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iliano Filipozzi, Norbert Zentai, Samaneh Manavi, and Dr. Sara Freund, for the great Navigators
vibe. It was really fun to share an office with you! Florentin Bieder, and Julia Wolleb, for the
great times in summer schools and for having some of my fellow mathematicians around. Ali-
cia Durrer, Dr. Alina Giger, Dr. Christoph Jud, Nair von Mühlenen, Peter von Niederhäusern,
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Summary

Large-scale CT scans are frequently performed for forensic and diagnostic purposes, to plan and
direct surgical procedures, and to track the development of bone-related diseases. This often
involves radiologists who have to annotate bones manually or in a semi-automatic way, which is
a time consuming task. Their annotation workload can be reduced by automated segmentation
and detection of individual bones. This automation of distinct bone segmentation not only has
the potential to accelerate current workflows but also opens up new possibilities for processing
and presenting medical data for planning, navigation, and education.

In this thesis, we explored the use of deep learning for automating the segmentation of all
individual bones within an upper-body CT scan. To do so, we had to find a network architec-
ture that provides a good trade-off between the problem’s high computational demands and the
results’ accuracy. After finding a baseline method and having enlarged the dataset, we set out
to eliminate the most prevalent types of error. To do so, we introduced an novel method called
binary-prediction-enhanced multi-class (BEM) inference, separating the task into two: Distin-
guishing bone from non-bone is conducted separately from identifying the individual bones.
Both predictions are then merged, which leads to superior results. Another type of error is tack-
led by our developed architecture, the Sneaky-Net, which receives additional inputs with larger
fields of view but at a smaller resolution. We can thus sneak more extensive areas of the input
into the network while keeping the growth of additional pixels in check.

Overall, we present a deep-learning-based method that reliably segments most of the over
one hundred distinct bones present in upper-body CT scans in an end-to-end trained matter
quickly enough to be used in interactive software. Our algorithm has been included in our
groups virtual reality medical image visualisation software SpectoVR with the plan to be used
as one of the puzzle piece in surgical planning and navigation, as well as in the education of
future doctors.
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Zusammenfassung

Grossflächige CT-Scans werden häufig zu forensischen und diagnostischen Zwecken durch-
geführt, um chirurgische Eingriffe zu planen und zu steuern und um die Entwicklung von Kno-
chenerkrankungen zu verfolgen. Dabei müssen Radiolog*innen die Knochen oft manuell oder
halb automatisch annotieren. Der Arbeitsaufwand dafür kann durch eine automatische Segmen-
tierung und Erkennung einzelner Knochen verringert werden. Diese Automatisierung der Seg-
mentierung individueller Knochen hat nicht nur das Potenzial, die derzeitigen Arbeitsabläufe zu
beschleunigen, sondern eröffnet auch neue Möglichkeiten für die Verarbeitung und Darstellung
medizinischer Daten für computerassistierte Chirurgie und medizinische Ausbildung.

In dieser Doktorarbeit untersuchten wir den Einsatz von Deep Learning zur Automatisie-
rung der Segmentierung aller einzelnen Knochen in Oberkörper CT-Scans. Zu diesem Zweck
mussten wir zuerst eine Netzwerkarchitektur finden, die einen guten Kompromiss zwischen den
hohen Rechenanforderungen des Problems und der Genauigkeit der Ergebnisse bietet. Nach-
dem wir eine Basismethode gefunden und den Datensatz vergrössert hatten, machten wir uns
daran, die häufigst auftretenden Fehlerarten zu eliminieren. Zu diesem Zweck haben wir die
BEM-Inferenz enwickelt, welche die Aufgabe in zwei Teile aufteilt: Die Unterscheidung zwi-
schen Knochen und Nicht-Knochen wird getrennt von der Identifizierung der einzelnen Knochen
durchgeführt. Beide Vorhersagen werden dann kombiniert, was zu insgesamt besseren Resulta-
ten führt. Eine weitere Fehlerart wird durch die Einführung des Sneaky-Nets angegangen, das
zusätzliche Eingaben mit grösseren Sichtfeldern, aber geringerer Auflösung erhält. Auf diese
Weise können wir größere Bereiche der Eingabe in das Netz einschleusen und gleichzeitig das
Wachstum zusätzlicher Pixel in Grenzen halten.

Zusammenfassend haben wir eine auf Deep Learning basierende Methode publiziert, welche
die meisten der über einhundert verschiedenen Knochen in Oberkörperscans zuverlässig seg-
mentiert, und zwar so schnell, dass sie in interaktiver Software verwendet werden kann. Unser
Algorithmus wurde in die medizinische Bildvisualisierungssoftware SpectoVR unserer Gruppe
integriert, mit dem Ziel, als Puzzlestein in der chirurgischen Planung und Navigation sowie in
der Ausbildung zukünftiger Ärzt*innen eingesetzt zu werden.
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Chapter 1

Introduction

Computed Tomography (CT) scans are ubiquitous in medical practice. Their analysis frequently
involves surgeons, or radiologists who must manually or semi-automatically annotate bones.
Their annotation labour can be decreased by automating segmentation and bone detection.

We looked into using deep learning to automate the segmentation of all bones in upper-body
CT scans. This automation of discrete bone segmentation has the potential to not only speed up
current workflows, but also to open up new avenues for processing and displaying medical data
for planning, navigation, and education.

1.1 Motivation

CT scans are three dimensional (3D) images acquired using a rotating X-ray tube. In the med-
ical context, they have been invaluable for their ability to offer non-invasive insights. They are
particularly well suited to image bone tissue. For any further processing, an accurate segmen-
tation of bone tissue in those CT scans can prove very helpful. It can facilitate the diagnosis
of bone-related diseases and the detection of bone metastases [110]. Bone segmentation can
also serve as a location anchor for detecting and segmenting organs and other body structures
[55]. Segmenting individual bones within a joint allows for the computation of the joint load
through bone density [86]. In surgical planning and navigation applications, or radiation ther-
apy, bone segmentations can provide semantic information and stable structural reference points
[100]. However, conducting segmentations manually is a repetitive and time-consuming task.
In addition, the number of medical professionals rises at a much slower pace than the medical
images acquired. Therefore, automated algorithms can help fill the gap by taking over the repet-
itive tasks, giving doctors more time to interpret the results and talk to the patients instead of
manually labelling bones [72, 105, 87].

Apart from these more general benefits of automating yet another segmentation task, we
plan to use our findings in MIRACLE, our department’s boldly named interdisciplinary flagship
project [103]. One part of this project consists of the development of software to conduct virtual
surgical planning and navigation using virtual reality (VR) and augmented reality (AR) visu-
alisation tools [30, 145]. Currently, SpectoVR, the VR application is already used for surgical
planning, and for pre-surgical patient engagement. Automatic detection of the bone in focus
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2 Chapter 1. Introduction

can help streamline the process. In addition, new advanced features for user interaction, such
as quick navigation, can be designed using the bones’ locations and outlines. Another current
use-case of SpectoVR is to teach medical students anatomy, complementary to cadaver studies
and textbooks. Adding automated segmentation of individual bones allows for the time-efficient
design of educational quizzes using real-world data.

1.2 Contribution

Is the simultaneous automated segmentation of all human bones from CT possible using Deep
Learning methods? This was one of the guiding questions when we started out with this project.
We steered away from the well-trodden path of common segmentation problems such as brain
tumours or vertebrae, where rarely more than a dozen different classes were distinguished. In-
stead, we plunged into a segmentation problem sporting more than 120 classes at once. Having
had a minimal initial dataset at hand – 5 manually segmented CT scans from the lower and upper
body each – it was a priori far from clear whether our attempts would succeed at all.

Our first publication is our proof that against all odds, the automated segmentation of 125
distinct bones of the human upper body can be achieved by supervised training and testing of a
neural network on only five CT scans.

To increase the accuracy of the trained networks and the generalisability, we direly needed
a larger dataset. We increased our dataset size using ensembles of our proof-of-concept models
on new half-resolution data and followed up with a manual correction step. We explored the
uncertainty estimation and effort estimation possible through ensemble computations.

Having established a more extensive dataset of 17 pixel-wise labelled scans and having a
firm baseline to compare against, we went on to tackle more fine-grained problems: On the
one hand, we realised that a large part of segmentation errors within the networks was due
to mistaking background for bone, and not from mistaking one bone for another. To resolve
this issue, we proposed to use a dual head segmentation network with an inference step that
combines two separate predictions: A binary segmentation that exclusively separates bone tissue
from the background and a prediction of the individual bone identity. We show that this leads
to a decrease in this specific error type and increased segmentation accuracy. We also designed
and published a synthetic dataset to further measure the capability of our method. On the other
hand, we worked on the cases where bones were not identified correctly: the models seemed to
confuse similar-looking bones at different body locations, such as the long bones of the arms
and legs on both the left and right sides of the body. We hypothesised that this might originate
from lacking global context in the model’s input windows. We tackled this issue by developing a
multi-resolution network that incorporates inputs of different fields-of-view and resolutions into
the network.

1.3 Outline

An introduction to the medical background of bone and skeleton anatomy and to CT imaging is
presented in Chapter 2. The following Chapter 3 provides technical details about deep learning.



1.3. Outline 3

In Chapter 4 the challenges and peculiarities of distinct bone segmentation are discussed, and an
overview of prior work in the area is given.

Chapters 5 to 8 contain the four publications and technical reports forming this thesis’s main
part. In Chapter 5 we present a baseline solution for automated distinct bone segmentation on
our small initial dataset. Chapter 6 details our steps of increasing the dataset size while analysing
the use of ensembles to improve results and minimise annotator time. We present a solution to
commonly encountered labelling mistakes between background and foreground in Chapter 7.
Chapter 8 contains a way of providing an increased field-of-view to the segmentation networks
while keeping the computational burden small. Conclusions and an outlook are finally presented
in Chapter 9.
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Chapter 2

Medical Background

This chapter starts in Section 2.1 with an overview of the anatomical and physiological features
of bones. The human skeleton’s anatomy and its modes of variation are explained in Section 2.2.
We then cover CT, our image modality of interest, in Section 2.3. Some of the envisioned use
cases for our algorithm, such as surgical planning and anatomical education, are introduced in
Section 2.4.

2.1 Bone

Bones are rigid organs of complex structure that form part of the skeleton in humans and most
vertebrate animals. Bones come in various shapes and compositions, optimised for their wide
range of functions [84]. Those functions include the formation of blood cells, mechanical sup-
port, protection, and mineral homeostasis [19].

2.1.1 Bone structure and tissues

Bone consists of two main layers, cortical bone and cancellous bone, as illustrated in Figure 2.1.
The dense cortical bone, which carries the body’s weight, makes up the majority of the bone
mass. The softer cancellous bone, sometimes called the spongy or trabecular bone, diverts
pressures to the cortical bone and thus helps bear the load. On the outside, every bone is enclosed
in the periosteum, a dense layer of fibrous tissue that enhances the resistance to mechanical stress
[95]. Located on the inside of the cancellous bone is bone marrow, a semi-solid tissue that stores
fat (yellow marrow) and is the predominant site of blood cell formation (red marrow) [18].

In total, bone tissue contains around 10% water, 25% organic material, and 65% minerals
when calculated based on weight [18]. The organic material is mostly type I collagen, which
provides tensile strength and elasticity in the bone structure. The minerals, on the other hand,
give the material its rigidity.

The basic structural and functional units of compact bone are called osteons. They are
cylindrical and contain concentric layers of compact bone tissue. A canal with blood supply is
located at the centre of the osteon. An illustration of the structure can be found in Figure 2.1

5



6 Chapter 2. Medical Background

  

Cortical bone

Cancellous bone

Bone marrow

Osteon

Periostem

Figure 2.1: Left: Schematic detail of the cortical bone. Highlighted are the osteons, the cortical
bone’s primary functional units with a cylindrical shape. Right: Schematic of a femur, displaying
the main tissues.
Figure modified with lines and text annotation after adaptation of ”bone structure” and ”osteon” from Servier Medical Art by Servier, licensed under a Creative Commons

Attribution 3.0 Unported License.

Osteons vary in size but are around 0.3mm in diameter and 1mm long [114]. They usually run
parallel to a bone’s long axis.

2.1.2 Bone shape classification

Bones can be grouped according to their shape [95, 114]. Figure 2.2 complements the bone
groups mentioned in the following list:

• Long bones are present in the arms and legs and consist of a shaft (diaphysis) and two
epiphyses at the ends.

• Short bones such as the carpal and tarsal bones are found in the wrists and parts of the
feet.

• Flat bones are made up of two layers of cortical bone surrounding cancellous bone. Flat
bones are thin and, contrary to their name, tend to be curved. Flat bones include the skull
vault and the ribs.

• Irregular bones Many of the bones of the face, skull, and vertebrae do not fit the previous
categories and are therefore classified as irregular.
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Long bone (femur)

Short bone (carpal)

Flat bone (frontal)

Sesamoid bone (patella)

Irregular bone (vertebra)

Figure 2.2: Left: Schematic of the adult human skeleton with examples for different bone shape
groups.
Figure modified with lines and text annotation after adaptation of ”skeleton”, ”arm”, and ”vertebra” from Servier Medical Art by Servier, licensed under a Creative Commons

Attribution 3.0 Unported License.

• Sesamoid bones are bones that are embedded in tendons. The biggest sesamoid bone in
humans is the patella which is embedded in the tendons of the knee.

• Accessory bones are anomalous supernumerary bones that typically originate from a fail-
ure of fusion of the ossification centres.

2.2 Skeletal Anatomy

The adult human skeleton is characterised by an arrangement of bones and joints that link them.
On average, it consists of 206 bones that account for 14 percent of the total body weight [125].
Occasionally, extra accessory bones are present and increase the number, such as an additional
lumbar [125].

Conventionally, the skeleton is divided into two groups: (i) The axial skeleton, which is
composed of the torso and cranial bones. It maintains the human’s upright posture and transmits
the weight to the lower extremities. (ii) The appendicular skeleton, which consists of the bones
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of the limbs and enables movement [125]. A list of these bones and how they were treated in
our segmentation tasks is presented in Table 2.1 and Table 2.2.

Bones show considerable variations from one individual to another, which adds to the chal-
lenge of bone segmentation. Variations in the skeleton are mostly due to the following four
factors [137]:

• Age: Bones develop from more than 800 centres of ossification, which eventually coa-
lesce, resulting in a considerable variation in the number of bones in children [125]. Not
only the number but also the size and shape of bones continue to change during childhood
[137].

• Sex: There is a slight sexual dimorphism in human bone size, albeit with considerable
overlap in the distributions. Some elements of the skull and of the pelvis tend to show
variations between the sexes, such as the subpubic concavity [137].

• Geography/Population: There are no human skeletal markers that exactly correspond to
geographic origin, but there are local tendencies of variation such as in nasal bones or
cheekbones [137].

• Individual: The skeletons of individuals of the same age, sex, and geographic origin can
differ substantially, which is referred to as individual, or idiosyncratic variation [137].
Changes in the number of bones observed can occur through supernumerary bones, such
as an additional lumbar vertebra, or pairs of ribs located at the cervical or lumber verte-
brae.

In conclusion, while the number of bones and their relative position in the human skeleton is
quite similar in human adults, there is still considerable variation in the shape and size of bones
among individuals.
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Table 2.1: Bones of the axial skeleton of human adults [125]. In the third column, we indicate
the bones labelled for our distinct bone segmentation tasks. Simplifications in the head area have
led to the distinction of only two labels, one for the skull and one for the mandible.

Area Anatomy Data labels

Braincase ethmoid


(8 bones) frontal
occipital skull
parietals (×2)
sphenoid
temporals (×2)

Face conchae (×2)


(14 bones) lacrimals (×2)
maxillae (×2)
nasals (×2) skull
palatines (×2)
vomer
zygomatics (×2)
mandible mandible

Ear incus (×2)
(6 bones) malleus (×2) skull

stapes

Throat hyoid hyoid
(1 bone)

Vertebral column cervical vertebrae (×7) cervical vertebrae (×7)
(26 bones) thoracic vertebrae (×12) thoracic vertebrae (×12)

lumbar vertebrae (×5) lumbar vertebrae (×5)
sacrum

}
sacrum

coccyx

Thorax ribs (×24) ribs (×24)
(25 bones) sternum sternum

Pectoral girdle clavicles (×2) ribs clavicles (×2)
(4 bones) scapulae (×2) scapulae (×2)
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Table 2.2: Bones of the appendicular skeleton of human adults [125]. We indicate the bones
labelled for our distinct bone segmentation tasks in the third column. Unlike the axial skeleton,
no simplifications have been made, but the sesamoids of the thumb have been added.

Area Anatomy Data labels

Arm humeri (×2) humeri (×2)
(6 bones) radii (×2) radii (×2)

ulnae (×2) ulnae (×2)

Hand capitates (×2) capitates (×2)
(54 bones) hamates (×2) hamates (×2)

lunates (×2) lunates (×2)
pisiforms (×2) pisiforms (×2)
scaphoids (×2) scaphoids (×2)
trapeziums (×2) trapeziums (×2)
trapezoids (×2) trapezoids (×2)
triquetrals (×2) triquetrals (×2)
metacarpals (×10) metacarpals (×10)
phalanges (×28) phalanges (×28)

sesamoids (×2)

Pelvic girdle coxae (×2) coxae (×2)
(2 bones)

Leg femora (×2) femora (×2)
(8 bones) fibulae (×2) fibulae (×2)

patellae (×2) patellae (×2)
tibiae (×2) tibiae (×2)

Foot calcanea (×2) calcanea (×2)
(52 bones) cuboids (×2) cuboids (×2)

intermediate cuneiforms (×2) intermediate cuneiforms (×2)
lateral cuneiforms (×2) lateral cuneiforms (×2)
medial cuneiforms (×2) medial cuneiforms (×2)
naviculars (×2) naviculars (×2)
tali (×2) tali (×2)
metatarsals (×10) metacarpals (×10)
phalanges (×28) phalanges (×28)
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2.3 Computed Tomography

Computed Tomography is an X-ray-based imaging technique that permits cut-free insights into
the interior of human bodies in three dimensions.

In clinical practice, CT scans are extensively used. For instance, in Switzerland in the year
2020 alone, 344 CT devices [90] were used to conduct over one million exams [91], for a pop-
ulation of 8.6 million. This makes CT examinations still more prevalent than the radiation-free
MRI [92, 93].

CT images are taken by probing the human body, or any other object of interest, with X-ray
beams. To varying degrees, X-rays are absorbed as they pass through the different tissues of the
body. A detector array measures the beam’s intensity after it leaves the body. To allow the re-
construction of three-dimensional structures, the body must be irradiated from many directions.
Commonly, this is accomplished by a measuring method in which the X-ray source moves in a
spiralling motion while the examination table moves linearly along the rotating axis, resulting in
a continuos spiral scan path [20]. The three-dimensional image then needs to be reconstructed
using the recorded projections, which results in a multidimensional inverse problem.

After reconstruction, the obtained attenuation values µ are standardised by scaling them
relative to the attenuation coefficient of water µw. This process yields values in the so-called
Hounsfield Unit (HU), named for one of the principle’s inventors [19].

HU = 1000
µ− µw
µw

(2.1)

In contrast to MRI scans, that vary greatly in contrast according to the sequence and the vendor,
HU values in CT images are fairly consistent even when acquired on different scanners. Typical
HU values are -1’000 for air and 0 for water. Soft tissue and organs largely consist of water and
have a HU value close to 0. Bone, which contains only about 10% water but large quantities
of X-ray absorbing minerals, has higher HU values. Cortical bone has the highest value among
body tissues, ranging from several hundred to 1’000+ HU. Cancellous bone tissue has lower
HU values that are already in the range of some soft tissues [20]. This similarity in HU values
impedes a precise identification of bone using a HU threshold alone. The most extreme values
are encountered in metal. Metal, such as found in implants, can theoretically exceed 10’000 HU.
However, because CT images are usually stored as 12-bit data, values are truncated to stay in the
range from -1’024 to 3’071 [40]. Nevertheless, implants are still a common source of imaging
artefacts.

CT scans are susceptible to several possible artefacts that degrade image quality. The fol-
lowing are of importance to our work:

• Streak artefacts: They are typically found near X-ray-blocking materials. Common ex-
amples are metal implants [148]. In the work for this thesis, we eliminated CT images of
patients with joint implants from our dataset and predominantly observed this distortion
around the mandible due to dental fillings. An example is shown in Figure 2.3.

• Partial volume effect: This artefact is created mainly through the resolution of the image,
in which multiple tissue types appear within a single voxel. The results for a small amount
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of high-density area such as bone leads to the same intensity value as a larger area of soft-
tissue [10]. In Figure 2.3 the partial volume effect can be observed in the cancellous bone
of the skull.

