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Abstract

Motivation: With the steadily increasing abundance of omics data produced all over the world under vastly different
experimental conditions residing in public databases, a crucial step in many data-driven bioinformatics applications
is that of data integration. The challenge of batch-effect removal for entire databases lies in the large number of
batches and biological variation, which can result in design matrix singularity. This problem can currently not be
solved satisfactorily by any common batch-correction algorithm.

Results: We present reComBat, a regularized version of the empirical Bayes method to overcome this limitation and
benchmark it against popular approaches for the harmonization of public gene-expression data (both microarray
and bulkRNAsq) of the human opportunistic pathogen Pseudomonas aeruginosa. Batch-effects are successfully
mitigated while biologically meaningful gene-expression variation is retained. reComBat fills the gap in batch-
correction approaches applicable to large-scale, public omics databases and opens up new avenues for data-driven
analysis of complex biological processes beyond the scope of a single study.

Availability and implementation: The code is available at https://github.com/BorgwardtLab/reComBat, all data and
evaluation code can be found at https://github.com/BorgwardtLab/batchCorrectionPublicData.

Contact: michael.adamer@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Data-driven computational biology greatly depends on the availability
of large, integrated datasets to provide the necessary variety and
statistical power for state-of-the-art (SOTA) machine and deep
learning, as recently demonstrated by Alpha-Fold (Jumper et al., 2021).
In particular, an in-depth understanding of general trends in expression
and transcription profiles are key for important research questions,
such as overcoming microbial antibiotic resistance (Andersson et al.,
2020; Gil-Gil et al., 2021), or cancer therapy failure (Kourou et al.,
2021; Malod-Dognin et al., 2019). By mining large databases across
studies, it may be possible to identify novel biological mechanisms that
cannot be found by studying individual, small-scale experiments alone.
This poses a problem shift toward the need for integrating diverse data
obtained from numerous independent experiments.

Public databases, such as the Gene Expression Omnibus (GEO)
(Barrett et al., 2013; Edgar et al., 2002), include independent studies
collected over a large time span, under different biological and
technical conditions. Hence, strong batch-effects (i.e. unwanted and

biologically irrelevant variation) preclude a comprehensive analysis of
pooled data and first need to be mitigated while desired biological
variation [referred to in this article as ‘(experimental) design’] needs be
retained.

Although a range of batch-correction algorithms has previously
been suggested (Chazarra-Gil et al., 2021; Lazar et al., 2013; Rong
et al., 2020; Tran et al., 2020), only a small subset of these remains
applicable for this large-scale setting. In particular, most previous
algorithms cannot incorporate high-dimensional experimental de-
sign information. Our goal for this study is to provide the commu-
nity with a simple, yet effective extension of the popular and
computationally efficient empirical Bayes method (Johnson et al.,
2007) (ComBat) to account for a large amount of highly correlated
biological covariates. ComBat is based on ordinary linear regression
and, therefore, will fail if the system is underdetermined.

We benchmark our method on simulated data and provide a
real-world application in microarray and bulk RNAsq data, evaluat-
ing the impact of culture conditions on the gene-expression profiles
of Pseudomonas aeruginosa (PA). PA is a Gram-negative bacterium
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with a large genome (Stover et al., 2000) that thrives in a variety of
environments and has been declared a critical priority pathogen for
the development of new antimicrobial treatments (Tacconelli et al.,
2018). A large range of studies have previously investigated the
impact of culture conditions on the gene-expression profiles of PA.
A comprehensive review of the perturbations caused by the microen-
vironmental cues is missing as a consequence of the lack of harmon-
ized data allowing for a direct comparison.

The article is organized as follows. After reviewing relevant litera-
ture in Section 2, we introduce our reComBat algorithm (contribution
i) in Section 3 as an extension of the ComBat algorithm to handle
highly correlated covariates. In the second part of Section 3, we address
the issue of assessing the efficacy of the batch-correction by introducing
a large variety of evaluation metrics (contribution ii). In Section 4, we
benchmark reComBat against a selection of SOTA batch-correction
methods on simulated and real-world data. Finally, we present a large,
harmonized dataset of PA expression profiles in response to different
microenvironmental cues (contribution iii). We conclude Section 4 by
demonstrating, as a proof of concept, the biological validity of the
harmonized dataset. Section 5 comprises of a discussion and outlook.

