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CHAPTER 1

Introduction

1.1 Preamble: Ligand Recognition and Specificity

Molecular recognition is a key process in the formation of ligand-protein complexes
concerning both selectivity and stability of binding. Hence, it is a fundamental princi-
ple for most biological processes in the human body. In the context of pharmaceutical
chemistry, it covers ligand-protein interactions, effects of the surrounding solvent, al-
losteric regulation, and conformational adaptation - important effects for the design of
drug molecules (Figure 1). The foundation for the principle of recognition was already
proposed in the 19th century by Emil Fischer who formulated the lock-and-key prin-
ciple, which remains significant until today although with slight adjustments [1, 2].
The formation of ligand-protein complexes is a dynamic event. While shallow bind-
ing sites often display comparatively simple molecular recognition, the access to buried
binding pockets, as they for example occur in cytochrome P450 enzymes (CYPs) or
nuclear receptors (NRs), is a complex event with high relevance for binding kinetics
and specificity [3, 4]. The consideration of target specificity is a crucial aspect for the
successful design of drugs with acceptable, or in the best case, no side effects at all.
Correspondingly, binding to anti-targets is one of the most relevant reasons for eco-
nomically devastating drug attrition in clinical development [5, 6].

Figure 1 Schematic depiction of several processes covered by molecular recognition
including desolvation, water-mediated interactions, conformational adaptation of ligand
and protein, and ligand-protein interactions.

Hence, the detailed understanding of molecular recognition is of pivotal importance.
In this regard, computational methods provide a cost effective approach to study the
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underlying phenomena [7]. This thesis addresses various aspects of ligand recognition
in the framework of drug-metabolizing enzymes and nuclear receptors including ligand-
protein association, allosteric modulation and communication, specificity, as well as
ligand-induced conformational adaptation.

1.2 Pharmacological Background

1.2.1 Drug Metabolism

A large share of clinical candidates fail due to a poor pharmacokinetic profile, which
is closely related to the metabolic degradation of a compound, causing large economic
damage and, potentially, leaves patients with reduced treatment options [8, 9]. Hence,
there remains a challenge for drug discovery scientists to rationally design compounds
with optimal properties in regards to their biotransformation. Generally, after a drug is
ingested orally, it is subject to several physiological barriers before it can reach circu-
lation and, ultimately, interact with its therapeutic target. Initially, it needs to undergo
dissolution and permeate lipid bilayers in the gastrointestinal tract (GIT) without be-
ing too insoluble in water. After being absorbed from the GIT to the portal vein, oral
therapeutics pass the liver, which is the primary organ for drug metabolism. Almost all
drugs are subject to a process called first-pass metabolism, where the molecules pass
the hepatocytes in the liver, which are rich in metabolic enzymes. Metabolic reactions,
directed to facilitate the excretion of the compound from our body, can be divided into
phase I and II depending on the involved enzymes and catalyzed reactions (Figure 2).
Phase I reactions of small-molecules are mainly performed by cytochrome P450 en-
zymes (CYPs) in the liver along with smaller contributions by esterases and enzymes
present in enterocytes. Phase II metabolism is targeted toward the conjugation of a
molecule to a hydrophilic moiety such as glucuronic acid or glutathione to increase
its water solubility and facilitate renal excretion. While the primary function of drug
metabolism is to facilitate the excretion of potentially harmful compounds, some drugs
are transformed into their active principle by metabolic enzymes. Furthermore, there
are cases in which the metabolic transformation results in products with increased toxi-
city. Nevertheless, after passing the liver for the first time, the remaining portion of the
original drug as well as the resulting metabolites are distributed through the circulation
and can, ultimately, reach their designated target [10, 11, 12].

1.2.2 Cytochrome P450 Enzymes

As mentioned above, CYPs are responsible for the majority of phase I drug metabolism.
The most relevant enzymes include CYP1A1, CYP2A6, CYP2B6, CYP2C8, CYP2C9,
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Figure 2 Drug metabolism. (A) Illustration of the interplay between phase I and II
metabolism by the example of codeine. The first reaction catalyzed by Cytochrome
P450 2D6 (CYP2D6) is an O-demethylation of the aromatic methoxy group. In a
next step, a glucuronic acid moietiy is conjugated to the free hydroxy group by UDP-
glucuronosyltransferase 2B7 (UGT2B7), increasing the water solubility of the com-
pound to allow renal elimination. (B) Depiction of CYP2D6 embedded in a membrane
with several secondary structure elements and ligand tunnels indicated. (C) Complex
of CYP2D6 in complex with its redox partner Cytochrome P450 reductase embedded
in a 1-palmitoyl-2- oleoylphosphatidylcholine membrane.

CYP2C19, CYP2D6, CYP2E1, and CYP3A4, covering approximately 90% of drug
metabolism [12]. Reactions catalyzed by CYPs include oxidation, hydroxylation, N-
desalkylation, O-desalkylation, and desamidation [10]. Thereby, the reactions follow
a conserved mechanism in which the substrate is oxidized by the introduction of an
oxygen atom that is activated by the heme prosthetic moiety in the active site. The elec-
trons for the reaction are transferred from their redox partner Cytochrome P450 reduc-
tase (Figure 2). Each enzyme exhibits a distinct substrate specificity with, for example,
CYP2D6 preferably accepting lipophilic bases with a hydrophobic ring and a nitrogen
atom that can be protonated under physiological conditions [10, 11, 12, 13, 14, 15].
The specificity of CYPs is highly relevant as drug-drug interactions, caused by en-
zyme inhibition or two molecules being metabolized by the same CYP, can alter the
metabolic clearance and result in severe adverse effects. In analogy, interindividual dif-
ferences in metabolic performance due to genetic polymorphism of CYP1A2, CYP2C9,
CYP2C19, and CYP2D6 can significantly alter plasma levels of drugs. For example,
there are allelic variants of CYP2D6 that can lead to a more than 5-fold increase in
the metabolic transformation of a drug compared to the wild-type enzyme [10, 11, 16].
While their intricate substrate specificity can be be partially deduced from structural
differences in the active sites of CYPs, other structural features such as differences
along the selected route of ligands to access the binding site have been evidenced to
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influence it [17, 18, 19, 20]. The active site of CYPs is buried within the core of the
enzyme and is connected by tunnels to the surrounding environment. Single amino
acid mutations along these tunnels have been shown to influence the binding kinetics of
different ligands and, hence, contribute to specificity of CYPs. Until today, experimen-
tal techniques have failed to provide atomistic detail into complex ligand access and
egress phenomena. Computational methods, on the other hand, can provide detailed
insight into associated conformational changes and dynamic events as elaborated in the
following sections and chapters [18, 20, 21, 22, 23, 24].

In contrast to prokaryotic CYPs, their mammalian counterparts are anchored to the
membrane of the endoplasmic reticulum. In addition to a helical transmembrane an-
chor, their globular domain is partially immersed in the membrane lipids with an inser-
tion depth depending on the respective isoform. Due to the lipophilicity of a large share
of CYP substrates it was postulated that hydrophobic ligands primarily enter the active
site through tunnels protruding into the membrane while hydrophilic products prefer
solvent-exposed tunnels [18, 20, 21, 22, 23, 24]. Ultimately, the complex machinery of
these flexible enzymes including their genetic polymorphism, ligand tunnels, conforma-
tional changes, and differences in their active sites have consequences on drug design
as well as pharmacotherapy in general. Its complete understanding as well as cost-
effective ways to make predictions for rational design are a highly relevant scientific
topic. As it is detailed in this thesis, computational methods can fill several knowledge
gaps and contribute to safe and efficacious therapeutics.

1.2.3 Human Carboxylesterases

Besides CYPs, hydrolytic enzymes including human carboxylesterases (hCE), among
other minor types of esterases such as acetylcholinesterase and butyrylcholinesterase,
are of major relevance for phase-I drug metabolism of drugs containing amides, esters,
and related functional groups [25, 26]. The esterification of compounds featuring a
free carboxylic acid or alcohol function is a frequently exploited technique to overcome
limitations such as poor bioavailability due to limited passive transport. The resulting
molecule is referred to as a prodrug and is, in the optimal case, released in circulation by
esterases in the blood plasma. The primary enzymes hydrolyzing ester-containing drugs
in humans are hCE-1 and hCE-2 with well-established substrates such as angiotensin-
converting enzyme inhibitors, β-blockers, and cholesterol-lowering drugs [26, 27, 28].
Furthermore, the same enzymes are also involved in the elimination of compounds and
responsible for endogenous processes such as lipid homeostasis [26, 29]. Interestingly,
the expression pattern of hCE enzymes is highly different, with hCE-1 primarily ex-
pressed systemically and hCE-2 mostly limited to the intestine. Hence, to achieve con-
trolled release of the active principle, the selectivity of a prodrug for hCE enzymes is
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of pivotal importance, as its premature hydrolysis in the GIT would render the esterifi-
cation approach obsolete [26, 30]. According to the literature, the substrate specificity
of hCE-1 and hCE-2 largely depends on the size of the acyl and alcohol moieties of
potential ligands (Figure 3A). While hCE-1 seems to prefer compounds with a small al-
cohol moiety such as methylesters or ethylesters, hCE-2 primarily cleaves compounds
with a small acyl moiety, likely due to differences in their active sites and resulting
steric limitations [26, 27, 30, 31, 32]. The main structural difference between hCE-1
and hCE-2 is a missing loop close to the active site in hCE-2 (Figure 3B). In addition
to their role as drug-metabolizing enzymes and their endogenous functions, hCEs have
been implicated as drug target for hypertriglyceridemia and diabetes [27, 33, 34].

Figure 3 Comparison of hCE-1 and hCE-2. (A) The rationale for the substrate speci-
ficity of hCE-1 and hCE-2 based on the size of the resulting hydrolysis products is
shown with the structure of cocaine as an example. (B) The main structural differences
between hCE-1 and hCE-2 by comparing a crystal structure of hCE-1 to a modeled
structure of hCE-2.

The experimental determination of the hCE selectivity requires the use of recombi-
nant proteins and comes with high costs. Computational methods, on the other hand,
can serve as predictive tools to estimate which enzyme is responsible for the hydroly-
sis of a functional group [31, 35, 36]. Moreover, the prediction of hCE metabolism is
important to avoid potential drug-drug interactions, similar to the situation for CYPs
[26, 35]. In total, approximately 10% of marketed drugs follow a prodrug principle of
which around half of them are activated by hydrolysis, rendering the estimation of the
substrate specificity of hCEs an important task in the field of predictive metabolism.
In Chapter 4 of this thesis, a predictive tool relying on machine learning algorithms is
introduced to address this challenge.

1.2.4 Nuclear Receptors

Nuclear receptors (NRs) are a large family of ligand-inducible transcription factors,
meaning that the interaction with a small-molecule leads to the direct regulation of gene
transcription. They are involved in highly important physiological processes including
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cell proliferation, development, immunity, metabolism, and reproduction. Moreover,
they have been implicated in several diseases such as hormone-dependent cancers, di-
abetes, and obesity [4, 37, 38, 39]. Thus, a large share of NRs have been implicated
as drugs targets, such as the androgen receptor (AR) in prostate cancer or the estrogen
receptors (ERs) in breast cancer, leading to several NR-targeting therapeutics available
on the market today [40, 41, 42, 43]. However, as cancer cells have a comparatively un-
stable genome, they can acquire mutations leading to drug resistance, such as distinct
changes in binding site of the AR [44, 45, 46]. Therefore, there remains an unmet need
for novel therapeutics that circumvent the resistance mechanisms developed by cancers.

NRs share a common structural architecture consisting of three domains: the N-
terminal domain, which is highly variable in different receptors, the DNA-binding do-
main mediating interactions with the DNA, and the ligand-binding domain (LBD) re-
sponsible for their regulation with small-molecules. While all domains have been con-
sidered as targets by drug discovery scientists [47, 48], the LBD is the primary target
for pharmacological intervention. The LBD exhibits a common fold among hormonal
NRs (Figure 4A). Similar to CYPs, the orthosteric binding pocket for small-molecules
in NRs is buried within the core of the protein. However, in NRs they are referred to
as pathways instead of tunnels [49, 50]. Using computational methods, experimental
or clinical findings regarding the binding kinetics could be revealed in atomistic detail,
underlining their suitability as predictive tools in this context [49]. Furthermore, the
transport of ligands can be influenced by auxiliary proteins delivering lipophilic com-
pounds to the soluble receptors, such as CRABP2 for the retinoic acid receptor [51].

In addition to their orthosteric binding site located in the core of the LBD, super-
ficial allosteric sites denoted as activation function-2 (AF-2) and binding function-3
(BF-3) (Figure 4B) have been implicated as drug targets, especially for the treatment of
castrate-resistant prostate cancer. At this stage of the disease, structural changes such as
amino acid mutations in the binding pocket or alternative splicing can render classical
antiandrogens obsolete [52, 53, 54]. Another incentive to target alternative binding sites
in NRs is the lack of selectivity of antagonists for hormonal receptors due to the com-
mon steroid scaffold of their natural ligands. The AF-2 site corresponds to a protein-
protein interaction surface responsible for the binding of coactivator proteins necessary
for downstream signaling (Figure 4C). On the other hand, the BF-3 site has been impli-
cated in the allosteric regulation of the protein-protein interactions at the AF-2 site as
well as in the interaction with auxiliary proteins such as chaperones. Interestingly, most
efforts toward allosteric NR antagonists were initially based on computational design.
Compounds binding to the allosteric sites of AR, ERα, thyroid receptors, as well as the
glucocorticoid receptor have been reported. However, this class of compounds has not
yet reached clinical application to this date [52, 55, 56, 57, 58, 59, 60].
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Figure 4 Structural aspects of NRs. (A) Structural superposition of the androgen recep-
tor, estrogen receptors α and β, the glucocorticoid receptor, mineralocorticoid recep-
tor, progesterone receptor, as well as the thyroid receptors α and β with three helices
specifically highlighted. (B) The AF-2 and BF-3 allosteric sites depicted in two differ-
ent colors with surface representation. (C) Fragment of a coactivator protein bound to
the AF-2 site of the androgen receptor.

1.3 Molecular Modeling

1.3.1 The basis of molecular modeling in drug discovery

Computational chemistry, molecular modeling, computer-aided drug design, and chem-
informatics are terms used for computational techniques applied in academia as well as
the chemical or pharmaceutical industry to conduct research and provide novel insights.
The boundary between the individual fields is sometimes ambiguous. While compu-
tational chemistry generally focuses on molecular mechanics and quantum-chemical
calculations, cheminformatics primarily deals with the generation and interpretation
of chemical data using machine learning and data science techniques, including the
correlation of structure and activity [61, 62]. Molecular modeling encompasses theo-
retical or computational methods that provide a simplified or idealized description of
the behavior of molecules [63]. Lastly, the term computer-aided drug design (CADD)
covers all computational approaches applied to drug discovery and development [64].
Methods in CADD can be generally classified as ligand-based drug design (LBDD) and
structure-based drug design (SBDD). Again, many techniques in LBDD are related to
cheminformatics such as similarity searching and quantitative-structure activity rela-
tionships (QSAR) [61, 65]. While structural information from laboratory experiments
can be highly useful in LBDD, especially in regards to crystal structures of small or-
ganic compounds, SBDD is strongly dependent on the availability of experimentally
determined structures of the respective biological target. Among the most prominent
approaches leveraging structural information of macromolecules are molecular dock-
ing applied to structure-based virtual screening and molecular dynamics simulations,
modeling processes related to molecular recognition [66, 67].

As already mentioned, SBDD methodology depends on experimental structure de-
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termination by structural biologists. The most prominent method to obtain structures of
proteins is X-ray crystallography contributing to over 150000 entries of the Protein Data
Bank (PDB) [68, 69], which is the primary database for macromolecular structures. In
principle, the method involves the crystallization of purified protein molecules, result-
ing in crystals which diffract X-ray beams producing a unique diffraction pattern that
can be detected. Using a mathematical method termed Fourier transformation the ob-
tained data can be transformed into an electron density map, which is ultimately fitted to
the atomic structure of the protein using computational algorithms [70, 71] (Figure 5).
In structures derived from X-ray crystallography, hydrogen atoms are generally not vis-
ible as they only have one electron. During the pre-processing steps for the application
of SBDD methodology, hydrogen atoms are usually generated by computer algorithms
[72].

The second largest group of deposited structures in the PDB comes from nuclear
magnetic resonance (NMR) spectroscopy of liquid samples [68, 69, 70, 73]. In this tech-
nique, the sample is exposed to a magnetic field and the atomic nuclei are excited with
radio waves. In response, the local magnetic field around the nuclei changes depending
on their electronic environment, allowing to obtain structural information. Inter-atomic
distances of up to 6 Å are derived from Nuclear Overhauser Effect experiments, relying
on the transverse magnetization between nuclei. Longer distances, on the other hand,
can be determined with paramagnetic relaxation. By the use of J-couplings, one can
obtain information about dihedral angles. For protein structure determination, the re-
sulting empirical parameters are computationally interpreted as restraints to represent
the structure of a protein [73, 74].

Figure 5 Visualization of protein structures determined by the three most common
structure elucidation methods. (A) Electron density map of the active site of CYP2D6
bound to the inhibitor prinomastat (PDB ID: 3TDA). (B) Structural ensemble explain-
ing the recognition dynamics of ubiquitin captured by protein NMR spectroscopy (PDB
ID: 2K39). (C) Cryo-EM structure of the spike glycoprotein of the severe acute respi-
ratory syndrome coronavirus-2 (PDB ID: 7CZQ) with a total of 1283 amino acids.

The third largest group of over 8000 structures are derived from cryo-electron mi-
croscopy (cryo-EM), representing the most recent technique applied to protein structure
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determination [68, 70]. In cryo-EM, electrons focused by a magnetic field are projected
at the sample, which interact with the Coulomb potential of each atom, resulting in a
diffraction pattern that can be detected and interpreted. In addition, a magnified im-
age of the molecules can be directly registered at the back-focal plane of the transmis-
sion electron microscope. Importantly, cryo-EM can be used to analyze non-crystalline
samples. This circumvents one of the bottlenecks of X-ray crystallography, as it can
be challenging to obtain well-ordered crystals for certain proteins and macromolecular
assemblies [70, 71].

In conclusion, the availability of protein structures derived from X-ray crystallogra-
phy, NMR spectroscopy, or cryo-EM form the inherent foundation of SBDD. However,
the number of available structures is comparatively low regarding the approximately
106 million of non-redundant of protein sequences annotated in the National Center for
Biotechnology Information database. In the case of a lacking 3D structure of a par-
ticular target, computational modeling can fill the gap [75]. In a technique referred to
as homology modeling, a template structure of a homologous protein is used to derive
a model for the target protein. The technique relies on the fact that the protein se-
quence determines its three-dimensional structure and that their structure is conserved
despite differences in the sequence [75, 76]. In particular, a sequence similarity of at
least 25% is recommended between target and template. Essentially, the first step is to
align the sequences of target and template, followed by the building of a rough model
of the protein backbone. In the next steps, the structure is iteratively refined by loop
modeling, side-chain addition, and general optimization [75, 76]. While classical ho-
mology modeling remained the gold standard in protein structure prediction for many
years, advancements in artificial intelligence methods fueled by improvements in com-
putational architecture have gained a lot of attention. In general, they allow to obtain
contact maps between protein residues and, thus, to predict the spatial proximity of in-
dividual amino acids. Only recently, an algorithm termed AlphaFold was introduced
that, despite the lack of a homologous structure, allowed to predict models with atomic
accuracy [76, 77]. The combination of template-based homology modeling together
with contact maps derived from deep learning will likely lead to further improvements
in protein structure prediction and, therefore, will allow to address novel therapeutic
targets using computational techniques [76].

1.3.2 The most relevant interactions of drugs with proteins

In the course of this thesis, various types of ligand-protein interactions will be men-
tioned, which will be briefly addressed in this paragraph. Ligand-protein interactions
constitute the basis of molecular recognition of drug compounds and are a fundamental
component to be addressed in SBDD. They are of major importance for the estimation

9



of the binding strength of a compound, which is one of the central tasks in computer-
assisted drug design. According to the Gibbs equation, the binding free energy of a
ligand depends on enthalpic and entropic terms. The thermodynamic profile of dif-
ferent ligands may show high variation, can be driven by either a gain in enthalpy or
entropy, and strongly depends on the thermodynamic cycle of a ligand binding event
[78, 79, 80, 81].

The most abundant intermolecular interaction is the van der Waals force based on
the electrostatic attraction (or repulsion) between permanent and induced dipoles (Fig-
ure 6A). In particular, they are considered as a combination of London dispersion forces,
Debye forces, and Keesom forces. London dispersion forces arise from non-polar atoms
due to temporary fluctuations of their electron cloud and the resulting altered charge
distribution. This temporary dipole induces a redistribution of the charge distribution
of neighboring molecules, leading to electrostatic interactions between them. Keen-
som forces result from the electrostatic interaction of permanent dipoles. Lastly, Debye
forces are based on a temporary dipole induced by a permanent one. Even though van
der Waals forces are comparatively weak, they are additive and, thus, contribute signif-
icantly to molecular recognition [82].

Figure 6 Molecular interactions. (A) Van der Waals interactions between ω-imidazolyl
octanoic acid bound to the active site of CYP2E1 (PDB ID: 3KOH). (B) Schematic
depiction of a hydrogen bond between a water molecule and a carbonyl group with
partial charges indicated. (C) Charge-assisted hydrogen bond of doxepin in complex
with the human histamine H1 receptor (PDB ID: 3RZE). (D) Ligandmetal interac-
tion of lisinopril with angiotensin-converting enzyme (PDB ID: 1O86). (E) 4,5,6,7-
Tetrabromobenzotriazole acting as halogen bond donor in complex with cylclin A2
(PDB ID: 1P5E). (F) 2-(4-Bromobenzyl)carbamoyl-5-chlorophenoxy acetic acid act-
ing as halogen bond acceptor in complex with aldole reductase (PDB ID: 4LAU).

Hydrogen bonds are attractive interactions between a hydrogen atom in a polarized
bond and a neighboring electronegative atom (Figure 6B). They arise from electrostatic
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forces between the so-called donor (containing the hydrogen atom) and the acceptor
resulting from a permanent multipole and, in contrast to van der Waals interactions,
present strict geometrical preferences depending on the involved atoms. The angle be-
tween donor and acceptor in hydrogen bonds is generally greater than 150° along the di-
rection of the free electron pair of the acceptor atom. When distances of hydrogen bonds
consisting of nitrogen and oxygen atoms were measured in crystal structures, the distri-
bution of the median lengths were 2.9 and 2.8 Å for the donors N-H and O-H, respec-
tively. Due to their geometry and the resulting directionality, they are important for the
specificity of ligand-protein association [78, 83]. In general, electrostatic interactions
follow Coulomb’s law and, therefore, decrease inversely proportional to the distance
between the charges [63]. As the force is stronger when the point charges are large,
hydrogen bonds are stronger if the donor and acceptor is charged (Figure 6C). In this
situation, the interaction is referred to as charge-assisted hydrogen bond or salt bridge
[63, 80, 84]. Furthermore, electronegative atoms or charged groups can interact with
metal ions that are bound to the protein (Figure 6D), such as angiotensin-converting
enzyme inhibitors which are clinically used to treat high blood pressure [80, 85].

In addition to conventional hydrogen bonds of moieties containing oxygen and ni-
trogen atoms, the halogen atoms bromine, chlorine, and iodine have unique electronic
properties that allow for weak electrostatic interactions termed halogen bonds. Their
electrostatic potential is anisotropic with a positive region at the tip of the halogen,
referred to as σ-hole, and a negative region. Thus, whereas the σ-hole can act as a
hydrogen bond donor along the axis of the covalent bond of the halogen, the negative
region can act as an acceptor perpendicular to the covalent bond (Figures 6E and F).
Halogen bonds are weaker and longer than typical hydrogen bonds, while their strength
increases with the size of the halogen atom. On the other hand, fluorine atoms are less
polarizable and more strongly electronegative resulting in the absence of a pronounced
σ-hole [18, 78, 86].

It has been proposed, that the single best parameter for a correlation with binding
affinity is the amount of hydrophobic ligand surface that is buried upon its associa-
tion with a protein. If a non-polar molecule is surrounded by water molecules, the
entropy decreases due to the ordering of the solvent around it. This can be avoided
if multiple non-polar molecules aggregate resulting in an entropically favorable contri-
bution, which was defined as the hydrophobic effect [78]. In addition to the entropic
contribution, enthalpically favorable interactions involving π-electrons, hence termed
π-interactions, of aromatic rings can occur due to their specific shape and electronic
properties. In particular, the electron-rich π-system above and below of a benzene ring
bears a negative partial charge, while the connected hydrogen atoms are electropositive
[87, 88]. This leads to the possibility for aryl-aryl interactions as well as additional phe-
nomena involving aromatic rings and other polarized moieties (Figures 7A-D). Between
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two aryl rings, three different configurations are known: (i.) a T-shaped interaction be-
tween a hydrogen atom and the negative charge of the π-system of orthogonal rings,
(ii.) a parallel-displaced orientation following the same principle as a T-shaped one,
and (iii.) a sandwich or face-to-face configuration with two parallel rings, relying on
van der Waals forces between the atoms due to poor electrostatics resulting from the
repulsion of the π- electron clouds [88, 89, 90]. Interactions with non-aryl components
include cation-π interactions, where a positively charged atom such as a basic nitrogen
or an ion undergoes an electrostatic interaction with the partial negative charge of the
π-system resulting in a strong attraction. Furthermore, alkaline metals can interact with
π-systems in a similar fashion [87, 88].

Figure 7 Molecular interactions. (A) T-shaped π-interaction of the hu-
man histamine H1 receptor in complex with doxepin (PDB ID: 3RZE).
(B) Parallel-displaced π-interaction between 4-[(6-Chloro-2-naphthalenyl)sulfonyl]-
1-[[1-(4-pyridinyl)-4-piperidinyl]methyl]-2-piperazinecarboxylic acid ethyl ester and
the human coagulation factor Xa (PDB ID: 1IQJ). (C) 1,2,3-Trihydroxy-1,2,3,4-
tetrahydrobenzo[a]pyrene interacting with a DNA fragment through π-stacking inter-
actions. (D) Cation-π interaction between acetylcholine and the acetylcholine bind-
ing protein. (E) Water-mediated molecular interaction between acetylcholine and the
acetylcholine binding protein (PDB ID: 3WIP)

Besides direct contacts, the interaction of a ligand and a protein may be mediated by
water molecules (Figure 7E), especially in solvent-exposed binding sites [78, 91, 92].
Furthermore, the binding process of a ligand involves the desolvation of both the lig-
and and its binding site. Whether the release of a water molecule from a binding site
is favorable regarding the ligand binding free energy inherently depends on enthalpic
and entropic contributions. While it is considered that the release of water molecules
from the binding site is entropically favorable, some of them might strongly interact
with the binding pocket. For example, the removal of a water molecule from a charged
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functional group such as a carboxylate is accompanied by a high desolvation penalty,
which consequently has to be compensated by strong ligand-protein interactions. Thus,
detailed understanding of solvation thermodynamics is needed for the accurate predic-
tion of the ligand binding free energy [92, 93, 94]. In Chapter 8 of this thesis, the
characterization of hydration sites was considered to examine the efficacy of allosteric
NR modulators.

1.3.3 Molecular docking

The technique referred to as molecular docking, which is one of the most frequently
exploited approaches in CADD, relies on the above-mentioned key-and-lock principle
describing molecular complementarity. Essentially, it predicts the interaction of a lig-
and with a target structure. In the classical case, the ligand represents a small-molecule,
in analogy to the majority of drugs on the market. However, algorithms to predict
the interaction of peptide, protein, or nucleic acid ligands have been developed as well
[1, 2, 81, 95, 96, 97]. In the above-described overview of CADD methodology, it can be
assigned to the SBDD techniques and, therefore, strongly relies on high-quality struc-
tural information of the target macromolecule. It is one of the most popular methods
applied in drug discovery applicable to the screening of virtual libraries and the devel-
opment of obtained hits into drug candidates, leading to several success stories in the
past. [80, 81, 96, 98].

Generally, docking can be divided into two stages: a sampling stage probing the
orientation of the ligand, also referred to as pose, within a predefined binding pocket
followed by a scoring stage estimating its binding free energy. As modern algorithms
for small-molecule docking treat the ligand as flexible entity, conformational sampling
of the ligand is combined with its translational and rotational degrees of freedom. This
results in a large number of possible solutions [81]. While it is often time-intensive,
the sampling stage can be optimized, for example, by matching pharmacophores be-
tween the binding pocket and the ligand, limiting the number of orientations to the ones
with a potential for favorable ligand-protein interactions [97]. Scoring of the individual
orientations generated in the sampling stage is used to select the putative correct pose
using a so-called scoring function. These mathematical representations can be roughly
divided into empirical, force-field based, and knowledge-based scoring functions. Em-
pirical scoring functions consist of the sum of various energy terms, such as the ones
accounting for intermolecular interactions introduced in the previous section, weighted
by coefficients. These coefficients are optimized to correlate with binding affinity data
that is used during training. Force-field scoring functions follow the concept of a molec-
ular mechanics force-field approximating the potential energy of a system. A force-field
combines bonded and non-bonded terms, although scoring functions primarily address
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non-bonded terms describing intermolecular interactions. As force-fields are a central
component of molecular dynamics (MD) simulations, they will be discussed in more
detail in the following section. Lastly, knowledge-based scoring functions leverage
databases by associating an energy component with frequently observed ligand-protein
contacts to ultimately sum up the energy components for a given pose [81]. The valida-
tion of docking protocols prior to their application for SBDD is highly recommended,
especially as the performance of an algorithm can depend on the target under investi-
gation [80, 99, 100, 101]. The high number of available crystal structures for certain
targets allows for an assessment of the pose prediction accuracy of docking protocols by
comparing the predicted poses to the ones that were experimentally determined (Fig-
ure 8). Most frequently, the root-mean square deviation (RMSD) between the heavy
atoms of the two molecules is used as a performance metric, although this approach
comes with certain limitations. For example, the RMSD strongly depends on the num-
ber of atoms in a particular ligand, and consequently, is often higher for large ligands
[100, 101, 102, 103]. As ligand-protein interactions are the central component of lig-
and recognition, it was suggested that a comparison of the intermolecular interactions
in the experimental and docked pose is a more useful metric to be assessed [100]. In
addition to the pose prediction accuracy, the ranking performance can be explored by
the correlation of docking scores to binding affinities of known ligands [104]. An-
other common way to validate scoring is to compile a library of presumably inactive
decoy compounds, optimally with physicochemical properties matching a set of known
actives. From the resulting docking scores of the actives and decoys, a Receiver Oper-
ating Characteristic (ROC) curve can be computed by plotting the true positive rate of
detecting an active against the false positive rate. The area under the curve (AUC) in
such an ROC plot often serves as a quantitative measure describing the performance of
a docking application [105, 106].

Figure 8 Docking poses compared to experimentally determined binding modes in crys-
tal structures. (A) Redocking of triiodothyronine in the orthosteric binding site of thy-
roid receptor α. (B) 1-(5-methylthiophen-2-yl)-3-pyridin-3-ylurea bound to the main
protease of SARS-CoV-2 (PDB entry 5RH0). The native pose is shown left, while a
slightly different pose from docking is displayed at the right. The figure was adapted
from a binding pose prediction challenge in a recent review [80].
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While early expectations for the impact of docking were not completely fulfilled,
current algorithms achieve a pose prediction accuracy of over 80% for a near-native
pose among the top-5 [107]. However, the accurate scoring and ranking of the ob-
tained orientations still remains a challenge due to the simplistic mathematical repre-
sentation of the complex binding thermodynamics behind ligand-protein association.
Due to these inaccuracies, it is important to keep in mind that even though the use of
computers advanced the rational design and discovery of drug candidates, human inter-
vention is often required to post-process results from docking by visualizing the gen-
erated complexes. While the analogy to poses of similar ligands in crystal structures,
shape-complementarity, interactions with specific residues, and general electrostatics
can be evaluated during this visual inspection, automatized techniques including inter-
action fingerprints, scaffold docking, or the automatic comparison of congeneric series
can support the process. Furthermore, docking poses can be subjected to post-scoring
methods based on molecular mechanics/generalized Born surface area (MM/GBSA),
alternative scoring functions, alchemical binding free energy calculations, or machine
learning algorithms [80].

Since the postulation of the key-and-lock principle, additional insight into molecu-
lar recognition could be obtained regarding the flexibility of binding events. Both the
ligand and the protein can mutually adapt upon binding as it was shown in over 90%
of structures in the PDB, for which apo and holo structures were available [80, 96,
108]. Thus, the key-and-lock principle was revised to the hand-and-glove principle by
Koshland [109]. In order to address these phenomena, several flexible docking algo-
rithms have been introduced, allowing either side chains to adapt, subject the complex
to a molecular mechanics minimization, dock the ligand to an ensemble of structures,
or post-process the pose with MD simulations [96, 97, 110, 111]. Many of these al-
gorithms require intensive computation, limiting their applicability to the screening of
smaller libraries as they are typical during lead optimization procedures [80].

1.3.4 MD simulations

”The living cell has as many macromolecules as the United States have citizens. And

that is a very good comparison, because these molecules in the cell form a society. They

assemble and they work together. And that is what life sciences and medicine tries to

understand. The problem is, to look at all this detail, to see what all these molecules,

citizens, do in the cell, there are many microscopes that have been tried - for example

the famous light microscope, but it can not resolve the citizens. And it is a computer

that is actually today finally permitting us to see the citizens at work. The citizens that,

in some cases, just build pipes and, in some other cases, amazing machines that read

the genetic information and turn it into new proteins of the cell or to harvest the sun
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light to solve the energy problem of nature. So, this computational microscope is not

made of glass and metal, but it is made of software.”

This is an inspiring quote of a talk by Klaus Schulten, one of the pioneers in MD
simulations who sadly deceased in 2016, given at the University of Illinois in 2010. The
computational microscope he was referring to in his talk is based on MD simulations of
biological macromolecules [112].

As described in the previous section on molecular docking, molecules are flexible
entities capable of changing their conformation rapidly. Although three-dimensional
structures are able to support our understanding of these dynamic motions, obtaining
them is costly and sometimes not possible. Thus, researchers have sought for alter-
native techniques to predict protein motions [113]. This led to the discovery of MD
simulations, during which the input atomic coordinates of a molecular system are trans-
formed to represent a point later in time (Figure 9A) based on classical mechanics
described by equations I and II [113, 114]. Equation I corresponds to Newton’s sec-
ond law [63], while equation II descends from the arithmetic mean of the common
acceleration in classical mechanics and is used to transform the atomic coordinates
[63, 114, 115, 116]. The potential that enacts on each atom is computed by a molec-
ular mechanics force-field considering bonded and non-bonded interactions (equations
III to VII in Figure 9B). Among the bonded interactions, bond stretching (Ebond) and
angle bending (Eangle) have the same functional form as they are described by harmonic
potentials. Dihedral angles (Etorsion) are described by a series of cosine functions as
shown in equation V. The non-bonded interactions include a term for electrostatic in-
teractions described by the Coulomb law and a Lennard-Jones term quantifying van der
Waals interactions [63, 114, 116]. Parameters of the force-field such as bond lengths
are generated to fit experimental or quantum-mechanical data in a process denoted as
force-field parameterization [113]. In general, an MD algorithm starts with the input of
the atomic coordinates of the system, which are attributed a randomized initial velocity
sampled from a Boltzmann distribution. In order to evaluate the statistical uncertainty
of a simulation, it is common practice to conduct multiple runs with different seeds
used to compute the random initial velocities [116, 117]. In a next step, the potential to
translate the atoms is obtained by force field calculations, followed by the translation of
the atoms and updating of the time by the selected time step as shown in Figure 9. In
a certain time interval during the simulation, atomic coordinates are deposited resulting
in a trajectory of the system that can be analyzed and visualized [116].

When attempting to simulate atomic motions, one has the consider the extremely
short timescales of atomic events. The vibrations of bonds, for example, take place in
the femtosecond (fs) timescale, meaning that the time steps that have to be applied to ac-
curately simulate proteins need to align with these fast motions. While solvent-exposed
side chains can rotate in the picosecond to nanosecond timescale, global conforma-
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tional changes or protein folding may only take place within seconds [115, 116, 118].
Generally, the interval for the integration of the differential term in equation I (Figure
9B) is selected to be 1-2 fs based on a compromise between accuracy and efficiency.
By using SHAKE algorithms, distance constraints are applied to the fastest degrees of
freedom in a bio-molecular system such as vibrations of bonds to hydrogen atoms, en-
suring their accurate representation [114, 119]. Importantly, the above-mentioned time
step is referred to as the inner timestep, which is applied for the computation of the
fastest components of a particular system. A second outer time step is used for slower
components, resulting in a speed-up as the computationally demanding calculations of
long-range forces have to be performed less frequently [120]. Additional algorithms
such as particle-mesh Ewald apply a specific cutoff for electrostatic interactions after
which the contributions are evaluated in Fourier space, further reducing the computation
time [121].

Figure 9 Force-field terms and MD algorithm. (A) A simplified scheme of an MD al-
gorithm according to Lindahl [116]. (B) The fundamental equations behind an MD al-
gorithm are presented. While equation I corresponds to Newton’s second law, equation
II illustrates how atomic coordinates are transformed according to classical mechanics.
The force-field terms (equations III to VIII) are shown at the example of the OPLS
force-field [122].

To accurately reproduce physical conditions of a microscopic system in which nei-
ther matter or energy are exchanged to its surroundings and reproduce its macroscopic
behaviour, so-called thermodynamic ensembles were introduced [63, 114]. The iso-
thermal-isobaric ensemble (NPT), keeps the number of particles (N), the pressure (P),
and the temperature (T) constant facilitated by thermostat and barostat algorithms.
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Thermostats ensure that the macroscopic temperature of a system remains constant
by adequate adaptions to the equations of motion, while barostats appositely scale the
system volume. The NPT ensemble reflects laboratory conditions most closely. Two
other ensembles are the canonical ensemble (NVT) with constant volume and tempera-
ture as well as the microcanonical ensemble (NVE) with constant energy and volume.
[63, 114, 123]. In bio-molecular simulations, the molecules under investigation are
immersed in a box of solvent molecules. As ligand-protein association most frequently
takes place in an aqueous environment, water is commonly used as solvent. To allow the
explicit treatment of water, several water models have been developed to reproduce its
behavior. Among the most common rigid water models are the transferable intermolec-
ular potential 3P (TIP3P), simple point charge (SPC), and simple point charge extended
(SPC/E) models. These models comprise of Lennard-Jones and Coulomb terms and
possess three interaction points with point charges [114, 124]. In addition to water
molecules, other biologically relevant constituents such as membranes can be added to
the system to accurately reproduce physiological conditions. To attain bulk properties
and a constant number of particles and allow for the application of electrostatic cutoff
algorithms, periodic boundary conditions are employed, for which a central unit cell is
replicated in all three dimensions, forming an infinite lattice of copies [114, 125, 126].