• Noise: A poor signal-to-noise ratio has a detrimental impact on an image. When applying
low doses of radiation or when the slices are particularly thin, grain-like noise develops
more frequently.

In general, the presence of imaging artefacts makes downstream tasks harder. Consequently,
much research has been conducted to reduce all kinds of artefacts and increase the imaging
quality while keeping the radiation doses low. While elevated radiation doses are required for
higher resolution CT images [23], they lead to undesirable effects, most notably an increase in
cancer risk. Therefore, the goal is to reduce radiation exposure to a minimum.

Figure 2.3: Axial slice of a CT, displaying common imaging artefacts. Strike artifices are visible
in the centre, originating from tooth fillings. The partial volume effect can be observed in the
cancellous bone of the skull, where the bone structures are thinner than the image resolution.

2.3.1 Visualisation

An accurate and understandable depiction of medical images is essential for diagnosis and sur-
gical planning.

In CT scans, the intensity range of the images can be rather large. Very high or very low
numbers may dominate the image when displaying or printing the scan, making it challenging
to differentiate intermediate values at a suitable resolution. This issue is resolved by a method
known as windowing. In windowing, a particular range of values is mapped onto the greyscale
gradient. For this to work, a maximum and minimum threshold must be established. Any values
below the threshold will appear in black, while any numbers above will be displayed in white.
The threshold values are determined based on the application and usually manually selected by
radiologists.

CT images are naturally three-dimensional, making intuitive viewing on a two-dimensional
computer screen challenging. Displaying CT scans one slice at a time and requiring the viewer
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Figure 2.4: Different CT visualisation techniques. Top left: a single frontal slice of a CT scan.
Top right: A maximum intensity projection. Bottom: Two examples of volume rendering with
different transfer functions.

to go through each two-dimensional slice may be the simplest way. However, it requires the
viewer to mentally perform the 3D-mapping task while constantly interacting with the software
[35].

Using more advanced displaying methods can enhance the viewing experience. Maximum
intensity projections and average intensity projections use information from all or multiple slices
simultaneously and provide an image similar to an X-ray; see also Figure 2.4 top right.

Direct volume rendering techniques, such as ray casting [28, 4], are more complex. They
are still two-dimensional projections, but they allow for three-dimensional-looking results. See
Figure 2.4, bottom row, for an example of ray casting using two different transfer functions. Ray
casting works on physical principles of emission, absorption, and scattering and simulates the
way of a ray of sight through a volume into a two-dimensional image. A simplified graphical
explanation of the idea is provided in Figure 2.5. As a first step, a ray is cast from the eye-
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point through the image and through the volume. For every pixel of the final image, one ray is
needed. Then, along each of these rays, equidistant points are sampled inside the volume. These
sampling points can generally be positioned between voxels, which necessitates interpolation.
Colour, illumination and transparency values are determined using a transfer function for each
sampling point. For example, a simple transfer function to highlight bones in CT would map
the colour white and full opacity to HU values in the range of bones, and full transparency
everywhere else. Finally, the sampling point values along a ray are merged into a single colour
value for the current pixel, similar to applying a stack of foils on an overhead projector [135].

To speed up the process, most implementations use early ray termination. The sampling
points are then only evaluated up to the point where the opacity channel is almost saturated.
Anything behind this point will be hidden behind opaque materials, and further computations
would not contribute to the final result [69].

Whilst volume rendering with a transfer function enables the visualisation of a tissue of
choice, it cannot differentiate between instances of the tissue, such as identifying distinct bones.

  

image plane

rays

eye point

volume

Figure 2.5: Raycasting idea: For every final image pixel, one ray is cast. The rays start at the
eye point, traverse the image plan, and finally, the volume. Sample points are generated along
the rays inside the volume. The optical properties at this point are then evaluated as a function
of the data value. In a final step, the optical properties are accumulated along each ray.

2.4 Surgical Planning and Anatomical Education in virtual reality

For more than 25 years, volume rendering has been performed in in medical applications [53].
Only more recently have virtual reality (VR) headsets come to a stage of development where they
are user-friendly and cost-efficient enough to be considered for routine clinical use. Specifically,
their frame rate first had to be significantly increased so that users would not get nauseous
while using the devices. However, current technology enables the real-time volume rendering of
medical data in VR in an efficient manner [30]. Using VR in combination with raycasting allows
for an immersive experience and for quick and intuitive changes in the viewing direction. This
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renders details visible that might be hidden when only viewing the two-dimensional projections.
Furthermore, the use of VR in surgical planning has been shown to be beneficial in terms of
surgical outcome [134, 118].

Anatomical knowledge is a fundamental ability taught to medical students throughout their
first year of study. In teaching anatomy, cadavers are the gold standard. They enable the study
of real human bodies from all angles, including minute details, and provide force and touch
feedback. Cadavers also display a broad spectrum of human physiology, usually lacking in
textbooks. Due to limits in supervision, expenditures, and ethical considerations, the window
of opportunity for students to research with these specimens is quite limited [85]. Therefore,
AR and VR technologies can let students benefit from immersive experiences, and complement
cadaver dissection classrooms.

Some studies show that the use of AR and VR indeed improves anatomy teaching. In [124]
for example, the use of a VR environment to visualise magnetic resonance cholangiopancreatog-
raphy (MRCP) was shown to improve the understanding of biliary anatomy and intraoperative
performance among surgical trainees, compared to trainees who only prepared using conven-
tional visualisation of MRCP.

In [32], the use of augmented reality (AR) has been demonstrated to improve the test per-
formance of students who were required to learn the anatomy of the foot muscles, compared
to students who learned using only notes, photographs, and videos. A comparable study found
that students who used AR to study human gross anatomy were more motivated and had a much
better comprehension of the three dimensional structure compared to those who used standard
textbooks [79, 64].

We aim to combine volume rendering in VR with automated segmentation to develop new
and improved workflows in surgical planning and in teaching anatomy. A screenshot of our
current segmentation and volume rendering combination is shown in Figure 2.6.
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Figure 2.6: Screenshot of the SpectoVR software, taken by Norbert Zentai from our planning
and navigation group. The SpectoVR software uses volume rendering and transfer functions
to display the bone tissue only. In conjunction with the distinct bone segmentation algorithm
developed in this thesis, distinct bones can be distinguished (indicated by different colours).



Chapter 3

Deep Learning

In this chapter, we provide an overview of deep learning. We start by explaining the commonly
used components of neural networks in Section 3.1 and introduce their training procedure in
Section 3.2.

3.1 Artificial Neural Networks

In recent years, machine learning and specifically deep learning has become a ubiquitous tool in
various study disciplines due to spectacular advances in natural language processing, computer
vision, and control learning. Figure 3.1 illustrates the relationship between several of the terms
frequently encountered in the context of deep learning.

  

AI artificial intelligence 
ML machine learning

NN neural networks

DL deep learning

Figure 3.1: Relations of terms used around deep learning.

Alan Turing published foundational theoretical work on artificial intelligence as early as
1950 [131]. Shortly after that, in 1956, the so-called Dartmouth Conference was held, credited
as the actual birthplace of artificial intelligence as a scientific discipline [61]. The perceptron

17
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[108], a one-layer artificial neural network (ANN) intended for image recognition, produced the
first significant practical results another two years later, in 1958. In the subsequent decades,
many machine learning algorithms have been developed that either use handmade features, such
as the support vector machine (SVM), or learn a data representation on the fly, such as neural
networks.

Most of today’s methods in computer vision and hence medical image analysis and process-
ing centre around deep learning. In deep learning, artificial neural networks with many layers
are trained on potentially massive datasets to fulfil a plethora of tasks.

3.1.1 Fully connected networks

Artificial neural network (ANN)s are machine learning models that were originally inspired
by biological neural networks, as found in the brain. Its most basic and original form, the
perceptron, is a binary linear classifier used to learn a threshold function:

f(x) = y =

{
1, if

∑N
i=1wixi + b > 0

0, otherwise.
(3.1)

We denote the trainable parameters, also commonly called weights, as w = (w1, ..., wN ) and
the inputs as x = (x1, .., xN ). Examples of possible inputs might be the pixel intensities of an
image. The bias b allows for a shift of the decision boundary away from the origin.

A perceptron can have an arbitrary number of inputs and thus number of weights, but it
will always result in a linear decision function. As a matter of fact, it is incapable of modelling
arbitrary functions such as XOR. This issue, which was extensively mentioned by [82], led to a
crisis in the artificial intelligence research field in the 1970ies, the so-called AI winter.

One of the reasons ANNs experienced a revival ten years later is the broad realisation that the
restrictions mentioned above are practically irrelevant. Adding more layers to the ANN makes
it possible to overcome the limitations of linear functions. In fact, it can be demonstrated that
multilayer ANNs with one hidden layer of adequate width can already serve as universal approx-
imators for a wide variety of useful function classes, such as the solutions to high-dimensional
optimisation problems [46].

These additional layers introduced between the input and output are typically referred to
as hidden layers. Adding more or wider hidden layers increases not just the mathematical ex-
pressiveness but also the computational complexity of the network. An input of size N and
a hidden layer with M nodes require the concurrent management of N ·M network weights.
Figure 3.2 depicts a schematic illustration of an ANN that acts on the pixels of a 4 × 4 image
(N = 4 · 4 = 16) and has a first hidden layer with a width of M = 2 nodes. For big M and N ,
and even more so if there are a large number of subsequent hidden layers, this quickly results
in an enormous number of weights. Efficient and parallel computation of so many values is far
from trivial. Consequently, these computational requirements have long hampered the practical
use of large and deep networks until the emergence of GPUs for tensor computations has led to
vast improvements.

Another problem emerges not with the addition of more layers but as a result of the fully
connected structure of the network: Each node in the hidden layer receives weights from every
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Figure 3.2: Pixels of a 4× 4 image (left) as input for an ANN with a first hidden layer of width
M = 2 (right).

node in the layer preceding it. This means that when working with an image as input, all spatial
information within the image is lost. The relationship between inputs x1 and x2 from adjacent
pixels is treated identically to the relationship between x1 and xN .

Fully connected networks also have other shortcomings: The way the network is set up,
weights are tightly coupled to input pixels. This leads to very poor generalisation ability to
recognise input patterns that are slightly translated [67]. It would also not be possible to use the
network on an input image of smaller or larger size than the images in the original training set.

3.1.2 Convolutions

Many of the problems that occur with fully connected networks can be alleviated by using con-
volutional neural networks (CNNs). CNNs are a special kind of ANNs that use convolution
operations in one or more layers [41]. They are very well suited for processing data with a
grid-like topology, such as 1D time-series data, 2D natural images, 3D CT images, or 4D flow
MRI.

A convolution is a mathematical operation on two functions f and g that results in another
function (f ∗ g). It is defined as

c(t) = (f ∗ g) (t) :=
∫ ∞
−∞

f(τ)g(t− τ) dτ. (3.2)

In the context of ANNs, we usually convolve a finite discrete input I and a finite discrete
kernel K. The kernel is applied to subsequent input regions to produce an output tensor C, as
illustrated in Figure 3.3. In the three-dimensional case of a CT image as input, the result of the
convolution is given by
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i11 k11 k12
k21 k22i23i21 i22

i13i12

s11=
i11k11+i12k12 +
i21k21+i22k22 

s12=
i12k11+i13k12 +
i22k21+i23k22 

Figure 3.3: An example of a 2D convolution shown on an input image I of size 2 × 3 and a
kernel K of size 2 × 2. We restrict the application of the kernel to input regions that lie fully
within I and therefore get an output S of size 1× 2, which is smaller than the input.

C(I) = (K ∗ I) (x, y, z) =
∑
kx

∑
xy

∑
kz

I (x− kx, y − ky, z − kz)K (kx, ky, kz) . (3.3)

Typically, kernels are much smaller than the inputs, with 3× 3× 3 and 5× 5× 5 being popular
choices for 3D networks. Furthermore, there is usually not just one kernel but many. Each kernel
is applied to the same input and produces its own output tensor. These outputs of individual
kernels are called channels.

In classical image processing, handcrafted kernels have been used to extract edges and other
features from images. Sobel filters are a particularly popular choice. They are discrete differen-
tiation operators that compute an approximation of the image gradient at every location in both
horizontal and vertical directions. As a result, they highlight the areas where intensities change
and thus detect edges in the image. In contrast to Sobel filters and comparable handcrafted ker-
nels, the convolutional kernels of a CNN are iteratively updated during the optimisation process.
For some examples of both Sobel filters and trained kernels, see Figure 3.4.

CNNs have many favourable properties [41]:

• Sparse interactions: By using kernels much smaller than the input, only spatially close
variables of the input interact with one another during the computation of the intermediate
output. In a fully connected network, there are O (M ·N) computations necessary to
arrive from an input layer of sizeM to an output layer of sizeN . Using convolutions with
a kernel of size L, this number drops to O (M · L) with L << N .

• Parameter sharing: Because the same kernel is applied to all input sections, the memory
requirement to store trainable weights decreases dramatically. In the fully connected case,
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the storage of (M · N) weights is required. Using convolutions, only L weights need to
be stored, which decouples the input size from the number of trainable parameters.

• Equivariant representations: Thanks to its parameter sharing property, convolutional
layers are equivariant to a translation t, C(t(I)) = t(C(I)). In other words, the outcome
is identical if we first translate our input image and then perform convolution or if we
apply translation after convolution.

These properties make CNNs ideal candidates to work with image data.

Figure 3.4: From left to right: A frontal slice of a CT scan of our dataset. Two examples of the
same scan convolved with a horizontal and a vertical Sobel filter. Two examples of the same
scan convolved with kernels taken from one of our trained models.

3.1.3 Downpooling, strided convolutions, transposed convolutions

Pooling layers are conceptually very similar to convolutional layers, with the difference that their
kernels are fixed, and no parameters have to be learned. Usual choices are the max-pool and the
average-pool kernels, which map the maximum or average of their kernel region to one output
value. The application of such pooling kernels enforces an approximate invariance to small
translations of the input [41]. However, downsampling is the main application of pooling in
CNNs. By choosing pooling regions that are s pixels apart instead of 1 pixel, the output’s spatial
size is roughly reduced by a factor of s per dimension. In this case, the term downpooling, or
strided pooling with a stride of s is generally used. The same principle can also be applied to
convolutions, which are then called strided convolutions and reduce the output layer’s spatial
size. Using the same stride in all dimensions, Equation (3.3) turns into:

Cs(I) = (K ∗ I) (x, y, z, s) =
∑
kx

∑
xy

∑
kz

I (sx− kx, sy − ky, sz − kz)K (kx, ky, kz) .

(3.4)
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The strided convolution Equation (3.4) is a generalisation of Equation (3.3) which used a
unit-stride of s = 1. Strided convolutions or poolings achieve the same effect as their unit-strided
s = 1 version followed by a separate downsampling step, but require fewer computations, see
also Figure 3.5.
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Figure 3.5: A strided convolution with stride s = 2 produces the same output as a convolution
followed by a separate downpooling step of stride 2. Top: 1D convolution with stride s = 2 and a
kernel of size 3. Bottom: 1D convolution with unit stride (s = 1) followed by a downsampling
step of stride 2. Both approaches are mathematically equivalent, but the two-stage approach
below performs computations that are never used (light grey arrows).

Transposed convolutions serve the opposite purpose of strided convolutions [27]. They pro-
duce an output of higher spatial resolution than their input. Alternatively, classical upsampling
methods without trainable parameters, such as linear interpolation, can be used to increase the
resolution of the output.

3.1.4 Activation functions

Activation functions are used after convolutional or fully connected layers to increase the possi-
ble complexity of the function being learned. In particular, activation functions such as softmax
are also used at the very end of a network. Equation (3.1) can be rewritten as

a(Wx + b) (3.5)
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Figure 3.6: Selection of activation functions used within ANNs.

using the Heaviside step function

H(x) =

{
0 if x < 0

1 if x ≥ 0
(3.6)

as activation function a. A graphical representation of this and the following activation functions
can be found in Figure 3.6

The sigmoid function is widely used as a continuous replacement for the Heaviside function
to aid training convergence:

σ(x) =
1

1 + e−x
(3.7)

Hyperbolic tangent (tanh) is an activation function similar in shape to the sigmoid but pro-
jecting the values on a continuous curve between -1 and 1 instead of 0 and 1.

tanh(x) =
ex − e−x

ex + e−x
(3.8)

To avoid training problems caused by vanishing gradients, the use of rectified linear units (Re-
LUs)

ReLU(x) =

{
0 if x ≤ 0

x if x > 0

= max(0, x)

(3.9)
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and its variants such as leaky ReLU as activation function is wide-spread [120].

leReLU(x) =

{
αx if x < 0, α ≈ 0.01

x if x ≥ 0
(3.10)

A smoother variant is known as Sigmoid linear unit (SiLU) [3].

SiLu(x) =
x

1 + e−x
(3.11)

3.1.5 Normalisation

Normalisation layers have proven to be highly beneficial in facilitating the learning of vast pa-
rameter spaces. Normalisation can be performed along multiple dimensions. Commonly, pa-
rameters are normalised along the batch dimension:

BN(y) = γ
y − µ
σ

+ β , (3.12)

where µ is the mean, and σ is the variance of the ys from the different batches.
Normalisation has multiple advantages: it decreases training time, reduces covariate shift,

and has a regularising effect, resulting in improved generalisation quality of the model [48].
While batch-normalisation is the de facto standard for the majority of use-cases, the situation is
different for the many 3D neural network applications. In the case of 3D networks, other types
of normalisations, such as instance [132], layer [8], and group [141] normalisation, are more
prevalent since limited computational memory necessitates working with very tiny batch sizes.

3.1.6 Classification networks

Straight-forward classification networks are built using a series of convolutions and down-
pooling layers, followed by one or multiple fully connected layers, eventually ending up with as
many output nodes as classes (Nclasses) [66, 63, 121].

The input may contain information on many scales. Convolutions, however, only allow
for interactions of neighbourhoods of pixels that are the same size as the convolutional kernel.
This neighbourhood of interacting inputs around a single unit is called the unit’s receptive field.
A graphical explanation of the receptive field is given in Figure 3.7. By applying subsequent
convolutional layers, a network’s receptive field gradually increases. The receptive field of a
unit in a CNN of L layers with only one path can be calculated using the following recursive
formula [6]:

rL = 1 (3.13)

r`−1 = s`r` + (k` − s`) (3.14)

r0 =

L∑
`=1

(
(k` − 1)

`−1∏
i=1

si

)
+ 1 (3.15)
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Figure 3.7: Receptive fields illustrated using 1D convolutions. Top left: a single convolution
with kernel size 3 leads to a receptive field of size 3. Top right: two subsequent convolutions of
size 3 lead to a receptive field of size 5. Bottom: A unit-stride convolution of size 3 is followed
by a stride-2 convolution or down-pooling, which leads to a receptive field of size 7.

Here r` denotes the receptive field size at layer 0 ≤ ` ≤ L. The kernel size and stride at
layer ` are denoted using k` and s`. Using a series of convolutions and strided convolutions (or
pooling layers) steadily increases the receptive field while reducing the actual spatial resolution
of the output. This compression in the spatial dimension is usually offset by the inclusion of
multiple convolutional kernels per layer, which increases the number of output channels.

3.1.7 Segmentation networks

When removing the fully connected layers from the classification network above, the output
has a small spatial size but a large number of channels. This is usually referred to as a latent
encoding of the input. To obtain a pixel-wise classification, i.e. a segmentation of the input,
upsampling steps are necessary [77, 107]. This happens by adding subsequent up-pooling or
transposed convolution layers until the size of the network output matches the segmentation
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target size. One very successful example of segmentation networks, the U-Net [107], does this
with symmetric contraction and expansion parts of the network, as illustrated in Figure 3.8.
To aid optimisation convergence and to recover spatial information that might get lost during
contraction, skip connections are used [26]. They copy features from the network’s contracting
part to its expansive part, where they are either concatenated with or added element-wise to the
features of the expansion part.

The final pixel-wise segmentation is achieved using Nclasses convolutional kernels of spatial
size 1.
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Figure 3.8: 2D U-Net architecture [107]. Within the contracting part (the encoder), the number
of channels per layer (starting at 64) doubles in every stage, while the spatial size per dimension
is halved (starting with an input image of 256 × 256 pixels). The opposite is happening in the
expanding part (the decoder), where the spatial size increases by a factor of two from stage
to stage while the number of channels decreases. Skip connections copy information from the
encoder to the decoder.

3.2 Network Training and Inference

Many interesting tasks in computer vision and beyond can be formulated as optimisation prob-
lems

min
F(x)
L(ỹ −F(x)) (3.16)
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where we are interested in finding a function F(x) that should minimise the loss function L,
given inputs x and target outputs ỹ.