2 Related work

A variety of batch-correction methods has previously been suggested
for bulk and single-cell sequencing data [see e.g. Lazar et al. (2013),
Tran et al. (2020) and Yu et al. (2021)]. Here, we focus on
batch-correction of bulk data which can generally be divided into the
following categories:

Normalization to reference genes or samples: Algorithms, such as
cross-platform normalization (Shabalin et al., 2008) or reference scal-
ing (Kim et al., 2007), which employ references, are infeasible in the
public data domain: ‘reference’ or ‘house keeping’ genes do not exist
for some organisms, particularly microbes, eliminating these as com-
mon ground for batch-effect correction. Given a large public dataset,
overlapping samples or common reference experiments are unlikely.

Discretization methods: Approaches that discretize expression
data into categories (e.g. ‘expressed’ versus ‘not expressed’) can be
hard to implement rigorously without a relevant control.
Furthermore, the information loss due to discretization may affect
the results of any advanced downstream analysis of the harmonized
data (McCall et al., 2010; Warnat et al., 2005).

Location-scale adjustments: These methods adjust the mean and/
or variance of the genes, e.g. by standardization (Li and Wong,
2001) or batch mean-centering (Sims et al., 2008). This only works
if the batch-effect is a simple mean/variance shift and does not ac-
count for additional confounders. One of the most popular location-
scale method is the empirical Bayes algorithm, ComBat (Johnson
et al., 2007). Despite reasonable success for the correction of local,
i.e. within one experiment, or moderate (i.e. comprising few, bio-
logically correlated) batch-effects most location-scale adjustment
methods either provide insufficient correction in the presence of
strong batch-effects (e.g. standardization) or are unable to account
for highly correlated design features (e.g. ComBat).

Matrix factorization: This approach builds on decomposition,
such as principal component analysis or singular value decompos-
ition (Alter et al., 2000) to identify and remove factors characteriz-
ing the batch. While this can work in small-scale experiments, it is
unclear how to apply these methods when there is strong confound-
ing of batch and biological variation. A tangential approach to ma-
trix factorization is to estimate unwanted variation via surrogate
variables (SVA) (Lazar et al., 2013). Since in our setting, we assume
that we know all sources of variation, we do not consider SVA.

Deep learning based: Recently, non-linear models, often based
on neural/variational autoencoders or generative adversarial net-
works, have gained popularity [e.g. normAE (Rong et al., 2020),
AD-AE (Dincer et al., 2020), scGen (Lotfollahi et al., 2019) and
Marouf et al. (2020)]. This class of models aims to find a batch-
effect-free latent space representation of the data e.g. via adversarial
training. While an advantage of these methods is their flexibility to
account for batches, but also desired biological variation, a major
drawback may be that the batch-effect is only removed in a low-

dimensional latent space. Downstream analysis is necessarily con-
strained (Dincer et al., 2020; Rong et al., 2020). scGen is a notable
exception as it provides a direct normalization at gene-expression
level. However, large datasets are required and, in the absence of
ground truth, the risk of overcorrection should be considered in add-
ition to increased computational complexity.

3 Approach

In this section, we introduce the mathematical tools and start by
defining our modification to the popular ComBat algorithm,
reComBat, before introducing a range of possible evaluation metrics
to gauge the efficacy of data harmonization.

3.1 Classical: ComBat
ComBat (Johnson et al., 2007) is a well-established batch-correction
algorithm employing a three-step process.

1. The gene expressions are estimated via an ordinary linear regres-

sion and the data are standardized.

2. The adjustment parameters are found by empirical Bayes esti-

mates of parametric or non-parametric priors.

