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ABSTRACT Azithromycin is a clinically important drug for treating invasive salmonel-
losis despite poor activity in laboratory assays for MIC. Addition of the main buffer in
blood, bicarbonate, has been proposed for more physiologically relevant and more
predictive testing conditions. However, we show here that bicarbonate-triggered low-
ering of azithromycin MIC is entirely due to alkalization of insufficiently buffered
media. In addition, bicarbonate is unlikely to be altering efflux pump activity.
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Invasive salmonellosis is a major threat to human health affecting.20 million people each
year (1, 2). Invasive salmonellosis is caused by Salmonella enterica serovars Typhi, Paratyphi,

Enteritidis, or Typhimurium, which all show increasing resistance to previously effective fluoro-
quinolone and cephalosporin antibiotics. Salmonella strains with such resistances can still be
effectively cleared with the macrolide azithromycin (3). The well-documented clinical efficacy
of azithromycin is unexpected because recommended doses achieve peak plasma concentra-
tions in the range of only 0.4 mg/L (4), which is 20-fold lower than MIC for the majority
of clinical strains of 8 mg/L in standard antimicrobial susceptibility testing (5). However,
standard laboratory conditions for susceptibility testing poorly reflect physiological conditions
in human tissues (6), thus potentially underestimating Salmonella susceptibility. Indeed, sev-
eral studies reported that inclusion of the dominant buffer of plasma, bicarbonate HCO3

2, in
the assay medium alters the MIC values of many antibiotics, including azithromycin, for
diverse bacterial pathogens (Table S1 and references therein, in the supplemental material)
(7). Bicarbonate has been proposed to exert these effects by dissipation of the bacterial
transmembrane gradient, which results in inactivation of drug efflux pumps (8, 9).

Improving the physiological relevance and accuracy of antimicrobial sensitivity testing is
crucial for predicting the therapeutic efficacy of antibiotics against increasingly resistant bac-
terial pathogens (including emerging Salmonella strains with reduced sensitivity to azithro-
mycin [10]). Bicarbonate might be beneficial in this regard, but its effects could be mediated,
at least in part, by trivial pH effects. In aqueous solution, bicarbonate is in equilibrium with
gaseous carbon dioxide CO2, which can evaporate: CO2:1 H2O� H2CO3 � HCO3

2 1 H1.
At low partial pressure of CO2, the equilibrium shifts to the left, consuming protons and thus
resulting in alkalization (pH increase) of the solution. This could be an important effect since
alkaline pH is known to modulate MIC values of various macrolides such as azithromycin
(Table S2 and references therein) as well as other antibiotics. To control for this effect, some
studies employed 100 mM Tris buffer that should maintain unaltered pH (7, 11), but this has
not actually been verified.

To test the effects of pH and bicarbonate, we monitored pH using the indicator phe-
nol red (Fig. S1). As expected, bicarbonate addition to the standard medium for MIC
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determination, cation-adjusted Mueller-Hinton broth (CA-MHB), led to an immediate
alkalization. We readjusted pH to its initial value 7.2 with HCl followed by sterile filtration
and placed the medium in covered multiwell plates that were placed in an incubator at
37°C with ambient air (;0.3% CO2). At this time (t = 0 in Fig. 1), the pH had already
increased again. Over several hours, the pH rose further to ;8.5 (Fig. 1A), while pH rose
to only 7.33 in the presence of an atmosphere with 5% CO2 (Fig. 1B), whereas media
acidified, indicating the expected CO2 pressure-dependent shift in equilibrium. One
hundred mM TRIS and other buffers like MOPS and HEPES partially mitigated, but could
not fully prevent, alkalization (pH ;7.5 after 18 h in ambient air). Buffers together with
5% CO2 stabilized best the pH at the desired value of 7.2 when bicarbonate was present
(Fig. 1B).