As hinted at in Section 3.1, there are mathematical theorems that state that a very large class
of functions – including the solutions to complicated optimisation problems – can be approx-
imated using sufficiently deep or wide neural networks Fθ. These theorems and their proofs
sadly do not provide any help in how the network parameters θ need to be chosen, in order to
approximate the desired unknown function. Therefore, the big challenge in working with neural
networks is to ensure both that a suitable network architecture is chosen and that the network’s
trainable parameters θ approach values where Fθ is a good approximation of the ideal F :

θ = argminL(ỹ −Fθ(x)) , (3.17)

Most solvers typically used for optimisation problems are computationally too expensive
to compute for the vast parameter spaces of neural networks. In practice, comparatively basic
first-order gradient descent algorithms are used to minimise the loss function. In the realm of
deep learning, the term backpropagation is commonly used to refer to the efficient automated
computation of first-order gradients using the chain rule in differential calculus [58, 74, 65].

Backpropagation is used to fit neural networks by computing the gradient of the loss function
with respect to the network weights. Computing the gradient on the entire dataset at once is not
practical or appropriate given the enormous datasets and high computational load. Stochastic
gradient descent is employed instead [106, 12]. It computes the gradient of a small number of
input-output pairs (one batch) at a time to obtain an estimate of the gradient. Bigger batch sizes
allow for more accurate estimations of the actual gradient. In contrast, smaller batch sizes result
in faster iterations since less computation and data IO operations are required. This, however,
comes at the expense of a slower convergence rate [13]. The chosen batch size can be used
to trade-off between the two effects. Because they are otherwise computationally costly, 3D
networks tend to use tiny batch sizes, which can be as small as 1.

3.2.1 Loss functions

Loss functions between a network output y = Fθ(x) and a target value ỹ are chosen depending
on the task and are essential to steer the optimisation process. Below are examples of frequently
used loss functions.

Mean squared error (MSE) loss

The mean squared error loss penalises deviations of the prediction y from the target ỹ by sum-
ming up the squared differences of every pixel p of the output P .

LMSE(y, ỹ) =
1

P

∑
p∈P

(y − ỹ)2 (3.18)

The MSE loss is mainly used in regression tasks.
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Cross entropy loss

The cross-entropy loss is usually applied just after applying a softmax function to the network
output x.

For ease of notation, we provide the loss definition for the classification case, i.e. a segmen-
tation case for an image with only a single pixel, i.e. x ∈ R1×|C| for classes c ∈ C.

The softmax operation takes into account all network outputs and turns them into members
of a discrete probability distribution. For a classification network output of |C| classes, the i-th
class has a softmax output of

softmax(xi) =
exi∑
c∈C exc

, (3.19)

As expected from a probability distribution, all values will be between 0 and 1, and the sum of
the softmax of all classes c ∈ C adds up to 1.

The cross-entropy loss then is defined as

LCE(x) = − log(softmax(xc̃)) , (3.20)

with c̃ being the target class.
The cross-entropy loss then is defined as

LCE(x) = − log(softmax(xc̃)) , (3.21)

with c̃ being the target class.
In the case of segmentation, instead of classification, the softmax and consequent cross-

entropy are computed for every pixel individually. The sum or mean of all accrued pixel-wise
loss values can then be used to compute the total segmentation loss.

Dice Loss

The Dice loss [80] is commonly used in semantic segmentation on its own or in conjunction
with the cross-entropy loss. It is based on the Dice similarity coefficient (DSC) metric, which
will be discussed in Section 4.1.1.

LDSC = − 2

|C|
∑
c∈C

∑
n ỹc,nsc,n∑

n(ỹc,n + sc,n)
(3.22)

with ỹc,n the one-hot encoded target label where n denotes the location and c the class. sc,n the
softmax output.

3.2.2 Optimizers

First-order gradient-based methods are widely used to solve the optimisation problem Equa-
tion (3.17). As explained above, in neural network training, the gradient is usually only an
estimate obtained using stochastic backpropagation. Most popular optimisers build on top of the
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basic gradient descent or steepest descent algorithm, which updates the network parameters θ at
every iteration step t with the gradient direction (∇θL)t:

θt+1 = θt − λ (∇θL)t , (3.23)

where λ denotes the step size or learning rate. The choice of an appropriate learning rate is
non-trivial and essential in order to escape local minima and finally converge to a solution. For
that reason, several improvements to the basic gradient descent algorithm have been proposed.
These enhanced algorithms perform well on various tasks, but there is no all-purpose universal
optimiser [139].

Momentum

It has been known for some time that valleys in optimisation surfaces impede convergence be-
cause they force first-order gradient optimisers into an inefficient up-hill and down-hill jitter
instead of traversing the valley. The momentum approach [99] is one way to address this prob-
lem and accelerate convergence by forcing the iteration step to take the direct way along the
valley. Informally, the momentum M is the average of the last few gradient directions. The
parameter update is then a combination of the gradient direction and the momentum.

θt+1 = θt − β (∇θL)t + γMt (3.24)

The weighting constants β and γ steer the contribution of the momentum to the parameter up-
date.

RMS-Prop

RMS-Prop [45] uses a running average r of the squared previous gradient directions, also called
the second order momentum. The average decreases exponentially to guarantee that iterations
from the distant past do not significantly influence parameter updates. It is otherwise conceptu-
ally similar to the basic momentum method.

rt+1 = ρ rt + (1− ρ) (∇θL)t � (∇θL)t (3.25)

θt+1 = θt − ε
1

√
rt+1

� (∇θL)t (3.26)

Here, ε is the global learning rate, � is the element-wise multiplication, and ρ is a weighting
constant.

Adam

Adam ”adaptive moments” [59] is one the most commonly used optimizers in semantic segmen-
tation. It incorporates both the standard s and the second order momentum r (both decaying
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over time) and adds a bias correction for both terms, i.e., ŝ, and r̂. The decay factors are denoted
β1, and β2. The whole optimisation step is then computed as follows:

st+1 = β1st + (1− β1) (∇θL)t (3.27)

rt+1 = β2rt + (1− β2) (∇θL)t � (∇θL)t (3.28)

ŝt+1 =
st

1− βt+1
1

(3.29)

r̂t+1 =
rt

1− βt+1
2

(3.30)

θt+1 = θt − ε
ŝt+1√
r̂t+1

(3.31)

3.2.3 Validation

Large quantities of trainable parameters make deep neural networks susceptible to overfitting.
It is typical, therefore, not to use all data for network training but rather to keep some data
separate for validation. Validation is performed throughout the training of a neural network to
determine how well the learned model performs on inputs it has not been trained on. If no more
improvements are observed on the validation data, the training process is said to have converged,
and the training is usually stopped. The final results are computed on a third hold-out set called
the test set to avoid overfitting effects stemming from the validation data.

If little data is available, this strategy might be changed to cross-validation. In cross-
validation, the training process is repeated several times, each time with different portions of
the dataset used for training, validation, and test. The test sets should be distinct among these
repetitions and as big as possible to maximise the significance of the evaluation.

3.2.4 Inference

Once a network has been trained, i.e., its parameters θ have been fixed, it can be utilised repeat-
edly for its intended purpose. Unlike training, only a single forward pass across the network
is necessary for inference. The gradient computation and subsequent parameter updates are no
longer performed. As a result, inference requires a tiny amount of time compared to training.
This makes neural networks ideal for scenarios where new data become available often and must
be evaluated rapidly.

The inference of each voxel within a multi-class segmentation task is conducted by choosing
the class c ∈ C, which has the highest softmax activation for the given voxel:

y = argmax
c∈C

(softmax(xc)), (3.32)

3.2.5 Data augmentation

Small datasets often do not contain data in their full variety of possible poses and lighting con-
ditions. Datasets are artificially extended to improve the robustness of a trained model, i.e.,
to encourage success for inputs slightly outside the input distribution. Data augmentation is
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the term commonly used to denote these transforms of the input data. Data augmentation is
done under the premise that additional information can be derived from the original dataset by
augmenting it.

Common data augmentation strategies include spatial transformations such as shifts, rota-
tions, and scaling [129]. Furthermore, adding noise [83], or variations in colour, brightness,
and contrast are employed to various degrees [83]. More advanced data augmentation strategies
include mix-up [146], elastic deformations[21], GAN based augmentation [36], and neural style
transfer[39, 96].
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Chapter 4

Segmenting Distinct Bones

This chapter gives a more detailed introduction to the segmentation task itself in Section 4.1.
We then focus on the challenges and potential solutions specific to distinct bone segmentation in
Section ??.

4.1 Segmentation

Segmentation is the process of assigning a label to every pixel or voxel of a digital image. Its
most basic form – the binary segmentation – distinguishes only between two classes: Objects
of interest in the foreground and the background. If precisely one out of |C| > 2 classes is
assigned to every pixel, the term multi-class segmentation is used. This can easily be confused
with multi-label segmentation, where multiple classes can be assigned to a single pixel, which
often makes sense when classes are hierarchical. In our work, we will only use the first concept,
multi-class segmentation.

A segmentation can be represented by its boundaries or by a label map, which assigns a label
key – usually 0 for the background and positive whole numbers for the remaining labels – to each
pixel depending on the label the pixel belongs to. In the case of a multi-class segmentation with
|C| possible classes, it can be helpful to transform the labelmap to its one-hot encoded form

O : Nx×y×z×10...|C| −→ Nx×y×z×|C|0,1 , (4.1)

which has an additional dimension along which |C| binary segmentations are stacked.
Segmentation of medical images assigns information regarding anatomical structure or patho-

logical status to individual pixels. Among others, it thus enables the identification of regions
of interest, for example for quantifying tumour sizes and their change over time, for studying
anatomical structures, and for supporting treatment planning and navigation in radiation therapy
and surgery [119].

Segmentations can be created manually by medical professionals, automatically by com-
puters, or by a combination of the two. Automatic segmentation is a difficult task in medical
imaging because medical images are complex and lack simple linear features. Further difficul-
ties arise due to partial volume effects, imaging artefacts, noise, and the similarity of greyscale

33
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values among different soft tissues [119], see also Section 2.3.

4.1.1 Segmentation metrics

The quality of a segmentation can be validated using other segmentations as a comparison. In
medical image segmentation, the manual segmentation generated by medical professionals is
usually considered the target against which the quality of a predicted segmentation is assessed.

Spatial overlap based metrics

A segmentation can be viewed as a pixel-wise classification. In the case of multi-class segmenta-
tion with N labels, the evaluation can be split into N binary classifications using a One-vs.-rest
strategy.

After binary classification of a single pixel, four different outcomes are possible that are
presented in Table 4.1. In segmentation tasks, every pixel is assigned one of the four outcomes
by comparing the predicted segmentation to the target segmentation, as illustrated in Figure 4.1.
The total counts of pixels per outcome can then be used to compute overlap-based segmentation
metrics [128].

  

FP

FN

TN

TP

Figure 4.1: Areas of TP, TN, FP, and FN voxels when a prediction (purple) and a ground truth
(green) partially overlap.

Table 4.1: Confusion matrix.

Actual positive Actual negative

Predicted positive true positive (TP) false positive (FP)
Predicted negative false negative (FN) true negative (TN)
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Some of the most commonly encountered overlap metrics are:

• Recall = sensitivity = true positive rate (TPR):

TPR =
TP

TP + FN

Recall is the fraction of relevant instances that were found.

• Precision = positive predictive value (PPV):

PPV =
TP

TP + FP

Precision is defined as the proportion of relevant instances found among the retrieved
instances.

• Dice similarity coefficient (DSC):

DSC =
2TP

2TP + FP + FN

The DSC is mathematically equivalent to the F1 score which consists of the harmonic
mean of recall and precision. The DSC metric is often used in practice to assess the
quality of segmentation algorithms. It can further be used to create a corresponding DSC
loss function, see Section 3.2.1.

• Jaccard index (JAC):
JAC =

TP

TP + FP + FN

The JAC is related to the DSC by

DSC =
2JAC

1 + JAC

and therefore does not provide additional information over the DSC [128].

To generalise this measure in a multi-class setting, it is possible to use the mean over all
classes c ∈ C [33]

DSCmean =
1

|C|
∑
c∈C

DSCc

or to use a generalised version of the multi-class Dice score [24, 33]:

DSCmulti =
2
∑

c∈C αcTPc∑
c∈C αcl(2TPc + FPc + FNc)

, (4.2)

where the parameter αcS can be used to weight the classes.
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Spatial distance based metrics

In contrast to overlap metrics, distance-based metrics operate not on voxel volumes but point
sets or surfaces. They are useful to ensure an accurate boundary delineation [128, 47].

Hausdorff distance (HD):

HD = max (h(A,B), h(B,A)) , (4.3)

for two finite point sets A and B, where

h(A,B) = max
a∈A

min
b∈B
||a− b|| (4.4)

is the definition of the directed Hausdorff distance. A common choice for the norm || · ||, is the
Euclidean L2 norm. Because the HD is very sensitive to outliers, it is common to use the qth

quantile – often 95th – instead of the maximum of the distances. The HD is based on pairwise
distances between all points in two point clouds. It is therefore computationally very intensive
to find the HD of segmentation boundaries given by many voxels [128].

4.1.2 Segmentation methods

There exist a plethora of possible segmentation algorithms in general and for bone segmentation
in particular. They range from manual to fully automated once set up and everything in between.
In the following, we provide a rough overview only. For a comprehensive list of algorithms used
for bone segmentation in particular, we direct the interested reader to Sjoquist [122].

Manual

Manual segmentations are performed by delineating or filling in all regions of interest in an
image. In the case of three-dimensional images, the segmentation has to be performed slice by
slice, making this a very lengthy process [29]. Performing manual segmentations requires prior
medical knowledge about the structures of interest and their representation in the chosen image
modality. Depending on the structure of interest, drawing a clear boundary might be difficult,
and only an autopsy might reveal the segmentation’s ground truth. For these reasons, the results
of manual segmentations differ among experts (inter-rater variability) and even among repeated
attempts of the same expert (intra-rater variability).

Semi-Automatic

Interactive segmentation tools such as 3D Slicer [31], ITK-Snap [143], and others [144, 71]
reduce the time needed for segmentation by providing a wide array of algorithms that reduce
the time needed for the segmentation process. These semi-automatic algorithms require user
interventions such as setting seeds or choosing an area of interest. The algorithms range from
comparatively simple, such as thresholding[123], and edge-detection [94] to intricate, such as
graph cuts [14].
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Bone tissue has a very distinct HU value (see also Section 2.3), which facilitates distinguish-
ing bone tissue from other tissue types and hence aids segmentation. A straightforward approach
to segmentation is, therefore, thresholding.

Thresholding can be performed globally on a whole image or locally. It divides an image
into different parts using the valleys and peaks in the intensity histogram of an image [89]. The
thresholds are chosen either visually or according to the expected HU values of the tissue of
interest. Thresholding is very fast but requires the structures of interest to have distinct intensity
levels and is not robust to noise [89].

Noise, artefacts, and the lower HU values of cancellous bone hinder the sole use of global
thresholds to obtain high-quality segmentation results for bone tissue [97]. If only a low number
of segmentations needs to be performed, interactive medical tools [71, 143, 144, 31] can be used
to set multiple thresholds, or adaptive thresholding algorithms can be used [98, 17, 43, 147,
104]. This can remedy the situation but still requires multiple, manual steps, which make these
approaches more cumbersome and hard to scale up [7].

Edge-based segmentation works by detecting discontinuities in the intensity values between
image regions using discretised first- and second-order derivative kernels. The thus detected
edges are combined into an edge chain. Thresholding is used to remove any false or weak
edges. The edge detection and rejection is repeated with different threshold values until closed
boundaries are found [102, 62, 119, 42].

Region growing is an iterative process that starts with one or several user specified seeds.
In each iteration, the algorithm probes the region’s neighbourhood and adds those pixels that
satisfy a predefined similarity criterion [147, 34, 54].

K-nearest-neighbours (knn) is an unsupervised clustering algorithm. The goal is to partition
the data into K clusters. Data points are iteratively assigned to the nearest cluster, and then the
clusters themselves are updated. This procedure is sensitive to the number of clusters K, the
primary initialisation, and local minima [119].

Graph cuts are a fast efficient representation for solving complex energy functionals that
segment an image. As a first step, the image needs to be converted to a graph. Each pixel serves
as a node, and vertices connect adjacent nodes. Each node’s weight represents the similarity of
the nodes it connects. After adding a sink and a target node, max-flow min-cut graph algorithms
can be used to divide the graph into two sections and thus segmenting the image [14].

Active contour or snake algorithms start with a user-defined contour refined iteratively by
minimising the contour’s energy function. This function contains internal energy terms to con-
trol the smoothness of the contour and external energy terms that attract the contour towards the
object of interest [22, 57].

In practice, many of the above approaches are combined and can lean more towards the
manual or the automated side. Most algorithms target specific body parts and selected bones
and are unsuitable for full-body distinct bone segmentation.

Automated

Fully automatic segmentation methods do not require user inputs and thus save time and poten-
tially costs.
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Atlas-based segmentation only works for anatomical structures that always appear in roughly
the same location with a reasonably similar structure; it can not be applied to tumour detections
and comparable tasks. The technique is primarily used in brain region segmentation [1]. It works
by registering a template brain with its corresponding known labelmap, the so-called atlas, to
the input image. The segmentation can then be read out from the warped template. To improve
the results, average atlases or multiple atlases with a decision fusion strategy can be used [50].
A comparison of different atlas-based approaches for binary bone tissue segmentation can be
found in [5].

Statistical shape models can be used to segment single bones or organs. All training data
is registered in the first step to achieve point-wise correspondence. Then, the main modes of
shape variations can be determined using statistical methods and dimension reduction, such as a
principal component analysis (PCA). Once the shape model has been built, it can be fitted to an
image to segment the structure [44, 115, 109, 101].

One approach that has been specifically suggested for full-body bone-tissue segmentation
uses a bottom-up approach to generate supervoxels with a watershed algorithm. After recursive
supervoxels growing and merging, the authors formulate their problem as a binary conditional
random field optimisation problem over the graph of supervoxels and solve it using a support
vector machine (SVM) [78].

Most of the recent works on full-body bone-tissue segmentation have focused on convolu-
tional neural networks to work on automated bone-tissue segmentation and have outperformed
the threshold-based approaches [81, 60, 88]. The prevalent approach is to use 2D axial slices
of CT scans to conduct the segmentation using 2D U-Nets [107, 49] and a fully supervised ap-
proach. Noguchi et al. [88] use an in-house dataset of 32 scans to train their models and achieve
DSC scores of up to 0.98, basically solving the case of bone-tissue segmentation.

4.1.3 Prior work in distinct bone segmentation

In contrast to bone-tissue segmentation, distinct bone segmentation distinguishes bones not only
from other tissues but individual bones from one another. Numerous works segment one partic-
ular bone only, using a wide variety of the solutions sketched above. Some examples include the
skull [56, 81], mandible [127, 130], femur [56, 136], tibia and ulna [38], and the scapula [127].

Vertebra segmentation is a well-studied task that involves classifying many individual bones.
Most recent approaches lean towards neural network-based solutions [9, 116, 51, 68]. Another
task involving many bones of the same group is rib segmentation [140, 15, 76, 142]. In both
rib segmentation and vertebra segmentation, individual instances of one group of bones are
detected. As such, many approaches include post-processing steps or location priors that are not
easily transferable to a broader distinct bone segmentation task.

To our knowledge, only an handful of published papers on human full-body or half-body
bone segmentation exists [78, 60, 88, 70, 11, 37, 73]. Of those publications only three [11, 37,
73] attempt to perform distinct bone segmentation.

Bieth et al. [11] use Haar-like features and geometric features within an iterative random for-
est approach. They segment iteratively finer structures and use the previously obtained centroids
as landmarks to guide the following iterations. There is no discussion on which exact bones
they are segmenting, but their maximum number of labels is reported as 88. An evaluation on
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their dataset of 20 whole-body CT scans of healthy subjects with a 2.6mm × 2.6mm × 2mm
resolution results in a DSC of 84.2± 6.5.

Fu et al. [37] use multiple thresholds to locate bone voxels and then fit a hierarchical atlas to
distinguish 62 individual bones. They still perform some manual steps to guide the registration.
Their method runs on approximately 1mm resolution CT data of 19 patients with a mean DSC
of 0.91. Sjoquist [122] re-implement the method without requiring manual steps and use the
results as a step in their pipeline to locate metastatic bone disease.