3. The standardized data are adjusted to remove the batch-effect.

The ComBat algorithm has seen many refinements and applications
[see e.g. �Cuklina et al. (2021), Müller et al. (2016) and Zhang et al.
(2020)]. However, most datasets have been handling <20 data sources
and did not come with an extensive design matrix. When the design
matrix becomes large (many covariates) and sparse, unexpected issues
can arise in Step 1 of the algorithm. To illustrate the classic algorithm,
we use the slightly modified ansatz of Wachinger et al. (2021),

Y ijk ¼ ðXbxÞjk|fflfflfflffl{zfflfflfflffl}
desired variation

þ ðCbcÞjk|fflfflfflffl{zfflfflfflffl}
undesired variation

þ ak|{z}
regression intercept

þ b
g
ik|{z}

additive batch�effect

þ dik�ijk|fflffl{zfflffl}
multiplicative batch�effect

;

where Y ijk is the gene expression of the kth gene in the jth sample of
the ith batch. The matrices X and C are design matrices of desired
and undesired variation with their corresponding matrices of regres-
sion coefficients bx and bc. a is a matrix of intercepts, and bg and d

parameterize the additive and multiplicative batch-effects. The ten-
sor e is a 3D tensor of standard Gaussian random variables. Note,
that we implicitly encode batch- and sample-dependency by drop-
ping the relevant indices, i.e. bg depends on the batch and gene, but
is constant for each sample within the batch.

In the first step of the algorithm, the parameters bx; bc and a are
fitted via an ordinary linear regression on

Y ¼ Xbx þ Cbc þ a ¼ ~Xb; (2)

where ~X 2 R
n�m, where m is the number of features and n is the

number of samples. Note that this formulation is equivalent to rede-
fining Y 2 R

n�g, where g is the number of genes, and subsuming the
batch and C features into ~X . The intercept a is inferred via the rela-
tion 1

N

P
i nib

g
ik ¼ 0 (Johnson et al., 2007), where ni is the number of

samples in batch i, bik is the regression coefficient of batch i for gene
k and N is the total number of samples. For ease of notation, in the
remainder of this article, we will use this equivalent formulation.

Once, the model is fitted, the data are standardized, then the batch-
effect parameters, ĉ and d̂ are estimated using a parametric or non-
parametric empirical Bayes method. Finally, the data are adjusted. For
details, please refer to the original publication (Johnson et al., 2007).

3.2 Novel contribution: reComBat
Problem statement: Using standard results for ordinary linear regres-
sion, we know that if the matrix A ¼ ~X

T ~X is positive-definite, the
optimization of (2) is strictly convex. However, if A is singular a
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unique-solution the regression does not exist. Hence, if A is rank-
deficient, i.e. the system is underdetermined, ComBat will not neces-
sarily arrive at a unique-solution. Our goal in this work is to provide
a computationally efficient solution for this problem to make the
empirical Bayes method applicable also to large-scale public data
harmonization.

Given the popularity of ComBat this issue does not seem to be
encountered frequently. One possible explanation is that the sources of
biological variation that are usually considered within the same experi-
ment are limited and well-chosen. When integrating entire databases,
however, the sources of biological variation are manifold and these can
often only be encoded as categorical variables. One prominent example
is considering all uploaded experimental data of a particular pathogen,
which can result in hundreds of unique experimental conditions, some
potentially highly correlated with other metadata. Encoding these as
one-hot categorical variables creates a sparse, high-dimensional feature
vector and, when many such categorical features are considered, then
m � n. If, either m>n, or strong batch-design correlations exist, then,
even for large-scale integration, A may be rank-deficient.

To mitigate this issue, we propose a modification of the estima-
tion of gene-expression profiles by a linear model (Step 1 of the
ComBat algorithm) by fitting the elastic net model—a standard ap-
proach from linear regression theory

Ŷ ¼ X b̂
x þCb̂

c þ â; (3)

b̂
x
; b̂

c
; â ¼ argmin

bx ;bc ;a

½jjY � Ŷ jj22 þ k1ðjjbxjj1 þ jjbcjj1Þ; (4)

þk2ðjjbxjj22 þ jjbcjj22Þ�; (5)

where jj � jjp denotes the ‘p norm, and k1 and k2 are the LASSO and
ridge regularization penalties. Due to this regularizing modification of
the algorithm, we call our approach regularized-ComBat, in short
reComBat. Both, parameter fitting using the Empirical Bayes methods,
and parameter adjustment on the standardized data follow the above
outline for the ComBat algorithm. Note that reComBat essentially repla-
ces a linear regression with a regularized regression and, hence, the in-
crease of computational complexity of reComBat over ComBat is
negligible.

