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Abstract 21 

The medial entorhinal cortex (MEC) hosts many of the brain’s circuit elements for spatial navigation and 22 
episodic memory, operations that require neural activity to be organized across long durations of 23 
experience1. While location is known to be encoded by a plethora of spatially tuned cell types in this 24 
brain region2-6, little is known about how the activity of entorhinal cells is tied together over time. Among 25 
the brain’s most powerful mechanisms for neural coordination are network oscillations, which 26 
dynamically synchronize neural activity across circuit elements7-10. In MEC, theta and gamma oscillations 27 
provide temporal structure to the neural population activity at subsecond time scales1,11-13. It remains 28 
an open question, however, whether similarly powerful coordination occurs in MEC at behavioural time 29 
scales, in the second-to-minute regime. Here we show that MEC activity can be organized into a minute-30 
scale oscillation that entrains nearly the entire cell population, with periods ranging from 10 to 100 31 
seconds. Throughout this ultraslow oscillation, neural activity progresses in periodic and stereotyped 32 
sequences. This activity was elicited while mice ran at free pace on a rotating wheel in darkness, with no 33 
change in its location or running direction and no scheduled rewards. The oscillation sometimes 34 
advanced uninterruptedly for tens of minutes, transcending epochs of locomotion and immobility. 35 
Similar oscillatory sequences were not observed in neighboring parasubiculum or in visual cortex. The 36 
ultraslow oscillation of activity sequences in MEC may have the potential to couple its neurons and 37 
circuits across extended time scales and to serve as a scaffold for processes that unfold at behavioural 38 
time scales, such as navigation and episodic memory formation. 39 
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Main 44 

Brain function emerges from the dynamic coordination of interconnected neurons9,10,14-16. At subsecond 45 
time scales, cells are coordinated within and across dispersed brain regions by way of neuronal 46 
oscillations7,9,13,17-20. Studies have reported oscillations also at slower time scales, with periods lasting 47 
from seconds to minutes, in individual neurons21-26 and in local field potentials27-29. It remains unknown, 48 
however, how pervasive these ultraslow oscillations are, whether they serve a role in neuronal 49 
coordination, and if they do, how the activity of participating neurons is organized in space and time 50 
across the neural circuit. 51 

We directed our search for ultraslow oscillations to the medial entorhinal cortex (MEC), a brain circuit 52 
that by containing many of the elements for navigational behavior2-6 and episodic memory 53 
formation1,30,31, may possess mechanisms to organize neural activity at time scales of seconds to 54 
minutes. Ultraslow oscillations, if they exist in MEC, might structure neural activity over long time scales 55 
and interact with faster oscillations, such as theta and gamma rhythms, which are predominant in this 56 
brain area11,12,32. To maximize the detectability of ultraslow MEC oscillations and to rule out variations 57 
in external stimuli as sources of modulation, we monitored activity in hundreds of MEC cells with two-58 
photon calcium imaging while head-fixed mice ran on a rotating wheel for 30 or 60 minutes33-35, in 59 
darkness and with no scheduled rewards36,37 (Fig. 1a).  60 

 61 

Activity of MEC neurons undergoes ultraslow oscillations 62 

Behavior on the rotating wheel was characterized by bouts of running, at variable speed and 63 
acceleration, interleaved with periods of rest (Extended data Fig. 2a). To determine if neural activity in 64 
MEC exhibits ultraslow oscillations in this task, for each recorded cell we deconvolved the calcium 65 
signals38,39 and binarized the obtained signals, using a bin size of 129 ms. This process yielded a 66 
deconvolved and binary calcium activity that had in each time bin a value of 1 in presence of calcium 67 
events, and 0 otherwise (“calcium activity” for the rest of the paper). For each cell, we calculated the 68 
autocorrelation of the calcium activity and the corresponding power spectral density (PSD). When the 69 
autocorrelation diagrams of all cells from one session were stacked into a matrix with cells as rows and 70 
time lags as columns, we observed vertical bands (Fig. 1b, left), suggesting that the calcium activity of 71 
individual cells was oscillatory and that many cells shared a similar oscillation frequency. When sorting 72 
the autocorrelations in the matrix according to the frequency at which the PSDs peaked (“primary 73 
frequency”), the spread of oscillatory frequencies became clearer (Fig. 1b, right). Some cells had only 74 
one prominent peak in their PSD (Fig 1c), suggesting that they were active at equidistant intervals 75 
throughout the session. Other cells had several peaks, often with the higher frequencies appearing as 76 
harmonics of a fundamental frequency, or they had wider peaks, indicating more variable activity 77 
intervals (Fig. 1d and e). In the example session in Fig. 1b, most cells (72%, 348 of 484) had a primary 78 
frequency lower than 0.01 Hz (44% of the cells had a primary frequency within the range 0.006-0.008 79 
Hz), and there were no cells whose PSD peaked at frequencies higher than 0.1 Hz. In the complete data 80 
set (15 sessions over 5 animals), there was some variation in frequencies across sessions and animals 81 
but the primary frequency was always below 0.1 Hz (all 6231 cells; range of maximum frequencies across 82 
15 sessions: 0.036-0.057 Hz). Taken together, these findings demonstrate ultraslow oscillations of single 83 
cell calcium activity in MEC, at periods in the order of tens of seconds to minutes. 84 

 85 

 86 

 87 
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MEC population activity is organized into oscillatory sequences  89 

To determine whether the ultraslow oscillation of calcium activity of different cells is coordinated and 90 
temporally structured at the neural population level, we introduced a two-step procedure. First, we 91 
stacked the calcium activity of all cells to produce a matrix that had as many rows as recorded cells, and 92 
as many columns as time bins (bin size 129 ms). Second, using time bins as data points, we calculated 93 
instantaneous correlations between the calcium activity of all pairs of cells, and used these values to 94 
sort the cells such that those that are nearby in the sorting are highly synchronized. The cell pair with 95 
the highest correlation value was identified and one of the two cells was defined as the “lead” cell. The 96 
remaining cells were sorted, in a descending manner, based on their correlation value with the lead cell.  97 

When cells were sorted by correlations and their activity plotted across session time, we observed 98 
periodic sequences of neuronal activation (Fig. 2a). The sequences unfolded successively at a steady 99 
rate, with no interruption for tens of minutes. The periodic sequences indicate the presence of an 100 
oscillation at the neural population level that coordinates the order of activity among the neurons. Each 101 
cell was followed first by cells that were highly synchronous, and then successively by less synchronous 102 
cells until synchronization caught up again (Extended data Fig. 3a).  103 

While sorting cells according to their correlation values unveiled recurring sequences of activity, 104 
computing correlations from the binarized calcium activity (or the raw calcium signals) can be inherently 105 
noisy due to variability in the frequency of deconvolved calcium events and dependence on fine tuning 106 
of hyperparameters such as the size of the kernel used to smooth the calcium activity. Thus, we sought 107 
a sorting approach that did not rely on hyperparameters. We leveraged the fact that sequences of 108 
activity constitute low-dimensional dynamics with intrinsic dimensionality equal to 1, and adopted an 109 
unsupervised approach based on dimensionality reduction40 to sort the cells. For each recording session 110 
we applied principal component analysis (PCA) to the full matrix of calcium activity, including all epochs 111 
of movement and immobility. We kept the first two principal components (PCs), which is the minimum 112 
number of components needed to embed non-linear 1-dimensional dynamics. Expecting that the 113 
ordering in cell activation would be expressed in the relationship between the cells’ loadings on the two 114 
PCs, we measured for each cell the angle ߠ ∈ ሾ−ߨ,ߨሻ of the vector defined by the pair of loadings on 115 
PC1 and PC2, and then sorted the neurons based on these angles in a descending manner (Extended 116 
data Fig. 3b). Sorting the cells in this way (“PCA method”) revealed the same stereotyped sequences of 117 
neuronal activation that we previously found through correlations among cell pairs (Fig. 2b); however, 118 
the sequential organization was now more salient. Sequences proceeded uninterruptedly in a periodic 119 
manner and seemed to involve the majority of the recorded MEC cells. We will refer to these oscillatory 120 
sequences as the “population oscillation” to distinguish them from oscillations in single cell calcium 121 
activity. The population oscillation was not present if cells were not sorted or if the PCA method was 122 
applied to matrices of calcium activity in which the calcium events were temporally shuffled (Extended 123 
data Fig. 3c, first and second row on the left). The population oscillation was similarly observed when 124 
neurons were sorted according to unsupervised methods relying on a variety of non-linear 125 
dimensionality reduction techniques (Extended data Fig. 3c, third row on the left, and second column), 126 
and also when the neurons’ calcium activity was visualized by the unprocessed calcium signals (Fig. 2c), 127 
suggesting that it is not an artifact of the spike deconvolution. 128 

Since sequences of neural activity constitute low-dimensional dynamics, we next asked what is the 129 
topology of the underlying manifold. First, we visualized the manifold by projecting the population 130 
activity onto the first two PCs. The manifold resembled a ring, along which the population activity 131 
propagated repeatedly with periodic boundary conditions (Fig. 2d left, Extended data Fig. 3d). However, 132 
because the ring-shaped manifold could be lying on a curved surface, in which case the linear embedding 133 
of PCA might result in distortions when the manifold is visualized, we next adopted a non-linear 134 
dimensionality reduction method. A Laplacian Eigenmap (LEM) approach was chosen because it has a 135 
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lower number of hyperparameters as compared to the other non-linear techniques (Extended data Fig. 136 
3c). We applied LEM to the matrix of calcium activity and then projected the population activity onto 137 
the 2-dimensional embedding spanned by the first two LEM dimensions. The manifold still had the shape 138 
of a ring, as previously suggested by the PCA projection, although now the circular pattern was more 139 
salient (Fig. 2d right). The progression of population activity along the manifold was tracked through a 140 
parameter that we call the “phase of the oscillation” and that we calculate as the arctangent of the ratio 141 
between the population activity modes given by PC2 and PC1 (Fig. 2e, red trace). During one full rotation 142 
of the population activity along the ring-shaped manifold, which we refer to as one “cycle”, the phase 143 
of the oscillation traversed [−ߨ,ߨ) rad. 144 

While striking population oscillations were observed across multiple sessions and animals, the 145 
population activity exhibited considerable variability, ranging from non-patterned activity to highly 146 
stereotypic and periodic sequences (Extended data Fig. 4a). This variability was also observed when 147 
examining the joint distribution of time lags (߬) that maximized the correlation between cells’ calcium 148 
activity and the angular distances ݀ in the PCA sorting (Fig. 2f left). In sessions with clear population 149 
oscillations, the time lag ߬ increased with the distance ݀, which indicated sequential activation of neural 150 
activity. This dependence was observed a discrete number of times in each session, which indicated that 151 
cells were active periodically and at a fixed frequency or at an integer multiple of it (Fig. 2f right, built 152 
on the example session shown in Fig. 2a, and Extended data Fig. 4b top for another example with a 153 
different time scale). In sessions without detectable population oscillations such structure was not 154 
observed (Extended data Fig. 4b bottom). This variability in population dynamics prompted us to 155 
quantify, for each session, the extent to which the population activity was oscillatory through an 156 
oscillation score that ranged from 0 (no oscillation) to 1 (strong oscillations). The score was calculated 157 
by first binning the angular distance between cells in the PCA sorting, using 11 bins, and then counting 158 
the fraction of bins in which the cross correlations between the calcium activity of cell pairs peaked at 159 
regular intervals (Online Methods). The distribution of oscillation scores over the entire MEC dataset (27 160 
recording sessions in 5 mice) was bimodal (Extended data Fig. 4c), with 12/27 sessions exhibiting scores 161 
between 0 and 0.2 (no oscillations), and 15/27 sessions scoring between 0.72 and 1. The latter sessions 162 
were classified as oscillatory (15 oscillatory sessions over 5 mice; one of the mice did not have any 163 
oscillatory sessions; Extended data Fig. 4a).   164 

For each oscillatory session, we investigated how the population activity varied across individual cycles 165 
and whether the length of individual cycles varied within and between sessions. We identified individual 166 
cycles by extracting the subset of adjacent time bins where the phase of the oscillation increased 167 
smoothly within the range [-π,π) (bin size 129 ms, Extended data Fig. 5a,b). We divided each cycle into 168 
10 segments, and for each segment we calculated the mean rate of calcium events over recorded 169 
neurons (total number of events across cells divided by cycle segment duration and number of cells). 170 
Across sessions we found that the percentage rate change from the segment with the minimum event 171 
rate to the segment with the maximum rate was no more than 18% (Extended data Fig. 5c). There was 172 
no significant difference in median event rate between pairs of segments within cycles (Extended data 173 
Fig. 5c). Next we quantified, within and across sessions and animals, the variability in the length of 174 
individual cycles, or the time for population activity to traverse the ring once (Extended data Fig. 5a). 175 
Cycle lengths ranged from tens of seconds to minutes (Fig. 2g) and showed high variability across 176 
sessions and animals (Fig. 2h, Extended data Fig. 5d) but there was little variability within individual 177 
sessions (Extended data Fig. 5a,e). Cycle length was independent of the number of recorded cells 178 
(Extended data Fig. 5f).  179 

Finally, we quantified the duration of epochs with uninterrupted population oscillation. We calculated 180 
the inter-cycle interval (ICI) for all cycles in one session as the amount of time that elapsed between the 181 
moment the phase of the oscillation reaches ߨ after completing one turn along the ring, and the moment 182 
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it is equal to - ߨ prior to initiating the next turn along the ring. ICIs were then pooled across sessions. 183 
ICIs were present at different lengths, ranging from 0 s when cycles are consecutive (69% of ICIs, 279 of 184 
406 ICIs) to a maximum of 452 s (Fig. 2i). The fraction of session time with population oscillation varied 185 
within and across animals (Extended data Fig. 5g), yet - when present - the oscillation could progress 186 
uninterruptedly for minutes in each of the animals and span up to 23 consecutive cycles (Extended data 187 
Fig. 5h).   188 

Taken together, these results suggest that when animals are engaged in a self-paced locomotor task 189 
under minimal sensory stimulation and in the absence of rewards, population activity in the superficial 190 
layers of the MEC is organized into a minute-scale population oscillation consisting of periodic sequences 191 
of neural activity.   192 

 193 
The majority of MEC neurons are locked to the population oscillation 194 
 195 
To determine the degree to which calcium activity in individual MEC neurons was tuned to the 196 
population oscillation, we computed for each neuron the locking of its calcium activity to the phase of 197 
the oscillation. For each cell, the locking degree was calculated as the length of the mean vector obtained 198 
from the distribution of oscillation phases at which calcium events occurred, with a range from 0 199 
(uniform distribution of oscillation phases at which calcium events occur) to 1 (all calcium events occur 200 
at the same oscillation phase). Significant locking degrees were observed for the vast majority of the 201 
recorded cells (Fig. 3a left, calculated on data from the example session in Fig. 2a; 458 significantly 202 
locked neurons over 484 total neurons recorded, or 95%). For these cells, the locking degree was higher 203 
than the 99th percentile of a null distribution obtained by temporally shuffling the cell’s calcium events. 204 
The observed values of locking degree were consistent with another measure of locking that does not 205 
make any assumptions about unimodal distribution of the data: the mutual information between the 206 
counts of calcium events and the phase of the oscillation (Fig. 3a right, Extended data Fig. 6a, bin size 207 
0.52 s). The predominance of phase-locked neurons was observed in all 15 oscillatory sessions (Fig. 3b, 208 
5841 locked neurons out of 6231, ~94%).  209 
 210 
The locking degree was highest for cells with an oscillatory frequency similar to the frequency of the 211 
population oscillation, which constituted the large majority of the cells (Extended data Fig. 6b,c). 212 
However, neurons with weak phase locking were still engaged in the population oscillation, since the 213 
oscillatory sequences were maintained when neurons with high locking degree were excluded 214 
(Extended data Fig. 6d). Yet, the more cells were excluded, the harder it was to observe the population 215 
oscillation, indicating that the oscillatory dynamics is a property of neural populations (Extended data 216 
Fig. 6d). Because the population oscillation involves the vast majority of MEC neurons in the recording 217 
region (~95%), the sequences most likely include a mixture of functional cell types such as grid, head-218 
direction, and object-vector cells, given that (i) no cell type accounts for more than 15-25% of the cells 219 
in layer II of dorsal MEC41,42, and (ii) functional cell types in this area are spatially intermixed within field 220 
of views of the microscope that are smaller than the one we used42. 221 
 222 
Each locked neuron exhibited a preference for activity within a narrow range of phases of the oscillation 223 
(Fig. 3c calculated on the example session in Fig. 2a, Extended data Fig. 6e). Across the entire recorded 224 
population, all phases of the oscillation were equally present when the cells’ preferred phase was 225 
calculated as the mean oscillation phase at which the cell’s calcium events occurred. A uniform 226 
distribution was observed both within individual experimental sessions (Fig. 3c) and across all sessions 227 
with oscillations (Extended data Fig. 6e,f).  228 
 229 
Not all neurons participated in each individual oscillation cycle, however. We quantified the degree to 230 
which cells skipped cycles through a participation index (PI), calculated as the fraction of cycles needed 231 
to account for 90% of the total amount of calcium events of a neuron in one session. For neurons that 232 
were active only in a few cycles the participation index was small (participation index ~  0), and for 233 
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neurons that were reliably active during most of the cycles the participation index was high 234 
(participation index ~ 1, Extended data Fig. 6g shows three example neurons of the session in Fig. 2a). 235 
Participation index variability was observed both within individual experimental sessions (Fig. 3d left), 236 
and across all oscillatory sessions (Fig. 3d right). The participation index did not correlate with the degree 237 
to which the single cell oscillatory frequency matched the population oscillation frequency (Extended 238 
data Fig. 6h).  239 
 240 
We next asked how differences between cells’ preferred phase or participation mapped onto the MEC 241 
surface (Extended data Fig. 1c), keeping in mind that the population oscillation in MEC could have 242 
features of travelling waves, where the population activity moves progressively across anatomical 243 
space43-48. We calculated pairwise anatomical distances in the microscope’s field of view (i) between 244 
cells with similar preferred phases and (ii) between cells with different preferred phases (Extended data 245 
Fig. 6i). If topographical organization were present, we would expect smaller pairwise anatomical 246 
distances for the cells with the most similar preferred phases. The results showed, however, that cells 247 
with similar and dissimilar preferred phases were anatomically intermingled (Movie 1 and Fig. 3e,f). 248 
Changing the fraction of cells used to define the groups with similar and different preferred phases had 249 
no impact on the degree of intermixing (Extended data Fig. 6j). There was also no topography in the 250 
neurons’ participation indexes (Fig. 3g,h; Extended data Fig. 6k,l). 251 
 252 
Taken together, these findings suggest that even though the majority of MEC neurons were locked to 253 
the population oscillation, both their locking degree and the participation in individual cycles varied 254 
across the population. 255 
 256 
The population oscillation consists of periodic and unidirectional activity sequences 257 

We next sought to quantify the sequential activation and periodicity of neural activity during the 258 
population oscillation. In order to average out the variability observed at the single cell level in terms of 259 
oscillation frequency, locking degree and participation index (Fig. 1,3), we decided to study the neural 260 
population dynamics by means of ensembles of co-active cells (Extended data Fig. 7a). As expected, the 261 
participation index increased when activity was considered for merged groups of cells, or neuronal 262 
ensembles, instead of single neurons (Extended data Fig. 7b). Because the participation index plateaued 263 
after 5 merging iterations, consisting of approximately 10 ensembles depending on the session, we 264 
chose to assign neurons to a total of 10 ensembles, based on their proximity in the sorting obtained 265 
through the PCA method (Fig. 4a, note that each cell belongs to only one ensemble). Ensembles were 266 
representative of the activity of their assigned neurons (Extended data Fig. 7c-f), their activity oscillated 267 
at the same frequency as the population oscillation (Extended data Fig. 7g,h), and the ensembles were 268 
anatomically intermingled (Extended data Fig. 7i-k).  269 

To quantify the temporal dynamics of the ensemble activity, we calculated the probability by which 270 
activity transitioned between ensembles across adjacent time bins, and expressed the resulting 271 
probabilities as a transition matrix (Fig. 4b). For each time bin of the recording session (bin size shown 272 
in Extended data Fig. 7l), we only kept the ensemble with the highest activity (red rectangle in Extended 273 
data Fig. 7m; Extended data Fig. 7n). The analysis revealed (i) that transitions between adjacent 274 
ensembles were more frequent than transitions between ensembles that were farther apart, and (ii) 275 
that transitions occurred with a preferred directionality (Fig 4b, left). Transitions from ensemble 10 to 276 
ensemble 1 were equally frequent as transitions between consecutive ensembles (Extended data Fig. 277 
7o), as expected from the periodic nature of the population oscillation. No such structure was seen in 278 
transition matrices obtained after shuffling the calcium activity of all cells (Fig 4b, right). The findings 279 
were upheld when the transition matrix was used as an adjacency matrix to build a directed weighted 280 
graph (Extended data Fig. 7p).  281 
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We then asked whether preferences in nearby ensemble transitions gave rise to stereotyped activity 282 
sequences. We calculated the probability of sequential ensemble activation by counting the number of 283 
times that, within one session, a given number of ensembles was activated in a strictly ascending 284 
manner. The procedure was applied on both recorded and shuffled data (Fig 4c). In the oscillatory 285 
sessions the sequential activation of three of more ensembles was 2.3 times more likely in the recorded 286 
data than in the shuffled data (probability of sequential activation of ≥ 3 ensembles in recorded data = 287 
0.62; probability of sequential activation of ≥ 3 ensembles in shuffled data = 0.27). These findings 288 
motivated us to compute a sequence score, which quantifies how sequential the ensemble activity is 289 
within a session. The sequence score was calculated as the probability of observing three or more 290 
ensembles sequentially activated. As expected, the score was larger for sessions that were classified as 291 
oscillatory according to the oscillation score (which quantifies the presence of single cell periodic 292 
activity, Extended data Fig. 7q). Statistical significance was assessed by temporally shuffling the matrix 293 
of calcium activity. While sequence scores were significant in 100% of the oscillatory sessions (15 of 15), 294 
significant sequential activity was demonstrated also in 41% of the non-oscillatory sessions (5 of 12, 295 
Extended data Fig. 7r).  Taken together, our results suggest that the population oscillation is composed 296 
of periodic, sequential and unidirectional activation of ensembles of highly-correlated neurons.  297 