Lindgren Belal et al. [73] use a two-stage approach to segment 49 distinct bones from
3.27mm×3.27mm×3.75mm resolution PET/CT scans. In a first step, they use a CNN which
outputs landmark location. The landmarks include rib joints and vertebral processes, which are
not yet assigned to any specific bone. Identification of the matching bones is then made using
an active shape model. Another network detects rib centre lines. In a second step, the vertebra
landmarks and the rib centre lines are fed into a segmentation network together with the original
image. Unlike many other neural network-based approaches, they do not use a U-Net structure
but a network structure that uses convolutions on three different scales of the input, all merged
simultaneously. The receptive field is increased using dilated convolutions. They use a training
set of 100 subjects and validate on 46 subjects.

4.2 Challenges

There are several challenges particular to the automated segmentation of distinct bones. The
most prevalent of these challenges and a few potential solutions are given below.

4.2.1 Class abundance and imbalance

In most applications of medical image segmentation, only a handful of classes are segmented
at once. We work on up to 125 bone classes in our distinct bone segmentation task at once.
This is a computational issue mostly when evaluating the loss function. When using the DSC
loss (3.2.1), the necessary one-hot computation (see Equation (4.1)) of a 3D volume with 125
classes gets very big very quickly. Even when using loss functions that do not require the one-
hot encoding, e.g., cross-entropy loss (see Section 3.2.1), the gradients in relation to all classes
need to be computed, which can be a computationally heavy operation.

Bones also come in very different shapes and sizes, as illustrated in Section 2.1. The differ-
ence in size also manifests in the number of voxels that any given label has in a final segmenta-
tion. Big bones such as the femurs, coxae, or the skull consist of well over 10’000 foreground
voxels, while the small bones of the wrist consist of fewer than 100 voxels.

In machine learning, class imbalance can have detrimental effects on the trained models. In
the simplest case of binary classification, a trained classifier might consistently predict the most
prevalent class, irrespective of the input, having learned that guessing the prevalent class leads to
good loss values. In segmentation, the same effect might lead to pixels primarily being assigned
the most prevalent class. In medical image segmentation, this is almost always the background
label.
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Different strategies are possible to remedy class imbalance, whether data-based or algorithm-
based. We provide an example for each category.

Balanced data sampling

In semantic segmentation of medical images, more often than not, the objects of interest only
make up a tiny fraction of an image. In contrast, the background areas are often huge, look
redundant and tend to be easily detectable [75]. One possibility to work around this issue is
to sample the network inputs so that rare classes appear more often than they naturally would.
This strategy works very well in conjunction with 3D input data, where the network images
need to be cropped in any case because of memory restraints. It also works well in conjunction
with a random cropping data augmentation scheme. Different schemes are possible such as
[49] who sample two thirds of patches at random, while they require the remaining third to
contain at least one foreground voxel. Another approach is selective sampling, where inputs that
the network previously made errors are sampled more often [133]. We examine the effect of
balanced sampling in our publication in Chapter 5.

Balancing Loss Functions

Several loss functions have been proposed specifically to tackle class imbalance [126].
Weighted Cross-Entropy was famously used in [107] and is given by the following for-

mula:
LWCE(y, ỹ) = −w(ỹ) log (sỹ) (4.5)

with ỹ being the target class, sỹ the softmax output of the target class and w(c) being a weight
function that assigns a weight to each class c, usually more weight to minority classes, such as
the inverse of the number of pixels of that class Pc i.e. w(c) = N−Pc

Pc
, where N is the total

number of pixels of the image. The weight function is usually chosen upfront and treated as a
hyperparameter instead of being learnt.

The Generalised Dice Loss builds on the generalised dice metric, which has been proposed
by [24]. It has been first discussed as a loss function by [126].

LGDSC = 1− 2

∑C−1
c=0 w(c)

∑
n ỹc,nsc,n∑C−1

c=0 w(c)
∑

n(ỹc,n + sc,n)
, (4.6)

where n iterates over all spatial elements of the network output. The weights are chosen to
ensure the contribution of each label inverse to its volume w(c) = 1/ (

∑
n ỹc,n)

2. In-depth
comparisons in [126] have shown a slight benefit of the generalised over the standard dice loss
metric using the U-Net architecture and a general advantage of overlap-based loss functions -
such as LDSC and LGDSC - over cross-entropy loss functions.

4.2.2 Data scarcity

Supervised learning requires many fully labelled samples to train machine learning networks. In
medical applications, it is often challenging to collect enough data. To solve this issue, different
paths are possible.
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Active learning

Active learning tries to maximise the usefulness of annotator time by choosing the subsequent
to-be-annotated data such that it leads to the best model improvement [117, 25, 16]. In order
to assess the model improvement gained by adding a new sample, the sample’s informativeness
has to be estimated. This is usually done by computing the uncertainty of a prediction, arguing
that annotating and adding samples with a high uncertainty leads to a high information gain of
the trained model. We evaluated this approach in Chapter 6. An alternative option is repre-
sentativeness, where the sampling of new data from different areas of the data distribution is
encouraged.

Data augmentation

Data augmentation is a standard way to increase the robustness of the model. Augmentations
can take many forms, but they fall primarily into two categories: geometric transformations and
variation in visual representation. More details can be found in Section 3.2.5. We evaluate the
use of data augmentation in Chapter 5.

Weakly-supervised learning

Weakly-supervised learning allows learning segmentation without access to pixel-wise segmen-
tation labels. It is used for anomaly detection [138], brain tumours [52] and multiple sclerosis
lesions [2]. A classification label usually replaces the pixel-wise segmentation labels, and gen-
erative models are used to create data in one class or another. Difference maps can then be used
to create segmentations. Changing this approach from pathology to anatomical segmentation in
a multi-class setting is not trivial.

All in all, automated distinct bone segmentation is a challenging task. The following publi-
cations will discuss our solutions to these challenges in more detail.
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Chapter 5

3D Segmentation Networks for
Excessive Numbers of Classes: Distinct
Bone Segmentation in Upper Bodies

The publication presented in this chapter covers our first successful attempt at upper-body dis-
tinct bone segmentation. It elaborates where the challenges of this task lie and presents a 3D
U-Net type architecture that managed to achieve first baseline results. We also compared a 2D
to a 3D approach, concluding that only 3D was suitable for our case. We ablated several com-
ponents of our approach, specifically the input size, the data sampling scheme, and the loss
function. We compared our approach to other published results with encouraging outcome: de-
spite distinguishing more classes and having a much smaller dataset we achieved competitive
accuracies and faster inference times.

Publication. The following manuscript was presented at the International Workshop on Ma-
chine Learning in Medical Imaging (MLMI) in conjunction with the 23rd International Con-
ference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), October
2020, Lima, Peru, held virtually. It was published as part of the workshop proceedings1 [111] .

c© Springer Nature. Reprinted by permission from Springer Nature Customer Service Cen-
tre GmbH: Springer Nature, 3D Segmentation Networks for Excessive Numbers of Classes:
Distinct Bone Segmentation in Upper Bodies, Eva Schnider, Antal Horváth, Georg Rauter et al.
(2020).

1https://doi.org/10.1007/978-3-030-59861-7 5
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Abstract. Segmentation of distinct bones plays a crucial role in diag-
nosis, planning, navigation, and the assessment of bone metastasis. It
supplies semantic knowledge to visualisation tools for the planning of
surgical interventions and the education of health professionals. Fully
supervised segmentation of 3D data using Deep Learning methods has
been extensively studied for many tasks but is usually restricted to dis-
tinguishing only a handful of classes. With 125 distinct bones, our case
includes many more labels than typical 3D segmentation tasks. For this
reason, the direct adaptation of most established methods is not possible.
This paper discusses the intricacies of training a 3D segmentation net-
work in a many-label setting and shows necessary modifications in net-
work architecture, loss function, and data augmentation. As a result, we
demonstrate the robustness of our method by automatically segmenting
over one hundred distinct bones simultaneously in an end-to-end learnt
fashion from a CT-scan.

Keywords: 3D segmentation · Deep learning · Many label
segmentation

1 Introduction

The segmentation of distinct bones from CT images is often performed as an
intermediate or preprocessing task for planning and navigation purposes to pro-
vide semantic feedback to those systems. It is also crucial for the evaluation of
the progress of bone diseases [7], or for the quantification of skeletal metastases
[17]. In Virtual Reality (VR) tools [5,14], the distinct segmentation of bones
permits more fine-grained control over rendered body parts and can serve an
educational purpose by teaching skeletal anatomy. Due to its distinctive high
Hounsfield unit (HU) values in CT images, cortical bone tissue can be seg-
mented approximately using thresholding. However, random intensity variations
and the relatively low HU value of squamous bones hinder accurate results [18].
c© Springer Nature Switzerland AG 2020
M. Liu et al. (Eds.): MLMI 2020, LNCS 12436, pp. 40–49, 2020.
https://doi.org/10.1007/978-3-030-59861-7_5

44 3D Networks for Distinct Bone Segmentation in Upper Bodies



3D Networks for Distinct Bone Segmentation in Upper Bodies 41

For a precise segmentation, or the separation of individual bones, more elaborate
methods are needed. For the analysis and segmentation of single bones, statisti-
cal shape or appearance models are applied [19,21,22]. For whole skeletons, atlas
segmentations using articulated joints have been used in mice [1], and for human
upper bodies [7]. A combination of shape models and convolutional neural net-
works (CNN) have been employed in [17] to segment almost fifty distinct bones.
Their multi-step approach consists of an initial shape model corrected land-
mark detection, followed by a subsequent voxel-wise segmentation. Solely CNN
based methods have been used for full-body bone tissue segmentation, without
labelling of individual bones [13], and for segmentation of bones of groups, such
as vertebrae [23]. To our knowledge, no simultaneous segmentation of all distinct
bones of a human upper body by the use of CNNs has been published so far.

Fully automated methods driven by CNNs have shown great results for vari-
ous tasks in medical image analysis. They excel at pathology detection [2,10,11]
as well as at segmenting anatomical structures [9,16,20] for a wide array of body
regions and in both 2D and 3D. In conjunction with data augmentation, good
results have been reported even when training networks on as little as 1–3 fully
annotated scans [3,4]. However, in typical 3D medical image segmentation tasks,
distinctions are made for a handful or up to a dozen classes. Many established
methods developed for a few classes fail when dealing with the over hundred
classes for our particular case, or are not practical anymore due to restrictions
in computational time and memory.

In this work, we present, which kinds of preprocessing, network choice, loss
function and data augmentation schemes are suitable for 3D medical image seg-
mentation with many labels at once, using the example of distinct bone segmen-
tation in upper bodies. Our contributions are: 1) We discuss essential adaptions
concerning network choice and data augmentation when performing 3D segmen-
tation in a many-label setting. 2) We examine different sampling strategies and
loss functions to mitigate the class imbalance. 3) We present results on a 3D
segmentation task with over 100 classes, as depicted in Fig. 1.

2 Methods

Segmenting many classes simultaneously in 3D comes at a cost in computational
space and time. In the following, we discuss how this affects and limits not only

Fig. 1. Left: maximum intensity projection of one of our upper body CT-scans. Right:
the manual target segmentation depicting 125 different bones with individual colours.
(Color figure online)
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the possibilities in network design but also renders certain loss functions and
data augmentation schemes impractical. We present the methods that worked
under the constraints imposed by the many-class task and rendered distinct bone
segmentation from upper body CT scans possible.

2.1 Limitations Imposed by Many-Label 3D Segmentation Tasks

Limitations in computational resources, particularly in GPU RAM size, ask for
a careful design of 3D segmentation networks. There are many existing archi-
tectures optimised for typical GPU memory sizes. They generally support input
patches in the range of 643 px to 1283 px and feature only few network layers at
the costly full resolution – mainly input and classification layers. The full reso-
lution classification layer becomes much bigger in the presence of a high number
of classes Nc, since its size is given by H × W × D × Nc, where H, W , and D
represent the output patches’ spatial dimensions.

One possibility to counter the computational challenges would be splitting
of the task into different groups of bones and learning one network per group.
Such an ensemble approach has its own downsides, however. There is much
overhead needed to train not one, but many networks for the tasks. Apart from
training, the added complexity also increases resources and time needed during
inference [15]. Even if resorting to such an approach, both hands alone would
sum up to 54 bones (sesamoid bones not included), and therefore considerations
about simultaneous segmentation of many bones remain an issue.

2.2 Network Design

For the segmentation task, we use No-New-Net [10]. This modification of the
standard 3D U-Net [4] achieves similar performance with less trainable parame-
ters, thus increasing the possible size of input patches and allowing us to capture
more global context for our task. We were able to use input and output patches
of spatial size 963 px on a 8 GB, 1283 px on a 12 GB, and of size 1603 px on
a 24 GB GPU. Even the latter is nowhere near the original size of our CT-
scans, the extent of which is 512 px for the smallest dimension. The disparity
between scan and patch size means that we can use only a minuscule part of
the volume at once and consequently loose information on the global context
and surrounding of the subvolume. However, using patches is akin to random
cropping of the input and an established technique even for applications where
the cropping is not necessary for GPU memory reasons. All in all, we have to
balance the increasing information loss of extracting smaller volumes with the
enhanced data augmentation effect of more aggressive cropping.

2.3 Fast Balancing Many-Class Segmentation Loss

As a consequence of the unusually large classification layer, any byte additionally
spent for representing a single voxel label in the final prediction is amplified
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millionfold. Using a dense representation of the prediction instead of a sparse one
will tip the balance easily towards an out-of-memory error. We thus use sparse
representations of the class-wise predictions and ground truths for computation
of the loss. To counter the high imbalance in the number of voxels per class,
we use the multi-class cross-entropy loss in conjunction with a Dice similarity
coefficient (DSC) loss over all classes c ∈ C: We chose to use an unweighted
linear combination of the two, following the implementation given in [10]:

LX-Ent + DSC := LX-Ent +
∑

c∈C

Lc
DSC. (1)

2.4 Resourceful Data Augmentation

We utilise various data augmentation techniques to increase the variety of data
the network encounters during training. We use random sampling of the input
patch locations in two flavours: Uniform random sampling returns every possi-
ble patch with the same probability. With balanced sampling, every class has
the same probability of being present in the chosen subvolume. Balanced sam-
pling results in high variability in the field of views of the (input) patches while
asserting to repeatedly present all bones, even small ones, to the network.

Much like random cropping, many of the other prevalent techniques in 3D
segmentation such as affine transformations, elastic deformations, and changes in
brightness and contrast can be employed unhindered in the many-label setting.
Contrarily, some augmentation schemes – notably MixUp [24] and its variants
– work with dense labels and losses, thus causing tremendous inflation of the
classification layer size and loss calculation time. We, therefore, omit the latter
kind of data augmentation and concentrate on the first kind.

2.5 Implementation Details

Our experiments are built on top of the NiftyNet [8] implementation of the
No-New-Net [10]. We modified the network architecture only in the number
of channels of the classification layer, to account for the different amount of
classes. We used the Leaky ReLU activation function with a leak factor of 0.02,
and instance normalisation. In contrast to the No-New-Net publication [10], we
were only able to fit a batch size of 1 due to the high memory demands of our
many-class case. We optimised our networks using Adam [12] with a learning
rate of 0.001 and ran 20 000 iterations of training.

3 Experiments

For lack of publicly available data sets with many-label distinct bone segmenta-
tion, our experiments are conducted on an in-house data set, consisting of five
CT scans and their voxel-wise segmentation into 126 classes. To counter the low
number of labelled images, we use 5-fold cross-validation throughout.
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Fig. 2. Development of DSC scores (see subsect. 3.2) over the course of training. The
distribution of per-class DSC scores is indicated by the violins (grey area). Additionally,
the mean, median, and foreground DSC scores (3), are provided.

3.1 Data Set and Preprocessing

The five CT scans were taken and annotated by our university’s anatomical
department. The resulting voxel-wise segmentation consists of 126 classes – one
for each kind of bone in the scans, plus background. The scans were taken from
individual subjects aged 44–60, three of whom were female, two male. The field of
view starts at the top of the skull and includes the area below until approximately
mid-femur. All subjects lie on their backs, arms either resting on the lap or
crossed over the stomach, a posture variation that makes the segmentation task
harder. The size of each scan was 512×512×H, where the value of H ranges from
656 to 1001. In-plane resolutions vary from 0.83 mm × 0.83 mm to 0.97 mm ×
0.97 mm while inter-plane spacing ranges from 1.0 mm to 1.5 mm.

To be able to capture more body context within an input patch, we resampled
our data to 2 mm per dimension – approximately half the original resolution –
resulting in volumes of 214 − 252 × 215 − 252 × 477 − 514. We used bilinear
interpolation for the scans and nearest neighbour interpolation for the label
volume.

3.2 Evaluation

To evaluate the network’s ability to correctly label and delineate each bone, we
use the DSC of individual classes c in all our experiments: DSCc = 2|Pc�Gc|

|Pc|+|Gc| ,
where Pc and Gc represent the pixel-wise binary form of the prediction of class
c and the corresponding ground truth. To obtain a combined score for a whole
group of bones over all cross-validation sets, we provide the median DSC. We
furthermore provide the distance from the median to the upper and lower uncer-
tainty bound, which correspond to the 16 and 84 percentile. If certain bones are
not detected at all, i.e. their DSC equals 0, they are excluded to not distort the
distribution. Instead, we provide the detection ratio

dr :=
# bones with DSC > 0

# all bones
. (2)
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Table 1. Comparison of segmentation performance per model. We provide the median
DSC, the uncertainty boundaries, along with the detection ratio dr (2) for each group
of bones, and the median foreground DSC (3) for all bones combined. Time per training
iteration normalised by batch size.

Method Segmentation performance for groups of bones Time

Spine Ribs Hands Large bones All

DSC dr DSC dr DSC dr DSC dr DSC dr fg s

96bal 0.79+0.11
−0.26 1 0.52+0.26

−0.26 1 0.48+0.31
−0.38 0.54 0.83+0.07

−0.19 1 0.68+0.19
−0.43 0.79 0.84 2.1

96bal,xent 0.81+0.09
−0.39 1 0.53+0.21

−0.27 1 0.42+0.37
−0.35 0.57 0.87+0.05

−0.09 1 0.66+0.21
−0.40 0.80 0.90 1.1

128unif,d 0.80+0.09
−0.20 1 0.62+0.20

−0.32 1 0.52+0.21
−0.42 0.41 0.90+0.04

−0.04 1 0.73+0.16
−0.38 0.73 0.89 5.2

128bal,d 0.80+0.11
−0.28 1 0.54+0.23

−0.35 1 0.58+0.27
−0.46 0.51 0.84+0.07

−0.17 1 0.71+0.18
−0.48 0.77 0.85 5.3

160bal,d 0.82+0.09
−0.17 1 0.58+0.21

−0.27 1 0.67+0.18
−0.39 0.58 0.88+0.04

−0.11 1 0.75+0.14
−0.38 0.80 0.88 8.8

160bal,xent,d 0.83+0.09
−0.25 1 0.58+0.23

−0.29 1 0.55+0.28
−0.41 0.59 0.90+0.04

−0.08 1 0.75+0.15
−0.43 0.81 0.89 3.7

2D U-Net2c – – – – – – – – – – 0.91 0.4

2D U-Net126c 0.45+0.24
−0.30 0.87 0.34+0.26

−0.27 0.94 0.36+0.33
−0.26 0.23 0.82+0.08

−0.19 1 0.49+0.29
−0.37 0.61 0.86 0.4

Additionally, we provide the foreground (fg) DSC of all bone tissue combined.
In this case no distinctions between bones are made. We define the DSCfg using
foreground ground truth and prediction Gfg :=

∨
c∈C
c �=bg

Gc and Pfg :=
∨

c∈C
c �=bg

Pc.

Assuming mutually exclusive class segmentations we can compute

DSCfg :=
2|Pfg � Gfg|
|Pfg| + |Gfg| =

2|Pbg � Gbg|
|Pbg| + |Gbg|

, (3)

using only the background segmentation. In this equation, Pbg denotes the logic
complement of the binary predication for the background class bg, and Gbg

denotes the respective ground truth.
We employ cross-validation using five different data folds, each comprising of

three scans for training, one for validation and one for testing. The validation set
is used for adjusting the hyperparameters and monitoring convergence. Within
every cross-evaluation fold, we use a different scan for the final testing.

4 Results and Discussion

To evaluate the contributions of different patch sizes, sampling strategies, data
augmentation schemes and loss functions, we present quantitative results in
Table 1. We investigate input patch sizes of 96, 128, and 160 px per dimension,
chosen through balanced sampling bal or uniform sampling unif . The subscript
xent stands for the use of the cross-entropy loss function alone instead of the
full loss (1). With d we denote data augmentation with elastic deformations.