The reComBat algorithm can be summarized in the following
pseudo-code.

4 Experiments

In this section, we apply reComBat to simulated and real-world
microarray and bulkRNAsq data. We show quantitatively and
qualitatively that reComBat is successful in removing substantial
batch-effects while retaining biologically meaningful signal.

4.1 Evaluation metrics
A detailed description and definition of all evaluation metrics
employed to score batch-correction efficacy is provided in
Supplementary Material A. We included classifier-based [logistic re-
gression-based balanced accuracy and F1-score, linear discriminant
analysis (LDA) score], cluster-based (minimum separation number,

cluster purity and Gini impurity) and sample distance-based [dis-
tance ratio score (DRS), Shannon entropy] metrics.

4.2 Experimental data
A detailed description is given in Supplementary Material B.
Inspired by the graph theoretical notion of n-hop neighborhoods
(Liu and Li, 2019), we group samples into so-called Zero-Hops.
Each Zero-Hop defines a set of samples, which share the exact same
experimental design. We first evaluate the approaches on synthetic
data with singular design matrix and test a range of hyperparameter
combinations for data generation [number of samples (100–2000),
batches (3–100), design matrix features (3–20), relative disturbance
size of metadata to batch (0.01–20), number of Zero-Hops, i.e. a set
of samples sharing the experimental design (5–40)] and score run
time, LDA score, Shannon entropy and cluster purity as a function
thereof w.r.t. the ground truth. Additionally, data for 887 (114
batches, 39 Zero-Hops, see Supplementary Table S1) microarray
and 340 bulkRNAsq samples (32 batches, 12 Zero-Hops, see
Supplementary Table S2) were collected from the GEO, SRA and
ENA data bases (Barrett et al., 2013) with relevant metadata charac-
terizing experimental design (culture conditions, PA strain). The
obtained microarray design matrix is singular, whereas the RNA de-
sign matrix is not-singular, however, ill-conditioned. All input data
were log-transformed.

4.3 Batch-correction methods
We tested our approach against a representative sample of baseline
methods, in particular, standardization, marker gene elimination,
principal component elimination, ComBat, Harmony (Korsunsky
et al., 2019) and scGen. Details on these methods can be found in
the Supplementary Material C.

For reComBat, we used parametric priors for the empirical
Bayes optimization and tested a variety of parameters including
pure LASSO (k2 ¼ 0), pure ridge (k1 ¼ 0) and the full elastic net re-
gression. The range of regularization strengths tested were all pos-
sible combinations [except for (0, 0)] of k1 2 f0; 10�2; 10�1; 1g and
k2 2 f0; 10�10; . . . ;10�1;1g. Note that smaller values of k1 yielded
numerical instabilities.

4.4 Hyperparameter optimization results
A hyperparameter screen to optimize regularization strength and
type on the default simulated, microarray and bulkRNAsq data
yielded best results when ridge regression was used (k1 ¼ 0) with
k2 � 0:001 (see Supplementary Material D). The specific regular-
ization parameter only had a minor influence and we continued
with k2 ¼ 10�9 as an arbitrary choice. We observe that stronger,
particularly LASSO, regularization achieves superior batch hetero-
geneity at the cost of decrease in Zero-Hop uniformity in real-world
data. Notice that LASSO-reComBat performs implicit feature selec-
tion due the ‘1 regularization. This could hint to the fact that more
balanced feature weighting (as provided by ridge-reComBat) is
beneficial. In the following, we present results only for ridge-
reComBat.