Following the description of the time steps, a high number of iterations have to be
conducted to reach a timescale of bio-molecular relevance. If an interval of 2 fs is se-
lected, a microsecond simulation requires half a billion steps. In addition, systems of
ligand-protein complexes, as they are often studied during structure-based drug design
can consist of more than a million atoms including the solvent. Thus, early applications
of MD simulations were limited to small systems due to the demanding computational
task at hand, despite the above-mentioned techniques to improve efficiency [127, 128].
However, due to recent developments in computer hardware, especially graphics pro-
cessing units (GPUs), the timescale accessible to MD simulations has massively in-
creased. Nowadays, it is possible to routinely conduct simulations with a duration of
multiple microseconds [114, 129]. Furthermore, dedicated supercomputers, such as
the one developed by D.E. Shaw Research, allow to capture events taking place in the
second timescale with a peak performance of over 200 microseconds per day [130].

1.3.5 The application of MD simulations

As described in the previous section, MD simulations allow to incorporate flexibility
into a molecular system by transforming its coordinates according to classical mechan-
ics supported by a force-field evaluating the bonded and non-bonded interactions. Thus,
as the treatment of flexibility is often limited in docking calculations, MD simulations
can overcome this limitation, allowing to study the time-evolved stability of a docking
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pose and potential conformational rearrangements (Figure 1A and 1C)). This is one of
their main applications in the field of SBDD [114].

A primary objective of nearly all drug discovery projects is the design of strongly
binding (high affinity) ligands while maintaining favorable properties regarding toxicol-
ogy and pharmacokinetics. Hence, the estimation of the binding affinity of a particular
compound for a pharmaceutically relevant protein is one of the major tasks in CADD,
as previously discussed. Docking scores obtained from scoring functions often present
a low correlation with experimentally determined binding affinities due to the simpli-
fied description of the underlying thermodynamics [78, 80, 93, 114, 131, 132, 133]. As
the accurate estimation of ligand-protein binding free energy requires the consideration
of all components of molecular recognition, including description of conformational
adaptation and flexibility as well as effects of the surrounding solvent, MD simulations
are of particular interest for this task [78, 131]. In analogy to other techniques, the ac-
curacy of methods to estimate binding free energies correlates with their computational
expense. These methods can be generally divided into endpoint methods and pathway
methods. Endpoint methods sample the ligand and protein in both the unbound and
bound state, computing the energy difference between these states. These methods in-
clude linear interaction energy, molecular mechanics Poisson–Boltzmann surface area
(MM/PBSA) molecular mechanics generalized born surface area (MM/GBSA) calcu-
lations [131, 134, 135]. Even though endpoint methods often show better performance
than a scoring function [80, 136, 137], their missing consideration of conformational
entropy and the simplification of water thermodynamics by implicit treatment can still
affect their accuracy [134]. In Chapter 6 of this thesis, MM/GBSA calculations were
employed to post-process MD simulations of a combination of ligands bound to the
AF-2 and BF-3 allosteric sites of NRs with orthosteric antagonists. The methodology
was used to estimate if a combination of these compounds results in a gain in binding
free energy for allosteric inhibitors [55].

Pathway methods include steered MD (introduced below), umbrella sampling, ther-
modynamic integration, and free energy perturbations (FEP), of which the latter is con-
sidered the current gold standard [80, 135, 138]. In principle, FEP rely on specialized
MD simulations during which the relative binding free energy between a set of similar
or congeneric ligands is estimated. According to the thermodynamic cycle, the relative
binding free energy between two ligands can be either obtained by comparing their free
energies derived from (un-)binding simulations or by transforming them into each other
in the bound and unbound state. While it is computationally highly intensive to simulate
the former (as detailed below), the latter method is used in FEP. This means, that differ-
ent pairs of ligands are compared by alchemically transforming them into each other,
both bound to the protein and in solvation with explicit water molecules. The alchemical
transformation, also called perturbation, is performed in so-called λ-windows in which
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one state is gradually transformed into another. Since the perturbation from one ligand
to another needs to be relatively small to retain accuracy, the methodology is frequently
applied in lead optimization, as congeneric series are common at this stage. To increase
the accuracy and give an estimate for the statistical confidence of a result, a ligand
is compared with multiple other ligands resulting in a closed cycle. Today, the FEP+
technology developed by Schrödinger can achieve an accuracy of roughly 1 kcal/mol
due to recent advancements of force-fields, enhanced sampling techniques, computa-
tional capabilities, and a clever simulation setup. It is likely that further developments
in hardware as well as the accuracy and efficiency of FEP calculations will increase the
integration of such SBDD techniques in drug discovery workflows [134, 135, 138].

Interestingly, the development of GPU-accelerated simulations allowed to com-
pletely reproduce binding events of ligands from the solvated state of both ligand and
protein to the formation of a ligand-protein complex [18, 139]. As such binding events
usually take place in the microsecond timescale, they are considered rare molecular
events and their investigation requires high computational efforts. To overcome this
limitation, biased sampling techniques such as steered MD (SMD), random-accelerated
MD (RAMD), accelerated MD, and metadynamics simulations have been developed.
In these techniques, the potential derived from the force-field is adapted to encourage
sampling of nearby regions on the potential energy surface. SMD simulations, in par-
ticular, apply an external force to the ligand in the form of a directional vector attached
by a harmonic spring to steer the ligand in a predefined direction [49, 140, 141]. While
RAMD simulations follow a similar approach, the direction of the force is not prede-
fined, but randomly adapted if the ligand does not cover a certain distance along the
trajectory [49, 142]. In accelerated MD simulations, a boost potential is added on top
of the force-field, which was classically applied to the torsional term while more re-
cent methods also modify the total potential. In this way, the energy surface is sampled
more extensively by encouraging the system to escape local minima [143, 144]. Lastly,
metadynamics simulations are based on the definition of collective variables (CVs) de-
scribing the reaction coordinate of a particular process within a molecular system. In
this approach, the normal evolution of a system is biased by a history-dependent po-
tential defined by a Gaussian centered on the trajectory followed by the CVs. The free
energy surface of a particular process can be iteratively reconstructed based on the sum
of the Gaussian potentials deposited during the process. Due to the possibility to sample
rare molecular events in combination with the estimate for the free energy associated
to a particular process, metadynamics simulations are widely applied to study biophys-
ical phenomena [131, 145, 146]. In the course of this thesis, metadynamics simulations
were applied to study the dissociation of ligands from a particular binding site (Chap-
ters 3 and 6). In this context, the CV describing the reactions coordinate of the system
was selected as the distance between the ligand and atoms in the binding site based on
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geometrical centroids. Furthermore, the progress of GPU-accelerated MD algorithms
allowed to employ conventional unbiased MD simulations to study the complete asso-
ciation process of CYP2D6 substrates. As amino acid mutations resulting from genetic
polymorphism can influence the metabolic efficiency of CYP2D6, their influence on
this association process could be highlighted. The use of unbiased simulations can
serve as a blueprint to evaluate outcomes from biased sampling techniques [18].

Figure 10 Applications of MD simulations. (A) Distortion of helix 3 in thyroid re-
ceptor α induced by the antagonist dronedarone revealed by MD simulations [147].
(B) The recognition process of acetaminophen to CYP2D6 in unbiased MD simula-
tions. (C) Structural ensemble of triiodothyronine bound to thyroid receptor α obtained
from an MD simulations. In addition, a protein residue involved in a salt bridge is de-
picted. (D) Hydration site detected in the active site of thrombin [148]. (E) Density
map obtained from a cosolvent MD simulation of prostasin [148].

Another application of MD simulations is the detection and profiling of hydration
sites of a protein, often focused on its binding site. As described in previous sections,
hydration phenomena are of keen relevance for ligand recognition and, therefore, the ex-
amination of the thermodynamic properties of water molecules solvating binding sites
can support the design of potent and selective compounds [78, 92, 114]. Although
experimental structure elucidation can be useful to locate hydration sites [149], the ap-
proach suffers from two limitations: several structures with low resolution are necessary
and water molecules are often not visible in structures derived from X-ray crystallogra-
phy. Since MD simulations include explicit water, methods were developed monitoring
the location of water molecules by processing MD trajectories [92, 133, 150, 151]. A
common technique is to subject the atomic coordinates of water molecules in an MD
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trajectory to a clustering algorithm such as 3D-DBSCAN resulting in a map of hydra-
tion hotspots with a certain occupancy [55, 133, 151]. In a next step the enthalpy and
entropy are estimated to compute the binding free energy of a particular hydration site.
The enthalpic contribution can be derived from the difference of electrostatic and van
der Waals interactions in the hydration site compared to bulk solvent. The entropic
contribution of removing the water molecule from the binding site can be computed by
considering its degrees of freedom from a probability density function in the hydration
site and the bulk solvent [133, 152] The incorporation of hydration data into scoring
functions can result in a higher percentage of successfully ranked ligands. Recently,
methods emerged to obtain the same data from a single static structure by training deep
neural networks with hydration data from MD simulations [91].

Similar to the characterization of hydration sites, cosolvent MD simulations can be
used to monitor the association of small organic probe molecules with the target of in-
terest. The organic probes are selected to cover fragments of potential small-molecular
ligands for the protein. Common probes include acetonitrile, isopropanol, and pyri-
dine due to their low potential for aggregation. In contrast to adding multiple complete
copies of a ligand, fragments can exchange more rapidly with binding sites resulting in
less computational effort for binding site detection. The methodology originates from
a technique in structure elucidation termed multiple-solvent crystal structure method
where organic solvents are added to the crystallization solution to detect binding sites
[153, 154]. In addition to the detection of binding sites of the protein, the obtained
density maps from cosolvent simulations can be leveraged to design novel ligands for
the protein by considering the densities as pharmacophoric features. Furthermore, these
features can be incorporated into pharmacophore-based screening methodology to iden-
tify hits from chemical libraries [154, 155]. Another application of cosolvent simula-
tions is the detection of cryptic binding pockets of targets with a low druggability which
often involve the competition of small-molecules with protein-protein interaction sites.
Cryptic binding pockets are typically occluded and only become apparent in the context
of an interaction partner, which makes the method suitable for their identification and
characterization [156, 157, 158]. Even though alternative methods were developed in-
dependent of MD simulations, the intrinsic treatment of flexibility and explicit solvation
allows for conformational adaptations and reduces the dependence on high quality input
structures [55, 154, 159]. In the course of this thesis the combination of hydration site
data and density maps from cosolvent simulations was used to compare the AF-2 and
BF-3 allosteric sites of several hormone-binding NRs. In this context, an algorithm for
the hydration site detection in crystal structures of NRs was developed by the use of the
3D-DBSCAN clustering method [55] and combined with an MD-based technique [92].
The obtained data was used to systematically evaluate the druggability of the sites as
well as the efficacy and selectivity of known binders.

22



1.3.6 Cheminformatics and machine learning

The area of cheminformatics emerged due to the large amount of chemical data and
the need for representation of chemical information for computer processing. First
introduced by Frank Brown in 1998 [61, 160], it was defined as follows:

”The use of information technology and management has become a critical part

of the drug discovery process. Chemoinformatics is the mixing of those information

resources to transform data into information and information into knowledge for the

intended purpose of making better decisions faster in the area of drug lead identification

and organization.”

Thus, cheminformatics deals with the representation of compounds in a format suit-
able for computational processing, the computation of chemical properties, and the as-
sociation of properties with experimental outcomes, among other applications. One
of the best-known cheminformatics methods is the development of QSAR models dis-
cerning mathematical relationships between molecular properties and activity to ulti-
mately extrapolate them to predict novel compounds. In a similar fashion, quantitative
structure-property relationships (QPSR) models can be derived. In this regard, the term
machine learning should be contextualized, as the training and application of QSAR
and QSPR models fall within this definition [61, 161]. Machine learning is considered
a subset of artificial intelligence, which can be defined as human intelligence exhibited
by machines. In principle, machine learning algorithms learn from experience and im-
prove their performance during the learning process. Such algorithms can be applied to
a variety of problems and are not limited to drug discovery. For example, a common
dataset used for teaching purposes is the so-called Iris dataset with features of flow-
ers such as their petal length and width, which can be used as metrics for classifying
different species of flowers [162].

In general, machine learning can be roughly divided into supervised and unsuper-
vised learning approaches. While the former methods rely on predefined labels that are
associated with the training data, such as a class in classification tasks or a numerical
value in regression, the latter describes methods that autonomously learn patterns di-
rectly from unlabeled data including clustering and dimensionality reduction. Among
the most common methods in the field of supervised learning are random forest, sup-
port vector machine (SVM), k-nearest neighbors (k-NN), linear discriminant analysis
(LDA), logistic regression, and artificial neural networks. If an artificial neural network
has more than one hidden layer, it is also called a deep neural network and can be as-
signed to the field of deep learning. Random forest is a so-called ensemble method
as it includes multiple decision trees and employs majority voting, meaning that the
majority of trees decides the result in a classification task and their average is used for
regression [161, 163, 164]. The randomness of the random forest method comes from
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bootstrapping where only a random subset of the dataset is used for each new tree as
well as from the fact that only a random subset of features are considered at the nodes
of a tree [163, 164]. SVM algorithms map features such as molecular descriptors in
a multi-dimensional feature space and attempt to determine a hyperplane separating
the inputs based on their respective labels. When the k-NN method is applied to clas-
sification tasks, it relies on the principle that a compound that is part of a particular
class can be defined on its neighboring (most similar) compounds. The method con-
siders weighted similarities between an object and its nearest neighbors, while the ”k”
in k-NN comes from an integer number, that defines the number of neighbors that is
considered [161, 164]. LDA determines a linear combination of features which sepa-
rates two or more classes by establishing hyperplanes within the dataset maximizing
the separation of categories [165, 166]. Regression methods are closely related to LDA
and can be divided into linear and logistic regression. While linear regression is used
for continuous data, logistic regression is applied to categorical data. Both methods
establish a linear relationship for a given set of training points that can be directly used
to predict outcomes in new data [161].

In the context of machine learning, principles for best practice were established
due a number of studies in which models have been over-interpreted without appro-
priate validation. Among these principles are the curation of the dataset, the use of
internal cross-validation as well as external validation sets, label randomization to ex-
clude chance predictions, and the definition of an applicability domain. Furthermore,
the combination of multiple machine learning techniques (combi-QSAR), allowing to
detect a consensus among them, is recommended. Lastly, the descriptors that are used
to characterize the compounds and serve as an input for the model should be non-
redundant and physicochemically relevant [167, 168, 169].

Importantly, the field of cheminformatics is not limited to QSAR/QSPR predictions.
For example, in order to compute molecular descriptors, compounds need to be repre-
sented in a machine-readable format [61]. A compound can be characterized either by
its name, a two-dimensional drawing, or by its three-dimensional atomic coordinates
(Figure 11). One of the most simple and widely used representations in cheminfor-
matics is a linear notation termed Simplified Molecular Input Line Entry Specification
(SMILES), which is human readable and represents a unique chemical structure in-
cluding stereochemistry as well as charges [61, 170]. The most commonly used way
to represent a chemical structure among different disciplines is its structure diagram
(2D structure) which, from a mathematical perspective, can be interpreted as a molec-
ular graph with nodes (atoms) and edges (bonds) [61, 171]. From such a graph, ad-
jacency matrices can be computed and used as inputs to train machine learning mod-
els [161, 172]. Furthermore, many chemical descriptors used in QSAR/QSPR are de-
rived from topological molecular graphs and, hence, are termed topological descrip-
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tors [61]. Another representation of a compound is the molecular fingerprint, encoding
physicochemical or structural properties in a vector. A widely used class of fingerprints
are Extended Connectivity Fingerprints (ECFP) [172, 173]. Many methods in CADD
such as molecular docking or MD simulations require a three-dimensional structure,
which can be directly obtained from a molecular graph. However, the conformational
flexibility of a molecule needs to be sampled in order to reach an energy minimum,
typically facilitated by a molecular mechanics force-field [61, 174].

Figure 11 Chemical representations. Different chemical representations are shown
from names, the empirical formula, SMILES string, adjacency matrix (adapted after
Rajesh et al. [175]), fingerprint (EC-FP3 computed in Open Babel [176], and the 3D
structure by the example of acetaminophen.

Molecular representations such as SMILES strings and fingerprints are commonly
used in another discipline within cheminformatics that covers search methods. It is
potentially the earliest one covering methods for storing and searching of chemical
structures. Typically, these structures are stored in chemical databases such as Pub-
Chem, ChEMBL, or the CAS Registry [61, 62, 171]. Finding and extracting data
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from such databases is also referred to as data mining [177]. Two widely used tech-
niques in this context are (sub-)structure and similarity searches [61]. Search methods
for whole structures rely on molecular identifiers such as graphs or linear notations,
while substructure search is often done based on graph-derived pattern languages like
like SMILES Arbitrary Target Specification (SMARTS) [61, 171]. The definition of a
certain substructure is often insufficient to detect a family of structurally related com-
pounds, especially if a number of common structural features are desired [61]. How-
ever, under the premise that similar structures exhibit similar characteristics, this is
one of the fundamental applications of cheminformatics in drug discovery and, thus,
algorithms for chemical similarity analysis were developed [61, 161, 178]. Different
techniques can be applied for similarity searching, such as considering the maximum
common substructure, molecular descriptors, or fingerprints [61]. The latter approach
is frequently used in virtual screening where compounds are prioritized based on simi-
larity coefficients such as the Tanimoto coefficient computing the fraction of bits shared
between two feature vectors [161, 178].

With the rapid expansion of big data, cheminformatics techniques will continue to
play an essential role in academic and industrial research [161]. In the context of this
thesis, cheminformatics techniques were primarily applied in a project aimed at the de-
velopment of a robust model to predict the metabolic fate of ester compounds. The
obtained machine learning model, relying on a multi-scale modeling approach to com-
pute various features of a query compound, can distinguish substrates of the enzymes
hCE-1 from hCE-2 substrates with high accuracy as detailed in Chapter 4.
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Changes of Thyroid Receptors in Response to Antagonists. Journal of Chemical Infor-

mation and Modeling, 2021.
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CHAPTER 2

Spontaneous Ligand Access Events to Membrane-Bound CYP2D6
Sampled at Atomic Resolution

This study revealed, for the first time, the complete unbiased ligand recognition process
of small-molecule substrates to the buried active site of wild-type CYP2D6 as well as
an allelic variant with increased metabolic activity. Hence, it also introduces the family
of drug-metabolizing enzymes which, along with NRs, are the main proteins addressed
in this thesis. This work advances our understanding of the complex ligand recognition
behavior of CYPs and gives insight into the structural consequences of amino acid
mutations resulting from genetic polymorphism.

Author contributions: Conceptualization, A.F. and M.S.; methodology, A.F.; formal analy-

sis, A.F.; writing and original draft preparation, A.F.; writing, review and editing, A.F., M.S.;

visualization, A.F.; programming, A.F., M.S.; supervision, M.S.
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Abstract

The membrane-anchored enzyme Cytochrome P450 2D6 (CYP2D6) is involved in the

metabolism of around 25% of marketed drugs and its metabolic performance shows a

high interindividual variation. While it was suggested that ligands access the buried

active site of the enzyme from the membrane, no proof from unbiased simulations has

been provided to support this hypothesis. Laboratory experiments fail to capture the

access process which is suspected to influence binding kinetics. Here, we applied un-

biased molecular dynamics (MD) simulations to investigate the access of ligands to

wild-type CYP2D6, as well as the allelic variant CYP2D6*53. In multiple simulations,

substrates accessed the active site of the enzyme from the protein-membrane interface

to ultimately adopt a conformation that would allow a metabolic reaction. We propose

the necessary steps for ligand access and the results suggest that the increased metabolic

activity of CYP2D6*53 might be caused by a facilitated ligand uptake.

Introduction

Cytochrome P450 enzymes (CYPs) are essential proteins involved in the detoxification

of foreign compounds reaching the human body. CYP2D6 accounts for the oxidative

metabolism of roughly 25% of all marketed drugs and therefore belongs to the most rel-

evant enzymes involved in phase I biotransformation. In addition, the enzyme is subject

to a high interindividual variation in metabolic performance due to a genetic polymor-

phism. In drug therapy, this can ultimately lead to either severe adverse effects or the

suppression of a therapeutic effect [1]. The allelic variant CYP2D6*53, which harbors

the two amino acid mutations F120I and A122S, shows an increased metabolic rate to-

wards several substrates in experiments indicating a pending designation as ultrarapid

metabolizer (UM) phenotype [2, 3, 4, 5, 6, 7].

The active site of CYPs is located in a buried cavity inside the enzyme that is connected

to the surrounding environment by tunnels [3, 8, 9, 10, 11, 12, 13, 14]. These tunnels

are believed to influence both the poorly understood substrate specificity and binding

kinetics of CYPs [1, 11, 13, 15]. As the prediction of CYP metabolism is of major im-

portance for drug development [1], the influence of enzyme tunnels on small molecule

binding has been intensively investigated [2, 10, 13, 16, 17]. Available experimental
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methods have only limited applicability for the determination and characterization of

enzyme tunnels or complex transport phenomena. While crystal structures only pro-

vide a static view of the protein and fail to capture dynamic events, techniques such as

NMR spectroscopy can produce dynamic information on the conformations of a pro-

tein [16, 8, 9]. Nonetheless, atomic details on the dynamic uptake of CYP2D6 ligands

has not yet been produced by any experimental method [16]. Computer simulations,

on the other hand, have provided fundamental insight into the transport process of lig-

ands in CYPs. Various molecular dynamics (MD) simulation techniques have been

applied to study the dynamic tunnels and their capability to transport ligands in CYPs

[16, 15, 10, 11, 18, 19]. While most groups focused on the egress routes of ligands

from the active site, only a handful of studies were focused on access routes [10, 18, 19]

which are likely to be different [20, 13]. Due to the long timescale of such molecular

processes [21], biasing potentials have been applied in nearly all studies to increase the

likeliness of a successful translocation. Although two studies applied unbiased MD pro-

tocols to study the access to a CYP, they were focused on a soluble, bacterial enzyme

[12]. Studies with CYP2D6 were limited to the determination and characterization of

enzyme tunnels independent of a particular ligand [2, 4, 17, 22]. Overall, the access of

ligands to mammalian CYPs is poorly understood and could not yet be observed in its

full complexity in unbiased simulations.

In contrast to prokaryotes, mammalian drug-metabolizing CYPs are membrane-anchored

and their globular domain is partially embedded in the membrane [14]. Based on the

spatial location of several tunnels at the protein-membrane interface and the rather

lipophilic character of many CYP ligands, it was suggested that ligands may access

the active site from the membrane compartment and leave it efficiently through solvent-

facing tunnels [2, 8, 10, 13, 14, 15, 18, 20]. For example, it was shown that the pre-

ferred position of ibuprofen relative to a membrane agrees with superficial entry points

of access tunnels in CYP2C9 [13]. In another study, the spontaneous, non-reproducible

insertion of a membrane lipid in an enzyme tunnel was observed [10]. No unbiased

MD protocol was applied to confirm this hypothesis in a mammalian CYP, let alone in

CYP2D6.

In this study, we performed over 20 µs of unbiased MD simulations with the aim to
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study the access of ligands to the buried active site of CYP2D6 in a model of the full-

length structure of the enzyme anchored and partly embedded in a biological membrane

[2]. In eight simulations, we observed substrates accessing the buried active site cav-

ity of the enzyme via specific tunnels located at the protein-membrane interface. We

propose the key steps governing a successful access of the ligand. Further, the results

support the pending designation of the allelic variant CYP2D6*53 as a cause for ultra-

rapid metabolizer phenotype based on a more efficient ligand uptake compared to the

wild-type.

Table 1 For each access event, the simulation identifier, the used protein structure, the
accessing ligand, the time it took to be recognized at the tunnel entrance (TR), the time
it took for translocation to the active site (TT), and the tunnel it translocated through, is
shown.

Simulation Structure Ligand TR (µs) TT (µs) Tunnel SOM
#3 CYP2D6*53 APAP-18 0.04 0.28 2f yes
#4 CYP2D6*53 APAP-7 0.35 0.19 2f yes

APAP-18 n/a n/a 2f no
#5 CYP2D6*53 APAP-18 0.15 0.82 4 yes
#6 CYP2D6*53 APAP-6 0.61 0.08 2b yes
#7 CYP2D6*53 APAP-3 0.27 0.19 2b yes

APAP-8 0.61 0.41 2b yes
#8 wild-type APAP-20 1.42 n/a 2f no
#13 CYP2D6*53 BTD-11 0.03 0.03 2c yes
#14 CYP2D6*53 BTD-3 0.01 0.03 2c yes

Results and Discussion

Access of CYP2D6 ligands from the protein-membrane interface. Due to recent

advances in computational capabilities, researchers are able to observe rare molecular

events, such as intramolecular diffusion, inaccessible to laboratory experiments, us-

ing computer simulations [16, 20, 21, 23]. Simulations of events such as ligand bind-

ing can not only improve our understanding of fundamental molecular processes, but

can also be used to estimate binding affinities and residence times of drug candidates

[24]. Specifically for CYPs it was shown that distinct tunnels, predominantly located

at the protein-membrane interface, connect the buried active site to its surrounding en-

vironment. Together with the general hydrophobicity of CYP substrates, this led to

the widely discussed hypothesis of ligand access from the membrane [2, 8, 10, 13,
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14, 18, 20]. Although, this hypothesis could not yet be proven based on a complete,

unbiased trajectory of a ligand accessing the active site, it was supported by a study

applying accelerated MD simulations to CYP3A4. However, the used technique might

not have accounted for the exact dynamics of the system due to the biasing potential

[25]. Further, the accordance of other simulation techniques involving biasing poten-

tials to conventional MD is not inherently given as it was shown for adaptive sampling

methods [26]. Therefore, unbiased simulations could serve as a blueprint to validate

accelerated simulations and other biased simulation techniques that can then be used to

tackle complex issues such as the determination of drug binding affinities. Previously,

unbiased simulations were limited to the soluble, bacterial Camphor 5-monooxygenase

(CYP101A1) meaning that the involvement of the membrane could not be considered

[12, 27]. Here, we conducted unbiased MD simulations to investigate the access of

ligands to CYP2D6 in a membrane-anchored model. We were able, for the first time,

to observe the complete translocation of a ligand from the solvent to the buried ac-

tive site cavity of a mammalian CYP in multiple simulations (Table 1 and S3). We

randomly distributed 20 ligand molecules of either acetaminophen (APAP), butadiene

(BTD), chlorzoxazone (CZX), debrisoquine (DEB), or propofol (PPF) inside the aque-

ous phase of the periodic boundary systems in an average distance of 13.8 Å (ranging

between 2.7 and 49.2 Å) to the next protein heavy atom (Figure S1 and Table S4). In

two exploratory simulations, a smaller number of ligands was used. From the solvent,

the accessing ligands APAP and BTD sampled the simulation system, adhered to the

tunnel entrance, and translocated to the active site of the allelic variant CYP2D6*53

through membrane-facing tunnels (Figures 1b,b and S3). Remarkably, our simulation

setup did not require prior knowledge of the binding path or the location of the active

site and produced ten access events in a total of 24 simulations.

In two simulations, we observed two ligands entering the active site consecutively. No-

tably, we observed only one, with 1.42 µs needed for recognition comparatively slow,

access event with the wild-type structure despite substantial simulation efforts. Inter-

estingly, the accessing BTD molecules were quickly recognized at the tunnel entrance

without prior contact to the membrane. The other simulations performed in the context

of this study did not result in the successful access of a ligand to the active site. Poten-

46



Figure 12 Access tunnels and the spatial preference of ligands. (a) APAP accessing
CYP2D6 from the protein-membrane interface in simulation #3. The ligand, shown in
pine green, is starting outside the enzyme (bottom left) to access the active site. The
membrane is colored red and phosphorus atoms are shown in sphere representation.
Four helices are indicated for better orientation. (b) The four largest access tunnels are
shown with the structure of CYP2D6*53. For orientation, the membrane phosphorus
atoms are shown in orange. Other tunnels facing the solvent are not shown for simplic-
ity. (c) The averaged distribution of ligands relative to three compartments consisting
of membrane (M), head groups (H), and the remaining space (S) is shown. The two
different measurements for APAP resulted from simulations at different temperatures.
(d) Plot of the log D values predicted for a database of CYP2D6 ligands. The plot was
generated using Matplotlib. (e) A visualization of the hotspots of APAP on the surface
of CYP2D6 is shown in different shades of red. The scale from 0–1000 describes the
cumulative number of ligand heavy atoms in a 5 Å radius of the CB atom (CA atom for
glycine) of the protein amino acids. Two large hotspots were denoted as H1 and H2.
For better orientation, the position of the FG loop is indicated.

tially, the simulations with DEB, PPF, and CZX could have led to ligand binding events

if prolonged appropriately, but due to the high computational cost of the simulations we

focused on the most promising candidate to reproducibly simulate binding in the given

timescale, which was APAP based on the analysis of the first 480 ns of the simulations.

The in-depth analysis of the access events revealed a considerable heterogeneity among

them regarding the time taken to access the enzyme, the favored tunnel, as well as the

adopted conformation in the active site (Table 1). After a slow recognition phase, the

ligands adhered to one of the tunnel entrances located close to the protein-membrane

interface. In two simulations (#3 and #5), the starting position was relatively close to

the tunnel entrance leading to a fast recognition phase and limited sampling of the com-
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plete simulation system (Table 1). Further on, simulation #4 was a replica simulation

meaning that one of the two accessing ligands (APAP-18) already started at the tunnel

entrance, while the second accessing ligand (APAP-7) started in over 50 Å distance

from the next protein heavy atom. In the remaining simulations, we could observe the

recognition phase to be the rate-limiting step of the process with extensive sampling of

the simulation system. An initial phase to recognize the tunnel entrance followed by a

temporary superficial association, as we observed it, stands in agreement with a model

describing a two-step binding process allowing kinetically efficient ligand uptake. This

would enable the ligand to efficiently minimize the, otherwise even longer, recognition

phase and is in accordance with recent observations regarding proteins with similarly

buried active sites such as CYP101A1 and nuclear receptors [11, 21, 27, 28, 29, 30].

In the active site, eight out of ten accessing ligands adopted a pose which would allow

an oxidation reaction to proceed at a site of metabolism (SOM) that would ultimately

result in a metabolite in agreement with experiment [31]. In simulation #4, two ligands

occupied the binding site simultaneously and one molecule was accommodated distant

(>10 Å) from the heme. Further, simulation #8 with the wild-type structure did not

result in a pose that was in agreement with metabolism of APAP.

Validation of the simulations. The models used in this study originated from our pre-

viously built, characterized, and validated full-length models of wild-type CYP2D6 as

well as the allelic variant CYP2D6*53 [2]. Here, we evaluated key parameters and

proved their accordance to our previous observations and experimentally derived liter-

ature values (Figure S3 and Table S5). These parameters included the burying depth

of the enzyme, the heme tilt angle that describes the orientation of the enzyme to the

membrane, as well as the root mean square deviation (RMSD) and root mean square

fluctuation (RMSF). As mentioned above, we distributed multiple ligands into one sim-

ulation system. In order to determine to which degree ligands interacted with each other,

we examined the presence of ligands in the proximity of the accessing molecule. Over-

all, we detected few interactions to other ligands, with the clear exception in the case of

a double access event, where contacts were expected (Table S6). To rule out that large

agglomerates formed during the simulations, we measured the distances of all ligands

in the simulations and averaged them for each MD frame. While the data indicates that
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there was no large formation of agglomerates, the fluctuations of the average distance

indicated the formation of transient small agglomerates (Figure S4). In comparison,

the simulations with PPF showed a slightly increased trend for agglomeration, which

might have contributed to the fact, that we did not observe any PPF molecules entering

a tunnel. For a more detailed description of the validation, please refer to SI Results

and Discussion.

Preference of ligands for protein, tunnels, and membrane. Regarding the difference

in the preferred tunnels for translocation, it was suggested that multiple tunnels might

serve as an access route to CYPs, specifically to govern the substrate specificity of the

enzyme [8, 20]. In particular, tunnel entrances differing in burying depth within the

membrane would allow the uptake of ligands varying in lipophilicity and therefore in

their favored position relative to the membrane [13, 14, 18]. Indeed, the environment

around the entrances of tunnels that were favored by the ligands varied as it can be seen

at the example of tunnel 2c (Figure 1b). Furthermore, our analysis of the favored posi-

tion relative to the membrane revealed significant differences among CYP2D6 ligands

(Figure 1c), supporting this presumption. We logically divided the simulation box into

three zones consisting of the membrane core (M), the head group region (H), and the

remaining space made up of protein and solvent (S). BTD, CZX as well as PPF mainly

partitioned towards the membrane core, while APAP preferred the head group region.

The two slightly different temperatures in the simulations with APAP only had minor

impact on the distribution. Despite the relatively similar behavior of DEB and APAP,

we did not observe any DEB molecules accessing the enzyme. This might have been

caused by the bulkier character of DEB requiring larger conformational changes for

uptake as well as its slightly greater preference for the membrane core. During MD

simulations, long residence times in the membrane core potentially reduce the proba-

bility to observe ligand access in the microsecond timescale. This is supported by the

fact that both accessing lipophilic BTD molecules quickly entered the enzyme through

the mostly solvated entrance of tunnel 2c near the protein-membrane interface without

thorough sampling of the membrane core in our simulations. Likely, the hydropho-

bic milieu inside tunnel 2c [2] offered a favorable environment for the accessing BTD

molecules. The calculated distribution coefficients (log D), describing the general pref-
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erence of ligands towards a hydrophobic environment, revealed a peak around 2.5 for

CYP2D6 ligands (Figure 1d). The clear difference in lipophilicity between APAP and

BTD potentially influenced the selected tunnel for translocation to the active site. While

APAP did not show a clear preference for a specific tunnel, BTD translocated through

tunnel 2c in both access events (Table 1), which is likely associated with the relatively

high lipophilicity of the amino acid residues lining this tunnel [2]. This, together with

their different positions relative to the membrane compartment, underlines the impor-

tance of tunnels and their constitution for substrate specificity, since distinct chemical

and geometrical features allow selective uptake of substrates [11, 13, 14].

Only recently, ligand-dependent long-range motions have been detected in an allosteric

mechanism for CYP101A1, in which the occupancy of a peripheral site on the enzyme

surface induces the opening of an access tunnel [12]. We identified two main sites (de-

noted as H1 and H2) during the nine simulations with APAP included in this analysis.

Site H1 corresponded to a pocket around helices C, E, and H similar to the described

allosteric site in CYP101A1, while site H2 highlighted a broad surface around helices

F and A as well as the β sheet 4 close to the entrance of tunnel 2f (Figure 1e). The H1

site was distant from the opening of any of the major tunnels. We determined these sites

on the protein surface according to the number of ligand heavy atoms that were present

in a 5 Å sphere around the amino acid residues in the respective simulations. Although

we frequently observed the occupancy of the described H1 site in our simulations with

APAP, the data indicated a secondary role of the above-mentioned allosteric mecha-

nism for CYP2D6, since H1 occupancy was not mandatory for a successful transloca-

tion (Table S7). However, the data indicated that the H1 site might be involved in the

opening of tunnel 2f. In this context, it was shown that the association of redox part-

ners and dioxygen binding might additionally influence the conformational state of the

enzyme [32]. Since the H2 site corresponds to a surface near the entrance of tunnel 2f,

the data additionally supports the above-mentioned two-step binding mechanism. The

BTD molecules did not sample the protein surface as extensively as APAP (Figure S5).

Structural adaptation of the protein. Since crystal structures do not provide a compre-

hensive explanation on how ligands access or leave the buried active site of CYPs, the

protein has to undergo structural fluctuations to allow ligand access [8, 9, 15, 28]. In-
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Figure 13 Opening and adaptation of ligand tunnels. (a) APAP is shown at the entrance
of tunnel 4 (defined by the FG loop) in simulation #5 at two different time points. On
the left side the FG loop is clearly extended, while it presented a different conformation
after the ligand advanced (right). The simultaneous movement of the BC loop lead to
the reversible narrowing of tunnel 2c (arrow, left side), as it is indicated by the time-
evolved bottleneck radius (shown above) of the simulation. The respective frames are
marked on the color bar. (b) Gate between F51 and F219 shown in two different states.
While the gate is closed at the beginning of simulation #3 (left), it adopted an open state
after ligand translocation in simulation #4, forming a so-called wing gate [9]. (c) The
distance between the SOM and the heme iron is plotted against the simulation time as
well as the time-evolved bottleneck radius. The simulation identifier is shown at the
top right of the plots, while gray bars indicate the period of tunnel translocation. The
legend at the bottom indicates the coloring scheme for the bottleneck radii.

deed, we detected several dynamic adaptations of the protein that were, in certain cases,

directly related to the accessing ligand. Similar to a recent study [27], the rearrange-

ments did not alter the overall structural composition of the enzyme. The conforma-

tional changes of the secondary structure were mostly located on the protein surface,

predominantly in regions with increased flexibility, and sometimes even in great dis-

tance from the ligand. In simulation #6 for example, the ligand induced a reversible

conformational change of the FG loop, forming the entrance of tunnel 4, in order to

propagate. This rearrangement additionally impacted the nearby BC loop leading to

the tightening of tunnel 2c formed by this loop, as it was reflected by its temporarily

decreased bottleneck radius (Figure 2a). This points towards an induced-fit mechanism

as opposed to conformational selection [33]. Only recently the latter was proposed to

be the main mechanism for multiple CYPs including CYP2D6 [30], even though for

several other CYPs induced-fit scenarios were not ruled out. Besides movements of the
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FG loop, we observed helix A, the BC loop, the HI loop, and helix B to be involved

in conformational changes (Table S8). Since the mentioned structural adaptations often

occurred in tunnels during the translocation of the ligand, it is likely that those structural

elements are involved in gating the active site, as it was shown for other enzymes [9, 32].

On the level of amino acids, gates frequently consist of aromatic residues [2, 9, 11, 32].