 298 
The population oscillation is present during both running and immobility 299 

Fast oscillations and single cell firing in the entorhinal-hippocampal system can be modulated by a 300 
number of movement-associated parameters, such as running state, position, travel distance, running 301 
speed and acceleration2,3,49,50. These relationships prompted us to investigate whether similar 302 
dependencies are present for population oscillations that occur at the seconds-to-minutes time scale 303 
(Fig. 5a). 304 

We first sought to determine whether the population oscillation is associated with specific behavioural 305 
states such as running (animal moves along the rotating wheel) or immobility (position on the wheel 306 
remains unchanged, regardless of body movement). The amount of running vs. immobility varied 307 
substantially across sessions (the fraction of time spent running ranged from 0.04 to 0.87, median = 308 
0.53, Extended data Fig. 2a). Analyses of the relationship between movement and population 309 
oscillations were restricted to 10 oscillatory sessions in 3 animals, for which the behavioural tracking 310 
was successfully synchronized to imaging (Online Methods). By following a two-step approach, we 311 
estimated for these sessions the probability of observing the population oscillation given that the animal 312 
was either running or immobile. First, for each session we identified the time bins that belonged to 313 
individual cycles of the oscillation (Extended data Fig. 5a), and we labeled those bins as “oscillation bins”. 314 
The fraction of bins labeled as oscillation bins was 0.73 ± 0.07 (mean ± S.E.M., n = 10 sessions). Next, to 315 
compute the conditional probabilities we assigned a second label to each bin depending on whether it 316 
occurred during running or immobility (speed ≥ or < 2cm/s; fraction of bins labeled as running = 0.43 ± 317 
0.09, mean ± SEM, n = 10 sessions). We found that the population oscillation was predominant during 318 
running bouts (Fig. 5b, left), but it was also observed during immobility (Fig. 5b, right), suggesting that 319 
the oscillation is not exclusive to epochs in which the animal is engaged in locomotion. Population 320 
oscillation cycles were continuous for immobility durations spanning from 1 s to more than 25 s (Fig. 5c, 321 
Extended data Fig. 2b). The continued presence of the population oscillation during long epochs of 322 
immobility suggests that behavioural state and running distance have a limited role in driving the 323 
progression of the population oscillation in MEC, and stands in contrast to previous observations in CA1 324 
of the hippocampus, where stereotypic sequences of neural activity subsided within 2 seconds after 325 
motion was terminated36. 326 

We then asked whether the population oscillation is modulated by the animal’s position, running speed 327 
or acceleration on the wheel, which all varied substantially during the course of a session. Across the 10 328 
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sessions, the range of speed values was 0-75.4 cm/s, with a median of 0 cm/s and a median during 329 
running behaviour of 7.8 cm/s, whereas acceleration values ranged from -86.3 to 108.9 cm/s2, with a 330 
median of 0 cm/s2 for all the data as well as the running epochs specifically. The number of laps the 331 
animals completed on the wheel during one oscillation cycle was also highly heterogeneous, ranging 332 
from 0 to 86 laps per cycle across all animals (lap length~54 cm; Fig. 5d, Extended data Fig. 2c), 333 
suggesting that the progression of oscillatory activity did not map the animal’s position on the wheel. 334 
To determine the impact of running speed on the population oscillation, we extracted all oscillation bins 335 
and calculated the distribution of observed speed values during those bins. This distribution was almost 336 
identical to the distribution of speed values observed during the full length of the sessions, which also 337 
included epochs without the population oscillation (Fig. 5e, 314 cycles pooled across 10 oscillatory 338 
sessions). Oscillation cycles took place during a wide range of speed values, spanning from 0 to more 339 
than 50 cm/s (Fig. 5e). Oscillation bins were similarly independent of acceleration (Fig. 5f).  340 

Finally, since the population oscillation was observed more often during running bouts (Fig. 5b), we 341 
investigated whether changes in speed were associated with the initiation of oscillation cycles. We 342 
found no difference in speed 10 s before and after cycle onset (Extended data Fig. 2d, left; see Extended 343 
data Fig. 2e-h for individual recordings). This result also held for cycles that were 10 s or more apart, i.e. 344 
for cycles that belonged to different epochs with uninterrupted population oscillation (Extended data 345 
Fig. 2d, right). Altogether, our results show that the MEC population oscillation is not modulated by the 346 
animal’s position on the wheel and is only mildly modulated by the animal’s running behavior, consistent 347 
with the idea that the entorhinal network can generate such oscillations using intrinsic mechanisms. 348 

 349 

Population oscillations were not observed in other brain regions  350 

The fact that ultraslow oscillations have been reported in widely different brain areas21-29 prompted us 351 
to investigate whether a population oscillation composed of oscillatory sequences of neural activity of 352 
the kind we found in the MEC could be observed in other regions too. We recorded the activity of 353 
hundreds of cells in the superficial layers of the parasubiculum (PaS), a high-end parahippocampal region 354 
abundant with grid, head-direction and border cells but with a different circuit structure and a weaker 355 
theta rhythmicity than MEC42,51 (25 sessions over 4 animals, Extended data Fig. 8a,b). In addition, we 356 
investigated the superficial layers of visual cortex52 (VIS, 19 sessions over 3 animals, Extended data Fig. 357 
8c), which differs from MEC53,54 in its network architecture and in the high dimensionality of its neural 358 
population activity. The mice performed the same minimalistic self-paced running task as in the MEC 359 
recordings (range of speed values in PaS/VIS animals across sessions=0-58.6/0-60.3 cm/s; median 360 
number of completed laps on rotating wheel in PaS/VIS animals across sessions=145/104; maximum 361 
number of completed laps on rotating wheel in PaS/VIS animals across sessions=502/1743).  362 

To determine whether single-cell calcium activity in PaS and VIS was periodic and oscillated at ultraslow 363 
frequencies we followed the same procedure as for the MEC sessions. We found that the calcium activity 364 
of a fraction of cells in both brain areas was indeed periodic (Fig. 6a,b). However, in neither brain region 365 
were these oscillations organized into sequences of neural activity. The population oscillation was 366 
observed neither with the PCA method nor with pairwise correlations or any of the non-linear 367 
dimensionality reduction techniques that we had used (Fig. 6c-f; Extended data Fig. 9a). When projected 368 
onto a linear low-dimensional embedding, the population activity did not display a ring-shaped topology 369 
(Extended data Fig. 9b,c). For all sessions in PaS and VIS, the oscillation scores were lower than the 370 
threshold defined from the MEC data to classify sessions as oscillatory (Extended data Fig. 9d; threshold 371 
= 0.72, see Extended data Fig. 4c), suggesting that a population oscillation was weak or absent (Fig. 6g). 372 
Taken together, these results suggest that MEC has network mechanisms for sequential coordination of 373 
single-cell oscillations that are not present in PaS or VIS. 374 
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While ensemble analyses showed no preference for transitions between co-active cells that were nearby 375 
in the PCA sorting (Fig 6h; Extended data Fig. 10a-d), the probability of sequential activation in PaS was 376 
significantly larger in experimental data than in shuffled data (Fig. 6i left, n = 25 sessions). No significant 377 
difference was found in VIS (Fig. 6i right, n = 19 sessions). In line with this result, the percentage of 378 
sessions with significant sequence scores (defined as the probability of observing the sequential 379 
activation of 3 or more ensembles) was highest for oscillatory sessions in MEC (15 out of 15, 100%), 380 
intermediate for PaS (7 out of 25, 28%) and lowest for VIS (1 out of 19, 0.05%) (Extended data Fig. 10e). 381 
Features of the animal’s behaviour were not different between sessions with significant and non-382 
significant sequence scores (Extended data Fig. 10f-i; all regions).   383 

Finally, the presence of sequential ensemble activation in many PaS recordings, but not in VIS, motivated 384 
us to investigate whether this difference could reflect a stronger tendency for VIS neurons to cluster 385 
into a few synchronized states. We quantified synchronization through the absolute value of the 386 
correlation between the calcium activity of all cell pairs, as well as co-activity, calculated as the fraction 387 
of cells that had simultaneous calcium events in bins of 129 ms. Data from VIS had both higher 388 
correlation values (Extended data Fig. 10j) and higher co-activity (Extended data Fig. 10k), compared to 389 
PaS. The strong synchronization of calcium activity in VIS is consistent with previous observations of 390 
recurring co-activity among subsets of neurons (ensembles) in this brain region37,55.  391 

 392 

Discussion 393 

Our experiments identify an ultraslow neural population oscillation that organizes neural activity in the 394 
majority of neurons recorded in the MEC of awake head-fixed mice during self-paced running as well as 395 
intermittent segments of rest. Across recording sessions, the length of individual oscillation cycles can 396 
range from tens of seconds to minutes, but the time scale is generally fixed within an individual recording 397 
session. This oscillation is expressed as unidirectional sequences of activity that can repeat 398 
uninterruptedly for tens of minutes. The oscillation entrains periodic activity in individual neurons despite 399 
some variability in the frequency of single cell activity. Individual cells are activated at specific phases of 400 
the population oscillation, with phase preferences distributed uniformly across the population. Unlike 401 
faster oscillations, which typically have the greater part of the neural activity centered within a narrow 402 
segment of the oscillation cycle56-58, the population oscillation in MEC maintains a relatively constant 403 
activity rate throughout the cycle, reflecting the steady progression of a sequence of neural activity.  404 
 405 
Oscillations at time scales of tens of seconds to minutes have been reported in individual cells of multiple 406 
brain areas and in a variety of brain states including anaesthesia, sleep and alert immobility21-26. EEG and 407 
fMRI recordings from awake humans59-62, as well as LFP from anaesthetized and awake animals27-29 have 408 
similarly demonstrated oscillatory changes at periods of 10 s or longer. However, we do not know from 409 
those observations how the activity of individual neurons is organized with respect to each other during 410 
the oscillation. The present data demonstrate an ultraslow population oscillation at a time scale ranging 411 
from tens of seconds to minutes that, in a controlled behavioral setting and under minimal sensory 412 
stimulation, engages sequentially the vast majority of neurons in the recorded area of MEC. The 413 
population oscillation is only mildly modulated by the animal’s running behavior and is therefore more 414 
likely to emerge from intrinsic network mechanisms.  415 
 416 
The ultraslow oscillatory sequences of the MEC stand out from instances of slow sequential neural activity 417 
that have not been described in terms of oscillations. In the hippocampus, neural activity in CA1 cells is 418 
organized into stereotypic sequences when rats or mice run on a rotating wheel in a cue-rich 419 
environment63 or in a sensory-restricted environment similar to the one used here36,64. Unlike what we 420 
observed in MEC, these sequences are more strictly coupled to ongoing behavioral activity and running 421 
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distance36, and they have not been found to exhibit temporal periodic organization at a well-defined 422 
frequency. Moreover, while nearly 95% of all MEC neurons in the present study were locked to the 423 
population oscillation and most of them participated in at least half of the cycles, hippocampal sequences 424 
involve only a small fraction of the network (5% in ref. 36). Such a difference in participation would be in 425 
agreement with the view that the MEC supports a low-dimensional population code where the cells’ 426 
responses covary across environments and behavioural states53,54,65, whereas the hippocampus supports 427 
a more high-dimensional population code that may orthogonalize distinct experiences66-69. The MEC 428 
population oscillation also differs from retinal waves and cortical waves in the developing nervous 429 
system43-48, as well as travelling waves in the adult hippocampus70,71, which all move progressively through 430 
anatomical space, in a topographic manner not observed in the present data.  431 
 432 
The presence of oscillatory activity in individual cells of all three regions – visual cortex, parasubiculum 433 
and MEC –  together with the absence of population oscillation in the former two, points to MEC as having 434 
network mechanisms for sequential coordination of single cell oscillations that are not present in 435 
parasubisulum or visual cortex. Such mechanisms might share similarities with prewired sequences in the 436 
hippocampus72, or they may be supported by plasticity rules operating on slow time scales73. The 437 
population oscillation of the MEC is consistent with dynamics expected in a one-dimensional continuous 438 
attractor network74-76 where cells are conceptualized as lying on a functional ring with positions 439 
determined by the cells’ loadings on the first two principal components. However, it has not been 440 
determined whether such ring-like connectivity exists among the high percentage of MEC neurons 441 
entrained by the population oscillation, and, if there is such connectivity, which signal is responsible for 442 
moving the bump of activity along the ring. Sequential activity could also be generated by other types of 443 
structured connectivity, for example in recurrently connected networks77,78 and in feedforward networks 444 
in which sequences may arise through synfire chains or rate propagation79-83. But while structured 445 
connectivity might allow for slow transitions in the ensemble activity84,85, none of the mechanisms 446 
proposed so far generate minute-scale repeating sequences with the variability at the single-cell level that 447 
we here observed in the MEC population oscillation.  448 

We propose two related functions for the MEC population oscillation. First, the reported oscillations might 449 
have a role in large-scale coordination of entorhinal circuit elements7,10,86,87, either by synchronizing faster 450 
oscillatory activity25,29,60-62, such as theta and gamma11,12,32, or by organizing neural activity across 451 
functionally dissociable cell classes, such as grid cells, head direction cells, border cells, and object-vector 452 
cells2-6,88. Given that each of these functional cell classes accounts for less than 15-25% of the local cell 453 
population in dorsal MEC41,42, whereas nearly all recorded neurons in the present study were locked to 454 
and participated in the population oscillation, the population oscillation is likely to consist of a mixture of 455 
functional cell types. Coordination by the population oscillation may prevent functional cell classes from 456 
drifting apart and help the circuit maintain correlated firing over the entire duration of an experience89,90. 457 
Second, the MEC oscillatory sequences may act as a scaffold to support computations that must take place 458 
on the fly with little time for extensive circuit plasticity, such as fast storage of memories associated with 459 
one-time experiences69,91, or the assembly of representations for complex sensory stimuli that evolve over 460 
time37,92. The ultraslow population oscillation may also enable the circuit to keep track of time during 461 
extended behavioral experiences93. The temporally organized firing of time cells in MEC94,95 and the more 462 
extended temporal evolution of neural population activity in LEC96 may be facilitated by an underlying 463 
sequence template. Whether the population oscillations serve such coordination and scaffolding 464 
functions across a broader spectrum of behaviors than in the minimalistic task used here remains to be 465 
determined. If similarly slow periodic sequences are expressed across a wider span of behaviors, including 466 
sleep and free exploration, they must interface with dynamics of MEC cells on a number of manifolds, 467 
such as in ensembles of head direction cells and grid cells54,97,98.  468 
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Legends: 737 

Figure 1  738 

Ultraslow oscillations in calcium activity of MEC neurons. 739 

a. Schematic representation of the experimental set-up. Neural activity is monitored through a prism 740 
from GCaMP6m-expressing neurons of the medial entorhinal cortex (MEC) in head-fixed mice running 741 
in darkness on a non-motorized running wheel. Mice alternate freely between running and rest.  742 

b. Stacked autocorrelations of single-cell calcium activity for one example session (3600 s, or 1 h, of 743 
continuous recording, 484 neurons; session 17 from animal #60584.). Each row is the autocorrelation of 744 
one cell’s deconvolved and binarized calcium activity (subsequently referred to as the cell’s “calcium 745 
activity”), plotted as a function of time lag. Z-scored autocorrelations are color-coded. Left: Neurons are 746 
sorted according to the maximum power of the power spectral density (PSD) calculated on each 747 
autocorrelation separately, in a descending order. The vertical bands suggest that single cell calcium 748 
activity is periodic. Right: The same neurons sorted according to peak frequency in the PSD. The curved 749 
nature of the bands illustrates that while most cells exhibited slow oscillation, the frequency of the 750 
oscillation showed some variation across cells.   751 

c. PSD (left) calculated on the autocorrelation (right) of one example cell’s calcium activity. The dashed 752 
red line indicates the primary frequency at which the PSD peaks. The sole narrow peak at 0.0066 Hz is 753 
mirrored by the well-defined oscillatory pattern in the autocorrelation.  754 

d. As in (c) but for another example cell. The PSD peaks at 0.0066 Hz and has harmonics at 0.0132, 0.0207 755 
and 0.0273 Hz.  756 

e. As in (c) but for another example cell in the same recording. The PSD peaks at 0.0038 Hz and 0.0264 757 
Hz. Both peaks are much wider than in (c), corresponding to a weaker oscillatory pattern in the 758 
autocorrelation. 759 

   760 

Figure 2  761 

Ultraslow oscillations in MEC consist of neuronal sequences. 762 

a. Raster plot representation of the matrix of calcium activity obtained after stacking the calcium activity 763 
of all cells recorded in one experimental session (same as in Fig. 1b). Each row of the raster plot shows 764 
the calcium activity of one neuron plotted as a function of time (in seconds, bin size 129 ms). Time bins 765 
with calcium events are indicated with black dots. Time bins with no calcium events are white. Neurons 766 
are sorted according to the correlation between the calcium activity. The sorting revealed sequences of 767 
neuronal activity. One example sequence is indicated in red. Notice the slow temporal scale of the 768 
sequences (121 s for the highlighted sequence).  769 

b. As in (a) but now with neurons sorted according to the PCA method, where we calculated for each 770 
cell the arctangent of the ratio between the cell’s loading on principal component 2 (PC2) and PC1, and 771 
then sorted the cells according to those values in a descending manner. 772 

c. As in (b) but showing the fluorescence calcium signals instead of the deconvolved calcium activity. Z-773 
scored calcium signals are color-coded. Neurons are sorted according to the PCA method.  774 

d. Projection of neural activity of the session presented in (a-c) onto a low-dimensional embedding 775 
defined by the first two principal components of PCA (left), and by the first two dimensions of a LEM 776 
analysis (right). Time is color-coded. Neural trajectories are circular, with population activity propagating 777 
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along a ring-shaped manifold. One full rotation of the population activity along the ring-shaped manifold 778 
is defined as a “cycle” of the population oscillation.   779 

e. Raster plot as in (b), with the phase of the oscillation overlaid in red (right y axis: phase of the 780 
oscillation in radians). 781 

f. Left: Distance ݀ between two neurons in the PCA sorting is calculated as the difference between the 782 
angles of the vectors defined by the loadings of each neuron on PC1 and PC2 with respect to PC1. The 783 
schematic shows the distance between two neurons, one in orange and the other in green. The length 784 
of the vectors is disregarded in this quantification. Right: Joint distribution of the time lag τ that 785 
maximizes the cross-correlation between the calcium activity of any given pair of neurons and their 786 
distance ݀ in the PCA sorting. Color code: normalized frequency, each count is a cell pair. The increasing 787 
relationship between τ and ݀ indicates sequential organization of neural activity.  788 

g. Distribution of cycle lengths across 15 oscillatory sessions over 5 animals (one animal did not have 789 
detectable oscillations, 421 cycles in total). Each count is an individual cycle.  790 

h. Cycle lengths shown separately for each animal with oscillations (421 cycles in total). For each animal 791 
all oscillatory sessions were pooled. Cycle length was heterogenous across sessions and animals.  792 

i. Distribution of inter-cycle intervals (ICI; 406 ICIs in total across 15 oscillatory sessions). Each count is 793 
an ICI. During uninterrupted oscillations the ICI is 0.  794 

