MLPerf HPC
use a much larger amount of resources. Albeit prova! was already used in
the past to run multi nodes HPC applications, it would be interesting to
test how those new benchmarks integrate with prova!.

As discussed in section 6.2, the MLPerf community also started an of-
ficial project to support the benchmark experiment reproducibility, i.e.,
MLCube™, while MLCommons took one of the other tools, i.e., Collective
Knowledge under its umbrella. Those are, clearly, steps in the right di-
rection and an opportunity for direct comparison and, possibly, integration
with prova!

Extensively trying all the combinations of an experiment is not some-
thing a single user can do. Instead, it would be helpful to create a place
where, as a community effort, people can store the results of their exper-
iments. Other research groups can analyse those raw results and possibly
get new/different insights.

In [160], we presented a possible architecture to interface prova! with
different frontends based on the type of user accessing the tool. We created
a prototype implementation of a Jupyter Notebook extension, but since the
Jupyter community moves its default interface from the Notebook to the
Lab, we will need to rework our prova! extension for Jupyter.

Ultimately, we want to reinforce that, to help machine learning research
move forward, it is fundamental to foster collaboration, aiding reproducibil-
ity.





Appendix A

MLPerf containers

A.1 MLPerf Inference v0.5: OpenVINO ex-
ample

To build the environment needed to execute the OpenVINO experiments
on the Intel GPU, we used several container as building blocks. We started
from containers including the CPU dependencies (see Listing A.1) for Open-
VINO and on top of this we add the Intel GPU support (see Listing A.2).
Those first 2 containers are used to speed up the build of the actual Open-
VINO container (see Listing A.3). Finally, we add the MLPerf Inference
benchmark files (see Listing A.4), showing also how to run the OpenVINO
model conversion as part of the container build process.

FROM ubuntu :18.04

ENV DEBIAN_FRONTEND="noninteractive" \
LC_ALL="C.UTF -8" \
LANG="C.UTF -8" \
LANGUAGE="C.UTF -8" \
OPENCV_VERSION="4.1.2" \
PYTHON_VERSION="3.6"

RUN apt -get update && \
apt -get install -y --no-install -recommends \

git \
cmake \
build -essential \
curl \
unzip \
ca-certificates \
sudo \
python${PYTHON_VERSION}-dev \



152 APPENDIX A. MLPERF CONTAINERS

python${PYTHON_VERSION}-distutils && \
apt -get clean && \
rm -rf /var/lib/apt/lists/*

RUN cd /usr/bin/ && \
ln -s python3 python && \
cd / && \
curl https :// bootstrap.pypa.io/get -pip.py -o /get -pip.py && \
python${PYTHON_VERSION} /get -pip.py && \
rm /get -pip.py && \
python${PYTHON_VERSION} -m pip install \

numpy \
cython && \

curl -LO https :// github.com/opencv/opencv/archive/${OPENCV_VERSION }.zip
&& \

unzip -q ${OPENCV_VERSION }.zip && \
rm ${OPENCV_VERSION }.zip && \
cd /opencv -${OPENCV_VERSION} && \
mkdir build && cd build && \
cmake \

-DPYTHON_EXECUTABLE="/usr/bin/python${PYTHON_VERSION}" \
-DPYTHON3_LIBRARY="/usr/lib/x86_64 -linux -gnu/libpython${

PYTHON_VERSION}m.so" \
-DPYTHON3_INCLUDE_DIR="/usr/include/python${PYTHON_VERSION}" \
-DCMAKE_INSTALL_PREFIX="/opt/opencv" \
.. && \

cmake --build . && make install

ENV OpenCV_DIR="/opt/opencv/lib/cmake/opencv4"

Listing A.1: Dockerfile with OpenVINO CPU dependencies

FROM provarepro/openvino :2019 _c_deps -ubuntu18

ARG BASE_URL="https :// github.com/intel/compute -runtime/releases/download" \
VER="19.41.14441"

#Install Intel Graphics Compute Runtime for OpenCL Driver package
19.04.12237.

RUN apt -get update && \
apt -get install -y --no-install -recommends ocl -icd -libopencl1 && \
rm -rf /var/lib/apt/lists/* && \
mkdir /neo && cd /neo && \
curl -LO /intel -gmmlib_19 .3.2 _amd64.deb && \
curl -LO ${BASE_URL }/${VER}/intel -igc -core_1 .0.2597 _amd64.deb && \
curl -LO ${BASE_URL }/${VER}/intel -igc -opencl_1 .0.2597 _amd64.deb && \
curl -LO ${BASE_URL }/${VER}/intel -opencl_19 .41.14441 _amd64.deb && \
curl -LO ${BASE_URL }/${VER}/intel -ocloc_19 .41.14441 _amd64.deb && \
sudo dpkg -i *.deb && \
ldconfig && \
cd / && rm -rf /neo

Listing A.2: Dockerfile with Intel GPU support for OpenVINO

FROM openvino/ubuntu18_runtime :2019 _R3.1 as runtime
FROM provarepro/openvino :2019 _cg_deps -ubuntu18



A.1. MLPERF INFERENCE V0.5: OPENVINO EXAMPLE 153

ARG OV_REL="releases /2019/pre -release"

RUN git clone \
--depth 1 \
--single -branch \
-b ${OV_REL} \
https :// github.com/openvinotoolkit/openvino.git && \

cd /openvino && \
git submodule update --init --recursive && \
cd inference -engine && \
./ install_dependencies.sh && \
cd /usr/bin/ && rm python && \
ln -s python3 python && \
cd /openvino/inference -engine && \
mkdir build && cd build && \
cmake \

-DCMAKE_BUILD_TYPE=Release \
-DTHREADING=OMP \
-DENABLE_DLIA=OFF \
-DENABLE_VPU=OFF \
-DENABPP=OFF \
-DENABLE_PROFILING_ITT=OFF \
-DENABLE_VALIDATION_SET=OFF \
-DENABLE_TESTS=OFF \
-DENABLE_GNA=OFF \
-DENABLE_CLDNN=ON \
-DENABLE_MKL_DNN=ON \
-DENABLE_OPENCV=OFF \
.. && \

make --jobs=$(nproc --all) && \
sed -i '/<plugins >/a \ <plugin name="MULTI" location ="

libMultiDevicePlugin.so">\n </plugin >' \
/openvino/inference -engine/bin/intel64/Release/lib/plugins.xml

#Copy MULTI plugin from official release
COPY --from=runtime \

/opt/intel/openvino/deployment_tools/inference_engine/lib/intel64/
libMultiDevicePlugin.so \

/openvino/inference -engine/bin/intel64/Release/lib/
libMultiDevicePlugin.so

ENV LD_LIBRARY_PATH="/openvino/inference -engine/temp/omp/lib/:/ opt/opencv/
lib:/ openvino/inference -engine/bin/intel64/Release/lib" \
InferenceEngine_DIR="/openvino/inference -engine/build"

# Creating user openvino
RUN useradd -ms /bin/bash -G users openvino && \

chown openvino -R /home/openvino

USER openvino

CMD ["/bin/bash"]

Listing A.3: Dockerfile for the final OpenVINO version 2019 pre container
with GPU support built using OpenMP threading

FROM provarepro/openvino :2019_pre -release_cg_omp -py36 -gcc75 -ubuntu18 as
base



154 APPENDIX A. MLPERF CONTAINERS

FROM openvino/ubuntu18_dev :2019 _R3.1 as builder
WORKDIR /tmp

ARG BASE_URL="https :// zenodo.org/record"
RUN curl -O ${BASE_URL }/3401714/ files/

ssd_mobilenet_v1_quant_ft_no_zero_point_frozen_inference_graph.pb && \
curl -O ${BASE_URL }/3252084/ files/mobilenet_v1_ssd_8bit_finetuned.tar.

gz && \
tar xf mobilenet_v1_ssd_8bit_finetuned.tar.gz && \
rm mobilenet_v1_ssd_8bit_finetuned.tar.gz && \
cp mobilenet_v1_ssd_finetuned/pipeline.config . && \
rm -rf mobilenet_v1_ssd_finetuned && \
python3 /opt/intel/openvino/deployment_tools/model_optimizer/mo.py \

--input_model /tmp/
ssd_mobilenet_v1_quant_ft_no_zero_point_frozen_inference_graph.
pb \

--input_shape [1 ,300 ,300 ,3] \
--tensorflow_use_custom_operations_config /opt/intel/openvino/

deployment_tools/model_optimizer/extensions/front/tf/
ssd_v2_support.json \

--tensorflow_object_detection_api_pipeline_config /tmp/pipeline.
config

FROM base
USER root
WORKDIR /

# Install Boost
RUN apt -get update && \

apt -get install -y --no-install -recommends \
cmake \
build -essential \
git \
wget \
libicu -dev \
libbz2 -dev \
liblzma -dev && \

apt -get clean && \
rm -rf /var/lib/apt/lists/*

ENV BOOST_VERSION="1.71.0" \
_BOOST_VERSION="1_71_0"