We found individual residues to be involved in the gating of tunnel 2f, where F51

and F219 showed different conformations before and after ligand translocation (Fig-

ure 2b) without direct involvement of the ligand. In contrast to the above-mentioned

conformational changes at tunnel 4, the opening of this gate can be best described as

a conformational selection mechanism since the conformational change took place in-

dependent of the ligand molecule [33]. This suggests that depending on the tunnel

used for translocation both induced-fit and conformational selection can describe the

observed conformational changes. F51 and F219, among several other residues, func-

tioned as bottleneck residues (Figure S6) which are often involved in gating tunnels

[9]. Gates regulating enzyme tunnels are typically located at their most narrow part,

which is determined by the bottleneck radius, and can be formed by secondary struc-

tural elements or individual residues. To determine the opening degree of the tunnels

used for translocation, we monitored their bottleneck radii in simulations with access

events (Figures 2c and S7). Based on the bottleneck radius, we discovered the favored

tunnels to be open during the translocation of the ligand. Especially in simulation #6,

it was clearly visible that the tunnel was closed when the ligand was approaching and

opened shortly before its translocation (Figure 2c). Even though simulation #13 with

BTD presented a similar opening pattern, the tunnel closed after translocation, imply-

ing conformational adaptations on the side of the protein. The conformational changes

in relation to the movement of the ligand are in accordance with recent findings on an

induced-fit driven mechanism of ligand binding to CYP101A1 [27]. In contrast to com-

monly described induced-fit mechanisms in active sites [34, 35], the described motions

occurred at peripheral sites of the protein, such as the FG loop that is involved in the

formation of multiple enzyme tunnels. Interestingly, we also observed motions of sec-

ondary structural elements in a significant distance (over 10 Å) from the ligand during

the exploration of the active site such as the movements of the HI loop. In general,
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structural adaptations and protein flexibility are not only important to improve our un-

derstanding of the structural mechanism behind ligand access [8], but are also crucial

to be considered in molecular docking calculations [35]. Even though MD-simulations

are regularly used in a supporting role to post-process and refine poses obtained from

docking, it was recently suggested that docking might even be replaced by MD-based

techniques [35, 36]. Since our simulations lead from an unbound state to a bound state

in the active site, this further supports these suggestions. Additionally, the results from

docking APAP and BTD indicated, that the poses generated by flexible docking were

strongly dependent on the used receptor structure (Table S9). When we compared poses

obtained from docking and MD, we identified a similar (RMSD < 2 Å) pose in three

out of eight access simulations (Figure 3a and Table S10). Our results show that the

poses obtained from MD can closely resemble the ones obtained from docking, but

they additionally allow to get insight into the dynamic interplay of the protein and the

ligand and offer more potential for interpretation. Due to high computational expense

that comes with conventional MD simulations as we used them, simulation techniques

employing biasing potentials would offer a higher throughput for pose prediction from

a completely unbound state [25, 36]. Together with the above-mentioned significant

structural adaptations of the protein backbone, we conclude a rather limited applica-

bility of traditional docking methods to such flexible proteins and support the use of

MD-based methods.

The driving forces for translocation. Although the opening of gates was crucial for

a successful ligand translocation, additional forces are required for the ligand to prop-

agate to the active site in order for metabolism to occur steadily and reproducibly. We

analyzed the nature of the interaction between the ligand and the protein in each simu-

lation with an access event to identify the driving force for ligand translocation through

the tunnels. Therefore, we considered contributions from electrostatics, hydrophobic

contacts as implemented in the VSGB 2.0 model [37], and hydrogen bonds based on

a term that accounts for their directionality [38]. While the ligands showed favorable

hydrophobic interactions towards the membrane lipids at first, they generally decreased

upon contact to the protein surface and increased again as the ligand advanced through

the tunnel to enter the active site (Figure 3b). The correlation was especially evident
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Figure 14 Driving force for translocation, poses in the active site, and its desolvation.
(a) T394 acting as a guiding rail for the ligand by hydrogen bonding. (b) The hydropho-
bic energy was plotted against the distance between the ligand SOM and the heme iron
as well as the simulation time for all simulations with a successful access event. (c)
Comparison of best matching poses of APAP (left) and BTD (right) obtained from MD
simulations and molecular docking. (d) The number of water molecules in the active
site in presence and absence of a ligand.

at the example of simulation #3, where a slight displacement of the ligand from its fa-

vored pose in the active site directly caused a substantial weakening of the hydrophobic

energy. Even though not all simulations showed a clear correlation (#4 and #5), most

of them presented a trend for a gain in hydrophobic energy during the translocation

from the enzyme surface to the buried active site, where the known hydrophobic envi-

ronment [1, 15] seemed to offer a favorable milieu for the ligands. The relatively fast

access of both non-polar BTD molecules added additional evidence for the relevance of

hydrophobicity. Contributions from electrostatics and hydrogen bonds were constantly

present, but remained steady whether the ligand was in the solvent, membrane, or in the

active site (Figure S8). However, polar contacts allowed ligands to adhere to the tunnel

entrance and we observed distinct hydrogen bonds to guide APAP toward the active site

by consecutively interacting with different heteroatoms (Figures 3a and S9a,b). This

supports the role of polar contacts as a secondary driving force for the access of APAP,

while BTD obviously could not form polar contacts due to the lack of heteroatoms.

Together with gates, distinct polar interactions in enzyme tunnels have to play a rele-

vant role in regulating the substrate specificity of the enzyme since hydrophobicity is a
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general property shared by many CYP substrates. The residues that interacted with the

ligands during recognition, translocation, and the phase in the active site are shown in

Tables S11-S13.

Other factors potentially influencing ligand uptake include the desolvation of the ac-

tive site and the ligand. The displacement of water molecules in a binding site is a

common strategy to optimize the binding affinity of compounds in the field of medici-

nal chemistry. Depending on the environment of the water molecule, the displacement

can be both favorable or unfavorable [39, 40]. We identified a trend for a decreased

number of water molecules in the active site when a ligand occupied it (Figure 3d) indi-

cating a modest desolvation effect. However, the absolute numbers of displaced water

molecules did not converge, likely due to the comparably small size of the ligands, the

known enlarged active site cavity of CYP2D6*53 [2], and the overall heterogeneity of

the individual access events. Similarly, the number of water molecules forming the hy-

dration shell around the ligand did show great variation with no clear trend for APAP

(Figure S9c,d). On the other hand, the number of water molecules accompanying the

hydrophobic BTD molecules decreased to a significant amount on their journey from

the bulk solvent to the active site. The desolvation of a drug-like ligand, associated

with its binding to hydrophobic active sites [41], is generally a penalizing contribution

toward affinity. In the case of BTD however, the solvation energy presents a positive

value (0.61 kcal/mol) [42], leading to a favorable contribution for its desolvation. This

suggests the partial desolvation of BTD as a favorable contribution toward its translo-

cation. The, in this case, negligible influence of the conformational flexibility (Figure

S10) on the access process is discussed in the SI Results and Discussion.

Increased metabolic activity of CYP2D6*53. Measurements of the enzymatic ac-

tivity of allelic variant CYP2D6*53 have revealed increased metabolic rates towards

bufuralol, dextromethorphan, and N-desmethyltamoxifen [3, 6, 7]. In contrast, a re-

cent study reported a decrease in the clearance of primaquine [43]. It is suspected

that the mostly increased metabolic rates of CYP2D6*53 are caused by an enlargement

of enzyme tunnels allowing efficient ligand uptake to the enzyme [2, 4]. Altogether,

this resulted in the speculation of an ultrarapid metabolizer (UM) phenotype for this

allelic variant, which is usually only granted to phenotypes resulting from gene dupli-
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cation [3, 4, 7]. Similar to our previous observations, tunnel 2b had a wider average

bottleneck radius in CYP2D6*53 compared to the wild-type, likely due to the F120I

mutation located at the entrance to the active site [2]. Further, the ligand access was

faster in the CYP2D6*53 variant compared to the wild-type (Table 1). Therefore, our

results moderately support the potential designation of CYP2D6*53 as UM phenotype

based on a more efficient ligand uptake of the analyzed substrates.

Conclusion

The results presented here revealed the atomic mechanism of ligand uptake to the buried

active site of membrane-anchored CYP2D6 from the protein-membrane interface. The

ligands APAP and BTD accessed the enzyme via different enzyme tunnels, which sup-

ports the notion of multiple functional tunnels within a single protein system. The

tunnels varied in their burying depth in the membrane which would allow ligands dif-

fering in lipophilicity to access the active site. However, presumably due to the relative

bulkiness of DEB, CZX and PPF and their increased partitioning towards the mem-

brane core, the simulations with these ligands did not result in any binding events in

this timescale. We show that the access process is linked to conformational adaptations

of the protein backbone that can occur either in close proximity or in significant dis-

tance from the ligand molecule. While the conformational change at tunnel 4 followed

an induced-fit mechanism, we also observed motions of residues that could be better de-

scribed by a conformational selection model suggesting that both processes can occur

in CYP2D6 depending on the tunnel. Together with the fact, that our simulations lead

from an unbound to a bound state in a fully flexible unbiased manner, we support the use

of MD-based techniques as opposed to docking, which stands in accordance with recent

suggestions in the literature. Further, we show that the uptake process is mainly driven

by hydrophobic interactions with a secondary role for polar contacts during recognition

and translocation of the ligand molecules. In addition, the binding process was poten-

tially facilitated by a modest desolvation of the active site. The difference in burying

depth, physicochemical properties, and geometrical features of the tunnels influence

their capability to transport certain ligands and therefore likely influence the specificity

of the enzyme. Similarly, our results indicate that the increased metabolic rates of the

allelic variant CYP2D6*53 might be caused by an efficient uptake of ligands compared
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to the wild-type enzyme. Our study could serve as a blueprint for simulations employ-

ing biasing potentials and it proves the capability of unbiased MD simulations to study

ligand transport processes.

Methods

As a starting point for our simulations we used our previously validated full-length

model of wild-type CYP2D6 and CYP2D6*53 anchored to a membrane [2]. After

randomly distributing multiple substrates in the solvent space around the enzyme, we

performed over 20 µs of total unbiased MD simulations with multiple replica systems

and various ligands with the aim to study ligand partitioning and to observe a transloca-

tion from the bulk solvent to the buried active site of the enzyme. All simulations were

performed using the Desmond engine [44]. To determine the enzyme tunnels, we used

CAVER 3.0 [45]. For the subsequent calculations, we either used workflows included

in the Schrodinger Small-Molecule Drug Discovery Suite [46] or in-house routines. For

a complete set of detailed materials and methods, please refer to SI Methods.
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[10] Petr Jeřábek, Jan Florián, Václav Martı́nek, P Jerabek, J Florian, and V Martinek. Lipid

molecules can induce an opening of membrane-facing tunnels in cytochrome P450 1A2.

Phys. Chem. Chem. Phys., 18(44):30344–30356, 2016.

[11] Philippe Urban, Thomas Lautier, Denis Pompon, and Gilles Truan. Ligand Access Chan-

nels in Cytochrome P450 Enzymes: A Review. Int J Mol Sci., 19(6), 5 2018.

[12] Alec H Follmer, Mavish Mahomed, David B Goodin, and Thomas L Poulos. Substrate-

Dependent Allosteric Regulation in Cytochrome P450cam (CYP101A1). Journal of the

American Chemical Society, 140:16222–16228, 2018.
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[16] Markéta Paloncýova, Veronika Navrátilova, Karel Berka, Alessandro Laio, and Michal

Otyepka. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-

Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4.

Journal of Chemical Theory and Computation, 12(4):2101–2109, 2016.
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2.1 Supporting Information

Supporting Materials and Methods

Computational setup and general simulation conditions
The molecular dynamics (MD) simulations were performed on consumer-grade desk-
top computers equipped with graphics processing units (GPUs) or a dedicated, rack-
mounted GPU server. On all used machines in this study, the Desmond simulation en-
gine (v2016-4) was installed in a Linux environment [1]. Prior to the MD simulations,
the default relaxation protocol of Desmond (Table S1) was conducted.

Table S 1 Relaxation protocol prior to MD simulation.

Desmond stage Procedure
1 Task (reading files, initializing parameters)
2 Simulate, Brownian Dynamics, NVT, T = 10 K, small time steps,

and restraints on solute heavy atoms, 100 ps
3 Simulate, NVT, T = 10 K, small time steps, and restraints on

solute heavy atoms, 12 ps
4 Simulate, NPT, T = 10 K, and restraints on solute heavy atoms,

12 ps
5 Solvate pocket
6 Simulate, NPT and restraints on solute heavy atoms, 12 ps
7 Simulate, NPT and no restraints, 24 ps

We chose the OPLS 2005 force field in an NPT ensemble and combined the Martyna-
Tobias-Klein barostat with a relaxation time of 2.0 ps at 300 K with the Nose-Hoover
thermostat at a relaxation time of 1.0 ps. We used the u-series [2] method to treat
long-range interactions combined with a cutoff of 9 Å for short range interactions. By
default, the M-SHAKE algorithm was used to constrain bonds to hydrogen atoms and
no hydrogen mass partitioning was applied. The orthorhombic periodic boundary boxes
were solvated with TIP3P water molecules, just as in our previous work [3]. The time
step of the RESPA integrator was set to 2.0 fs and frames with atomic coordinates
were written every 48 ps in all simulations. If it is not indicated otherwise, figures
of molecules were generated using PyMol [4] and plots were generated using Prism
GraphPad.

Ligand preparation
To perform the ligand access simulations, we selected five ligands, including aceta-
minophen (APAP), 1,3-butadiene (BTD), chlorzoxazone (CZX), debrisoquine (DEB),
and propofol (PPF) from a database of CYP2D6 ligands [5]. We retrieved the two-
dimensional (2D) ligand structures from the PubChem structure database (Table S2)
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[6]. Maestro from the Schrodinger Small-Molecule Drug Discovery Suite8 provides
the Epik [7] environment to predict the protonation state of ligands. After pipelining
all ligands through Epik at physiological pH (7.4), with water as solvent, and the in-
clusion of tautomers, the highest scored output structure was used as an input in the
Conformational Search panel in Maestro [8]. Thereat, we selected the OPLS3 force
field since it previously showed to deliver reliable results in the determination of lig-
and conformations [9]. We chose the Mixed torsional/Low-mode sampling algorithm
with enhanced torsional sampling and a maximal number of 5000 Monte Carlo steps.
The conformational search was carried out with water as solvent. For minimization
after the conformational search, we selected the Truncated Newton Conjugate Gradient
(TNCG) method with the maximal number of iterations set to 500. We retained the de-
fault convergence threshold of 0.05. The highest ranked structures were selected for the
following simulations. Further, we retrieved the 2D structures of 323 CYP2D6 ligands
from the PubChem structure database [6], according to the list published by Rendic and
colleagues [5]. We used the cxcalc module provided by ChemAxon [10] to compute the
log D values at physiological pH for all the structures.

Table S 2 Ligands used in this study, abbreviations, and PubChem ID codes.

Ligand Abbreviation PubChem ID code
acetaminophen APAP 1983
1,3-butadiene BTD 7845
chlorzoxazone CZX 2733
debrisoquine DEB 2966
propofol PPF 4943

Ligand preparation
The preparation of the protein structures of CYP2D6 as well as the placement of the
membrane for the simulations in this study is extensively described elsewhere [3]. In
brief, we used a covalently linked combination of the globular domain of CYP2D6
and its corresponding membrane anchor, both preequilibrated in the membrane envi-
ronment, as a starting point for this study. The globular domain of the protein origi-
nally derived from a crystal structure (PDB ID code 3TDA). For simulations with the
allelic variant CYP2D6*53, we introduced the mutations according to the PharmVar
database [11] in the Maestro graphical user interface (GUI). In 22 simulations, 20 lig-
ands were randomly distributed around the enzyme in the aqueous phase. Additionally,
we performed two exploratory simulations with two or six ligands respectively (Ta-
ble S3). The ligands were randomly translated and rotated relative to the simulation
system to obtain unique starting positions. Two exceptions are as follows: simula-
tion #4 was a replica simulation based on simulation #3 started from frame 3500 and

63



simulation #5 was conducted at a different temperature, ensuring that the trajectories
were set for a unique course. As the membrane constituent, we chose 1-palmitoyl-2-
oleoylphosphatidylcholine (POPC) molecules and built a simulation system using the
Desmond System Builder. Next, we used the Desmond Minimization routine to re-
lax the system with 10000 as a maximal number of steps and a convergence thresh-
old of 0.5 kcal/mol/Å3. The simulations were set up to run for different durations
and several of them were continued with all settings of the prior simulation being re-
tained. For the two initial simulations, the temperature was left at the default value
of 300.00 K (26.85 °C or 80.33 °F), while we selected the temperature to be either
310.00 K (36.85 °C or 98.33 °F) or 313.15 K (40 °C or 104 °F) for the following sim-
ulations. The increased temperature compared to the physiological state represents a
patient with fever which is one of the main indications for the pharmacotherapy with
APAP [12]. We determined the RMSD as well as the RMSF of the simulations us-
ing the Simulation Interaction Diagram panel within Maestro. For these calculations,
the residues forming the flexible membrane anchor (residue numbers 1-31) were ex-
cluded due to their large movements compared to the rest of the protein. To assess the
heme tilt angle during our simulations, we used an in-house script looping over MD
frames in the PDB format extracted every 960 ps of the simulations. The heme tilt an-
gle is defined as the angle between the heme plane, defined by the porphyrin nitrogen
atoms, and the z-axis of the system representing the membrane normal. Likewise, we
used the same frames to calculate the burying depth of the enzyme in the membrane
according to the method established by Ducassou and colleagues [13], who defined
the distances between the mass centers of the protein α-carbons and the C1 atoms of
the membrane molecules as burying depth. As before, we used an in-house routine to
pipeline the MD frames through this calculation and determine average values. The
contacts between the ligands were also determined using an in-house python routine
that evaluated every frame of the respective MD simulation. Thereat, we determined
the number of frames, in which the 5 Å zone around accessing ligand molecule in-
cluded a heavy atom of another ligand based on individual MD frames exported from
the Maestro GUI. We divided the results into three phases according to the progress of
the access event. Residues involved in the translocation of the ligand were determined
using the Simulation Interaction Diagram panel in Maestro. Simultaneously, the torsion
angles of the ligands were monitored. The adaptation of secondary structure elements
was determined based on the RMSD and RMSF diagrams as well as the careful visual
examination of the MD trajectories. A ligand was considered to be in a pose which
would allow oxidation reaction to proceed at a site of metabolism (SOM) when the
distance between the SOM and the heme iron was between 5 and 7 Å.
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Table S 3 Overview of all simulations conducted throughout this study.

Simulation Structure Ligands Temperature (K) Duration (µs)
#1 CYP2D6 WT 2x CZX 300.00 1.00
#2 CYP2D6 WT 6x BTD 300.00 1.44
#3 CYP2D6*53 20x APAP 313.15 0.96
#4 CYP2D6*53 20x APAP 313.15 0.70
#5 CYP2D6*53 20x APAP 310.00 1.28
#6 CYP2D6*53 20x APAP 313.15 1.20
#7 CYP2D6*53 20x APAP 310.00 1.44
#8 CYP2D6 WT 20x APAP 313.15 1.44
#9 CYP2D6WT 20x APAP 313.15 1.92
#10 CYP2D6WT 20x APAP 313.15 1.92
#11 CYP2D6WT 20x APAP 310.00 0.72
#12 CYP2D6*53 20x BTD 310.00 0.48
#13 CYP2D6*53 20x BTD 310.00 0.48
#14 CYP2D6*53 20x BTD 310.00 0.48
#15 CYP2D6*53 20x CZX 310.00 0.48
#16 CYP2D6*53 20x CZX 310.00 0.48
#17 CYP2D6*53 20x CZX 310.00 0.48
#18 CYP2D6*53 20x DEB 310.00 0.48
#19 CYP2D6*53 20x DEB 310.00 0.48
#20 CYP2D6*53 20x DEB 310.00 0.48
#21 CYP2D6*53 20x PPF 310.00 0.48
#22 CYP2D6*53 20x PPF 310.00 0.48
#23 CYP2D6*53 20x PPF 310.00 0.48
#24 CYP2D6*53 20x APAP 313.15 1.08

Preference of ligands for protein, tunnels, and membrane
To determine hotspots of ligands on the protein surface, we developed a python script
detecting the presence of ligand heavy atoms in the vicinity of the respective amino
acid in a range of 5 Å. For glycine, we used the α-carbon atom, while we chose the β-
carbon atom for the remaining amino acids. For this calculation we used superimposed
frames collected every 960 ps of the corresponding simulation. For APAP, simulations
#3 to #11 were included, while simulations #13 and #14 were considered for BTD. The
data was averaged for APAP and BTD and visualized on the surface of CYP2D6. The
occupancy of the H1 site was determined for the phase of tunnel passage. Further, we
divided the simulation box into three logical compartments to measure the preference of
all ligands in the system for any of them. The first compartment consisted of the space
not covered by the membrane (denoted as S), while the other two zones divided the
membrane into head groups (H) and membrane core (M). We defined the head group
region to be located between the mass center of the nitrogen atoms and the mass center
of the C2 atoms the POPC molecules. Accordingly, we defined the membrane core to
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be located between the C2 atoms of the upper and lower POPC leaflets. An in-house
python routine determined the location of the mass center of the ligand in z-direction
and compared it to the boundaries of the three mentioned compartments. This analysis
was performed for simulations #3 to #7 and #11 to #23. To normalize the compared
time spans of the simulations, the interval between 200 and 480 ns of each simulation
was considered for the analysis with frames being collected every 528 ps. Average
values were calculated for every ligand. Since the included simulations of APAP were
conducted at two different temperatures, the average results for APAP were divided in
two groups (denoted as APAP-1 and APAP-2).

Tunnel analysis
We used CAVER 3.0 to detect and characterize the tunnels in all simulations with a
successful access event [14]. For that, we collected MD frames every 960 ps of the
simulations, aligned them in the Protein Structure Alignment panel in Maestro, and
determined the starting point for the tunnel computation using CAVER Analyst 1.0 [15].
We defined the starting point based on the residues E216, D301, and the heme for every
simulation. We used a clustering threshold of 4.5, as it was determined to deliver good
results in a previous study [3], while the rest of the settings were left on default. The
nomenclature of the enzyme tunnels was adapted from Cojocaru and colleagues [16].
Average bottleneck radii, time-evolved bottleneck radii, and bottleneck residues were
derived from the output of the tunnel computation.

Ligand-protein and ligand-membrane energies
In the case of a successful access event, we determined the energy between the ligand
and the protein with an in-house routine programmed in C++ language in MD frames
in the MacroModel file format extracted at an interval of 480 ps. Interaction energies
were calculated with a 12 Å cutoff from the ligand.

We evaluated partial contributions from electrostatics and hydrogen bonds according to
the Yeti force field terms (Equation I and II) [17, 18]. The term for hydrogen bonds ac-
counts for their directionality. The energies for hydrophobic contributions were calcu-
lated according to a term adapted from the VSGB 2.0 model (Equations III-V) [19, 20].
Membrane molecules were included in the analysis.
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Hydration analyses
We used an in-house routine to determine the number of the first-shell water molecules
around the ligands in every frame of the simulations with a successful access event.
The routine determined the number of water molecules in a given MD frame within a
distance of 3.5 Å from any ligand atom. To determine the degree of active site desolva-
tion in response to ligand binding, we extracted MD frames in a frame step of 480 ps
covering a spherical zone of 15 Å around active site residues and the ligand of interest.
Thereat, the residues 110, 112, 120, 121, 209, 212, 213, 216, 244, 247, 248, 297, 300,
301, 304, 305, 308, 309, 370, 443, 483, and 484 were included due to their proximity
to the co-crystallized ligand in the underlying crystal structure (PDB ID code 3TDA).
Frames with no ligand atoms detected in the binding site were included for calculating
of the average number of waters in the empty state (unliganded). On the other hand,
only frames with all ligand atoms present within the binding site were included for
calculating of the average number of waters in the occupied state (liganded).

Docking and pose comparison
The ligands for which an access event could be observed in the MD simulations were
docked into the active site of CYP2D6. The 3D ligand structures of APAP and BTD
were available from previous steps. Prior to docking, we used MGL Tools (v.1.5.6) [21]
to prepare the receptor and ligand structures. We defined the search space to be cubic
with a side length of 45 Å, manually changed the charge of the heme iron to Fe2+ in
the PDBQT file, and removed sodium atoms interfering with the calculation. Due to
the high flexibility of CYP enzymes [22], including the potential structural adaptations
related to ligand binding [16, 23, 24, 25], we considered several residues to be flexible
for our docking calculations. In particular, we selected 112, 120, 211, 216, 221, 244,
296, 297, 301, 304, and 483 to be flexible. We used two different protein structures
derived from simulation #3, differing in the orientation of APAP, as input structures.
To enrich the results, docking runs were performed in the presence and absence of
structural water molecules. Additionally, we performed docking runs with the amide
bond of APAP regarded as flexible and rigid respectively. The docking was performed
using AutoDock Vina (v.1.1.2) [26] with an exhaustiveness of 8. After docking, the
obtained poses were filtered according to three criteria: (i) site of metabolism (SOM)
in known range for metabolic reaction; (ii) ligand located within known binding site
region; and (iii) docking score higher than -5.5 kcal/mol for the poses of APAP. In the
case of BTD, only one pose derived from docking met the criteria.
To compare the poses from docking with ligand poses obtained from the MD simu-
lations presenting successful ligand access, we chose the highest scored docking pose
complying with the above-mentioned criteria to determine its similarity to MD poses.
Therefore, we extracted all frames of the respective simulations, in which the ligand
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occupied the binding site, and aligned them to the corresponding docking pose using
the Protein Structure Alignment tab within Maestro. Next, we removed all atoms from
these frames except for the ligand of interest to ultimately compare the poses using the
rmsd.py script provided by Schrodinger. Hydrogen atoms were excluded to compare
the similarity between the poses.

Supporting Results and Discussion

Access of CYP2D6 ligands from the protein-membrane interface

Figure S 1 The distances from the ligand starting positions to selected protein atoms are
shown. Only heavy atoms were considered. The plots were created in Matplotlib [27].

Model validation
The root mean square deviation (RMSD) of the protein backbone indicated a good con-
vergence of the systems besides minor drifts (Figure S2a). Except for one simulation,
the values mostly remained between 2 and 3 Å. The RMSD diagram of simulation #3
presented several spikes that were caused by the movement of P267 as it was indicated
by the high root mean square fluctuation (RMSF) of this particular residue located in
the flexible GH loop on the protein surface (Figure S2b). A visual examination of the
simulation revealed a reversible contraction of the loop after the ligand reached the ac-
tive site, explaining the increased RMSD and RMSF values. However, the last frame
of the simulation showed a value of 2.9 Å similar to the other simulations confirming
convergence. In general, the RMSF diagrams indicated similar regions of local flex-
ibility among the simulations that were in agreement with our previously published
data [3]. The burying depth of the globular domain is used to validate and compare
membrane-anchored models of CYPs [13]. The averages (Table S5) as well as the
time-evolved values (Figure S2c) presented a narrow range around 38.5 Å comparable
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Table S 4 Minimal distances from the starting positions of accessing ligands to protein
atoms. The minimal distances from the heavy atoms of the accessing ligand molecules
to the heme iron and the next protein heavy atom are shown.

Simulation Ligand Ligand-iron (Å) Ligand-Protein (Å)
#3 APAP-18 29.1 7.3
#4 APAP-7 84.0 55.3

APAP-18 18.2 2.9
#5 APAP-18 29.1 7.3
#6 APAP-6 36.2 12.0
#7 APAP-3 55.7 23.8

APAP-8 46.1 13.7
#8 APAP-20 36.3 13.0
#13 BTD-11 42.4 8.3
#14 BTD-3 35.4 12.4

[a] Since this was a replica simulation, this ligand started near the entrance of tunnel 2f.
[b] Simulation #5 was started from the same coordinates as simulation #3 at a different
temperature.

to the literature value of 35±9 Å and our previous observations [3, 28]. On the other
hand, the heme tilt angle, describing the angle between the z-axis and the plane of the
porphyrin nitrogens of the heme, showed stronger fluctuations (Table S5 and Figure
S2c). Nevertheless, the fluctuations were within the boundaries of 38-78° reported in
the literature [29]. The placement of multiple ligands in a simulation system to study
rare molecular events, as it was used in previous studies [30, 31], comes with advan-
tages as well as disadvantages. Obviously, an advantage is the increased likeliness of
observing a ligand accessing the enzyme, while a disadvantage is the potential influ-
ence of the ligands on each other. Even though molecules regularly contact each other
in the crowded cellular environment [32], the comparably limited size of a simulation
box (e.g. 104.6 x 128.5 x 191.5 Å3 in simulation #3) could have potentially intensified
such phenomena. Therefore, we determined the degree to which the accessing ligands
contacted other ligand molecules during the different phases of the uptake process (Ta-
ble S6). The percentage of frames, in which a heavy atom of the accessing ligand was
within a radius of 5 Å from another heavy atom of a different ligand, was generally low
for the BTD molecules. In the case of APAP, the values were scattered between 2.3 and
36.3%. High values were observed in the case of a dual ligand access, where the con-
current occupation of the active site naturally led to contacts between the two ligands.
In simulations #5 and #8 however, we observed increased values despite only a single
molecule accessing the enzyme. In the case of simulation #5, the contacts were low
during the recognition and translocation phases. The high values, when the accessing
ligand occupied the active site, were caused by an additional APAP molecule located on
the surface of the enzyme in around 4.5 Å distance among their heavy atoms. In sim-
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ulation #8, the contacts occurred during the recognition phase, when multiple ligand
molecules formed transient agglomerates before APAP-20 initiated its translocation to
the active site. In summary, the uptake process was not influenced by ligand contacts in
our simulations with the exception of dual access events.

Table S 5 Validation parameter average values and standard deviation.

Simulation Heme tilt angle (°) Burying depth (Å)
#3 57.0 ± 8.5 38.9 ± 2.3
#4 54.8 ± 6.3 38.8 ± 1.8
#5 48.3 ± 8.0 38.1 ± 1.7
#6 57.4 ± 8.0 38.4 ± 1.6
#7 57.0 ± 5.8 38.5 ± 1.6
#8 38.8 ± 7.0 38.0 ± 1.6
#13 44.0 ± 7.0 38.6 ± 1.5
#14 53.6 ± 5.4 39.4 ± 1.4
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Table S 6 Contacts of accessing molecules to other ligands.

Simulation Ligand Recognition Translocation Active site

#3 APAP-18 0 7.8 0
(n=84) (n=5771) (n=14145)

#4 APAP-7 3.9 78.7 56.1
(n=7211) (n=3896) (n=3841)

APAP-18 n/a [a] 27.1 n/a [a]

(n=14588)
#5 APAP-18 0.6 7.7 35.1

(n=313) (n=16792) (n=9562)
#6 APAP-6 4.5 0 0

(n=12731) (n=1583) (n=10689)
#7 APAP-3 14.4 0 47.5

(n=5646) (n=3895) (n=19627)
APAP-8 5.7 19.5 96.9

(n=12751) (n=8501) (n=7914)
#8 APAP-20 36.8 0 n/a [b]

(n=29573) (n=428)
#13 BTD-11 1.0 0 0

(n=605) (n=583) (n=8814)
#14 BTD-3 13.6 0 0

(n=22) (n=62) (n=7271)

The percentages of frames, in which the accessing molecules contacted surrounding
ligands is divided into three phases. Contacts between heavy atoms in the range of 5 Å
were considered. Together with the percentage, the number of frames in the respective
interval is given.
[a] Since simulation #4 was a replica starting in the entrance of tunnel 2f, but did not
reach the active site in a conformation that would allow a metabolic reaction.
[b] The ligand molecule did not reach a conformation in agreement with a metabolic
reaction.
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Figure S 2 Validation of simulations with a successful access event. (a) The RMSD of
all eight simulations presenting a successful access event is shown. The corresponding
simulation identifier is indicated at the bottom right of the plots. (b) The RMSF of the
simulations presenting a successful access event is shown. The corresponding simula-
tion identifier is indicated at the top right of the plots. (c) The heme tilt angle (HTA)
for simulations presenting a successful access event is shown together with the burying
depth (BD) of the enzyme. The heme tilt angle is shown in black, while the burying
depth is colored pine green.
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Preference of ligands for the protein, tunnels, and the membrane

Table S 7 Occupancy of H1 allosteric site during ligand access.

Simulation Ligand Tunnel Occupancy

#3 APAP-18 2f yes
#4 APAP-7 2f yes

APAP-18 2f yes
#5 APAP-18 4 no
#6 APAP-6 2b no
#7 APAP-3 2b no

APAP-8 2b no
#8 APAP-20 2f yes
#13 BTD-11 2c no
#14 BTD-3 2c no

Occupancy of H1 allosteric site during ligand access.The determined occupancy of the
potential allosteric site H1 is shown together with the simulation identifier, the accessing
ligand and the preferred tunnel.

Figure S 3 Ligand hotspots on the protein surface. (a) The visualization of ligand
hotspots on the surface of CYP2D6 determined for BTD is shown. The scale from 0-
120 describes the cumulative number of ligand heavy atoms in a 5 Å radius of the Cβ
atom (Cα atom for glycine) of the protein amino acids. (b) A plot of the ligand hotspots
of APAP for CYP2D6. The comparably intensive peaks of N175, A315, and S486 are
indicated. (c) A plot of the ligand hotspots of BTD for CYP2D6. The comparably
intensive peak of A305 is indicated.
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Structural adaptation of the protein

Table S 8 Adaptation of the secondary structure of CYP2D6.

Simulation Residues Secondary structure Ligand involvement

#3 V49-F58 αA’ and αA directly
#4 H48-L61 αA’ and αA directly
#5 V229-L236 FG loop directly

S288-N291 HI loop distant
#6 H48-L61 αA’ and αA distant
#7 n/a n/a n/a
#8 n/a n/a n/a
#13 L110-S116 BC loop directly

K283-K288 HI loop distant
#14 E280-S289 BC loop and αB distant

The structural adaptations of the protein secondary structure during ligand access are
shown. The involvement of the ligand was visually determined and was classified to be
either directly or distant. For simulations #7 and #8, no adaptations were observed.
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Figure S 4 Most prominent bottleneck residues in CYP2D6.The major bottleneck
residues for all simulations presenting a successful access event are shown with the
number of simulations, in which the residues participated in bottlenecking the respec-
tive tunnel. Residues with high scores are indicated, while the gating residues F51 and
F219 are pinpointed by red asterisks. The results are shown for (a) tunnel 2b, (b) tunnel
2c, (c) tunnel 2f, and (d) tunnel 4.
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Figure S 5 Bottleneck radii of enzyme tunnels.(a) The distance of the ligand SOM is
plotted against the simulation time and the time-evolved bottleneck radius. The simu-
lation identifiers are shown at the top right of the plots. Gray bars indicate the period
of tunnel passage. The legend below indicates the coloring scheme for the bottleneck
radii. (b) The average bottleneck radii for the simulations presenting a successful access
event are shown. The tunnels, which were used by the ligand in the respective simula-
tion are indicated by red asterisks. The values are shown with standard deviation.
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Table S 9 Characteristics of docking poses meeting the selection criteria.

Pose Ligand Protein Score (kcal/mol) Ligand flexibility Water

A1 APAP a -8.1 rigid yes
A2 APAP a -7.4 flexible yes
A3 APAP a -6.8 flexible no
A4 APAP a -6.7 rigid no
A5 APAP a -6.8 flexible yes
A6 APAP a -6.7 rigid no
A7 APAP b -6.7 flexible yes
A8 APAP a -6.5 rigid yes
A9 APAP a -6.3 rigid yes
A10 APAP a -6.2 rigid no
B1 BTD a -4.4 n/a yes

Overview of the predicted binding free energies (Score) for docking poses obtained for
APAP and BTD with two different protein structures and different parameters regarding
ligand flexibility and the presence of water molecules. Only poses matching the inclu-
sion criteria (see SI Computational Methods) are shown. Note that only one pose of the
docking calculations with BTD fulfilled the selection criteria and no special restraints
were applied to the bonds of BTD.

Table S 10 Comparison of poses from docking and MD simulations.

Simulation Ligand RMSD (Å)

#3 APAP-18 0.28
#4 APAP-7 4.96

APAP-18 4.60
#5 APAP-18 3.57
#6 APAP-6 0.42
#7 APAP-3 4.49

APAP-8 5.93
#8 APAP-20 4.07
#13 BTD-11 2.89
#14 BTD-3 1.79

The heavy atom RMSD between the selected docking pose and the closest resembling
pose from MD simulations is shown.
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The driving forces for translocation
During the binding process to an active site, ligands generally experience some degree
of strain [33] associated with a penalty toward binding affinity on the target. Our results
did not reveal a clear trend for a reduced conformational freedom inside the enzyme
based on the ligand torsion angles. Especially for BTD, such a result was to be ex-
pected since it is not able to fill the volume of enzyme tunnels or the active site to a
similar degree as APAP due to its smaller size. In this case, our calculations were ham-
pered by hardly comparable time intervals. Even when the number of frames inside and
outside the enzyme were similar (Figure S6 D, G, I), the results were still inconclusive.
While APAP-8 in simulation #7 showed a clear restriction in its conformational freedom
inside the enzyme despite a higher number of frames for this period, the other ligands
did not behave similarly. Frequently, the diversity of visited torsion angle values was
rather altered than restricted, indicating a limited constraint on the ligand. Furthermore,
the number of torsions in APAP and BTD is limited, potentially reducing the impact of
ligand strain compared to a larger molecule such as the cocrystallized ligand prinoma-
stat. The number of water molecules measured in the active site cavity was similar to
observations other CYPs [34].
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Figure S 6 Energetic contributions from electrostatics and hydrogen bonds between the
ligand and the protein. The energetic contributions of (a) electrostatics and (b) hydrogen
bonds in simulations presenting a successful access event are shown. The simulation
identifier is indicated at the bottom right. The regression lines show the centered sixth
order polynomial fitted to the values. In the case of a double access event, the results
were numbered sequentially after Table 1 in the main article.
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Figure S 7 Polar interactions and hydration shell of the ligands. (a) The interaction be-
tween APAP and W75 shown at two different time points of simulation #4. (b) The in-
teraction between APAP and G218 in simulation #4 shown at two different time points.
(c) The number of water molecules in a 3.5 Å radius around the ligand are shown for the
three phases of ligand uptake. In the case of a double access event, the data is sequen-
tially shown for the ligands according to the order in Table 1. The values are presented
with standard deviation. (d) The ligand is shown surrounded by water molecules in
simulation #3. Note the hydrogen bonds between the ligand and the water molecules.
For orientation, the location of E216 is shown at the top of the figure.

Table S 11 Residues interacting with the ligand during the recognition process.

Simulation Tunnel Residues recognition

#3 2f F51, L46, V49, G218, F219
#4 (1) 2f N45, L46, V49, D50, F51, F219
#4 (2) 2f N45, L46, V49, F51, T54, L73, S217, G218, L372
#5 4 E215, L220, R221, R242, K245
#6 2b R25, R26, R123, K391
#7 (1) 2b Q108, N225, L231, H232
#7 (2) 2b R101, F112, Q117, L121, R123
#8 2f Q52, N53, K214, F481, A482
#13 2c L110, F112
#14 2c I106, I109, L110, L241

The residues that were determined to interact with the respective ligand are shown for
the corresponding phase of the access event. In the case of a double access event, the
data is sequentially shown for the ligands according to the order in Table 1.
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Table S 12 Residues interacting with the ligand during the recognition process.

Simulation Tunnel Residues translocation

#3 2f V49, F51, L73, W75, F219, V370, L372, T375, T394
#4 (1) 2f V49, F51, Q52, T54, L73, W75, L213, E216, G218,

R221, E222, V370, T375
#4 (2) 2f L46, V49, F51, L73, W75, G218, F219, F243, F247,

S304
#5 4 E216, L224, N225, V227, Q244, K245, F247, T375,

F483
#6 2b H48, E216, E222, V370, T375, T394, F481
#7 (1) 2b F51, T54, W75, P103, Q108, A209, E216, R221, E222,

G373, T394, F483
#7 (2) 2b F51, P103, R123, E216, E222, N225, E244, F247, D301,

T394, F483
#8 2f F120, L213, E216, A305, A308, V370, T375
#13 2c L110, F112, I120, L121, I297
#14 2c L121, L241, A305, F483, L484

The residues that were determined to interact with the respective ligand are shown for
the corresponding phase of the access event. In the case of a double access event, the
data is sequentially shown for the ligands according to the order in Table 1.
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Table S 13 Residues interacting with the ligand during the recognition process.