 795 

Figure 3  796 

Nearly all MEC neurons are locked to the population oscillation 797 

a. Left: Distribution of locking degrees for all imaged neurons in the example session in Fig. 2a. The 798 
locking degree, computed as the length of the mean vector over the distribution of phases at which 799 
calcium events occurred, takes values between 0 (absence of locking) and 1 (perfect locking). Black dots 800 
indicate locked neurons, red dots non-locked neurons, grey dots the 99th percentile of the null 801 
distribution used to assess locking. For locked cells the locking degree is larger than the 99th percentile 802 
of the null distribution (458 of 484 cells were locked to the phase of the oscillation). Neurons are sorted 803 
according to their looking degree in an ascending manner. Bin size = 129 ms. Right: Distribution of values 804 
of mutual information (MI, in bits) between the phase of the oscillation and the counts of calcium events 805 
(“event counts”) for all imaged neurons in the example session in Fig. 2a. Black dots indicate the values 806 
of MI and grey dots the estimated bias in the MI. For all cells the MI is larger than the bias. Neurons are 807 
sorted according to their MI value in an ascending manner. Bin size = 0.52 s.  808 

b. Box plot showing percentage of locked neurons over all sessions (median = 94%; one sample t-test 809 
for a null hypothesis of 50% locked and non-locked cells, ݊=15 oscillatory sessions, ݌ = 1 × 10ିଵହ, 810 ݐ =38.6). Red line indicates median across sessions, bottom and top lines in blue indicate lower and 811 
upper quartiles, respectively. The length of the whiskers indicates 1.5 times the interquartile range. Red 812 
crosses show outliers exceeding 1.5 times the interquartile range. *** 813 ,0.05 > ݌ * ,0.01 > ݌ ** ,0.001 > ݌ 
n.s. 814  .0.05 < ݌ 

c. Tuning of single cell calcium activity to the phase of the oscillation. Left: Each row indicates the tuning 815 
curve of one locked neuron of the example session in Fig. 2a (n = 458 locked cells). Right: Same as left, 816 
but now for the tuning curves obtained in one shuffle realization of the data in which the calcium events 817 
were temporally shuffled. Tuning curves were calculated by determining the fraction of event counts 818 
across phase bins of the oscillation (bin size~0.16 rad, 40 bins in total). Tuning curves are color coded. 819 
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d. Left: Distribution of participation indexes across neurons in the example session shown in Fig. 2a (n = 820 
484 cells). The participation index (PI) quantifies the extent to which a cell’s calcium activity is distributed 821 
across all cycles of the population oscillation, or rather concentrated in a few cycles, regardless of its 822 
locking degree. PI was calculated for each cell separately as the number of cycles needed to account for 823 
90% of the total number of event counts. Right: Distribution of participation indexes across all 15 824 
oscillatory sessions (n = 6231 cells). Each count in each of the plots is a neuron. 825 

e. Anatomical distribution of neurons in the field of view (FOV) of the example session in Fig. 2a. The 826 
preferred phase of each neuron, calculated as the mean phase at which the calcium events occurred, is 827 
color-coded. Neurons in red are not significantly locked to the phase of the oscillation. The preferred 828 
phases are anatomically intermingled. Dorsal MEC on top, medial on the right, as in Extended data Fig. 829 
1. 830 

f. Left: Box plot of pairwise anatomical distances between cells with similar preferred phase (each cell 831 
in the pair has a preferred phase ~ 0 rad) or different preferred phase (one cell in the pair has a preferred 832 
phase ~ 0, and the other one a preferred phase ~ π rad). Data are for the example session in Fig. 2a 833 
(݊ = 990 distances in the similar group, 2025 distances in the different group, ݌ = 0.65, ܼ = 0.46,  834 
Wilcoxon rank-sum test). Right: Similar to the left panel but for all 15 oscillatory sessions, including the 835 
example session in the left panel (݌ = 0.80, ܼ = 0.25, Wilcoxon rank-sum test). A fraction of 10% of the 836 
total number of locked cells was used to define the groups with preferred phase ~ 0 rad or ~π rad. 837 
Symbols as in Fig. 3b. 838 

g. Same as (e) but for the participation index. Note that also the PIs are anatomically intermingled. 839 

h. Similar to (f) but for the participation index. Left: Box plot of pairwise anatomical distances between 840 
cells with similar or different participation indexes for the example session in Fig. 2a (݊ = 990 distances 841 
in the similar group, 2025 distances in the different group, ݌ = 0.62, ܼ = 0.5, Wilcoxon rank-sum test). 842 
Right: Similar to the left panel but for all 15 oscillatory sessions, including the example in the left panel 843 
(݊ = 15 sessions, ݌ = 0.87, ܼ = 0.17, Wilcoxon rank-sum test). A fraction of 10% of the total number of 844 
locked cells was used to define the groups with small and large participation indexes. Symbols as in Fig. 845 
3b. 846 

 847 

Figure 4  848 

The population oscillation consists of unidirectional periodic activity sequences  849 

a. Schematic of the process for splitting neurons into ensembles of co-active cells. Neurons sorted 850 
according to the PCA method are allocated to 10 equally sized ensembles (color-coded).  851 

b. Left: Matrix of transition probabilities between pairs of ensembles at consecutive time points. Data 852 
are from the example session in Fig. 2a (bin size = 15.12 s). Right: Same as left panel but for one shuffle 853 
realization. Transition probabilities are color coded. In the left diagram, note the higher probability of 854 
transitions between consecutive ensembles (increased probabilities near the diagonal), the 855 
directionality of transitions (increased probabilities above diagonal) and the periodic boundary 856 
conditions in ensemble activation (presence of transitions from ensemble 10 to ensemble 1).  857 

c. Probability of sequential ensemble activation as a function of the number of ensembles that are 858 
sequentially activated (mean ± S.D.; For 3-9 ensembles: ݊ = 15 oscillatory sessions, 7500 shuffle 859 
realizations, ݌ ≤ 5.4 × 10ିଵଵ, range of ܼ values: 6.45 to 59.18, one-tailed Wilcoxon rank-sum test).  860 
Blue, recorded data; orange, shuffled data. For each session, the probability of sequential ensemble 861 
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activation was calculated over 500 shuffled realizations, and shuffled realizations were pooled across 862 
sessions.  863 

 864 

Figure 5  865 

The MEC population oscillation is independent of movement 866 

a. Top: raster plot of one recorded session (30 min, 520 neurons). Time bins colored in blue indicate that 867 
the animal ran faster than 2 cm/s. Inset indicates 160 s of neural activity. Middle: Instantaneous speed 868 
of the animal. Bottom: Position of the animal on the wheel, expressed relative to an arbitrary point on 869 
the wheel.  870 

b. Box plot showing probability of observing the population oscillation given that the animal was either 871 
running or immobile (median probability of oscillations during running = 0.93; median probability of 872 
oscillations during immobility = 0.69; two sample Wilcoxon signed-rank test on the probability of 873 
oscillation for running vs. immobility, ݊ = 10 oscillatory sessions over the 3 animals that had the tracking 874 
synchronized to imaging, ݌ = 0.002, ܹ = 55).  Box-plot symbols as in Fig. 3b.  875 

c. Fraction of immobility epochs with population oscillation as a function of length of the immobility 876 
epoch (mean ± S.D.). For each length bin, the fraction of immobility epochs with population oscillation 877 
was averaged across sessions (n = 10 oscillatory sessions over 3 animals). Note the continued presence 878 
of oscillations during extended immobility intervals. Blue: recorded data (n = 10 per length bin); Orange: 879 
shuffled data (n = 5000 per length bin, 500 shuffled realizations per session were pooled). Recorded vs 880 
shuffled data: ݌ ≤2.62× 10ି଺, 4.7≤ ܼ ≤ 47.5, Wilcoxon rank-sum test.  881 

d. Number of completed laps as a function of cycle number. Each dot indicates one individual cycle. 882 
Three sessions recorded in one animal are pooled. Dashed line indicates separation between sessions. 883 

e. Distribution of speed values during the fraction of the session with population oscillation (blue bars; 884 
n = 167389 time bins across cycles of 10 oscillatory sessions, bin size = 129 ms) and for the entire session 885 
(blue solid line, with and without oscillation; n = 238505 time bins across 10 oscillatory sessions over 3 886 
animals, bin size = 129 ms). Note the almost identical shape of the distributions, suggesting there is no 887 
specific range of speed values associated with the population oscillation. 888 

f. As in (e) but for the distribution of acceleration values. There is no difference in the range of 889 
acceleration values during the fraction of the session with population oscillation.  890 

 891 

Figure 6  892 

The population oscillation is not observed in parasubiculum or visual cortex.  893 

a,b. Stacked autocorrelations for two example sessions recorded in parasubiculum (a, PaS; 1800 s, 402 894 
simultaneously recorded neurons) and visual cortex (b, VIS; 1800 s. 289 simultaneously recorded 895 
neurons). Each row is the autocorrelation of one cell’s calcium activity, plotted as a function of time lag. 896 
Z-scored autocorrelations are color-coded. Cells are sorted according to maximum power (left of each 897 
panel) or peak frequency (right of each panel) of the PSD, as in Fig. 1b. 898 

c,d. PCA-sorted raster plots (as in Fig. 2b) for two example sessions recorded in PaS (Fig. 6a) and VIS (Fig. 899 
6b). Notice lack of stereotyped sequences of activity. Oscillation score and sequence score are indicated 900 
at the top. 901 
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e,f. Joint distributions of time lag τ that maximizes the cross-correlation between any given pair of 902 
neurons and their distance ݀ in the PCA sorting (as in Fig. 2f), applied to the recordings in Fig. 6a (PaS) 903 
and 6b (VIS). Normalized frequency is color-coded. Notice lack of linear relationship between ݀ and τ, 904 
in contrast to Fig. 2f. 905 

g. Number of sessions with and without population oscillation in MEC (blue, 27 sessions in total), VIS 906 
(green, 19 sessions) and PaS (yellow, 25 sessions) based on oscillation scores and threshold defined from 907 
the MEC dataset (see Extended data Fig. 4c).  908 

h. Transition probabilities between ensembles across consecutive time bins (bin size ~ 8.5 s) for the PaS 909 
example session in Fig. 6a (left) and the VIS example session in Fig. 6b (right). Symbols as in Fig. 4b.  910 

i. Probability of sequential ensemble activation as a function of the number of ensembles that are 911 
sequentially activated in PaS (left) and VIS (right) (mean ± S.D.). Blue, recorded data (25 PaS sessions; 19 912 
VIS sessions); orange, shuffled data. For each session, the probability of sequential ensemble activation 913 
was calculated over 500 shuffled realizations, and shuffled realizations were pooled across sessions for 914 
each brain area separately. Probability is shown on a log-scale. In PaS the probability of long sequences 915 
was significantly larger in experimental data than in shuffled data (For 3-7 ensembles: ݊ = 25 PaS 916 
sessions, 12500 shuffled realizations, range of ݌ values: 5.7 × 10ିସ to 0.036, range of ܼ values: 1.80 to 917 
3.25, one-tailed Wilcoxon rank-sum test). This was not the case in VIS (For 3-6 ensembles: ݊ = 19 VIS 918 
sessions, 9500 shuffled realizations, range of ݌ values: 0.09 to 0.99, range of ܼ values: -3.34 to 1.36, 919 
one-tailed Wilcoxon rank-sum test).  920 

 921 

Extended data Figure 1 922 

Histology showing imaging locations for each animal in the MEC group  923 

a. Left: Representative sagittal image indicating GCaMP6m expression in the superficial layers of the 924 
MEC upon local viral injection at postnatal day P1 (sagittal section). Images were acquired with a 20× 925 
objective mounted on a confocal laser scanning microscope LSM 880 (Zeiss). Scale bar 500 μm. Red inset 926 
and top right: 60× magnification of the most dorsal portion of the MEC. Scale bar 150 μm. Bottom right: 927 
Fraction of neurons in the image that express GCaMP6m; data are shown for all 5 animals with MEC 928 
imaging. Error bar indicates the S.D. calculated across multiple adjacent slices. 929 

b. Location of the ventro-lateral edge of the prism in stereotactic coordinates, and area of the FOV 930 
occupied by cells expressing GCaMP6m. Data are shown for each MEC-imaged animal. Mouse #59911 931 
had no oscillations.  932 

c. Prism location in mice that underwent calcium imaging in MEC. Top: Maximum intensity projections 933 
of 50 μm thick sagittal brain sections. For each of the 5 mice in (b), 3 sections, shown from lateral (left) 934 
to medial (right), were acquired with an LSM 880, 20×. A DiL-coated piano wire pin was inserted at the 935 
ventrolateral corner of FOV to enable identification of the FOV on histology sections. Green is GCaMP6m 936 
signal, red is DiL signal. Scale bar is 400 μm. The white stippled line encapsulates the superficial layers 937 
of MEC. The blue dot adjacent to the leftmost image of the series marks the location of the ventro-938 
lateral corner of the prism. Bottom: estimated location of the FOV for two-photon imaging, projected 939 
onto a flat map encompassing MEC (brown outline) and parasubiculum (PaS, yellow outline). The blue 940 
dot marks the location of the pin used to demarcate the most lateral-ventral border of the prism, while 941 
the green square inset is the microscope’s FOV. Inset images show the mean (left) and maximum (right) 942 
intensity projections of the FOV. Anteroposterior (AP) and dorsoventral (DV) axes are indicated in panels 943 
a and c.  944 
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Extended data Figure 2 945 

Relationship between the population oscillation and behavior 946 

a. Quantification of the animals’ behavior during head-fixation on the wheel. Distribution of duration of 947 
running (speed ≥ 2 cm/s, left) and immobility (speed < 2 cm/s, right) epochs for 10 oscillatory sessions 948 
over the 3 animals with synchronized behavioral tracking and imaging (1289 running bouts and 1286 949 
immobility bouts in total). Each count is an epoch. 950 

b. Left: Schematic of the change in phase of the oscillation during immobility epochs that were longer 951 
than 25 s and that occurred during the population oscillation. Right: 44 of these epochs from the same 952 
3 mice as in (a). As in the schematic on the left, each line represents the progression of the phase of the 953 
oscillation (y axis, from –π to π rad) as a function of time (x axis, in seconds). The start of each immobility 954 
epoch is aligned at t=0, and the epoch lasts for as long as the line continues. Different epochs have 955 
different lengths, covering a range from 25 s to 258 s. For visualization purposes only the first 120 s are 956 
displayed (3 of the epochs were truncated; these had durations of 127.9, 258.2, 136.1 s). Sudden 957 
transitions from π to –π rad reflect the periodic nature of the oscillation.  958 

c. Number of completed laps on the wheel per cycle of the population oscillation as a function of the 959 
cycle number after pooling sessions (range of completed laps on rotating wheel across 10 sessions = 10-960 
1164, median = 624).  Sessions are pooled for each animal separately (mouse #60584, 4 sessions; mouse 961 
#60585, 3 sessions; the third animal is shown in Fig. 5d). Each dot indicates one individual cycle. The 962 
dashed line indicates separation between sessions.  963 

d. Left: To determine whether the population oscillation is modulated by onset of running we calculated 964 
the mean running speed during time intervals of 10 s right before and right after the cycle onset (one 965 
sample Wilcoxon signed-rank test on the difference between speed before and after cycle onset, ݊ = 966 
310 cycle onsets over 10 sessions from 3 animals, ݌ = 0.82, ܹ = 25). Right: Same as left but only for 967 
cycles that were 10 s or more apart, i.e. for cycles belonging to different oscillatory epochs (one sample 968 
Wilcoxon signed-rank test on the difference between speed before and after cycle onset, ݊ = 70 cycle 969 
onsets over 10 sessions from 3 animals, ݌ = 0.12, ܹ = 857).  Note that there is no systematic change 970 
in speed after onset of cycles.  971 

e-h. Examples of fractions of sessions with increased speed after cycle onset (exceptions from the 972 
general pattern shown in d). Top of each panel: Raster plots, symbols as in Fig. 2a (bin size = 129 ms). 973 
Bottom of each panel: Instantaneous speed of the animal during the recording in the top panel. Length 974 
of the displayed fraction of the session was 400, 1000, 400 and 500 s, respectively, for (e-h). Notice that 975 
while speed is higher after onset of the cycle in these examples, the increase of speed does not always 976 
occur right after cycle onset, but sometimes before (e,f), and sometimes tens of seconds after (g,h). 977 

 978 

Extended data Figure 3 979 

Oscillatory sequences shown by cell sorting based on correlation or dimensionality reduction  980 

a. Left: Because neural activity progresses sequentially, the time lag that maximizes the correlation 981 
between the calcium activity of pairs of cells increases with their distance in the correlation sorting. 982 
Sorting is performed as in Fig. 2a. Time lag is expressed in seconds, distance is expressed as the number 983 
of cells between the two cells in the sorting. Notice that for large distances (e.g. > 300 cells), the time 984 
lag to peak correlation is either larger than 60 s or close to zero. This bimodality is due to the periodicity 985 
of the MEC population oscillation. The dashed line indicates a linear regression (݊ = 301 cell pairs, ܴଶ ݌  ,0.17  986= = 2 × 10ିଵସ, the line was fitted between the intermediate samples to avoid the effect of the 987 
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periodic boundary conditions). Right: The cross correlation between the calcium activity of pairs of cells 988 
is oscillatory and temporally shifted. Examples are shown for 3 cell pairs with different distances in the 989 
sorting based on correlation values. Orange: cells are 5 cells apart; purple: cells are 199 cells apart; 990 
green: cells are 401 cells apart. The dotted line indicates the time lag at which the cross correlation 991 
peaks within the first peak. Note that the larger the distance between the cells in the sorting, the larger 992 
the time lag that maximizes the cross correlation.  993 

b. Schematic representation of the “PCA method”. Principal component analysis (PCA) was applied to 994 
the binarized matrix of deconvolved calcium activity (“matrix of calcium activity”) of individual sessions 995 
by considering every neuron as a variable, and every population vector as an observation. The first two 996 
principal components (PC1, PC2) were identified. In the plane defined by PC1 and PC2 (left), the loading 997 
of each neuron defines a vector, which has an associated angle θ ∈  with respect to the axis of 998 (ߨ,ߨ−]
PC1 (in the schematic, neuron Ni (orange) is characterized by an angle θi). Neurons were sorted 999 
according to their angles θ in a descending order (right). Cyan: neuron sorting before application of the 1000 
PCA method. Orange: neuron sorting after the application of the PCA method. 1001 

c. Population oscillations consisting of oscillatory sequences are not revealed with a random sorting of 1002 
the cells (top left) or when the PCA sorting method is applied to temporally shuffled data (middle left). 1003 
A population oscillation similar to that of Fig. 2a,b (with correlation sorting or PCA method) is recovered 1004 
when neurons are sorted according to non-linear dimensionality reduction techniques (UMAP, Isomap, 1005 
LEM, t-SNE).  Each row of each raster plot is a neuron, whose calcium activity is plotted as a function of 1006 
time (as in Fig. 2a). Every black dot represents a time bin where a neuron was active (bin size = 129 ms).  1007 

d. Projection of neural activity during the population oscillation onto a low-dimensional embedding 1008 
generated by the first two principal components obtained by applying PCA to the matrix of calcium 1009 
activity of each session. Each plot shows one session; all 15 oscillatory sessions are presented. Time is 1010 
color-coded and shown in minutes, and the temporal range corresponds to all concatenated epochs 1011 
with population oscillation in the session. Neural trajectories are circular, with population activity 1012 
propagating along a ring-shaped manifold.  1013 

 1014 

Extended data Figure 4 1015 

Sorted raster plots for the complete MEC dataset 1016 

a: PCA-sorted raster plots (as in Fig. 2b) for all analysed sessions across the 5 animals in which MEC 1017 
population activity was recorded, sorted by animals and day of recording. Session numbering starts the 1018 
first day of habituation on the wheel, with 15 habituation sessions. One session was recorded per day, 1019 
and recordings were conducted on consecutive days. Note that sessions had lengths of approximately 1020 
1800 s or 3600 s. Oscillation score and sequence score were calculated for each session separately and 1021 
are indicated at the top right corner of every calcium matrix. The scores colored in green correspond to 1022 
sessions with population oscillation (see panel c), scores colored in red to sessions without population 1023 
oscillation.  1024 

b: Example sessions with (top) and without (bottom) population oscillation. These sessions were 1025 
recorded in the same area of the MEC in the same animal, but on different days (Mouse #60355 in panel 1026 
a). Left: Raster plots of the matrices of calcium activity. Right: Joint distributions of the time lag ߬ that 1027 
maximizes the correlation between the calcium activity of any given pair of neurons and their distance 1028 ݀ in the PCA sorting (as in Fig. 2f). Color code: normalized frequency, each count is a cell pair. Notice the 1029 
lack of linear pattern in the session without population oscillation. 1030 
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c. Left: Distribution of oscillation scores for sessions recorded in MEC (27 sessions in total over 5 1031 
animals). Each count is a session. The oscillation score quantifies the extent to which single cell calcium 1032 
activity is periodic, and ranges from 0 (no oscillations) to 1 (oscillations). Dashed line: Threshold used 1033 
for classifying sessions as oscillatory (oscillation score ≥ 0.72) or non-oscillatory sessions (oscillation 1034 
score < 0.72). The threshold was chosen based on the bimodal nature of the distribution. Right: List of 1035 
sessions sorted by animal and number of sessions the animals experienced on the wheel. Session 1036 
numbering as in panel a. Red, sessions classified as not oscillatory; green, session classified as oscillatory.  1037 

 1038 

Extended data Figure 5 1039 

Identification of individual cycles and population oscillation characterization 1040 

a. Top: Raster plot of the PCA-sorted matrix of calcium activity of the example session in Fig. 2a. Bottom: 1041 
Phase of the oscillation calculated on the session shown in the top panel is shown in black, and phase of 1042 
individual cycles is colored in cyan. During one cycle of the population oscillation the phase of the 1043 
oscillation traversed [−ߨ,ߨ) rad. To identify individual cycles, first the phase of the oscillation was 1044 
calculated across the entire session, second discontinuities in the succession of such phases were 1045 
identified and used to extract putative cycles and third, putative cycles were classified as cycles if the 1046 
phase of the oscillation progressed smoothly and in an ascending manner, allowing for the exception of 1047 
small fluctuations (lower than 10% of 2ߨ, e.g. as in the sequence at 500 s). Points of sustained activity 1048 
were ignored. Fractions of cycles in which the phase of the oscillation traversed 50% or more of the 1049 
range [−ߨ,ߨ) rad were also analysed (for example at the beginning of the session).  1050 

b. Total number of individual cycles per session, across 15 oscillatory sessions. Animal number is color-1051 
coded. 1052 

c. Box plot showing mean event rate as a function of cycle segment for all 15 oscillatory sessions. Each 1053 
cycle was divided into 10 segments of equal length, and for each cycle segment the mean event rate 1054 
was calculated as the total number of calcium events across cells divided by the length of the segment 1055 
and the number of recorded cells. Red lines indicate median across sessions, the bottom and top lines 1056 
in blue indicate lower and upper quartiles, respectively. The length of the whiskers indicates 1.5 times 1057 
the interquartile range. Red crosses show outliers that lie more than 1.5 times outside the interquartile 1058 
range. The mean event rate remained approximately constant across the length of the cycle. While a 1059 
non-parametric analysis revealed an overall difference (݊ = 15 oscillatory sessions per segment, 1060 0.0052=݌, χ2=23.49, Friedman test), the rate change from the segment with minimum to maximum 1061 
event rate was no more than 18% and there were no significant differences in the event rate between 1062 
pairs of segments (Wilcoxon rank-sum test with Bonferroni correction, p>0.05 for all pairs). *** 1063 > ݌ 
 1064   .0.05 < ݌ .n.s ,0.05 > ݌ * ,0.01 > ݌ ** ,0.001

d. Box plot of cycle length for each cycle of the oscillation, for the 15 oscillatory sessions. Note the 1065 
relatively fixed length of cycles in individual sessions. Symbols as in (c). 1066 

e. Left: Box plot of the standard deviation of cycle length within a session, in experimental and shuffled 1067 
data. The standard deviation of cycle length is smaller in the experimental data (݊ = 15 oscillatory 1068 
sessions, 7500 shuffle realizations, ݌ = 1.8 × 10ି଻, ܼ = 5.08, one-tailed Wilcoxon rank-sum test). Right: 1069 
Box plot of the ratio between the shortest cycle length and the longest cycle length for all pairs of cycles 1070 
within and between sessions. This fraction is larger for cycle pairs in the within-session group (݊ = 15 1071 
oscillatory sessions, the mean fraction per session and group was calculated separately, ݌ = 1.7 × 10ି଺, 1072 ܼ = 4.64, one-tailed Wilcoxon rank-sum test). Notice that for each cycle pair, the larger this ratio, the 1073 
more similar the length of the cycles are.  1074 
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f. The cycle length is not correlated with the number of recorded cells in the session (݊ = 421 cycles 1075 
across 15 oscillatory sessions, ߩ ݌ ,0.02 = = 0.64, Spearman correlation). Each dot is a cycle. Animal 1076 
number is color-coded as in (b).   1077 

g. Fraction of the session in which the MEC population engaged in the oscillation. Session length was 30 1078 
min for mice 59914 and 60355, and 60 min for mice 60584 and 60585.  1079 

h. Duration of the longest epoch with uninterrupted population oscillation. Only epochs that met the 1080 
strict criterion of no separation between cycles were considered.  1081 