ARG BASE_URL="https :// boostorg.jfrog.io/artifactory/main/release"
RUN wget -q ${BASE_URL }/${BOOST_VERSION }/ source/boost_${_BOOST_VERSION }.tar

.gz && \
tar xf boost_${_BOOST_VERSION }.tar.gz && \
cd boost_${_BOOST_VERSION} && \
./ bootstrap.sh --with -libraries=system && \
./b2 --with -system install && \
cd / && rm -rf boost_*

RUN python${PYTHON_VERSION} -m pip install --ignore -installed --no-cache -
dir \

absl -py \
pybind11 && \

git clone \
--recurse -submodules \
--single -branch \



A.1. MLPERF INFERENCE V0.5: OPENVINO EXAMPLE 155

-b r0.5 \
https :// github.com/mlcommons/inference.git /mlperf_inference && \

cd /mlperf_inference && \
git config --global user.email "antonio.maffia@gmail.com" && \
git config --global user.name "fenz" && \
git pull --no -commit --force origin pull /502/ head && \
git pull --no -commit origin pull /482/ head && \
git commit -m "merge PRs" && \
mkdir loadgen/build && cd loadgen/build && \
cmake .. && cmake --build . && \
cp libmlperf_loadgen.a .. && \
rm -r /mlperf_inference/loadgen/build && \
cp -r /mlperf_inference/loadgen /mlperf_loadgen && \
rm -rf /mlperf_inference

RUN CODE_PATH="closed/Intel/code/ssd -small/openvino -linux" && \
git clone \

--depth 1 \
-b code \
--single -branch \
https :// github.com/fenz -org/mlperf_inference_results_v0 .5. git

inference_results_v0 .5 && \
mv inference_results_v0 .5/${CODE_PATH} /mlperf_inference && \
rm -rf inference_results_v0 .5

WORKDIR /mlperf_inference
RUN mkdir build && cd build && \

cmake \
-DLOADGEN_DIR =/ mlperf_loadgen \
-DIE_SRC_DIR=${InferenceEngine_DIR }/../ src \
-DBOOST_SYSTEM_LIB =/usr/local/lib/libboost_system.so \
-DCMAKE_BUILD_TYPE=Release \
.. && \

cmake --build . --config Release

COPY --from=builder \
/tmp/

ssd_mobilenet_v1_quant_ft_no_zero_point_frozen_inference_graph
.xml \

/mlperf_inference/model/ssd -mobilenet.xml

COPY --from=builder \
/tmp/

ssd_mobilenet_v1_quant_ft_no_zero_point_frozen_inference_graph
.bin \

/mlperf_inference/model/ssd -mobilenet.bin

COPY --from=builder \
/tmp/

ssd_mobilenet_v1_quant_ft_no_zero_point_frozen_inference_graph
.mapping \

/mlperf_inference/model/ssd -mobilenet.mapping

USER openvino

Listing A.4: Dockerfile OpenVINO 2019 pre with MLPerf Inference
benchmark v0.5



156 APPENDIX A. MLPERF CONTAINERS

A.2 MLPerf Inference v0.7: OpenVINO ex-
ample

In the version v0.7 of MLPerf Inference benchmark we use the OpenVINO
version 2021.1 pre . We starting building the container with CPU depen-
dencies (see Listing A.5) and we compile OpenVINO on top of it (see List-
ing A.6) using TBB threading configuration. This can be done changing
the line with the -DTHREADING cmake option. The final MLPerf Infer-
ence benchmark version v0.7 with OpenVINO is built using the Dockerfile
in Listing A.7. We added the Gflags build as documented by Intel.

FROM ubuntu :18.04

SHELL ["/bin/bash", "-xo", "pipefail", "-c"]

ENV DEBIAN_FRONTEND="noninteractive" \
LC_ALL="C.UTF -8" \
LANG="C.UTF -8" \
LANGUAGE="C.UTF -8" \
OPENCV_VERSION="4.1.2" \
CMAKE_VERSION="3.17.2" \
PYTHON_VERSION="3.6"

RUN apt -get update && \
apt -get install -y --no-install -recommends \

git \
build -essential \
curl \
unzip \
ca -certificates \
sudo \
python${PYTHON_VERSION}-dev \
python${PYTHON_VERSION}-distutils && \

apt -get clean && \
rm -rf /var/lib/apt/lists/*

ARG OV_VER="releases /2021/1. pre"
RUN git clone \

--depth 1 \
--single -branch \
-b ${OV_VER} \
https :// github.com/openvinotoolkit/openvino.git && \

cd /openvino && \
git submodule update --init --recursive && \
./ install_dependencies.sh

RUN apt -get purge -y cmake && \
rm -rf /var/lib/apt/lists/*

RUN cd /usr/bin/ && rm python && \
ln -s python3 python && \
cd / && \
curl https :// bootstrap.pypa.io/get -pip.py -o /get -pip.py && \
python${PYTHON_VERSION} /get -pip.py && \



A.2. MLPERF INFERENCE V0.7: OPENVINO EXAMPLE 157

rm /get -pip.py && \
python${PYTHON_VERSION} -m pip install \

numpy \
cython \
cmake ==${CMAKE_VERSION} && \

curl -LO https :// github.com/opencv/opencv/archive/${OPENCV_VERSION }.zip
&& \

unzip -q ${OPENCV_VERSION }.zip && \
rm ${OPENCV_VERSION }.zip && \
cd /opencv -${OPENCV_VERSION} && \
mkdir build && cd build && \
cmake \

-DPYTHON_EXECUTABLE =/usr/bin/python${PYTHON_VERSION} \
-DPYTHON3_LIBRARY =/usr/lib/x86_64 -linux -gnu/libpython${

PYTHON_VERSION}m.so \
-DPYTHON3_INCLUDE_DIR =/usr/include/python${PYTHON_VERSION} \
-DCMAKE_INSTALL_PREFIX =/opt/opencv \
.. && \

cmake --build . && make install && \
rm -rf /opencv -${OPENCV_VERSION}

ENV OpenCV_DIR="/opt/opencv/lib/cmake/opencv4"

Listing A.5: Dockerfile OpenVINO version 2021.1 pre CPU dependencies

FROM provarepro/openvino :2021.1 pre_c_deps -ubuntu18

RUN cd /openvino && \
mkdir build && cd build && \
cmake \

-DCMAKE_BUILD_TYPE=Release \
-DENABLE_PYTHON=ON \
-DPYTHON_EXECUTABLE =/usr/bin/python${PYTHON_VERSION} \
-DPYTHON_LIBRARY =/usr/lib/x86_64 -linux -gnu/libpython${

PYTHON_VERSION}m.so \
-DPYTHON_INCLUDE_DIR =/usr/include/python${PYTHON_VERSION} \
-DENABLE_OPENCV=OFF \
-DENABLE_VPU=OFF \
-DENABLE_CLDNN=OFF \
-DENABLE_GNA=OFF \
-DENABLE_TESTS=OFF \
-DTHREADING=TBB \
**- DNGRAPH_ONNX_IMPORT_ENABLE=OFF \
-DNGRAPH_DEPRECATED_ENABLE=FALSE** \
.. && \

make --jobs=$(nproc --all)

ENV LD_LIBRARY_PATH="/opt/opencv/lib:/ openvino/bin/intel64/Release/lib" \
InferenceEngine_DIR="/openvino/build"

# Creating user openvino
RUN useradd -ms /bin/bash -G users openvino && \

chown openvino -R /home/openvino

USER openvino
CMD ["/bin/bash"]



158 APPENDIX A. MLPERF CONTAINERS

Listing A.6: Dockerfile for the final OpenVINO version 2019 pre container
with GPU support built using TBB threading

ARG OV_VER="2021.1 pre"
ARG HW_VER="c"
ARG THREAD_VER="tbb"
ARG PY_VER="py36"
ARG GCC_VER="gcc75"
ARG BASEOS_VER="ubuntu18"

FROM provarepro/openvino:${OV_VER}_${HW_VER}_${THREAD_VER}-${PY_VER}-${
GCC_VER}-${BASEOS_VER}

USER root
WORKDIR /

# Build Gflags
RUN git clone https :// github.com/gflags/gflags.git && \

mkdir gflags/build && cd gflags/build && \
cmake .. && make

ENV gflags_DIR="/gflags/build"