4.5 Evaluation on synthetic data
We benchmark reComBat on simulated data against popular batch-
correction methods. Figure 1A and B shows the simulated ground
truth distribution together with the distribution after applying
batch-effects, and following data harmonization with reComBat.
The ground truth results in terms of Zero-Hop clusters were qualita-
tively well reproduced by reComBat. Quantitative results in terms
of LDA score difference to ground truth (see Supplementary
Material E for Shannon entropy, Gini impurity and cluster purity)
are shown in Figure 2A as a function of different data generation
hyperparameters for the investigated correction methods. We ob-
serve that reComBat and scGen outperform Harmony and simple
correction (PC or marker gene elimination, standardization).
Notably, if scGen is trained with Zero-Hop labels its performance is
greatly improved, however, also prone to overfitting. Overfitting

Algorithm 1 reComBat

Require: The data and the design: Y; ~X

1. Fit a regularized linear model: Y ¼ ~Xb

2. Standardize Y

3. Obtain empirical Bayes estimates

4. Rescale Y: Y ! ~Y

Output: The corrected data: ~Y
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was observed as positive LDA score differences for this method,
indicating that a better LDA accuracy was obtained by scGen than
possible based on the ground truth data. We only observe degrad-
ation of reComBat performance for smaller datasets of 100 samples
(given 10 Zero-Hops). Run time was generally very quick and favor-
able for reComBat compared to Harmony, or scGen (trained on
GPU).

4.6 Experimental benchmarking of reComBat
We show quantitatively and qualitatively that reComBat is success-
ful in removing substantial batch-effects while retaining biologically
meaningful signal in real-world data, too. Figure 1C and D gives an
overview of the uncorrected and reComBat corrected microarray
data colored by batch, Zero-Hops and microbial strain. Uncorrected
data clusters by batch, indicating the presence of batch-effects,
whereas clustering by biologically meaningful variation (e.g. by
strain or Zero-Hop) is observed after correction. Additional over-
views of t-SNE embeddings of batch-corrected expression data for
all baseline models and data, colored by all design matrix elements
are provided in Supplementary Material F.

We compared our baselines to the best performing reComBat
model based on all evaluation metrics (Supplementary Material C)
in Figure 2B. In terms of gauging the metrics themselves for the abil-
ity to detect batch-effects, we conclude that classifier-based metrics
provide the clearest overview. Shannon entropy can detect a larger
spread in batch versus Zero-Hop entropy, however, the findings
may strongly vary by the specific subset. It can also be argued that
entropy strongly depends on the choice of the number of nearest
neighbors. Likewise, the median pairwise distance and DRS metrics
show some ability to detect batch-correction, but due to the strong
dependency on the individual Zero-Hop the spread in values may be
large. The minimum separation clustering clearly shows when a
batch-correction can be considered effective. However, due to
repeated clustering, calculation of minimum separation number is
computationally far more expensive than distance-based metrics. A
good mid-point between classifier- and cluster-based evaluations are

cluster-purity measures, which show good resolution and manage-
able dependency on the Zero-Hop.

Data standardization, and marker gene elimination only had a
minor, insignificant (all Mann–Whitney U-Test P-values >0.05) ef-
fect when compared to the raw data, independent of the underlying
metric and dataset. Despite, markedly different results compared to
the uncorrected baseline, Harmony could not achieve sufficient
batch-correction characterized by poor performance in classifier and
cluster-based metrics throughout. We suggest that the large number
of design matrix elements and comparably strong batch-effect could
lead to this result. Importantly, reComBat achieved good scores
throughout all evaluation metrics for all datasets (bulkRNAsq given
in Supplementary Material), whereas performance of other correc-
tion methods, such as PC elimination, scGen and ComBat, varied
depending on data and metric. As expected, singularity of the design
matrix led to poor performance of ComBat (microarray data),
whereas bulkRNAsq data with a non-singular design matrix
achieved the best results for this method. For scGen it was key to
provide information on Zero-Hops as labels to the algorithm [scGen
(Zero-Hop)], whereas simply relying on design matrix covariates led
to poor correction. Such behavior may complicate applications
where specific label information may not be available in practice.
Label construction based on a large design matrix may not always
be straightforward and label-free correction methods, such as
reComBat would be at an advantage.