 1082 

Extended data Figure 6 1083 

Characterization of locking degree and participation index 1084 

a. Consistency between two measures of phase locking for individual neurons. The locking degree was 1085 
calculated for each cell as the length of the mean vector over the distribution of oscillation phases ([-1086 
π,π) rad) at which the calcium events occurred (bin size = 129 ms). The locking degree was consistent 1087 
with the mutual information between the calcium event counts and the phase of the oscillation (bin size 1088 
= 0.52 s). Scatter plots show the relation between the two measures, with each dot representing one 1089 
neuron. Left: Data from the example session in Fig. 2a (n = 484 cells). Right: All neurons from all 15 1090 
oscillatory sessions are pooled (n = 6231 cells). Red dots indicate neurons that did not meet criteria for 1091 
locking. The consistency between the two measures strengthens the conclusion that the vast majority 1092 
of the neurons in MEC are locked to the population oscillation.  1093 

b. Left: Box plot comparing locking degree for cells with an oscillatory frequency that was similar 1094 
(relative frequency ~ 1) or different (relative frequency ≠ 1) from the frequency of the population 1095 
oscillation in the example session in Fig. 2a (݊ = 48 cells in each group, ݌ = 3.4× 10ିଵଵ, ܼ = 6.63, 1096 
Wilcoxon rank-sum test). Right: As left panel but for the locking degree across all 15 oscillatory sessions, 1097 
including the example in the left panel (݊ = 15 sessions, ݌ = 2.8× 10ିହ, ܼ = 4.19, Wilcoxon rank-sum 1098 
test). Ten per cent of the total number of cells was used to define each of the groups with similar 1099 
(relative frequency ~ 1) and different (relative frequency ≠ 1) oscillatory frequency as compared to the 1100 
population oscillation frequency. Relative frequency was calculated for each cell as the oscillatory 1101 
frequency of the cell’s calcium activity divided by the oscillatory frequency of the population oscillation 1102 
in the session. Symbols as in Fig. 3b. Note that cells with relative frequency similar to 1 are more locked 1103 
to the phase of the oscillation. For all percentages considered to define similar and different groups (5, 1104 
10, 20, 30, 40, and 50%) the p-values were significant.  1105 

c. Histogram showing the distribution of single-cell oscillatory frequency divided by the population 1106 
oscillation frequency of the session (n = 6231 cells pooled across 15 oscillatory sessions). A value of 1.0 1107 
indicates that single-cell and population frequency coincide. The left and right dashed lines indicate 25th 1108 
(0.52) and 75th (1.08) percentiles respectively. Note that for approximately half of the data the oscillatory 1109 
frequency is very similar at single-cell and population level. 1110 

d. The population oscillation remains visible after excluding increasing fractions of neurons and keeping 1111 
only those with the lowest locking degree. Each row shows a PCA-sorted raster plot (left, symbols as in 1112 
Fig. 2b) and the corresponding joint distributions of the time lag ߬ that maximizes the correlation 1113 
between the calcium activity of neuron pairs and their distance ݀ in the PCA sorting (right, symbols as 1114 
in Fig. 2f). The fraction of included neurons is indicated on top of the raster plot. For building the raster 1115 
plots neurons were sorted according to their locking degree value and neurons with the highest locking 1116 
degrees were removed. 1117 
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e. Distribution of preferred phases (the mean phase at which the calcium events occurred) in the 1118 
population of locked neurons for all 15 oscillatory sessions. Black line indicates the preferred phases; 1119 
red intervals indicate one standard deviation (calculated over the oscillation phases at which the calcium 1120 
events of an individual cell occurred). Neurons are sorted according to their preferred phase in an 1121 
ascending manner. The preferred phases cover the entire range of phases from -π to π. 1122 

f. Phase preferences are distributed evenly across the MEC cell population. Left: The nearly-flat nature 1123 
of the phase distribution is illustrated by comparing the entropy of the distribution of preferred phases 1124 
in recorded (y axis) and shuffled data (x axis). Hratio is the entropy of the distribution of preferred phases 1125 
(calculated as in e) estimated from the data and divided by the entropy of a flat distribution (Hratio = 1 if 1126 
the distribution of preferred phases is perfectly flat, Hratio = 0 if all neurons have the same preferred 1127 
phase). Each point in the scatterplot indicates one session (15 sessions). Horizontal error bars indicate 1128 
one S.D across shuffled realizations. The black dashed line indicates identical values for recorded and 1129 
shuffled data. Animal number if color-coded. Notice the discontinuity in the y axis between 0 and 0.85. 1130 
Hratio is substantially larger for recorded data than for shuffled data. Right: Box plot of Hratio for recorded 1131 
and shuffled data. For each session the 1000 shuffled realizations were averaged (݊ = 15 oscillatory 1132 
sessions, ݌ = 6 × 10ି଺, ܼ = 4.52, Wilcoxon rank-sum test). Symbols as in Fig. 3b.  1133 

g. Three example neurons from the example session in Fig. 2a. Top: Raster plot of the calcium matrix 1134 
shown in Fig. 2a. Calcium events from the neuron with high participation index (PI, 0.72) are highlighted 1135 
in light blue; from the neuron with intermediate PI (0.56) are highlighted in purple; from the neuron 1136 
with low PI (0.36) are highlighted in orange. 1137 

Bottom three panels: Z-scored fluorescence calcium signals as a function of time from the above neurons 1138 
with high (top), intermediate (middle), and low (bottom) PIs. Colored arrows represent the time points 1139 
at which the population oscillation is at the neuron’s preferred phase. Notice how the neuron with high 1140 
PI tends to exhibit a peak in the calcium signal for most of the cycles. Neurons with intermediate and 1141 
low PIs demonstrate the same but to a lesser extent, with the calcium signal not peaking in each cycle. 1142 

h. Similar to (b), but for the participation index. Left: Data from the example session shown in Fig. 2a 1143 
(݊ = 48 cells in each group, ݌ = 0.51, ܼ = 0.66, Wilcoxon rank-sum test). Right: As left panel but for data 1144 
pooled across 15 oscillatory sessions. The mean participation index was calculated for each group 1145 
(“relative frequency ~ 1” and “relative frequency ≠ 1") and each session separately and the data was 1146 
then pooled across sessions (݊ = 15 sessions, ݌ = 0.56, ܼ = 0.58, Wilcoxon rank-sum test). For all 1147 
percentages considered to define the similar and different groups (5, 10, 20, 30, 40, and 50%) the p-1148 
values were non-significant. 1149 

i. Histogram of preferred phases for the two groups of cells used to quantify the anatomical distribution 1150 
of preferred phases for the example session in Fig. 2a. Cells in group one (two) had preferred phase ~ 1151 ߨ 
rad (~ 0 rad). Each group had 45 locked cells, which is approximately ten per cent of the total number 1152 
of locked cells in that session (454). Group one: blue; group two: orange. Distances between cells in 1153 
group one (similar preferred phase), or between one cell in group one and one cell in group two 1154 
(different preferred phase) were calculated. 1155 

j. p-value for the difference in anatomical distance between the groups of cell pairs with similar 1156 
preferred phase or different preferred phase (defined as in panel i), as a function of the percentage of 1157 
cells used to build the groups of cells. The p-value was obtained through a Wilcoxon rank-sum test ran 1158 
on the anatomical distances between cells with similar preferred phase (cells in group one) and cells 1159 
with different preferred phase (distance between one cell in group 1 and one cell in group 2, for all pairs 1160 
of cells). For all percentages considered (5, 10, 20, 30, 40, and 50%), the mean distances for the similar 1161 
and the different classes were computed for each session. The means were then pooled across sessions 1162 
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(n = 15 oscillatory sessions). The dashed line indicates a level of significance of 0.05. Note that all p-1163 
values are much larger than the level of significance. 1164 

k. Similar to (i) but for participation indexes. Cells in group one (two) had small (large) participation 1165 
index.  1166 

l. Similar to (j) but for the participation indexes. Symbols as in (j).  1167 

 1168 

Extended data Figure 7 1169 

The population oscillation consists of periodic sequences of ensemble activation  1170 

a. Schematic of calcium activity merging steps. We began by sorting the neurons according to the PCA 1171 
method. Next, in successive iterations, or merging steps, we added up the calcium activity of pairs of 1172 
consecutive neurons (merging step = 1) or consecutive ensembles (merging step > 1). 1173 

b. Participation index (PI) as a function of merging step (mean ± S.D.). Black trace, example session in 1174 
Fig. 2a; red trace, all 15 oscillatory sessions. The more neurons per ensemble, the higher the 1175 
participation index of the ensemble. Note that the participation index plateaus after 5 merging steps, 1176 
which corresponds to approximately 10 ensembles (Wilcoxon rank-sum test to compare the 1177 
participation indexes in merging steps 5 and 6; Black trace: ݊ =30 PIs in merging step 5, ݊ =15 PIs in 1178 
merging step 6, ݌ = 0.23, ܼ = 1.20; Red trace: ݊ =15 PIs in merging step 5 and 6, PIs of each merging 1179 
step were averaged for each session separately, ݌ = 0.14, ܼ = 1.49).  1180 

c. Tuning of single cell calcium activity to ensemble activity calculated as the Pearson correlation 1181 
between the calcium activity of each neuron and the activity of each ensemble for the example session 1182 
in Fig. 2a. Ensemble activity was calculated as the mean calcium activity across neurons in the ensemble. 1183 
Each row is the tuning curve of one neuron, and neurons are sorted according to the PCA method. For 1184 
each neuron, the calcium activity was positively correlated with a small subset of consecutive 1185 
ensembles, and negatively correlated with the others. Pearson correlation is color-coded.  1186 

d. The relationship between the calcium activity of each neuron and the activity of each ensemble was 1187 
expressed by a Pearson correlation, as in (c). By repeating this calculation for all neurons across all 1188 
ensembles, we could identify, for each neuron, the most representative ensemble (the one with 1189 
maximal Pearson correlation). Left: 2D histogram of the most representative ensemble of each neuron 1190 
and the ensemble it was assigned to based on the PCA sorting. Data are for the example session in Fig. 1191 
2a. Each count is a neuron; counts are color-coded (484 cells). Right: The same 2D histogram calculated 1192 
on one shuffled realization of the data for the example session in Fig. 2a (484 cells). In the left diagram, 1193 
note that the method for assigning cells into ensembles based on the PCA sorting correctly recovers the 1194 
dependency between cells’ calcium activity and ensemble activity (higher number of counts along the 1195 
diagonal). 1196 

e. Same as (d), but for all neurons across all 15 oscillatory sessions (left, n = 6231), or one shuffled 1197 
realization of the data (right, n = 6231). 1198 

f. Probability distribution showing, for recorded data and shuffled data, the distance, in numbers of 1199 
ensembles, between the assigned ensemble based on the PCA sorting and the most representative 1200 
ensemble (as in d). The probability was calculated as the number of times that one given distance was 1201 
observed in one session divided by the total number of recorded cells. Each count was one neuron. Note 1202 
that the distance between the most representative ensemble and the assigned ensemble based on the 1203 
PCA sorting reflects the periodic boundary conditions in ensemble activation and ranges from 0 to 5 (x 1204 
axis). 500 shuffled realizations per session were averaged and compared to the mean distance per 1205 
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session in the recorded data. The probability of finding small distances (lower than 2) was larger in the 1206 
recorded data (݊ = 15 sessions, for distances of 0 to 5 ensemble:  ݌ ≤ 3.4 × 10ି଺, range of ܼ: 4.64 to 1207 
4.67; Wilcoxon rank-sum test), suggesting that single cell calcium activity was maximally correlated with 1208 
the activity of the ensemble it was assigned to. Blue, recorded data; orange, shuffled data. Error bars 1209 
indicate S.E.M. 1210 

g. Ensemble activity oscillated at the same frequency as the population oscillation. Ensemble activity 1211 
was calculated as the mean calcium activity across neurons in the ensemble. Power spectral density was 1212 
calculated on the activity of each of the ten ensembles from the example session in Fig. 2a. Ensemble 1213 
frequency was calculated as the peak frequency of the PSD, population oscillation frequency was 1214 
computed as the total number of cycles (24 in this session) normalized by the amount of time in which 1215 
the network engaged in the oscillation (~3600 s). The dashed line indicates the frequency of the 1216 
population oscillation. Note that the dashed lines coincide with the peak of the PSD. 1217 

h. Histogram showing the ratio between ensemble oscillatory frequency and population oscillation 1218 
frequency in the session (calculated as in panel g; n = 150 data points given by 10 ensembles in each of 1219 
the 15 oscillatory sessions). Each count is one ensemble. Note the two peaks at 1 and 2, indicating that 1220 
ensembles tend to oscillate at the frequency of the population oscillation, or at an integer multiple of it. 1221 

i. Anatomical distribution of recorded neurons for the example session in Fig. 2a. The ensemble each 1222 
neuron has been assigned to based on the PCA sorting is color-coded. Neurons indicated in red were 1223 
not locked to the phase of the oscillation. Note that ensembles are anatomically intermingled. Dorsal 1224 
MEC on top, medial on the right, as in Extended data Fig. 1. 1225 

j. Box plot of pairwise anatomical distance between neurons within an ensemble and between those 1226 
neurons and the rest of the imaged neurons, i.e. across ensembles. Data are shown for each ensemble 1227 
of the session in (i) (Wilcoxon rank-sum test to compare the within and across group distances for each 1228 
ensemble separately; ݊ = 1125 pairwise distances in the within ensemble group, except for ensemble 1229 
10, in which ݊ = 1326; ݊ = 20928 pairwise distances in the across ensemble group, except for ensemble 1230 
10, in which ݊ = 22464, 0.0005 ≤ ݌ ≤ 0.9528 , 0.06 ≤ ܼ ≤ 3.50). Symbols as in Fig. 3b. Purple, distances 1231 
between cells within one ensemble; green, distances between cells in different ensembles.   1232 

k. Box plots of pairwise anatomical distance between neurons within one ensemble and across 1233 
ensembles for the example session in (j) (left, ݊ = 10 ensembles, ݌ = 0.57, ܼ = 0.57, Wilcoxon rank-1234 
sum test) and across 15 oscillatory sessions including the example session in (j) (right). For each session 1235 
the means for each of the “within” and “across” groups were computed across ensembles (݊ = 15 1236 
oscillatory sessions, ݌ = 0.93, ܼ = 0.08, Wilcoxon rank-sum test). Symbols as in (j).    1237 

l. To quantify the temporal progression of the population activity at the time scale at which the 1238 
population oscillation evolved, we calculated, for each session, an oscillation bin size. This bin size is 1239 
proportional to the inverse of the peak frequency of the PSD calculated on the phase of the oscillation, 1240 
and hence captures the time scale at which the oscillation progresses. The oscillation bin size is shown 1241 
for each of the 15 oscillatory sessions. 1242 

m. Schematic of the method for quantifying temporal dynamics of ensemble activity. For each session 1243 
and each ensemble we calculated the mean ensemble activity at each time bin (oscillation bin size). Only 1244 
the ensemble with the highest activity within each time bin (red rectangle) was considered. The number 1245 
of transitions between ensembles in adjacent time bins divided by the total number of transitions was 1246 
used to calculate the transition matrices in Fig. 4b.  1247 
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n. The ensemble with the highest activity in each time bin, indicated in yellow and calculated as in (m), 1248 
plotted as a function of time for the example session in Fig. 2a. All other ensembles are indicated in 1249 
purple. Notice that the transformation in (m) preserves the population oscillation. 1250 

o. Box plot showing transition probabilities between consecutive ensembles for all 15 oscillatory 1251 
sessions. The probabilities remain approximately constant across transitions between ensemble pairs 1252 
(݊ = 15 oscillatory sessions per transition, 0.56 = ݌, χ2 = 7.77, Friedman test), and there were no 1253 
significant differences between pairs of transitions (Wilcoxon rank-sum test with Bonferroni correction, 1254 0.05 < ݌ for all transitions). Symbols as in Fig. 3b. 1255 

p. We further visualized the structure of the transitions in Fig. 4b by using the transition matrix as an 1256 
adjacency matrix to build a directed weighted graph.  Nodes indicate ensembles (color-coded as in m). 1257 
Edges (lines) between any two nodes represent the transition probabilities between any two ensembles. 1258 
The thickness of the edge is proportional to the value of the transition probability, while the arrows on 1259 
each edge indicate the directionality of the transition. Red edges indicate edges whose associated 1260 
transition probability is significant. Edges with significant transition probability were only found 1261 
between consecutive or nearby nodes as well as between the nodes corresponding to ensemble 1 and 1262 
10, once again mirroring the periodic boundary conditions in ensemble activation. In shuffled 1263 
realizations of the data there were edges that corresponded to significant transition probabilities, but 1264 
those were not between neighboring nodes.  1265 

q. Scatter plot showing relation between oscillation score and sequence score. The oscillation score 1266 
quantifies the extent to which the calcium activity of single cells is periodic and ranges from 0 (no 1267 
oscillation) to 1 (oscillation). The sequence score quantifies the probability of observing sequential 1268 
activation of 3 or more ensembles. Each dot corresponds to one session. The sequence score increases 1269 
with the oscillation score, and is highest for oscillatory sessions. Note that non-oscillatory sessions 1270 
display non-zero values of sequence score, indicating the presence of sequential ensemble activity also 1271 
in sessions below criteria for oscillation.  1272 

r. Percentage of sessions with significant sequence score in sessions classified as oscillatory vs non-1273 
oscillatory. In MEC sessions with oscillations, 100% (15 of 15) of the sessions showed significant 1274 
sequence scores, while in MEC sessions without oscillations, 41% (5 of 12) of the sessions demonstrated 1275 
significant sequence scores. For corresponding raster plots, see Extended data Fig. 4a. 1276 

 1277 

Extended data Figure 8 1278 

Histology showing imaging location in animals with FOVs in parasubiculum and visual cortex  1279 

a. Histological determination of prism location in parasubiculum-implanted mice. Top:  Maximum 1280 
intensity projection of 50 μm thick sagittal brain sections (sections acquired with an LSM 880, 20x). Three 1281 
consecutive sections from the same mouse are shown, from the most lateral (left) to the most medial 1282 
(right). Green is GCaMP6m signal, while red is Di L signal (used to demarcate ventrolateral corner of the 1283 
prism, as in Extended data Fig. 1). Scale bar is 400 μm. The white stippled line encapsulates the 1284 
superficial layers of the parasubiculum (PaS). Dorsal PaS on top, layer 1 on the left. Bottom: Estimated 1285 
location of the field of view (FOV) on a flat map encompassing MEC (brown outline) and PaS (yellow 1286 
outline). The blue dot marks the location of the pin used to demarcate the most lateral-ventral border 1287 
of the prism, while the green square inset shows the microscope FOV. Inset images show mean (left) 1288 
and maximum (right) intensity projections of the FOV. Dorsoventral (DV), and mediolateral (ML) axes 1289 
are indicated. 1290 
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b. Location of the ventro-lateral edge of the prism in stereotactic coordinates, and area of the FOV 1291 
occupied by cells expressing GCaMP6m for each PaS-imaged animal. 1292 

c. Histological determination of imaging location in the visual cortex (VIS) in mice that underwent 1293 
calcium imaging. Green is GCaMP6m signal. Images are taken from coronal slices, and zoomed in on 1294 
visual cortex (Scale bar is 100 μm; L1 at the top, L6 at the bottom). Dorsal pole of the brain is on top. 1295 
Maximum intensity projection, LSM 880, 20x. 1296 