Not least because of the small data set available, there is considerable vari-
ance within the DSC scores of a given model and bone group, which impedes
direct comparison of different models. No single model outperforms all others,
although bigger patch sizes correspond to higher total scores. As for class imbal-
ances, we note that the two models trained with a uniform sampler have the
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Fig. 3. Qualitative segmentation results created using 160bal,d and two exemplary CT
scans for which no manual labels exist. The 3D views were created with 3D Slicer [6]
and show an interpolated version of the data.

lowest detection ratio for bones in the hands. The balanced sampler thus seems
to benefit the detection and segmentation of tiny bones. We indicate the time
needed for one iteration of training. To ensure a fair comparison, we averaged
100 iterations trained on the same machine under stable conditions. Patch sizes
profoundly influence the time needed per iteration. The resulting times range
from close to 1 second for a patch of size 963 up to almost 9 seconds for patches
sized 1603. The loss function also influences the training time considerably, with
pure cross-entropy taking only half as long as the combined loss function.

Because many of our limitations in computational resources stem from the
combination of a 3D network with a large number of classes, we additionally
provide the results obtained using a 2D U-Net. We trained this network as
specified in [13] who used it successfully for non-distinct bone segmentation of
whole-body CT images. This network leads to good results for the 2-class case
(2D U-Net2c), but it does not scale well to bone distinction, as our results of a
2D U-Net126c – trained on the primary task – suggest.

A comparison with existing methods is made in Table 2. Since code and data
sets are not publicly available, we compare the published results for different
bones with our own. While the atlas method presented in [7] exhibits the best
segmentation performance, their inference takes 20 min. They also require man-
ual intervention if used on CT images that show only parts of an upper body.
The two-step neural network presented in [17] was trained on 100 data sets and
evaluated on 5. For the sacrum and L3, both our work and [17] show similar
results. For bones that have a high chance of being confused with the ones below
and above, their use of a shape model for landmark labelling and post-processing
helps to keep scores for ribs and vertebrae high. It is, however, not clear how
easily their approach could be adapted to accommodate for the segmentation of
further bones, e.g. hands.

Qualitative results using two scans of unlabelled data are depicted in Fig. 3.
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Table 2. Comparison of segmentation results for an end-to-end trained neural network
approach (this work, model 160bal), a hybrid approach using neural networks and shape
models for landmark detection and a subsequent neural network for segmentation [17],
and a hierarchical atlas segmentation [7].

DSC This work Lindgren et al. [17] Fu et al. [7]

Median Range Median Range ∅c Std

Th7 0.64 0.22-0.94 0.86 0.42-0.89 0.85 0.02

L3 0.89 0.72-0.94 0.85 0.72-0.90 0.91 0.01

Sacrum 0.86 0.80-0.92 0.88 0.76-0.89 – –

Rib 0.38 0.19-0.58 0.84 0.76-0.86 – –

Sternum 0.74 0.59-0.87 0.83 0.80-0.87 0.89 0.02

Inference time for 1 scan (min) ∼ 1 – ∼ 20

Distinct bones (#) 125 49 62

In-plane resolution (mm) 2 3.27 0.97

Slice thickness (mm) 2 3.75 1.5-2.5

5 Summary and Conclusion

We tackled the task of segmenting 125 distinct bones at once in an upper-body
CT scan, using an end-to-end trained neural network and only three fully labelled
scans for training. We provide network architectures, loss functions and data
augmentation schemes which make this computationally singular task feasible.
While not all problems are solved, we showed how balanced sampling and a
suitable choice of the loss function help to deal with the class imbalance inherent
to our task. Despite a lack of training data, we obtained median DSC scores of
up to 0.9 on large bones, 0.8 on vertebrae, which compares well with other works
that segment various bones of the upper body simultaneously. More problematic
are ribs, which tend to be confused with one another, an issue where shape
models certainly could help. As for the hands, many of the tiny bones are not
detected at all, which suggests the need for more fine-grained methods for this
particular set of bones. In terms of inference time, the complete labelling of
a scan takes roughly one minute, which would be fast enough to be used to
create initial guesses of a more accurate atlas method. More manually labelled
scans would certainly improve the generalisation capacity of our networks and
the statistical significance of our comparisons. Using our results on momentarily
unlabelled data as priors, we expect a drastic decrease in the time needed for
further manual annotations.
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9. Horváth, A., Tsagkas, C., Andermatt, S., Pezold, S., Parmar, K., Cattin, P.:
Spinal cord gray matter-white matter segmentation on magnetic resonance AMIRA
images with MD-GRU. In: Zheng, G., Belavy, D., Cai, Y., Li, S. (eds.) CSI 2018.
LNCS, vol. 11397, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-13736-6 1

10. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-
net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T.
(eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries,
pp. 234–244. Springer International Publishing, Cham (2019)

11. Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for
accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
(2014). arXiv:1412.6980

13. Klein, A., Warszawski, J., Hillengaß, J., Maier-Hein, K.H.: Automatic bone seg-
mentation in whole-body ct images. Int. J. Comput. Assist. Radiol. Surg. 14(1),
21–29 (2019)

14. Knodel, M.M., et al.: Virtual reality in advanced medical immersive imaging: a
workflow for introducing virtual reality as a supporting tool in medical imag-
ing. Comput. Vis. Sci. 18(6), 203–212 (2018). https://doi.org/10.1007/s00791-018-
0292-3

15. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: Advances in neural information
processing systems, pp. 4652–4662 (2017)

52 3D Networks for Distinct Bone Segmentation in Upper Bodies



3D Networks for Distinct Bone Segmentation in Upper Bodies 49

16. Lessmann, N., van Ginneken, B., de Jong, P.A., Išgum, I.: Iterative fully convo-
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Chapter 6

Ensemble Uncertainty as a Criterion
for Dataset Expansion in Distinct Bone
Segmentation from Upper-Body CT
Images.

We expanded our data set by leveraging different ensemble approaches and creating as-good-
as possible automated segmentations on unannotated data. In cooperation with the university’s
anatomical department, we corrected those ensemble predictions and turned them into new train-
ing data. We then evaluated how useful this new training data was to obtain a more accurate
model. We also compared the usefulness of the new data against the data’s ensemble uncertainty.
Against our expectations, the ensemble uncertainty of newly labelled data was no predictor of
its usefulness. It was, however, a predictor of the quality of the automated segmentation and
thus gave a measure of how much manual correction work was necessary to turn a given scan
into new training data.

Technical Report. The following manuscript was presented orally at the conference for Com-
puter Assisted Radiology and Surgery (CARS), June 2022, Tokyo, Japan. The report [113] has
been submitted to arxiv.org1.

1https://arxiv.org/abs/2208.09216
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Abstract

Purpose: The localisation and segmentation of individual bones is an
important preprocessing step in many planning and navigation appli-
cations. It is, however, a time-consuming and repetitive task if done
manually. This is true not only for clinical practice but also for the
acquisition of training data. We therefore not only present an end-to-end
learnt algorithm that is capable of segmenting 125 distinct bones in an
upper-body CT, but also provide an ensemble-based uncertainty measure
that helps to single out scans to enlarge the training dataset with.
Methods: We create fully automated end-to-end learnt seg-
mentations using a neural network architecture inspired by the
3D-Unet and fully supervised training. The results are improved
using ensembles and inference-time augmentation. We exam-
ine the relationship of ensemble-uncertainty to an unlabelled
scan’s prospective usefulness as part of the training dataset.
Results: Our methods are evaluated on an in-house dataset of 16
upper-body CT scans with a resolution of 2 mm per dimension. Tak-
ing into account all 125 bones in our label set, our most success-
ful ensemble achieves a median dice score coefficient of 0.83. We
find a lack of correlation between a scan’s ensemble uncertainty
and its prospective influence on the accuracies achieved within an

1
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2 Ensemble uncertainty for upper-body CT images

enlarged training set. At the same time, we show that the ensem-
ble uncertainty correlates to the number of voxels that need manual
correction after an initial automated segmentation, thus minimis-
ing the time required to finalise a new ground truth segmentation.
Conclusion: In combination, scans with low ensemble uncer-
tainty need less annotator time while yielding similar future DSC
improvements. They are thus ideal candidates to enlarge a train-
ing set for upper-body distinct bone segmentation from CT scans.

Keywords: Distinct bone segmentation, Deep learning, CT, Active learning

1 Introduction

Automated segmentation of distinct bones within upper body CT scans opens
up a world of possibilities. It supports surgical planning and navigation by
providing semantic information to these systems. For computations of joint
load through bone density [1], it simplifies preprocessing by separating adjacent
bones. Furthermore, bone segmentation is a prerequisite for many types of
diagnostics and analysis [2].

Bones are well visible in CT scans thanks to their characteristically high
Hounsfield unit (HU) values. Semi-automated segmentation approaches usu-
ally consist of thresholding steps or region-growing from seeds, followed by
manual tidying up of the edges and removing outliers and holes [3]. While they
offer much control over the outcome, the necessary intermediate manual steps
can be lengthy and cumbersome.

In recent years, neural networks have proven themselves to be handy tools
for various semantic segmentation tasks involving medical images [4–9]. Con-
volutional neural networks are also popular choices leading to good results
for fully automated bone segmentation in full-body CT images and compare
favourably to thresholding approaches [4, 10, 11]. However, these works focus
on a binary segmentation task, separating bone tissues from the background
without distinguishing single bones.

Multi-label segmentation of distinct bones poses additional challenges since
it requires a very accurate separation of joint surfaces. Atlas segmentation and
explicit joint modelling are used in [12], who show excellent results for the seg-
mentation of 62 distinct bones at the expense of numerous processing steps
and a long inference time. Most of the recent publications, however, steer more
towards deep learning methods: In [13] five distinct bones are segmented using
shape prior regularisation in combination with adversarial networks. Their
study also compares individual convolutional networks trained on one bone
each, to those that segment multiple bones at once and shows that the latter
lead to higher performing networks. At large, most deep-learning-based med-
ical imaging segmentation tasks deal with a relatively moderate amount of
distinct bones. A rare exception is [2] which uses a segmentation network in
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conjunction with a shape model-based landmark detection to segment and dif-
ferentiate 49 bones. Since a priori it is not clear, whether an end-to-end learnt
segmentation approach with more than twice the labels would be possible, we
studied the task in [14] to understand the influence of a high number of labels
on possible network architectures. In accordance with [6] we found that lean
U-Net-like networks were the most suitable for distinct bone segmentation.

Fully supervised semantic segmentation results improve with the dataset
size [15]. In cases where large open datasets are missing – such as for our task
of distinct bone segmentation in upper bodies – ground truth data is generally
scarce and expensive to collect. Collecting and labelling a new dataset is always
a challenge, but even more so in medical 3D segmentation, where obtaining
ground truth data is a highly time-consuming task that needs to be carried out
by specialists. In our case of distinct bone segmentation with many distinct
labels, it takes multiple working days to segment a single CT scan from scratch.
In that respect, a suitable strategy to automatically pre-segment scans, which
then only need to be manually corrected, can save precious time.

Methods to minimise annotator time are investigated under the term active
learning [16]. Uncertainties within a network or between multiple networks can
serve as an estimate of an unlabelled scan’s future usefulness within a train-
ing dataset. Special 2D segmentation networks have been proposed to be used
together with bootstrapping in active learning [17]. To avoid the costly retrain-
ing of the same model, Monte Carlo drop-out sampling has been used [18] and
more elaborate metrics have been combined with it to estimate the representa-
tiveness of to-be-annotated data [19]. As a draw-back, these approaches need
a particular network architecture and require either frequent retraining of the
same model or the presence of drop-out layers. In terms of 3D segmentation,
this leads to additional challenges because the range of computationally fea-
sible networks is much smaller than for 2D cases, where most active learning
research has been conducted [15, 20]. Furthermore, many of the most suc-
cessful 3D segmentation networks do not include drop-out layers, [6, 21] and
their training is a very time-consuming affair. Alternatives that work without
the need for drop-out layers, or a specific model architecture, are test-time
augmentation [22] and ensemble-based uncertainties [23].

In the following, we show how the combination of test-time data augmenta-
tion and model ensembles leads to robust results for distinct bone segmentation
using as few as three scans in the training data. Furthermore, we provide an
uncertainty measure based on test-time augmentation that works on any net-
work architecture. Due to its plug-and-play nature, the method works on its
own when time or space restraints hinder more complex means or when a net-
work is delivered as-is. The uncertainty serves as an estimator for the number
of voxels that need correction after the automated segmentation and can serve
as a proxy to choose the least time-intensive new scans to label and include
into the training data.
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2 Methods

2.1 Network design and training

In previous experiments, we found 2D networks to work substantially worse for
the task of distinct bone segmentation than 3D networks [14]. As a result, we
concentrate on 3D networks in this current work. Unfortunately, this restricts
our architecture choices due to the 3D networks’ high demands in computa-
tional time and memory. This issue is exacerbated further by our task’s high
number of labels [14]. For our experiments, we therefore choose a lean variation
of the 3D-Unet architecture [6]. Thanks to its linear upsampling in place of up-
convolutions, this architecture has a reduced number of trainable parameters
than comparable networks [21]. With its resulting small memory footprint and
the capability to adapt to a big range of segmentation tasks, it is well suited
for our task.

We use the implementation provided within NiftyNet 0.5.0 [24] for training
and inference of our models. Due to the high computational demands segment-
ing numerous classes at once, we use a batch size of 1. The model uses instance
normalisation but no drop-out layers, which excludes the possibility of using
Monte Carlo drop-out sampling. We run 20’000 training iteration steps per
model, using the Adam optimiser with an initial learning rate of 0.001. For the
training, we use Quadro RTX 6000 (24GB) and A100 SXM4 (40GB) GPUs.
The training of a model takes 48 hours on the Quadro and 24 hours on the
A100.

In terms of training time data augmentation, the patch-wise approach of
training a 3D network already serves as a random cropping augmentation step.
Further, we apply randomised affine transformations, such as rotations upon
the data before using it for training.

2.2 Uncertainty estimation

The segmentation uncertainty of a non-labelled image can be estimated using
multiple predictions from learnt models [25]. The uncertainty in classification
yv of a single voxel v as belonging to class l = 1, ..., L by N different predictions
with input x and model parameters θ is given as:

ucl,yv
= var [p(yv = l|x, θ)] , (1)

where p(yv = l|x, θ) is the vector containing the probability of voxel yv being
classified as l for all N predictors. Since all voxels and all labels are equally
important, we compute the unweighted average over the volume and labels:

uc =
1

L

L∑
l=1

1

V

V∑
v=1

var [p(yv = l|x, θ)] . (2)
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The multiple predictions used to compute the uncertainty can be obtained
in several ways, which can be used independently or in combination. In the
ensemble approach, various models provide one prediction each.

Conversely, test-time augmentation works on a single trained model and
obtains multiple predictions by varying the treatment of the input data during
inference. Copies of the input data are transformed, the inference is performed,
and the resulting predictions are then transformed back into the original space.
Hence, only invertible types of data augmentation are suitable. Affine transfor-
mations can be inverted but generally suffer from errors due to the necessary
interpolation into pixel space, which will occur twice. In contrast, offsets or
translations by an integer number of pixels can be inverted without introducing
new error sources, leading to different inference results.

Apart from their use as uncertainty estimators, predictions of the same
input can be combined with a voting scheme, such as majority voting, to create
an ensemble prediction [6, 26–28]. We will use these multiple predictions of
the same input for both, the uncertainty estimate, and to create ensembles.

3 Experiments

We test the segmentation capabilities of our ensemble approach for various
types of bones. We also investigate the ensemble uncertainty of scans that
could potentially enlarge the dataset in relation to the gained segmentation
accuracy and the manual correction time needed.

3.1 Datasets

Table 1 Dataset properties.

Dataset volumes male/female age original resolution (mm)

in-plane out-plane

A, inital 5 2/3 44-60 0.83-0.97 1.0-1.5
B, follow-up 12 7/4 54-103 0.89-0.98 1.0-1.3

The 16 CT scans we use (see Table 1) were routinely obtained post mortem
from body donors at our university’s anatomical department. Due to limited
annotation resources, we had to choose a small fraction of all available data
for manual segmentation. We excluded scans with rare skeletal variants, as
well as scans containing implants that led to strong artefacts. All scans were
taken using the same scanner and field of view, which starts at the top of
the skull and stops approximately mid-femur. All body donors lie on their
backs, arms either resting on the lap or crossed over the stomach to various
degrees. Including background, 126 classes have been segmented, spanning all
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Fig. 1 Qualitative results were obtained using the ensemble approach of combining six
model variations on a hold-out set of unlabelled scans. Shown are CT images predicted label
map, and uncertainty map for both the scan with lowest (left) and highest (right) mean
uncertainty (2.2).

upper body bones, pelvis, and femurs. the subjects’ advanced age (see Table
1) manifests in different levels of scoliosis and calcifications.

Dataset A has already been used and described in [14]. The remaining
eleven scans of dataset B were pre-segmented using our ensemble models, and
the labelling afterwards manually improved. Nevertheless, the time needed to
finish a manual segmentation still exceeded a working day per scan due to the
many distinct classes. We re-sample our data to a uniform resolution of 2 mm
in all three dimensions which leaves us with scans of ∼ 265× 256× 512 voxels.
The smaller resolution reduces I/O times during training tremendously and
allows us to capture more body context within an input patch. The labels of
the various bones are highly imbalanced, which complicates model training.
While many bones in the hands only span a few dozen voxels, there are also big
bones such as the skull, femur, and pelvis, which easily exceed 10’000 voxels.

3.2 Ensemble Model Variations

To obtain different predictors for our ensemble, we perform the training using
a range hyperparameter settings that have been found to work well for the
given task [14]. Input patch sizes range from 96 px - 160 px per dimension, the
loss function used is either pure multi-label cross-entropy (xent) or a linear
combination of the DSC loss [29] and the cross-entropy loss (D+xent). Patches
are sampled uniformly random (unif) or in a balanced fashion (bal), such
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Fig. 2 A higher ensemble uncertainty leads to worse priors requiring more manual work
to correct them. While the percentages seem minor, the absolute values of voxels that need
correction span from 20767 to 115291.

that the probability to be present in the patch is the same for all labels.
We use elastic deformations (d) and slight affine transformations (a) for data
augmentation. The six variations used for the experiments are 160bal,D+xent,d,
160bal,xent,d, 128unif,D+xent,a,d, 128unif,D+xent,d, 128bal,D+xent, 128bal,xent, where
the numbers and indexes represent the modes explained above.

3.3 Evaluation metrics

To measure the segmentation performance per class c we use the Dice simi-

larity coefficient: DSCc = 2|Pc�Gc|
|Pc|+|Gc| , with Pc the pixel-wise prediction of class

c, and Gc the corresponding ground truth. To indicate performance over a
group of bones, we give the median, as well as the 16 and 84 percentile of the
corresponding DSCc scores. Classes which were missed completely by the pre-
diction are not included to not distort the distribution, we give the detection
ratio dr := # bones with DSC>0

# all bones to account for them.
We use 5-fold cross-validation. Within each fold of dataset A, three scans

are assigned to training, one to validation, and the remaining scan serves as the
test set. For every cross-validation fold, the test set is different. When training
in conjunction with dataset B, we keep the test set per fold consistent to
facilitate the comparison of results. The new data B are added to the training
(10) and validation (2) splits.

4 Results

Our initial experiments showcase the astonishingly good results that can be
achieved for a tiny dataset on the challenging task of distinct bone segmen-
tation, segmenting 126 classes simultaneously and end-to-end. Quantitative
results are given in Table 2. We compare the average performance of our sin-
gle models (Sngl ∅) with different types of ensembles. As a baseline we also
provide results for 160bal,D+xent,d, the best performing single model (Bsm).

We compare ensembles built using differently trained models (Ens), and
the best single model using test-time data augmentation in the shape of sam-
pling offset (so), and affine transformations (a). As expected, the more variants
of models and test-time augmentation we use, the better the final results.
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Table 2 Ablation results using single models and various ensemble types on dataset A.
For comparison we also give results on the final full dataset A+B.