Simulation Tunnel Residues active site

#3 2f R101, G367, I369, V370, V374, T375, F483
#4 (1) 2f R101, L213, E216, S304, P371, V370, V374, F483
#4 (2) 2f n/a
#5 4 E216, F247, S304, F483
#6 2b I120, E216, S304, V370, V374, T375, F483
#7 (1) 2b F247, D301, S304, T375
#7 (2) 2b E216, F247, D301, S304, F483
#8 2f n/a
#13 2c I120, L213, A305, V370, V374
#14 2c I120, L213, F243, F247, A305, V370, V374

The residues that were determined to interact with the respective ligand are shown for
the corresponding phase of the access event. APAP-18 in simulation #4 as well as
APAP-20 in simulation #8 did not adopt pose in the active site that is in accordance
with a metabolic reaction. In the case of a double access event, the data is sequentially
shown for the ligands according to the order in Table 1.
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Figure S 8 Distribution of torsion angle values of the accessing ligands inside and
outside the enzyme. (a) For all simulations the values outside the enzyme (top) are
compared with the ones where the ligand was inside the enzyme (bottom). The number
of frames for the respective interval are described by n. The plots were generated using
Matplotlib [27]. Here, the torsion angles of APAP-18 in simulation #3 are shown.
(b) Torsion angles of APAP-7 in simulation #4. (c) Torsion angles of APAP-18 in
simulation #4. (d) Torsion angles of APAP-18 in simulation #5. (e) Torsion angles of
APAP-6 in simulation #6. (f) Torsion angles of APAP-3 in simulation #7. (g) Torsion
angles of APAP-8 in simulation #7. (h) Torsion angle of APAP-20 in simulation #8. (i)
Torsion angles of BTD-11 in simulation #13. (j) Torsion angles of BTD-3 in simulation
#14. (k) The torsion angles of both ligands are shown with the corresponding color used
to plot. While APAP is shown on the left side, BTD is shown on the right side. The
molecular structures were created in ChemDraw13.
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tions Reveal Structural Differences among Allelic Variants of Membrane-Anchored Cy-

tochrome P450 2D6. Journal of Chemical Information and Modeling, 58(9):1962–1975,

2018.

[4] Schrodinger LLC. The PyMOL Molecular Graphics System, Version 2.1.1. 2018.

[5] Slobodan Rendic. Summary of information on human CYP enzymes: Human P450

metabolism data. Drug Metabolism Reviews, 34(1-2):83–448, 2002.

[6] Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte,

Lianyi Han, Jane He, Siqian He, Benjamin A Shoemaker, Jiyao Wang, Bo Yu, Jian Zhang,

and Stephen H Bryant. PubChem Substance and Compound databases. Nucleic acids

research, 44(D1):1202–13, 1 2016.

[7] Jeremy R. Greenwood, David Calkins, Arron P. Sullivan, and John C. Shelley. Towards

the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of

drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design,

24(6-7):591–604, 2010.

[8] New York NY Schrödinger, LLC and New York N Y Schrödinger LLC. Small-Molecule

Drug Discovery Suite 2017-2, 2017.
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CHAPTER 3

A Conserved Allosteric Site on Drug-Metabolizing CYPs: A
Systematic Computational Assessment

In the course of the study highlighted in Chapter 2, the potential influence of a superfi-
cial allosteric site in CYP2D6 on the ligand access process was raised in accordance to
work published on a bacterial CYP. The study presented in this chapter systematically
examines this allosteric site in the nine most relevant drug-metabolizing enzymes with
a multi-scale computational modeling approach. The allosteric regulation of protein
function is an integral component of molecular recognition.

Author contributions: Conceptualization, A.F. and M.S.; methodology, A.F.; formal analy-

sis, A.F.; writing and original draft preparation, A.F.; writing, review and editing, A.F., M.S.;

visualization, A.F.; supervision, M.S.

Based on a manuscript submitted to Int. J. Mol. Sci.:

Fischer, A.; Smieško, M. A Conserved Allosteric Site on Drug-Metabolizing CYPs:
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Abstract

Cytochrome P450 enzymes (CYPs) are the largest group of enzymes involved in hu-

man drug metabolism. Ligand tunnels connect their active site buried at the core of

the membrane-anchored protein to the surrounding solvent environment. Recently, ev-

idence of a superficial allosteric site, here denoted as hotspot 1 (H1), involved in the

regulation of ligand access in a soluble prokaryotic CYP emerged. Here, we applied

multi-scale computational modeling techniques to study the conservation and function-

ality of this allosteric site in the nine most relevant mammalian CYPs responsible for

approximately 70% of drug metabolism. In total, we systematically analyzed over 44 µs

of trajectories from conventional MD, cosolvent MD, and metadynamics simulations.

Our bioinformatics analysis and simulations with organic probe molecules revealed the

site to be well conserved in the CYP2 family with the exception of CYP2E1. In the

presence of a ligand bound to the H1 site, we could observe an enlargement of a ligand

tunnel in several members of the CYP2 family. Further, we could detect the facilitation

of ligand translocation by H1 interactions with statistical significance in CYP2C8 and

CYP2D6, even though all other enzymes except for CYP2C19, CYP2E1, and CYP3A4

presented a similar trend. As the detailed comprehension of ligand access and egress

phenomena remains one of the most relevant challenges in the field, this work con-

tributes to its elucidation, and ultimately, helps in estimating the selectivity of metabolic

transformations using computational techniques.

Introduction

Cytochrome P450 enzymes (CYPs) are the most relevant class of enzymes responsible

for the biotransformation of approximately 70-80% marketed of drugs. CYPs can cat-

alyze a range of oxidative and reductive reactions including hydroxylation, heteroatom

oxygenation, dealkylation, and epoxidation with a distinct substrate specificity [1, 2].

Clinical complications related to metabolism can occur due to potential drug-drug in-

teractions and interindividual differences resulting from genetic polymorphism, both

altering drug elimination [1, 3, 4]. The prediction of CYP metabolism, both in regard

to ligand selectivity and catalytic efficiency, is of pivotal importance for rational design

as a large share of drug attrition is caused by a poor pharmacokinetic profile [5, 6].
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Even though differences in active sites residues partially allow to explain the complex

substrate specificity of CYPs, other structural mechanisms such as ligand access and

egress have been evidenced to influence it [7, 8, 9, 10]. In particular, the active site of

CYPs is buried within the core of the protein and is connected to its surrounding envi-

ronment by dynamic tunnels. The most narrow region of such a tunnel is referred to as

bottleneck, where gating residues act as molecular filters for compounds accessing the

enzyme. The opening of these tunnels depends on conformational changes of the pro-

tein. As mammalian CYPs are membrane-anchored proteins (Figure 1A), it is thought

that lipophilic ligands access the binding site through membrane-facing tunnels, while

hydrophilic compounds, including the metabolic products, prefer tunnels reaching the

bulk solvent [10, 11, 8, 12]. In general, experimental methods can only provide lim-

ited insight into such ligand translocation processes [8] as, for example, the tunnels are

often not apparent in static crystal structures. However, due to their dynamic nature,

computational methods such as molecular dynamics (MD) simulations introducing a

natural degree of structural flexibility have been widely applied to study ligand tunnels

in atomic detail [8, 13, 10, 14, 15].

Allosteric regulation of enzymatic activity is a powerful mechanism for cells to adapt

to their cellular environment by propagating information between two distinct sites of

the protein [16, 17]. Only recently, a superficial allosteric site among helices C, E,

and H (Figure 1B) was proposed to be involved in the regulation of substrate access

to the soluble prokaryotic enzyme CYP101A1. Upon ligand association at this site,

the enzyme was described to shift from a closed to an open conformation, facilitating

the access of other ligands through a tunnel located between the F-G loop and the B-

C loop [14]. Especially in the presence of a high substrate concentration, allosteric

regulation may allow adaption to the environment by enhancing metabolic activity, thus

functioning as a protective mechanism to facilitate the excretion of large amounts of

potentially toxic xenobiotics. In our recent work focused on CYP2D6 ligand access,

we could verify the association of small-molecules at this site, which we denoted as

hotspot 1 (H1). Similar to the above-mentioned study by Follmer and colleagues, we

examined ligand access and observed a considerable correlation between the occupancy

of the H1 site and complete ligand translocation to the active site [8].
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Figure 1 Structural overview and cosolvent densities. (A) Structure of membrane-
anchored CYP2D6 with a ligand bound to the H1 site (shown as spheres). For orien-
tation, helices have been denoted with letters. (B) Close-up view of the H1 allosteric
site in CYP2D6 with bound ligand acetaminophen. (C) Probe densities obtained from
cosolvent MD simulations. Pink densities correspond to pyridine, blue ones to iso-
propanol, and orange ones to acetonitrile.

Intrigued from previous findings regarding the H1 site, this work was focused on elu-

cidating its functionality in a panel of nine mammalian drug-metabolizing CYPs cov-

ering the majority of phase I metabolism. We systematically applied bioinformatic

tools, cosolvent simulations, conventional MD (cMD) simulations, and metadynam-

ics simulations to study in detail CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9,

CYP2C19, CYP2D6, CYP2E1, and CYP3A4 enzymes. We examined conservation,

small-molecule association, conformational adaptation, and the facilitation of ligand

translocation. Our results indicate that the site is mostly conserved among the CYP2

family. Additionally, the association of organic probes and small molecules revealed

a nearby site separated from H1 by helix C. Ultimately, metadynamics simulations

indicated the occupation of H1 site to facilitate ligand egress in most systems, with

statistically significant differences in CYP2C8 and CYP2D6. Our work improves the

understanding of the allosteric regulation of ligand access to drug-metabolizing CYPs,

a process closely related to their substrate specificity and relevant for the accurate pre-

diction of metabolic outcomes.
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Results and Discussion

Simulation techniques and model validation. By introducing flexibility into molec-

ular systems, MD simulations find many different applications such as studying time-

evolved ligand-protein interactions, conformational changes in protein structures, as-

sessing the role of solvent molecules, or identifying putative binding sites [18, 19, 20].

Here, we applied various MD techniques including cMD simulations, metadynamics,

and cosolvent simulations to study the most relevant drug-metabolizing CYPs. By in-

troducing molecular probes to a simulation system, one can observe their association

with the protein of interest and highlight potential binding sites [18]. Based on these

simulations, we could deduce different pharmacophores of the H1 site. Due to the short

timescale of these simulations (Table 1) preventing from significant structural changes,

we modeled the soluble protein without the membrane. Similar to the cosolvent simu-

lations with small organic probes, we evaluated the association of small drug-like com-

pounds with the proteins. Next, in order to investigate the effect of allosteric ligands

bound to the H1 site proposed by Follmer and colleagues [14], we placed 20 ligands

around the protein and observed their association with the H1 site. The root mean-

square deviation (RMSD) indicated good convergence of the respective simulations

(Figure S1). As mentioned above, mammalian drug-metabolizing CYPs are membrane

anchored enzymes. The structural regions of CYPs involved in forming several well-

characterized access tunnels are in direct contact with head groups of the membrane

molecules [8, 21, 10, 11]. Thus, to accurately study the opening and closing of lig-

and tunnels, we constructed membrane models for each enzyme by adding membrane

anchors (as detailed in the Materials and Method section) and embedding the protein

in a preequilibrated 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) membrane. The

orientation and embedding of the protein was predicted using the well-established PPM

server, similar to our previous work [8, 21]. The resulting systems were subjected to

a 300 ns equilibration simulation, during which we computed two metrics commonly

used to characterize and validate models of membrane-anchored CYPs. The heme tilt

angle is defined as the angle of the plane of the porphyrin nitrogens of the heme moiety

and the membrane normal corresponding to the z-axis of the system [21, 11]. Based on

rotational diffusion measurements, the heme tilt angle for CYPs was determined to be
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in the range of 38-78◦ [22]. The average values determined in the equilibration simula-

tions ranged between 53.1 and 73.3◦ in agreement with the experimentally determined

boundaries (Table S1). Further, the angle remained relatively stable around the starting

value, indicating that there were no large changes in respect to the input structures (Fig-

ure S2). When compared to previous results by Berka and colleagues [11], the values

were highly similar for CYP1A2, CYP2C9, and CYP2E1, while there were consider-

able differences for CYP2A6, CYP2D6, and CYP3A4. However, when we compared

the results of CYP2D6 to our previous work [8], the observed angles were again highly

similar. Another parameter we monitored, was the burying depth of the globular domain

of each enzyme, which was experimentally determined to be 35±9 Å for CYP2B4 by

atomic force microscopy [23]. In our equilibration simulations, we observed burying

depths between 35.7 and 38.9 Å in agreement with experimental observations. In addi-

tion to the heme tilt angle and the burying depth, we assessed the backbone RMSD of

the simulations, which indicated acceptable convergence (Figure S3).

Type Membrane Duration (ns) Replicasa LigOrtho
b LigAllo

b

Cosolvent no 60 10 no no
Association no 500 1 no yesc

Equilibration yes 300 1 yes no
Sampling yes 1005 3 no yes
Metadynamics yes 50 10 yes no
Metadynamics yes 50 10 yes yes

Table 1 Simulations conducted in this work. a Number of replicas per enzyme. b Indi-
cator if a ligand was present at the respective site. c Transient presence of ligand.

Using the validated membrane models, we conducted microsecond simulations with

an allosteric ligand bound and, after 5 ns of unrestrained simulations, restrained to the

H1 site. In these simulations, we observed high RMSD values for CYP1A2, CYP2A6,

CYP2C19, and CYP2D6 (Figure S4). Upon inspection of the trajectories, we could ob-

serve large structural changes of the membrane anchor, while the globular domain and

the overall fold of the protein remained stable (Figure S5). In a last step, we conducted

metadynamics simulations focused on studying ligand egress from the buried binding

site with and without the presence of an allosteric ligand bound to H1. Due to the

conformational changes imposed by the translocating ligand, one replica simulation of
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CYP2C8 as well as multiple simulations of CYP1A2 presented increased values com-

pared to the remaining enzymes, which showed acceptable RMSD values below 4 Å

(Figures S6 and S7). However, high values were to be expected due to the application

of biasing potentials to the systems and the propagating ligand.

Small molecules regularly associate with the H1 site of several CYPs. As men-

tioned in the previous section, cosolvent MD simulations can be applied to map binding

sites of a protein by introducing small organic probes. Here, we conducted simulations

with acetonitrile, isopropanol, and pyridine to compare the obtained densities among

the panel of CYPs (Figure 1C). We detected considerable density of isopropanol and

pyridine probes at the H1 site of all studied CYPs besides CYP2E1 and CYP3A4. In

CYP2B6, CYP2C8, CYP2C19, CYP2D6, and CYP3A4, there were densities of ace-

tonitrile, even though they were less pronounced. Interestingly, only the densities of

pyridine presented an overlap between the two highly similar (regarding sequence) en-

zymes CYP2C9 and CYP2C19. Instead, CYP2C9 was more similar to CYP2A6 with

an isolated density of of pyridine close to the center of helix C as well as a shared

density of pyridine and isopropanol between the center of helix C and the C-terminal of

helix H. In all enzymes besides CYP2E1 and CYP3A4, this distribution of densities was

present. Besides the densities at the H1 site, we could detect the association of probes

on a neighboring site, which is separated from H1 by helix C. At the given isovalue

of 15, every CYP studied here presented a density of at least one probe in this region.

However, this adjacent density was comparatively small in CYP2C8 and CYP2E1. In

CYP2C19, the density of the neighboring site was even larger than the ones detected at

the H1 site.

Previously, the association of the small-molecules camphor and acetaminophen were

reported in the literature as well as our previous work [8, 14]. Additional evidence for

the association of small-molecules at the H1 site was provided by X-ray crystallography

of CYP101A1 cocrystallized in excess of camphor. The resulting structure revealed a

slight electron density of camphor at the H1 site [14, 24]. Thus, we decided to study

the association of drug-like molecules with the H1 site in addition to the small organic

probes in cosolvent simulations. CYP1A2, CYP2A6, CYP2C8, CYP2C9 presented a

high degree of ligand association at the H1 site (Figure 2A). In analogy to the cosolvent
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simulations, only minor association of ligands at the H1 site was seen at CYP2E1 and

CYP3A4, indicating a missing functionality of this site in the context of regulation

by small molecules. In contrast to our previous findings [8], CYP2D6 only showed

limited association of ligands with the H1 site, but rather with the neighboring site

separated from H1 by helix C. Generally, the hotspots roughly overlapped with the

regions showing increased probe densities in cosolvent simulations.

Figure 2 (A) Small-molecule binding hotspots on the surface of the nine enzymes stud-
ied in this work. Different shades of red indicate the degree of ligand association per
residues as described in the Materials and Methods section. (B) Heatmap depicting the
conservation of the H1 site within the panel of CYPs. (C) Analysis of structural changes
observed in metdynamics simulations.

To assess the conservation of a protein region, sequence alignments followed by the

comparison of the respective residues is a commonly used technique [25]. We ob-

served a high conservation of the site in the CYP2 family, especially among CYP2A6,

CYP2B6, CYP2C8, and CYP2C19 (Figure 2B). Especially in the CYP2C subfamily,

the identity among the studied members was above 83%. As it is implied by the nomen-

clature [2], CYP3A4 shared less sequence identity with the CYP2 family. Again, this

stands in accordance with the results from the MD simulations discussed above.

The effect of allosteric ligands bound to the H1 site is isoform-dependent. As men-

tioned above, Follmer and colleagues observed a shift to an open conformation in re-

sponse to a ligand bound to the H1 site of CYP101A1. To translate those results to

mammalian CYPs, we used our membrane-anchored CYP models and restrained a lig-

and to the H1 site to ensure constant occupancy of the allosteric site. In the microsecond
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simulations, we monitored the conformational state of the enzyme, as well as the three

most relevant ligand tunnels described in the literature [8, 14, 10, 26, 11, 15]. These

tunnels included tunnel 2b located among the B-C loop, the F-G loop, and the β4 sheet,

tunnel 2f located between helix A and the F-G loop, as well as tunnel 2c between the N-

terminus of helix I and the B-C loop [8, 15, 21]. After processing MD frames from the

simulations using CAVER [27], we determined the average bottleneck radii of the three

tunnels and statistically compared them to the values obtained from the final frames

of the membrane equilibration simulations (Tables 2, S2 and S3). Whereas there was

no clear trend for an enlargement of tunnels 2b and 2c, enzymes of the CYP2 family

including CYP2B6, CYP2C8, CYP2C9, and CYP2C19 presented a statistically signif-

icant increase in the bottleneck radius of tunnel 2f (Figures S8-S10). In the work on

CYP101A1, the F-G loop was described as a key regulatory structure for the open-

ing of tunnels [14]. As this loop separates tunnel 2f and 2b, a slight movement away

from the tunnel entrances can lead to the merging of these tunnels. In CYP2B6, we

could observe an enlargement of both tunnel 2b and 2f, potentially connected to the in-

crease in the root mean-square fluctuation (RMSF) of two replica simulations between

residues 220 and 250 (Figure S11). Indeed, the other enzymes of the CYP2 family

sharing an increased opening of tunnel 2f if an allosteric ligand was present exhibited

a similar behavior in the RMSF diagrams. Thus, rearrangements of the helices F and

G, as well as the loop connecting them, are likely responsible for the observed behav-

ior. CYP1A2, CYP2C19, and CYP2D6 presented larger bottleneck radii for tunnel 2c,

indicating isoform-dependent behavior of the gating mechanisms, as described in the

literature [15]. In CYP3A4, we could not detect any enlargement of these tunnels in

response to a ligand bound to the H1 site.

The radius of gyration can be used to evaluate the compactness of a protein structure,

and thus, to analyze the conformational state of protein [28, 29]. To monitor the con-

formational state of the enzymes during these simulations and detect a potential shift

towards an open conformation, we computed the radius of gyration for each replica

(Figure S12). However, the values remained stable throughout all simulations, indi-

cating no large deviations from the closed, compact conformation observed in crystal

structures. Thus, an allosteric modulation by ligand bound to the surface hotspot seems
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to trigger dynamical conformation effects affecting only the tunnel microenvironment,

with no apparent reach on the overall protein fold.

In a next step, we aimed to study the translocation of ligands through the identified

pathways under the influence of a ligand bound to the H1 site and compared the re-

sults to systems with no such additional ligand. Generally, products of CYP-mediated

metabolic transformations are more hydrophilic and, thus, it was proposed that products

might egress from solvent-exposed tunnels as opposed to substrates, which prefer tun-

nels directed toward the membrane to reach the binding pocket [10, 15]. Thus, the selec-

tion process between access and egress tunnels is thought to be dictated by the physic-

ochemical properties of the ligand. To avoid biasing the route selected by the ligand by

placing it near an entrance at the outer surface of the enzyme, we decided to study the

ligand dissociation from the binding pocket, which constitutes the inverse process based

on the current rationale. Ligand unbinding is a comparatively slow process that requires

substantial simulation times and represents a so-called rare molecular event. There are

several methods available that enhance the sampling of such rare events by applying

various biasing potentials on top of the regular force field. These techniques include

steered MD, random-accelerated MD, umbrella sampling, protein energy landscape ex-

ploration, accelerated MD, as well as metadynamics simulations [9, 26, 30, 31, 32, 33].

In the metadynamics protocol, Gaussian potentials are applied toward collective vari-

ables (CVs) defining the reaction coordinate of such a rare event [31]. Here, we selected

the distance of the ligand center of mass to the heme iron atom within the active site as

CV. We conducted twenty replica simulations per enzyme with half of them having a

ligand bound to the H1 site (Table 1). Except two simulations without allosteric ligand

in CYP2C8, the ligands completely egressed from the binding pocket in all simulations.

In analogy to the above-described cMD simulations, we compared the RMSF values of

the metadynamics simulations to the ones obtained from the membrane equilibration

(Figures 2C and S13). Generally, the values were higher in the metadynamics simula-

tions, especially if no allosteric ligand was bound to the H1 site. The most significant

changes could be detected in the region of the F-G loop, as well as the C-terminus of

helix B.

To relate the results from the metadynamics simulations to the bottleneck radii obtained
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Figure 3 Results from metadynamics simulations. (A) Heat map of selected pathways
with (h) and without (a) allosteric ligand. (B) Boxplots of simulation times (∆T) until
the ligand completely dissociated from the active site. (C) Boxplots of maximal poten-
tial (Pmax) registered until the ligand completely dissociated from the active site.

in the cMD simulations, we monitored the tunnels selected by the ligands to egress

from the binding site (Figure 3A). In accordance to the bottleneck radii, we observed

more trajectories during which the ligand selected tunnel 2c when an allosteric ligand

was present in CYP1A2. In contrast to the cMD simulations, which indicated tunnel 2b

to be enlarged if an allosteric ligand was bound to H1, the ligands preferred different

tunnels in CYP2A6 and CYP2B6. In analogy to the results from the cMD simulations,

there was a slight preference for tunnel 2f in CYP2C8 in response to H1 interactions.

While there was no consensus between both techniques in the closely related CYP2C9

and CYP2C19, there was a preference for tunnel 2c as selected tunnel in CYP2D6 in

the presence of an allosteric ligand in accordance with the observed bottleneck radii.

We observed only a single pathway to be of relevance independent of interactions with

the H1 site in CYP2E1 and CYP3A4, indicating a missing functionality for the H1 site

in these enzymes in addition to the above-mentioned small-molecule and organic probe

densities.
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rB
b

Enzyme Outcome ∆Ta Outcome Pmax
a Significance 2b 2c 2f

CYP1A2 H1 (0.386) H1 (0.400) no = + =
CYP2A6 H1 (0.237) H1 (0.179) no + = =
CYP2B6 H1 (0.204) H1 (0.522) no + n/ac +
CYP2C8 H1 (0.010) H1 (0.025) yes – – +
CYP2C9 WAT (0.675) WAT (0.559) no = – +
CYP2C19 H1 (0.454) H1 (0.862) no – + +
CYP2D6 H1 (0.001) H1 (0.001) yes – + –
CYP2E1 WAT (0.232) WAT (0.085) yes + – =
CYP3A4 H1 (0.571) WAT (0.713) no n/ac = –

Table 2 Statistical analysis of metadynamics simulations. a Outcome (H1 for allosteric,
WAT for no allosteric) of the metadynamics simulations for the simulation time (∆T)
and maximal potential (Pmax). b Statistically outcome of potential changes in bottleneck
radius (rB). c Tunnel not present.

Next, we computed the maximal biasing potential (Pmax) deposited during the dissocia-

tion, as well as the simulation time (∆T) elapsed until the ligand completely dissociated

(Tables 2, S4, and S5). Both parameters have been correlated with residence times of

ligands in previous work [34, 35] and, thus, they can be used to study the influence

of the H1 interactions on ligand translocation. The significance of the differences was

assessed using a two-sided t-test for both readouts. While only CYP2C8 and CYP2D6

presented significant improvements in ∆T or Pmax in the presence of an allosteric lig-

and (Figures 3B, S14, and S15), all enzymes besides CYP2C9, CYP2E1, and CYP3A4

presented an lower values of the two metrics with H1 interactions. In accordance to all

our previous results, the association of small-molecules at the H1 seemed to have no

effect on the functionality of ligand tunnels in CYP2E1 or CYP3A4, with the former

even presenting more favorable values if there was no allosteric ligand present (Figure

3C).

Conclusions

Previous work on the prokaryotic CYP101A1 indicated an allosteric site involved in

the regulation of ligand access to its buried binding pocket by shifting the enzyme to-

ward an open conformation upon small-molecule interaction. Here, we conducted a

multi-scale modeling approach to follow up on this hypothesis focusing on the nine
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most relevant drug-metabolizing CYP enzymes in humans. Using MD simulations, we

quantified the interaction of small-molecules and organic solvents with this allosteric

site, here denoted as H1 site, which is located among helices C, E, and H. These in-

teractions indicated that all studied enzymes besides CYP2E1 and CYP3A4 have the

potential to bind ligands at the H1 site, although the observed interactions in CYP2C19

were comparatively limited. When we analyzed the conservation of residues in the

H1 site, we discovered the whole CYP2 family to share a high degree of similarity

as opposed to CYP1A2 and CYP3A4. To potentially reproduce previous findings on

CYP101A1, we restrained a ligand to the H1 site and analyzed the three most rele-

vant tunnels, which may be used by ligands to access the active site, in a triplicate of

microsecond MD simulations. In CYP2B6, CYP2C8, CYP2C9, and CYP2C19, we

could observe an enlargement of tunnel 2f, which is separated from tunnel 2b by the

F-G loop. The structural adaptation of this loop was shown to mediate the switch to

an open conformation, and thus, an enlargement of either tunnel 2b as it took place in

CYP2A6, CYP2B6, and CYP2E1, or tunnel 2f, points towards such an adaptation. In-

terestingly, all members of the CYP2 family, with the exception of CYP2D6, presented

such a change in accordance to previous results. As in the previous analyses, we could

not detect any enlargement of tunnels in CYP3A4. Despite the results regarding the

changes of bottleneck radii, we could not detect any significant changes in the radius of

gyration during the microsecond MD simulations. Hence, we could not detect a transi-

tion to an open conformation in our simulations. To study ligand translocation directly,

we conducted metadynamics simulations by selecting the distance of the ligand to the

heme iron atom as CV. Although it was only significant in CYP2C8 and CYP2D6, all

studied enzymes except for CYP2C9, CYP2E1, and CYP3A4 presented either shorter

residence in the active site or a lower maximal potential to induce ligand dissociation.

Thus, interactions at the allosteric site indeed facilitated the translocation of ligands.

In contrast, CYP2E1 presented a statistically significant increase in both maximal po-

tential and simulation time for the ligand to dissociate. In conclusion, the results from

different computational techniques suggested that the findings in CYP101A1 can be

translated to several mammalian enzymes of the CYP2 family.
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Materials and Methods

Bioinformatics analysis. All protein sequences format were obtained from the UniProt

database [36] in FASTA format according to the accession codes listed in Table S6.

Based on our previous work with CYP2D6 [8], we selected the 18 residues S137, T138,

L139, R140, N141, L142, G143, L144, G145, K146, L149, L189, P268, R269, D270,

L271, A274, and A277 to define the H1 allosteric site. Based on a multiple sequence

alignment of the catalytic domains, we identified the corresponding residues in the re-

maining enzymes. For the sequence alignment we selected the Clustal W algorithm

[37] within the UGENE suite of tools (v34.0) [38]. The conservation was determined

according to the amino acid groups provided in our previous work [39]. If a residue

was in the same group, we assigned it a conservation value of 0.5, while a value of

1.0 was given for identical residues and 0 was assigned if none of the above-mentioned

conditions was fulfilled.

Model building. The crystal structures of all studied CYPs were obtained from the Pro-

tein Data Bank [40] according to the accession codes provided in Table S6. For proteins

deposited as multimers, only chain A was retained without organic solvents, histidine

tags, or ions. From the obtained PDB files, FASTA sequences were extracted using an

in-house python routine. The generated sequences were aligned to the wild-type protein

with the ClustalW algorithm [37] in the UGENE toolkit [38]. Mismatched amino acids

were mutated to the ones corresponding to the wild-type enzyme in the 3D Builder

panel within the Maestro Small-Molecule Drug Discovery suite (v2019-3) [41]. Next,

the structures were processed with the Protein Preparation Wizard [42] by assigning

bond orders, adding hydrogen atoms, predicting protonation states with Epik, reorient-

ing the hydrogen bonding network with PROPKA at pH 7.4. Next, the structures were

subjected to a restrained minimization with the OPLS3e force field to a convergence

threshold of 0.3 Å for protein heavy atoms. Missing residues and side chains were

added using Prime. The heme moieties of the protein were modeled with six coordina-

tion partners to the Fe3+ ion including cysteine, the four porphyrin nitrogens, as well as

an uncharged oxygen atom. If there was an inhibitor present in the active site, it was re-

placed with a structurally similar substrate that, however, is a substrate of the respective

enzyme according to the review article by Rendic and colleagues [43]. These replace-
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ment and superposition procedures are detailed in Figure S16. To obtain systems cov-

ering the complete protein sequence, the transmembrane anchor was modeled as ideal

alpha helix in the 3D Builder panel within Maestro by considering residues missing in

the crystal structures. The anchors were placed perpendicular to the membrane plane

along the z-axis and were aligned the C-terminus of the anchor to the N-terminus of the

globular domain based on their backbone carbonyl atoms. Ultimately, we modeleted

a covalent bond linking the two parts. To avoid steric clashes, torsion angles of the

membrane anchor residues were adjusted if it was necessary. A prequilibrated POPC

membrane leaflet was placed on the predicted position by the Orientations of Proteins

in Membranes (OPM) protocol accessible at the PPM server, which estimates the mem-

brane position based on energetic contributions [44], as previously described [21]. All

used ligand structures in this work were pre-processed using the LigPrep routine at a

pH of 7.4 for ionizable functional groups and the OPLS3e force field to obtain energy-

minimized conformers. Based on the Ligprep output, we retained the most favorable

protomer for each ligand.

MD simulations. All classical MD simulations were performed with the Desmond

(v2019-1) simulation engine [45]. Five different sets of MD simulations were con-

ducted: (i.) simulations with 20 ligand molecules arbitrarily placed around the enzymes,

(ii). cosolvent simulations, (iii.) equilibration simulations of membrane-anchored CYPs,

(iv.) production simulations with allosteric ligand restrained to the protein surface, and

(v.) metadynamics simulations. All simulations were treated with the default equilibra-

tion protocol of Desmond, before the production phase was conducted in an NPT en-

semble at atmospheric pressure regulated by the Martyna-Tobias-Klein barostat barostat

and a temperature of 310 K maintained by the Nose-Hoover thermostat. The orthorhom-

bic periodic boundary systems were solvated with TIP3P water molecules, counterions

were used to neutralize the systems, and the OPLS 2005 force field was selected. In

all simulations, the orthorhombic simulation box was defined with a distance cut-off of

at least 10 Å to the nearest atom in all three cartesian directions. The time step of the

RESPA integrator was set to 2 fs, long-range interactions were treated with the u-series

algorithm [46], and bonds to hydrogen atoms controlled with M-SHAKE. For replica

simulations, the random seed for initial velocities was modified.
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For the first set of simulations, the membrane anchor was not included and the cocrys-

tallized ligands were removed from the prepared structures. For each CYP, 20 substrate

molecules were randomly placed around the enzyme to monitor the association of drug-

like ligands on the surface of the enzyme (Table S7). A duration of 500 ns per enzyme

was selected with atomic coordinates recorded at an interval of 50 ps. Cosolvent MD

simulations were conducted with the Mixed Solvent MD workflow within the Desmond

(v2019-1) simulation engine [45]. As probe molecules, we selected isopropanol, ace-

tonitrile, and pyridine at a concentration of 5% (by volume). Again, the orthosteric

ligand was removed from the prepared protein structures without membrane anchor.

The simulations were conducted with 10 replicas per cosolvent resulting in 30 individ-

ual simulations per enzyme. After an equilibration phase of 15 ns, the association of

the probe molecules was sampled for 5 ns leading to a total simulation time of 600 ns

per system.

The third set of simulations was conducted on the complete protein-membrane systems

in order to equilibrate them. The simulation time was set to 300 ns and atomic coordi-

nates were recorded at an interval of 30 ps.

The fourth set of simulations were started from the last MD frame of the prequilibrated

protein-membrane systems. Using the rebuild cms.py script that comes with Maestro,

new systems were generated with a ligand bound to the H1 site. To obtain a starting

conformation of the selected ligand bound to the H1 allosteric site, we used the Glide

standard-precision docking protocol [47]. The selected ligands are given in Table S8

and Figure S17. We defined the search space for docking considering the position

of acetaminophen bound to CYP2D6 H1 from our previous work. Water molecules

overlapping with ligand atoms were removed assuming the probe size of 1.65 Å. After

initial 5 ns of simulation to allow the ligand to freely accommodate within the allosteric

site, we applied harmonic distance restraints with a force constant of 2.5 kcal*mol-1*Å-1

between the central atom of the ligand and α-carbons of three residues of the protein

(Table S9) located in the comparatively rigid helices C, E, and I. These simulations

were conducted in triplicates with a duration of 1 µs and atomic coordinates stored at

an interval of 100 ps.

The metadynamics simulations were also conducted with the Desmond simulation en-
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gine. The simulation systems were retained from the above-mentioned production sim-

ulations with a ligand restrained to the H1 site combined with an orthosteric ligand. As

CV, we selected the distance between the centroid of the ligand and the heme iron atom

with a wall of 45 Å. We retained the height of the Gaussian at 0.03 kcal/mol as well as

the width of 0.05 Å according to the default specification.

Evaluation of the MD trajectories. For all simulations, except for the comparatively

short cosolvent MD simulations, we computed RMSD and RMSF values using the Sim-

ulation Interaction Diagram panel in Maestro. For the metadynamics simulation, we

truncated the trajectories beforehand to only represent the dissociation process using

the trajectory extract subsystem.py python routine that comes with Maestro.

Initially, the first set of simulations was conducted to obtain a stable pose of the lig-

ands bound to the H1 site that could be superimposed to the prequilibrated membrane

models for further procedures. However, conformational changes of the protein surface

prevented this procedure, as they would have introduced large steric clashes. Thus, we

evaluated these simulations to obtain additional insight into the preference of small-

molecule association on the enzyme surface. We used an in-house python routine com-

puting the cumulative number of ligand heavy atoms within 5 Å distance to protein

α-carbons for each MD frame and normalized this count to the total number of ligand

heavy atoms.

To validate our membrane models with experimental parameters, we determined the

heme tilt angle as well as the burying depth of the membrane-anchored proteins during

our equilibration simulations. The heme tilt angle was defined as the angle between

the heme plane defined by the porphyrin nitrogens and the membrane normal (z-axis)

[11, 21]. The burying depth was defined as distance between the mass center of the

protein considering α-carbons and the centroid of the POPC C1-carbons [21, 48]. Both

of these validation parameters were determined for every frame of the trajectories in

analogy to our previous work [8].

Tunnels connecting the buried active site of CYPs to the surrounding solvent environ-

ment were computed using CAVER (v3.0) [27] for the microsecond simulations of the

full-length proteins embedded in a membrane. The starting point for the tunnel compu-

tation was determined in CAVER Analyst (v1.0) [49] by selecting the heme, as well as
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two additional residues in the binding site based on a structural alignment to CYP2D6,

for which we defined suitable residues in our previous work (Table S10). Similarly, as

reported in our previous analyses on CYP2D6 [8, 21], we selected a clustering threshold

of 4.5 for the computation. As we observed four simulations presenting a dissociation of

the allosteric ligand during the preequilibration of 5 ns without restraints, we discarded

these trajectories from the tunnel computation (Table S11). The radius of gyration was

determined from MD frames in according to the publication of Lobanov and colleagues

[29].

While we visually determined the simulation time ∆T when the ligand completely dis-

sociated from the protein in the metadynamics simulations, we derived the maximal

potential Pmax during the egress process using the metadynminer toolkit based on R

scripting language [50]. The statistical significance of the average simulation time until

ligand egress, the maximal potentials, as well as the bottleneck radii was evaluated us-

ing ttest ind from stats routine that comes with the python-scipy module at the p=0.1

significance level.
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[8] André Fischer and Martin Smieško. Spontaneous Ligand Access Events to Membrane-

Bound Cytochrome P450 2D6 Sampled at Atomic Resolution. Scientific Reports, 9(1):

16411, 2019.

[9] Philippe Urban, Thomas Lautier, Denis Pompon, and Gilles Truan. Ligand Access Chan-

nels in Cytochrome P450 Enzymes: A Review. Int J Mol Sci., 19(6), 5 2018.
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[11] Karel Berka, Markéta Paloncýová, Pavel Anzenbacher, and Michal Otyepka. Behavior of

human cytochromes P450 on lipid membranes. Journal of Physical Chemistry B, 117(39):

11556–11564, 2013.

[12] Artur Gora, Jan Brezovsky, and Jiri Damborsky. Gates of enzymes. Chemical Reviews,

113(8):5871–5923, 2013.
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3.1 Supporting Information

Supporting Results and Discussion

Simulation techniques and model validation

Figure S 1 RMSD of association simulations.

Table S 1 Membrane model validation.

Enzyme Heme tilt angle (◦) Burying depth (Å)
CYP1A2 66.7 ± 3.7 36.0 ± 1.1
CYP2A6 39.1 ± 3.8 38.5 ± 1.7
CYP2B6 66.3 ± 3.4 38.9 ± 1.6
CYP2C8 63.8 ± 3.5 38.6 ± 1.4
CYP2C9 68.6 ± 3.4 37.3 ± 1.3
CYP2C19 62.5 ± 3.7 36.9 ± 1.9
CYP2D6 55.3 ± 3.5 38.1 ± 1.3
CYP2E1 53.1 ± 3.9 38.4 ± 1.6
CYP3A4 75.3 ± 3.0 35.7 ± 1.0

Average values are given with standard deviation.
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Figure S 2 Time-evolved values of heme tilt angle (pine green) and buyring depth (red)
during association simulations.