 1297 

Extended data Figure 9 1298 

Lack of population oscillations in parasubiculum and visual cortex 1299 

a: Alternative sorting methods, as in Extended data Fig. 3c, but applied to sessions recorded in the PaS 1300 
(left) or VIS (right). The PCA sorting method applied to temporally shuffled data did not unveil a 1301 
population oscillation (first row). No population oscillation was recovered when neurons were sorted 1302 
according to their correlation values (second row), or according to different dimensionality reduction 1303 
techniques (UMAP, Isomap, LEM, t-SNE). Each row of each raster plot shows the calcium activity of a 1304 
single neuron, with activity plotted as a function of time, as in Fig 2a. Every dot indicates that one neuron 1305 
was active at one specific time bin (bin size = 129 ms). Sequence scores and oscillation scores are 1306 
presented in Fig 6c,d. 1307 

b,c. Projection of the neural activity onto the low-dimensional embedding defined by the first two 1308 
principal components obtained from applying PCA to the matrix of calcium activity of the PaS session 1309 
(b) and the VIS session (c) shown in Fig. 6a. Bin size = 8.5 s. Note lack of obvious ring topology. Time is 1310 
color-coded. 1311 

d. Distribution of oscillation scores for the entire data set, as in Extended data Fig. 4c (19 VIS sessions, 1312 
25 PaS sessions, 27 MEC sessions of which 15 were classified as oscillatory). Dashed line indicates 1313 
threshold for classifying sessions as oscillatory with reference to the MEC data. Note that the bars for 1314 
different brain regions sometimes overlap, and that bars are colored with transparency for visualization 1315 
purposes (e.g. for sessions in PaS with oscillation score 0, the count is 24). 1316 

 1317 

Extended data Figure 10 1318 

Population activity is less synchronized and more sequentially organized in PaS than VIS  1319 

a. Tuning of single cell calcium activity to ensemble activity expressed as the Pearson correlation 1320 
between the calcium activity of each neuron and the activity of each ensemble, shown for the PaS (left, 1321 
402 cells) and the VIS (right, 289 cells) example sessions presented in Fig. 6a. Each row is the tuning 1322 
curve of one neuron, and neurons are sorted according to the PCA method. Color indicates Pearson 1323 
correlation. Note that the VIS session exhibits a cluster of high correlation values for ensembles 5-10, 1324 
which might indicate the presence of high co-activity in cells allocated to those ensembles.  1325 

b. Cumulative distribution of the maximum Pearson correlation value between each cell’s calcium 1326 
activity and the ensemble activity. Data are for the same two example sessions as in (a). Note that VIS 1327 
exhibits larger correlation between single-cell calcium activity and ensemble activity (݊ = 6037 VIS cells 1328 
across 19 sessions, ݊ = 10868 PaS cells across 25 sessions, ݌ = ܦ ,1 = 0.4179, Kolmogorov Smirnov 1329 
test). 1330 

c. Probability that the ensemble a cell was assigned to based on the PCA sorting coincides with its most 1331 
representative ensemble, calculated as the ensemble for which the Pearson correlation between the 1332 
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cell’s calcium activity and ensemble activity is maximal. The probability is calculated as the fraction of 1333 
cells in an individual session for which the PCA-assigned ensemble and the most representative 1334 
ensemble coincide. In the box plot; all PaS sessions (n=25) and all visual cortex sessions (n=19) were 1335 
pooled. For each session in each brain area the matrix of calcium activity was shuffled 500 times, next 1336 
the PCA-assigned and most representative ensemble were calculated for each cell in the session and the 1337 
probability that these coincide was computed over all cells and averaged across shuffle realizations per 1338 
session. Ensemble activity was representative of cells’ calcium activity in both brain areas (Wilcoxon 1339 
rank-sum test comparing recorded and shuffled data for each brain area separately; PaS: ݊ = 25 1340 
sessions, ݌ =  1.42 × 10ିଽ , ܼ = 6.05 ; VIS: ݊ = 19 sessions, ݌ = 1.48 × 10ି଻, ܼ = 5.25), although this 1341 
effect was more pronounced for VIS than for PaS neurons (݊ = 25 PaS sessions, 19 VIS sessions; ݌ = 1342 
0.0077, ܼ = 2.42, one-tailed Wilcoxon rank-sum test; median VIS = 0.47, median PaS = 0.40). Symbols 1343 
as in Fig. 3b. 1344 

d. Based on the transition matrices calculated in Fig. 6h, we built directed weighted graphs as in 1345 
Extended data Fig. 7p. Red edges indicate edges whose associated transition probability is higher than 1346 
the 95th percentile of the transition probabilities obtained after temporally shuffling the data. 1347 

e. Percentage of sessions with significant sequence score (MEC oscillatory sessions: 15 of 15, PaS: 7 of 1348 
25; VIS: 1 of 19). The sequence score quantifies the probability of observing sequential activation of 3 1349 
or more ensembles.  1350 

f. Box plot of mean speed for sessions with and without significant sequence score. Mean speed was 1351 
not different between these sessions (݊ = 21 sessions with significant sequence score and behavioural 1352 
tracking synchronized to imaging: 13 MEC from which 10 were oscillatory + 7 PaS + 1 VIS; ݊ = 30 sessions 1353 
without significant sequence score and behavioural tracking synchronized to imaging: 1 MEC + 11 PaS + 1354 
18 VIS; ݌ = 0.39, ܼ =0.85, Wilcoxon rank-sum test). Symbols as in Fig. 3b. 1355 

g. Same as (f) but for total running distance (݌ = 0.42, ܼ =0.79, Wilcoxon rank-sum test). 1356 

h. Same as (f) but for fraction of the session with running behaviour (݌ = 0.63, ܼ =0.47, Wilcoxon rank-1357 
sum test). 1358 

i. Same as (f) but for the total amplitude of acceleration values, estimated as the maximum acceleration 1359 
minus the minimum acceleration value observed in one session (݌ = 0.1, ܼ =1.62, Wilcoxon rank-sum 1360 
test).     1361 

j. Normalized distribution of the Pearson correlation values (absolute value) between the activity of cell 1362 
pairs in VIS (green) and in PaS (yellow). Each dot indicates the mean across sessions (25 PaS sessions, 19 1363 
VIS sessions; all sessions in the data set were used, not only those with behavioural tracking 1364 
synchronized to imaging), error bars indicate S.E.M. Probability is shown on a log-scale. 1365 

k. Same as (j) but for the distribution of values of coactivity for all sessions recorded in PaS (yellow) and 1366 
VIS (green). Coactivity was estimated for each session separately as the fraction of the recorded cells 1367 
that was simultaneously active in 129 ms bins. Probability is shown on a log-scale. 1368 

 1369 

Movie 1  1370 

Motion corrected video of one oscillatory session (session 17) from animal #60584. Time in seconds in 1371 
top left, scale bar is 50 microns. The video was obtained by sampling every 10th frame of the motion-1372 
corrected Suite2p output, and using a 3 frame moving average (inter-frame time ~ 310 ms). The video 1373 
shows 10 consecutive sequences. 1374 
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Methods: 1375 

All experiments were performed in accordance with the Norwegian Animal Welfare Act and the 1376 
European Convention for the Protection of Vertebrate Animals used for Experimental and Other 1377 
Scientific Purposes, Permit numbers 6021, 6008, and 7163.  1378 

Subjects 1379 

C57/Bl6 mice were housed in social groups of 2-6 individuals per cage, with access to nesting material 1380 
and a planar running wheel. The mice were kept on a 12h light/12h darkness schedule in a temperature- 1381 
and humidity-controlled vivarium. Food and water were provided ad libitum. The data were collected 1382 
from a cohort of 12 animals (5 implanted in medial entorhinal cortex (MEC), 4 in parasubiculum (PaS), 3 1383 
in visual cortex (VIS)). 1384 

Surgeries 1385 

Surgeries were performed according to a two-step protocol. During the first procedure, newborn pups 1386 
or adult animals were injected in MEC/PaS or adult animals were injected in VIS with a virus carrying a 1387 
construct for the expression of the calcium indicator GCaMP6m. The virus (for all injections: AAV1-Syn-1388 
GcaMP6m; titer: 3.43e13 GC/ml, Cat#AV-1-PV2823, UPenn Vector Core, University of Pennsylvania, 1389 
USA) was diluted 1:1 in sterile DPBS (1X Dulbecco’s Phosphate Buffered Saline, Gibco, ThermoFisher). 1390 
During the second procedure, two weeks later, a microprism was implanted to gain optical access to 1391 
infected neurons located in MEC and PaS, or a glass window was inserted to obtain similar access in VIS. 1392 

For all surgeries, anesthesia was induced by placing the subjects in a plexiglass chamber filled with 1393 
isoflurane vapor (5% isoflurane in medical air, flow of 1 l/min). Surgery was performed on a heated 1394 
surgery table (38°C). Air flow was kept at 1 l/min with 1.5–3% isoflurane as determined from 1395 
physiological monitoring of breathing and heartbeat. The mice were allowed to recover from surgery in 1396 
a heated chamber (33°C) until they regained complete mobility and alertness.  1397 

Virus Injection and microprism implantation in MEC and PaS 1398 

In the first surgical procedure, newborn pups received injections of AAV1-Syn-GCaMP6m one day after 1399 
birth99. Analgesics were provided immediately before the surgery (Rymadil, Pfizer, 5 mg/kg). Pre-heated 1400 
ultrasound gel (39°C, Aquasonic 100, Parker) was generously applied on the pup’s head in order to 1401 
create a large medium for the transmission of ultrasound waves. Real-time ultrasound imaging (Vevo 1402 
1100 System, Fujifilm Visualsonics) allowed for targeted delivery of the viral mixture to specific areas of 1403 
the brain. During ultrasound imaging, the pup was immobilized through a custom-made mouth adapter. 1404 
The ultrasound probe (MS-550S) was lowered to be in close contact with the gel and hence the pup’s 1405 
head to allow visualization of the targeted structures. The probe was kept in place for the whole duration 1406 
of the procedure via the VEVO injection mount (VEVO Imaging Station. Imaging in B-Mode, frequency: 1407 
40 MHz; power: 100%; gain: 29 dB; dynamic range: 60 dB). Target regions were identified by structural 1408 
landmarks: the MEC or PaS were identified in the antero-posterior and medio-lateral axis by the 1409 
appearance of the aqueduct of Sylvius and the lateral sinus. The target area for injection was comparable 1410 
to a coronal section at ~-4.7 mm from bregma in the adult animal.  The solution containing the virus 1411 
(250 ± 50 nl per injection) was injected in the target regions via beveled glass micropipettes (Origio, 1412 
custom made; outer tip opening: 200 μm; inner tip opening: 50 μm) using a pressure-pulse system 1413 
(Visualsonics, 5 pulses, 50 nl per pulse). The pipette tip was pushed through the brain without any 1414 
incision on the skin, or craniotomy through the skull, and, to reduce the duration of the procedure, 1415 
retracted immediately after depositing the virus in the target area. The anatomical specificity of the 1416 
infection was verified by imaging serial sections of the infected hemispheres after experiment 1417 
completion (see “Histology and reconstruction of field of view location”). 1418 

Two weeks after the viral injection, we performed a second procedure, in which a microprism was 1419 
implanted to gain optical access to the superficial layers of MEC and PaS100. The implanted microprism 1420 
was a right-angle prism with 2 mm side length and reflective enhanced aluminum coating on the 1421 
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hypotenuse (Tower Optical). The prism was glued to a 4mm-diameter (CS-4R, thickness #1) round 1422 
coverslip with UV curable adhesive (Norland). On the day of surgery, mice were anesthetized with 1423 
isoflurane (IsoFlo, Zoetis, 5 % isoflurane vaporised in medical air delivered at 0.8-1 l/min) after which 1424 
two analgesics were provided through intraperitoneal injection (Metacam, Boehringer Ingelheim, 5 1425 
mg/kg or Rimadyl, Pfizer, 5 mg/kg, and Temgesic, Indivior, 0.05-0.1 mg/kg) and one local analgesic was 1426 
applied underneath the skin covering the skull (Marcain, Aspen, 1-3 mg/kg). Their scalp was removed 1427 
with surgical scissors and the surface of the bone was dried before being generously covered with 1428 
optibond (Kerr). To increase the thickness and stability of the skull and overall preparation, a thin layer 1429 
of dental cement (Charisma, Kulzer) was applied on the exposed skull, except in the location above the 1430 
implant, where a 4 mm-wide circular craniotomy was made. The craniotomy was positioned over the 1431 
dorsal surface of the cortex and cerebellum, with the center positioned ∼ 4 mm lateral from the center 1432 
of the medial sinus, and above the transverse sinus just above the MEC and PaS. After the dura was 1433 
removed above the cerebellum, the lower edge of the prism was slowly pushed in the empty space 1434 
between the forebrain and the cerebellum, just posterior to the transverse sinus. The edges of the 1435 
coverslip were secured to the surrounding skull with with UV-curable dental cement (Venus Diamond 1436 
Flow, Kulzer). A custom-designed steel headbar was attached to the dorsal surface of the skull, centered 1437 
upon and positioned parallel to the top face of the microprism. All exposed areas of the skull, including 1438 
the headbar, were finally covered with dental cement (Paladur, Kulzer) and made opaque by adding 1439 
carbon powder (Sigma Aldrich) until the dental cement powder became dark grey. 1440 

Virus injection and glass window implantation in VIS 1441 

In a different cohort of animals than those used for MEC/PaS imaging, we induced the expression of 1442 
GCaMP6m in neurons of the adult VIS for subsequent imaging. We targeted the injection of the same 1443 
AAV1-Syn-GCaMP6m viral solution used in the developing MEC and PaS to the primary visual cortex. On 1444 
the day of surgery, 3-5 months old mice were anesthetized with isoflurane (IsoFlo, Zoetis, 5 % isoflurane 1445 
vaporised in medical air delivered at 0.8-1 l/min) after which two analgesics were provided through 1446 
intraperitoneal injection (Metacam, Boehringer Ingelheim, 5 mg/kg or Rimadyl, Pfizer, 5 mg/kg, and 1447 
Temgesic, Indivior, 0.05-0.1 mg/kg) and one local anaesthetic was applied underneath the skin covering 1448 
the skull (Marcain, Aspen, 1-3 mg/kg). The virus was injected at three locations in VIS, all of which were 1449 
within the following anatomical ranges: 2.3-2.5 mm lateral from the midline, 0.9-1.3 mm anterior from 1450 
lambda101. At each injection site, 50 nl of the virus was injected 0.5 mm below the dura and the pipette 1451 
was left in place for 3-4 min to enable the virus to diffuse. The pipette was then brought to 0.3 mm 1452 
below the dura and another 50 nl was injected. The pipette was then left in place for 5-10 min before 1453 
retracting it completely. The speed of the injections was 5 nl/s. 1454 
 1455 
Two weeks after the viral injection, a surgery to chronically implant a glass window on VIS was 1456 
performed. The animals were handled as previously described for the prism surgery in MEC/PaS, 1457 
including anesthesia, delivery of analgesics, and scalp removal. Optibond was applied to the exposed 1458 
skull except in the location of the craniotomy. A 4 mm-wide craniotomy was made, centered on the 1459 
virus injection coordinates, and a 4 mm glass window was placed underneath the skull edges of the 1460 
craniotomy. The glass was slightly larger than the craniotomy, so after it was maneuvered in place, the 1461 
upward pressure exerted by the brain secured it in place against the skull, thereby minimizing the 1462 
presence of empty gaps that might favor tissue and bone regrowth. The edges of the window were 1463 
secured with UV-curable dental cement and superglue before the positioning of the headbar as 1464 
described for the MEC-PaS implantation. All exposed areas of the skull, including the headbar, were 1465 
finally covered with dental cement (Paladur, Kulzer) that was made opaque by adding carbon powder 1466 
(Sigma Aldrich) until the dental cement powder became dark grey.  1467 

Self-paced running behavior under sensory-minimized conditions 1468 

Training of animals began 2 days after the prism implantation in MEC and PaS, and 12 days after the 1469 
implantation of a cranial window in VIS. Mice were head-restrained by a headbar with their limbs resting 1470 
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on a freely rotating styrofoam wheel with a metal shaft fixed through the center. The radius of the wheel 1471 
was ∼85 mm and the width 70 mm. Low friction ball bearings (HK 0608, Kulelager AS, Molde, NO) were 1472 
affixed to the ends of the metal shaft and held in place on the optical table using a custom mount. This 1473 
arrangement allowed the mice to self-regulate their movement. The position of the animal on the 1474 
rotating wheel was measured using a rotary encoder (E6B2-CWZ3E, YUMO) attached to its center axis. 1475 
Step values of the encoder (4096 per full revolution, ~130 µm resolution) were digitized by a 1476 
microcontroller (Teensy 3.5, PJRC) and recorded using custom python scripts at 40-50 Hz. Wheel tracking 1477 
was triggered at the start of imaging and synchronized to the ongoing image acquisition through a digital 1478 
input from the 2-photon microscope. In a subset of mice (3 out of 12; 2 implanted in MEC, 1 implanted 1479 
in PaS), the precise synchronization was not available to us and these data were hence not used for 1480 
comparison of movement and imaging data. A T-slot photo interrupter (EE-SX672, Omron) served as a 1481 
lap (full-revolution) counter. Design and code of the wheel are publicly available under 1482 
https://github.com/kavli-ntnu/wheel_tracker.   1483 

The self-paced task was performed under conditions of minimal sensory stimulation, in darkness, and 1484 
with no rewards to signal elapsed time or distance run36,37. Prior to the imaging sessions, mice were 1485 
accustomed to the setup through daily exposures over the course of two weeks (i.e., 15 sessions over 1486 
15 days, one session per day). In each session, after the mice were positioned on the wheel, they were 1487 
gently head-restrained and free to run or rest for 30 or 60 min.  1488 

2-photon imaging in head-fixed animals 1489 

A custom-built 2-photon benchtop microscope (Femtonics, Hungary) was used for 2-photon imaging of 1490 
the target areas (i.e., superficial layers of MEC, PaS, and VIS). A Ti:Sapphire laser (MaiTai Deepsee eHP 1491 
DS, Spectra-Physics) tuned to a wavelength of 920 nm was used as the excitation source. Average laser 1492 
power at the sample (after the objective) was 50–120 mW. Emitted GCaMP6m fluorescence was routed 1493 
to a GaAsP detector through a 600 nm dichroic beamsplitter plate and 490-550 nm band-pass filter. 1494 
Light was transmitted through a 16x/0.8NA water-immersion objective (Cat#MRP07220, Nikon) 1495 
carefully lowered in close contact to the coverslip glued to the microprism (for MEC-PaS imaging) or 1496 
above the coverslip in contact with the brain surface (for VIS imaging). For the microprism-implanted 1497 
animals, the objective lens was aligned to the ventrolateral corner of the prism, to consistently identify 1498 
the position of MEC and PaS across animals. Ultrasound gel (Aquasonic 100, Parker) or water was used 1499 
to fill the gap between the objective lens and the glass coverslips. The software MESc (v 3.3 and 3.5, 1500 
Femtonics, Hungary) was used for microscope control and data acquisition. Imaging time series of either 1501 ~30 min or ~60 min were acquired at 512×512 pixels (sampling frequency: 30.95 Hz, frame duration: 1502 ~32 ms; pixel size: either 1.78x1.78 µm2 or 1.18x1.18 µm2). Time series acquisition was initiated 1503 
arbitrarily after the animal was head-restrained on the setup. 1504 

Histology and reconstruction of field-of-view location 1505 

On the last day of imaging, after the imaging session, the mice were anesthetized with isoflurane (IsoFlo, 1506 
Zoetis) and then received an overdose of sodium pentobarbital before transcardial perfusion with 1507 
freshly prepared PFA (4% in PBS). After perfusion, the brain was extracted from the skull and kept in 4% 1508 
PFA overnight for post-fixation. The PFA was exchanged with 30% sucrose to cryoprotect the tissue.  1509 

To verify the anatomical location of the imaged field of views (FOVs) in the microprism implanted 1510 
animals, we used small, custom-made pins, derived from a thin piano wire coated with a solution of 1,1'-1511 
Dioctadecyl-3,3,3',3'-Tetramethylindocarbocyanine Perchlorate ('DiI'; DiIC18(3)) (commercial name: Dil, 1512 
ThermoFischer), to mark the location of the imaged tissue in relation to the prism footprint. A Dil-coated 1513 
pin was inserted into the brain tissue at the location left empty by the prism footprint, and specifically 1514 
targeted to the ventro-lateral corner of the footprint (see “Surgeries”). The pin was left in place to favor 1515 
transfer of DiI from the metal pin to the brain tissue, and to leave a fluorescent mark on the location of 1516 
the imaged FOV. After 30 to 60 seconds, the pin was removed and the brain was sliced on a cryostat in 1517 
30-50 µm thick sagittal sections. All slices were collected sequentially in a 24-well plate filled with PBS, 1518 
before being mounted in their appropriate anatomical order on a glass slide in custom-made mounting 1519 
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medium. For confocal imaging, a Zeiss LSM 880 microscope (Carl Zeiss, Germany) was used to scan 1520 
through the whole series of slices and locate the position of the DiI fluorescent mark. Images were then 1521 
acquired using an EC Plan-Neofluar 20×/0.8 NA air immersion, 40×/1.3 oil immersion, or 63×/1.4 oil 1522 
immersion objective (Zeiss, laser power: 2-15%; optical slice: 1.28–1.35 airy units, step size: 2 µm). 1523 
Before acquisition, gain and digital offset were established to optimize the dynamic range of acquisition 1524 
to the dynamic range of the GCaMP6m and DiI signals. Settings were kept constant during acquisition 1525 
across brains. Based on the location of the red fluorescent mark, we could infer where, on the medio-1526 
lateral and dorso-ventral extent of the brain, the ventro-lateral corner of the microprism (and hence the 1527 
2-photon FOV aligned to it) was located.  1528 