4.7 Characterization of the harmonized microarray

dataset
In order to preclude overcorrection (Zindler et al., 2020) in the ab-
sence of ground truth, we demonstrate that biologically meaningful
expression profiles are retained after batch-correction. As represen-
tative examples, we analyzed data subsets by oxygenation status,
culture medium richness, growth phase, or clinical versus laboratory
PA strains in our microarray dataset (Supplementary Material G).
We identified Zero-Hop marker genes driving the differences be-
tween selected pairwise comparisons and assessed their relevance to
underlying biological pathways. Pathways previously known to be

Fig. 1. t-SNE plots of the simulated (A and B) and microarray (C and D) datasets. For simulated data, we show ground truth (top), uncorrected (middle) and reComBat

(k1 ¼ 0; k2 ¼ 10�9) corrected (bottom) results. (Un)Corrected microarray data are colored by batches (top), Zero-Hops (middle) and microbial strain (bottom). Color scales

do not reflect proximity of the relevant batches or Zero-Hops
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important in the relevant culture conditions were identified. For in-
stance, when comparing standard to hypoxic conditions, we found
that genes involved in aerotaxis (Hong et al., 2004), Fe-S cluster bio-
genesis (Romsang et al., 2015) and iron acquisition (Glanville et al.,
2021; Hannauer et al., 2012) are major drivers of differences. When
comparing cultures in exponential to stationary phase under hyp-
oxia conditions, genes involved in pyoverdin (Drake et al., 2007;
Vandenende et al., 2004) and pyochelin (Ankenbauer and Quan,
1994; Reimmann et al., 2001) biosynthesis and transport, iron star-
vation (Alontaga et al., 2009; Hassett et al., 1997; Zhao and Poole,
2000) and quorum sensing (Kim et al., 2012) were relevant. Finally,
for a comparison between the laboratory strain PAO1 versus clinical
isolates, we found cup genes (PA4081-PA4084, PA0994) that are
involved in motility and attachment in biofilm formation (Ruer
et al., 2007). This indicates a difference in attachment between those
strains that might be coming from the environment the strains have
adapted to grow in (laboratory versus patient). In all cases, a large
amount of hypothetical genes of unknown function also flagged
up – an expected observation as roughly two-thirds of the genes
encoded in the PA genome have an unknown function. The

harmonized dataset hence serves for hypothesis generation motivat-
ing further (experimental) validation.

5 Discussion

Public databases play an increasingly important role for data-driven
meta-analysis in computational biology. Despite great efforts to har-
monize data collection, considerable, yet unavoidable, biological/
technical variation may mask true signal if data are pooled from sev-
eral sources. To draw generalizable conclusions from agglomerated
data, it is essential to correct such batch-effects in a setting where
overlapping samples, or standardized controls, are unavailable.
When large numbers of (>20) batches coincide with desired bio-
logical variation, a range of standard batch-correction algorithms
are inapplicable. We would like to stress that this evaluation scen-
ario greatly differs from previously analyzed batch-correction set-
tings where comparably few (2–5) batches with large number of
overlapping samples were included, or comparably small batch-
effects within a single study were corrected (Tran et al., 2020). A
key assumption of meta-analysis of published data is the coincidence

Fig. 2. (A) Overview over results based on different simulated datasets scored in terms of LDA score difference to ground truth for batch and Zero-Hops. Results represent

mean values and standard deviations over 10 independent repeats. (B) Evaluation metrics scoring the impact of batch-effects by evaluating the variety of different batches and/

or Zero-Hops of the (un-) corrected microarray dataset. Box plots represent the lower and upper quartiles (box) together with the median (central dents) and full range

(whiskers) over all samples, clusters or Zero-Hops depending on the relevant metric. LDA scores and LR classification performance are reported over 10 cross-validation folds
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of ‘batch’ with ‘study’. Given the substantial manual data curation
to extract relevant design matrix information for experimental data
the variety of data types (microarray and bulkRNAsq) and organ-
isms (PA) assessed in addition to simulated data was limited.
reComBat is a simple yet effective, means of mitigating highly corre-
lated experimental conditions through regularization and we com-
pared various elastic net regularization strengths for the purpose of
meta-analysis based on large-scale public data. We note that given
the large number of batch-correction methods available, we only
included representative examples for key concepts, including deep,
non-linear models (scGen), Harmony, marker gene and PC elimin-
ation to benchmark our linear empirical Bayes method.