Figure S 3 RMSD of membrane equilibration simulations.
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Figure S 4 RMSD of sampling simulations.
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Figure S 5 Depiction of conformational changes in sampling simulations for
(A) CYP2C8, (B) CYP1A2, (C) CYP2C19, and (D) CYP2C19. The three replica sim-
ulations of each system are shown in different colors.
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Figure S 6 RMSD of metadynamics simulations (with allosteric ligand) in all enzymes
studies here. Different replica simulations are indicated by different colors.

Figure S 7 RMSD of metadynamics simulations (without allosteric ligand) in all en-
zymes studies here. Different replica simulations are indicated by different colors.
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The effect of allosteric ligands bound to the H1 site is isoform-dependent.

Table S 2 Statistics of bottleneck radii.

Enzyme Ligallo Tunnel n Mean SD
CYP1A2 no 2b 265 1.033 0.108
CYP1A2 yes 224 1.023 0.120
CYP1A2 no 2c 396 1.025 0.089
CYP1A2 yes 625 1.063 0.141
CYP1A2 no 2f 508 1.141 0.123
CYP1A2 yes 773 1.129 0.141

CYP2A6 no 2b 70 0.941 0.039
CYP2A6 yes 242 0.967 0.071
CYP2A6 no 2c 97 0.969 0.069
CYP2A6 yes 327 0.955 0.059
CYP2A6 no 2f 15 0.920 0.015
CYP2A6 yes 35 0.939 0.035

CYP2B6 no 2b 535 1.181 0.176
CYP2B6 yes 892 1.309 0.290
CYP2B6 no 2f 126 1.038 0.104
CYP2B6 yes 346 1.074 0.119

CYP2C8 no 2b 555 1.641 0.209
CYP2C8 yes 1455 1.468 0.274
CYP2C8 no 2c 555 1.605 0.262
CYP2C8 yes 1262 1.395 0.308
CYP2C8 no 2f 11 0.953 0.064
CYP2C8 yes 1154 1.326 0.253

CYP2C9 no 2b 5 0.982 0.060
CYP2C9 yes 526 1.118 0.145
CYP2C9 no 2c 556 1.512 0.215
CYP2C9 yes 370 1.055 0.131
CYP2C9 no 2f 62 0.959 0.044
CYP2C9 yes 222 0.973 0.068
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Table S 3 Statistics of bottleneck radii (continued).

Enzyme Ligallo Tunnel n Mean SD
CYP2C19 no 2b 465 1.342 0.240
CYP2C19 yes 133 1.109 0.251
CYP2C19 no 2c 76 1.178 0.338
CYP2C19 yes 505 1.510 0.306
CYP2C19 no 2f 238 1.093 0.227
CYP2C19 yes 839 1.609 0.477

CYP2D6 no 2b 354 1.289 0.244
CYP2D6 yes 1342 1.214 0.189
CYP2D6 no 2c 119 1.007 0.141
CYP2D6 yes 570 1.046 0.139
CYP2D6 no 2f 344 1.328 0.242
CYP2D6 yes 1119 1.192 0.178

CYP2E1 no 2b 302 1.054 0.153
CYP2E1 yes 333 1.087 0.156
CYP2E1 no 2c 556 1.640 0.203
CYP2E1 yes 498 1.454 0.295
CYP2E1 no 2f 61 0.956 0.059
CYP2E1 yes 35 0.962 0.062

CYP3A4 no 2c 38 0.983 0.085
CYP3A4 yes 34 1.054 0.331
CYP3A4 no 2f 555 2.161 0.261
CYP3A4 yes 1433 1.78 0.496
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Figure S 8 Boxplots of bottleneck radii for tunnel 2b. While ”WAT” indicates no al-
losteric ligand present, ”H1” indicates if a ligand was bound to H1.

Figure S 9 Boxplots of bottleneck radii for tunnel 2c. While ”WAT” indicates no al-
losteric ligand present, ”H1” indicates if a ligand was bound to H1.
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Figure S 10 Boxplots of bottleneck radii for tunnel 2f. While ”WAT” indicates no
allosteric ligand present, ”H1” indicates if a ligand was bound to H1.

Figure S 11 RMSF of sampling simulations for all studied enzymes.
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Figure S 12 Radius of gyration during sampling simulations.

Figure S 13 RMSF of metadynamics simulations compared to the ones obtained from
conventional MD.
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Figure S 14 Boxplots of maximal potential (Pmax) registered during metadynamics sim-
ulations.

Figure S 15 Boxplots of simulations times (∆T) registered during metadynamics sim-
ulations.
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Table S 4 Statistics of maximal biasing potential.

Pmax (kcal/mol) ∆T (ns)
Enzyme Ligallo Tunnel n Mean SD Mean SD
CYP1A2 yes 2c 5 42.794 12.920 10.659 2.790
CYP1A2 no 2 44.104 10.188 10.883 0.909
CYP1A2 yes 3 5 38.676 4.175 9.329 3.376
CYP1A2 no 8 44.105 8.363 11.036 2.228
CYP1A2 yes all 10 40.735 9.308 9.994 3.003
CYP1A2 no 10 44.105 8.119 11.005 1.989

CYP2A6 yes 2c 10 25.121 4.569 5.547 1.302
CYP2A6 no 9 27.076 3.984 6.051 1.327
CYP2A6 yes all 10 25.121 4.569 5.898 1.331
CYP2A6 no 10 28.111 4.982 6.318 1.509

CYP2B6 yes 2c 4 34.652 5.453 9.780 0.957
CYP2B6 no 2 36.933 4.627 10.190 0.148
CYP2B6 yes 2f 3 44.176 3.700 12.720 0.590
CYP2B6 no 6 46.432 10.666 13.232 1.616
CYP2B6 yes 4 2 51.483 18.815 13.258 2.952
CYP2B6 no 2 38.937 3.959 12.083 0.541
CYP2B6 yes all 10 40.056 10.977 11.228 2.185
CYP2B6 no 10 43.033 9.329 12.394 1.748

CYP2C8 yes 2c 6 48.788 5.873 12.398 2.617
CYP2C8 no 3 52.085 11.539 19.040 11.293
CYP2C8 yes 2f 3 63.399 6.637 20.468 2.088
CYP2C8 no 2 71.964 8.305 22.793 0.541
CYP2C8 yes all 10 54.716 9.358 14.729 4.532
CYP2C8 no 10 75.437 25.199 27.575 13.362

CYP2C9 yes 2c 7 67.903 12.373 19.571 4.760
CYP2C9 no 3 61.515 13.990 16.127 5.315
CYP2C9 yes all 10 67.941 14.328 20.658 5.681
CYP2C9 no 10 64.413 12.068 19.642 4.950
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Table S 5 Statistics of maximal biasing potential (continued).

Pmax (kcal/mol) ∆T (ns)
Enzyme Ligallo Tunnel n Mean SD Mean SD
CYP2C19 yes 2f 2 88.222 34.742 25.560 7.184
CYP2C19 no 3 77.834 21.233 27.447 8.862
CYP2C19 yes 4 7 62.884 12.778 19.848 2.837
CYP2C19 no 5 68.267 13.106 22.229 3.391
CYP2C19 yes all 10 68.657 18.818 21.355 4.160
CYP2C19 no 10 70.053 16.574 23.196 6.370

CYP2D6 yes 2c 8 39.114 9.468 11.098 1.452
CYP2D6 no 6 56.748 9.729 19.781 6.570
CYP2D6 yes all 10 40.332 8.952 11.033 1.433
CYP2D6 no 10 59.120 11.906 21.618 5.997

CYP2E1 yes all 10 25.989 5.955 6.815 1.723
CYP2E1 no 10 21.144 5.937 5.943 1.411

CYP3A4 yes all 10 48.443 11.299 12.625 2.010
CYP3A4 no 10 51.072 19.207 13.513 4.434

Supporting Materials and Methods

Model building

Table S 6 Structure overview.

Enzyme PDB ID UniProt ID Mutations to obtain wild-type
CYP1A2 2HI4 P05177 none
CYP2A6 1Z10 P11509 none
CYP2B6 5UAP P20813 D28G, R29K, Y226H, K262R
CYP2C8 2NNI P10632 none
CYP2C9 1OG5 P11712 K206E, I215V, C216Y, S220P,

P221A, I222L, I223L, G296K
CYP2C19 4GQS P33261 V490I
CYP2D6 3TDA P10635 A31G, R32K, Y33L
CYP2E1 3GPH P05181 N31K
CYP3A4 5TE8 P08684 L22A

Accession codes for Protein DataBank and UniProt database given for all enzymes along with

the amino acid mutations to obtain the wild-type sequence.
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Table S 7 Two-dimensional structures of ligands studied in this work.

Table S 8 Substrates distributed around the enzymes.

Enzyme Residues
CYP1A2 16x acetaminophen, 4x caffeine
CYP2A6 15x acetaminophen, 5x nicotine
CYP2B6 3x quinoline, 10x propofol, 7x nicotine
CYP2C8 10x ibuprofen, 5x propofol, 5x nicotine
CYP2C9 15x acetaminophen, 5x ibuprofen
CYP2C19 15x phenacetin, 5x nicotine
CYP2D6 20x acetaminophen
CYP2E1 15x acetaminophen, 2x phenacetin, 3x chlorzoxazone
CYP3A4 16x acetaminophen, 4x chlorzoxazone

Figure S 16 Ligands that were manually replaced by superposition during model build-
ing procedures based on the highlighted common scaffolds, which are depicted in pine
green.
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Table S 9 Ligands studied in this work to H1 site.

Enzyme Allosteric Orthosteric
CYP1A2 acetaminophen triamterene
CYP2A6 acetaminophen coumarin
CYP2B6 acetaminophen ZINC49942680
CYP2C8 ibuprofen montelukast
CYP2C9 acetaminophen (S)-warfarin
CYP2C19 phenacetin 60122187a

CYP2D6 acetaminophen thioridazine
CYP2E1 acetaminophen undecanoic acid
CYP3A4 acetaminophen midazolam

a PubChem identifier (compound ID) given.

Figure S 17 Two-dimensional structures of ligands studied in this work.
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MD simulations

Table S 10 Residues for harmonic distance restraints.

Enzyme Helix C Helix E Helix I
CYP1A2 A140 V199 V311
CYP2A6 S131 V181 T295
CYP2B6 S128 I178 T292
CYP2C8 S127 V177 V291
CYP2C9 S127 V177 A291
CYP2C19 S127 V177 A291
CYP2D6 S135 V185 V299
CYP2E1 S129 V179 V293
CYP3A4 L133 V183 I300

Evaluation of the MD trajectories

Table S 11 Residues for tunnel computation starting points.

Enzyme Residues
CYP1A2 A230, D313
CYP2A6 T212, N297
CYP2B6 I209, S294
CYP2C8 L208, L294
CYP2C9 L233, D293
CYP2C19 V208, D293
CYP2D6 E216, D301
CYP2E1 L210, D295
CYP3A4 L216, I301

Table S 12 Occupancy of H1 site during free MD.

Enzyme Replica 1 Replica 2 Replica 3
CYP1A2 yes no yes
CYP2A6 yes yes yes
CYP2B6 yes yes no
CYP2C8 yes yes yes
CYP2C9 yes yes yes
CYP2C19 yes yes yes
CYP2D6 yes yes yes
CYP2E1 no yes no
CYP3A4 yes yes yes
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CHAPTER 4

Computational Prediction of Ester Hydrolysis by Human
Carboxylesterases 1 and 2

Esters are abundant in drug-like molecules. During my involvement in several virtual
screening projects I realized a lack of predictive methods for ester hydrolysis. Due to
my experience with metabolic enzymes as well as previous research conducted by Prof.
Beat Ernst and colleagues, it was natural to follow up on this issue. The presented work
focused on the development of a model predicting the specificity of ester compounds
for the carboxylesterases hCE-1 and hCE-2. Several aspects of molecular recognition
are involved in governing the specificity of ligands for these enzymes. This topic is of
high relevance for the development of ester prodrugs due to the significantly different
expression pattern of the enzymes. Even though the work is primarily centered around
cheminformatics methodology, this project allowed me to leverage a broad range of
modeling skills I previously acquired.

Author contributions: Conceptualization, A.F.; methodology, A.F., P.R.; formal analysis, A.F.,

P.R.; writing and original draft preparation, A.F.; writing, review and editing, A.F., P.R., M.A.,

M.S.; visualization, A.F.; supervision, M.A., M.S.

Based on a manuscript submitted to J. Cheminformatics:

Fischer, A.; Peter, R; Lill, M.A.; Smieško M., Computational Prediction of Ester
Hydrolysis by Human Carboxylesterases 1 and 2.
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Abstract

Human carboxylesterases (hCE) are responsible for the majority of hydrolytic reactions

on drugs in vivo. While predictive models exist for other phase-I metabolic enzymes,

predictions on substrate specificity of the two main isoforms hCE-1 and hCE-2 were

previously disregarded. Knowledge on compound selectivity for either isoform is cru-

cial for a successful prodrug approach due to the predominance of hCE-2 over hCE-1 in

the small intestine. To achieve controlled systemic release of the active principle from a

prodrug, selective hydrolysis by hCE-1 rather than hCE-2 is desired. Here, we applied

a combination of ligand-based and structure-based computational methods for training

a machine learning classifier to predict likelihood of compound hydrolysis by either of

these two enzymes. Our model achieved an accuracy of 92% during internal validation

and 86% when challenged with an external test set. Among the most relevant features

for the predictions were metrics describing the acyl and alcohol moieties of a com-

pound, quantum mechanical descriptors, steric indices, and structure-based metrics. In

contrast to the current rationale for substrate specificity, we found the topological po-

lar surface area of the hydrolytic products to outperform metrics describing their size.

The present study may advance the rational design of prodrugs and contribute to an

improved prediction of drug-drug interactions at an early stage of drug discovery.

Introduction

Esterification of compounds featuring a carboxylic acid or a free hydroxyl group to the

respective ester prodrug is a frequently exploited technique of medicinal chemistry to

overcome limitations such as low bioavailability by improving the passive transport of

the typically more lipophilic ester. Optimally, after uptake from the gastrointestinal

tract (GIT) the active principle of the drug should be released in a controlled man-

ner by hydrolysis[1, 2, 3, 4]. Even though other esterases such as butylcholinesterase

or acetylcholinesterase are present in humans, ester prodrugs are predominately hy-

drolyzed by human carboxylesterases (hCEs) with well-established examples such as

methylphenidate, oseltamivir, clopidogrel, irinotecan, and angiotensin-converting en-

zyme inhibitors [5, 3, 6, 1, 7]. Moreover, the two main isoforms hCE-1 and hCE-2 can

be responsible for the metabolic inactivation of drugs to facilitate their excretion and
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have also been implicated in endogenous processes such as cholesterol homeostasis.

The latter renders hCEs as drug target for hypertriglyceridemia or diabetes in addition

to the potential modulation of drug metabolism by their selective inhibition [1, 8, 9, 10].

Due to their different tissue distribution, with hCE-1 being mainly expressed in the liver

and hCE-2 mostly limited to the GIT, knowledge on substrate specificity of the enzymes

becomes pivotal for the success of a prodrug approach. In this regard, it was speculated

that the substrate specificity is influenced by the size of the acyl and alcohol moieties

forming the ester compound. While hCE-1 seems to prefer compounds with a small

alcohol group, hCE-2 prefers cleaving off small acyl groups, as a result of the shape

of their active sites and, correspondingly, steric limitations [1, 3, 5, 8]. In addition to

therapeutic drugs, hCEs are also responsible for the metabolism of narcotics such as

heroin or cocaine [8, 11]. The metabolic reactions of the latter exemplarily illustrate

the substrate specificity of hCE-1 and hCE-2 regarding their preference for differently

sized alcohol and acyl moieties (Figure 1A). Further, as pharmacokinetic drug-drug

interactions can occur if multiple compounds bind to the same metabolic enzyme, in-

formation on metabolic pathways is crucial, especially as a large share of clinical drug

candidates fail due to a poor pharmacokinetic profile [3, 12, 13, 14]. Altogether, the pre-

diction of hCE-mediated metabolism early in the discovery stage is highly beneficial for

designing of compounds with optimal pharmacokinetics and prodrugs with controlled

systemic release.

Due to their comparatively low cost and high throughput, computational methods have

been developed to predict metabolic reactions and to design compounds with an ap-

propriate pharmacokinetic profile [12, 15, 16]. While there are several tools avail-

able to predict the regioselectivity and reactivity of substrates for cytochrome P450

enzymes or glutathion-S-transferase, there is a lack of such predictive tools for es-

terases [16, 17, 18]. Computational approaches for predictive metabolism include quan-

titative structure-activity relationships (QSAR), pharmacophore-based, structure-based,

and rule–based methods [16, 18]. In the field of esterases, some effort was directed to

establishing predictive models to determine selective inhibitors with regard to drug-drug

interactions as well as potential therapeutics. While one study focused on a combination

of structure-based considerations and machine learning [10], another one introduced a
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2D-QSAR model for protease inhibitors [19]. The only efforts towards the prediction

of hydrolysis by hCE-1 and hCE-2 were limited to a small set of 40 compounds with

a focus on quantitative data [12, 13]. Further, the predefined test set was composed of

compounds structurally highly similar to those in the training set, including stereoiso-

mers. Other computationally assisted studies only focused on small congeneric series

or specific substrates [20, 21]. Thus, there remains a need to develop tools predicting

if a compound is metabolized by either hCE-1 or hCE-2, especially to determine if the

hydrolysis takes place systemically or already in the GIT after oral administration.

In this study, we compiled a library of 166 compounds based on biochemical databases

and the literature to train a machine learning model with structure-based and ligand-

based metrics predicting if a compound is hydrolyzed by hCE-1 or hCE-2. Structure-

based metrics contained information about the formation of the enzymatic transition

state, as well as the distance from the catalytic serine to the reactive center (carbon

atom of the carbonyl in the ester group). Ligand based metrics included semi-empirical

quantum mechanics (QM) parameters and several topological descriptors characteriz-

ing structure as well as steric accessibility. The obtained model based on decision trees

predicted the selectivity of a compound for hCE-1 or hCE-2 with an accuracy of 92%

during internal validation and 86% when challenged with an external test set. More-

over, the applied methodology allowed us to give an estimate on how reliable the result

was and which features were important for the prediction. By supplying all computed

metrics and structures, we urge for the future use of the obtained data. This work will

improve the rational development of prodrugs with a controlled systemic release of the

active principle and the prediction of potential drug-drug interactions.

Results and Discussion

Library. As previous efforts to predict hydrolysis by hCE-1 and hCE-2 were limited to

a small number of structurally similar compounds [12, 13], we aimed at substantially

extending our compound library in comparison. Thus, we enhanced the applicability

of our model to a broader chemical space, to address this well-recognized limitation of

data-driven procedures [16]. We screened several databases including PubChem BioAs-

say [22], DrugBank [23], BRENDA [24], the latter being specifically initiated to cover

enzymatic reactions, as well as the referenced literature to collect substrates of hCE-1
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and hCE-2. Based on the available data, we limited our search to esters and carbamates,

even though these enzymes have also been reported to hydrolyze thioesters and amides

[8, 13]. As we were focused on categorical rather than absolute quantitative data, our

dataset was less prone to bias from varying experimental assay methods and related

inaccuracies [25]. The resulting database consisted of 166 unique ligands, with 16 ad-

ditional entries either being isomers with different stereospecificity or compounds with

multiple ester groups, which we considered separately (Figure S1). Due to the promis-

cuity of hCE-1 and hCE-2 [1, 10], a large share of compounds can be metabolized by

both hCE-1 and hCE-2 at different rates. For our training set, we retained compounds

with at least least 2-fold selectivity toward either enzyme, while we grouped the ones

with a selectivity factor below 2-fold in a separate set (External A). Clearly, this set

is relatively challenging to predict. Further, there were several compounds, for which

either hCE-1 or hCE-2 were proposed as major isoform for hydrolysis, but no selec-

tivity data was reported in the literature, leading us to create a third set comprising of

these compounds (External B). The majority of compounds included in our library were

drugs and, thus, complied with the boundaries proposed by Lipinski [26]. As several

compounds presented properties beyond the drug-like chemical space, which is an in-

creasing trend for marketed drugs observed in recent years [27], the predictions of our

model were centered, but not limited to drugs fulfilling the Lipinski criteria (Figure 1B).

A drawback of QSAR models is the frequently limited chemical space of the consid-

ered compounds [28]. To verify the chemical diversity of the ligands in our database,

we computed pair-wise similarity based on extended-connectivity fingerprints (ECFP2)

followed by comparison of Tanimoto coefficients. The obtained average values ranged

from 0.16 to 0.37 indicating high chemical diversity within the training set, which is

important for applicability of our model to new compounds [29]. The separated, right-

most peak on the histogram represented a congeneric series of statin derivatives (Figure

1B). Next, we computed the average and maximal similarity of the external sets A and

B to the training set, assessing if the model was trained with similar compounds (Fig-

ure S2). While the majority of compounds in both external A and B sets presented

a comparable similarity within them similar to the training set, the external set A in-

cluded several (approximately 50%) similar compounds if the training set was taken
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as a reference. Some degree of similarity between the compounds can be attributed

to congeneric series assessed in the underlying studies. In contrast, the external set B

presented low similarity to the training set with the majority of compounds having a

maximal Tanimoto coefficient of 0.5 or lower.

Figure 1 Library characteristics and ligand-based descriptors. (A) Specificity of hCE-1
and hCE-2 for the ester groups of cocaine. (B) Molecular weight, logP, and pairwise
similarity among compounds in the training set. (C) Molecular volume of acyl and
alcohol moieties in the training set. (D) MW of alcohol and acyl moieties in the training
set.

Ligand-based metrics. The majority of tools for predicting metabolic reactions are

centered around ligand-based descriptors [16, 17, 30]. As our focus was the distinction

between hCE-1 and hCE-2 substrates, we initially relied on the proposed rationale for

their substrate specificity based on the size of the acyl and alcohol moieties [1, 3, 5, 8].

To quantify the preference, we determined the products of the hydrolysis and com-

puted their molecular weight (MW), volume, number of atoms, logP, and topological

polar surface area (tPSA). Further, we included the ratios of these properties between

acyl and alcohol products. As depicted in Figures 1C and D, the volume or MW of

the acyl and alcohol moieties did not allow to completely distinguish hCE-1 or hCE-2

substrates, albeit there was a considerable degree of separation between the sets. An

analysis of frequently occurring acyl and alcohol moieties additionally confirmed the

specificity rationale in the literature (Figure S3). When we trained a random forest

(RF) classifier to predict if a compound is hydrolyzed by hCE-1 or hCE-2 based on the

above-mentioned features, we obtained a Matthews correlation coefficient (MCC) of

0.79±0.12 during internal validation and 0.51 and 0.35 for the external sets A and B,

respectively (Table S1). Even though the results were promising, we aimed to improve
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the prediction by including additional features. In general, topological descriptors can

be used to translate the chemical constitution of a compound into numerical values [31].

However, many descriptors lack physical interpretability for the prediction of hydrolysis

reactions, which is a drawback recognized in the QSAR field [28, 29]. As we will elab-

orate in the following section, the active sites of hCE-1 and hCE-2 vary in size, which is

thought to contribute to their substrate specificity [21, 32]. Thus, features describing the

size of compounds such as molecular eccentricity for both the whole molecule (Figure

2A), as well as the acyl and alcohol products, might affect the prediction. Using these

three eccentricity features, we trained a RF classifier for our prediction task resulting

in MCC values of 0.68±0.15, 0.57, and 0.35 for the training set and the external test

sets A and B, respectively (Table S2). Moreover, we selected the number of rotatable

bonds of the acyl and alcohol moieties as an additional feature, as they account for the

flexibility of a substructure which might compensate steric limitations described by the

above-mentioned descriptors. Indeed, some compounds could be separated regarding

their selectivity for hCE-1 or hCE-2 based on the number of rotatable bonds (Figure

2B).

Figure 2 Ligand-based descriptors. (A) Number of rotatable bonds (#rot) of acyl and
alcohol moieties for the training set. (B) Eccentricity of acyl and alcohol moieties for
the training set. (C) TSEI of the carbonyl carbon atom, as well as the oxygen atom
of the alcohol moiety of the compounds. (D) LUMO energy for the training set. (E)
Bond length between the carbonyl carbon atom and the oxygen of the alcohol moiety
of compounds in the training set.

Due to the underlying enzymatic mechanism, which is based on a nucleophilic attack

of the substrate, the steric accessibility of its carbonyl atom is a crucial factor for a

successful hydrolysis. It was described that steric hindrance of the ester or carbamate
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group reduces the reaction rate for hydrolysis [5]. Thus, we computed the topologi-

cal steric effect index (TSEI) according to Cao et al. describing the relative specific

volume of a reaction center screened by its surrounding atoms [33]. While TSEI is typ-

ically evaluated for reactive centers of a ligand, we additionally computed this metric

for the surrounding atoms of the ester or carbamate groups. The visualization of the

distribution of TSEI values revealed a slight separation of hCE-2 ligands (Figure 2C)

leading us to retain these metrics for further procedures.

When estimating the reactivity of compounds, QM methods have been applied to pre-

dict various enzymatic reactions [17, 21, 32, 34]. During the nucleophilic attack of

the catalytic serine, electrons are transferred from its highest occupied molecular or-

bital (HOMO) to the lowest unoccupied molecular orbital (LUMO) of the substrate in

the so-called frontier molecular orbital approach [21, 32]. Correspondingly, we com-

puted the LUMO energy of the substrates using semi-empirical QM methodology with

PM7 parameterization. Further, we evaluated the bond length of the carbonyl double

bond, as well as the single bond between the carbonyl carbon atom and the oxygen

atom of the alcohol moiety. The latter bond is cleaved during the catalytic reaction,

while the former undergoes a change of bond order during hydrolysis (Figure S4). The

semi-empirical approach was selected due to the comparatively short computation time.

Although the contribution of reactivity to the substrate specificity between hCE-1 and

hCE-2 is not obvious, as both enzymes share the same catalytic mechanism [1, 6], we

could detect a slight separation of the LUMO energy and C-O bond length between

compounds selective for either of the esterases (Figures 2D and 2E). In addition, we

computed the atomic charges of the carbonyl function, the nucleophilic delocalizability

(DN) of the carbonyl carbon atom, as well as the hardness of the substrates [17, 35, 36].

Using both the steric considerations and the QM parameters, we trained a RF model

resulting in a MCC values of 0.57±0.13 (training set), 0.48 (external set A), and 0.25

(external set B). Even though this model performed worse than the ones based on topo-

logical or acyl/alcohol descriptors, it could distinguish hCE-1 from hCE-2 substrates at

an accuracy of approximately 82% during internal cross-validation (Table S3).

Structure-based metrics. Due to the different topology of the active sites between

hCE-1 and hCE-2 [12, 21], structure-based techniques might allow to separate between
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substrates for either enzyme. The volume of the binding site has been reported to be

larger in hCE-2 compared to hCE-1 [21, 32]. Indeed, our calculation of the binding

site volumes using SiteMap confirmed this observation (Figures 3A and 3B). However,

when the eccentricity was computed for the substrates in our training set, the com-

pounds primarily hydrolyzed by hCE-1 presented higher values. This further under-

lined the flexibility of the hCE-1 active site, as it needs to structurally adapt to a broad

range of differently sized substrates. The sequence identity between hCE-1 and hCE-2

amounts to 48% (Figure S5) [1]. As there was no crystal structure available for hCE-2,

we constructed several homology models based on different hCE-1 template structures

and evaluated them in a decoy docking approach. The obtained quality estimates of

the homology models indicated a high nativeness of the structures (Table S4). Struc-

tural differences between the homology models derived from the two algorithms were

apparent around residues E105, M309, S429, and K475 (Figure S6). In addition, the

models were subjected to short molecular dynamics simulations in order to obtain repre-

sentative structures. The representative time-evolved structure of the model (Template

PDB ID: 1MX1) we generated using SWISS-MODEL, presented the best area under

the curve (AUC) of the receiver operating characteristic (ROC) in the decoy docking

validation (Table S5). Importantly, we ensured to model the resting state of the enzyme

with a hydrogen bond between the catalytic serine and histidine residues, as well as

an additional one between the glutamic acid and histidine during the preparation of all

structures (Figure S4B). Similar to previous studies [13, 20], we detected a difference of

a loop in vicinity to the active site (Figure 3C) at residues Asp307 to Thr321 in hCE-1.

In hCE-2 this loop, which is located at the putative entrance of the catalytic cavity, was

absent, potentially contributing to the substrate specificity of hCE-1 and hCE-2. The

remaining parts of the structures were highly similar (Figure S7). As there were several

crystal structures available for hCE-1, we selected the most promising candidates based

on their performance in reproducing binding modes of cocrystallized ligands using two

different docking protocols (Figure S8). The smina docking protocol produced superior

results regarding pose prediction, with one structure reproducing six of seven cocrystal-

lized ligands to a satisfactory degree (RMSD below 3.5 Å). Again, the most promising

structures were subjected to a decoy docking procedure. Unfortunately, the highest
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AUC value we could reach was 0.524, indicating only a very slight discrimination of

the 235 actives from the 14330 decoys (Tables S5 and S6). Despite this drawback, the

binding modes of chemically diverse ligands could be reproduced, leading us to retain

the respective structure for further procedures.

Figure 3 Structure-based considerations. (A) Active site volume of hCE-1. (B) Active
site volume of hCE-2. (C) Comparison of the hCE-1 crystal structure (PDB ID: 1MX1)
and the selected hCE-2 homology model. (D) Distance between the reactive centers in
docked poses of hCE-2 (left) and their docking scores. (E) GSEI of docked poses to
hCE-2. (F) Boolean parameter of covalent docking was successful for hCE-2.

After the validation of the protocols, we docked our substrate library to the selected

structures. As in several previous studies [21, 13, 20, 12], we computed the distance

between the side chain oxygen of the catalytic serine residue to the carbonyl carbon

atom of each substrate docked to either of the esterases. The inspection of the binding

modes of two highly selective substrates for hCE-1 revealed the ester groups distant

from the catalytic center, if they were docked to hCE-2 (Figure S9). Nevertheless, both

the docking scores, as well as the computed distances did not properly separate the

substrates according to their selectivity besides a limited number of hCE-1 compounds

presenting bad scores in hCE-2 (Figures 3D and S10). Thus, we tried to ameliorate

the results by computing the geometric steric effect index (GSEI), similar to the ligand-

based procedures where we computed the TSEI parameter. Even though the GSEI

values of the carbonyl atoms based on the hCE-2 docking poses presented improved

separation of the substrates as opposed to the distances and docking scores (Figure 3E),

a considerable overlap between them remained. Next, we applied a covalent docking

approach based on the Glide engine [37] to model the tetrahedral transition state formed
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after the attack of the catalytic serine. Due to the high computational expense of the

protocol, we used it in enrichment mode and determined if the algorithm could produce

a valid pose with the selected structures (Figure 3F). As we also validated the use of

the Glide protocol, we used the best-performing ensemble of structures to reproduce a

maximal number of cocrystallized binding modes for hCE-1. Further, we selected three

structures of hCE-2, as decoy docking using the Glide protocol revealed no structure

with superior AUC values (Table S7). Using the described structure-based metrics, we

trained a RF classifier which presented MCC values of 0.47±0.12 for the training set

during internal validation and 0.46 and 0.32 for the external sets A and B, respectively.

While the accuracy of the predictions between 66 and 77% were the lowest among

the tested features (Table S8), the structure-based metrics still allowed to distinguish a

reasonable number of substrates.

Predictive Model. In recent years, machine learning has received great attention in

the prediction of metabolic reactions [16, 17, 18, 30]. Using all descriptors we intro-

duced above, we evaluated several algorithms suitable for classification tasks including

RF, extreme gradient boosting (XGBoost) decision trees, k-nearest neighbors (k-NN),

support vector machine (SVM), linear discriminant analysis (LDA), and logistic re-

gression [38, 39, 40, 41]. For RF, XGBoost, k-NN, and SVM, we conducted a grid

search to determine the optimal hyperparameters maximizing the MCC. For LDA and

logistic regression, we retained default parameters. To determine which approach was

superior, we conducted a 5-fold internal cross-validation with the randomly shuffled

training dataset. As RF, k-NN, and XGBoost performed best during internal validation,

we subjected the obtained models to the external test set A and found RF to be optimal

(Tables S9 and S10). In the final step, we aimed to reduce the number of features by

recursive elimination and retained 28 features producing a maximal MCC (Tables S11

and S12).

Table 1 Performance metrics of the final RF model.

Set hCE-1a hCE-2a Misclassified Accuracy AUC MCC
Training 90 46 11 0.92±0.06 0.97±0.03 0.84±0.12
External A 16 12 4 0.86 0.85 0.73
External B 13 4 4 0.76 0.79 0.35

a Number of entries in set.
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In QSAR modeling, internal and external validation has been suggested as good practice

[29, 39, 42]. During internal validation, we found an accuracy of 92±0.06% (Table 1)

as well as high AUC and MCC, indicating good discrimination performance. Next, we

conducted an external validation using the two test sets that were not used for training.

For the External A set, which included compounds with below 2-fold selectivity and,

thus, was inherently more challenging to predict, we found a slightly decreased perfor-

mance with an accuracy of 86%, as well as lower AUC and MCC (Figure 4A). However,

the metrics were still acceptable and close to the standard reported by comparable com-

putational approaches focused on different enzyme systems [16, 17, 30]. In the external

set B, we included compounds for which no selectivity testing was conducted, but a

major isoform involved in ester hydrolysis was suggested. For this set, the performance

metrics dropped again, which could be explained by the reduced confidence into the

proposed main driver of hydrolysis. Still, the accuracy reached 76%, which we deemed

acceptable for this specific test set. As discussed above, the majority of substrates in the

external libraries were dissimilar to those in the training set, underlining the applicabil-

ity of our predictions to a broad chemical space. The complete performance metrics are

given in Table S13. To obtain more insight into the importance of individual features,

we analyzed the decision trees in our final RF model. As we already identified in feature

engineering, the description of the acyl and alcohol hydrolysis products, as well as the

respective ratios were among the top six features (Figure 4B). This stands in accordance

with the frequently described rationale that hCE-1 prefers small alcohol moieties, while

hCE-2 prefers small acyl moieties [1, 3, 5, 43]. Interestingly, the ratio between the

tPSA of the acyl and alcohol moieties was the most important feature, suggesting frag-

ment contributions of polar atoms [44] to be more relevant than their size or volume

alone. Reactivity parameters obtained from semi-empirical QM calculations such as

the LUMO energy and the charge of the carbonyl carbon were also among the features

having a high information value. Additionally, features stemming from structure-based

considerations including covalent and conventional docking contributed positively to

the accuracy of our model.

Vistoli and colleagues reported a regression equation distinguishing hCE-1 from hCE-2

substrates based on logP as well as the volume of alcohol and acyl moieties [13]. When
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we tested the respective equation with our training dataset, we obtained an accuracy of

only 66.2%, demonstrating the superiority of our approach.

Next, we investigated compounds that were misclassified by our model. Our training set

contained eight compounds with multiple stereoisomers for which a different metabolic

fate was reported. Among them were propranolol derivatives [45] and pyrethroid in-

secticides [46], which are difficult to predict, especially if ligand-based descriptors are

considered. Of those eight stereoisomers, we encountered two of them among the mis-

classified ligands during training. In analogy, two of the four misclassified compounds

in the external set A also present stereospecific selectivity for hCE-1 and hCE-2, in-

dicating a large share of the outliers to be based on small differences in their binding

modes (Tables S14 and S15). The remaining outliers in the external set A were eslicar-

bamazepine acetate and fosinopril, for which we selected the Shapley additive expla-

nations (SHAP) method [47] to extract additional insight into the classification process

(Figure S11). In both cases, the ratios of tPSA, volume, and MW between acyl and

alcohol moieties contributed the most toward the misclassification, while none of the

structure-based features appeared in the SHAP analysis. The outliers in the external set

A displayed a comparatively low similarity to the compounds in the training set (Table

S15). The underlying RF model allowed us to estimate a probability for the respective

outcomes based on the voting of individual trees in the forest. Regarding the prediction

probabilities, the misclassified compounds in the training set generally presented lower

values (statistically significant) indicating this readout to be useful to identify potential

outliers (Figure S12). If the probability threshold was selected above 0.9, the number of

outliers could be minimized to only two in the training set, and only one in the external

sets. However, by applying this threshold, 58.8%, 46.4%, and 47.1% of compounds

could not be predicted in the training set, the external sets A and B, respectively. In

the comparatively smaller external set A containing the more challenging compounds,

however, such a trend could not be deduced.

To ensure the reliability of our predictions, we considered additional validation pro-

cedures as recommended in the literature [29, 39, 42]. To decrease the probability

of chance correlations, we used y-scrambling [29, 48], for which the selectivity la-

bels of the training set were randomly reorganized followed by a 5-fold internal cross-
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Figure 4 Prediction metrics and features. (A) ROC curves for the training set as well as
the external set A. The AUC values of the individual test sets during internal validation
are indicated, together with their mean ROC curve. (B) Feature importance deduced
from recursive feature elimination.

validation. All parameters presented near to random prediction performance with an

AUC value of 0.43±0.11 and a MCC of -0.21±0.21, confirming the robustness and

sensitivity of our final model. In conclusion, our predictive model presented a good

accuracy in predicting selectivity of compounds for hCE-1 and hCE-2 based on internal

and external validation, and the exclusion of chance predictions. One obvious draw-

back was the number of compounds, for which selectivity data was available in the

literature and databases. However, as only approximately 10% of marketed drugs are

prodrugs, of which 50% are activated by hydrolysis [2], the total number of compounds

we could consider for our predictions was limited. As recommended [29], we provide

all structures and computed metrics to support our findings.

Materials and Methods

Library generation. We screened the PubChem BioAssay, DrugBank, BRENDA

databases to collect substrates of hCE-1 and hCE-2 [22, 23, 24]. Using the accompany-

ing literature, as well as additional studies, we determined if a compound is hydrolyzed

and which enzyme is predominantly responsible for the reaction. Further, we docu-

mented the method as well as the source of the protein used for the experiments. If a

compound presented a selectivity of at least 2-fold for either enzyme, with the exception

of data obtained from experiments with unpurified microsomal enzymes for which we

used 10-fold as threshold, we added it to our main dataset. The remaining compounds

were separated in two test sets: (i.) a set containing compounds with a selectivity below
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2-fold or with variable selectivity values among multiple publications and (ii.) a set of

compounds, for which no selectivity testing was conducted, but the preference of either

hCE-1 or hCE-2 was suggested in the literature.