We used the Paxinos mouse brain atlas101 to produce a reference flat map representing the medio-1529 
lateral and dorso-ventral extent of the MEC and PaS. Flat maps helped delineate the extent of the FOV 1530 
that fell within the anatomical boundaries of either the MEC and adjacent PaS, and allowed for a 1531 
standardized comparison across animals. For each imaged animal, we mapped the dorsoventral and 1532 
mediolateral location of the DiI mark on the refence flat map (Extended data Fig. 1c). Animals were 1533 
assigned to “MEC Imaging” or “PaS imaging” groups depending on the location of the FOV: a mouse 1534 
would be further analysed as being part of the “MEC imaging” group if more than 50% of the area of the 1535 
FOV occupied by GCaMP6m+ cells could be located in the MEC. 1536 

To verify the anatomical location of the FOVs in VIS in the glass-window implanted mice, we sliced the 1537 
brain until we reached the anatomical coordinates at which the virus was infused (see “Surgeries”). 1538 
Coronally cut slices of 50 µm thickness were collected sequentially in a 24 well plate, and immediately 1539 
mounted in their appropriate anatomical order on a glass slide in custom-made mounting medium. For 1540 
confocal imaging, a Zeiss LSM 880 microscope (Carl Zeiss, Germany) was used according to the same 1541 
specification as described above for MEC/PaS. 1542 

Analysis of imaging timeseries 1543 

Imaging timeseries data was analyzed using the Suite2p39 python library 1544 
(https://github.com/MouseLand/suite2p). We used its built-in routines for motion correction, region of 1545 
interests (ROI) extraction, neuropil signal estimation, and spike deconvolution. Non-rigid motion 1546 
correction was chosen to align each frame iteratively to a template. Quality was assessed by visual 1547 
inspection of the corrected stacks and built-in motion correction metrics. The Suite2p GUI was used to 1548 
manually sub-select putative neurons based on anatomical and signal characteristics and to discard 1549 
obvious artefacts that accumulated during the analysis, e.g., ROIs with footprints spanning large areas 1550 
of the FOV, ROIs that did not have clearly delineated circumferences in the generated maximum 1551 
intensity projection, or ROIs that were extracted automatically but showed no visible calcium transients.  1552 

Raw fluorescence calcium traces of each ROI were neuropil-corrected to create a fluorescence calcium 1553 
signal “Fcorr” by subtracting 0.7 times the neuropil signal from the raw fluorescence traces.  We used the 1554 
Suite2p integrated version of non-negative deconvolution38 with tau=1 s to deconvolve Fcorr, yielding the 1555 
basis for the binarized sequences that we refer to as the calcium activity (see section below “Binary 1556 
deconvolved calcium activity and matrix of calcium activity”). To estimate the signal-to-noise-ratio (SNR) 1557 
of each cell, we further thresholded the calcium activity (without binarization) at 1 standard deviation 1558 
over the mean, yielding filtered calcium activity, and classified the remaining activity as noise. We 1559 
additionally ensured that noise was temporally well segregated from filtered calcium activity by 1560 
requiring datapoints classified as noise to be separated by at least one second before and ten seconds 1561 
after filtered calcium activity. The SNR of the cell was then estimated as the ratio of the mean amplitude 1562 
of Fcorr during episodes of filtered calcium activity over the standard deviation of Fcorr during episodes of 1563 
noise. If no datapoints remained after the filtering of calcium activity, the cell was assigned a SNR of 1564 
zero.  1565 

 1566 

 1567 
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Binary deconvolved calcium activity and matrix of calcium activity 1568 

In order to denoise the recorded fluorescence calcium signals and have good temporal resolution all 1569 
analyses in the study were performed using the deconvolved calcium activity of the recorded cells. For 1570 
each cell whose SNR was larger than 4, the deconvolved calcium activity (see “Analysis of imaging 1571 
timeseries”) was downsampled by a factor of 4 by calculating the mean over time windows of ~129 ms 1572 
(original sampling frequency = 30.95 Hz, sampling frequency used in the analyses = 7.73 Hz). Next, this 1573 
signal was averaged over time and its standard deviation was calculated. A threshold equal to this 1574 
average plus 1.5 times the standard deviation was used to convert the deconvolved calcium activity into 1575 
a binary deconvolved calcium activity, such that all values above the threshold were set to 1 (“calcium 1576 
events”), and all values below or equal to that threshold were set to 0. Unless stated otherwise, for all 1577 
analyses throughout the study we used the deconvolved and binary calcium activity, to which for 1578 
simplicity we refer to as “deconvolved calcium activity” or simply “calcium activity”. The calcium activity 1579 
of all cells in a session with SNR > 4 was stacked to construct a binary “matrix of calcium activity” which 1580 
had as many rows as neurons, and as many columns as time bins sampled at 7.73 Hz. The population 1581 
vectors are the columns of the matrix of calcium activity.  1582 

Autocorrelations and spectral analysis of single cell calcium activity 1583 

To determine if the calcium activity of single cells displays ultraslow oscillations, for each neuron the 1584 
power spectral density (PSD) was calculated on the autocorrelation of its calcium activity. The PSD was 1585 
computed using Welch's method (“pwelch”, built-in Matlab function), with Hamming windows of 17.6 1586 
min (8192 bins of 129 ms in each window) and 50% of overlap between consecutive windows. Note that 1587 
when calculating the PSD a large window was needed to identify oscillation frequencies << 0.1 Hz.  1588 

To visualize whether specific oscillatory patterns at fixed frequencies were present in the neural 1589 
population, all autocorrelations from one session were sorted and stacked into a matrix, where rows 1590 
are cells and columns are time lags. The sorting of autocorrelations was performed either (1) according 1591 
to the maximum power of each PSD in a descending manner, or (2) according to the frequency at which 1592 
each PSD peaked, in a descending manner. The frequency at which the PSD peaked was used as an 1593 
estimate of the oscillatory frequency of the cell’s calcium activity. 1594 

Correlation and PCA sorting methods  1595 

To determine whether neural population activity exhibits temporal structure we visualized the 1596 
population activity by means of raster plots in which we sorted all cells according to different methods.  1597 

Correlation method: This method sorts cells such that those that are nearby in the sorting are more 1598 
synchronized than those that are further away. First, each calcium activity was downsampled by a factor 1599 
4 by calculating the mean over counts of calcium events in bins of 0.52 s. The obtained calcium activity 1600 
was then smoothed by convolving it with a gaussian kernel of width equal to four times the oscillation 1601 
bin size, a bin size that was representative of the temporal scale of the population dynamics (see 1602 
“Oscillation bin size”). The cross correlations between all pairs of cells were calculated using time bins 1603 
as data points, and a maximum time lag of 10 time points, equivalent to ~5 s. This small time lag allowed 1604 
us to identify near instantaneous correlation while keeping information about the temporal order of 1605 
activity between cell pairs. The maximum value of the cross correlation between cell ݅ and cell ݆ was 1606 
stored in the entry (݅, ݆) of the correlation matrix ܥ, which was a square matrix of N rows and N columns, 1607 
where N was the total number of recorded neurons in the session with SNR > 4. If the cross correlation 1608 
peaked at a negative time lag the value in the entry (݅, ݆) was multiplied by -1. The entry with the highest 1609 
cross correlation value was identified and its row, denoted by ݅௠௔௫ , was used as the lead cell for the 1610 
sorting procedure and chosen to be the first cell in the sorting. Cells were then sorted according to the 1611 
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values in the entries (݅௠௔௫ , ݆), ݆ =  1,2, … ,ܰ, ݆ ≠ ݅௠௔௫, i.e. their correlations with the lead cell, in a 1612 
descending manner.  1613 

PCA method: Computing correlations from the calcium activity or the calcium signals can be noisy due 1614 
to variability in the frequency of the calcium events and fine tuning of hyperparameters (e.g. the size of 1615 
the kernel used to smooth the calcium activity of all cells). To avoid this, we leveraged the fact that the 1616 
periodic sequences of neural activity in the population oscillation constitute low dimensional dynamics 1617 
with intrinsic dimensionality equal to 1, and sorted the cells based on an unsupervised dimensionality 1618 
reduction approach (a similar approach was used in ref. 102). For each recording session, principal 1619 
component analysis (PCA) was applied to the matrix of calcium activity (bin size = 129 ms; using Matlab’s 1620 
built-in function “pca”), including all epochs of movement and immobility and using the rows (neurons) 1621 
as variables and the columns (population vectors) as observations. The first two principal components 1622 
(PCs) were kept, since two is the minimum number of components needed to embed non-linear 1-1623 
dimensional dynamics. Cells were sorted according to their loadings in PC1 and PC2, expecting that the 1624 
relationship between these loadings would express the ordering in cell activation during the sequences. 1625 

The plane spanned by PC1 and PC2 was named the PC1-PC2 plane. In the PC1-PC2 plane, the loadings 1626 
of each neuron (the components of the eigenvectors without being multiplied by the eigenvalues) 1627 

defined a vector, for which we computed its angle ߠ௜ = ݃ݐܿݎܽ ൬௟ು಴మ೔௟ು಴భ೔ ൰ ∈ ,(ߨ,ߨ−] 1 ≤ ݅ ≤ ܰ,  with respect 1628 

to the axis of PC1, where ݈௉஼௝௜  is the loading of cell ݅ on ݆ܲܥ. Cells were sorted according to their angle 1629 ߠ 
in a descending manner.  1630 

Note that while we keep the first 2 PCs to sort the neurons, all PCs and the full matrices of calcium 1631 
activity were used in the analyses (except for visualization purposes, e.g. see “Manifold visualization for 1632 
MEC sessions”). Finally, note that because in PCA a PC is equivalent to -1 times the PC, the sorting and 1633 
an inversion of the sorting are equivalent. The sorting was chosen so that sequences would progress 1634 
from the bottom to the top in the raster plot. 1635 

The PCA method was used throughout the paper for sorting the recorded cells unless otherwise stated.  1636 

Random sorting of cell identities: A random ordinal integer ∈ [1,ܰ], where ܰ is the total number of 1637 
recorded cells with SNR > 4, was assigned to each neuron without repetition across cells. Neurons were 1638 
sorted according to those assigned numbers. 1639 

Sorting of temporally shuffled data: A shuffled matrix of calcium activity was built by temporally shuffling 1640 
the calcium activity of each cell separately. For each cell, each time bin of the calcium activity was 1641 
assigned a random ordinal integer ∈ [1,ܶ] without repetition across time bins, where ܶ is the total 1642 
number of time bins (bin size = 129 ms), and time bins were ordered according to their assigned number. 1643 
The assignment of random ordinal integers was made separately for each cell, so that the obtained 1644 
random orderings were not shared across cells. The PCA method was then applied to the shuffled matrix 1645 
of calcium activity. 1646 

Sorting methods based on non-linear dimensionality reduction techniques 1647 

The PCA method for sorting cells relies on a two-dimensional linear embedding. This linear embedding 1648 
might not be optimal if the population vectors describe temporal trajectories that, despite being low-1649 
dimensional, lie on a curved surface. To take into account potential non-linearities, four additional 1650 
sorting methods were implemented, based on the following non-linear dimensionality reduction 1651 
techniques103: t-SNE, Laplacian Eigenmaps (LEM), Isomap, and UMAP104 (see parameters below). First, 1652 
to express in the sortings the ordering of the cells during the slow temporal progression of the 1653 
sequences, the four methods used a resampled matrix of calcium activity as input. To compute this 1654 
matrix, for each session, we downsampled each calcium activity by a factor 4 by calculating its mean in 1655 
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bins of 0.52 s. The calcium activity of all cells was then smoothed by convolving them with a gaussian 1656 
kernel whose width was given by the oscillation bin size (see “Oscillation bin size”). After applying t-SNE, 1657 
LEM, Isomap or UMAP to the resampled matrix of calcium activity, we kept the first two dimensions 1658 
obtained with each method, for the same reasons as presented for the PCA sorting method. To obtain 1659 
the sorting, the following procedure was applied: We let Dim1 and Dim2 be the first two dimensions 1660 
obtained with the chosen dimensionality reduction technique that we had applied to the resampled 1661 
matrix. In analogy with the PCA method, the Dim1-Dim2 plane was spanned by Dim1 and Dim2 and for 1662 
each cell the components on those dimensions defined a vector in this plane for which the angle ߠ  with respect to the axis of Dim1 was computed. Cells were then sorted according to their angles 1664 (ߨ,ߨ−] 1663∋
in a descending manner.  1665 

To apply t-SNE to the population activity we used a perplexity value of 50. First, we applied PCA to the 1666 
resampled matrix of calcium activity, and then we used the projection of the neural activity onto the 1667 
first 50 principal components as input to t-SNE. To apply LEM to the population activity, we used as 1668 
hyperparameters k=15 and σ=2. Similarly, we used k=15 for running isomap. Finally, we used 1669 
n_neighbors=30, min_dist=0.3 and correlation as metric for running UMAP.  1670 

We used the MATLAB implementation of UMAP105 and the Matlab Toolbox for Dimensionality Reduction 1671 
(https://lvdmaaten.github.io/drtoolbox/). Finally, when displaying the raster plots that resulted from 1672 
the different sortings, the first cell (located at the bottom of the raster plot) was always the same. This 1673 
was accomplished by circularly shifting the cells in the different sortings such that the initial cell in all 1674 
sortings coincided with the initial cell of the sorting obtained with the PCA method.    1675 

Manifold visualization for MEC sessions  1676 

Sorting the cells and visualizing their combined neural activity through raster plots revealed the 1677 
presence of oscillatory sequences of neural activity in the recorded data. To visualize the topology of 1678 
the manifold underlying the oscillatory sequences of activity, both PCA and LEM were used.  1679 

PCA was applied to the matrix of calcium activity, which first had each row convolved with a gaussian 1680 
kernel of width equal to 4 times the oscillation bin size (see “Oscillation bin size”). The manifold was 1681 
visualized by plotting the neural activity projected onto the embedding defined by PC1 and PC2. In Fig. 1682 
2d (left) the neural activity of the entire session was projected onto the low-dimensional embedding. In 1683 
Extended data Fig. 3d the neural activity corresponding to the concatenated epochs of uninterrupted 1684 
population oscillation was projected onto the embedding.  1685 

For the LEM approach, first PCA was applied to the matrix of calcium activity, which was previously 1686 
resampled to bins of 0.52 s as in “Sorting methods based on non-linear dimensionality reduction 1687 
techniques”, and the first 5 principal components were kept. Next LEM was applied to the matrix 1688 
composed of the 5 PCs, using as parameters k=15 and σ=2. We decided to keep 5 PCs prior to applying 1689 
LEM to denoise the data, for which we leveraged the fact that sequences of activity constitute low-1690 
dimensional dynamics with intrinsic dimensionality equal to 1, and therefore truncating the data to the 1691 
first 5 PCs should preserve the sequential activity. The manifold was visualized by plotting the neural 1692 
activity projected onto the embedding defined by the first two LEM dimensions. In Fig. 2d (right) the 1693 
neural activity of the entire session was projected onto the embedding. 1694 

Both approaches revealed a ring-shaped manifold along which the population activity propagated 1695 
repeatedly with periodic boundary conditions. One “cycle” of the population oscillation was defined as 1696 
one full turn of the population activity along the ring-shaped manifold.  1697 

 1698 

 1699 
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Phase of the oscillation  1700 

To track the progression of the population activity over time, we leveraged the low dimensionality of 1701 
the ring-shaped manifold and the circular nature of the population activity, and parametrized the 1702 
population activity with a single time-dependent parameter, which we called the “phase of the 1703 
oscillation”. Hence, the phase of the oscillation varied as a function of time (bin size = 129 ms) and 1704 
tracked the progression of the neural activity during the population oscillation. The neural activity was 1705 
projected onto a two-dimensional plane using PCA. The use of PCA avoided the selection of 1706 
hyperparameters, which is required in all non-linear dimensionality reduction techniques including LEM. 1707 
Let ܲ݅ܥ௧(ݐ) be the projection of the neural population activity onto Principal Component ݅ (PC݅). The 1708 
neural population activity at time point ݐ projected onto the plane defined by PC1 and PC2 is then given 1709 
by (ܲ1ܥ௧(ݐ),ܲ2ܥ௧(ݐ)), which defines a vector in this plane. The phase of the oscillation is defined as the 1710 
angle of this vector with respect to the PC1 axis and is given by   1711 ߮(ݐ) = ݃ݐܿݎܽ ቀ௉஼ଶ೟(௧)௉஼ଵ೟(௧)ቁ.       (Equation 1) 1712 

During one cycle of the population oscillation, the phase of the oscillation continuously traversed the 1713 
range [-π,π), which was consistent with the population activity propagating through the network and 1714 
describing one turn along the ring-shaped manifold. 1715 

Joint distribution of cross correlation time lag and angular distance in the PCA sorting  1716 

To further characterize the sequential activation in the MEC neural population and to introduce a score 1717 
that would determine the extent to which a session exhibited population oscillations (see “Oscillation 1718 
score”), we determined the relationship between the time lags that maximized the cross correlation 1719 
between the calcium activity of two cells (߬) and their angular distances in the PCA sorting (݀). In the 1720 
plane generated by PC1 and PC2, the loadings of each neuron defined a vector, for which we computed 1721 

the angle ߠ௜ = ݃ݐܿݎܽ ൬௟ು಴మ೔௟ು಴భ೔ ൰ ∈ ,(ߨ,ߨ−] 1 ≤ ݅ ≤ ܰ, with respect to the axis of PC1, where ݈௉஼௝௜  is the 1722 

loading of cell ݅ on ݆ܲܥ and ܰ is the total number of recorded neurons (see “Correlation and PCA sorting 1723 
methods”). The angular distance ݀ between any two cells in the PCA sorting was calculated as the 1724 
difference between their angles wrapped in the interval [−ߨ,ߨ) (see Fig. 2f left),  1725 ݀௜,௝ = ௜ߠ)  −  ௝),      (Equation 2) 1726ߠ 

where 1 ≤ ݅ ≤ ܰ, 1 ≤ ݆ ≤ ܰ. The Matlab function “angdiff” was used for computing this distance. Note 1727 
that the angular distance maps how far apart two cells are in the raster plot when cells are sorted 1728 
according to the PCA method. 1729 

To estimate the joint distribution of cross correlation time lags and angular distances in the PCA sorting, 1730 
the cross correlations between all pairs of cells were calculated using a maximum time lag of 248 s. For 1731 
each cell pair the time lag at which the cross correlation peaked (߬) and the angular distance in the PCA 1732 
sorting (݀) were calculated. A discrete representation was used for these two variables: in all analyses, 1733 
and unless stated otherwise, the range of possible ߬ values, i.e. [-248,248] s, was discretized into 96 bins 1734 
of size ߬߂ = ସଽ଺ ௦ଽ଺  rad, was discretized into 11 bins of 1735 (ߨ ,ߨ-] .and the range of possible ݀ values, i.e ݏ 5~

size ݀߂ =  ଶగଵଵ ~0.57 rad. Using those bins, the joint distribution of ߬ and ݀ was expressed as a 2D 1736 
histogram that counted the number of cell pairs observed for every combination of ߬ bins and ݀ bins, 1737 
normalized by the total number of cell pairs. 1738 

 1739 

 1740 
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Oscillation score  1741 

While striking population oscillations were observed in multiple sessions and animals, the population 1742 
activity exhibited considerable variability, ranging from non-patterned activity to highly stereotypic and 1743 
periodic sequences (Extended data Fig. 4a). This variability prompted us to quantify, for each session, 1744 
the extent to which the population activity was oscillatory, which we did by computing an oscillation 1745 
score. For each session, we first calculated the phase of the oscillation ߮(ݐ) (bin size = 129 ms, Equation 1746 
1), which tracks the progression of the population activity in the presence of population oscillations (see 1747 
“Phase of the oscillation” and Fig. 2e). Next the PSD of si n൫߮(ݐ)൯ was calculated using Welch’s method 1748 
with Hamming windows of 17.6 min (8192 bins of 129 ms in each window) and 50% of overlap between 1749 
consecutive windows (“pwelch” Matlab function, see “Autocorrelations and spectral analysis of single 1750 
cell calcium activity”). If the PSD peaked at 0 Hz and the PSD was strictly decreasing, the phase of the 1751 
oscillation was not oscillatory and hence the population activity was not periodic in the analysed session. 1752 
In this case the oscillation score was set to zero. Otherwise, prominent peaks in the PSD at a frequency 1753 
larger than 0 Hz were identified. In order to disentangle large-amplitude peaks from small fluctuations 1754 
in the PSD, a peak at frequency fmax was considered prominent and indicative of periodic activity if its 1755 
amplitude was larger than (i) 9 times the mean of the tail of the PSD (i.e. <PSD(f> fmax)>, where < > 1756 
indicates the average over frequencies) and (ii) 9 times the minimum of the PSD between 0 Hz and fmax 1757 
(i.e. min(PSD(f < fmax)) ). If no peak in the PSD met these criteria the oscillation score was set to zero. 1758 
Otherwise, the presence of a prominent peak in the PSD calculated on si n൫߮(ݐ)൯ was considered 1759 
indicative of periodic activity at the population level. Yet a crucial component for observing oscillatory 1760 
sequences is that cells fire periodically and that the time lag that maximizes the cross correlations 1761 
between the calcium activity of pairs of cells that are located at a fixed distance in the sequence comes 1762 
in integer multiples of a minimum time lag, which ensures that cells oscillate at a fixed frequency and 1763 
that the calcium activity of one cell is temporally shifted with respect to the other. To quantify the extent 1764 
to which these features were present in the data, we computed the joint distribution of time lags and 1765 
angular distance in the PCA sorting (߬ was discretized into 240 bins and ݀ was discretized into 11 bins, 1766 
see “Joint distribution of cross correlation time lag and angular distance in the PCA sorting”). Next for 1767 
each bin ݅ of ݀, 1 ≤ ݅ ≤ 11, we calculated the PSD of the distribution of ߬ conditioned on the distance 1768 
bin ݅ (Welch’s methods, Hamming windows of 128 ߬ bins with 50% overlap between consecutive 1769 
windows, “pwelch” Matlab function). The presence of a peak in this signal indicated that for bin ݅ of ݀, 1770 
the time lag that maximizes the cross correlations between cells was oscillatory (i.e. it peaked at 1771 
multiples of one specific time lag), as expected when cells are active periodically with an approximately 1772 
fixed frequency and also with harmonics of the primary frequency. The presence (or absence) of a peak 1773 
that satisfied the condition of being larger than (i) 10 times the mean of the tail of the PSD (same 1774 
definition as above), and (ii) 4.5 times larger than the minimum between 0 Hz and the frequency at 1775 
which the PSD peaked, was identified (same definition as above, the parameters are different from the 1776 
ones used above because the signals are very different). The oscillation score was then calculated as the 1777 
fraction of angular distance bins for which a peak was identified. 1778 