Vertebrae Ribs Hands Large All es1 ds2

Sngl∅ 0.81+0.09
−0.24 0.58+0.22

−0.28 0.54+0.26
−0.41(52%) 0.88+0.05

−0.10 0.72+0.17
−0.40(78%) 1 3

Bsm 0.82+0.09
−0.17 0.58+0.21

−0.27 0.67+0.18
−0.39(58%) 0.88+0.04

−0.11 0.75+0.14
−0.38(80%) 1 3

Bsmso 0.86+0.06
−0.19 0.65+0.19

−0.33 0.58+0.24
−0.38(58%) 0.89+0.04

−0.07 0.76+0.14
−0.38(81%) 7 3

Bsma+so 0.85+0.07
−0.17 0.60+0.21

−0.31 0.56+0.22
−0.39(54%) 0.89+0.04

−0.08 0.75+0.14
−0.40(79%) 7 3

Ens 0.87+0.06
−0.18 0.66+0.20

−0.33 0.65+0.19
−0.50(57%) 0.93+0.03

−0.03 0.80+0.12
−0.39(80%) 6 3

Ensso 0.88+0.06
−0.18 0.68+0.19

−0.31 0.62+0.24
−0.48(52%) 0.92+0.03

−0.03 0.83+0.10
−0.41(78%) 42 3

A+B 0.89+0.04
−0.15 0.80+0.07

−0.15 0.79+0.09
−0.37(69%) 0.91+0.04

−0.08 0.83+0.08
−0.22(85%) 1 13

Results in DSC with the detection rate dr in brackets if it is less than 100%.
1The number of inferences used to compute the results is indicated as ensemble size es.
2The number of images in the training split is indicated as dataset size ds.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

ensemble uncertainty: mean taken over training volumes (a.u.) 1e-5

0.0

0.5

1.0

D
S
C

linear fit

test set 1

test set 2

test set 3

Fig. 3 Comparison of summed mean uncertainty of the training set and the resulting Dice
score. We use three different test sets combined with 6 training sets each.

A depiction of qualitative segmentation results and uncertainty maps can be
found in Figure 1.

For the follow-up experiments, we created a ground truth labelling for
dataset B by using the hitherto best ensemble prediction Ensso to create
a segmentation that was then cleaned up manually. We provide qualitative
segmentation results achieved when training the initial dataset A alongside
dataset B as a comparison to our ensemble results. Using more data – train-
ing with 13 instead of 3 scans – naturally improves results. The improvement
is particularly evident for hands and ribs. On vertebrae and large bones, the
difference is much smaller and the ensemble performs almost as good as the
model trained on both A and B.

To analyze the use of the uncertainty metric, we defined three test sets,
and for each of those then six training sets consisting of dataset A plus three
scans from dataset B. The uncertainty of the scans in B had been established
using the ensemble Ensso. We trained the resulting 18 cases and plot the mean
uncertainty of the training set against the DSC achieved on the test set (see
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Figure 3). The influence of the uncertainty on the segmentation performance
is surprisingly small.

In Figure 2, we plot the mean uncertainty derived from Ensso against the
volume-normalized percentage of voxels that needed to be corrected during
the ground truth segmentation of dataset B. If we take the number of voxels
that need correction as a surrogate for the manual effort needed, a higher
uncertainty leads to up to 5 times more correction effort.

5 Conclusion

In this work, we examined the correlation between ensemble uncertainty and
the number of erroneous voxels the ensemble produces for the task of distinct
bone segmentation. On the one hand, we found a correlation between uncer-
tainty and erroneous voxels, implying that scans with low ensemble uncertainty
tend to be more accurately segmented. On the other hand, the correlation
between a scan’s uncertainty and the prospective DSC change caused by
incorporating said scan into the training set was negligible.

As a result, when planning to increase the size of the available dataset, the
uncertainty measure can be used to choose so-far unlabelled scans to minimise
the time for new annotations. Since low-uncertainty scans need the least of the
annotators’ time, while leading to the same improvement of DSC, their choice
maximises the total amount of newly labelled scans in a given time budget.

We also explored the use of test-time data augmentation as part of an
ensemble method for distinct bone segmentation, where only very little labelled
data is available. We observed that the ensemble approach achieves the same
performance as does training on an enlarged training set of three times as
many scans.
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Chapter 7

Improved Distinct Bone Segmentation
from Upper-Body CT using
Binary-Prediction-Enhanced
Multi-Class Inference.

While the previous studies consisted of a proof of concept and the goal to obtain more labelled
training data, we now address some of our models’ most significant sources of error. Many
wrongly classified voxels suffer from a confusion of foreground and background, not so much
from a confusion of different foreground bone classes. In this publication we propose a modified
inference that combines a binary foreground/background prediction and a multi-class bone pre-
diction. We propose a two-stage approach where two different networks are in charge of making
the two predictions and a one-stage approach where the network has two prediction heads that
are trained simultaneously. We ablate the network structure and show that the approach works
for various architectures. We also propose label correcting post-processing and show that it
improves the results on its own and in conjunction with the proposed BEM inference.

Publication. The following manuscript was presented at the conference for Computer Assisted
Radiology and Surgery (CARS), June 2022, Tokyo, Japan. It was published as part of the con-
ference proceedings [112] in the International Journal of Computer Assisted Radiology and
Surgery (IJCARS)1.

1https://doi.org/10.1007/s11548-022-02650-y
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Abstract
Purpose: Automated distinct bone segmentation has many applications in planning and navigation tasks. 3D U-Nets have
previously been used to segment distinct bones in the upper body, but their performance is not yet optimal. Their most
substantial source of error lies not in confusing one bone for another, but in confusing background with bone-tissue.
Methods: In this work, we propose binary-prediction-enhanced multi-class (BEM) inference, which takes into account an
additional binary background/bone-tissue prediction, to improve the multi-class distinct bone segmentation. We evaluate the
method using different ways of obtaining the binary prediction, contrasting a two-stage approach to four networks with two
segmentation heads. We perform our experiments on two datasets: An in-house dataset comprising 16 upper-body CT scans
with voxelwise labelling into 126 distinct classes, and a public dataset containing 50 synthetic CT scans, with 41 different
classes.
Results: The most successful network with two segmentation heads achieves a class-median Dice coefficient of 0.85 on
cross-validation with the upper-body CT dataset. These results outperform both our previously published 3D U-Net baseline
with standard inference, and previously reported results from other groups. On the synthetic dataset, we also obtain improved
results when using BEM-inference.
Conclusion: Using a binary bone-tissue/background prediction as guidance during inference improves distinct bone seg-
mentation from upper-body CT scans and from the synthetic dataset. The results are robust to multiple ways of obtaining the
bone-tissue segmentation and hold for the two-stage approach as well as for networks with two segmentation heads.

Keywords U-Net · Deep-learning · Distinct bone segmentation · CT

Introduction

The segmentation of various distinct bones visible on CT
scans is a powerful way to provide semantic information and
feedback to planning and navigation tools [1]. Bone seg-
mentations can also be used as a strong starting point for
atlas-based approaches [2], or as location anchors to detect
organs and other body structures [3]. Bone segmentation has
also sparked interest as a possible alternative or add-on to
augmented reality visualization of medical data and intraop-
erative workspaces [4].
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Manual segmentation requires a trained medical profes-
sional to go through an image slice by slice and mark voxels
as part of the structure of interest. This approach is time-
consuming and hard to scale up. Interactive segmentation
tools help by offering automated steps such as thresholding
and morphological operations to decrease the time needed
for (semi-)manual segmentation. For bone-tissue segmen-
tation from CT, convolutional neural networks (CNN) have
been found to clearly outperform threshold-based approaches
[5,6].

In contrast to bone-tissue segmentation, which aims at
differentiating between the background and bone-tissue in
general, distinct bone segmentation also separates one bone
from another. The task is well-studied for vertebrae seg-
mentation, but the reliance on the sequential nature of the
spine hinders a direct adoption to other body parts [7].
A total of five bones in the ankle and shoulder region
are segmented in [8], where they use a U-Net [9,10] in
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combination with shape priors and adversarial regulariza-
tion. They also compare the performance of separate U-
Nets trained on one bone class each versus a multi-class
U-Net which outperformed the combined single-class net-
works.

Segmentation into a larger number of distinct bones has
not yet been investigated in many cases. A hierarchical atlas-
based approach leads to good segmentation results of 62
distinct bones from upper-body CTs at the expense of a long
inference time [2]. In [11], 49 distinct bone classes have
been segmented on upper-body CTs. They used a two-stage
approach where a landmark detection network was followed
by a voxelwise segmentation by a dilation-based CNN and
the deletion of all but the largest connected component per
class. Neither of these two approaches offers an end-to-end
method or includes the bones of the hand in the segmentation.
A segmentation that also includes these bones, totalling to
126 bone classes, has been investigated on a smaller dataset
in one of our previous works [12], where we found a 3D
U-Net to be better suited to the task than the 2D U-Nets
commonly used in a slicewise way for bone-tissue segmen-
tation.

The purpose of of this current work is to reduce the most
prevalent segmentation errors of the 3D U-Net when per-
forming distinct bone segmentation. To do so, we propose
to leverage an additional binary segmentation during the
inference process. A related approach has been examined
by [13] who combine the outputs of a semantic segmenta-
tion head and an instance segmentation head into a panoptic
segmentation for 2D traffic images. Apart from the dimen-
sionality and the image modality, our work also differs
as we stay within a semantic segmentation problem state-
ment.

We propose and investigate BEM, an inference method
that enhances a multi-class distinct bone segmentation using
a binary bone-tissue/background segmentation. We compare
the segmentation accuracy, run-time, and complexity of dif-
ferent network architectures that achieve both segmentations
within a single trained model, and contrast the results to a
two-stage approach.

Materials andmethods

Upper-body CT dataset

Our in-house dataset consists of 17 upper-body CT scans,
and corresponding voxelwise segmentations created by spe-
cialists, with an isotropic resolution of 2 mm , as used in
[14]. The dataset comprises postmortem scans of 9 male and
7 female body donours aged 44–103 years. Before resam-
pling, the scans were of varying resolution with slightly less
than 1 mm resolution in-plane and up to 1.5 mm out-plane.
Due to inconsistent arm positioning, we excluded one scan
from the set in this work. The segmentation contains 126
different classes, including background (Fig. 1).

Synthetic 3D dataset

We created a synthetic dataset in order to highlight the
effect of the proposed BEM-inference on anatomical seg-
mentation tasks and to provide results on a publicly avail-
able dataset (published at https://gitlab.com/cian.unibas.ch/
cars2022-bem-inference). The dataset was constructed by
generating a randomly varying three-dimensional stick-
figure-like ground truth segmentation consisting of 41 dis-
tinct bones (seeFig. 2). Inspired byhumananatomy,we chose
similar geometric shapes for similar bones such as vertebrae,
to force the networks to rely not only on shapes but also the
relative positioning of structures. To construct the soft-tissue

Fig. 2 Results on the synthetic dataset using the baseline 3DU-Net, and
Dual D with our proposed BEM-inference. Both false positives (around
the elbows), and false negatives (head) are reduced using our approach

Fig. 1 Volume rendering of one of our upper-body CT scans (left), and the result of our automated segmentation using BEM-inference and
label-correction (right)
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area, we created convex hulls for the torso, limbs, and head.
Finally, we filled areas of background, soft-tissue, cortical
bone and cancellous bone with typical HU-values and added
uniform random noise. Emphasis is not put on the anatomical
accuracy of the dataset, but on the ability to mimic the diffi-
culty of our primary task, which is to study the simultaneous
detection and distinction of many three-dimensional struc-
tures with groupwise similar shapes.. The final synthetic CT
scans measure 128 × 128 × 256 voxels.

Base architecture

We use an architecture based on the 3D U-Net [10], which is
composed of a decoder and encoder with skip connections.
Following [15], we add instance normalization, use leaky
rectified linear units (leReLU) and exchange the upconvolu-
tions in favor of linear upsampling. The high computational
demand of a 3D network with a large number of classes,
restricts the possible batch size to one. We implemented the
network in Tensorflow-Keras 2.5.

Dual segmentation head architecture

To obtain the multi-class and the binary background/bone-
tissue segmentation simultaneously, we explore four archi-
tectures with two segmentation heads. A comparison of their
architectures is given in Table 1 and Fig. 3.

• Dual A All layers except the classification heads are
shared.

• Dual B Both tasks still share the whole encoder and
decoder but have their own convolutional layers at full
resolution.

• DualCBoth tasks share the full encoder anddecoder. The
binary segmentation head is appended after the decoder,
the distinct bone segmentation head follows after one
more convolutional block at full resolution.

• Dual D Both tasks share the encoder and feature encod-
ing, but have their own decoders.

Table 1 Network architectures
comparison for the upper-body
CT dataset

Model Trainable parameters (#) Training time 1(s) Inference time 2 (s)

Baseline 3D U-Net 1.46 · 107 0.84 219

Dual A 1.46 · 107 1.08 212

Dual B 1.46 · 107 1.08 271

Dual C 1.46 · 107 1.15 243

Dual D 1.98 · 107 1.20 321

1Average time per training iteration on a 643 voxel patch.
2 Inference time for an average scan (∼ 256 × 256 × 512 voxels) , including data I/O time

A B

C D

Fig. 3 Schematic of the four network architectures with dual segmentation heads. They are all based on a 3D U-Net architectures with variances
of how the binary segmentation head is appended. See also “Dual segmentation head architecture” Section
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Two-stage approach

As an alternative to the architectures with dual segmentation
heads, we study the results using a binary prediction, which
is obtained separately from the full multi-class network. To
do so, we train an additional instance of our baseline 3D U-
Net on the background/bone-tissue problem alone and use
the resulting binary segmentation during the BEM-inference
step. As an upper bound, we also compute results using the
ground truth of the binary segmentation.

Training and standard inference

For both datasets, we optimize our networks using the Adam
optimizer with a learning rate of 0.001 for 75000 iterations,
after which all of our models had converged. Total train-
ing time is roughly one day per cross-validation fold on one
GeForce GTX Titan X (12 GB). We use five cross-validation
splits for the upper-body dataset, where we use 11 scans for
training, 2 for validation of the convergence, and 3 for test-
ing. For the synthetic dataset, we were able to create a larger
number of validation and test images to get more represen-
tative test results and thus evaluate one fold only. We use 17
volumes for training, 7 for validation, and 26 for testing.

As loss function we use an unweighted combination of
the cross-entropy lossLX-Ent and the Dice lossLDSC [16]. In
the dual segmentation head networks, we add the losses for
the binary background/bone-tissue task:

Ltotal := LC
X-Ent +

∑

c∈C
Lc
DSC + L{bg,bt}

X-Ent +
∑

c∈{bg,bt}
Lc
DSC

We train our network patchwise since the use of whole
CT volumes for training is not computationally feasible
in 3D. The patch size not only influences the computa-
tional requirements, but also the network accuracy [17]. We
found a patch size of 643 voxels to be a good compromise.
The patchwise sampling also serves as a random-cropping
data-augmentation step. Other common data augmentation
techniques such as rotations, scaling, or mix-up are not used
in thiswork.Data augmentation has been studied in-depth for
whole-body bone-tissue segmentation, where it only leads to
very small improvements [5].

Prior to inference, we pad our scans by 20 voxels to miti-
gate the proximity of the hands to the image border in some
of the scans. After padding, our predictions are assembled
using a sliding window approach with a 20 voxel overlap to
increase the influence of the centre of the patches on the final
predictions, which has been shown to lead to good results
[15]. The voxelwise multi-class prediction is conducted by a
softmax activation.

BEM-inference

We refine the inference step using a binary background/bone-
tissue segmentation ybg/bt. This additional prediction can
stem from a second head of the multi-class network, from
an additional network, or from a completely different seg-
mentation method.

In standard inference, all classes, including the back-
ground class, are predicted in one step. Instead, we use the
binary prediction ybg/bt as a guide and ignore the background
class 0 in the distinct bone prediction. We split our N classes
into one background and N −1 foreground classes. The final
prediction is then set to be either background, if ybg/bt = 0
or to the most likely foreground class.

In contrast to simple masking of the finished multi-class
prediction in post-processing, which could remove false neg-
ative foreground voxels, this method addresses both false
negatives and false positives. An illustration of a simplified
case in 2D with two foreground classes can be found in Fig.
4.

Connected component-based label correction

After completion of the inference process, we automat-
ically refine the segmentation by reassigning connected
components. We build upon the post-processing approach
of keeping only the biggest connected component per label
[11].However, instead of assigning all smaller components to
the background, we assign them to their neighboring biggest
component. To do so, we define sets of bones that are easily
confused by amodel.Within such a set L , we identify all con-
nected components per class and choose its largest connected
component as the class anchor. Adjacent smaller components
of other classes are then reassigned the anchor label. The
sets L are chosen based on anatomical knowledge and on
the most frequent confusions among bone classes observed
on the validation set. To save-guard against very fragmented
segmentations, an upper threshold u of connected compo-
nents ensures a runtime of O(|L|2u). Different sets can be
processed in parallel to speed up the computation. We chose
u = 100 and worked with 16 sets L , of size 4 ≤ |L| ≤ 12.
The detailed groups are shared along with the code at https://
gitlab.com/cian.unibas.ch/cars2022-bem-inference.

Evaluationmetrics

As our main metric, we use the Sørensen-Dice similarity
coefficient DSCc for each segmentation class c. To assess
the overall performance of our models, we give the median,
and the 16- and 84-percentile (∼ 1σ) of all classes where at
least one true-positive voxel has been predicted asmedian+σ−σ .
We account for the remaining classes, those with DSCc = 0,
by providing the fraction of classes where DSCc > 0 in
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brackets. We account for the completely missing classes by
providing the fraction of detected classes in brackets.

Results and discussion

Our results show how a BEM-inference combined with
connected-component correcting post-processing can
improve automated distinct bone segmentation from upper-
body CTs. Our evaluation involves two different datasets,

four flavors of U-Nets with dual segmentation heads, and a
two-stage approach.

Test We evaluated the errors most commonly experienced
while conducting a baseline U-Net segmentation on our
upper-body CT dataset. The confusion matrix (Fig. 5, left,
first column) illustrates our finding, that many errors orig-
inate from predicting bones as background, as opposed to
confusing one bone for another. This type of error is reduced
when using our proposed methods (Fig. 5, right, first col-
umn).

Fig. 4 Schematic of the BEM-inference process. The background class is denoted in gray, the two distinct foreground classes in blue and pink,
respectively

Fig. 5 Label confusion matrices
(row-normalized) for the
baseline 3D U-Net and Dual D,
including BEM-inference and
post-processing. With our
approach, less labels are
erroneously classified as
background (first column)

Table 2 Upper-body CT dataset: Results in DSC, comparing the segmentation performance when using baseline inference, against our BEM-
inference, with and without label correction

Baseline + Label correction + BEM-inference + Both

Baseline 3D U-Net 0.78+0.12
−0.29, (0.95) 0.81+0.09

−0.25, (0.94)

Two-stage: pred. bin. ” ” 0.79+0.11
−0.30, (0.96) 0.82+0.09

−0.26, (0.94)

Two-stage: gt bin. ” ” 0.89+0.08
−0.29, (0.96) 0.93+0.05

−0.22, (0.95)

Dual A 0.78+0.11
−0.29, (0.96) 0.81+0.09

−0.27, (0.95) 0.79+0.11
−0.30, (0.97) 0.82+0.10

−0.27, (0.95)

Dual B 0.77+0.12
−0.28, (0.95) 0.81+0.09

−0.29, (0.94) 0.79+0.11
−0.30, (0.96) 0.82+0.09

−0.28, (0.95)

Dual C 0.79+0.10
−0.31, (0.96) 0.82+0.09

−0.28, (0.95) 0.79+0.11
−0.31, (0.96) 0.82+0.09

−0.29, (0.95)

Dual D 0.80+0.10
−0.29, (0.95) 0.84+0.08

−0.24, (0.94) 0.82+0.11
−0.29, (0.96) 0.85+0.08

−0.24, (0.94)

The comparison is given for the two-stage models and the different flavors of dual-segmentation heads models. For a description of the metrics, see
“Evaluation metrics” Section
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Fig. 6 Segmentation results and typical errors obtained with the base-
line U-Net model and our Dual D model with BEM-inference and
post-processing. Using the baseline model, ribs are often not segmented
as one, but are assigned multiple labels (I). The post-processing reme-
dies this issue visibly. Other frequent errors occur around the border of
vertebrae, especially in the presence of calcifications (II). Within big
bones such as hips and femurs, we observe holes and islands where the
left/right part of the label has been mixed up (III)

We conducted an ablation study on the upper-body CT
dataset, where we examined the influence of how the binary
prediction was created (two-stage versus networks with dual
segmentation heads), the network architecture, and the label
correction post-processing. The results are listed in Table
2. Common errors are illustrated in Fig. 6. The proposed
method using a Dual D model, BEM-inference and the post-

processing label correction detected correct voxels in 94%
of all bones and achieved a median DSC of 0.85, which is an
improvement over our baseline with a median of 0.78. Both
the BEM-inference and post-processing contribute individ-
ually to the improved DSC scores, but the strongest results
are achieved in combination.

We observe a small increase of the fraction of bone classes
with DSC > 0 when using the enhanced inference, and a
slight decrease when using the post-processing. Themajority
of classes with a DSC of 0 are small bones located in the
hands.