In a next step, we either manually drew the compounds in the Maestro Small-Molecule

Drug Discovery Suite (v2019-4) [49], or, if possible, obtained SMILES codes from the

PubChem database. Using the LigPrep routine, we generated three-dimensional con-

formers with Epik predicting the protonation states at a pH of 7.4 and the OPLS3e force

field for geometric optimization. In order to confirm the protonation states, we selected

the Marvin suite of tools (v17.27.0) by ChemAxon [50] and retained all protomers with

a predicted occurrence of at least 20%. Stereoisomers were manually selected to repre-

sent the compounds in the literature. To determine the heterogeneity of the compounds

in our library, we computed pair-wise similarity based on FP2 extended-connectivity

fingerprints using OpenBabel (v2.3.2) [51], compared them using the Tanimoto coeffi-

cient, and averaged the coefficients for each compound. Further, maximal values were

computed as well. The similarity of the two test sets to the training set was computed

in the same way with an additional comparison of maximal similarity. If multiple ester

or carbamate groups were present in a single substrate, we separated them to represent

individual entries. The respective assignment of these groups is given in Figure S13.

Structure-based procedures. Due to the absence of a crystal structure for hCE-2, we

generated homology models using the SWISS-MODEL web server [52] based on a sev-

eral different templates (PDB IDs: 1MX1, 2HRQ, and 5AG7) of hCE-1. Furthermore,

we used the MODELLER tool [53], to obtain an additional structure (Template PDB ID:

1MX1). Next, we conducted molecular dynamics simulations of each model to derive

representative structures for further procedures as described in the Supporting Materials

and Methods. In the case of hCE-1, we selected 14 different crystal structures cocrystal-

lized to 7 individual ligands (Figure S8). All protein structures were preprocessed using

the Protein Preparation Wizard in Maestro [54] by adding hydrogen atoms, predicting

protonation states at pH 7.4 using Epik, and assigning bond orders. Next, the hydro-

gen bonding network was reoriented with residue protonation prediction by PROPKA

configured at pH 7.4. Finally, the structures were subjected to a restrained minimiza-

tion with an RMSD convergence threshold of 0.3 Å for the protein heavy atoms. We
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chose to work with multiple structures for each enzyme due to the reports of high flex-

ibility that was previously treated in an ensemble docking approach [10, 12]. Thus,

we conducted a cross docking experiment using the Glide standard precision (SP) [55]

and smina [56] docking protocols. For both protocols, the centroid of the search space

was defined based on the mass center of a cocrystallized ligand, while we selected an

exhaustiveness of 16, a random seed of 42, and a cubic box with a width of 21 Å for

smina. The RMSD between the docked poses and the cocrystallized ligands was eval-

uated using the rmsd.py routine that comes with Maestro. Notably, even though one

ligand was annotated as palmitic acid, the cocrystallized ligand in the crystal structure

(PDB ID: 2DQZ) was nonanoic acid instead. The smina protocol presented superior

pose prediction compared to Glide SP and, thus, we continued with this protocol. As an

additional validation step, we evaluated the capability of the best-performing structures

to distinguish known binders from random decoy molecules. Based on SMILES strings

of known binders for either hCE-1 and hCE-2, we generated decoys using the DUD-E

[57] web server (Table S16) and computed conformers using the LigPrep routine as

described above. The ROC AUC metrics were obtained from the Screening Explorer

[58] web server. Based on the validation data, we selected one structure per enzyme

to study the interaction of our compound library with hCE-1 and hCE-2. Using the

obtained poses, we computed the distance between the carbonyl carbon of the ester or

carbamate functions and the side chain oxygen of the catalytic serine. Additionally, we

selected the covalent docking protocol in Maestro based on Glide and Prime workflows

[37]. We configured the protocol in enrichment mode to perform a nucleophilic addi-

tion to the carbonyl double bond, modeling the tetrahedral transition state of the first

catalytic step. The remaining parameters in this protocol were left on default. From

the resulting poses, we retained the predicted binding free energy and registered if no

pose was found. Based on the latter information, we derived a boolean variable based

on a threshold of unsuccessful docking attempts to an ensemble of structures. As we

used different numbers of input structures for hCE-1 and hCE-2 (Table S6), we defined

specific thresholds of four and one unsuccessful attempts to determine a valid pose for

hCE-1 and hCE-2, respectively. The thresholds were selected based on inspecting the

separation between the substrates into the correct categories.
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Ligand-based metrics. We computed descriptors including molecular weight, logP,

tPSA, number of rotatable bonds, as well as the molecular volume using RDKit for

the whole compounds as well as the acyl and alcohol products [59]. The compounds

were fragmented based on SMARTS substructure matching (Table S17). The remaining

topological descriptors were computed in the Molecular Descriptors panel within Mae-

stro. The steric accessibility metrics were computed using the cxcalc module of Marvin

Sketch (v17.27.0) by ChemAxon coupled to RDKit for substructure matching. Semi-

empirical QM data was obtained using MOPAC2016 [60] using PM7 parameterization

coupled to a 1SCF single point calculation and the keyword for superpolarizabilites.

Using RDKit, we determined the absolute charge of the ligands, while we converted the

input ligands to a MOPAC compatible format using OpenBabel.

Machine learning. All machine learning procedures were conducted using the scikit-

learn (v0.24.2) [61] module in python except for the XGBClassifier for gradient boosted

decision trees [41]. The selected classification algorithms are listed in Table S18. Ini-

tially, the y-labels of the dataset with 46 features were encoded into binary flags and the

optimal hyperparameters for RF, XGBoost, k-NN, and SVM were determined using the

GridSearchCV module (Table S19). For both LDA and logistic regression, we retained

default specifications. For k-NN, logistic regression, SVM, and LDA, numeric data was

normalized before the prediction. Next, we examined the performance of each model

for our training set using a stratified 5-fold cross-validation. As the number of hCE-2

substrates in our dataset was lower, we selected this approach to ensure that the ratio

of the two classes remained constant during the train/test split procedure. Based on the

obtained metrics including MCC, accuracy, and AUC, we selected RF as final model

and used feature ranking with recursive elimination to reduce the number of features

to 22, optimizing the MCC. In a final step, we evaluated the performance of our model

using internal and external validation.

Conclusion

In the last years, computational tools received great attention with respect to the predic-

tion of the outcome and regioselectivity of metabolic reactions. However, the prediction

of ester hydrolysis reactions, relevant for both the activation of prodrugs and the inac-

tivation of drugs, was not previously considered. While hCE-2 is the main esterase
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expressed in the GIT, its expression in the liver is minor compared to hCE-1. Due to

their different tissue distribution, knowledge on the selectivity of a prodrug for hCE-1

and hCE-2 becomes pivotal to control the formation of the active principle. Here, we

computed a diverse set of physico-chemical meaningful features relating to the structure

and topology, reactivity, steric accessibility, as well as structure-based considerations of

166 substrates. After evaluating several machine learning algorithms suited for classi-

fication tasks, we determined RF to perform optimally to predict the selectivity of a

compound toward hCE-1 or hCE-2. During internal validation, we obtained a high ac-

curacy of 92%, an AUC of 0.97, and an MCC of 0.84 for a diverse set of compounds.

Moreover, when challenged with an external test set containing compounds with a se-

lectivity factor below two, we obtained an accuracy of 86%, an AUC of 0.86, and a

MCC of 0.73. Throughout our work we adhered to best practices in the QSAR, ligand-

based and structure-based modeling. In contrast to previous observations, to predict

selectivity we found the tPSA of the hydrolysis products to outperform metrics directly

relating to their size. As for other phase-I metabolic reactions, prediction of ester hy-

drolysis could become a routine application in many drug discovery projects and ad-

vance the design of prodrugs with controlled systemic release, as well as the prediction

of potential drug-drug interactions.
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[48] Piotr F J Lipiński and Przemysław Szurmak. SCRAMBLE’N’GAMBLE: a tool for fast

and facile generation of random data for statistical evaluation of QSAR models. Chemical

Papers, 71(11):2217–2232, 2017.

148



[49] Schrodinger LCC. Maestro Small-Molecular Drug Discovery Suite 2019-4. 2019.

[50] ChemAxon. Marvin (v.20.4.0), 2020.

[51] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and

Geoffrey R Hutchison. Open Babel. Journal of Cheminformatics, 3(33):1–14, 2011.

[52] Marco Biasini, Stefan Bienert, Andrew Waterhouse, Konstantin Arnold, Gabriel Studer,

Tobias Schmidt, Florian Kiefer, Tiziano Gallo Cassarino, Martino Bertoni, Lorenza Bor-

doli, Torsten Schwede, Tiziano Gallo Cassarino, Martino Bertoni, Lorenza Bordoli, and

Torsten Schwede. SWISS-MODEL: Modelling protein tertiary and quaternary structure

using evolutionary information. Nucleic Acids Research, 42(Web Server issue):252–8, 7

2014.

[53] Benjamin Webb and Andrej Sali. Comparative Protein Structure Modeling Using MOD-

ELLER. Current Protocols in Bioinformatics, 54(1):1–5, 6 2016.

[54] G. Madhavi Sastry, Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju, and

Woody Sherman. Protein and ligand preparation: Parameters, protocols, and influence

on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3):

221–234, 2013.

[55] Thomas A. Halgren, Robert B. Murphy, Richard A. Friesner, Hege S. Beard, Leah L.

Frye, W. Thomas Pollard, and Jay L. Banks. Glide: A New Approach for Rapid, Accurate

Docking and Scoring. 2. Enrichment Factors in Database Screening. Journal of Medicinal

Chemistry, 47(7):1750–1759, 2004.

[56] David Ryan Koes, Matthew P. Baumgartner, and Carlos J. Camacho. Lessons learned in

empirical scoring with smina from the CSAR 2011 benchmarking exercise. Journal of

Chemical Information and Modeling, 53(8):1893–1904, 2013.

[57] Michael M Mysinger, Michael Carchia, John. J Irwin, and Brian K Shoichet. Directory of

Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking.

Journal of Medicinal Chemistry, 55(14):6582–6594, 7 2012.

[58] Charly Empereur-Mot, Jean-François Zagury, and Matthieu Montes. Screening Ex-

plorer–An Interactive Tool for the Analysis of Screening Results. Journal of Chemical

Information and Modeling, 56(12):2281–2286, 12 2016.

[59] Gregory Landrum. RDKit: Open-Source Cheminformatics Software, 2021.

[60] J J P Stewart. MOPAC2016, 2016.
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4.1 Supporting Information

Supporting Results and Discussion

Library

Figure S 1 Composition of the compound library.

Figure S 2 Similarity of the external sets to the training set. On the top left of each
subfigure, it was indicated if maximal or average similarity was considered. On top
of each subfigure, the corresponding compound set is indicated together with ”self” for
similarity comparison within the library and ”to training” for comparison to the training
set.
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Ligand-based metrics

Table S 1 Performance of fragment descriptors.

Set Accuracy AUC MCC Sensitivity Specificity
Training 0.90±0.05 0.94±0.05 0.79±0.12 0.85±0.17 0.93±0.02
External A 0.76 0.77 0.51 0.88 0.62
External B 0.76 0.86 0.35 0.50 0.85

Performance of a random forest model based on descriptors of the hydrolysis products (acyl and

alcohol moieties). Here, we considered MW, number of atoms, volume, tPSA, and logP.

Table S 2 Performance of eccentricity descriptors.

Set Accuracy AUC MCC Sensitivity Specificity
Training 0.85±0.06 0.91±0.09 0.68±0.15 0.78±0.18 0.89±0.07
External A 0.76 0.76 0.57 1.00 0.46
External B 0.76 0.78 0.35 0.50 0.85

Performance of a random forest model using the molecular eccentricity of the whole compound,

as well as the respective hydrolysis products.

Table S 3 Performance of steric and QM descriptors.

Set Accuracy AUC MCC Sensitivity Specificity
Training 0.82±0.05 0.88±0.05 0.57±0.13 0.65±0.19 0.90±0.02
External A 0.72 0.81 0.48 0.62 0.85
External B 0.71 0.68 0.25 0.50 0.77

Performance of a random forest model using TSEI and QM parameters. The features in-

cluded TSEIcarbonyl-O, Lengthalcohol, TSEIalcohol-O, TSEIcarbonyl-C, Lengthcarbonyl, Chargecarbonyl-C,

ELUMO, Hardness, DN, Chargecarbonyl-C, Chargecarbonyl-O, and ∆ChargeC-O.

Structure-based metrics

Table S 4 Quality parameter of the generated homology models.

Template QMEAN GMQE Ramachandran (%) MolProbity Score
1MX1 -2.25 0.73 92.80 1.75
2HRQ -2.23 0.72 91.62 1.78
5A7G -2.93 0.69 91.34 1.43

The selected template structures of hCE-1 are shown together with quality estimates of the

resulting models. The estimates include Qualitative Model Energy Analysis (QMEAN), Global

Model Quality Estimation (GMQE), percentage of Ramachandran favored conformations, as

well as the MolProbity score [2, 3, 4].
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Figure S 3 Substituent analysis. (A) Distribution of different acyl moieties regarding
esterase specificity. (B) Distribution of different alcohol moieties regarding esterase
specificity. (C) Structures of acyl moieties. (D) Structures of alcohol moieties. Variable
regions are indicated with R-groups.

Table S 5 Results from decoy docking with smina.

Protein Structure ROC AUC
hCE-1 1YA4 0.524

2HRQ 0.502
hCE-2 1MX1 0.476

1MX1a 0.704
1MX1b 0.548
2HRQ 0.407
2HRQa 0.501
5AG7 0.553

a Representative structure obtained from clustering of an MD simulation. b Structure obtained

with MODELLER.
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Figure S 4 Catalytic cycle. (A) Simplified scheme of the catalytic cycle of hCEs ac-
cording to Hosokawa et al.[1] (B) Resting state of the catalytic triad.

Figure S 5 Sequence alignment of hCE-1 and hCE-2 with active site residues marked
in red.

Table S 6 Structures selected for docking procedures.

Protein smina Covalent docking
hCE-1 1YA4 1MX1, 1MX5, 1MX9, 1YA4, 3K9B
hCE-2 1MX1a 1MX1a, 1MX1b, 5AG7a

a Representative structure of MD-evolved homology model. b Structure obtained from MOD-

ELLER.

Table S 7 Results from decoy docking with Glide.

Protein Structure ROC AUC
hCE-1 1MX5 0.486

1MX9 0.497
1YA4 0.486
3K9B 0.485

hCE-2 1MX1a 0.469
1MX1b 0.465
2HRQa 0.476
5AG7 0.444

a Representative structure obtained from clustering of an MD simulation. b Structure obtained

with MODELLER.
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Figure S 6 Homology model comparison. (A) Backbone RMSF between homology
models generated by SWISS-MODEL and Modeller from the same template structure
(PDB ID: 1MX1). Structural differences between homology models around (B) residue
429, (C) residue 105, (D) residue 475, and (E) residue 309. The model obtained from
SWISS-MODEL is shown in pine green.

Table S 8 Performance of structure-based descriptors.

Set Accuracy AUC MCC Sensitivity Specificity
Training 0.77±0.05 0.85±0.05 0.47±0.12 0.54±0.14 0.89±0.6
External A 0.76 0.75 0.46 0.75 0.77
External B 0.66 0.71 0.32 0.62 0.69

Performance of a random forest model using structure-based descriptors from docking. The

features included scores from conventional and covalent docking, distances (carbonyl carbon to

serine oxygen) and GSEI values from conventional docking, and the boolean parameter for the

outcome of covalent docking.

Predictive model

Table S 9 Metrics of different machine learning classification algorithms during internal
validation.

Method Accuracy AUC MCC
Random Forest 0.92 0.97 0.82
XGBoost 0.93 0.95 0.84
KNN 0.90 0.93 0.79
SVM 0.90 0.96 0.80
Logistic regression 0.90 0.97 0.82
LDA 0.89 0.96 0.77
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Figure S 7 Global structure alignment of hCE-2 homology model (Template PDB ID:
1MX1) and template crystal structure.

Table S 10 Metrics of different machine learning classification algorithms during exter-
nal validation.

Method Accuracy AUC MCC
Random Forest 0.86 0.85 0.73
XGBoost 0.79 0.81 0.56
KNN 0.82 0.91 0.67
SVM 0.86 0.92 0.73
Logistic regression 0.89 0.85 0.79
LDA 0.71 0.67 0.41

Table S 13 Sensitivity and specificity of our final model.

Set Sensitivity Specificity
Training 0.89±0.14 0.93±0.05
External A 1.00 0.67
External B 0.50 0.85

Table S 15 Misclassified compounds in the external set A.

Compound IDa Prediction Explanation Smax
b

(R)-Propanolol-heptyl 147 hCE-2 stereospecificity 0.48
(R)-Propanolol-cyclohexyl 148 hCE-2 stereospecificity 0.48
Eslicarbazepine acetate 89 hCE-2 acyl:alcohol ratio 0.35
Fosinopril 120 hCE-2 acyl:alcohol ratio 0.45

a Internal compound ID in database. b Maximal similarity to training set.
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Table S 11 Features considered features in our final model.

Features Description
Score hCE-1 Scores obtained from conventional docking to hCE-1
Score hCE-2 Scores obtained from conventional docking to hCE-2
CovScore hCE-1 Scores obtained from covalent docking to hCE-1
CovDock hCE-1 Boolean variable describing if pose was found in covalent

docking to hCE-1
CovDock hCE-2 Boolean describing if pose was found in covalent

docking to hCE-2
Distance hCE-1 Minimal distance between serine oxygen and carbonyl carbon
Distance hCE-2 Minimal distance between serine oxygen and carbonyl carbon
GSEI hCE-1 Geometric steric effect index of the carbonyl atom

from hCE-1 docking poses
GSEI hCE-2 Geometric steric effect index of the carbonyl atom

from hCE-2 docking poses
TSEIcarbonyl Topological steric effect index of the carbonyl carbon atom
TSEIacyl TSEI of the acyl carbon atoma

#rotacyl Number of rotatable bonds of acyl moiety
#rotalc Number of rotatable bonds of alcohol moiety
RatioMW Ratio between MWacyl and MWalc

Volumeacyl Volume of the acyl moiety
Volumealc Volume of the alcohol moiety
RatioVolume Ratio between Volumeacyl and Volumealc

RatiotPSA Ratio between tPSAacyl and tPSAalc

logPacyl logP of acyl moiety
logPalc logP of alcohol moiety
RatiologP Ratio between logPacyl and logPalc

Eccentricity Topological eccentricity of whole compound
ELUMO LUMO energy of the substrate
BondC-O Bond length of the alcohol bond
BondC=O Bond length of the carbonyl bond
Hardness Hardness of the substrate
ChargeCarbon Net atomic charge of carbonyl carbon atom
∆Charge Charge difference between ChargeCarbon and ChargeOxygen

a Nitrogen atom if carbamate.

156



Table S 12 Remaining features considered during feature selection.

Features Description
TSEIalcohol TSEI of the oxygen of the alcohol moiety
TSEIcarbonyl-ox TSEI of the carbonyl oxygen atom
CovScore hCE-2 Score obtain from covalent docking to hCE-2
MW Molecular weight of whole compound
MWacyl Molecular weight of acyl moiety
MWalc Molecular weight of alcohol moiety
tPSA Topological polar surface area of whole compound
tPSAacyl tPSA of acyl moiety
tPSAalc tPSA of alcohol moiety
logP logP of whole compound
Volume Volume of whole compound
LabutASA Labute’s Approximate Surface Area of whole compound
LabutASAacyl Labute’s Approximate Surface Area of acyl moiety
LabutASAalc Labute’s Approximate Surface Area of alcohol moiety
#Atoms Number of atoms of whole compound
#Atomsacyl Number of atoms of acyl moiety
#Atomsalc Number of atoms of alcohol moiety
Ratio#Atoms Ratio between #Atomsacyl and #Atomsalc

Eccentricityacyl Topological eccentricity of acyl moiety
Eccentricityalc Topological eccentricity of alcohol moiety
DN Nucleophilic delocalizability
ChargeOxygen Net atomic charge of carbonyl oxygen atom

Table S 14 Misclassified compounds in the training set.

Compound IDa Prediction Explanation
2-(1,3-Benzothiazol-2-yl)-6- 83 hCE-2 acyl:alcohol ratio
methoxyphenyl benzoate
(1RS)-cis-Bifenthrin 141 hCE-1 tPSA contradicts volume,

similarly sized acyl:alcohol
Bioresmethrin 30 hCE-2 tPSA contradicts volume,

similarly sized acyl:alcohol
(S)-Permethrin 32 hCE-1 stereospecificity
4-(4Z)-1,2-dimethyl-5-oxo-4,5- 156 hCE-2 similarly sized acyl:alcohol
dihydro-1H-imidazol-4-ylidene
methyl-2,6-difluorophenyl
1,1’-biphenyl-4-carboxylate
Dabigatran etexilate 5 hCE-1 acyl:alcohol ratio
(R)-Permethrin 31 hCE-2 stereospecificity
Procaine 43 hCE-1 similarly sized acyl:alcohol
Flupirtine 117 hCE-1 acyl:alcohol ratio
(S,S)-A4 25 hCE-2 stereospecificity
Isovaleryl-(R)-Propranolol 128 hCE-2 stereospecificity

a Internal compound ID in database.
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Figure S 8 Cross docking evaluation. RMSD values of cross docking 7 cocrystal-
lized ligands (vertical column) to 14 crystal structures for (A) smina and (B) Glide SP.
(C) Structures of the respective cocrystallized ligands highlighting their structural di-
versity.

Figure S 9 Binding modes and spatial relationship between ester and catalytic serine
of hCE-1 substrates. (A) Binding modes of candesartan cilexetil in hCE-1 (left) and
hCE-2 (right). (B) Binding modes of IMMH-010 in hCE-1 (left) and hCE-2 (right).

Supporting Materials and Methods

Library generation

Homology modeling and molecular docking
The obtained homology models were subjected to MD simulations followed by the
determination of representative structures to improve performance of hCE-2 structure-
based considerations. The MD simulations were conducted using the Desmond (v2019-
1) simulation engine [5] with the OPLS 2005 force field in an NPT ensemble at a tem-
perature of 310 K maintained by the Nose–Hoover thermostat and atmospheric pressure
regulated by the Martyna–Tobias–Klein barostat, both with a relaxation time of 2.0 ps.
The structures were placed in orthorhombic periodic boundary systems solvated with
TIP3P water molecules with counter-ions neutralizing the systems. Short-range inter-
actions were cut off at 9 Å and long-range interactions were treated with the u-series
algorithm [6]. The M-SHAKE algorithm was used to constrain bonds to hydrogen
atoms and the time step of the RESPA integrator was set to 2.0 fs. The simulations
were terminated after 25 ns and snapshots with atomic coordinates were collected at an
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Figure S 10 Additional structure-based features. (A) Readouts from conventional dock-
ing to hCE-1. (B) Scores obtained from covalent docking. Different thresholds for
number of unsuccessful covalent docking attempts for (C) hCE-1 and (D) hCE-2. (E)
GSEI of docking poses bound to hCE-1.

interval of 25 ps. The simulations were conducted for models from SWISS-MODEL
(Template PDB IDs: 1MX1, 2H7C, 2HRQ, 5AG7) and MODELLER (Template PDB
ID: 1MX1). The RMSDs of the simulations indicated acceptable convergence (Fig-
ure S14). Clustering of the last 200 frames of the trajectories to obtain representative
structures was done using the trj cluster.py script that comes with Maestro. The
number of output clusters was limited to five per simulation and we retained the most
populated ones. The number of frames represented by the selected structures amounted
to 11, 11, 16, 11, and 13 for 1MX1 (SWISS-MODEL) 1MX1 (MODELLER), 2H7C,
2HRQ, and 5AG7, respectively.

Table S 16 Statistics of compounds for decoy docking.

Protein Actives Decoys Ratio
hCE-1 235 14330 71.0
hCE-2 55 3110 56.5

The number of actives and decoys is given together with their ratio.
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Figure S 11 Outlier analysis. (A) SHAP analysis of eslicarbazepine acetate. (B) SHAP
analysis of fosinopril. (C) Structure of elsicarbazepine acetate. (D) Structure of fosino-
pril.

Figure S 12 Prediction probabilities. Distribution of the prediction probabilities be-
tween correct predictions and misclassified compounds for (A) the training set and (B)
the external set A. (C) Number of misclassified compounds by varying the probability
threshold (training set in pine green, external set A in red, external set B in gray).

Ligand-based metrics

Table S 17 RDKit commands used during metrics computation.

Command Description
GetFormalCharge Computation of absolute charge of a compound
GetSubstructMatch Find substructure in a compound
MolFromSmarts Define a SMARTS pattern
FragmentOnBonds Fragmentation of a bond within a compound
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Figure S 13 Multiple ester or carbamate groups in substrates. The assignment of ester
groups for our computations is given.

Machine learning

Table S 18 Classification algorithms.

Method Classifier
Random forest (RF) RandomForestClassifier
XGBoost XGBClassifier
Support vector machine (SVM) SVC
Linear discriminant analysis (LDA) LinearDiscriminantAnalysis
k-Nearest neighbors (kNN) KNeighborsClassifier
Logistic regression LogisticRegression
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Figure S 14 RMSDs of MD simulations in this study.

Table S 19 Hyperparameters selected for machine learning.

RF XGBoost SVM kNN
bootstrap: true learning rate: 0.3 kernel: rbf K = 5
max depth: 50 colsample bytree: 0.6 C: 1
max features: sqrt eval metric: logloss
min samples leaf: 4 gamma: 0
min samples split: 5 max depth: 3
n estimators: 200 min child weight: 5

objective: binary:logistic: 0
subsample: 1.0
nthread: 1
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CHAPTER 5

Review: Ligand Pathways in Nuclear Receptors

Besides drug-metabolizing enzymes, NRs were the second central protein family ad-
dressed in this thesis. Motivated by the work on ligand tunnels in CYPs and several
reviews written on the topic, this review aimed at summarizing findings on ligand path-
ways in NRs in the literature. As discussed, the uptake of ligands to buried binding
pockets constitutes a key component of their molecular recognition process. This work
also served as a foundation for the study on ligand pathways in estrogen-related recep-
tors presented in Chapter 6.

Author contributions: Conceptualization, A.F.; formal analysis, A.F.; writing and original

draft preparation, A.F.; writing, review and editing, A.F., M.S.; visualization, A.F.; supervision,

M.A., M.S.

Based on published review article:

Fischer, A.; Smieško, M. Ligand Pathways in Nuclear Receptors. J. Chem. Inf.
Model. 2019, 59, 3100–3109.
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Abstract

Nuclear receptors (NRs) are ligand-inducible transcription factors that play an essential

role in a multitude of physiological processes as well as diseases rendering them attrac-

tive drug targets. Crystal structures revealed the binding site of NRs to be buried in the

core of the protein with no obvious route for ligands to access this cavity. The process

of ligand binding is known to be an often-neglected contribution to the efficacy of drug

candidates and is thought to influence the selectivity and specificity of NRs. While ex-

perimental methods generally fail to highlight the dynamic processes of ligand access

or egress on the atomistic scale, computational methods have provided fundamental

insight into the pathways connecting the buried binding pocket to the surrounding en-

vironment. Methods based on molecular dynamics (MD) and Monte Carlo simulations

have been applied to identify pathways and quantify their capability to transport ligands.

Here, we systematically review findings of more than 20 years of research in the field

including the applied methodology and controversies. Further, we establish a unified

nomenclature to describe the pathways in respect to their location relative to protein

secondary structure elements and summarize findings relevant drug design. Lastly, we

discuss the effect of NR interaction partners such as coactivators and corepressors, as

well as mutations on the pathways.

Introduction

Nuclear receptors (NRs) are ligand-inducible transcription factors that translocate to the

nucleus and directly regulate gene transcription. Due to their involvement in important

physiological processes such as cell proliferation, development, immunity, metabolism,

and reproduction, they are of major interest to the field of life sciences [1, 2]. Nat-

urally, some of them are involved in diseases such as cancer and diabetes rendering

them attractive drug targets. Since hundreds of crystal structures of NRs have been de-

posited in the Protein Data Bank until today, the binding mode of a multitude of ligands

and related structural implications on the receptors could be investigated to ultimately

develop or optimize drug molecules [3, 4, 5]. NRs share a common structural architec-

ture consisting of three main domains including the highly variable N-terminal domain

(NTD), the relatively conserved DNA-binding domain (DBD), and the ligand-binding
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domain (LBD) as shown in Figure 1A. Ligand binding to the LBD induces conforma-

tional changes in the receptors that, in most cases, lead to the dissociation of auxiliary

proteins such as corepressors and allow for the association of coactivator proteins at

the so-called activation function 2 (AF-2) located on the surface of the LBD. In the

next step, most NRs form either homo- or heterodimers and the newly formed complex

then directly regulates gene transcription in the nucleus [2, 6]. Most of the currently

available therapeutics exploit the hormone binding site of the LBD, which is buried in

the core of the receptor (Figure 1B). Since crystal structures provide no obvious path

for ligands to enter or leave this cavity, it is accepted that pathways must connect it

to the surrounding solvent environment [7, 8, 9, 10]. Obviously, dynamic protein mo-

tions need to occur in order for these pathways to open and transport ligands to their

respective binding site. Current experimental methods have only limited applicability

to qualitatively and quantitatively detect such ligand pathways on an atomic level and

there is no established laboratory method to investigate these pathways [8, 11, 12, 13].

On the other hand, computational methods such as molecular dynamics (MD) simu-

lations and related techniques can give a detailed and atomistic model on the protein

motions responsible for transporting ligands through the pathways and the resulting

ligand-protein interactions [8, 14, 15]. In this regard, it is of major importance to un-

derstand the atomic mechanism of ligand binding to rationally develop and optimize

therapeutics [7, 9, 11, 16, 17, 18]. For example, detailed knowledge on the ligand bind-

ing mechanism and its kinetics can be used to modify the residence time of drugs by

optimizing off-rates [7, 16, 19, 20, 21]. Commonly used docking methodologies could

be supplemented, since they neglect the access to buried binding pockets, which might

constitute a high energy barrier for the ligand [12, 22]. This matter was discussed in a

recent review on the interplay of docking and MD simulations [23]. Further, binding

pathways are thought to impact the ligand specificity of NRs since differences in single

amino acids in the binding pocket often fail to deliver a complete picture of ligand pref-

erence [24, 25]. This is also supported by the relatively conserved helical architecture

of different NRs as shown in Figure 1C [26]. The main structural differences among

NRs are located in the proximity of the ligand which includes the region where H3, H7,

and H11 meet as well as the vicinity of H2 (cf. Figure 1C) [7]. For these reasons, over

166



26 studies focused on the topic of ligand binding pathways in 15 different NRs by em-

ploying various computational methods. The statistics on the most intensively studied

receptors are displayed in Figure 1D.

Figure 1 Structure of nuclear receptors and study focus. (A) The three main domains
of NRs at the example of the estrogen receptor (PDB IDs: 3OS8 and 1HCQ). Since the
structure for the disordered [27] NTD of NRs was not yet determined, a similarly dis-
ordered structure of the protein At2g23090 (PDB ID: 1WVK) was used for a schematic
visualization. (B) The buried binding pocket of the androgen receptor (AR) (PDB ID:
2PIV) is shown with the ligand colored in pine green. (C) Structural alignment of NRs
and secondary structure elements. Two perspectives on the alignment of AR, glucocor-
ticoid receptor (GR), retinoic acid receptor γ (RARγ), thyroid receptor β (TRβ) (PDB
IDs: 3RLJ, 5NFP, 2LBD, 1NAX) are shown. The alignment was performed in PyMol
[28]. Secondary structure assignments were made based on the structure of the AR with
the exception of H2 that does not occur in the AR [29]. (D) Pie chart showing the main
receptors for which ligand pathways have been determined.

Several review papers have highlighted computational methods to study NRs in general

[30], the architecture of NRs including the mousetrap mechanism [26, 31], the in silico

evaluation of NR binders [32], as well as the methods that can be universally applied to

explore biological transport events [33]. In contrast to previous publications, we provide

an in-depth overview on two decades of research in the specific field of ligand pathways

in NRs. We first introduce the topic, then describe and compare all computational

methods that were used in the field, and emphasize general experimental insights into

the pathways. We then introduce a nomenclature for the pathways to standardize the

heterogenous terminology and systematically summarize their spatial location within
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the receptors. Lastly, we discuss the results and conclusions of various studies regarding

drug design as well as the influence of protein interaction partners and mutations.

Applied Methodology

Computational Methods. Several computational methods were applied to study lig-

and pathways within NRs [9, 12, 19, 25, 34, 35], as well as other proteins such as

Cytochrome P450 enzymes (CYPs) [36, 37]. In the majority of cases, the used tech-

niques were related to MD simulations which allow to determine the spatial location of

pathways and their capability to transport ligands. Due to the relatively slow timescale

(microseconds to minutes) of small molecule binding and unbinding from NRs exceed-

ing the available computational power of conventional simulations, most studies em-

ployed some form of accelerated simulation protocol involving the addition of biasing

potentials to the regular force field [9, 15, 35]. Kosztin and colleagues pioneered the

field by applying steered MD (SMD) simulations to study the unbinding pathways of

retinoic acid from the RARγ in 1999 [9]. In SMD simulations an external force is ap-

plied to a molecule in the form of a directional vector that is attached via a harmonic

spring [38, 39]. In the case of ligand pathways, small molecules can be pulled out of

the receptor through a predefined region, which is at the same time one of its main

disadvantages compared to other methods [11] that do not depend on the definition of

the spatial region prior to simulation. Based on the force profile or the maximal force,

different pathways or compounds can be ranked and it was suggested that SMD simula-

tions could supplement conventional molecular docking methods to prioritize potential

drug compounds, especially in the case of equally well-scored ligands [11, 39, 40].

Interestingly, a modified SMD protocol was applied to study the access of multiple

compounds to the TRs [41]. In the same year as Kosztin and colleagues, Blondel et al.

applied locally enhanced sampling MD (LES-MD) simulations to the same model sys-

tem of RARγ. In LES-MD, the protein is subjected to multiple high-temperature ligand

copies to increase the probability of observing rare molecular events such as intramolec-

ular ligand diffusion at a low computational expense [15, 34]. Compared to SMD, a

clear advantage of the LES-MD methodology is that there is no need to predefine a path

for the ligand [34], as it is also the case for random accelerated MD (RAMD) simula-

tions. Initially introduced as random expulsion MD (REMD) simulations by Lüdemann
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and colleagues [42], the RAMD technique allows the determination of ligand pathways

while minimizing the introduced bias. Similar to SMD, this algorithm is based on the

addition of an artificial force to the default force field, but the direction of the force is

randomly adapted and it is only applied if the molecule does not cover a given distance

in a predefined number of simulation steps. It was suggested to use RAMD simula-

tions to determine the relevant pathways in a system, followed by SMD simulations to

precisely determine their capability to transport ligands by comparing the potential of

mean force (PMF) [16, 19, 42]. Disadvantages of the RAMD methodology include the

unnatural deformation of the protein in short simulations as well as the dependence on

the atom to which the additional force is applied [11, 19]. Similar to RAMD and LES-

MD, the targeted MD (TMD) methodology is not dependent on the prior knowledge of

potential ligand pathways [12].
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Table 1 Hallmarks of all 26 articles considered for this review.

Receptor Focus Method Ligand Year

RARγ Egress SMD all-trans retinoic acid 1999 [9]
RARγ Egress LES-MD all-trans retinoic acid 1999 [34]
TRα, TRβ Egress LES-MD triiodothyronine, tiratricol, 2005 [15]

IH-5a, GC-24a

TRα, TRβ Egress SMD triiodothyronine, tiratricol, 2006 [14]
IH-5a, GC-24a

RARγ Egress RAMD all-trans retinoic acid 2006 [19]
AR Egress SMD ethylated cyanonilutamide 2007 [43]
ERα Egress LES-MD 17β-estradiol, raloxifene 2008 [20]
TRα, TRβ Access SMDb triiodothyronine, tiratricol, 2008 [41]

IH-5a, GC-24a

PPARγ Egress rTMD, TDR GW0072c 2008 [12]
VDR Egress RAMD, SMD, TMD calcitriol 2009 [11]
ERα, ERβ Egress RAMD, SMD, CAVER 17β-estradiol, genistein, 2009 [25]

4-hydroxytamoxifen
ERα, ERβ Egress SMD genistein, Way-244c 2009 [17]
PPARγ Access TMD GW0072c 2011 [22]
FXR Egress RAMD, SMD GW4064c 2012 [18]
MR Acess PELE LD1a 2013 [35]
TRα, TRβ Egress RMSD triiodothyronine 2013 [13]
GR Egress SMD dexamethasone, flutica- 2013 [40]

sone furoate, fluticasone
propionate

ERα Egress SMD, CAVER salpichrolide analog 2015 [44]
RXRα Access Docking, cMD 9-cis retinoic acid 2015 [45]
ERα, ERβ - CAVER - 2015 [46]
GR, MR Access, PELE dexamethasone, 2015 [7]

Egress desisobutyrylciclesonide
ERβ Access PELE 272a, 797a 2016 [47]
RXRα Egress SMD, CAVER bexarotene, GVDc, 3gxla 2017 [39]
AR, ERα , GR, Access PELE testosterone, estradiol, 2017[10]
MR, PR cortisol, aldosterone,

progesterone
EcR Egress SMD, CAVER HWGa 2018 [16]
PXR Access MD-binding SRLa 2018 [8]

a Compound name according to Protein Data Bank [48]. b Modified simulation protocol.
c Compound name according to PubChem [49].
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TMD simulations can be classified into direct TMD and reversed TMD (rTMD). In

direct TMD simulations, the root mean square deviation (RMSD) between an initial

structure and a target structure is decreased step by step, while rTMD increases the

RMSD from an initial reference structure. Therefore, the rTMD protocol exerts less

constraints on the atoms since no target structure for the search is given [12, 22, 33].

Similarly, the time-dependent distance-restraint (TDR) method increases the distance

between the centers of a ligand and its respective binding site from an initial structure

to observe an egress event [12]. The MD-binding method uses an additive bias based on

electrostatic-like forces to enhance the probability of the ligand passing through an ac-

cess pathway. This method was recently applied to study access pathways in the PXR

[8, 50]. While previously discussed methods can be classified as biased simulation

techniques, the CAVER method detects pathways from either static crystal structures

or ensembles from conventional MD simulations [51]. In CAVER, pathways are de-

termined from a predefined starting point, usually within the presumed binding site,

from which the algorithm detects the cheapest paths towards the protein surface based

on a cost function accounting for diameter and length. To perform the calculation, the

protein atoms are approximated by a Voronoi diagram. In a single study, a ligand was

docked into the entrance of the presumed binding pathway and a subsequent conven-

tional MD simulation lead to the spontaneous binding of a ligand to RXRα [45]. Only

recently, the protein energy landscape exploration (PELE) method was introduced and

applied to study ligand pathways in NRs [35, 47]. In contrast to the above-mentioned

MD protocols, PELE relies on a combination of protein structure prediction and Monte

Carlo sampling allowing to study access pathways in an unbiased matter. Such unbi-

ased simulations with NR ligands allowed to reproducibly determine the ligand binding

site of several NR LBDs without prior knowledge on its location. Additionally, relative

binding affinities showing a good correlation to experimentally determined values could

be obtained from the simulations [7]. Together with its low computational cost, this has

made PELE an attractive approach to study ligand access pathways. As a main dis-

advantage, the PELE method is limited by its ineffectiveness to capture larger, global

changes in the protein secondary structure [47]. The most prominent computational

methods applied to study pathways in NRs are shown in Figure 2A.
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Experimental Methods. As stated above, experimental methods have only a limited

applicability to study access or egress pathways in NRs and other proteins, especially if

atomic detail is desired [8, 11, 12, 13]. However, crystal structures that inherently build

the foundation for structure-based computational methods have also provided insights

into ligand pathways despite the static nature of the structural information [52]. For

example, they revealed the presence of peripheral sites on the surface of the FXR [53]

and the MR [54] that could be connected to an access pathway (Figure 2B and C) as

discussed in detail later. Further, structural differences between NRs in distinct regions,

could contribute to the understanding of receptor specificity that is closely related to

entry and exit pathways (cf. Figure 2D and E). On the other hand, tryptophan fluores-

cence studies can provide insight into the superficial accessibility of receptor regions

and have suggested major conformational changes associated with ligand binding [55].