# Install Boost
# Build Boost -Filesystem
RUN apt -get update && \

apt -get install -y --no-install -recommends \
cmake \
build -essential \
git \
wget \
libicu -dev \
libbz2 -dev \
liblzma -dev && \

apt -get clean && \
rm -rf /var/lib/apt/lists/*

ENV BOOST_VERSION="1.72.0" \
_BOOST_VERSION="1_72_0"

ARG BASE_URL="https :// boostorg.jfrog.io/artifactory/main/release"
RUN wget -q ${BASE_URL }/${BOOST_VERSION }/ source/boost_${_BOOST_VERSION }.tar

.gz && \
tar xf boost_${_BOOST_VERSION }.tar.gz && \
cd boost_${_BOOST_VERSION} && \
./ bootstrap.sh --with -libraries=system && \
./b2 --with -filesystem

ENV BOOST_DIR="/boost_${_BOOST_VERSION}"

# Build MLPerf LoadGen
ARG MLPERF_LOADGEN_VER="r0.7"
RUN python${PYTHON_VERSION} -m pip install --ignore -installed --no-cache -

dir \
absl -py \
pybind11



A.2. MLPERF INFERENCE V0.7: OPENVINO EXAMPLE 159

RUN git clone \
--recurse -submodules \
--single -branch \
-b ${MLPERF_LOADGEN_VER} \
https :// github.com/mlcommons/inference.git /mlperf_inference && \

cd /mlperf_inference && \
git checkout cf15214 && \
mkdir loadgen/build && cd loadgen/build && \
cmake .. && cmake --build . && \
cp libmlperf_loadgen.a .. && \
rm -r /mlperf_inference/loadgen/build && \
cp -r /mlperf_inference/loadgen /mlperf_loadgen && \
rm -rf /mlperf_inference

USER openvino

Listing A.7: Dockerfile OpenVINO 2021.1 pre with MLPerf Inference
benchmark v0.7





Bibliography

[1] OpenAI. AI and Compute. https://openai.com/blog/ai-and-compute.
[Online; accessed 07-March-2021]. [cited at p. 1, 17]

[2] Antonio Maffia, Helmar Burkhart, and Danilo Guerrera. Reproducibility
in Practice: Lessons Learned from Research and Teaching Experiments. In
Sascha Hunold, Alexandru Costan, Domingo Giménez, Alexandru Iosup,
Laura Ricci, María Engracia Gómez Requena, Vittorio Scarano, Ana Lu-
cia Varbanescu, Stephen L. Scott, Stefan Lankes, Josef Weidendorfer, and
Michael Alexander, editors, Euro-Par 2015: Parallel Processing Workshops,
pages 592–603, Cham, 2015. Springer International Publishing. [cited at p. 2,

4, 55]

[3] D. Guerrera, A. Maffia, and H. Burkhart. Reproducible stencil compiler
benchmarks using PROVA! Future Generation Computer Systems, 92:933–
946, 2019. [cited at p. 2, 4, 57]

[4] Antonio Maffia. Reproducing ML benchmarks: What works what doesn’t
work, 2023. Under Review. [cited at p. 4]

[5] D. Guerrera, H. Burkhart, and A. Maffia. Reproducible Stencil Compiler
Benchmarks Using PROVA! In 2016 7th International Workshop on Per-
formance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), pages 108–115. IEEE, 2016. [cited at p. 4, 33]

[6] H. Burkhart, D. Guerrera, and A. Maffia. No more Be-
lieve Me : Make Your Informatics Experiments Reproducible.
http://www.informatics-europe.org/images/ECSS/ECSS2015/
ECCS2015-Burkhart.pdf, 2015. Presented as a poster in the 11th
European Computer Science Summit (ECSS 2015). [cited at p. 4]

[7] Helmar Burkhart, Danilo Guerrera, and Antonio Maffia. Trusted High-
Performance Computing in the Classroom. In Proceedings of the Workshop

https://openai.com/blog/ai-and-compute
http://www.informatics-europe.org/images/ECSS/ECSS2015/ECCS2015-Burkhart.pdf
http://www.informatics-europe.org/images/ECSS/ECSS2015/ECCS2015-Burkhart.pdf


162 BIBLIOGRAPHY

on Education for High-Performance Computing, EduHPC ’14, page 27–33.
IEEE Press, 2014. [cited at p. 5]

[8] Danilo Guerrera, Helmar Burkhart, and Antonio Maffia. Reproducible Ex-
periments in Parallel Computing: Concepts and Stencil Compiler Bench-
mark Study. In Luís Lopes, Julius Žilinskas, Alexandru Costan, Roberto G.
Cascella, Gabor Kecskemeti, Emmanuel Jeannot, Mario Cannataro, Laura
Ricci, Siegfried Benkner, Salvador Petit, Vittorio Scarano, José Gracia,
Sascha Hunold, Stephen L. Scott, Stefan Lankes, Christian Lengauer, Je-
sus Carretero, Jens Breitbart, and Michael Alexander, editors, Euro-Par
2014: Parallel Processing Workshops, pages 464–474, Cham, 2014. Springer
International Publishing. [cited at p. 5, 32, 33, 46]

[9] J. L. Hennessy and D. A. Patterson. A New Golden Age for Computer
Architecture. Commun. ACM, 62(2):48–60, January 2019. [cited at p. 9, 14]

[10] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In 2011 38th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 365–376, 2011.
[cited at p. 9]

[11] Wikipedia contributors. Transistor count — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Transistor%
20count&oldid=1005210655, 2021. [Online; accessed 07-February-2021].
[cited at p. 10]

[12] F. Peper. The End of Moore’s Law: Opportunities for Natural Computing?
New Generation Computing, 35(3):253–269, Jul 2017. [cited at p. 10]

[13] P. Ye, T. Ernst, and M. V. Khare. The last silicon transistor: Nanosheet de-
vices could be the final evolutionary step for Moore’s Law. IEEE Spectrum,
56(8):30–35, 2019. [cited at p. 10, 11]

[14] R. M. Koduri. No Transistor Left Behind. In 2020 IEEE Hot Chips 32
Symposium (HCS), pages 1–87, 2020. [Conference keynote]. [cited at p. 11,

16]

[15] The International Roadmap for Devices and Systems. 2020 Update: More
Moore. Available at https://irds.ieee.org/images/files/pdf/2020/
2020IRDS_MM.pdf, 2020. [Online; accessed 04-January-2021]. [cited at p. 11]

[16] M. Lapedus. Big Trouble At 3nm. https://semiengineering.com/
big-trouble-at-3nm/, Jun 2018. [Online; accessed 06-February-2021].
[cited at p. 11]

https://en.wikipedia.org/w/index.php?title=Transistor%20count&oldid=1005210655
https://en.wikipedia.org/w/index.php?title=Transistor%20count&oldid=1005210655
https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
https://irds.ieee.org/images/files/pdf/2020/2020IRDS_MM.pdf
https://semiengineering.com/big-trouble-at-3nm/
https://semiengineering.com/big-trouble-at-3nm/


BIBLIOGRAPHY 163

[17] G. E. Moore. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114
ff. IEEE Solid-State Circuits Society Newsletter, 11(3):33–35, 2006.
[cited at p. 11]

[18] C. Mack. The Multiple Lives of Moore’s Law. IEEE Spectrum, 52(4):31–31,
2015. [cited at p. 11]

[19] P. Benioff. The computer as a physical system: A microscopic quan-
tum mechanical Hamiltonian model of computers as represented by Tur-
ing machines. Journal of Statistical Physics, 22(5):563–591, May 1980.
[cited at p. 11]

[20] J. Preskill. Quantum computing and the entanglement frontier, 2012.
[cited at p. 11]

[21] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habeg-
ger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi,
J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Land-
huis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R. McClean,
M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus,
O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C.
Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J.
Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher,
B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and
J. M. Martinis. Quantum supremacy using a programmable superconduct-
ing processor. Nature, 574(7779):505–510, Oct 2019. [cited at p. 11]

[22] E. Pednault, J. A. Gunnels, G. Nannicini, L. Horesh, and R. Wisnieff.
Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Cir-
cuits, 2019. [cited at p. 11]

[23] J. Shalf. The future of computing beyond Moore’s Law. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences, 378(2166):20190061, 2020. [cited at p. 11]

[24] General Electric. GE-205/215/225 Auxiliary Arithmetic Unit, Jan 1964.
Available at http://www.bitsavers.org/www.computer.museum.uq.edu.
au/pdf/CPB-325A%20GE225%20Auxiluary%20Arithmetic%20Unit.pdf,
Rev. March 1965, [Online; accessed 04-January-2021]. [cited at p. 12]

http://www.bitsavers.org/www.computer.museum.uq.edu.au/pdf/CPB-325A%20GE225%20Auxiluary%20Arithmetic%20Unit.pdf
http://www.bitsavers.org/www.computer.museum.uq.edu.au/pdf/CPB-325A%20GE225%20Auxiluary%20Arithmetic%20Unit.pdf