In case of a singular design matrix reComBat outperformed
standard approaches, including data standardization, PC and mark-
er gene elimination, Harmony and scGen if no additional informa-
tion regarding the evaluation endpoints (here Zero-Hops) was given
to either of the methods. We demonstrate not only the superiority of
reComBat compared to these baselines but, by providing a large var-
iety of evaluation metrics, also give a notion of overall performance.

Importantly, in any large-scale meta-analysis setting, a ground
truth is unavailable. Here, biological validation is essential prior to
hypothesis generation and we demonstrate this for reComBat. Due
to this fact, we excluded some popular deep models [e.g. normAE
(Rong et al., 2020) and AD-AE (Dincer et al., 2020)] from this study
as they only provide a latent representation rather than direct cor-
rection at gene-expression level. These methods would likely provide
good batch-correction, however, downstream analysis via e.g. differ-
ential gene expression is impossible. There is also growing concern
that batch-correction, particularly deep models, may overcorrect
and remove biological signal. Although synthetic data addresses this
challenge, algorithm performance varies between use-cases and the
risk of overcorrection persists. We demonstrate this based on scGen
(Zero-Hop) in our benchmark. Both scGen and Harmony (in the
published python packages) do not allow for a separation of batch-
correction training and validation to test for overfitting by cross-val-
idation—reComBat indeed could be used in a cross-validation set-
ting. Notably, in case of e.g. large-scale single-cell RNA sequencing,
the situation may in fact be favorable for non-linear approaches—
which is not the setting of interest here.

It was possible to show that reComBat retained biologically
meaningful target pathways identified in a literature-based valid-
ation. By mining the harmonized dataset, we can now perform com-
parisons that have, to the best of our knowledge, never been directly
performed before for the purpose of hypothesis generation. For in-
stance, when we compare growth in LB with growth in media that
have fewer nutrients, we find that several nutrient (Bains et al.,
2012; Ball et al., 2002; Faure et al., 2014; Jones et al., 2021;
Lewenza et al., 2011; Quesada et al., 2016) and metal (Alontaga
et al., 2009; Merriman et al., 1995) uptake pathways are deferen-
tially regulated. Experimental validation of the proposed findings is
a key in confirming information on the underlying biological
mechanisms.

With >5000 citations, ComBat is one of the most popular batch-
correction methods today applied to a large variety of data types and
organisms (Wachinger et al., 2021). In this study, we showed how an
adaptation of this popular algorithm can drastically increase its usabil-
ity. ComBat benefits from low computational cost, rigorous underlying
theory, interpretability and is easy to apply in practice. We specifically
want to recommend reComBat in a setting of comparably strong
batch-effects and diverse experimental designs as are frequently
observed within publicly sourced data from different laboratories. We
acknowledge the small methodological differences between ComBat
and reComBat but stress the importance of this adaptation to make a
well-established method suitable for large-scale public data integration.
By publishing reComBat as a python package (https://github.com/
BorgwardtLab/reComBat) our method is readily available to the com-
munity. We also make the harmonized datasets with their metadata
available to the wider research community (https://github.com/
BorgwardtLab/batchCorrectionPublicData).

6 Conclusion

We have addressed the challenge of harmonizing large, and highly
diverse public data for downstream meta-analysis. Aiming at high
community acceptance and a computationally efficient solution, we
extend the well-established ComBat algorithm through the addition
of regularization. We evaluate our novel algorithm on simulated,
and public microarray and bulkRNAsq data. A variety of evaluation
metrics attest comparable, or superior correction of batch-effects as
established baseline models. Our analysis constitutes a proof of prin-
ciple to motivate and enable further large-scale meta-analyses.
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