The role of specific residues involved in the access or egress process can be probed with

site-directed mutagenesis experiments. This was for example shown on the example of

the ERα where a mutation affected the association rate but not the dissociation rate of

ligands indicating different pathways for either process [56]. Interestingly, researchers

were able to show that the association of a coactivator to the ER slows down ligand

dissociation in a fluorescence-based assay [57]. Finally, a study focusing on binding

kinetics of the ER suggested different binding and unbinding pathways to be used be-

tween agonists and antagonists [58].

The Pathways in Nuclear Receptors

Nomenclature of Pathways. In the past, a rather heterogenic terminology was used to

describe and name pathways in the field of NRs and proteins in general. The pathways

connecting the buried binding cavity of LBDs to the surrounding environment were de-

scribed as pathways, paths, tunnels, gates, or channels. The term channel is typically

used to describe a path leading throughout a protein, with no interruption by a larger

cavity, as it is the case with ion channels, while the term tunnel is often used to describe

the connecting path between a buried cavity and the surface of the protein [37, 51, 59].

The term gate is generally applied to describe a structural motif that regulates the access

to a protein and therefore only describes a part of a pathway, tunnel, or channel [60].The

related terms path and pathway were used most frequently (68%) in all reviewed studies
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and we therefore suggest their use in future studies in order to standardize the terminol-

ogy for NRs. Similar to the terms used for the pathways, the terminology to distinguish

them individually varied throughout the 26 studies considered for this review (Table 1).

While some groups preferred numerals in both roman and arabic form, others decided

to use alphabetic characters in both upper and lower case. In early studies, as well as

the majority of other articles, the terminology with roman numerals was favored and we

therefore suggest its use to refer to pathways in NRs.

Figure 2 Methods, crystallographic insights, and pathway statistics. (A) Methods used
to determine ligand pathways in NRs in all considered studies. (B) Ligand bound to a
perihperal site of FXR (PDB ID: 3OKH). The ligand in the binding pocket is shown in
pine green while the peripheral ligand is shown in red. (C) Ligand bound to a perihperal
site of MR (PDB ID: 3VHV). The ligand in the binding pocket is shown in pine green
while the peripheral ligand is shown in red. (D) Structure of the TRβ (PDB ID: 2J4A)
with the ligand (red), the two β-sheets (pink), and helix 2 (pine green). (E) Structure of
VDR (PDB ID: 1IE9) with the ligand (red), the two β-sheets (pink), and helix 2 (pine
green). (F) Chart showing the percentage of all studies, in which the respective pathway
(either I, II, IIIa, IIIb, or IV) was described as most favorable.

Location of Pathways. The pathways characterized as the favored ones in all consid-

ered studies are shown in Figure 2F. Due to differences in the nomenclature of sec-

ondary structural elements that mainly arise from to distinct structural features of NR

structures (cf. Figure 1C), we aligned the respective receptor structures to the AR and

determined the location of the pathways based on its secondary structure (cf. Table 2).

The first pathway (pathway I, cf. Figure 3A) was reported based on crystallographic
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data as the unliganded LDB of RARγ showed an extended conformation of helix 12

(H12) while the ligand-bound structure showed it tightly packed to the body of the re-

ceptor as presented in Figure 3B [52]. Based on these findings, the so-called mousetrap

mechanism, according to which the ligand is trapped by H12 after binding to the re-

ceptor, was postulated and widely discussed in the literature [14, 18, 20, 34, 41]. Later,

other structures of unliganded NRs without an extended conformation of H12 were de-

termined and it was found that the orientation of this helix in RARγ was imposed by

crystal packing effects pointing towards a misinterpretation of the data [31, 34]. There-

fore, ligand binding does not directly lead to the entrapment of the ligand even though

the binding is coupled to particular conformational changes of H12 that rather depend

on the either agonistic or antagonistic nature of the compound [61]. In the following

years, computational methods were applied to study pathways in atomic detail leading

to the discovery of several new regions involved in ligand access or egress. Pathway

II was reported in the largest share of NRs and it was identified as most the favorable

pathway in a large number of studies. It protrudes the protein surface among the H6-H7

loop, the C-terminal region of H3, and the H11-H12 loop in a region that is charac-

terized by a conserved plasticity among NRs which is thought to be connected to the

opening of this region for ligand (un-)binding [7]. Additionally, pathway II was com-

monly identified in AR, ERα, GR, MR, and PR by unbiased PELE simulations [10]

and crystal structures show ligands bound to the entrance of the pathway supporting its

relevance (cf. Figure 2C). Two paths located in spatial proximity of the β-hairpin, the

H1-H2 loop, and H3 (cf. Figure 3A) were summarized as pathways IIIa and IIIb since

they describe a similar region. The translocation through this pathway was associated

with the deformation of the protein during biased simulations [9, 34]. Similar to path-

way II, a ligand bound close to the entrance of pathway III indicates the importance

of this path. This region is of special interest for the ligand specificity of the receptors

since it is comparably variable among NRs [7] that otherwise share a common helical

fold. In the TR, for example, the distinct location of H2 does not allow the discrimina-

tion between IIIa and IIIb. Pathway IV, which was detected in eight studies, protrudes

through the H6-H7 loop. The last two pathways V and VI were both only described

once and are therefore unlikely to be common pathways for NR ligands.
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Table 2 Description of the pathway location and receptor system in which they were
described.

Pathway Locationa Receptorsb

I between H10, H11, and H12 AR, ERα, ERβ, FXR, RARγ, RXRα,
TRα, TRβ, VDR

II between the H6-H7 loop, the AR, EcR, ERα, ERβ, FXR, GR, MR,
H11-H12 loop, and the PR, PXR, RARγ, PPARγ, RXRα, TRα,
C-terminal part of H3 TRβ, VDR

IIIa between the H1-H3 loop and EcR, ERα, ERβ, FXR, PPARγ, RARγ,
the β-hairpin TRα, TRβ, VDR

IIIb between the H1-H3 loop and AR, ERα, ERβ, RARγ, TRα, TRβ, VDR
the central part of H3

IV through the H6-H7 loop close EcR, ERα, ERβ, FXR, PXR, RARγ,
to the β-hairpin TRα, TRβ, VDR

V between the H1-H3 loop and FXR
H6

VI between H12, H4, and the ERβ
N-terminal part of H3

aSecondary structural elements in close proximity to the pathways. The description was

made based on the structure of the androgen receptor after alignment of the respective

receptor. The secondary structure nomenclature was obtained from a recent review [29].
bThe receptors, in which the respective pathway was identified are shown. In some NRs,

the pathways were identified multiple times.

Pathways in General. Depending on the method, different numbers of pathways were

identified in the corresponding NRs. While studies using RAMD, LES-MD, CAVER,

or rTMD reported multiple pathways [12, 13, 14, 34, 46, 44], one SMD study [39] and

one TMD study [22], as well as all PELE studies [7, 10] reported only a single pathway.

Furthermore, as mentioned in the section on the applied computational methodology,

most MD-based technologies are limited to either study access or egress [22, 43] which

lead researchers to discuss if their results are applicable to the reverse process. While

several studies came to the conclusion that NRs possess a common pathway used for

both ligand binding and unbinding [7, 10, 19, 46], others argued that different pathways

would be used for these processes [9, 22, 25, 40]. The latter standpoint was supported

by studies using site-directed mutagenesis in combination with kinetic measurements
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[16, 25, 56]. Further, it was suggested that the preferred pathway is dependent on the

properties of the ligand [15, 17, 20, 25]. Properties to characterize pathways include

width, length, bottleneck radius, bottleneck residues, as well as the physicochemical

properties of residues forming the pathway [25, 51].

Another point of discussion were the conformational changes associated with ligand ac-

cess or egress. An experimental study has suggested that large conformational changes

are required for ligand binding [62]. In contrast, the majority of computational studies

did not observe any massive conformational changes on the level of the protein back-

bone associated with either access or egress and indicate that the ligands mainly exploit

the intrinsic protein flexibility to access the binding cavity [7, 12, 25, 41].Two studies

discussed significant conformational rearrangements [15, 46].

Figure 3 Location of pathways and protein partners. (A) The location of all pathways
(I, II, IIIa, IIIb, IV, V, and VI) that were characterized in NRs is shown at the example
of the AR (PDB ID: 2PIV). The secondary structural elements [29] in proximity are
indicated. (B) The crystal structures of apo RARγ (PDB ID: 1LBD, top) and holo
RARγ (PDB ID: 2LBD, bottom) that were the basis for the mousetrap mechanism are
shown. The location of H12 is indicated by specific coloring. (C) A fragment of a
coactivator peptide (red) is shown on the surface of the AR (PDB ID: 1T63). (D) The
dimerization interface of the AR homodimer (PDB ID: 5JJM) is shown.
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Interestingly, it was suggested that peripheral sites on the protein surface could serve as

recognition regions for ligands in order to capture them at the entrance of the pathway.

The suggestion was based on the finding of a peripheral site on the surface of the re-

ceptors in a study with multiple NRs [7]. This supports the notion that ligands bound

to the protein surface at the entry of pathways II and III in crystal structures indicate

their functional relevance (cf. Figures 2B and C). Similar phenomena were observed

in CYPs where it was suggested that such a two-step process consisting of recognition

on the protein surface followed by the translocation through the pathway would allow

kinetically efficient ligand uptake [36, 63, 64].

As mentioned above, insights from the investigation of ligand binding pathways can

be used in rational structure-based drug design. While the unbiased determination of

binding poses combined with compound ranking by using the PELE method is one of

the newer applications, researchers used SMD simulations to investigate the binding

mode of an antiandrogen linked to colchicine designed to inhibit both tubulin and the

AR in prostate cancer in an earlier study [43]. On the basis of ligand-protein interac-

tions that were observed during the translocation through ligand pathways, possibilities

to increase the binding affinity of the agonist GW4064 for the FXR were recommended

[18]. Martı́nez and colleagues offered valuable insights for the rational design of novel

TR ligands with higher binding affinity based on their SMD simulations [14]. They

also reviewed the results of a screening performed by Pfizer laboratories and concluded

that the reduced affinity due to the removal of the phenolic group in triiodothyronine

analogues was caused by the loss of an important hydrophilic interaction during lig-

and unbinding. Shen et al. suggested the removal of the polar functional group of the

ligands genistein and Way-244 to improve ERβ selectivity based on SMD simulations.

In addition, they determined secondary structure elements along the pathways, with the

H7-H8 loop as main gatekeeper, that contribute to the selectivity between ERα and ERβ

[17]. In a similar fashion, it was suggested that pathways determine the selectivity of

genistein for ERβ, since pathway IIIa offered less steric hindrance in ERβ compared to

ERα [25]. In another study, the TRβ selectivity of GC-24 was related to its preference

for pathway IIIa/b [41]. These studies demonstrate how simulations of ligands passing

through NR pathways can give valuable insight for the rational design and the mod-
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ification of drug compounds. For other proteins, including Src kinase, β2-adrenergic

receptor, trypsin, Hsp90α, and bifunctional epoxide hydrolase 2 it was shown that sim-

ulations of ligand binding can be used to determine binding rates and residence times

of drug-like ligands in good correlation to experiments [21, 65, 66, 67].

Influence of Protein Interaction Partners and Mutations. The binding of coactiva-

tors and corepressors is essential for NR signaling [2, 6]. According to the currently

accepted mechanism, coactivator proteins associate upon ligand binding and dissoci-

ate from the LBD after the ligand. This implies that the superficial AF-2 site, where

coactivators bind, is occupied during ligand egress (cf. Figure 3C) [18, 20, 25, 68].

Laboratory experiments revealed a lower dissociation rate from the ER due to coacti-

vator binding, which suggests a relationship to ligand pathways [62]. The effects of

coactivator binding on ligand pathways was investigated in various NRs [14, 15, 69].

For example, it was suggested that pathway I would be blocked in the presence of

a coactivator protein in the ER [20]. Together with the fact that coactivator binding

stabilizes H12 in the agonistic position which potentially reduces the H12 plasticity

mandatory for the translocation through pathway I, this adds more evidence against the

postulated mousetrap mechanism [11]. Studies investigating the effect of coactivator

or corepressor binding were limited to consider peptide fragments of the coactivator

proteins [18, 25], due to the lack of a complete structure. Two studies came to the con-

clusion that the translocation through the studied ligand pathways is not affected by the

presence of a coactivator protein [7, 18]. Experimental data suggests heat shock protein

90 (Hsp90), which is thought to structurally stabilize steroidal NRs in their unliganded

form, to also bind at the AF-2 site. Since ligand binding is thought to induce the disso-

ciation of Hsp90 from the receptor, it is likely that the AF-2 region would be occluded

during ligand access and prevent the ligand translocation through pathway I [7, 70].

Interestingly, interactions of Hsp90 with the GR have been suggested to support the

accessibility of the binding pocket and therefore promote ligand binding [7, 71]. Until

today, only a minor number of all possible interaction partners was considered in the

examination of ligand pathways and receptor conformations in general due to the high

number of partners and missing structural information [72].
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Since NR dimerization takes place after ligand binding (cf. Figure 3D) [68], its effect

on egress pathways was discussed in a handful of studies [11, 13, 20, 25]. For example,

dimerization hindered the translocation through certain pathways in the TRs and it was

suggested that both the dimeric and monomeric states should be considered to study

ligand binding [13]. Elsewhere, it was reported that several egress routes of raloxifene

from the ERα were suppressed by dimerization [20]. Therefore, pathways leading to the

dimerization interface are likely not favored for the egress from NRs [11]. Experiments

revealed that the dimerization increases the half-life of the protein-ligand complex in

agreement with the computational results [56]. Due to the dissimilarity of dimerization

interfaces among NRs, it is likely that different results will be obtained from receptor

to receptor.

Mutations in NRs are associated with several diseases and have been shown to influ-

ence the efficacy of drug therapy [61, 68, 73]. For example, MD simulations recently

revealed the atomic mechanism, how single amino acid mutations in the AR can invert

the effect of antagonists and promote the progression of prostate cancer [61, 74]. Since

the associated conformational changes occur after ligand translocation to the binding

site, this limits their relationship to ligand pathways. Nevertheless, the effect of such

mutations on the pathways cannot be excluded. In addition, splice variants of the AR

lacking the LDB lead to a constitutively active receptor, which is resistant to classical

antiandrogen therapy and independent of ligand binding through pathways [68]. Un-

fortunately, the influence of amino acid mutations on ligand pathways was only char-

acterized in two studies. In affected individuals, the I747M mutation in the GR causes

glucocorticoid resistance which is associated with a variety of symptoms [40, 75]. In

their simulations, Capelli and colleagues showed that the dissociation rate of dexam-

ethasone was increased in the presence of this specific mutation and proposed this as

the cause for its clinical implications [40]. This provides additional evidence for the

relevance of the ligand binding mechanism for the efficacy of drug compounds and un-

derlines the sensitivity of such simulations. The second study considered mutations in

the TRβ that cause thyroid hormone resistance in their models that were subjected to

LES-MD simulations. It was found that the favored egress pathway was influenced by

single amino acid mutations [15]. In similar protein systems with buried active sites,
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such as CYPs and G protein-coupled receptors (GPCRs), it was also proposed that mu-

tations influence properties of ligand pathways [37, 76, 77].

Conclusions and Outlook

In the past two decades, 26 studies characterized ligand pathways in NRs and high-

lighted their role with computational methods. We aimed to unify the heterogenous

nomenclature for pathways that was used in the past and suggest the use of roman

numerals to distinguish individual pathways. The spatial location of all described path-

ways was summarized and revealed the most commonly described pathway located

between the H6-H7 loop, H11, and H3. Recent studies report a common pathway for

ligand translocation, as opposed to earlier studies reporting multiple pathways for either

access or egress. Future studies should consider that the number of detected pathways

might depend on the applied simulation protocol and the studied receptors. Like oth-

ers, we suggest the inclusion of all protein interaction partners such as corepressors,

coactivators, and dimerization partners into the simulations for optimal results since

they showed to affect ligand binding through the pathways. Multiple studies focus-

ing on ligand (un-)binding offered valuable recommendations for the design of ligands

with higher affinity or improved selectivity. Further, MD simulations of ligand path-

ways have been shown to be sensitive enough to detect the fine effects of single amino

acid mutations on the binding kinetics of ligands. However, more studies will have to

consider the effect of changes in the protein sequence. Since the use of graphics pro-

cessing units (GPUs) already proved to massively advance the simulation performance,

sophisticated hardware will advance the field and allow researchers to study intramolec-

ular ligand diffusion in an unbiased manner. In this regard, the PELE method to study

ligand access was already proven to be an attractive alternative to classical molecular

docking, since it does not require definition of the binding site, allows to determine

binding energies, and incorporates flexibility, which is often neglected or simplified in

docking.
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[37] André Fischer, Charleen G. Don, and Martin Smieško. Molecular Dynamics Simula-
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CHAPTER 6

Ligand Pathways in Estrogen-Related Receptors

While working on the information retrieval for the review presented in Chapter 5, I
realized a lack of structural studies on estrogen-related receptors (ERRs). Due to by
recent developments regarding the understanding of the relevance of ERRs for health
and disease, this work was focused on elucidating the recognition process of their lig-
ands through pathways connecting their active site to the surrounding solvent. Detailed
atomic knowledge on molecular recognition in these receptors may support the rational
design and prediction of modulators.

Author contributions: Conceptualization, A.F.; formal analysis, A.F., F.B.; writing and orig-
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Abstract

The three subtypes of estrogen-related receptors ERRα, ERRβ, and ERRγ are nuclear

receptors mediating metabolic processes in various tissues such as the skeletal muscle,

fat tissue, bone, and liver. Although the knowledge on their physiological ligands is

limited, they have been implicated as drug targets for important indications including

diabetes, cardiovascular diseases, and osteoporosis. As in other nuclear receptors, their

ligand binding pocket is buried within the core of the receptor and connected to its sur-

rounding by ligand pathways. Here, we investigated these pathways with conventional

molecular dynamics as well as metadynamics simulations to reveal their distribution

and their capability to facilitate ligand translocation. Dependent on the ERR subtype

and the conformational state of the receptor, we could detect different pathways to be

favored. Overall, the results suggested pathways IIIa and IIIb to be favored in the ago-

nistic conformation, while antagonists preferred pathways I, II, and V. Along the path-

ways, the ligands passed different gating mechanisms of the receptor, including groups

of protein residues as well as whole secondary structure elements, to leave the binding

site. Even though these pathways are suggested to influence ligand specificity of the

receptors and their elucidation might advance rational drug design, they have not yet

been studied in ERRs.

Introduction

Estrogen related receptors (ERR) belong to the superfamily of nuclear receptors (NRs).

Despite their nomenclature, which originates from their sequence homology to estro-

gen receptors (ERs), estrogens have not been found to strongly interact with ERRs

[1, 2]. However, the three subtypes ERRα, ERRβ, and ERRγ interfere with ER signal-

ing as they share transcriptional targets. While the ERs have been intensively studied,

less is known about ERRs. They are mainly expressed in skeletal muscle, fat, bone,

liver, as well as the brain tissue and are of particular interest due to their involvement

in metabolic processes [3]. For example, ERRα regulates mitochondrial biogenesis

and muscle regeneration, while ERRγ modulates oxidative phosphorylation and angio-

genesis in the skeletal muscle. ERRβ is involved in maintaining embrionic stem cell

pluripotency. Other activities of ERRs relate to the immune system, bone physiology,
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absorption of lipids in the gastrointestinal tract, and lipid metabolism [4]. Due to their

involvement in various physiological processes, ERRs have been proposed as therapeu-

tic targets for multiple indications such as diabetes, cardiovascular diseases, osteoporo-

sis, and muscle atrophy [4, 5, 6]. Originally, ERRs were designated as orphan recep-

tors, as no endogenous ligands were known regulating their signaling, probably because

they are constitutively active [3, 4]. However, recent evidence suggests that cholesterol

might be a natural ligand of ERRα [7]. Interestingly, multiple small molecules with

therapeutic potential have been discovered to influence ERR signaling. In the compar-

atively small binding pocket of ERRs, agonists can increase the basal signaling of the

receptors, while antagonists can decrease it [4, 8, 9]. Several drug discovery programs

investigated compounds modulating ERR activity, but none of them have reached mar-

ket approval [3]. Thus, there remains a medical need for novel ERR modulators to treat

human diseases [4].

In general, NRs present a multi-domain organization with an N-terminal domain modu-

lating protein-protein interactions, a DNA-binding domain mediating the interaction

with the DNA, and a ligand-binding domain (LBD) with a small-molecule binding

pocket primarily involved in the regulation of receptor signaling by small molecules

[2, 3, 10]. Due to its buried character, ligands need to translocate through pathways

within the protein to reach the binding pocket. Depending on the studied NR, differ-

ent pathways might facilitate this translocation and contribute to the ligand-specificity

of the receptor. Knowledge on the mechanism and occurrence of ligand pathways can

facilitate rational structure-based design of novel ligands [11, 12, 13]. As transloca-

tion typically requires conformational changes of the protein, such pathways are rarely

observed in static crystal structures. Computational techniques such as molecular dy-

namics (MD) simulations can model the inherent protein flexibility and, therefore, be

used to localize the pathways and evaluate their capability to translocate ligands. Lig-

and pathways can be explored independent of a ligand with small spherical probes, or

in the context of an actual ligand propagating through the pathway [11]. The use of

conventional MD simulations to study ligand translocation is highly demanding with

regards to computational resources and often not very efficient due to the long time

scale of such molecular events. In contrast, specific sampling techniques such as accel-
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erated MD, steered MD, or metadynamics simulations have been successfully applied

to various protein systems [11, 14, 15, 16]. Previous computational work on ERRs was

limited to the analysis of ligand-induced conformational changes and ligand-protein in-

teractions [17, 18, 19]. While several studies have been conducted to examine other

NRs, the characteristics of ligand pathways in ERRs has, to the best of our knowledge,

not been addressed until today. For example, Capelli and colleagues have shown that

the dissociation rate of a ligand binding to the glucocorticoid receptor is increased by

a mutation along a ligand pathway leading to decreased ligand efficacy [11, 13]. In the

field of ERs, rational modification of a ligand was used to improve its selectivity for

ERβ based on steered MD simulations along a pathway [11, 12]. On the other hand,

metadynamics simulations have not been applied to study ligand pathways in NRs [11].

In this simulation technique, so-called collective variables (CVs) need to be predefined

for the algorithm to bias the system towards sampling CV space. The applied bias is

history-dependent in order to sample new states of the system and, therefore, allows

to sample rare molecular events such as ligand-protein association and dissociation as

well as to obtain a free energy surface of the process [20, 21].

In this study, we conducted conventional MD and metadynamics simulations to eluci-

date the location and functionality of pathways for ligands to translocate to and from the

buried binding pocket in ERRs. By carefully analyzing over 9 µs of MD trajectories, we

highlighted the distribution and opening of pathways in the ERR subtypes independent

of a ligand, and brought this into relation with the preferred pathways determined in the

metadynamics simulations. We analyzed the associated conformational changes on the

residue as well as the secondary structure level and map the deposited biasing potential

during ligand translocation. Even though these pathways are known to influence ligand

specificity of the receptors, they have not previously been investigated in ERRs despite

their therapeutic relevance.

Results and Discussion

Model building and validation. Of the four available crystal structures of ERRα, two

structures presented an agonistic conformation without any ligand bound, while the re-

maining two structures were bound to an antagonist with a characteristic displacement

of helix-12 (H12) towards the coactivator binding site [22, 23]. As our primary goal
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was to investigate ligand-dependent phenomena, we did not consider ERRα in its ag-

onistic constitutively active conformation due to the absence of a ligand and focused

on antagonist-bound structures. The available crystal structures indicate the agonistic

and apo conformation of ERRγ to be highly similar (PDB IDs: 2P7G and 2ZBS). In

the case of the selected structure for ERRα (Table 1), the ligand Q27455709 (PubChem

ID: 49866529) was cocrystallized (Figure 1A). For ERRγ, structures with both ago-

nists and antagonists were available [24] leading us to select one structure each (Table

1). While the inverse agonist DN200434 (PubChem ID: 377642864) was bound to the

active site in the structure resembling the antagonist conformation with H12 displace-

ment (Figures 1B-D), the other structure was cocrystallized with the agonist bisphenol

A.

Table 1 Overview of the structures considered in this study.

System Structure Ligand Mode of actiona

ERRα 3K6P Q27455709 antagonist
ERRβ 5YSO b diethylstilbestrol c antagonist
ERRγ ago 2P7G bisphenol A agonist
ERRγ antago 5YSO DN200434 antagonist

a The mode of action also represents the conformational state of the receptors. b Homology
model based on ERRγ crystal structure. c Ligand orientation obtained by docking.

While ligand-bound structures were available in the Protein Data Bank for ERRα and

ERRγ, there were no crystal structures of the LBD published for ERRβ when we ini-

tiated this project. However, only recently, two structures (PDB IDs: 6LIT and 6LN4)

resembling an agonistic conformation were deposited in the Protein Data Bank (PDB)

[25]. Nevertheless, we constructed a homology model of ERRβ in an antagonistic con-

formation using the SWISS-MODEL [26] web server with an ERRγ crystal structure

(PDB ID: 5YSO) serving as template as it has a higher sequence identity to ERRβ than

to ERRα (Figure S1). The template structure presented a sequence identity of 79.2%

and the resulting model presented a good Global Model Quality Estimation (GMQE)

index of 0.85 and a Qualitative Model Energy Analysis (QMEAN) score of -0.26 (Fig-

ure 1B). The latter metric describes the absolute quality of a protein structure and the

obtained value indicated a high nativeness of the model [26, 27, 28]. As mentioned

above, we were able to retrospectively validate the correctness of our homology model
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based on a newly available crystal structure of the receptor that, however, lacks the N-

terminal region of H1 and H2 and represents an agonistic conformation of the receptor

as indicated by the co-crystallized coactivator fragment and the orientation of H12 [25].

After removing the N-terminus of our homology model, as well as both C-termini, we

compared both structures and observed an impressive similarity. While the backbone

root-mean square deviation (RMSD) of superposition amounted to only 0.70 Å, the

overall heavy-atom RMSD was 1.51 Å, clearly below the fluctuations we observed in

the corresponding MD simulations (Figure S2). In conclusion, these metrics justified

the use of our model for further procedures.

Figure 1 Structural overview. (A) Structures of the ligands considered in this work.
(B) Alignment between our ERRβ homology model and the selected ERRγ crystal
structure from two different orientations. Secondary structure elements were assigned
according to our previous work [11]. (C) Agonistic conformation of ERRγ (PDB ID:
2P7G) with H12 colored in red. (D) Antagonistic conformation of ERRγ (PDB ID:
5YSO) with H12 colored in red. (E) Ligand pathways in ERRα.

As the active site was in an apo state after generating the homology model, we aimed to

dock a known antagonist to the model. The prior validation of the smina [29] docking

protocol (Figure S3A-E) displayed acceptable to high accuracy (RMSDs between 0.3 to

2.2 Å) in reproducing cocrystallized binding modes in all three ERRs. Interestingly, the

binding mode of the docked antagonist diethylstilbestrol overlapped excellently with the

cocrystallized pose in the template of ERRγ structure providing additional confidence

into the obtained pose (Figure S3F).

The RMSD values of all MD simulations generally indicated good convergence with
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two exceptions: one replica of the conventional simulations of ERRγ bound to an

agonist and one metadynamics simulation of ERRβ displayed a spike in the diagram

towards the end of the trajectory (Figure S2). Both RMSD spikes were caused by a dis-

tortion of the N-terminal region of H3, as we will elaborate on in the following sections.

In the metadynamics simulation the change took place after ligand egress. As our anal-

ysis of ligand translocation ended with the ligand egress, this RMSD peak has no effect

on our overall conclusions. The fact that the receptors underwent this conformational

change in both conventional and biased simulations reduces the chance that it was an

artifact imposed by the biasing potential.

Different patterns of ligand pathways in ERRs. While crystal structures of NRs gen-

erally do not allow an immediate detection of routes for ligand access or egress, protein

flexibility introduced by MD simulations may trigger conformational fluctuations that

help to unmask the ligand pathways. Using various computational protocols based on

MD simulations, multiple possible egress routes for ligands were reported in NRs [11].

Here, we first applied the CAVER protocol allowing to determine and visualize path-

ways independent of a ligand molecule based on conventional MD simulations [30]. In

a ligand pathway, the most narrow point is referred to as its bottleneck, where gating

residues typically act as molecular filters contributing to ligand specificity [15, 11]. The

bottleneck radius describes the width of the pathway at this particular location. Interest-

ingly, our analysis of average bottleneck radii during the simulations showed different

pathways to be present in the three ERR subtypes (Figures 1E and 2A). In ERRα, for

example, we could detect a comparatively large opening of pathway II (pw-II) located

among the H6-H7 loop, the H11-H12 loop, and the C-terminal region of H3 with an

average bottleneck radius of up to 2.4 Å. Also in the other receptor systems, pw-II was

present in all simulation replicas and, hence, the most abundant pathway among the

studied receptors. In the related proteins ERα and ERβ, pw-II has been previously

described as major access pathway for estradiol with a Monte Carlo based technique

termed protein energy landscape exploration [31] in agreement with our results.

Another study on ERs using the same MD-based methodology we used here, found pw-

IIIa to be the most likely access and egress route for ligands. In our simulations, pw-IIIa

presented the largest bottleneck radii in the agonistic state of ERRγ. As the mentioned
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Figure 2 Characteristics of the pathways. (A) Average bottleneck radii for pathways I,
II, IIIa, IIIb, and V in the three ERR subtypes. The average of the three replicas (null
values not included in the average) is indicated by a horizontal line. The number of null
values was indicated if any were present. (B) On top, the occurrence of a residue as
bottleneck in a pathway is shown as a heat map, while on the bottom ligand-protein in-
teractions in the ten metadynamics replicas are illustrated. The data is given for ERRα,
(C) ERRβ, (D) ERRγ with agonist, and (F) ERRγ with antagonist. (E) Legends for the
heat maps.

study also evaluated the agonistic conformation of ERα and ERβ, our results indicate

that this preference for pw-IIIa in ERs is also applicable for ERRs, as we will further

underline in the following sections. As their nomenclature suggests, the two pathways

pw-IIIa and pw-IIIb are only separated by the highly flexible region between H1 and H3

[11]. Similar to pw-IIIa, pw-IIIb was most open in the agonist-bound ERRγ indicating

this structural region to be relevant for ligand translocation if H12 rests in an orientation

that allows the interaction with coactivators. In the same complex, we could not detect

pw-V in any of the replica simulations. In the antagonistic conformation of ERRγ, pw-

I presented the highest bottleneck radius compared to the remaining receptors (Tables

S1 and S2). As we highlight later on, this also was the only pathway selected by the

ligand in our metadynamics simulations. Moreover, pw-V, which we observed in meta-

dynamics simulations of both ERRα and ERRβ, only displayed a small opening in all
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receptors. In all studied systems, pw-IV presented only a minor degree of opening (Fig-

ure S4). In conclusion, the data from the ligand-independent analysis of the pathways

in ERRs indicate pw-I, pw-II, pw-IIIa, and pw-IIIb as possible access or egress routes

for ligands.

Pathways I, II, III and V are favored by ERR ligands. After characterizing the path-

ways independent of a particular ligand, we aimed to study the egress process of ligands

from ERRs using metadynamics simulations. Both ERRα and ERRβ ligands dissoci-

ated through either pw-II or pw-V (Tables 2 and S3-S4). These pathways are separated

by the N-terminus of H3 and H6 and, dependent on the conformational state of the

receptor, can merge and form one large pathway. As the previous ligand-independent

analysis suggested pw-II as the most feasible pathway for ERRα, the distribution of fa-

vored pathways in the metadynamics simulations provide additional evidence thereof.

The list of bottleneck residues, obtained from the previous analysis, allowed us to ver-

ify if they engaged in interactions with the ligand while it was leaving the binding site

(Figure 2B-F). Interestingly, several bottleneck residues along pw-II, either hydropho-

bic or aromatic, interacted with the ligand in ERRα and ERRβ to a high degree during

the translocation. Especially the presence of aromatic amino acids at bottlenecks is a

well-known phenomenon [15, 32]. In ERRα, we were not able to detect a classical

gate consisting of two phenylalanine residues, but rather a cluster of hydrophobic and

aromatic residues consisting of L324, L398, H494, and F495 (Figure 3A). Based on its

topology, this gate likely acts in a so-called swinging door fashion [15]. As already dis-

cussed earlier, pw-V could be identified in ERRα and ERRβ in the ligand-independent

procedures, although the opening was narrow. Thus, the ligands bound to these two

receptors shared a preference for the translocation through pw-V besides pw-II.

Table 2 Preferred pathways during metadynamics simulations.

System pw-I pw-II pw-IIIa pw-IIIb pw-V Outcomea p(∆T)b p(Pmax)b

ERRα 0 5 0 0 5 pw-II 0.001 0.691
ERRβ 0 5 1 0 4 pw-II 0.171 0.918
ERRγ ago 0 0 6 4 0 pw-IIIb 0.850 0.815
ERRγ antago 10 0 0 0 0 pw-I n/a n/a

a The mode of action also represents the conformational state of the receptors. b Homology
model based on ERRγ crystal structure. c Ligand orientation obtained by docking.

In ERRγ bound to an agonist, pw-IIIa and pw-IIIb were the egress routes chosen by

197



the ligand. Interestingly, both of these pathways presented the largest bottleneck radii

in this complex. As previously mentioned, these two pathways are located in close

vicinity to each other indicating this specific region among H3, the β-hairpin, and the

H1-H3 loop to be of particular importance. Indeed these pathways seem to be pre-

ferred if the receptor is present in an agonistic conformation. In the antagonistic ERRγ

complex, on the other hand, the ligand left the binding site only through pw-I. This

complex presented the highest degree of opening (statistically significant) in the pre-

vious analysis, establishing additional consensus by the two different methods (Tables

S1 and S2). In the ERRγ-agonist complex, there was an apparently high occurrence of

charged residues such as E275 and R316 at the bottleneck of both pw-IIIa and pw-IIIb.

After inspecting the respective structures, we could identify a salt bridge at a distance

of approximately 4.5 Å between these two residues (Figure 3B). As these two residues

were among the most abundant bottleneck residues along with L309, V313, and Y326,

the gate formed by them is likely involved in controlling ligand translocation. The fact

that the ligand frequently interacted with R316 suggested that it might competitively

weaken the ionic interaction at the gate in order to pass it. Visual inspection of several

trajectories indicated that this was facilitated by the phenolate moiety of the ligand.

Figure 3 Gating residues. Molecular gates in (A) ERRα, (B) ERRγ bound to an ag-
onist, and (C) ERRγ bound to an antagonist. Ionic interactions and π-π contacts are
highlighted along with the direction of the pathway.

When ERRγ was bound to an antagonist, there were several highly consistent ligand-

protein interactions among the ten replica simulations including ones with A272, L309,

Y326 and F435, of which only the latter residue was involved in forming the bottleneck

of pw-I. Visual inspection of the trajectory revealed F435 to form a gate with W305

(Figure 3C), which was involved in ligand-protein interactions in eight of the replica

simulations. To conclude, we could identify three molecular gates in ERRα and ERRγ

based on our analysis of ligand-protein interactions during the egress process and bot-
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tleneck residues obtained from the pathway analysis.

As the metadynamics protocol introduces a biasing potential in order to sample rare

molecular events such as ligand translocation, the methodology allows to compute the

free energy landscape of the respective system based on the sum of Gaussian potentials

deposited [20, 21]. As we selected a single CV describing the distance of the ligand

and the binding site, we obtained a one-dimensional free energy surface. Based on

the biasing potential that was accumulated to sample the ligand translocation process,

we computed the maximal cumulative biasing potential deposited during ligand egress

(Figure 4A, Tables S5 and S6). Additionally, we documented the time needed for the

ligand to egress from the binding site (Figure 4B, Tables S7 and S8). Both the maxi-

mal potential and simulation time of ligand dissociation were correlated with residence

times of ligands in previous work [33, 34]. The authors described the applicability of

both readouts from multiple replica simulations even for a non-converged free energy

landscape. Thus, our analysis allowed us to estimate which pathway might be more

favorable for ligand translocation (Table 2). In ERRα and ERRβ, pw-II presented the

lowest maximal potential among the ten replicas. However, ERRβ also presented one

trajectory, in which the translocation through either pw-II was comparatively unfavor-

able, suggesting both pathways to be feasible routes for the ligand in respect to the

maximal potential. This was also reflected in the respective p-values (Table 2), which

did not present statistically significant differences between their potentials in ERRα or

ERRβ. However, the simulation times observed in ERRα displayed a statistically sig-

nificant preference for pw-II. Together with the maximal potential and the bottleneck

radii, the results suggest pw-II to be the major route in ERRα. In the agonist-bound

complex of ERRγ, the data indicated pw-IIIb to be slightly preferred, although the dif-

ferences to pw-IIIa were not statistically significant regarding both maximal potential

and simulation time. These two pathways are only separated by a highly flexible re-

gion without a clearly defined secondary structure. Therefore, the results, including

the ligand-independent analysis, suggest both pw-IIIa and pw-IIIb to be feasible egress

routes in the agonistic conformation of ERRγ. As only pw-I was sampled in ERRγ

bound to an antagonist, the data did not allow to compare different pathways. In com-

parison to the remaining receptors, we observed the highest maximal potentials in this
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system. Potentially, pw-I might be the only feasible egress route in this particular com-

plex. The different pathways selected by the ligands between the two ERRγ complexes

was most likely caused by the ligand-associated conformational changes in H12 as pw-

I leads through the gap among H10, H11, and H12. In the agonist conformation, this

region was less open as indicated by the bottleneck radii (Figure 2A) due to the tight

packing of H12.