164 BIBLIOGRAPHY

[25] N. Thompson and S. Spanuth. The Decline of Computers As a General Pur-
pose Technology: Why Deep Learning and the End of Moore’s Law are Frag-
menting Computing. Available at SSRN: https://ssrn.com/abstract=
3287769, [Online; accessed 23-January-2021], Nov 2018. [cited at p. 12, 16]

[26] R. M. Russell. The CRAY-1 Computer System. Commun. ACM,
21(1):63–72, January 1978. [cited at p. 13]

[27] Jen-Hsun Huang. 2009: The GPU computing tipping point. In 2009 IEEE
Hot Chips 21 Symposium (HCS), pages 1–29, 2009. [cited at p. 13]

[28] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tut-
tle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-
Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH
Comput. Archit. News, 45(2):1–12, June 2017. [cited at p. 13]

[29] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl. There’s plenty of room at the
Top: What will drive computer performance after Moore’s law? Science,
368(6495), 2020. [cited at p. 14]

[30] TOP500, The List. https://www.top500.org, Nov 2020. [Online; accessed
18-February-2021]. [cited at p. 15]

[31] G. Chrysos. Intel® Xeon Phi coprocessor (codename Knights Corner). In
2012 IEEE Hot Chips 24 Symposium (HCS), pages 1–31, 2012. [cited at p. 16]

[32] N. Ali, D. Bradford, S. Chinthamani, J. Corbal, A. Hassan, and K. Janik.
Knights Mill: Intel Xeon Phi Processor for Machine Learning. In 2017 IEEE
Hot Chips 29 Symposium (HCS), August 2017. [cited at p. 16]

[33] Intel. Intel Acquires Artificial Intelligence Chipmaker Habana Labs.
https://newsroom.intel.com/news-releases/intel-ai-acquisition,
Dec 2019. [Online; accessed 06-March-2021]. [cited at p. 16]

https://ssrn.com/abstract=3287769
https://ssrn.com/abstract=3287769
https://www.top500.org
https://newsroom.intel.com/news-releases/intel-ai-acquisition


BIBLIOGRAPHY 165

[34] D. E. Shaw, J. P. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao,
M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton, A. Forte, J. Gagliardo,
G. Gill, B. Greskamp, C. R. Ho, D. J. Ierardi, L. Iserovich, J. S. Kuskin,
R. H. Larson, T. Layman, L. Lee, A. K. Lerer, C. Li, D. Killebrew, K. M.
Mackenzie, S. Y. Mok, M. A. Moraes, R. Mueller, L. J. Nociolo, J. L. Peti-
colas, T. Quan, D. Ramot, J. K. Salmon, D. P. Scarpazza, U. B. Schafer,
N. Siddique, C. W. Snyder, J. Spengler, P. T. P. Tang, M. Theobald,
H. Toma, B. Towles, B. Vitale, S. C. Wang, and C. Young. Anton 2:
Raising the Bar for Performance and Programmability in a Special-Purpose
Molecular Dynamics Supercomputer. In SC ’14: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage
and Analysis, pages 41–53, 2014. [cited at p. 16]

[35] John McCarthy. What is AI? Available at http://jmc.stanford.edu/
articles/whatisai/whatisai.pdf, 2007. [Online; accessed 04-February-
2022]. [cited at p. 19]

[36] McKenna Fitzgerald, Aaron Boddy, and Seth D. Baum. 2020 survey of
artificial general intelligence projects for ethics, risk, and policy. Technical
Report 20-1, Global Catastrophic Risk Institute, 2020. [cited at p. 19]

[37] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree
search. Nature, 529:484–503, 2016. [cited at p. 20]

[38] Frank Rosenblatt. The perceptron - a perceiving and recognizing automa-
ton. Technical Report 85-460-1, Cornell Aeronautical Laboratory, Ithaca,
New York, January 1957. [cited at p. 21]

[39] J J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences,
79(8):2554–2558, 1982. [cited at p. 21]

[40] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
Representations by Back-propagating Errors. Nature, 323(6088):533–536,
1986. [cited at p. 21]

[41] Carver Mead and Mohammed Ismail, editors. Analog VLSI Implementation
of Neural Systems. The Kluwer International Series in Engineering and
Computer Science. Kluwer / Springer US, 1989. [cited at p. 21]

http://jmc.stanford.edu/articles/whatisai/whatisai.pdf
http://jmc.stanford.edu/articles/whatisai/whatisai.pdf


166 BIBLIOGRAPHY

[42] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
classification with deep convolutional neural networks. Commun. ACM,
60(6):84–90, may 2017. [cited at p. 22]

[43] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. Bench-
mark analysis of representative deep neural network architectures. IEEE
Access, 6:64270–64277, 2018. [cited at p. 22]

[44] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guen-
ther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe,
Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam
Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gard-
ner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St.
John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Fran-
cisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady
Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sir-
asao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu,
Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao
Zhang, and Yuchen Zhou. MLPerf Inference Benchmark, 2020. [cited at p. 22,

37, 38, 85, 111, 113, 114, 120, 124, 128, 134, 137, 141]

[45] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das,
Kunal Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jam-
malamadaka, Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo Park,
Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan, Abhisek
Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of
BFLOAT16 for deep learning training, 2019. [cited at p. 24]

[46] Intel. 3rd Gen Intel Xeon Scalable processors. Product Brief, 2021.
[cited at p. 24]

[47] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan, and Brucek
Khailany. 3.2 The A100 Datacenter GPU and Ampere Architecture. In 2021
IEEE International Solid- State Circuits Conference (ISSCC), volume 64,
pages 48–50, 2021. [cited at p. 24]

[48] Paresh Kharya. TensorFloat-32 in the A100 GPU Accelerates AI Train-
ing, HPC up to 20x. https://blogs.nvidia.com/blog/2020/05/14/
tensorfloat-32-precision-format, May 2020. [Online; accessed 21-
March-2022]. [cited at p. 25]

[49] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza.
Dissecting the Graphcore IPU architecture via microbenchmarking, 2019.
[cited at p. 25]

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format


BIBLIOGRAPHY 167

[50] Cerebras. Cerebras systems: Achieving industry best AI performance
through a systems approach. Technical report, Cerebras, April 2021.
[cited at p. 25]

[51] Tensorflow. API documentation. https://www.tensorflow.org/
versions/r2.8/api_docs. [Online; accessed 11-February-2022].
[cited at p. 28]

[52] PyTorch. PyTorch documentation. https://pytorch.org/docs/1.10/
index.html. [Online; accessed 11-February-2022]. [cited at p. 28]

[53] ONNX Runtime. ORT API docs. https://onnxruntime.ai/docs/api/.
[Online; accessed 11-February-2022]. [cited at p. 28]

[54] ONNX Runtime. ONNX runtime execution providers. https://
onnxruntime.ai/docs/execution-providers/. [Online; accessed 11-
February-2022]. [cited at p. 28]

[55] ONNX Runtime. ONNX runtime for training. https://onnxruntime.ai/
docs/#onnx-runtime-for-training. [Online; accessed 11-February-2022].
[cited at p. 28]

[56] OpenVINO. API reference. https://docs.openvino.ai/2021.4/api/api_
reference.html. [Online; accessed 11-February-2022]. [cited at p. 28]

[57] Nvidia. TensorRT documentation. https://docs.nvidia.com/
deeplearning/tensorrt/archives/tensorrt-823/api/index.html. [On-
line; accessed 11-February-2022]. [cited at p. 28]

[58] Theano. API documentation. https://theano-pymc.readthedocs.io/
en/latest/library/index.html. [Online; accessed 11-February-2022].
[cited at p. 28]

[59] Aesara. https://aesara.readthedocs.io/en/latest/, 2022. [Online; ac-
cessed 11-February-2022]. [cited at p. 28]

[60] Facebook. Caffe2 C++ and Python APIs. https://caffe2.ai/docs/
api-intro.html. [Online; accessed 11-February-2022]. [cited at p. 28]

[61] Preferred Networks. Chainer Docs - API Reference. https://docs.
chainer.org/en/v7.8.1/reference/index.html. [Online; accessed 11-
February-2022]. [cited at p. 28]