In Table 4, we compare our results to the hierarchical atlas
segmentation by Fu et al. [2] and the convolutional neural
networks by Lindgren Belal et al. [11]. Our results compete
well, although the use of different datasets hampers a direct
comparison.

Among themodels with two segmentation heads, themost
complex version Dual D with two separate decoders led to
the best results.Merely training two decoders simultaneously
on two different loss functions led to first improvements over
our baseline, which improved even further when using BEM-
inference and label-correction.

The results of the two-stage approach depend on the per-
formance of both the multi-class and binary segmentation
model. We used a binary segmentation predicted by the
baseline 3D U-Net trained on the background/bone-tissue
segmentation task. This network achieved a mean DSC of
0.94 for the binary prediction, which is in the range of results
reported in [5] and [6]. For comparison, we used the binary
ground truth data during the BEM-inference step to get an

Table 3 Synthetic dataset:
Results in DSC, comparing the
segmentation performance when
using baseline inference, against
our BEM-inference, with and
without label correction

Model Baseline + BEM-inference

Two-stage: gt binary seg. 0.973+0.030
−0.240, (1.00) 0.991+0.010

−0.250, (1.00)

Dual A: parallel losses 0.970+0.030
−0.230, (1.00) 0.970+0.030

−0.230, (1.00)

Dual B: parallel final layers 0.971+0.030
−0.230, (0.99) 0.978+0.020

−0.230, (0.99)

Dual C: sequential heads 0.963+0.040
−0.260, (0.99) 0.966+0.030

−0.250, (0.99)

Dual D: separate decoders 0.975+0.020
−0.230, (1.00) 0.982+0.020

−0.230, (1.00)

The comparison is given for the two-stagemodels and the different flavors of dual-segmentation headsmodels.
For a description of the metrics, see “Evaluation metrics” Section

Table 4 Comparison to other
published work on distinct bone
segmentation

Ours (median) [11] (median) [2] (mean)

L3 0.85 0.85 0.91

Sacrum 0.90 0.88

Clavicula 0.92 0.57

Hamate 0.86

Inference time per scan (min) ∼ 5 ∼ 20

Scans in dataset (#) 11 100 19

Classes (#) 126 49 62

Results in DSC

123

IJCARS 2022 75



International Journal of Computer Assisted Radiology and Surgery

upper bound of how much improvement was possible. We
observed a steep improvement of the results, suggesting that
the investment into a good binary segmentation clearly pays
off. Since the manual labelling of the ground truth data is
less time-consuming and cumbersome for the binary seg-
mentation as opposed to a full multi-class segmentation, the
additional binary labelling of new training data might yield
a good return on investment.

In comparison, the two-stage approach tends to be more
troublesome than a dual head architecture since it involves
the training and tuning of two networks and a sequential
inference first using the binary network, then the multi-class
network. The use of a network with two segmentation heads
simplifies this task to training one network only and perform-
ing an end-to-end inference. If additional scans with binary
ground truth labelling are available, they can be used to fine-
tune the binary segmentation head.

There is currently no public upper-body CT dataset with
complete distinct bone labelling available and our in-house
dataset cannot be shared as of yet. Therefore, we provided
additional results on our public synthetic dataset. The results
on the synthetic dataset mirror the findings in the upper-body
dataset. BEM-inference improves the segmentation both for
the two-stage approach and the architectures with dual seg-
mentation heads (see Table 3 and Fig. 2).

Conclusion

We proposed BEM-inference to improve the automated seg-
mentation of distinct bones from upper-body CT scans. A
substantial part of the segmentation errors made by 3D U-
Nets does not originate from the mixing-up of different
bone classes but from the mistaking of background for the
foreground , and vice versa. Therefore, we proposed an infer-
ence method that uses the information gained in a binary
background/bone-tissue segmentation to improve upon the
multi-class inference.Wecompared two approaches to obtain
the necessary binary segmentation: (1) Networks with dual
segmentation heads that are trained on both tasks simultane-
ously, (2) and a two-stage approach where separate networks
are trained for the multi-class and the binary segmentation
task. Using our proposed inference lead to improvements
on all architectures and on both datasets, with and without
our label-correction post-processing . The class-medianDSC
of the dual decoder network with both post-processing and
BEM-inference is 0.85 on the upper-body CT dataset, out-
performing the baseline 3D U-Net and previously reported
results by other groups.

Our proposed BEM-inference is most suitable for tasks
where the binary task is simpler to solve or binary labelled
data is easier to obtain than the full multi-class labelled data.
Since an existing multi-class ground truth segmentation can

easily be converted to a binary ground truth segmentation,
any multi-class model can be retrofitted to use two-stage
BEM-inference. if a source of binary segmentations is avail-
able or trainable This makes BEM-inference a versatile
addition to anatomical multi-class segmentation workflows.
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Binary-Prediction-Enhanced Multi-Class Inference.



Chapter 8

SneakyNet: a Multi-Resolution
Approach for Distinct Bone
Segmentation in Upper-Body CT.

After dealing with the previous paper’s background/foreground confusion issues, we now work
on another frequently occurring problem. Specifically, when using smaller input sizes, we re-
alized that many bones of similar shapes were confused with one another, despite having very
different locations within the scan. Naively, the easiest way would be just to increase the input
size. Since our problem is three dimensional this is only feasible to some extent. Instead, we
propose a multi-resolution approach, where we use inputs covering successively bigger fields of
view while keeping the number of input voxels constant by using a smaller resolution. We show
that this helps obtain better results, particularly when using small input sizes.

Publication. The manuscript has been submitted to the journal Medical Image Analysis (Me-
dIA) on the 24th of August 2022 and is currently under review.
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A B S T R A C T

Automated distinct bone segmentation from CT scans is widely used in plan-
ning and navigation workflows. U-Net variants are known to provide excellent
results in supervised semantic segmentation. However, a large field of view and
a computationally taxing 3D architecture are required in distinct bone segmen-
tation from upper body CTs. This leads to low-resolution results lacking detail
or segmentation errors due to missing spatial context when using high-resultion
inputs.

We propose SneakyNet, a single end-to-end trainable network that combines
several 3D U-Nets that work at different resolutions. The context networks cap-
ture spatial information at a lower resolution and skip the encoded information
to the target network, which operates on smaller high-resolution inputs. Using
our method, the number of input pixels rises linearly with the number of context
networks. In contrast, the naive solution of increasing the input size to capture
a larger field of view leads to cubic growth of the input pixels and intermediate
computations and quickly outgrows the computational capacities.

Our proposed network achieves a median DSC of 0.86 taken over all 125 seg-
mented bone classes and reduces the confusion among similar-looking bones in
different locations. We show our approach to work on different target input sizes
and ablate the information concatenation and the number of context networks.
Our source code is publicly available, and we publish an anonymized version of
our dataset.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

Segmentation of bones is essential for a variety of sur-

gical, orthopaedic and oncological tasks Sarkalkan et al.

(2014); Klein et al. (2019); Li et al. (2021). For example,

∗Corresponding author.
e-mail: eva.schnider@unibas.ch (Eva Schnider)

it is used in bone disease diagnosis, in image-based assess-

ment of fracture risks Deng et al. (2022), flat-foot Ryu

et al. (2022), bone-density Uemura et al. (2022), for plan-

ning and navigation of interventions Su et al. (2022), and

for post-treatment assessment. Bone segmentation can

also be used as a starting point for more fine-grained atlas

Preprint submitted to Medical Image Analysis August 19, 2022
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segmentations Fu et al. (2017), or as a guide for a follow-

up inner organ segmentation Kamiya et al. (2018). Recent

interest in bone segmentation has also been sparked in the

3D rendering of anatomical images in augmented- and vir-

tual reality applications, where segmentations can be used

on top or in conjunction with existing transfer functions

Faludi et al. (2021); Żelechowski et al. (2021).

Due to their characteristically high Hounsfield unit in-

tensities, bones are visually well discernible on CT im-

ages. Automatic and precise segmentation is nonetheless

a challenging task due to imaging artefacts, anatomical

variation, noise, and a very close image intensity between

spongy bone and hard bone Fu et al. (2017). An accu-

rate distinction between two adjacent bones is even more

demanding. It requires an exact segmentation in the com-

mon joint area, where two bones are often only separated

by a few pixels.

The region of interest in upper-body or full-body CT

scans is typically larger than the possible input sizes of 3D

convolutional neural networks (CNNs). As a result, the

input needs to be sampled as patches, restricting the input

field of view to the patch size. This problem exacerbates

with the development of CT scanners that produce ever

more highly resolved images. While a higher resolution

allows for capturing more fine-grained details, it covers

smaller body areas within a fixed-size input patch.

In order to extend the field of view, larger input patches

can be sampled. Unfortunately, the cubic growth of vol-

ume in 3D leads to eight times more pixels upon doubling

the input dimension sizes. In a fully convolutional net-

work, this does not increase the number of trainable pa-

rameters, but it does increase the number of necessary

intermediate computations considerably. Doubling the

patch size in all three dimensions leads to at least eight

times more forward- and backward computations, which

are taxing for the generally scarce GPU memory. Counter-

measures fall into two categories. A) keeping the resolution

and input pixel size high, but reducing the computational

load elsewhere. Those measures include reducing the batch

size (not to be confused with the patch size), which is of-

ten already very low in 3D segmentations, using a simpler

model to reduce the number of trainable parameters and

intermediate computation steps, or reducing the output

size. All of those means potentially hamper training and

inference. B) Keeping a large field of view by using a small

patch size of down-sampled inputs. This approach allows

for a wider field of view for a constant input size while

losing detail information.

To decide upon the better of the two approaches pre-

sented above, the requirements for the task at hand need to

be considered. A suitable network for our task of complete

distinct bone segmentation from upper-body CT scans (see

1) should provide the following: Its field of view should

be sufficiently big to distinguish similar bones at different

body locations, e.g. left from right humerus or the fourth

from the eighth rib. At the same time, it should support

a resolution that is high enough to resolve the joint areas,

such that adjacent bones are correctly discerned. It should

keep the computational burden in a feasible area. For ease

of use, it should be trainable end-to-end.

We propose SneakyNet, a multi encoder-decoder net-

work working on inputs of two different resolutions.

SneakyNet simultaneously provides high-resolution out-

puts through its target U-Net, while being served aligned

contextual information by the context U-Nets at every

level of the encoder-decoder architecture. This end-to-

end trainable network can leverage a field of view many

times that of the original input while avoiding the cubic

growth of intermediate computations. It allows for im-

proved distinct bone segmentation and explicitly reduces

the confusion of similar bones in different body locations.

Along with our network, we also publish our dataset of 17

upper-body CT scans and the matching manual voxel-wise

distinct bone segmentation, including all vertebrae, ribs,

and bones of the shoulders, arms, hands, and fingers.
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CT input

context 3D U-Net target 3D U-Net

down-sampled CT, 
extended field of few

ℒcontext ℒtarget

Fig. 1. Task overview: We segment 125 distinct bones from upper-body CT scans using SneakyNet, a multi-encoder-decoder network which
incorporates inputs at various resolutions. The example here features one context network, but multiple are possible.

2. Related work

In the last decade, much research has been conducted

in medical image segmentation, with CNNs outperforming

many previous baseline approaches Kleesiek et al. (2016);

Noguchi et al. (2020). Specifically, U-Net-like architec-

tures have been adopted widely in medical image seg-

mentation in both 2D and 3D. The original U-Net Ron-

neberger et al. (2015) is a 2D encoder-decoder network.

Like other fully convolutional segmentation networks Long

et al. (2015); Maggiori et al. (2016), its encoder resembles

fully-convolutional classification networks and consists of

several levels where the spatial resolution is reduced while

the number of channels increases. The latent encoding,

found at the bottom of the U, is then successively ex-

panded in the spatial directions while the number of chan-

nels decreases. Higher and lower resolution information is

reconciled through the use of skip-connections that copy

information from the encoder to the decoder in the U-Net

Ronneberger et al. (2015).

The same ideas can be transferred to three-dimensional

inputs to build a 3D U-Net Çiçek et al. (2016), using 3D

convolutional kernels. The additional dimension increases

the number of trainable parameters and intermediate com-

putations. This increase needs to be countered by a re-

duced number of channels, a decrease of the batch size,

patch-wise sampling, or substitution of up-convolutions by

up-sampling Isensee et al. (2019). Isensee et al. (2021) have

gone one step further by proposing a self-adapting U-Net

framework that chooses architectural configurations em-

pirically and heuristically.

2.1. Distinct Bone segmentation

Bone segmentation from CT usually denotes the differ-

entiation into bone tissue and background. If the bones are

further distinguished, we speak of distinct bone segmenta-

tion. Bone tissue segmentation from CT can be performed

using semi-automated approaches and interactive tools Li

and Chen (2021); Fedorov et al. (2012); Yushkevich et al.

(2006); Zaimi et al. (2021), which are based on threshold-

ing, morphological operations, region growing, and clus-

tering Argüello et al. (2019); Requist et al. (2021). These
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tools require the user to provide threshold values or to set

seed points. Despite the high contrast in Hounsfield units

between bone and soft tissue in CT images, those methods

have been outperformed in accuracy and speed by super-

vised slice-wise 2D CNN-based segmentation algorithms

Klein et al. (2019); Krawczyk and Starzyński (2021); Ley-

don et al. (2021); Noguchi et al. (2020).

The tasks and solutions become more varied when mov-

ing from bone-tissue segmentation to distinct bone seg-

mentation. Vertebrae segmentation has gained much at-

tention Sekuboyina et al. (2021), with many of the al-

gorithms using multi-stage approaches and leveraging the

sequential structure of the spine Cheng et al. (2021); Less-

mann et al. (2019); Payer et al. (2020); Nadeem et al.

(2022). Rib segmentation has been tackled by Yang et al.

(2021), who use a point cloud approach targeted at lever-

aging their dataset’s spatial sparsity. Carpal bone segmen-

tation is performed from X-rays of hands that were placed

on a flat surface Faisal et al. (2021). Tarsal and metatarsal

bone segmentation from radiographs for flat-foot assess-

ment is examined by Ryu et al. (2022) using a U-Net and

active learning. Kuiper et al. (2022) segment six differ-

ent bones of the hips, legs and ankles by using one- and

multi-stage V-Nets Milletari et al. (2016) of different reso-

lutions. They compare the outcomes when using different

combinations of inputs, achieving the best results with a

cascaded network operating on three different resolutions

of the input image.

Simultaneous segmentation of five bones from the an-

kle and shoulder from paediatric MRI has been explored

by Boutillon et al. (2020). They also compare the perfor-

mance of a single network trained to segment all classes

simultaneously versus networks each trained on a single

bone class. They found the network trained on all tasks

at once to outperform the one-class networks. Liu et al.

(2022) segment 33 anatomical structures such as vertebrae

and inner organs from CT using a cross-patch transformer

approach. They combine public datasets into a more ex-

tensive dataset, allowing them to train their method on

more than 1000 CT scans.

Fu et al. (2017) segment 62 different bones from upper-

body CT using an atlas-based approach and kinematic

joint models. They start with a bone-tissue segmentation

to align the hierarchical anatomical tree, then used for

the distinct bone segmentation task. Lindgren Belal et al.

(2019) use a two-stage approach to segment 49 distinct

bones of the upper body. They use a localisation network

that outputs landmark positions that are then cleaned up

using shape models and supplied to the segmentation net-

work along with the input image.

In our previous work, we have explored the suitabil-

ity of different network architectures for upper-body dis-

tinct bone segmentation. We found lean U-Net variants to

work best while showing that 2D U-Nets perform substan-

tially worse than 3D networks on the task Schnider et al.

(2020). We also found that common errors of mistaking

background for bone classes in distinct bone segmentation

can be addressed by using a second binary segmentation

head for an improved inference step Schnider et al. (2022).

2.2. Multi-resolution segmentation

The merits of high-resolution inputs – accurate details –

and low-resolution inputs – a larger field of view – can be

combined in many ways. Cascaded U-Nets consist of two

or more individual U-Nets that are trained consecutively.

A first model is trained on downsampled input. Its one-hot

encoded segmentation results are then upsampled, poten-

tially cropped and used as additional input channels for

the following model at higher resolution Li et al. (2019);

Isensee et al. (2021); Zhang et al. (2020). These approaches

all have the downside of requiring the training of multiple

models.

Another solution is the use of multiple resolutions within

the same network. Jahangard et al. (2020) concatenate

down-sampled versions of their input images at every level

of a 2D U-Net encoder to solve segmentation tasks on four

different types of 2D image modalities.
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Fig. 2. Size distribution of bones.

Kushnure and Talbar (2021) use multiple resolutions

within each U-Net block, where they use varying numbers

of convolutions per block on CT slices in liver and tumour

segmentation.

Work closest to our own can be found in histopathology

whole-slide segmentation. Gu et al. (2018) propose MRN,

which uses a 2D target U-Net and one context encoder

with drop-skip-connections crossing over at every level.

They do not use a context decoder or context loss and

work on a binary segmentation problem. Van Rijthoven

et al. (2021) propose HookNet, which contains both a tar-

get and a context 2D U-Net and two individual losses, such

as our work. In contrast to our work, 1) they work with 2D

images and 2D networks, while we work in 3D, and 2) they

use only one skip connection from the context encoder to

the target decoder just before the bottleneck layer, while

we use such connections on every level, 3) they use a single

context network, while we use up to three. Our experi-

ments show, that our proposed SneakyNet configuration

leads to better results on our task, compared to single-

resolution networks and to the multi-resolution networks

mentioned above.

3. Material and Methods

To assess the performance of SneakyNet, we train it

on our in-house upper-body CT dataset, which we pro-

vide along with this publication at https://gitlab.com/

cian.unibas.ch/sneakynet. We make ablation studies on

the combination of context and target information and on

the optimal number of context networks.

3.1. Upper-body CT dataset

Table 1. Demographic properties of the full upper-body CT dataset
as published. Note that we excluded one scan from the dataset for
the computations in this publication because of its unique pose.

number of volumes age
Female 8 48-103
Male 9 44-91

The CT images have been acquired post-mortem from

body donours by the anatomical department of the Univer-

sity of Basel. A summary of their demographic informa-

tion is displayed in Table 1. All CT scans were taken with

the body donours lying on their backs, and arms placed in

front of the body. The arms are bent to various degrees,

and the hands overlap in some instances. We omitted one

of the scans in our experiments because the arms were

folded and the hands crossed that was not seen in any of

the other scans.

The manual segmentations have been created using 3D-

Slicer Fedorov et al. (2012). Five of the segmentations have

been created from scratch on the original resolution of ap-

proximately 1 mm. The remaining twelve segmentations

have been conducted on scans that were down-sampled

to an isotropic resolution of 2 mm with an average size of

237 × 237 × 403 pixels. Instead of creating those segmen-

tations from scratch, an ensemble of networks was used to

create an initial automated segmentation which was then

manually corrected and refined. Prior to using the scans

for training, and for publication we resampled all scans to

2 mm isotropic resolution.

In order to ascertain the anonymity of the body donours,

the head area is omitted in the published dataset. We

cropped the scan axially just above the first cervical ver-

tebra. The cropping thus affects the bones of two labels:

skull and mandible. All other bones are still present in

their entirety. The original segmentation comprises one

background and 125 foreground labels, one of which we

84 SneakyNet



6 Eva Schnider et al. / Medical Image Analysis (2022)

  

Down-sampling :2
Central 
cropping

✂
2 blocks of 3x3x3 Conv, leReLu, 2x2x2 maxpool

Skip connection

2 blocks of 3x3x3 Conv, leReLu, 2x2x2 upsample

Central crop, skip connection

2 blocks of 3x3x3 Conv, leReLu

1x1x1 Conv, softmax, loss

context U-Net target U-Net

Fig. 3. Overview of the architecture for one target and one context network. Left: the context 3D U-Net is working on low-resolution data
with a larger field of view. At each encoder level, two skip connections leave the final convolutional layer. The conventional skip connections
link the encoder to the decoder, while the crop-skip connections concatenate the central cropped content with a deeper level of the target
decoder. Right: The target 3D U-Net working with high-resolution data operates only on the central part of the original input. The target
decoder receives skip connections both from its own encoder and the context encoder. Both networks have their individual classification head
and loss functions and work on the same voxel size input patches.

omit in the published dataset since it is a pacemaker, not

a type of bone.

There is a substantial imbalance in the number of pixels

per label, not only between background- and foreground

labels but also among foreground labels. While certain

large bones feature 40,000 pixels and more, most of the

bones of the hand comprise 1,000 pixels and less, see Fig-

ure 2.

The dataset can be accessed at https://gitlab.com/cian.

unibas.ch/sneakynet.