Based on the bimodal distribution of oscillation scores obtained in the MEC data (Extended data Fig. 4c), 1779 
a session was considered to express population oscillations if the oscillation score was ≥ 0.72, which was 1780 
equivalent to asking that at least 8 out of the 11 distributions of ߬ conditioned on bin ݅ of ݀, 1 ≤ ݅ ≤1781 11, had a significant peak in their PSD. This choice of cut-off also accounted for the fact that for distances 1782 
in the PCA sorting that are close to zero, cells exhibit instantaneous coactivity rather than coactivity 1783 
shifted by some specific time lag, which makes the conditional probability not oscillatory. After applying 1784 
the cut-off, 15 of 27 MEC sessions in 5 animals were classified as oscillatory (Extended data Fig. 4c), and 1785 
among those 15 sessions, 10 were recorded with synchronized behavioural tracking (see “Self-paced 1786 
running behavior under sensory-minimized conditions”). The number of recorded cells in the oscillatory 1787 
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sessions ranged from 207 to 520. In the rest of the data set, 0 of 25 PaS sessions in 4 animals were 1788 
classified as oscillatory, 0 of 19 VIS sessions in 3 animals were classified as oscillatory. 1789 

Oscillation bin size  1790 

The population oscillation progressed at frequencies < 0.1 Hz that varied from session to session. The 1791 
“oscillation bin size” was a temporal bin size representative of the time scale of the population 1792 
oscillation in each session. It was used to quantify single cell and neural population dynamics, for which 1793 
describing the neural activity at the right time scale was fundamental (e.g. see “Transition probabilities 1794 
and graph representation”). For each oscillatory session the period of the population oscillation, 1795 
denoted by ௢ܲ௦௖, was calculated as the inverse of the frequency ௠݂௔௫ at which the PSD of the signal 1796 sin൫߮(ݐ)൯ peaked (see Equation 1 and “Oscillation score”), i.e. ௢ܲ௦௖ =  ௠݂௔௫ିଵ. Note that this estimate 1797 
of the period was reliable when during most of the session the network engaged in the population 1798 
oscillation, in which case the estimate was equivalent to the length of the session divided by the total 1799 
number of oscillation cycles. However, it became less reliable the more interrupted the population 1800 
oscillation was.  1801 

The oscillation bin size ௢ܶ௦௖  was computed as the period of the population oscillation divided by 10,  1802 

௢ܶ௦௖ = ௉೚ೞ೎ଵ଴ = ଵଵ଴ ∙ ௙೘ೌೣ.     (Equation 3) 1803 

This choice of bin size was made so that each cycle of the population oscillation would progress across 1804 ~10 time points. Across 15 oscillatory sessions, the oscillation bin size ranged from 3 to 17 s (see 1805 
Extended data Fig. 7l).  1806 

In sessions without population oscillations, there was not a well-defined peak in the PSD of sin൫߮(ݐ)൯, 1807 
and therefore the oscillation bin size was not possible or meaningful to calculate. Yet, to perform the 1808 
quantifications of network dynamics at temporal scales similar to the ones investigated in oscillatory 1809 
sessions, the mean oscillation bin size computed across all oscillatory sessions was used (mean 1810 
oscillation bin size = 8.5 s).  1811 

Unless otherwise indicated, the utilized bin size was 129 ms.   1812 

Identification of individual oscillation cycles  1813 

The characterization of the population oscillation required multiple analyses that relied on identifying 1814 
individual cycles, for example to quantify the length of the cycles and their variability. The procedure for 1815 
identifying individual cycles was based on finding the time points at which each cycle began (visualized 1816 
typically at the bottom of the raster plot) and ended (visualized typically at the top of the raster plot, 1817 
see Extended data Fig. 5a). Note that the beginning and the end of the cycle are arbitrary because of the 1818 
periodic boundary conditions in the cycle progression, and therefore a different pair of phases that are 1819 
2π apart could have been used for defining the beginning and the end of the cycle.  1820 

One cycle was defined as one full turn of the phase of the oscillation (see “Phase of the oscillation”), i.e. 1821 
during one cycle the phase of the oscillation traversed 2ߨ. To calculate the phase of the oscillation and 1822 
determine the time epochs during which it traversed 2ߨ, we smoothed the calcium activity of all cells 1823 
(bin size = 129 ms) using a gaussian kernel of width equal to the oscillation bin size. Next, the phase of 1824 
the oscillation was calculated and discretized into 10 bins (i.e. the range [−ߨ,ߨ) was discretized into 10 1825 
bins). Time points at which the phase of the oscillation belonged to a bin that was 3 or more bins away 1826 
from the bin in the previous time point were considered as discontinuity points and were used to define 1827 
the beginning and the end of putative cycles. Putative cycles were classified as cycles if the phase of the 1828 
oscillation smoothly traversed the range [−ߨ,ߨ) rad in an ascending manner. To account for variability, 1829 
decrements of up to 1 bin of the phase of the oscillation were allowed. Points of sustained activity were 1830 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2022. ; https://doi.org/10.1101/2022.05.02.490273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.02.490273
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43

disregarded. Segments of cycles in which the phase of the oscillation covered at least 5 bins (i.e. 50% or 1831 
more of the range [−ߨ,ߨ) rad) were also identified. 1832 

Cycle length, population oscillation frequency and inter-cycle interval  1833 

The length of individual cycles (cycle length) was defined as the amount of time that it takes the phase 1834 
of the oscillation to cover the range [−ߨ,ߨ) in a smooth and increasing manner, which is consistent with 1835 
the population activity completing one full turn along the ring-shaped manifold. To calculate the cycle 1836 
length, the time interval between the beginning and the end of the cycle was determined (see 1837 
“Identification of individual oscillation cycles”). 1838 

To quantify the variability in cycle length within and between sessions, two approaches were adopted. 1839 
In approach 1 (Extended data Fig. 5e left), the standard deviation of cycle lengths was computed for 1840 
each oscillatory session. To estimate significance, in each of 500 iterations all cycles across 15 oscillatory 1841 
sessions were pooled (421 cycles in total) and randomly assigned to each session while keeping the 1842 
original number of cycles per session unchanged. For each iteration the standard deviation of the cycle 1843 
lengths randomly assigned to each session was calculated. In approach 2 (Extended data Fig. 5e right), 1844 
for each session ݅, 1 ≤ ݅ ≤ 15, where 15 is the total number of oscillatory sessions, we considered all 1845 
pairs of cycles within session ݅ (“within session” group) or alternatively all pairs of cycles such that one 1846 
cycle belongs to session ݅ and the other cycle to session ݆, ݆ ≠ ݅ (“between session” group). For each 1847 
cycle pair in each group, the ratio between the shortest cycle length and the longest cycle length was 1848 
calculated. The mean was computed over pairs of cycles in each group for each session separately. 1849 
Notice that the larger this ratio the more similar are the cycle lengths. 1850 

The frequency of the population oscillation was calculated as the total number of identified individual 1851 
cycles in a session, divided by the total amount of time the network engaged in the population oscillation 1852 
during the session, which was computed as the length of the temporal window of concatenated cycles. 1853 

The inter-cycle interval was defined as the length of the epoch from the termination of one cycle and 1854 
the beginning of the next one. 1855 

Mean event rate during segments of the oscillation cycle  1856 

To determine how population activity varied during individual cycles of the population oscillation 1857 
(Extended data Fig. 5c), the following approach was adopted. For each oscillatory session (see 1858 
“Oscillation score”) all individual cycles were identified (see “Identification of individual oscillation 1859 
cycles”). Each cycle was divided into 10 segments of equal length. For each cycle segment, the mean 1860 
event rate was calculated as the total number of calcium events across cells divided by cycle segment 1861 
duration and number of cells. For each session the mean event rate per segment was calculated over 1862 
cycles. 1863 

Locking to the phase of the oscillation  1864 

To calculate the extent to which individual cells were tuned to the population oscillation, two quantities 1865 
were used: the locking degree and the mutual information between the calcium event counts and the 1866 
phase of the oscillation. For each oscillatory session, the phase of the oscillation ߮(ݐ) was computed 1867 
(see Equation 1) and individual cycles were identified (see “Identification of individual oscillation 1868 
cycles”). Next, the time points that corresponded to all individual cycles in one session were 1869 
concatenated, which generated a new matrix of calcium activity in which the network engaged in the 1870 
population oscillation uninterruptedly.  1871 

The locking degree was computed for each cell as the mean resultant vector length over the phases of 1872 
the population oscillation at which the calcium events occurred (bin size = 129 ms, function “circ_r” from 1873 
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the Circular Statistics Toolbox for Matlab106). The locking degree has a lower bound of 0 and upper bound 1874 
of 1. It is equal to 1 if all oscillation phases at which the calcium events occurred are the same, i.e. perfect 1875 
locking, and equal to zero if all phases at which the calcium events occurred are evenly distributed (total 1876 
absence of locking). To estimate significance, for each cell a null distribution of locking degrees was built 1877 
by temporally shuffling the calcium activity of that cell 1000 times while the phase of the oscillation 1878 
remained unchanged, and by computing, for each shuffle realization, the locking degree (shuffling was 1879 
performed as in “Sorting of temporally shuffled data”). The 99th percentile of the estimated null 1880 
distribution was used as a threshold for significance. 1881 

In order to assess the robustness of the locking degree, the obtained results were compared with a 1882 
second measure based on information theory107: the mutual information between the counts of calcium 1883 
events (“event counts”) and the phase of the oscillation (bin size = 0.52 s). To estimate the reduction in 1884 
uncertainty about the phase of the oscillation (P) given the event counts of the calcium activity (S), 1885 
Shannon’s mutual information was computed as follows108: 1886 MI(S,P)=∑ ,݌)ܾ݋ݎܲ ଶ݃݋݈(ݏ ௉௥௢௕(௣,௦)௉௥௢௕(௣)௉௥௢௕(௦)௣,௦  ,  (Equation 4) 1887 

where ܲ݌)ܾ݋ݎ, ܲ is the marginal probability of event counts and (ݏ)ܾ݋ݎܲ 1888 ,ݏ and an event count ݌ is the joint probability of observing a phase of the oscillation (ݏ  is the marginal probability of the phase 1889 (݌)ܾ݋ݎ
of the oscillation. All probability distributions were estimated from the data using discrete 1890 
representations of the phase of the oscillation and the event counts. The event counts were partitioned 1891 
into smax+1 bins to account for the absence of event counts as well as all possible event counts, where 1892 
smax is the maximum number of event counts per cell in a 0.52 s bin, and the phase of the oscillation was 1893 
discretized into 10 bins of size ଶగଵ଴.  1894 

The mutual information is a non-negative quantity that is equal to zero only when the two variables are 1895 
independent, i.e. when the joint probability is equal to the product of the marginals ܲ݌)ܾ݋ݎ, (ݏ  However, limited sampling can lead to an overestimation in the mutual information 1897 .(ݏ)ܾ݋ݎܲ(݌)ܾ݋ݎܲ 1896=
in the form of a bias109. In order to correct for this bias, the calcium activity was temporally shuffled (as 1898 
in “Sorting of temporally shuffled data”) and the mutual information between the event counts of the 1899 
shuffled calcium activity and the phase of the oscillation, which remained unchanged, was calculated. 1900 
This procedure, which destroyed the pairing between event counts and phase of the oscillation, was 1901 
repeated 1000 times and the average mutual information across the 1000 iterations was computed and 1902 
used as an estimation of the bias in the mutual information calculation. In the right panel of Fig. 3a, we 1903 
report both the mutual information and the bias. In Extended data Fig. 6a, the corrected mutual 1904 
information was reported (MIc), where the bias (〈MIsh〉iterations) was subtracted out from the Shannon’s 1905 
mutual information (MI): MIc=MI- 〈MIsh〉iterations.  1906 

Note that the locking degree and the mutual information between the event counts and the phase of 1907 
the oscillation yielded consistent results (see Fig. 3a and Extended data Fig. 6a). 1908 

Tuning of single cells to the phase of the oscillation  1909 

The selectivity of each cell to the phase of the oscillation was visualized through tuning curves and 1910 
quantified through their preferred phase.  1911 

Tuning curves: The phase of the oscillation φ(t) was estimated (Equation 1) and the range of phases 1912 [−ߨ,ߨ) was partitioned into 40 bins of size ଶగସ଴ rad. For each cell the tuning curve in the phase bin ݆, ݆ =1913 0, … ,39, was calculated as the total number of event counts that occurred at phases within the range 1914 ቂ−ߨ + ݆ ଶగସ଴ ߨ−, + (݆ + 1) ଶగସ଴ቁ divided by the total number of event counts during the population 1915 
oscillation.  1916 
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Preferred phases: The preferred phase of each cell was calculated as the circular mean over the 1917 
oscillation phases at which the calcium events occurred (function “circ_mean” from the Circular 1918 
Statistics Toolbox for Matlab106).  1919 

To determine the extent to which the preferred phases across locked cells were uniformly distributed 1920 
in one recorded session, the distribution of the cells’ preferred phases, that we shall denote ܳ, was 1921 
estimated by discretizing the preferred phases into 10 bins of size ଶ஠ଵ଴ rad. The entropy of this distribution 1922 ܪொ = −∑ ൯ଵ଴௫ୀଵ(ݔ)ଶ൫ܳ݃݋݈(ݔ)ܳ  was calculated and used to compute the entropy ratio ܪ௥௔௧௜௢, which 1923 
quantifies how much ܳ departs from a flat distribution: 1924 ܪ௥௔௧௜௢= ுೂு೑೗ೌ೟       (Equation 5) 1925 

where ܪ௙௟௔௧ is the entropy of a flat distribution using 10 bins, i.e. ܪ௙௟௔௧ = 3.32 bits. The closer ܪ௥௔௧௜௢ is 1926 
to 1 the flatter ܳ is, and therefore all preferred phases tend to be equally represented. The smaller 1927 ܪ௥௔௧௜௢ is, the more uneven ܳ is and some preferred phases tend to be more represented than others.  1928 

To estimate significance, for each session the procedure for calculating ܪ௥௔௧௜௢ was repeated for 1000 1929 
iterations of a shuffling procedure where the preferred phase of the cells was calculated after the values 1930 
of the phase of the oscillation were temporally shuffled. In Extended data Fig. 6f, both panels, for each 1931 
session the 1000 shuffle realizations were averaged. 1932 

Participation index  1933 

The Participation Index (PI) quantifies the extent to which a cell’s calcium events were distributed across 1934 
all cycles of the population oscillation, or rather concentrated in a few cycles. The participation index 1935 
was calculated for each cell separately as the fraction of cycles needed to account for 90% of the total 1936 
number of calcium events. To compute the participation, individual cycles were identified (see 1937 
“Identification of individual oscillation cycles”), and for each cell the number calcium events per cycle 1938 
was calculated and normalized by the total number of calcium events across all concatenated cycles, 1939 
which yields the fraction of calcium events per cycle. This quantity was sorted in an ascending manner 1940 
and its cumulative sum was calculated. The participation index is the minimum fraction of the total 1941 
number of the cycles for which the cumulative sum of the fraction of calcium events per cycle ≥ 0.9 1942 
(results remain unchanged when the cumulative sum is required to be ≥ 0.95).  1943 

Relationship between tuning to the phase of the oscillation and single-cell oscillatory frequency  1944 

To determine whether the frequency of oscillation of single cell calcium activity was correlated with the 1945 
extent to which the cell was locked and participated in the population oscillation, for each cell the ratio 1946 
between its oscillatory frequency (see “Autocorrelations and spectral analysis of single cell calcium 1947 
activity”) and the frequency of the population oscillation (see “Cycle length, population oscillation 1948 
frequency and inter-cycle interval”) was calculated and denoted "relative frequency”. Next, for each 1949 
session cells were divided into two groups: one group had cells with relative frequency ~1 (cells whose 1950 
oscillatory frequencies were most similar to the population oscillation frequency), and the other group 1951 
had cells with relative frequency ≠1 (cells whose oscillatory frequencies were most different from the 1952 
population oscillation frequency). The size of each group was the same and was given by a percentage 1953 
α of the total number of recorded cells in a session. For each group the locking degree (see “Locking to 1954 
the phase of the oscillation”) and the participation index (see “Participation index”) were compared. For 1955 
the quantification across all 15 oscillatory sessions, the mean locking degree and participation index 1956 
were calculated for each group separately and for each session separately, and all 15 sessions were 1957 
pooled. α was varied from 5% to 50%. 1958 

 1959 
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Anatomical distribution of preferred phases and participation indexes  1960 

To determine whether the entorhinal population oscillation resembled travelling waves, during which 1961 
neural population activity moves progressively across anatomical space43-48, the distributions of 1962 
anatomical pairwise distances for cells with similar and different (1) preferred phase and (2) 1963 
participation index were computed. To perform these quantifications the first step was to calculate, for 1964 
each session, the anatomical distance between all pairs of cells. To calculate those pairwise distances 1965 
we used the centroid of each cell in the FOV (Suite2P39).  1966 

Preferred phase: Because the progression of the neural population activity during the population 1967 
oscillation can be tracked by the phase of the oscillation (Fig. 2e), we determined whether there is 1968 
topography in the cells’ preferred phases. The preferred phase of all cells in one session were computed 1969 
(see “Tuning of single cells to the phase of the oscillation”) and cells were divided into two groups, one 1970 
of preferred phases ~0 rad, and one of preferred phases ~π rad (Extended data Fig. 6i). The size of each 1971 
group was the same and was given by a percentage α of the total number of locked cells in a session 1972 
(see “Locking to the phase of the oscillation”). All cells in each group were locked to the phase of the 1973 
oscillation. α was varied from 5% to 50%. Pairwise anatomical distances between the cells with preferred 1974 
phase ~0 rad were calculated and assigned to the group “similar”. Pairwise anatomical distances in the 1975 
“different” group were determined such that one cell of each pair had a preferred phase ~0 rad and the 1976 
other cell a preferred phase ~ߨ rad. A comparison of the two groups of pairwise distances is shown for 1977 
one example session in Fig. 3f left. For quantification across all 15 oscillatory sessions, in Fig. 3f right, 1978 
the means for the two groups, similar and different, were computed for each session separately. Notice 1979 
that there were no significant differences in the pairwise anatomical distances between cells with similar 1980 
and different preferred phases regardless of the value of α (Extended data Fig. 6j). 1981 

Participation index: Given that several properties of MEC cells follow a dorsoventral or mediolateral 1982 
organization2,3,42 we determined whether there is topography in the neurons’ participation in the 1983 
oscillation cycles (see “Participation index”). The same procedure as described for the preferred phases 1984 
was followed. Cells were divided into two groups. The size of each group was the same and was given 1985 
by a percentage α of the total number of locked cells in a session. One group comprises the cells with 1986 
the lowest participation indexes, and the other group the cells with the highest participation indexes 1987 
(Extended data Fig. 6k). Pairwise anatomical distance between all cell pairs in the low participation index 1988 
group were calculated and assigned to the group “similar”. Pairwise anatomical distances for the 1989 
“different” group were determined for all pairs of cells such that one cell of the pair belonged to the low 1990 
participation index group, and the other cell to the high participation index group. Notice that there 1991 
were no significant differences in pairwise anatomical distances between cells with similar and different 1992 
PIs regardless of the value of α (Extended data Fig. 6l). 1993 

Procedure for merging steps  1994 

In order to average out the variability observed in single cells at the level of oscillatory frequency, locking 1995 
degree and participation index while preserving the temporal properties of the population oscillation, 1996 
an iterative process that defines new variables from combining the calcium activity of cells in small 1997 
neighborhoods was implemented for each session separately (Extended data Fig. 7a). This process is 1998 
similar to a coarse-graining approach110.  1999 

First, the ܰ recorded cells in one session were sorted according to the PCA method. In the first iteration 2000 
of the procedure, named merging step one, the calcium activity (see “Binary deconvolved calcium 2001 
activity and matrix of calcium activity”) of pairs of cells that were positioned next to each other in the 2002 
PCA sorting were added up (merging step 1 in Extended data Fig. 7a). This resulted in ேଶ  new variables, 2003 
which in merging step 2 were grouped together in pairs of adjacent variables by adding up their activity, 2004 
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which yielded ேସ  new variables. Note that because in the PCA sorting cells whose activity is synchronous 2005 
are positioned adjacent to each other, the new variables consist of groups of co-active cells.  2006 

In general, merging step ݆ generates ேଶೕ variables by adding up the activity of pairs of ேଶೕషభ variables from 2007 
merging step ݆ − 1, ݆ > 1, with each new variable defined as: 2008 ߪ෤௜ = ଶ௜ିଵߪ  + ଶ௜2ߪ     ݅ = 1, … , 2ܰ௝ 2009 

where ߪ෤௜  is the ݅௧௛ new variable that results from adding up ߪଶ௜ିଵ and ߪଶ௜, which were computed in the 2010 
previous merging step, ݆ − 1. In merging step 1, ߪଶ௜ିଵ and ߪଶ௜  are the calcium activity of cells in the 2011 
position 2݅ − 1 and 2݅, 1 ≤ ݅ ≤  ܰ, in the sorting obtained with the PCA method. 2012 