[62] Apache. MXNet Docs. https://mxnet.apache.org/versions/1.9.0/api.
[Online; accessed 11-February-2022]. [cited at p. 28]

https://www.tensorflow.org/versions/r2.8/api_docs
https://www.tensorflow.org/versions/r2.8/api_docs
https://pytorch.org/docs/1.10/index.html
https://pytorch.org/docs/1.10/index.html
https://onnxruntime.ai/docs/api/
https://onnxruntime.ai/docs/execution-providers/
https://onnxruntime.ai/docs/execution-providers/
https://onnxruntime.ai/docs/#onnx-runtime-for-training
https://onnxruntime.ai/docs/#onnx-runtime-for-training
https://docs.openvino.ai/2021.4/api/api_reference.html
https://docs.openvino.ai/2021.4/api/api_reference.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-823/api/index.html
https://docs.nvidia.com/deeplearning/tensorrt/archives/tensorrt-823/api/index.html
https://theano-pymc.readthedocs.io/en/latest/library/index.html
https://theano-pymc.readthedocs.io/en/latest/library/index.html
https://aesara.readthedocs.io/en/latest/
https://caffe2.ai/docs/api-intro.html
https://caffe2.ai/docs/api-intro.html
https://docs.chainer.org/en/v7.8.1/reference/index.html
https://docs.chainer.org/en/v7.8.1/reference/index.html
https://mxnet.apache.org/versions/1.9.0/api


168 BIBLIOGRAPHY

[63] Microsoft. CNTK Library API. https://docs.microsoft.com/en-us/
cognitive-toolkit/CNTK-Library-API. [Online; accessed 11-February-
2022]. [cited at p. 28]

[64] MindSpore. MindSpore API. https://www.mindspore.cn/api/en/0.1.
0-alpha/index.html. [Online; accessed 11-February-2022]. [cited at p. 28]

[65] ONNX. ONNX about. https://onnx.ai/about.html. [Online; accessed
17-February-2022]. [cited at p. 27]

[66] Alexander Aarts, Joanna Anderson, Christopher Anderson, Peter Attridge,
Angela Attwood, Jordan Axt, Molly Babel, Štěpán Bahník, Erica Baran-
ski, Michael Barnett-Cowan, Elizabeth Bartmess, Jennifer Beer, Raoul Bell,
Heather Bentley, Leah Beyan, Grace Binion, Denny Borsboom, Annick
Bosch, Frank Bosco, and Mike Penuliar. Estimating the reproducibility
of psychological science. Science, 349, 08 2015. [cited at p. 31]

[67] Matthew Hutson. Artificial intelligence faces reproducibility crisis. Science,
359(6377):725–726, 2018. [cited at p. 31]

[68] Saeed S. Alahmari, Dmitry B. Goldgof, Peter R. Mouton, and Lawrence O.
Hall. Challenges for the repeatability of deep learning models. IEEE Access,
8:211860–211868, 2020. [cited at p. 31]

[69] Odd Erik Gundersen and Sigbjørn Kjensmo. State of the art: Reproducibil-
ity in artificial intelligence. Proceedings of the AAAI Conference on Artificial
Intelligence, 32(1), Apr 2018. [cited at p. 31, 33, 34]

[70] Edward Raff. A step toward quantifying independently reproducible ma-
chine learning research, 2019. [cited at p. 31]

[71] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière,
Alina Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle.
Improving reproducibility in machine learning research (a report from the
neurips 2019 reproducibility program), 2020. [cited at p. 31]

[72] HPL - A portable implementation of the high-performance Linpack
Benchmark for distributed-memory computers. http://www.netlib.org/
benchmark/hpl/, 2008. [cited at p. 32, 36]

[73] Association for Computing Machinery. Artifact Review Badging. https://
www.acm.org/publications/policies/artifact-review-badging, 2018.
[cited at p. 33]

[74] Michael A. Heroux, Lorena Barba, Manish Parashar, Victoria Stodden,
and Michela Taufer. Toward a Compatible Reproducibility Taxonomy for
Computational and Computing Sciences. 10 2018. [cited at p. 33]

https://docs.microsoft.com/en-us/cognitive-toolkit/CNTK-Library-API
https://docs.microsoft.com/en-us/cognitive-toolkit/CNTK-Library-API
https://www.mindspore.cn/api/en/0.1.0-alpha/index.html
https://www.mindspore.cn/api/en/0.1.0-alpha/index.html
https://onnx.ai/about.html
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/benchmark/hpl/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging


BIBLIOGRAPHY 169

[75] National Information Standards Organization. NISO RP-31-2021, Repro-
ducibility Badging and Definitions. National Information Standards Orga-
nization (NISO), 3600 Clipper Mill Road, Suite 302Baltimore, MD 21211,
01 2021. [cited at p. 33]

[76] Karl Popper. The Logic of Scientific Discovery. Routledge, 1934/1959.
[cited at p. 34]

[77] Tianshi Chen, Yunji Chen, Marc Duranton, Qi Guo, Atif Hashmi, Mikko Li-
pasti, Andrew Nere, Shi Qiu, Michèle Sebag, and Olivier Temam. BenchNN:
On the broad potential application scope of hardware neural network accel-
erators. In 2012 IEEE International Symposium on Workload Characteri-
zation (IISWC), pages 36–45, 2012. [cited at p. 35]

[78] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
PARSEC benchmark suite: Characterization and architectural implications.
In Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’08, page 72–81, New York, NY,
USA, 2008. Association for Computing Machinery. [cited at p. 35]

[79] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon Wei, and David
Brooks. Fathom: reference workloads for modern deep learning meth-
ods. 2016 IEEE International Symposium on Workload Characterization
(IISWC), Sep 2016. [cited at p. 35, 36]

[80] Benchmarking deep learning operations on different hardware, 2021. [On-
line; accessed 26-December-2021]. [cited at p. 35]

[81] Wanling Gao, Fei Tang, Jianfeng Zhan, Xu Wen, Lei Wang, Zheng Cao,
Chuanxin Lan, Chunjie Luo, Xiaoli Liu, and Zihan Jiang. AIBench scenario:
Scenario-distilling AI benchmarking, 2021. [cited at p. 36]

[82] A benchmark framework for Tensorflow, 2021. [Online; accessed 08-
January-2022]. [cited at p. 36]

[83] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian Zhao,
Jian Zhang, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia.
Analysis of DAWNBench, a time-to-accuracy machine learning performance
benchmark. SIGOPS Oper. Syst. Rev., 53(1):14–25, jul 2019. [cited at p. 36]

[84] Cody A. Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian
Zhang, Luigi Nardi, Peter Bailis, Kunle Olukotun, Christopher Ré, and
Matei A. Zaharia. DAWNBench: An end-to-end deep learning benchmark
and competition. 2017. [cited at p. 36]



170 BIBLIOGRAPHY

[85] Jack Dongarra and Piotr Luszczek. LINPACK Benchmark, pages 1033–
1036. Springer US, Boston, MA, 2011. [cited at p. 36]

[86] MLCommons. MLCommons. https://mlcommons.org. [cited at p. 36, 37]

[87] Wanling Gao, Fei Tang, Lei Wang, Jianfeng Zhan, Chunxin Lan, Chunjie
Luo, Yunyou Huang, Chen Zheng, Jiahui Dai, Zheng Cao, Daoyi Zheng,
Haoning Tang, Kunlin Zhan, Biao Wang, Defei Kong, Tong Wu, Minghe Yu,
Chongkang Tan, Huan Li, Xinhui Tian, Yatao Li, Junchao Shao, Zhenyu
Wang, Xiaoyu Wang, and Hainan Ye. AIBench: An industry standard
internet service AI benchmark suite, 2019. [cited at p. 37]

[88] Nina Ihde, Paula Marten, Ahmed Eleliemy, Gabrielle Poerwawinata, Pedro
Silva, Ilin Tolovski, Florina M. Ciorba, and Tilmann Rabl. A survey of
big data, high performance computing, and machine learning benchmarks.
In Raghunath Nambiar and Meikel Poess, editors, Performance Evaluation
and Benchmarking, pages 98–118, Cham, 2022. Springer International Pub-
lishing. [cited at p. 37]

[89] MLCommons. MLPerf™ Training Launched. https://mlcommons.org/en/
news/mlperf-training-launched, May 2019. [Online; accessed 17-July-
2021]. [cited at p. 37]

[90] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Mi-
cikevicius, David Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor
Bittorf, David Brooks, Dehao Chen, Debojyoti Dutta, Udit Gupta, Kim
Hazelwood, Andrew Hock, Xinyuan Huang, Atsushi Ike, Bill Jia, Daniel
Kang, David Kanter, Naveen Kumar, Jeffery Liao, Guokai Ma, Deepak
Narayanan, Tayo Oguntebi, Gennady Pekhimenko, Lillian Pentecost, Vi-
jay Janapa Reddi, Taylor Robie, Tom St. John, Tsuguchika Tabaru, Carole-
Jean Wu, Lingjie Xu, Masafumi Yamazaki, Cliff Young, and Matei Zaharia.
MLPerf Training Benchmark, 2020. [cited at p. 37]