3.2. SneakyNet Architecture

We present a visual overview of the architecture with

one context network in Figure 3. In general, however,

SneakyNet consists of one target network and one or more

context networks. The target network operates on high-

resolution data and eventually produces the desired seg-

mentation maps. The context networks operate on lower

resolution inputs spanning a larger field of view. Infor-

mation is propagated from the context networks to the

target network using crop-skip connections presented in

Section 3.2.1.

On their own, the individual context and target net-

works follow a lean variant Isensee et al. (2019) of the

3D U-Net Çiçek et al. (2016), which uses same-padding

and simple upsampling instead of upconvolutions. Fur-

thermore, we use instance normalization instead of batch

normalization since the computational requirements force

us to work with a batch size of 1. In our baseline com-

putations, where we have only a target network and omit

the context networks, we use twice as many channels as

proposed in the original publication Isensee et al. (2019)

in order for our variants and the baselines to have approx-

imately the same number of trainable parameters. Inputs

to the network are required to be multiples of 2M−1, where

M denotes the number of levels of the U-Net. We use the

basic architecture of M = 5 and therefore need multiples

of 16 pixels in every dimension as input.

For the target network we use inputs of size (S x, S y, S z)

at full resolution. For each of the context networks we use

that input plus its surrounding area, which together span

a field of view of 2κ · (S x, S y, S z). We display the case of

κ = 1 in Figure 3, but also use context networks with κ = 2
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Table 2. Comparison of architectures with different field of view (FOV) of their target and context network(s). in terms of trainable parameters,
time, and memory requirements.

Config Target Context trainable Nr. of input training time
network network(s) parameters pixels per iteration

FOV FOV (s)
A 3D U-Net 323 — 5.8 · 107 3.3 · 104 0.44

643 — 26.2 · 104 0.57
3D U-Net slim∗ 1283 — 1.5 · 107 209.7 · 104 4.24

B Hook Net 323 643 3.7 · 107 6.6 · 104 0.41
643 1283 52.4 · 104 0.72

C MRN 323 643 4.7 · 107 6.6 · 104 0.43
643 1283 52.4 · 104 1.27

D SneakyNet (ours), LX-Ent only 323 643 4.9 · 107 6.6 · 104 0.41
643 1283 52.4 · 104 0.86

D SneakyNet (ours) 323 643 4.9 · 107 6.6 · 104 0.45
643 − 1283 5.8 · 107 9.9 · 104 0.70
643 − 1283 − 2563 6.2 · 107 13.1 · 104 3.16

643 1283 4.9 · 107 52.4 · 104 1.28
1283 − 2563 5.8 · 107 78.6 · 104 3.11

∗ Operating the full 3D U-Net on patches of size 1283 exceeds the available GPU memory.

  

✂

Central crop, skip connection
3x3x3 Conv, leReLu
2x2x2 maxpool

Skip connection

2x2x2 upsamplecontext U-Net target U-Net

level m

level m+1

Fig. 4. Detailed view of the architecture. Displayed are only two out of five levels of the U-Nets. Left: the context U-Net working on
low-resolution data with a larger field of view. Right: The U-Net working with the central cropped high-resolution data. After all encoder
convolutions of level m, a cropped copy of the output is skipped to the target decoder at level m + 1. The decoder receives skip connections
from its own encoder and the context network. The intermediate results of the decoder and both skip connections are concatenated along the
channel axis before undergoing further convolutions.

and κ = 3 in our ablation studies. The context network in-

puts are down-sampled to reduce their size to (S x, S y, S z).

We perform the down-sampling using (2κ×2κ×2κ) average-

pooling with a stride of 2κ. Both target and context net-

work inputs eventually have a size of (S x, S y, S z), but at

different resolutions and fields of view.

3.2.1. Crop-skip connections

We use crop-skip connections to transfer information

from the context to the target branch. We crop the en-

coder output at the desired level m such that only the

centre cube of half the size per dimension remains. This

centre cube is now spatially aligned to the input of the tar-
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Context network Target network Loss Crop-skip connection

Fig. 5. Schematic of the four network configurations used in our ab-
lation study. A shows a base U-Net, while B, C, D show different
possibilities of how to insert information into the target network, see
also Section 3.2.1 for a written description.

get branch. We concatenate the centre cube to the next

lower level m + 1 of the target decoder to match the spa-

tial size. We refer to the central cropping and subsequent

concatenation into a lower level of the target branch as

crop-skip-connection. A detailed schematic of the crop-

skip connection is depicted in Figure 4.

We explore three network configurations which differ in

their number of crop-skip connections and their use of a

context loss, and compare it to a baseline U-Net. A visual

comparison of the architectures is given in Figure 5 and

the parameters are provided in Table 2.

• A – Baseline: Lean variant of a 3D U-Net.

• B – Hook Net: One context network with a single

crop-skip connection is added to the target network.

The crop-skip connection enters the target network

at its bottleneck layer. This configuration is used in

Van Rijthoven et al. (2021).

• C – MRN: Crop-skip connections connect the context

encoder and the target decoder at every level. There is

neither a context decoder nor a context loss function.

This configuration was used in Gu et al. (2018).

• D – proposed: Crop-skip connections connect all lev-

els of the context and target networks. The context

network has a decoder with its own loss function.

3.3. Training

Our dataset (see also Table 1) is split into 11 scans for

training, 2 for validation and 3 for testing. We use 5-

fold cross-validation, ensuring that every scan appears in

precisely one of the cross-validation folds in the test set.

The loss is composed of an unweighted combination of

the target network’s loss and the losses of the K context

networks.

Ltotal B Ltarget +

K∑
κ=1

Lκcontext (1)

For both networks, we combine two loss functions, i.e.

the cross-entropy loss LX-Ent and the Dice-Loss LDSC Mil-

letari et al. (2016).

L[target|context] B LX-Ent +
∑
c∈C
Lc

DSC (2)

The Dice-Loss itself is an unweighted sum over the Dice-

Loss for each individual class c.

We optimized the network weights using the Adam opti-

mizer Kingma and Ba (2014) with an initial learning rate

of 0.001. We trained our networks for 100000 iterations

until convergence was observed.

Our input images are padded by (S −S target)/2 all-around

using edge value padding. The padding step ensures that

we can sample high-resolution patch centres right to the

image’s border.

We implemented and trained our networks using Tensor-

flow Keras 2.5. All training and inference were conducted

on NVidia Quadro RTX 6000 GPUs of 24 GB RAM size.

3.4. Evaluation

We evaluate the performance of our models using the

Dice Score Coefficient (DSC). For an individual foreground

class c, the DSC is defined as a function of true positives

TPc, false positives FPc and false negatives FNc of that

class:

DSCc =
2TPc

2TPc + FPc + FNc
, (3)
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To indicate the performance over all classes, we give the

median and the 16 and 84 quantiles (1σ) over all classes c.

To not give a distorted impression of the distribution, we

exclude classes where TPc = 0 and therefore DSCc = 0. We

present the percentage of classes included in brackets in

Table 3 and Table 4 to make up for the omission.

4. Results and Discussion

Our experiments show how automated distinct bone

segmentation can be improved using a SneakyNet based

multi-resolution approach. We evaluate our results on mul-

tiple target resolutions with different numbers of context

networks and field of view sizes and perform an ablation

study to determine the most beneficial way to combine

context and target network information.

We evaluated some of the most common errors when

using a baseline segmentation method. We found that the

missing context information leads to similar-looking bones

in different body regions being mistaken for one another.

In the confusion matrix presented in Figure 6, we observe

that when using a baseline 3D U-Net, humerus pixels were

predicted as femur, and the left and right humerus were

confused for one another (right confusion matrix). When

using context information, these errors are reduced almost

entirely (left confusion matrix).

We performed an ablation study to see how different

strategies of combining the context and target information

within the network perform. In Table 3 we present the

quantitative results. For both target patch sizes, 32 and

64, all strategies (B-D) improve upon the baseline 3D U-

Net (A). The observed effect is substantially bigger when

using the smaller target patch size of 323, where the median

DCS rises from 0.64 to 0.75. The DSC still increases from

0.83 to 0.86 median DSC on the bigger target patches.

The combination of skip connections at every level and

a context loss function in our proposed architecture in-

creases the accuracy further, as compared to the Hook Net

Van Rijthoven et al. (2021) and the MRN Gu et al. (2018).

Cross-entropy only or cross-entropy plus Dice loss leads to

very similar results on both patch sizes. To ensure that

the improvements do not stem from the increased num-

ber of trainable parameters alone, we set the number of

convolutional channels in the baseline 3D U-Net such that

its number of trainable parameters matches or supersedes

that of the variants, see Table 2.

In Table 4 and Figure 7 we compare the influence of

different numbers of context networks. Qualitative results

are depicted in Figure 8. We go up to an input size of 2563

pixels for the context branches (before down-sampling),

which leads to a maximum of three context networks for

a target patch size of 323, and two context networks for

target patches of size 643. The best results were achieved

in both cases when using context patches with a field of

view of up to 1283 pixels. For the target patches of 323

pixels, the median DSC raises from 0.75 for one context

network to 0.79 for two. Adding another context network

with an even bigger field of view very slightly increases the

fraction of nonzero DSC classes but does not affect the me-

dian DSC. While using the baseline 3D U-Net on patches

of size 323 yields very noisy results, the addition of two

context networks allows for segmentations close in accu-

racy to those conducted on patches of size 643, while using

less than half as many input pixels and the same num-

ber of trainable parameters. Using more than one context

branch on the input patches of size 643 does not further

improve the segmentation results. We assume that for our

dataset using the current 2 mm resolution all context infor-

mation needed to assign bone classes correctly is contained

in a field of view of 1283 pixels, and thus, bigger input re-

gions are not necessary in this case. For higher resolution

data or different segmentation tasks more context levels

or larger input sizes might be needed.

5. Conclusion

We propose SneakyNet for improved distinct bone seg-

mentation from CT. 3D CNNs suffer from cubic growth of

88 SneakyNet



10 Eva Schnider et al. / Medical Image Analysis (2022)

h
u
m

er
u
s 

l

h
u
m

er
u
s 

r

ra
d
iu

s 
l

ra
d
iu

s 
r

u
ln

a
 l

u
ln

a
 r

fe
m

u
r 

l

fe
m

u
r 

r

Predicted label

humerus l

humerus r

radius l

radius r

ulna l

ulna r

femur l

femur r

T
ru

e 
la

b
el

0.98 0 0 0 0 0 0.021 0

0 0.99 0 0 0 0 0 0.005

0.016 0 0.98 0 0 0 0 0

0 0 0 0.99 0 0.0052 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0.0074 0.99

ours: D 64-128

h
u
m

er
u
s 

l

h
u
m

er
u
s 

r

ra
d
iu

s 
l

ra
d
iu

s 
r

u
ln

a
 l

u
ln

a
 r

fe
m

u
r 

l

fe
m

u
r 

r

Predicted label

humerus l

humerus r

radius l

radius r

ulna l

ulna r

femur l

femur r

T
ru

e 
la

b
el

0.75 0 0 0 0 0 0.21 0.027

0.014 0.87 0 0.0066 0 0 0 0.11

0 0 1 0 0 0 0 0

0 0.0096 0 0.99 0 0 0 0

0 0 0 0 0.99 0 0 0

0 0 0 0 0 0.98 0 0.01

0 0 0 0 0 0 0.99 0.013

0 0 0 0 0 0 0.039 0.96

baseline 3D U-Net

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Fig. 6. Confusion matrix among the long bones of the arms and legs. With our method, there is considerably less confusion between the left
and right sides of the body and between arm and leg bones.

Table 3. Ablation results in DSC for different model configurations.

Target patch size 32 64
DSC Median σ −σ non-zero DSC Median σ −σ non-zero DSC
A baseline 3D U-Net 0.64 +0.19 -0.34 94.5% 0.83 +0.09 -0.27 94.5%
B Hook Net 0.66 +0.17 -0.34 94.1% 0.85 +0.09 -0.32 95.3%
C MRN 0.69 +0.16 -0.37 95.1% 0.84 +0.09 -0.31 96.0%
D SneakyNet (ours), LX-Ent only 0.73 +0.15 -0.32 95.1% 0.86 +0.09 -0.27 96.7%
D SneakyNet (ours) 0.75 +0.14 -0.33 95.3% 0.86 +0.08 -0.28 96.7%

their intermediate computations when using larger input

patches. In practice, this means that only patches of com-

parably modest size can be used as inputs for 3D CNNs.

At the same time, the resolution of medical images is ever

increasing, and thus the field of view of a fixed number of

pixels is decreasing.

We, therefore, propose a network architecture that uses

additional inputs at a lower resolution but with a larger

field of view to provide the necessary context information

to assign the proper bone classes. We compared three dif-

ferent ways of combining the context and target informa-

tion and evaluated the results using zero to three context

networks. Using context networks improves the segmen-

tation results on all target patch sizes.

We make our code and a de-identified version of our

dataset of 17 upper-body CT scans with voxel-wise CT

bone labelling publicly available.
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Chapter 9

Discussion and Conclusion

Is it possible to simultaneously segment all bones of a human body from a CT scan using deep
learning? This was the question at the onset of this Ph.D. project. In the following sections, we
will summarise our accomplishments, discuss the limitations of our work, and suggest how to
proceed in future work.

9.1 Contributions

In this work, we presented different methods to segment distinct bones from upper-body CT
scans. Distinct bone segmentation from CT is a difficult task due to the presence of over 200
different bones in the human body and the large size of the CT scans used. In our first seg-
mentation method we have provided a proof of concept that fully supervised end-to-end trained
U-Net-like networks are capable of multi-class bone segmentation of upper-body CT scans.
Compared to other published approaches, we have increased the maximum number of distinct
bones segmented in one method from 88 [37], (respectively 49 [73] for neural network-based
approaches) to 125.

To remedy the most prevalent errors occurring during our distinct bone segmentation task,
we proposed inference modifications that are potentially useful to a wide range of 3D multi-class
segmentation problems: Our proposed BEM inference is suitable for any multi-class segmen-
tation problem and can help to improve foreground and background distinction. It splits the
task into two sub-problems: bone and non-bone distinction and the identification of individual
bones. We showed that the approach works with dual-decoder networks specifically designed
for the task but also when using a binary bone/non-bone segmentation that has been obtained
by other means. Since the labels of any multi-class task can be easily transformed into binary
background/foreground labels, this approach can be retrofitted to any segmentation network.

To tackle the misclassification of similar looking bones in different locations of the bone,
we designed SneakyNet, a multi-resolution network. It incorporates increasingly large fields of
view with decreasing resolutions into one network and thus includes more spatial context while
keeping the number of input pixels manageable. This is particularly useful when we want to
work with higher resolution data, where the currently computationally manageable input sizes
(in terms of pixels) capture too little area of the CT scan.
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94 Chapter 9. Discussion and Conclusion

In collaboration with our group’s VR and AR team, we integrated the trained models for
distinct bone segmentation into their SpectoVR application, where it can be used to segment new
CT scans on the fly. The time needed to generate the segmentation is 1-5 minutes, depending
on the scan size and model chosen. The resulting segmentation is then directly visualised and
editable in VR. It can be used for any upstream task, including the envisioned planning and
navigation software for the MIRACLE project.

9.2 Limitations

Naturally, there are numerous limitations to our work. They can be roughly divided into two
groups: limitations in model generalisation originating from the data we used to train our models
and limitations of the approaches themselves irrespective of the training data.

Generalisation: We used data provided by the University’s anatomical institute. Those
CT scans were taken post-mortem of body donors. This demographic is very specific in many
ways: It mainly consists of elderly people, some over 100 years old, with frequent occurrence
of mild forms of scoliosis and calcification quite typical for old age. Another issue is the pose:
To decrease the radiation dose, living persons are usually scanned in a different pose when con-
ducting an upper body CT scan. They lift their arms above their heads and out of the scanner’s
field-of-view. The tissue properties are potentially slightly affected by post-mortem decay at the
scan-time. Thus the trained model might not be perfect for living subjects. In addition, all of our
data came from the same CT scanner. While different CT scanners produce somewhat similar
outputs, in contrast to MRI, scanner invariance of the trained model is not guaranteed.

The dataset was quite varied in terms of sex and body build, but not so in age: Only CT
scans of adults were used in our work. We do not anticipate our trained algorithms to generalise
to children’s CT because not all ossification centres are fused in children, and their bodies have
different proportions.

There were no individuals with supernumerary bones in our dataset and none with large
metal implants and their accompanying streak artefacts. Furthermore, we did not observe patho-
logic or extreme variations in bone shape and layout, such as very pronounced scoliosis or bone
cancer, in our dataset. Therefore, we do not expect our trained models to be robust against those
modes of variation.

Our initial dataset comprised an upper and a lower body scan of five donors. There were
no full-body scans available due to hardware limitations. We focused our investigations on the
upper-body dataset for two primary reasons: It contained more individual bones from more
groups (see Section 2.1), making the task more interesting. It also contained some very fre-
quently segmented bones, i.e., the vertebrae from which we hoped to get additional data for
pretraining.

Concluding, we expect our trained models at this stage to work for upper-body CT scans
of human adults with a standard bone anatomy and without metal implants or strong bone de-
formations, irrespective of their build and sex. We expect better performance for older adults
and post-mortem scans. Extending the model’s capabilities to other anatomies or demographics
should be possible using an appropriate training dataset.

Model performance:
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We achieved DSC values of up to 0.85 (median over all bones), meaning that the algorithm
usually performed decently on most bones. Certain bones, however, often stayed undetected or
were wrongly labelled. This behaviour was most frequently observed in the hands where parts
of finger bones were misidentified. Another location of frequent misclassification was the spine,
where the separation between vertebrae was not always satisfactory, and the labels tended to
be off by one vertebra. This behaviour has been improved using SneakyNet but still deserves
further consideration.

9.3 Future Work

Our final datasets contained only 17 scans, due to the very time-intensive labelling process.
We see great potential in extending the dataset to improve the results further and increase the
robustness of the trained models.

We have investigated active-learning strategies to select the next CT scans that should be
labelled and included into the training dataset. We followed the hypothesis that scans that incur
higher ensemble uncertainty scores during inference time might provide more new information
to the model and lead to better results when included in the dataset. In our experiments we did
not observe such an effect, which warrants further investigations into the best policy to decide
on what new data to label and include.

Given the difficulty in obtaining voxel-wise labelled data, weakly or unsupervised approaches
may be a viable option. This could take the form of a generative model with the task of creating
a specific bone, or possibly many bones at once, and a discriminator with the task of identify-
ing real from computer-generated bone, similar to the detection of brain tumours [138]. Such
weakly supervised approaches still require labels, typically containing the knowledge of whether
a specific volume of the scan contains the class of interest in place of voxel-wise segmentation.
Although a bounding box or rough delineation of the bones is still necessary, this may require
less work than a voxel-wise approach. With some bones being very close to one another, the
question remains, how much error would be introduced by a bounding box approach and how
this would affect the outcome.

We use the multi-resolution SneakyNet approach to provide additional spatial information to
our models. Another option would be to directly provide spatial information using an encoding
similar to the one used in transformer networks. We tried such approaches, but they are infa-
mously data-hungry and we did not yet obtain acceptable results. Nevertheless, transformers are
still being researched very actively and adapted to new and smaller datasets, which commends a
revisit.

Finally, it may be interesting to create segmentations that are very accurate by using articu-
lated atlases, shape models, or generative human models. A hierarchical approach would likely
be necessary, with the trunk being fitted first and the extremities coming next, joint by joint. As
a result, the majority of the segmentation task would change to a registration problem, which has
its own set of challenges. These approaches would, however, potentially lose the advantage of
being trainable end-to-end and risk ending up with tedious tinkering. Even if registration-based
methods may end up being more accurate, the automated deep-learning segmentation developed
in this thesis could still be used as a first step to guarantee a good initial alignment, which is
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typically a requirement for a successful registration outcome.

9.4 Conclusion

In this work, we propose a deep learning-based method for automated distinct bone segmenta-
tion in upper-body CT scans. Our method is currently used in the SpectoVR software to segment
bones on-the-fly. We found a working method based on 3D U-Nets that forms our baseline and
subsequently identified the main modes of errors and proposed additions to deal with those er-
rors. Our number of simultaneously segmented bones is higher than previously published in the
literature. The inference of an upper-body CT scan takes approximately 3 minutes, depending
on the input size, and input window overlap. This makes our algorithm suitable for visualisation
and as a prior for other more fine-grained algorithms. In terms of accuracy, our methods are
best suited to tasks, where the general location of multiple bones is more critical than the per-
fect segmentation of any single bone. If the segmentation of one specific single bone is desired,
more specialised algorithms might be better suited to the task. We propose to use our method in
gross anatomy education, for navigation within a user interface that displays CT scans or as an
intermediate step in pose computation.
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