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Figure 6. Two pMad binding sites in bam promoter contribute to opposed signaling 

outcomes 

A, A’) Representative images of Bam staining of the testis trapping Dpp on germ cell membrane 

(mGL-Dpp, nos>Nrv-MT). mGL-Dpp channel is shown in A, Bam staining channel is shown in 

A’. Encircled areas show 4-8 SGs with low-level Dpp trap (red), high-level Dpp trap (blue). B) 

A representative image of the tumor with Bam staining in the testis of flies expressing Tkv-CA 

under the nosGal4 driver. Lower panels are magnification of squared regions, i and ii in the 

upper panel. C) Changes in GSC number during recovery from forced differentiation of GSCs 

without or with overexpression of Mad (UAS-Mad), knockdown of Mad (Mad RNAi) under the 

bamGal4 driver P-values were calculated by Šídák's multiple comparisons test and provided as 

**** P < 0.00001, *P < 0.01 or ns; non-significant (P≥0.05). D) Structure of bam promoter 

region containing two Mad binding sites. Mad binding sequences are shown for both sites. Core 

sequences are shown in yellow boxes and were mutated for mutant reporter constructs as shown 

in below (GCG to ATT, GGCG to AATT, respectively). E-G) Representative images of GFP 

signal in the testis of flies harboring indicated Bam reporters. Live testes were used for GFP 

quantification. Graphical interpretation of each image is shown below. E’-G’) Magnified niche 

area containing hub and GSCs. For detection of the hub location, electronically switchable 

illumination and detection module (ESID) was used. H) Quantification of reporter intensity in 4-

8 cell SGs of indicated reporters. P-values were calculated by Dunnett's multiple comparisons 

test and provided as **** P < 0.00001 or ns; non-significant (P≥0.05). 

I) Model. High concentration of pMad occupy two Mad binding sites in GSCs, which is required 

for full suppression of bam expression. Low concentration of pMad binds to +39 Mad binding 

domain which is required for upregulation of bam in GB and SGs. Binding of a co-activator 

(pink circle) may be required for full activation of bam. J) Model. Dpp ligand has effect on 

GSCs contact dependent manner and on differentiating germ cells (GBs and SGs) through 

diffusion from the hub. Dpp is required for stem cell maintenance (Self-renewal), whereas its 

diffusing fraction promotes differentiation of daughter cells via preventing de-differentiation 

(De-diff).  

All scale bars represent 10 μm. Asterisks indicate approximate location of the hub. Fixed 

samples were used for all images and graphs.  
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Fixed samples were used for A-C. Live tissues were used for E-H. In C and H, “n” indicates the 

number of scored testes. Data are means and standard deviations.  
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