[91] Steven Farrell, Murali Emani, Jacob Balma, Lukas Drescher, Aleksandr
Drozd, Andreas Fink, Geoffrey C. Fox, David Kanter, Thorsten Kurth,
Peter Mattson, Dawei Mu, Amit Ruhela, Kento Sato, Koichi Shirahata,
Tsuguchika Tabaru, Aristeidis Tsaris, Jan Balewski, Ben Cumming, Takumi
Danjo, Jens Domke, Takaaki Fukai, Naoto Fukumoto, Tatsuya Fukushi, Bal-
azs Gerofi, Takumi Honda, Toshiyuki Imamura, Akihiko Kasagi, Kentaro
Kawakami, Shuhei Kudo, Akiyoshi Kuroda, Maxime Martinasso, Satoshi
Matsuoka, Henrique Mendonça, Kazuki Minami, Prabhat Ram, Takashi
Sawada, Mallikarjun Shankar, Tom St. John, Akihiro Tabuchi, Venka-
tram Vishwanath, Mohamed Wahib, Masafumi Yamazaki, and Junqi Yin.

https://mlcommons.org
https://mlcommons.org/en/news/mlperf-training-launched
https://mlcommons.org/en/news/mlperf-training-launched


BIBLIOGRAPHY 171

MLPerf HPC: A holistic benchmark suite for scientific machine learning on
HPC systems. CoRR, abs/2110.11466, 2021. [cited at p. 37]

[92] Colby Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman, Nat
Jeffries, Csaba Kiraly, Pietro Montino, David Kanter, Sebastian Ahmed,
Danilo Pau, Urmish Thakker, Antonio Torrini, Peter Warden, Jay Cordaro,
Giuseppe Di Guglielmo, Javier Duarte, Stephen Gibellini, Videet Parekh,
Honson Tran, Nhan Tran, Niu Wenxu, and Xu Xuesong. MLPerf Tiny
Benchmark, 2021. [cited at p. 37]

[93] Vijay Janapa Reddi, David Kanter, Peter Mattson, Jared Duke,
Thai Nguyen, Ramesh Chukka, Kenneth Shiring, Koan-Sin Tan, Mark
Charlebois, William Chou, Mostafa El-Khamy, Jungwook Hong, Michael
Buch, Cindy Trinh, Thomas Atta-fosu, Fatih Cakir, Masoud Charkhabi,
Xiaodong Chen, Jimmy Chiang, Dave Dexter, Woncheol Heo, Guenther
Schmuelling, Maryam Shabani, and Dylan Zika. MLPerf Mobile Inference
Benchmark, 2021. [cited at p. 37]

[94] MLCommons™. General policies for MLPerf™. https://github.com/
mlcommons/policies. [Online; accessed 18-February-2022]. [cited at p. 39,

43]

[95] Peter Mattson. MLPerf™ Training & Inference Benchmarks.
https://hc33.hotchips.org/assets/program/tutorials/HC2021.
Google.PeterMattson.pdf, Aug 2021. Presented at 2021 IEEE Hot Chips
33 Symposium (HCS) - Tutorials, [Online; accessed 20-February-2022].
[cited at p. 39]

[96] Intel. Intel® Distribution of OpenVINO™ Toolkit. https://software.
intel.com/content/www/us/en/develop/tools/openvino-toolkit.
html. [Online; accessed 18-July-2021]. [cited at p. 44]

[97] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. The
popper convention: Making reproducible systems evaluation practical. In
2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 1561–1570. IEEE, 2017. [cited at p. 45]

[98] Grigori Fursin. Collective knowledge: organizing research projects as a
database of reusable components and portable workflows with common in-
terfaces. Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 379(2197), Mar 2021. [cited at p. 46]

[99] MLCommons. MLCube. https://mlcommons.github.io/mlcube.
[cited at p. 46]

https://github.com/mlcommons/policies
https://github.com/mlcommons/policies
https://hc33.hotchips.org/assets/program/tutorials/HC2021.Google.PeterMattson.pdf
https://hc33.hotchips.org/assets/program/tutorials/HC2021.Google.PeterMattson.pdf
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html
https://mlcommons.github.io/mlcube


172 BIBLIOGRAPHY

[100] Gregg Barrett. Introducing MLCube. https://towardsdatascience.com/
introducing-mlcube-83b94a811a69. [cited at p. 46]

[101] Antonio Maffia, Helmar Burkhart, and Gang Mu. Accelerating life science
notebook applications: Architectural issues and use cases. Poster at 2018
Platform for Advanced Scientific Computing Conference (PASC18), July
2018. [cited at p. 46, 58]

[102] Virtuozzo. Open source container-based virtualization for Linux. https:
//openvz.org/. [Online; accessed 13-February-2022]. [cited at p. 50]

[103] Daniel Price and Andrew Tucker. Solaris zones: Operating system support
for consolidating commercial workloads. In Proceedings of the 18th USENIX
Conference on System Administration, LISA ’04, page 241–254, USA, 2004.
USENIX Association. [cited at p. 50]

[104] Canonical Ltd. What’s LXC? https://linuxcontainers.org/lxc/
introduction/. [Online; accessed 13-February-2022]. [cited at p. 50]

[105] Docker Inc. Docker overview. https://docs.docker.com/get-started/
overview/. [Online; accessed 12-February-2022]. [cited at p. 50]

[106] IBM. Docker. https://www.ibm.com/cloud/learn/docker. [Online; ac-
cessed 12-February-2022]. [cited at p. 51]

[107] Peini Liu and Jordi Guitart. Performance comparison of multi-container
deployment schemes for HPC workloads: an empirical study. The Journal
of Supercomputing, 77(6):6273–6312, Jun 2021. [cited at p. 51]

[108] Lucas Benedicic, Felipe A. Cruz, Alberto Madonna, and Kean Mariotti.
Sarus: Highly scalable docker containers for HPC systems. In Michèle
Weiland, Guido Juckeland, Sadaf Alam, and Heike Jagode, editors, High
Performance Computing, pages 46–60, Cham, 2019. Springer International
Publishing. [cited at p. 51, 53]

[109] Matt et. al Heon, Dan Walsh, Brent Baude, Urvashi Mohnani, Ashley
Cui, Tom Sweeney, Giuseppe Scrivano, Chris Evich, Valentin Rothberg,
Miloslav Trmač, Jhon Honce, Qi Wang, Lokesh Mandvekar, Adrian Reber,
Eduardo Santiago, Sascha Grunert, Nalin Dahyabhai, Anders Bjorklund,
Kunal Kushwaha, Sujil Ashwin Sha, Yiqiao Pu, Zhangguanzhang, Matej
Vasek, and Podman Communit. Podman: A tool for managing oci contain-
ers and pods, 1 2018. [cited at p. 51]

[110] The Linux Foundation. Open Container Initiative. https://
opencontainers.org/. [Online; accessed 13-February-2022]. [cited at p. 51]

https://towardsdatascience.com/introducing-mlcube-83b94a811a69
https://towardsdatascience.com/introducing-mlcube-83b94a811a69
https://openvz.org/
https://openvz.org/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.ibm.com/cloud/learn/docker
https://opencontainers.org/
https://opencontainers.org/


BIBLIOGRAPHY 173

[111] Podman. What is Podman? https://podman.io/whatis.html. [Online;
accessed 13-February-2022]. [cited at p. 51]

[112] Inc. Red Hat. Chapter 15. using the container-tools API.
https://access.redhat.com/documentation/en-us/red_hat_
enterprise_linux/8/html/building_running_and_managing_
containers/assembly_using-the-container-tools-api_
building-running-and-managing-containers, 2022. [Online; accessed
21-March-2022]. [cited at p. 51]

[113] Holger Gantikow, Steffen Walter, and Christoph Reich. Rootless containers
with Podman for HPC. In Heike Jagode, Hartwig Anzt, Guido Juckeland,
and Hatem Ltaief, editors, High Performance Computing, pages 343–354,
Cham, 2020. Springer International Publishing. [cited at p. 51]

[114] Douglas M Jacobsen and Richard Shane Canon. Contain this, unleashing
docker for hpc. Proceedings of the Cray User Group, pages 33–49, 2015.
[cited at p. 52]

[115] Reid Priedhorsky and Tim Randles. Charliecloud: Unprivileged Containers
for User-Defined Software Stacks in HPC. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, SC ’17, New York, NY, USA, 2017. Association for Comput-
ing Machinery. [cited at p. 52]