To quantify the impact of pH shifts, we determined the MIC of wild-type (WT)
Salmonella enterica serovar Typhimurium SL1344 (Fig. 2; Table S3). Under standard assay
conditions, this strain had MIC values of 4 to 8mg/mL, indicating susceptibility according
to current CLSI breakpoints (S # 16 mg/mL; http://em100.edaptivedocs.net/Login.aspx).
Under nonstandard conditions, MIC values varied almost 1,000-fold and inclusion of bi-
carbonate generally increased Salmonella susceptibility (i.e., lower MIC values). This effect

FIG 1 pH changes in cation-adjusted Mueller-Hinton broth with different additions. (A) pH kinetics during incubation in a microtiter plate reader in ambient
air (unbuffered or with various buffers at 100 mM; 1, addition of 25 mM sodium bicarbonate). pH was determined by ratiometric monitoring of phenol red
absorbance at 415 nm and 560 nm. pH values above 8.0 are inaccurate. Arithmetic means and SDs of three independent experiments are shown. (B) pH after
18h of incubation with or without bicarbonate addition (bicarb) in ambient air or a gas atmosphere with 5% CO2 (CO2). Arithmetic means and SDs of three
independent experiments are shown.

FIG 2 Relationship between MIC values and pH after 18 h of incubation. (A) Relationship between MIC of azithromycin and medium pH for Salmonella
enterica serovar Typhimurium. Red circles indicate measurements in phosphate-buffered MHC in ambient air without bicarbonate. Black circles indicate all
other experiments (unbuffered, Tris, MOPS, or HEPES buffered; with/without bicarbonate; ambient air/5% CO2). Geometric means and SDs (n $ 3) are
shown. The curve and the shaded area represent a nonlinear fit of a Hill function to all experiments except those in phosphate buffer. The shaded area
represents the 95% confidence interval. (B) MIC values of Salmonella WT and an acrB R717Q mutant with increased efflux activity in phosphate-buffered
MHB at various pH (same data for WT as shown in panel A. Geometric means and SDs of three independent experiments are shown. (C) MIC values of
Salmonella WT and acrB R717Q in all tested conditions (red, with bicarbonate; blue, without bicarbonate). Geometric means and SDs (n $ 3) are shown.
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was particularly strong in nonbuffered MHB (.30-fold), which showed the greatest pH
increase with bicarbonate, and weaker in MOPS- or HEPES-buffered MHB (;5-fold),
which showed smaller pH shifts (Fig. 1B). Importantly, a plot of all our measured MIC val-
ues versus the medium pH after 18 h of incubation followed a common relationship.
MHB adjusted to different pH values with phosphate buffer in the absence of bicarbon-
ate and in ambient air yielded superimposable MIC data (Fig. 2A), indicating that pH
alone explains the entire “bicarbonate” effect. Visible bacterial growth itself also modi-
fied pH with acidification of the medium (Fig. S2). However, the MIC is defined as the
lowest concentration at which there is no bacterial growth, and thus MIC values are not
affected by growth-associated pH shifts.

For comparison, we introduced an acrB R717Q mutation, which increases azithromy-
cin efflux (12). Under standard assay conditions, the mutant had an MIC of 32 mg/mL,
indicating resistance according to current CLSI breakpoints (R $ 32 mg/mL). A ;5-fold
higher MIC compared to wild-type was observed across the entire range of pH 6 to
8 (Fig. 2B and C). This suggested a constant impact of efflux in this pH range. If efflux
would instead break down at higher pH, in particular with bicarbonate (as has been pro-
posed), the resistance of the mutant, which is dependent on efflux, should vanish, which
is inconsistent with our data. Thus, efflux inactivation does not explain the “bicarbonate
effect,” at least for azithromycin and Salmonella. Higher potency of azithromycin at alka-
line pH might instead reflect deprotonation of azithromycin’s two amines (13), which
might facilitate drug entry through the inner membrane (14, 15).

Development of assay conditions that reflect physiologically relevant conditions for
more predictive antimicrobial susceptibility testing remains crucially important. Addition
of bicarbonate makes the assay mediummore similar to blood in terms of chemical com-
position, but raises the pH to nonphysiologically high values, unless an atmosphere with
5% CO2 is used. If the pH alterations are prevented with the 5% CO2 and adequate buf-
fering, bicarbonate has no measurable impact on azithromycin MIC. Thus, bicarbonate
addition does not correct a “fundamental flaw” (7) in antimicrobial susceptibility testing.

For azithromycin, the limited available data suggest that standard MIC testing is
adequate to predict therapeutic success (5). However, MIC breakpoints differ strongly
from achievable plasma levels, suggesting a major difference between inpatient condi-
tions and laboratory assays. Our data show that this discrepancy is not due to bicar-
bonate. Other explanations, such as intracellular accumulation of azithromycin (16, 17)
in the vicinity of Salmonella, seem more plausible, but further research is required to
clarify this issue.
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