This procedure was repeated 6 times until ~10 variables were obtained in each session (the exact 2013 
number of variables depended on the number of recorded cells, ܰ, in each session). If ܰ was an odd 2014 
number, the last cell in the sorting obtained with the PCA method was discarded and the procedure was 2015 
applied to the first ܰ − 1 cells in the sorting. In every merging step the participation index (see 2016 
“Participation index”) of each new variable was calculated (see Extended data Fig. 7b).  2017 

Division of cells into ensembles  2018 

After 5 merging steps (and for approximately 10 variables), the participation index reached a plateau 2019 
(Extended data Fig. 7b). This motivated the decision to split the recorded cells into 10 variables, which 2020 
we later used to quantify the network dynamics (see “Analysis of network dynamics using ensembles of 2021 
co-active cells”). From now on we will refer to those variables as “ensembles”, to highlight the fact that 2022 
cells in each ensemble are co-active. The same number of ensembles was used in sessions that did not 2023 
exhibit population oscillations.  2024 

To distribute cells into 10 ensembles, cells were sorted according to the PCA method. If ேଵ଴ is an integer, 2025 

where ܰ is the total number of cells in one session, then each ensemble contains ேଵ଴ cells and the set of 2026 

cells that belong to ensemble ݅, 1 ≤ ݅ ≤ 10, is ቄ(݅ − 1) ∙ ேଵ଴ + 1 , (݅ − 1) ∙ ேଵ଴ + 2, … , ݅ ∙ ேଵ଴ቅ. If ேଵ଴ is not 2027 

an integer then ensembles 1 to 9 contain ቔ ேଵ଴ቕ cells and ensemble 10 contains ܰ − 9 ∙ ቔ ேଵ଴ቕ cells, where 2028 ۂݔہ = ∋ ሼ݉ݔܽ݉  ℕ / ݉ ≤  ሽ and ℕ is the set of natural numbers. In this case the set of cells that 2029ݔ
belongs to each ensemble is: 2030 

൞൜(݅ − 1) ∙ ඌ1ܰ0ඐ + 1 , (݅ − 1) ∙ ඌ1ܰ0ඐ + 2, … , ݅ ∙ ඌ1ܰ0ඐൠ , 1 ≤ ݈ܾ݁݉݁ݏ݊݁ ≤ 9൜9 ∙ ඌ1ܰ0ඐ + 1 ,9 ∙ ඌ1ܰ0ඐ + 2, … ,ܰൠ ݈ܾ݁݉݁ݏ݊݁                                                   , = 10  2031 

 2032 

Note that each cell was assigned to only one ensemble. 2033 

After each cell was assigned to one of the 10 ensembles, the activity of each ensemble as a function of 2034 
time was calculated as the mean calcium activity across cells in that ensemble.  2035 

Finally, to calculate the oscillation frequency of ensemble activity, the PSD was calculated (Welch’s 2036 
methods, 8.8 min Hamming window with 50% overlap between consecutive windows, “pwelch” Matlab 2037 
function). The oscillation frequency was estimated as the frequency at which the PSD peaked. For each 2038 
session, the oscillation frequency of the activity of the ensembles was compared to the frequency of the 2039 
population oscillation, which was computed as the total number of cycles in the session divided by the 2040 
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amount of time the network engaged in the population oscillation. The latter was calculated as the 2041 
length of the temporal window of concatenated cycles (see “Identification of individual oscillation 2042 
cycles”).  2043 

Tuning of single-cell activity to ensemble activity 2044 

To quantify the degree of tuning of a cell’s calcium activity to the ensemble activity, and hence 2045 
determine whether ensemble activity was representative of single cell calcium activity, we calculated, 2046 
for all cells in a recorded session, the Pearson correlation between the calcium activity and the ensemble 2047 
activity. Cells were divided into 10 ensembles (see “Division of cells into ensembles”) and the activity of 2048 
each ensemble as a function of time was calculated as the mean calcium activity across cells in the 2049 
ensemble (bin size = 129 ms). For each neuron ݅, 1 ≤ ݅ ≤ ܰ, where ܰ is number of recorded cells in the 2050 
session, the Pearson correlation ௜ܲ,௝ between the neuron’s calcium activity and the activity of ensemble 2051 ݆, 1 ≤ ݆ ≤ 10, was calculated for each ensemble separately. When calculating this set of 10 correlations, 2052 
the activity of the cell for which the tuning is being computed was excluded in the calculation of the 2053 
ensemble activity (note that by construction each cell is assigned to only one ensemble). Next, for each 2054 
cell ݅, the most representative ensemble was calculated as the one for which the Pearson correlation 2055 
was maximal, i.e.,  2056 most_representative_ensemble௜  = arg max௝ ௜ܲ,௝ . (Equation 6) 2057 

In order to determine whether the activity of the ensemble a cell was assigned to (see “Division of cells 2058 
into ensembles”) was the most representative of the single cell calcium activity, we quantified how 2059 
similar the most representative ensemble and the ensemble assigned based on the PCA sorting were, 2060 
expecting that the most representative ensemble and the assigned ensemble would coincide. For each 2061 
cell the distance between these was computed subject to periodic boundary conditions in the ensembles 2062 
(for example, the distance between ensemble one and ten was one and not nine).  2063 

For each session the fraction of cells that displayed specific distances between their assigned ensemble 2064 
based on the PCA sorting and their most representative ensemble was calculated for the entire range of 2065 
distances and presented as a probability. Probabilities were next averaged across sessions (Extended 2066 
data Fig. 7f). To estimate significance, for each cell in a session the procedure for identifying the most 2067 
representative ensemble was repeated in 500 iterations of a shuffle realization where the ensemble 2068 
activity remained fixed but the calcium activity was temporally shuffled (as in “Sorting of temporally 2069 
shuffled data”). For each of the 500 shuffle realizations per session the probabilities of observing specific 2070 
distances between the PCA-assigned and the most representative ensemble were calculated and 2071 
averaged, yielding the mean shuffled probability per session. These probabilities (15 in total for the 15 2072 
oscillatory sessions) were then pooled and compared to the recorded data. 2073 

The probability that the assigned ensemble based on the PCA method and the most representative 2074 
ensemble coincide was large for MEC (Extended data Fig. 7f), intermediate for VIS and low for PaS 2075 
(Extended data Fig. 10c). 2076 

Anatomical distribution of ensembles  2077 

Analyses performed on the preferred phases and participation indexes of single cells indicated that the 2078 
population oscillation is not topographically organized, and hence it is not a travelling wave (see 2079 
“Anatomical distribution of preferred phases and participation indexes” and Fig. 3e-h). To determine 2080 
whether this result was upheld when cells were sorted in ensembles of co-active neurons, the centroid 2081 
of each cell in the FOV (provided by Suite2P39) was used to calculate the anatomical distance between 2082 
all pairs of cells in a session. Next, for each session the pairwise anatomical distances were divided into 2083 
two groups: the “within ensemble” group and the “across ensemble” group. In the former, only pairwise 2084 
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anatomical distances between cells that were assigned to the same ensemble were considered (see 2085 
“Division of cells into ensembles”). In the latter, we considered pairwise anatomical distances between 2086 
cells of different ensembles, such that one cell of the pair was assigned to ensemble ݅, ݅ = 1, … ,10, and 2087 
the other to ensemble ݆, ݆ = 1, … ,10, ݅ ≠ ݆. This was done for each session and each ensemble 2088 
separately. In Extended data Fig. 7j, for each ensemble of the example session shown in Fig. 2a, the 2089 
“within ensemble” group was compared to the “across ensemble” group. Next, for the example session, 2090 
the data in both groups was pooled and the two groups were compared in the left panel of Extended 2091 
data Fig. 7k. For the quantification across all 15 oscillatory sessions in the right panel of Extended data 2092 
Fig. 7k (including the session in Extended data Fig. 7j), the means in both groups were calculated for 2093 
each session separately. 2094 

Analysis of network dynamics using ensembles of co-active cells  2095 

We adopted an ensemble approach to quantify the network dynamics (see “Procedure for merging 2096 
steps” and “Division of cells into ensembles”). With a total of 10 ensembles this approach averaged out 2097 
the variability observed in single-cell oscillation frequency, locking degree and participation index while 2098 
keeping the temporal progression of the oscillatory sequences (Extended data Fig. 7n). In sessions with 2099 
population oscillations, all individual cycles were identified (see “Identification of individual oscillation 2100 
cycles”) and the corresponding time bins were concatenated, which yielded a new matrix of calcium 2101 
activity in which the population oscillation was uninterrupted. Next, cells were divided into ensembles 2102 
(see “Division of cells into ensembles”) and ensemble activity was downsampled using as bin size the 2103 
oscillation bin size of the session (see “Oscillation bin size”). This procedure yielded a matrix, the 2104 
“ensemble matrix”, with the activity of each ensemble corresponding to a single row (10 rows in total), 2105 
and as many columns as time points when sampled at the oscillation bin size.  In non-oscillatory sessions, 2106 
the full matrix of calcium activity was used and the temporal downsampling was conducted at the mean 2107 
oscillation bin size computed across all 15 oscillatory sessions; i.e. bin size = 8.5 s (see “Oscillation bin 2108 
size calculation” for a description of the bin size used in non-oscillatory sessions). For both types of 2109 
sessions (with and without oscillations), the activity of the 10 ensembles was described through a vector 2110 
expressing, at each time point, the ensemble number with the highest activity at that time point (see 2111 
Extended data Fig. 7m,n). This vector was used to perform the following analyses (i-iii). 2112 

(i) Transition probabilities and graph representation: The transition probability from ensemble ݅ to 2113 
ensemble ݆ was quantified as the number of times the transition ݅ → ݆ was observed in the data of one 2114 
session, normalized by the total number of transitions in one session. Transitions were identified from 2115 
the vector that contained the ensemble number with maximum activity at each time point (transitions 2116 
to the same ensemble between consecutive time points were disregarded). Transitions were allocated 2117 
in a matrix of transition probabilities ܶ of size 10x10, since 10 ensembles were used. In this matrix, the 2118 
component (݅, ݆) expressed the transition probability from ensemble ݅ to ensemble ݆. 2119 

To establish statistical significance of the transition probabilities, the data was shuffled 500 times. In 2120 
each shuffle realization, each row of the matrix of calcium activity (with concatenated cycles in the case 2121 
of oscillatory sessions) was temporally shuffled (as in “Sorting of temporally shuffled data”), and the 2122 
procedure for calculating the ensemble matrix and transition probabilities was applied to the shuffled 2123 
data. For each transition ݅ → ݆  the 95th percentile of the null distribution was used to define a cut-off.  2124 

The matrices of transition probabilities obtained from the recorded data and from the shuffle 2125 
realizations were used as adjacency matrices to create graphs. In the graph representation each node 2126 
represents one ensemble, each edge indicates the transition probability between two nodes, the 2127 
thickness of the edge is proportional to the transition probability, and the arrow indicates the transition 2128 
direction. In Extended data Fig. 7p and Extended data Fig. 10d, the edges in red indicate that the 2129 
corresponding transition probabilities were larger than the cut-off for significance. 2130 
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(ii) Probability of sequential activation of ensembles: To determine whether preferences in ensemble 2131 
transitions gave rise to sequences of ensemble activity, we calculated the probability of sequential 2132 
ensemble activation according to the following procedure. From the vector expressing the ensemble 2133 
number with the highest activity at each time point (sampled at the oscillation bin size), strictly 2134 
increasing sequences of all possible lengths (from 2 to 10 ensembles) were identified. The number of 2135 
ensembles in each sequence was the number of ensembles that were active in consecutive time points 2136 
(epochs of sustained activity were disregarded). While the sequences had to be strictly increasing, they 2137 
did not have to be continuous. Sequences could skip ensembles, in which case the maximum number of 2138 
ensembles in one sequence was less than 10. The probability of the sequential activation of ݇ 2139 
ensembles, ݇ =  2, … ,10, was next estimated as the number of times a sequence of ݇ ensembles was 2140 
found, normalized by the total number of identified sequences. Note that all subsequences were also 2141 
included in this estimation. For example, if the ensembles 1, 2 and 3 were active in consecutive time 2142 
points, a sequence of three ensembles was identified, as well as three subsequences of two ensembles 2143 
each: 1,2, as well as 2,3 and 1,3.  2144 

In order to test for significance, the shuffled data from “Transition probabilities and graph 2145 
representation” was used. The procedure to compute the probability of sequential activation of 2146 
ensembles was applied to each of the 500 shuffle realizations performed per session. Shuffled data was 2147 
compared with recorded data. 2148 

(iii) Sequence score: The sequence score measures how sequential the ensemble activity is. It is 2149 
calculated from the probability of sequential activation of ensembles as the probability of observing 2150 
sequences of 3 or more ensembles. The sequence score was calculated for each session of the dataset 2151 
separately. To determine if the obtained scores were significant, for each session the 500 shuffle 2152 
realizations used in “Probability of sequential activation of ensembles” for assessing significance of the 2153 
probability of sequential activation of ensembles were used to calculate the sequence score on shuffled 2154 
data. Those values were used to build a null distribution, and the 99th percentile of this distribution was 2155 
chosen as the threshold for significance.  2156 

Estimation of number of completed laps on the wheel, speed and acceleration  2157 

Features of the animal’s behaviour were used to determine whether the MEC population oscillation was 2158 
modulated by movement.  2159 

The wheel had a radius of 8.54 cm (see “Self-paced running behavior under sensory-minimized 2160 
conditions”) and a perimeter of 53.66 cm. Therefore animals had to run for ~53.7 cm to complete one 2161 
lap on the wheel. For each session, we estimated the number of completed laps on the wheel from the 2162 
position on the wheel recorded as a function of time. The number of completed laps during one cycle 2163 
of the oscillation (see “Identification of individual oscillation cycles”) was calculated as the total distance 2164 
run during the cycle divided by 53.7 cm.  2165 

The speed of the animal was numerically calculated as the first derivative of the position on the wheel 2166 
as a function of time (the sampling frequency of the position was 40 Hz for mice 60355 (MEC), 60353, 2167 
60354 and 60356 (PaS). The sampling frequency was 50 Hz for mice 60584 and 60585 (MEC), 60961, 2168 
92227 and 92229 (VIS). For mice 59911, 59914 (MEC) and 59912 (PaS), the wheel tracking was not 2169 
synchronized to the ongoing image acquisition; see “Self-paced running behavior under sensory-2170 
minimized conditions”. The obtained speed signal from the former group of mice was interpolated so 2171 
that the speed values matched the downsampled imaging time points (sampling frequency = 7.73 Hz), 2172 
and smoothed using a square kernel of 2 s width. A threshold was applied such that all speed values that 2173 
were less than 2 cm/s were set to zero and all speed values larger than 2 cm/s remained unchanged. 2174 
The obtained speed signal was used to define immobility (running) bouts as the set of consecutive time 2175 
points (bin size=129 ms) for which the speed was equal to (larger than) zero (a similar approach was 2176 
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used in ref. 36). The acceleration was numerically calculated as the first derivative of the speed signal. 2177 
Notice that in this case no interpolation was needed. 2178 

Because the available data did not have enough statistical power, it was not possible to compare the 2179 
animals’ behaviour, for example in terms of its running speed and acceleration, between periods with 2180 
and without ongoing population oscillations. 2181 

Estimation of the probability of observing population oscillations  2182 

To determine whether the MEC population oscillation was observed during different behavioural states, 2183 
the probability of observing the population oscillation was calculated conditioned on whether the 2184 
animal was running or immobile. For each oscillatory session with behavioural tracking synchronized to 2185 
the imaging data (10 sessions over 3 animals, see “Self-paced running behavior under sensory-2186 
minimized conditions” and “Oscillation score”), all individual cycles were identified (see “Identification 2187 
of individual oscillation cycles”). The subset of time bins that belonged to individual cycles of the 2188 
oscillation were extracted and labeled as “oscillation”. Next, a second label was assigned to the time 2189 
bins depending on whether they occurred during running or immobility bouts (bin labelled as “running” 2190 
and “immobility” respectively, see “Estimation of number of completed laps on the wheel, speed and 2191 
acceleration”). After applying this procedure, each time bin had two labels, one indicating the running 2192 
behavior, and one indicating the presence (or absence) of population oscillation. To estimate the 2193 
probability of observing the population oscillation conditioned on the animal’s running behavior, all bins 2194 
labelled as running or immobility were identified and from each subset, the fraction of bins labelled as 2195 
oscillation was calculated. These probabilities were computed for each session separately. 2196 

Sequences during immobility bouts of different lengths  2197 

The population oscillation occurred both during running and immobility bouts. To quantify the extent 2198 
to which individual cycles progressed during different lengths of immobility bouts, the following 2199 
procedure was adopted. First, for each session, all immobility bouts were identified and assigned to bins 2200 
of different lengths (see “Estimation of number of completed laps on the wheel, speed and 2201 
acceleration”; length bins = 0-3s, 3-5s, 5-10s, 10-15s, 15-20s, >25 s). Second, all individual oscillation 2202 
cycles were identified (see “Identification of individual oscillation cycles”). Third, for each session and 2203 
each length bin, the fraction of immobility bouts that were fully occupied by continued cycles was 2204 
calculated. To estimate significance, for each session the time bins that belonged to all individual cycles 2205 
were temporally shuffled. The third step of the procedure described above was performed for 500 2206 
shuffle iterations per session. In Fig. 5c, the recorded data has 10 data points per length bin, and the 2207 
shuffled data has 5000 data points per length bin, since 500 shuffled realizations per session were 2208 
pooled.  2209 

Analysis of speed and cycle onset  2210 

To determine whether the onset of the MEC population oscillation cycles was modulated by the animal´s 2211 
running speed, changes in speed before and after cycle onset were investigated. For each session all 2212 
individual cycles were identified (see “Identification of individual oscillation cycles”) and for each cycle 2213 
the mean speed over windows of 10 s before and after cycle onset was calculated. Because no 2214 
differences in the mean speed were observed before and after onset (Extended data Fig. 2d left panel), 2215 
we next determined whether changes in speed were correlated with the onset of oscillation epochs, 2216 
which were defined as epochs with uninterrupted oscillations, i.e. epochs with successive cycles. The 2217 
same analysis described above was repeated but only for the subset of cycles that were 10 s or more 2218 
apart, i.e. for cycles that belonged to different oscillation epochs. 2219 

 2220 
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Manifold visualization for example session in VIS and PaS  2221 

To visualize whether the topology of the manifold underlying the population activity in example sessions 2222 
recorded in VIS and PaS was also a ring, PCA was used and a similar procedure to the one described in 2223 
“Manifold visualization for MEC sessions” was adopted.  2224 

For each example session, one corresponding to VIS and one corresponding to PaS (Fig. 6a-d), PCA was 2225 
applied to the matrix of calcium activity, which first had each row convolved with a gaussian kernel of 2226 
width equal to four times 8.5 s, which is the mean oscillation bin size computed across oscillatory 2227 
sessions (see “Oscillation bin size”). Neural activity was projected onto the embedding generated by PC1 2228 
and PC2. Extended data Fig. 9b shows the absence of a ring-shaped manifold in VIS and PaS example 2229 
sessions.  2230 

Coactivity and synchronization in PaS and VIS sessions  2231 

Sessions recorded in PaS and VIS did not exhibit population oscillations. To further characterize their 2232 
population activity, synchronization and neural co-activity were calculated. 2233 

Synchronization: Neural synchronization was calculated as the absolute value of the Pearson correlation 2234 
between the calcium activity of pairs of cells (bin size = 129 ms). For each session, the Pearson 2235 
correlation was calculated for all pairs of calcium activity (correlations with the same calcium activity 2236 
were not considered) and used to build a distribution of synchronization values. In Extended data Fig. 2237 
10j, these distributions were averaged across sessions for each brain area separately. 2238 

Co-activity: For each time bin in a session (bin size = 129 ms) the co-activity was calculated as the number 2239 
of cells that had simultaneous calcium events divided by the total number of recorded cells in the 2240 
session. This number represented the fraction of cells that was active in individual time bins. Using all 2241 
time bins of the session, a distribution of co-activity values was calculated. In Extended data Fig. 10k, 2242 
the distributions were averaged across sessions for each brain area separately. 2243 

Data analysis and statistical analysis  2244 

Data analyses were performed with custom-written scripts in Python and Matlab (R2021b). Results were 2245 
expressed as the mean ± SEM unless indicated otherwise. Statistical analysis was performed using 2246 
MATLAB and p-values are indicated in the figure legends and figures (n.s.: 2247 ,0.01> ݌ ** ,0.05> ݌* ,0.05<݌ 
 Student t-tests were used for paired and unpaired data. For data that displayed no 2248 .(0.001> ݌ ***
Gaussian distribution and that was unpaired, the Wilcoxon rank-sum test was used. For paired data or 2249 
one-sampled data, the Wilcoxon signed-rank test was used. Two-tailed tests were used unless otherwise 2250 
indicated. Correlations were determined using Pearson or Spearman correlations. Friedman tests were 2251 
used for analyses between groups. No statistical methods were used to predetermine sample sizes but 2252 
our sample sizes were similar to those reported in previous publications from the lab and in other 2253 
publications in the field.   2254 

Code availability  2255 

Code for reproducing the analyses in this article will be available after publication at Figshare and/or 2256 
GitHub. 2257 

Data availability  2258 

The datasets generated during the current study will be available after publication at Figshare. 2259 

 2260 
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Extended data Figure 7
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