[116] Buildah. A tool that facilitates building Open Container Initiative (OCI)
container images. https://buildah.io/. [Online; accessed 12-February-
2022]. [cited at p. 52]

[117] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. Singularity:
Scientific containers for mobility of compute. PLOS ONE, 12(5):1–20, 05
2017. [cited at p. 52]

[118] Chapter 5 - the essential resource management. In Thomas Sterling,
Matthew Anderson, and Maciej Brodowicz, editors, High Performance
Computing. [cited at p. 54]

[119] Naweiluo Zhou, Yiannis Georgiou, Marcin Pospieszny, Li Zhong, Huan
Zhou, Christoph Niethammer, Branislav Pejak, Oskar Marko, and Den-
nis Hoppe. Container orchestration on HPC systems through Kubernetes.
Journal of Cloud Computing, 10(1):16, Feb 2021. [cited at p. 54]

[120] Angel M. Beltre, Pankaj Saha, Madhusudhan Govindaraju, Andrew
Younge, and Ryan E. Grant. Enabling HPC workloads on cloud infras-
tructure using Kubernetes container orchestration mechanisms. In 2019

https://podman.io/whatis.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_using-the-container-tools-api_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_using-the-container-tools-api_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_using-the-container-tools-api_building-running-and-managing-containers
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_using-the-container-tools-api_building-running-and-managing-containers
https://buildah.io/


174 BIBLIOGRAPHY

IEEE/ACM International Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC (CANOPIE-HPC), pages 11–
20, 2019. [cited at p. 54]

[121] Sergio López-Huguet, J. Damià Segrelles, Marek Kasztelnik, Marian Bubak,
and Ignacio Blanquer. Seamlessly managing HPC workloads through Ku-
bernetes. In Heike Jagode, Hartwig Anzt, Guido Juckeland, and Hatem
Ltaief, editors, High Performance Computing, pages 310–320, Cham, 2020.
Springer International Publishing. [cited at p. 54]

[122] Guohua Li, Joon Woo, and Sang Boem Lim. HPC cloud architecture to
reduce HPC workflow complexity in containerized environments. Applied
Sciences, 11(3), 2021. [cited at p. 54]

[123] Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave
Bouvier, Martin Čech, John Chilton, Dave Clements, Nate Coraor, Björn A.
Grüning, Aysam Guerler, Jennifer Hillman-Jackson, Saskia Hiltemann,
Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, James Taylor,
Anton Nekrutenko, and Daniel Blankenberg. The Galaxy platform for ac-
cessible, reproducible and collaborative biomedical analyses: 2018 update.
Nucleic Acids Res., 46(W1):W537–W544, 2018. [cited at p. 55]

[124] V. Petkov, M. Gerndt, and M. Firbach. PAThWay: Performance Analysis
and Tuning Using Workflows. In 2013 IEEE 10th International Conference
on High Performance Computing and Communications 2013 IEEE Interna-
tional Conference on Embedded and Ubiquitous Computing, pages 792–799,
Nov 2013. [cited at p. 55]

[125] Augusto Born de Oliveira, Jean-Christophe Petkovich, Thomas Reidemeis-
ter, and Sebastian Fischmeister. DataMill: Rigorous Performance Eval-
uation Made Easy. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ICPE ’13, pages 137–148, New
York, NY, USA, 2013. ACM. [cited at p. 55]

[126] Apache Software Foundation. Apache Airflow. https://airflow.apache.
org. [Online; accessed 21-March-2022]. [cited at p. 55]

[127] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali Ghodsi, Sue Ann Hong,
Andy Konwinski, Siddharth Murching, Tomas Nykodym, Paul Ogilvie,
Mani Parkhe, et al. Accelerating the machine learning lifecycle with MLflow.
IEEE Data Eng. Bull., 41(4):39–45, 2018. [cited at p. 55]

[128] Danilo Guerrera. Towards a discipline of performance engineering: lessons
learned from stencil kernel benchmarks. PhD thesis, University of Basel,
2018. [cited at p. 57, 69]

https://airflow.apache.org
https://airflow.apache.org


BIBLIOGRAPHY 175

[129] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Ja-
son Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol
Willing, and Jupyter development team. Jupyter notebooks - a publishing
format for reproducible computational workflows. In Fernando Loizides
and Birgit Scmidt, editors, Positioning and Power in Academic Publishing:
Players, Agents and Agendas, pages 87–90, Netherlands, 2016. IOS Press.
[cited at p. 58]

[130] OpenJS Foundation. Node.js, 4 2021. version v14.16.1. [cited at p. 66]

[131] OpenJS Foundation. Express.js, 5 2019. version 4.17.1. [cited at p. 66]

[132] Socket.IO. Socket.IO, 9 2020. version 2.3.0. [cited at p. 67]

[133] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: Single shot multi-
box detector. Lecture Notes in Computer Science, page 21–37, 2016.
[cited at p. 92, 113, 120]

[134] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient convolutional neural networks for mobile vision applications, 2017.
[cited at p. 92, 128]

[135] MLCommons. MLPerf v0.5 Inference Results - Intel Closed - GitHub reposi-
tory: OpenVINO SSD-MobileNets-v1 Single-Stream execution scripts (Win-
dows OS version). https://github.com/mlcommons/inference_results_
v0.5/blob/master/closed/Intel/code/ssd-small/openvino-windows/
scripts/int8_cpu_ssdmobilenet_single.bat, 2019. [Online; accessed
21-March-2022]. [cited at p. 92]

[136] GitHub. GitHub actions. https://docs.github.com/en/actions. [Online;
accessed 13-February-2022]. [cited at p. 101]

[137] Docker Inc. Docker Hub. https://docs.docker.com/docker-hub/. [On-
line; accessed 13-February-2022]. [cited at p. 101]

[138] GitHub. Storing workflow data as artifacts. https://docs.github.com/
en/actions/advanced-guides/storing-workflow-data-as-artifacts.
[Online; accessed 13-February-2022]. [cited at p. 101]

[139] MLCommons. MLPerf v0.7 Results - Inference: Datacenter - ID: Inf-0.7-
102. https://mlcommons.org/en/inference-datacenter-07/, October
2020. [Online; accessed 13-February-2022]. [cited at p. 105]

https://github.com/mlcommons/inference_results_v0.5/blob/master/closed/Intel/code/ssd-small/openvino-windows/scripts/int8_cpu_ssdmobilenet_single.bat
https://github.com/mlcommons/inference_results_v0.5/blob/master/closed/Intel/code/ssd-small/openvino-windows/scripts/int8_cpu_ssdmobilenet_single.bat
https://github.com/mlcommons/inference_results_v0.5/blob/master/closed/Intel/code/ssd-small/openvino-windows/scripts/int8_cpu_ssdmobilenet_single.bat
https://docs.github.com/en/actions
https://docs.docker.com/docker-hub/
https://docs.github.com/en/actions/advanced-guides/storing-workflow-data-as-artifacts
https://docs.github.com/en/actions/advanced-guides/storing-workflow-data-as-artifacts
https://mlcommons.org/en/inference-datacenter-07/


176 BIBLIOGRAPHY

[140] MLCommons. MLPerf v0.7 Results - Inference: Datacenter - ID: Inf-0.7-
101. https://mlcommons.org/en/inference-datacenter-07/, October
2020. [Online; accessed 13-February-2022]. [cited at p. 105]

[141] MLCommons. MLPerf v0.7 Results - Inference: Datacenter - ID: Inf-0.7-
100. https://mlcommons.org/en/inference-datacenter-07/, October
2020. [Online; accessed 13-February-2022]. [cited at p. 106]

[142] sciCORE. About sciCORE. https://scicore.unibas.ch/
about-scicore/. [Online; accessed 13-February-2022]. [cited at p. 107]

[143] HPC group. miniHPC: SMALL BUT MODERN HPC. https://hpc.dmi.
unibas.ch/en/research/minihpc/. [Online; accessed 13-February-2022].
[cited at p. 109]

[144] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:
Common Objects in Context. In David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 740–
755, Cham, 2014. Springer International Publishing. [cited at p. 113, 120]

[145] MLCommons. MLPerf v0.5 Results - Inference, GitHub issue: Intel SSD-
MobileNet-v1 accuracy. https://github.com/mlcommons/inference_
results_v0.5/issues/27, April 2020. [Online; accessed 16-July-2021].
[cited at p. 115]

[146] MLCommons. MLPerf v0.5 Inference Results - Intel Closed - GitHub
repository: OpenVINO SSD-MobileNets-v1 / ResNet-50 v1.5 / MobileNet-
v1 model calibration (Windows OS). https://github.com/mlcommons/
inference_results_v0.5/tree/master/closed/Intel/calibration,
2019. [Online; accessed 16-July-2021]. [cited at p. 115, 123]

[147] Intel. Intel® Distribution of OpenVINO™ Toolkit 2019 R3.1: Opti-
mization guide. https://docs.openvinotoolkit.org/2019_R3.1/_docs_
optimization_guide_dldt_optimization_guide.html. [Online; accessed
18-July-2021]. [cited at p. 116]

[148] MLCommons. MLPerf v0.5 Inference Results - Intel Closed - GitHub
repository: OpenVINO SSD-MobileNets-v1 / ResNet-50 v1.5 / MobileNet-
v1 (Windows OS version). https://github.com/mlcommons/inference_
results_v0.5/tree/4191ca07994d4e3f48ccf567c2e27d56914b2b88/
closed/Intel/code/ssd-small/openvino-windows, 2019. [Online; ac-
cessed 16-July-2021]. [cited at p. 116, 117, 118, 119, 120, 121, 122, 123, 124, 125,

128, 131]

https://mlcommons.org/en/inference-datacenter-07/
https://mlcommons.org/en/inference-datacenter-07/
https://scicore.unibas.ch/about-scicore/
https://scicore.unibas.ch/about-scicore/
https://hpc.dmi.unibas.ch/en/research/minihpc/
https://hpc.dmi.unibas.ch/en/research/minihpc/
https://github.com/mlcommons/inference_results_v0.5/issues/27
https://github.com/mlcommons/inference_results_v0.5/issues/27
https://github.com/mlcommons/inference_results_v0.5/tree/master/closed/Intel/calibration
https://github.com/mlcommons/inference_results_v0.5/tree/master/closed/Intel/calibration
https://docs.openvinotoolkit.org/2019_R3.1/_docs_optimization_guide_dldt_optimization_guide.html
https://docs.openvinotoolkit.org/2019_R3.1/_docs_optimization_guide_dldt_optimization_guide.html
https://github.com/mlcommons/inference_results_v0.5/tree/4191ca07994d4e3f48ccf567c2e27d56914b2b88/closed/Intel/code/ssd-small/openvino-windows
https://github.com/mlcommons/inference_results_v0.5/tree/4191ca07994d4e3f48ccf567c2e27d56914b2b88/closed/Intel/code/ssd-small/openvino-windows
https://github.com/mlcommons/inference_results_v0.5/tree/4191ca07994d4e3f48ccf567c2e27d56914b2b88/closed/Intel/code/ssd-small/openvino-windows


BIBLIOGRAPHY 177

[149] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 248–255, 2009.
[cited at p. 124, 128, 134, 137, 141]

[150] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015. [cited at p. 124, 134, 137, 141]

[151] Alfred Torrez, Timothy Randles, and Reid Priedhorsky. HPC container
runtimes have minimal or no performance impact. In 2019 IEEE/ACM
International Workshop on Containers and New Orchestration Paradigms
for Isolated Environments in HPC (CANOPIE-HPC), pages 37–42, 2019.
[cited at p. 132]

[152] MLCommons. MLPerf v0.7 Inference Results - Intel Closed - GitHub
repository: ResNet-50 v1.5. https://github.com/mlcommons/inference_
results_v0.7/tree/master/closed/Intel/code/resnet, 2020. [Online;
accessed 20-March-2022]. [cited at p. 133, 139, 142]

[153] MLCommons. MLPerf v0.7 Inference Results - Intel Closed - GitHub reposi-
tory: ResNet-50 v1.5 model calibration. https://github.com/mlcommons/
inference_results_v0.7/tree/master/closed/Intel/calibration,
2020. [Online; accessed 20-March-2022]. [cited at p. 133]

[154] MLCommons. MLPerf v1.0 Results - Inference, Intel Closed - GitHub
issue: TensorFlow ResNet-50 v1.5 compilation. https://github.com/
mlcommons/inference_results_v1.0/issues/10, September 2021. [On-
line; accessed 20-March-2022]. [cited at p. 139]

[155] MLCommons. MLPerf v1.0 Results - Inference, Intel Closed - GitHub issue:
TensorFlow ResNet-50 v1.5 execution. https://github.com/mlcommons/
inference_results_v1.0/issues/14, February 2022. [Online; accessed
20-March-2022]. [cited at p. 139]

[156] The Turing Way Community. The Turing Way: A handbook for repro-
ducible, ethical and collaborative research, July 2022. [cited at p. 146]

[157] Swissuniversities. National strategy and action plan. [Online; accessed 25-
June-2022]. [cited at p. 148]

[158] Swissuniversities. Swiss Open Research Data Grants. [Online; accessed
25-June-2022]. [cited at p. 148]

[159] NVIDIA. The Triton Inference Server provides an optimized cloud and edge
inferencing solution, 2022. [Online; accessed 28-March-2022]. [cited at p. 148]

https://github.com/mlcommons/inference_results_v0.7/tree/master/closed/Intel/code/resnet
https://github.com/mlcommons/inference_results_v0.7/tree/master/closed/Intel/code/resnet
https://github.com/mlcommons/inference_results_v0.7/tree/master/closed/Intel/calibration
https://github.com/mlcommons/inference_results_v0.7/tree/master/closed/Intel/calibration
https://github.com/mlcommons/inference_results_v1.0/issues/10
https://github.com/mlcommons/inference_results_v1.0/issues/10
https://github.com/mlcommons/inference_results_v1.0/issues/14
https://github.com/mlcommons/inference_results_v1.0/issues/14


178 BIBLIOGRAPHY

[160] Antonio Maffia. Accelerators in a hybrid HPC world: How can applications
benefit? Poster at PhD Forum 2018 ISC High Performance (ISC18), June
2018. [cited at p. 149]


	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Research Questions
	1.2 Outline
	1.3 Publications

	I High-Performance Computing Meets DL
	2 Beyond Moore’s Law
	2.1 Semiconductors' trends
	2.2 DSAs and HW accelerators

	3 Deep Learning and the Need for HPC
	3.1 AI, machine learning, deep learning: Definitions
	3.2 Deep learning applications’ landscape
	3.3 HW and SW for DL
	3.3.1 ML Architecture
	3.3.2 ML Frameworks



	II Deep Learning HW/SW Analysis
	4 Reproducibility Challenges
	4.1 Experiment taxonomy
	4.2 Reproducibility levels

	5 Deep Learning Benchmarks
	5.1 Benchmarks overview
	5.2 Case study: MLPerf

	6 Benchmarking with MLPerf
	6.1 Reproducing MLPerf Inference: A user journey
	6.2 Support tools


	III prova! 2.0: A Benchmark Driver
	7 Experiment Challenges in HPC
	7.1 Software Stack
	7.1.1 Environment modules
	7.1.2 Linux containers

	7.2 HPC Systems Interaction
	7.3 Experiment Workflow

	8 prova! 1.0
	8.1 Definition and Motivation
	8.1.1 Contributions to the Project

	8.2 Architecture
	8.2.1 The prova! Framework
	8.2.2 The prova! Web Application


	9 prova! 2.0: Extensions
	9.1 Feature enhancements
	9.1.1 Job scheduler management
	9.1.2 Experiment reproduction
	9.1.3 Experiment visualization and graph builder

	9.2 Containers support
	9.3 Driver mode

	10 prova! as DL Benchmark Driver
	10.1 Driver design
	10.2 Driver Configuration
	10.2.1 Driver descriptor
	10.2.2 Driver execution scripts

	10.3 Driver Usage


	IV  Measurements and Results
	11 Experimental Testbeds
	11.1 Edge devices
	11.1.1 MLPerf submission
	11.1.2 prova! reproduction

	11.2 Data center devices
	11.2.1 MLPerf submission
	11.2.2 prova! reproduction


	12 MLPerf Inference Benchmark Exp.
	12.1 MLPerf v0.5
	12.1.1 Object Detection Lightweight task
	12.1.2 Image Classification Heavyweight task
	12.1.3 Image Classification Lightweight task
	12.1.4 Reproducibility considerations
	12.1.5 Performance considerations

	12.2 MLPerf v0.7
	12.2.1 Image Classification Heavyweight task
	12.2.2 Reproducibility considerations
	12.2.3 Performance considerations

	12.3 MLPerf v1.1
	12.3.1 Image Classification Heavyweight task



	V Conclusions and Future Work
	13 Conclusion and Future Work
	A MLPerf containers
	A.1 MLPerf Inference v0.5: OpenVINO example
	A.2 MLPerf Inference v0.7: OpenVINO example

	Bibliography