Figure 4 Pathway preference and structural adaptation. (A) Maximal cumulative bias-
ing potential observed in all simulations. The data points of different pathways are pre-
sented in individual colors. (B) Simulation times until the ligand dissocatied from the
binding pocket. The data points of different pathways are presented in individual col-
ors. (C) Ligand-induced conformational adaptation of H3 and H6 in ERRβ before (left)
and after (right) the ligand passed through pw-II. (D) Ligand-induced conformational
adaptation of H3 and H6 in ERRβ before (left) and after (right) the translocation of the
ligand through pw-V. (E) Ligand-induced conformational adaptation of H10, H11, and
H12 before (left) and after (right) the ligand translocated through pw-I in ERRγ bound
to an antagonist.

ERRs structurally adapt during ligand translocation. Pathways to buried binding

pockets are often only accessible after conformational changes of the protein, which are

often provoked by the ligand in an induced-fit mechanism. Such adaptations can occur

at the level of protein side chains, as described above, as well as based on larger changes

of secondary structural elements [15, 32]. Here, we determined the root-mean square

fluctuation (RMSF) between the input structure and the part of the trajectory during

which the ligand egressed from the binding site augmented by the visual inspection

of the trajectories. To highlight the changes, we compared the RMSF between the
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unbiased and metadynamics simulations.

Figure 5 Structural adaptation of the protein during ligand egress. (A) RMSF diagrams
of conventional MD (black, average of three replicas) and metadynamics simulations
(red or blue, maximum of respective replicas) of all studied receptor systems. Regions
with substantial differences were indicated in the diagrams. (B) Distortion of H3 during
egress through pw-IIIb in ERRγ bound to an antagonist. (C) Highly extended H1-H3
loop in ERRα. (D) Transition of H1-H3 loop together with the ligand in ERRα.

In ERRα, the RMSF indicated increased fluctuations of the H1-H3 loop, H6, and H7

(Figure 5A). Indeed, the visualization of the trajectories revealed considerable struc-

tural adaptation of the H1-H3 loop (Figures 5C and 5D). In one replica simulation,

there was a large-scale change with a dissociation of the H1-H3 loop from the globu-

lar part of the protein as well as partial unwinding of H3 (Figure 5C). In all cases, the

described changes led to the fusion of pw-II and pw-V as discussed in the previous sec-

tions. This explains the distribution of pw-II and pw-V observed in the metadynamics

trajectories for ERRα, as the spatial distinction between these two pathways became

challenging and highly dependent on the individual trajectory if they were merged.

Moreover, we observed an intriguing interaction between the ligand and the H1-H3

loop, during which the loop transitioned together with the ligand moving away from

the protein in three replica simulations (Figure 5D). Visually, this process resembled

the ligand being steered away from the protein. In ERRβ, conformational adaptation

of the protein was more subtle when the ligand translocated through pw-V (Figure 4C).
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While H3 remained intact throughout the simulation, there was a slight adaptation of

H6. Remarkably, the highlighted simulation (replica 4) also presented a low maximal

potential, indicating this route to be favorable. In ERRγ bound to an agonist, we ob-

served a deformation of H3 in one simulation (Figure 5B), which also displayed the

lowest maximal potential among the ten replicas. This was visible in the RMSF spike

around residue 275 (Figure 5A). In the remaining simulations, the flexible unstructured

region between H1 and H3 presented changes, probably associated with less biasing

potential needed for ligand translocation. As the ligand preferred pw-I in the antagonis-

tic conformation of ERRγ, the associated changes were different than in the agonistic

complex. In all simulations, we could observe a restructuring of the terminal region of

H10, H11, and H12, as also indicated by the large changes in the RMSF comparison to

the conventional simulations. In conclusion, the receptors presented various structural

adaptations along the pathways selected by the ligand, and the translocation was more

favorable if the adaptations were smaller.

Materials and Methods

Model building and homology modeling. We selected crystal structures in an antago-

nistic conformation for both ERRα and ERRγ based on the resolution, bound ligands,

completeness, and correctness of the sequence. Only for ERRγ, there was a structure

available with an agonist bound to the LBP (Table 1). While there were multiple crystal

structures available for ERRα and ERRγ, there were none for ERRβ when we started

to work on the project. However, an agonist-bound structure (PDB ID: 6LIT) was pub-

lished later on, allowing us to validate our modeling procedures [25]. ERRβ presents

an acceptable sequence identity of 79.2% to ERRγ (Figure S1). Thus, a homology

model was generated using the SWISS-MODEL web server based on an antagonis-

tic ERRγ crystal structure (PDB ID: 5YSO) [26]. Retrospectively, we compared the

ERRβ model to the novel crystal structure, after removing the missing N-terminal re-

gion from the model as well as the C-terminal region of both proteins. The C-terminal

region was removed due to the antagonist-induced conformational changes [25] and

the similarity between the structures (backbone and heavy atoms) was evaluated using

the rmsd.py routine that comes with the Maestro Small-Molecule Drug Discovery Suite

[35]. All crystal structures as well as the homology model were pre-processed using
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the Protein Preparation Wizard [36] within Maestro. For multimeric crystal structures,

only chain A was retained for further procedures. We added hydrogen atoms, assigned

bond orders, predicted protonation states at pH 7.4, and completed missing loops and

side chains with the Prime routine. We used an in-house python routine to check if

there were any residues missing or mutated in the respective structures, and if present,

we resolved them in the 3D Builder in Maestro. Cocrystallized water molecules were

retained, while ions and cosolvents were removed. An acetate cap was added to the N-

terminus due to downstream connection with the DNA-binding domain of the receptors,

while the C-terminus was modeled as free carboxylic acid. Next, the hydrogen bonding

network was refined and the structures was subjected to a restrained minimization using

the OPLS 2005 force field and the maximum heavy-atom displacement limit of 0.3 Å.

Molecular docking and validation. To obtain an antagonist-bound structure of ERRβ,

we docked the known inhibitor diethylstilbestrol [37] to its orthosteric binding site using

the smina docking protocol [29]. Beforehand, we verified the capability of the docking

protocol to reproduce crystallographic binding modes by re-docking cocrystallized lig-

ands of all ERRs. The heavy atom RMSD of the obtained poses was determined using

the Superposition panel within Maestro. Further, we compared the obtained binding

mode to the cocrystallized pose of the native ligand within the template structure. Due

to the antagonist-induced conformational changes between pairs of the selected struc-

tures, cross-docking was not considered.

Conventional MD and metadynamics simulations. All structures in this work were

placed in orthorhombic periodic boundary systems solvated with TIP4P water molecules

with counter-ions to neutralize the systems using the Maestro System Builder panel.

The MD simulations were conducted using the Desmond (v2019-1) simulation engine

[38] with the OPLS 2005 force field in an NPT ensemble at a temperature of 310 K

maintained by the Nose–Hoover thermostat and atmospheric pressure regulated by the

Martyna–Tobias–Klein barostat, both with a relaxation time of 2.0 ps. While short-

range interactions were cut off at 9 Å, long-range interactions were treated with the

u-series algorithm [39]. The M-SHAKE algorithm was used to constrain bonds to hy-

drogen atoms and the time step of the RESPA integrator was set to 2.0 fs. For the

600 ns conventional simulations conducted in triplicates, snapshots with atomic coor-
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dinates were collected at an interval of 60 ps. To ensure a unique course of the replica

simulations, the random seed to compute the initial velocities of the simulations was set

to either 2007, 3007, or 4007 respectively.

The metadynamics simulations were also conducted using the Desmond simulation en-

gine. The collective variables for the systems were defined as the distance between the

ligand and its binding site. To compute an approximate center of the binding site, three

residues in its vicinity were selected based on the similarity of their mass center to the

mass center of the ligand (Table S9). We set a wall for the CV of 40 Å and left the height

of the Gaussian at 0.03 kcal/mol as well as the width of 0.05 Å on default. The simula-

tions were conducted with ten replicas of 50 ns with atomic coordinates deposited at an

interval of 5 ps. To ensure a unique course of the replica simulations the random seeds

for the initial velocities were set to 2000, 2007, 2507, 3000, 3007, 3507, 4000, 4007,

5007, and 6007 respectively. The remaining parameters were left as described above

for the conventional MD simulations.

Evaluation of the MD trajectories. Metrics such as RMSD, RMSF, and ligand-protein

interactions were computed in the Simulation Interaction Diagram panel within Maestro

for both conventional and metadynamics simulations. To compute the ligand pathways

within the structures, we used the CAVER (v3.0) command-line program [30]. The

coordinates of the starting points for this procedure were obtained based on the respec-

tive cocrystallized ligands. For the calculation, we extracted 500 frames of the last

120 ns of the conventional MD trajectories at an interval of 240 ps while only retaining

the protein structure without solvent or ligands. Besides a clustering threshold of 4.0,

we retained default settings for the CAVER calculations. The pathways were visually

deduced from the obtained clusters according to our recent review article [11]. From

the computed data, we determined the average bottleneck radius and the corresponding

bottleneck residues of the pathways. To rate the importance of a bottleneck residue, we

computed the total number of occurrences of a residue for each pathway per receptor

system by concatenating the output of the three replicas. Statistical significance was

evaluated using ttest ind from stats routine in the python-scipy module using the con-

catenated output of bottleneck radii with the number of objects defined as the number

of frames. For the metadynamics simulations, the deposited potentials were directly
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obtained from the simulation workflow. The maximal potential was derived using the

metadynminer toolkit based on R scripting language [40]. Statistical significance was

evaluated as described above with the number of replicas defined as number of objects

for the average values. The trajectories were visualized to determine the time point of

ligand egress and then truncated to only represent the time span until the ligand left

the binding site using the trj parch.py routine that comes with Maestro. Further, the

pathways used by the ligand to egress the binding site were obtained from visualiza-

tion. To quantify the conformational changes induced by ligand egress, we computed

the RMSF for the truncated metadynamics simulations, representing only the egress

process, and the conventional simulations. To adjust for the increased flexibility im-

posed by the larger time scale of the conventional MD simulations and the increased

number of frames compared to the truncated metadynamics trajectories, we also trun-

cated the conventional simulations for the RMSF calculations. The number of retained

frames from the conventional MD trajectories was determined by the average number of

frames the ligand took to egress from the binding site in the ten metadynamics replicas.

Ultimately, to determine the RMSF, the first frame of the simulations was used as ref-

erence structure. As mentioned above, the ligand-protein interactions were computed

using the Simulation Interaction Diagram panel in Maestro. For each truncated replica

simulation of the metadynamics runs, we documented interactions if they occurred in

at least 10% of the MD frames. We considered hydrogen bonding, hydrophobic, ionic,

π-cation, and π-π interactions for this analysis.

Conclusion

ERRs have been recently highlighted as drug targets for diabetes, cardiovascular dis-

eases, and osteoporosis. As they harbor a buried binding site, pathways within the

receptor are used by ligands to translocate to and from it. As these pathways are not

visible in static crystal structures, we conducted conventional MD and metadynamics

simulations to elucidate their existence and estimate the most favorable routes for the

ligand egress. The analysis independent of a translocating ligand revealed pw-I, pw-

II, pw-IIIa, and pw-IIIb, depending on the present ligand-protein complex and starting

conformation, to be open to a considerable degree. In the subsequent metadynamics

trajectories we could confirm the previous observations, but we additionally observed
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pw-V in ERRα and ERRβ to be of relevance. In ERRγ, the conformational state of

the receptor influenced the preference of the ligand. If the structure was bound to an

agonist, the ligand translocated through pw-IIIa or pw-IIIb, while the studied antag-

onist preferred pw-I. In pw-IIIa and pw-IIIb, we could detect a gating mechanism of

the two aromatic residues W305 and F435 held together by π-interactions. Further,

pw-I seemed to be regulated by an ionic interaction between E275 and R316. Dur-

ing the translocation through pw-II, ligands had to pass through a gate consisting of

multiple aromatic and hydrophobic side chains (L324, L394, H494, F495). By com-

paring the RMSF between conventional MD and metadynamics simulations, we could

reproducibly deduce various conformational changes associated with the translocation

offering additional mechanistic insight into the process. Further on, due to the fact that

we could retrospectively analyze the performance of our homology model because of

a newly released crystal structure, we could show that such procedures perform well

for NRs. Overall, due to the emerging potential of ERRs as drug targets, our work

offers insights into the functionality and topology of their ligand pathways, which can

ultimately be used to guide the rational design of selective modulators.
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6.1 Supporting Information

Supporting Results and Discussion

Model building and validation

Figure S 1 Sequence alignments. (A) Sequence alignment of ERRβ to the sequence
in the ERRγ crystal structure (PDB ID: 5YSO). (B) Sequence alignment of all three
ERRs.

Different patterns of ligand pathways are present in ERRs.

Table S 1 Statistics of bottleneck radii.

System Pathway Mean SD Samples
ERRα pw-I 0.987 0.094 57
ERRβ pw-I 1.005 0.108 250
ERRγ ago pw-I 0.951 0.027 9
ERRγ antago pw-I 1.204 0.332 505
ERRα pw-IIIa 1.453 0.319 659
ERRβ pw-IIIa 1.290 0.347 1288
ERRγ ago pw-IIIa 1.799 0.213 1460
ERRγ antago pw-IIIa 1.414 0.212 981
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Figure S 2 Backbone RMSD. (A) Backbone RMSD of conventional MD simulations.
(B) Backbone RMSD of metadynamics simulations.

Table S 2 Statistical evaluation of bottleneck radii.

System 1 System 2 Pathway Preference Significance
ERRγ antago ERRα pw-I ERRγ antago yes
ERRγ antago ERRβ pw-I ERRγ antago yes
ERRγ antago ERRγ ago pw-I ERRγ antago yes
ERRγ ago ERRα pw-IIIa ERRγ ago yes
ERRγ ago ERRβ pw-IIIa ERRγ ago yes
ERRγ antago ERRα pw-IIIa ERRγ antago yes
ERRγ antago ERRβ pw-IIIa ERRγ antago yes
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Figure S 3 Docking pose of (A) of Q27455709 docked to ERRα aligned to the cocrys-
tallized binding mode (PDB ID: 3K6P), (B) of CHEMBL478524 docked to ERRα
aligned to to cocrystallized binding mode (PDB ID: 2PJL), (C) of bisphenol A docked
to ERRγ aligned to the cocrystallized binding mode (PDB ID: 2P7G), (D) of DN200434
docked to ERRγ aligned to the cocrystallized binding mode (PDB ID: 5YSO), (E) of
bisphenol A docked to ERRβ aligned to cocrystallized binding mode (PDB ID: 6LIT).
The respective heavy atom RMSD values are indicated at the bottom of the figures.
(F) Docking pose of diethylbestrol used for ERRβ simulations aligned to the cocrystal-
lized ligand of the template structure (PDB ID: 5YSO).

Pathways I, II, III and V are favored by ERR ligands.

Table S 3 Pathways selected by the ligand per replica simulation.

System Replica 1 Replica 2 Replica 3 Replica 4 Replica 5
ERRα pw-V pw-V pw-V pw-II pw-V
ERRβ pw-II pw-II pw-V pw-V pw-II
ERRγ ago pw-IIIb pw-IIIa pw-IIIb pw-IIIb pw-IIIa
ERRγ antago pw-I pw-I pw-I pw-I pw-I

Table S 4 Pathways selected by the ligand per replica simulation (continued).

System Replica 6 Replica 7 Replica 8 Replica 9 Replica 10
ERRα pw-II pw-V pw-II pw-II pw-II
ERRβ pw-IIIa pw-II pw-V pw-V pw-II
ERRγ ago pw-IIIa pw-IIIa pw-IIIa pw-IIIa pw-IIIb
ERRγ antago pw-I pw-I pw-I pw-I pw-I
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Figure S 4 Bottleneck radii of pw-IV in all studied receptor systems. The average of
the three replicas (null values not included in the average) is indicated by a horizontal
line.

Table S 5 Maximal potential until complete translocation.

System Replica 1 Replica 2 Replica 3 Replica 4 Replica 5
ERRα 20.75 26.38 20.74 25.45 20.73
ERRβ 23.94 63.26 38.97 24.17 23.70
ERRγ ago 24.91 23.00 18.06 15.67 17.87
ERRγ antago 53.71 55.70 37.50 34.44 42.05

Table S 6 Maximal potential until complete translocation (continued).

System Replica 6 Replica 7 Replica 8 Replica 9 Replica 10
ERRα 24.33 36.11 23.00 31.89 10.59
ERRβ 28.57 21.58 31.91 37.70 28.46
ERRγ ago 17.46 23.62 58.10 26.60 43.51
ERRγ antago 53.13 28.50 55.85 65.65 31.54

Table S 7 Times of complete translocation.

System Replica 1 Replica 2 Replica 3 Replica 4 Replica 5
ERRα 6.85 6.46 7.91 3.93 5.71
ERRβ 5.07 11.56 12.06 5.20 4.63
ERRγ ago 6.55 5.26 6.31 4.87 5.30
ERRγ antago 17.43 14.76 9.29 8.98 10.85

The simulation time after which the ligand completely translocated through the respective path-

ways. The values are given in nanoseconds (ns).
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Table S 8 Times of complete translocation (continued).

System Replica 6 Replica 7 Replica 8 Replica 9 Replica 10
ERRα 3.80 9.86 3.25 3.94 2.68
ERRβ 8.80 4.56 10.42 8.92 4.49
ERRγ ago 5.54 6.33 14.87 9.28 11.56
ERRγ antago 16.55 7.69 14.58 22.78 10.17

The simulation time after which the ligand completely translocated through the respective path-

ways. The values are given in nanoseconds (ns).

Supporting Materials and Methods

Conventional MD and metadynamics simulations

Table S 9 Residues for collective variables.

System Residues
ERRα V321, C325, M362
ERRβ C42, D43, Q199
ERRγ ago I308, L309, L339
ERRγ antago L271, A272, N437

Protein residues that were selected to define the CVs in the metadynamics simulations. The

residues were selected to have a centroid close to the one of the binding site.
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CHAPTER 7

Conformational Changes of Thyroid Receptors in Response to
Antagonists

Conformational adaptation in response to ligand binding is one of the most complex
phenomena observed in molecular recognition. The aim of this study was to elucidate
conformational changes of thyroid receptors in response to antagonists. The interfer-
ence with thyroid receptor signaling is relevant for the development of novel thera-
peutics as well as the estimation of the toxicity of environmental compounds such as
pesticides. Among various structural changes, the ligand access pathways were altered
dependent on the orthosteric ligand present in the structure, connecting this study to
work highlighted in Chapters 2 and 3 on CYPs as well as the two previous chapters.

Author contributions: Conceptualization, A.F.; formal analysis, A.F., G.F.; writing and orig-

inal draft preparation, A.F.; writing, review and editing, A.F., M.A., M.S.; visualization, A.F.;

supervision, M.A., M.S.

Based on the published research article:

Fischer, A.; Frehner, G.; Lill, M. A.; Smieško, M. Conformational Changes of Thy-
roid Receptors in Response to Antagonists. J. Chem. Inf. Model. 2021, 61 (2),
1010-1019 .
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Abstract

Thyroid hormone receptors (TRs) play a critical role in human development, growth,

and metabolism. Antagonists of TRs offer an attractive strategy to treat hyperthyroidism

without the disadvantage of a delayed onset of drug action. While it is challenging to

examine the atomistic behavior of TRs in a laboratory setting, computational meth-

ods such as molecular dynamics (MD) simulations have proven their value to elucidate

ligand-induced conformational changes in nuclear receptors. Here, we performed MD

simulations of TRα and TRβ complexed to their native ligand triiodothyronine (T3),

as well as several antagonists. Based on the examination of 27 µs MD trajectories, we

showed how binding of these compounds influences various structural features of the

receptors including the helicity of helices 3 and 10, as well as the location of helix-12.

Helices 3 and 12 are known to mediate coactivator association required for downstream

signaling suggesting these changes to be the molecular basis for TR antagonism. A

mechanistic analysis of the trajectories revealed an allosteric pathway between H3 and

H12 responsible for the conformational adaptations. Even though a mechanistic under-

standing of conformational adaptations triggered by TR antagonists is important for the

development of novel therapeutics, they were not previously examined in detail as it

was done here.

Introduction

Thyroid hormone receptors (TRs) belong to the superfamiliy of nuclear receptors (NRs)

and are involved in a multitude of physiological and pathological processes in humans.

In particular, they mediate the action of thyroid hormones, which play a critical role in

development, growth, cardiac function, and metabolism leading to severe implications

in the case of dysregulation [1, 2]. The isoforms TRα and TRβ present different tis-

sue distribution as well as a distinct physiological role beyond their expression patterns.

This was, for example, shown by the isoform-specific regulation of gene expression [3].

For example, it is thought that cardiovascular effects of thyroid hormone are mediated

by TRα, while TRβ is responsible for actions regarding metabolism [4]. TR antago-

nists are therapeutically beneficial in patients suffering from hyperthyroidism and the

resulting thyrotoxicosis primarily caused by Graves disease, thyroiditis, or exogenous
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hormone intake. Hyperthyroidism is associated with tachycardia, heart failure, as well

as skeletal muscle weakness and can have life-threatening outcomes [5]. On the other

hand, adverse effects of various drugs and environmental chemicals are considered to be

mediated by blocking TRs resulting in hypothyroidism with cardiac symptoms such as

bradycardia and complications related to the central nervous system. Even though ther-

apeutics against hyperthyroidism are available, they suffer from considerable disadvan-

tages such as the highly delayed onset of synthesis inhibitors due to a remaining reserve

of hormones in circulation and their long half-life. Thus, direct pharmacological inter-

vention at the receptor level instead of thyroid hormone synthesis has appealing benefits

[1, 2, 5, 6, 7, 8]. Interestingly, the cardiovascular adverse effects of the analgesic cele-

coxib were linked to TRβ antagonism [9]. In contrast, it was proposed that TRs might

constitute a target for novel antiarrhytmics due to their influence on the cardiovascular

system. However, despite their therapeutic potential in rapidly treating thyrotoxicosis,

TR antagonists have not yet reached clinical application [2, 7]. In this regard, the un-

derstanding of the underlying structural mechanism of TR antagonism can be critical

for the development of effective compounds, especially in a structure-based design set-

ting as it was evidenced in previous discovery efforts [5]. Since crystal structures of

TRα or TRβ bound to antagonists have not been published and experimental methods

fail to provide atomistic detail, computational methods offer an attractive approach to

acquire mechanistic insight into their structural adaptations in response to antagonists

[1, 2, 7, 10, 11, 12, 13]. In previous work, the unliganded ligand binding domain (LBD)

of TRβ was examined with 22 ns molecular dynamics (MD) simulations and the mech-

anism of TR antagonism was monitored by hydrogen/deuterium exchange followed by

mass spectrometry. Based on these experiments, it was illustrated that helix-12 (H12)

underwent conformational changes [7]. Interestingly, a recently published model based

on a combination of quantitative structure-activity relationships and machine learning

evidenced accurate distinguishing of TR agonists and antagonists [10]. Another study

highlighted conformational adaptations induced by mutations at the activation function-

2 (AF-2), involved in coactivator binding essential for downstream signaling (Figure

1A), and similarly reported rearrangements of H12 [14]. In other NRs, multiple stud-

ies have employed microsecond MD simulations and advanced sampling techniques to
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Figure 1 Protein and ligand structures considered in this study. (A) Topology of the
coactivator binding site AF-2. The cocrystallized coactivator fragment is shown in red.
(B) Ligands explored in this study. (C) Superposition of TRα and TRβ. The alpha
carbon RMSD is indicated at the bottom.

study their antagonism. In the androgen receptor (AR) and estrogen receptor (ER), in-

volved in the development and progression of malignant tumors, antagonism has been

linked to structural rearrangements of H12 induced by altered interaction patterns in the

ligand binding pocket (LBP). Further, alterations in other secondary structure elements

such as H3 and H10 have been discussed [11, 12, 13, 15].

Here, we applied 27 µs MD simulations of TRα and TRβ complexed to thyriodothy-

ronine (T3) and several antagonists to study the structural implications of antagonist

binding to TRs in atomistic detail. Specifically, the experimentally verified TR an-

tagonists evaluated in this study included the marketed drugs amiodarone, celecoxib,

and dronedarone, as well as the pesticide cyfluthrin and the experimental compound

1-850 (Figure 1B and Table 1). We observed structural adaptations of multiple helices

including H3, H10, and H12 including displacements, rearrangements, and loss of he-

licity. A mechanistic analysis based on dynamic cross-correlation combined with visual

inspection revealed a functional relationship between H3 and H12 in these conforma-

tional adaptations. Further, we observed the narrowing of a major access pathway to

the buried LBP as well as an increase in LBP volume with antagonists. Such a com-

prehensive study on the structural implications of TR antagonists was, until today, not

reported.
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Table 1 Thyroid receptor antagonists examined in this study.

Ligand Usagea TRαb TRβc Methodd

Celecoxib Analgesic no yes Luciferase assay [9]
Amiodarone Antiarrhythmic yes yes Radioligand assay [16]
Dronedarone Antiarrhythmic yes no Radioligand assay[17]
1-850 Experimental yes yes Reporter gene assay [5]
Cyfluthrin Pesticide no yes Reporter gene assay [18]

a Main practical application of the compound; b Antagonism at TRα shown in experi-
ments; c Antagonism at TRβ shown in experiments; d Method and reference for mode
of action determination.

Results and Discussion

The position of H12 is modified by TR antagonists. In the signaling pathway of

NRs, the association of coactivator proteins at the AF-2 site formed by helices H3,

H4, H5, and H12 (Figure 1C) upon agonist binding constitutes a critical step for their

transcriptional activation [19]. In order for a successful binding of coactivators to NRs,

H12 must adopt a distinctive orientation [7]. As mentioned above, crystal structures

of TRs bound to antagonists are unavailable as it is the case for several other NRs.

In the AR, for example, it was proposed that the lack of an antagonist-bound crystal

structure is caused by missing dissociation of chaperone proteins stabilizing the receptor

[13]. In contrast, a structure of ERα bound to tamoxifen (PDB ID: 3ERT) revealed a

clear displacement of H12 [20] impairing the binding of coactivators and, therefore,

it is thought that many NRs behave similarly [21]. While the state of knowledge of

antagonist-related conformational perturbations in TRs is limited, experiments based on

hydrogen/deuterium exchange presented only minor differences regarding H12 solvent-

accessibility in TRβ suggesting that it is still packed to the body of the LBD [7]. Further,

a computational study on the effects of I280 mutations in TRs suggested a change in

H12 orientation [14].

As shown in Table 1, there is a distinct ligand specificity of the TR isoforms regarding

the interactions with the selected antagonists. Various experimental techniques have

been applied to study the isotype-specific effects of the selected compounds as shown

in a recent review [1]. As studies for some compounds were conducted on either TRα

or TRβ, we can not exclude their binding to the other isoform. Regardless, we limited
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our study on established ligand-protein complexes. Regarding ligand specificity, only

one protein residue is different between TRα and TRBβ in the direct vicinity of the

binding site. Thus, this amino acid was proposed to be the main selectivity factor [4].

In our simulations with antagonists, we could not detect a trend for increased root-mean

square deviation (RMSD) of H12 based on average values (Figure 2A). In fact, the re-

ceptors responded individually to the different antagonists. The overall RMSD of the

proteins demonstrated acceptable convergence of the simulations. However, the values

of TRα indicated a slight instability, while they converged toward the end of the T3-

bound and TRβ simulations except for celecoxib (Figure S1). The convergence of the

simulations was also evident by the stability of the readouts discussed in the following

sections. Regarding the binding modes, the same simulation systems presented some

instabilities based on the ligand RMSD values, especially compared to T3 (Figure S2).

However, the selected antagonists have more degrees of freedom and are structurally

more complex as opposed to T3. Additionally, the antagonist-related structural changes

of the receptor further allowed the ligands to reorient within the binding pocket, in

which they remained in all simulations. In the five simulations with exceptionally high

RMSD values, we observed a slight translation or reorganization of the flexible moiety

of amiodarone, a translation of 1-850, a change of the flexible chain in dronedarone, and

a substantial reorganization of the comparatively small celecoxib (Figure S3). Isoform-

specific structural differences are to be expected as the sequence similarity between

TRα and TRβ amounts to 82.3% (Figure S4) resulting in several structural differences

(alpha carbon RMSD of 0.8 Å) in the direct vicinity of the binding site, the H2-H3

loop, as well as the terminal region after H12 among others (Figure S5). Since it was

suggested that H12 adopts a different orientation in respect to the coactivator binding

site with antagonists [7, 20, 22], we determined the distance between the centroids of

H12 and a superimposed coactivator fragment (Figure 2B). In TRα, the distance was

higher for all three antagonists combined with a clear increase in fluctuations (Figure

S6) suggesting a destabilization of H12 in contrast to a structural overlap with the coac-

tivator proteins as it was observed in other receptors [11, 12, 20]. In TRβ, no universal

trend could be deduced regarding the increased fluctuations, but both amiodarone and

1-850 presented a similar tendency for higher distance values. Differences in H12 be-
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havior between the isoforms might have occurred due to the structural differences at

the terminus of H12 (Figure S7). In particular, the C-terminus is slightly longer in

TRα and is lacking a terminal fixation by a charge-assisted hydrogen bond as opposed

to TRβ leading to a potential for increased flexibility. A visual examination of repre-

sentative structures derived from the last portion of the simulations revealed profound

changes in the position of H12 for various systems (Figure 2C and Tables S1-S2). It

clearly dislocated toward the coactivator binding site in one simulation with TRβ com-

plexed to cyfluthrin occluding the coactivator binding site, as it was suggested based

on hydrogen/deuterium exchange experiments with the antagonist NH3 (PubChem ID:

10027822) bound to TRβ [7]. Even though other simulations only revealed a minor

displacement, H12 retained packing to the body of the LDB, in accordance with the

above-mentioned experiments. Additionally, it was proposed that antagonism might be

mediated by different structural mechanisms, which would explain differences between

the individual compounds assessed here [5]. In conclusion, the observed conforma-

tional changes of H12 were subtle, varied between the TR isoforms as well as different

ligands, and, for the most part, were in accordance with laboratory experiments.

Figure 2 Behavior of H12. (A) Average backbone RMSD values of H12 for all replica
simulations. The dashed horizontal line represents the average value among the T3-
bound baseline simulations, while colored short lines indicate the averages among
the antagonist-bound simulations. (B) Average distance values of H12 to a superim-
posed coactivator fragment. The dashed horizontal line represents the average value
among the T3-bound baseline simulations, while short colored lines indicate the aver-
ages among the antagonist-bound simulations. (C) Visualization of H12 (blue) and the
coactivator fragment (red) in cluster structures of four different systems.
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TR antagonists impair coactivator binding by decreasing H3 helicity. As men-

tioned above, H3 is equally involved in the formation of the AF-2 coactivator binding

site as H12 (Figure 1A). In previous MD simulations with the AR, a distortion of H3

at its center in response to bicalutamide and hydroxyflutamide binding was described

[11, 23]. While our results of the structural adaptations of H12 in response to antagonist

binding suggested dissimilar behavior of TRα and TRβ, the receptors presented simi-

lar conformational changes of H3. A visual inspection of the highest occupied cluster

structures based on an RMSD matrix, presented various degrees of decreased helicity

in H3, in particular around its center, in antagonist-bound complexes (Figures 3A and

3B). Intrigued by these observations, we determined the degree of helicity in all sys-

tems over the whole trajectory (Figures 3C and 3D). The analysis unveiled a certain

loss of helicity in all systems exposed to antagonists suggesting that the perturbation of

H3 is a common structural adaptation in both TRα and TRβ. A mutational study with

TRβ revealed the importance of H3 for coactivator recruitment [24]. Indeed, the super-

position of a coactivator fragment revealed alterations of its direct interaction interface

with the receptor caused by the distortion of H3 (Figure 4A), suggesting this interfer-

ence to impair coactivator association, and thus, downstream signaling. In particular,

the central portion of H3 undergoes hydrophobic interactions with a leucine residue of

the coactivator, which are perturbed by H3 distortion (PDB ID: 1BSX). A following

analysis of close contacts below 2.0 Å to a superimposed coactivator fragment revealed

only few steric clashes in TRα, while celecoxib and cyfluthrin in TRβ presented a sig-

nificant increase in multiple replica simulations (Figure S8). Overall, this indicates that

the coactivator protein interaction interface is not necessarily occluded, but structurally

modified to prevent coactivator binding.
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Figure 3 Behavior of H3. (A) Structural changes of H3 (pine green) and H10 (red) in
TRα. (B) Structural changes of H3 (pine green) and H10 (red) in TRβ. (C) Helicity
analysis of TRα. (D) Helicity analysis of TRβ.

The visualization of several trajectories with such alterations of H3, revealed a molecu-

lar mechanism for its distortion (Figure 4B). Allosteric pathways have been associated

with the inactivation of various NRs including TRs [7, 15, 23, 25, 26]. In the first step

of this allosteric pathway, the antagonist interacts with residues of the H11-H12 loop

and provokes a slight shift of this loop toward H3 without affecting its helicity. How-

ever, the following adaptation of H12 induced a propagating conformational change

toward the center of H3 as shown in Figure S9, ultimately leading to its observed dis-

tortion coupled to a loss of helicity. Previous work on the AR concluded a similar

allosteric pathway and, in one study, dynamic cross-correlation map (DCCM) analysis

was used to investigate it [23, 25]. Correspondingly, we determined the DCCM for

all systems (Figures 4C and S10-S16). As presented in Figure 4C, a slightly positive

correlation could be determined for H3 and H12 supporting our visual observations re-

garding their collective motions. An overview of the observed correlations is given in

Table S3. In fact, we detected the above-mentioned correlation in at least one replica

simulation with all ligands and it occurred most frequently in the system with amio-

darone bound to TRα. Especially, in systems selected from visual inspection presenting

major changes in H3, the correlation was particularly apparent. However, the correla-
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tion was more evident in TRα than TRβ. Systems without such correlations presented

only minor conformational changes of H3. Negative correlations around H12 indicate

collective motions in the opposite direction. In a next step, we analyzed residue in-

teraction networks to obtain the betweenness centrality (BC) measure describing the

importance of a protein residue for intramolecular communication [27] (Figure S17).

This analysis revealed increased BC values for residues in H3 and H12 adding more

evidence for their relevance in the allosteric mechanism. Other structural regions pre-

senting high BC values in both isoforms included the loop between H5 and the beta

sheets and the H8-H9 loop in proximity to H10. Further examination of the trajecto-

ries revealed R228 in TRα and R282 in TRβ to adopt variable orientations depending

on the nature of the bound ligand. As shown in Figure 4D, this residue took part in an

ionic interaction with the carboxylate of T3, while it regularly faced towards the solvent

when bound to dronedarone or celecoxib. This could be confirmed by computing the

solvent accessible surface area (SASA) as well as its minimal distance to the respec-

tive ligand (Figure S18). Since this arginine residue is located at the center of H3, the

lack of a negative charge of the antagonistic ligands leading to the absence of the salt

bridge may contribute to the destabilization of H3. The slightly decreased SASA in the

simulation with TRβ and celecoxib was caused by an interaction with the C-terminal

aspartic acid residue implicated by a displacement of H12. Furthermore, visual inspec-

tion suggested different interaction patterns between hydrophobic residues located in

the H11-H12 loop (L400 in TRα and L454 in TRβ) and H3 (I226 in TRα and I280 in

TRβ). In the two above-mentioned simulations of celecoxib and dronedarone present-

ing decreased helicity of H3, the hydrophobic interaction energy between these residue

pairs clearly correlated with the loss of helicity (Figure S19). It is important to note

that not all simulations presented the same conformational changes and we specifically

highlighted this structural mechanism in simulations exhibiting pronounced structural

adaptations. In future studies, detailed experimental structure-activity relationships of

TR agonists and antagonists might offer more elaborate insight into the initiation of the

allosteric pathway and the particular ligand-protein interactions involved. In addition

to H3, we detected conformational changes of H10 confirming experimental observa-

tions in TRβ [7]. The changes occurred in considerable distance to the LBP and the
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AF-2 site (Figures 3A, 3B, and S20) suggesting no direct functional consequences on

coactivator binding. However, H10 is part of the dimerization interface which may pro-

vide an additional functionality of antagonists to interfere with downstream signaling

[28, 29]. A clear mechanism for the distortion of H10 could not be deduced, but the

DCCM analysis presented a correlation between H10 and H4 to H5 in both TRα and

TRβ.

Protein cavities and pockets are influenced by TR antagonists. Even though the

LBP of NRs is an occluded cavity within the core of the protein, crystal structures pro-

vide no obvious route for ligands to exchange with the solvent. Therefore, it is thought

that molecular pathways connect this cavity to the surrounding solvent environment, as

was shown for other protein systems. Due to the dynamic nature of these pathways,

MD simulations offer an indispensable method to investigate them [30, 31, 32]. In a

recent review, we identified the most frequently described pathway to be located among

the H6-H7 loop, the H11-H12 loop, and the N-terminal section of H3 (pathway II)

[30]. In TRs, steered MD simulations revealed the main pathway for ligand egress to

be located among H3, the H1-H2 loop, and the adjacent beta sheets (pathway IIIa) [31].

Additional evidence for the involvement of this region in ligand egress was provided

based on increased dissociation rates of T3 if certain mutations are present [28], which

stands in accordance with the increased bottleneck radius we determined for pathway

IIIa as opposed to pathway II. The bottleneck of a pathway describes its most narrow

section, and therefore, it is thought to be the main determinant in gating the accessibil-

ity of the occluded pocket [33, 34]. While pathway II did not suffer from any drastic

alterations of its bottleneck radius in response to antagonists, differences occurred for

pathway IIIa (Figures 4E and S21). For multiple ligands, pathway IIIa presented de-

creased bottleneck radii potentially locking the antagonistic ligand in the LBP, which

offers an additional explanation how antagonists efficiently block TR signaling.
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Figure 4 Mechanistic analysis. (A) Relative position of H3 (pint green) to a super-
imposed coactivator fragment (red) in representative structures of TRα with T3 and
dronedarone. (B) Visualization of the allosteric pathway involved in H3 distortion pre-
sented by the example of celecoxib bound to TRβ. (C) Results of the DCCM analysis
for TRα bound to dronedarone. The circle indicates the correlation between residues of
H3 and H12. (D) Location of R228 in TRα and R282 in TRβ in representative struc-
tures. In the structure of TRβ and celecoxib, the interaction with the C-terminal aspartic
acid residue is indicated. (E) Bottleneck radii of pathway IIIa computed in the ligand
pathway analysis.

As opposed to the ligand pathways, the volume of the LBP and surrounding cavities

was increased in all simulations with antagonists (Figures 5A and 5B). Similar obser-

vations have been made in the AR, for which multiple studies reported an increase in

binding site volume in complexes with antagonists [11, 13]. The values predicted in

our study overestimate the volume of the LBP due to the inclusion of neighboring voids

and small parts of the surrounding solvent space, which did not have to be continuous

as opposed to other methods [35]. Regardless, since all receptor systems are treated in

the same manner, the deviation of absolute values compared to previous reports does

not affect conclusions relating to the relative volumes among the complexes. An ex-

tension of the LBP volume was associated with the displacement of H12 in a crystal

structure of TRβ complexed with the thyroid hormone thyroxine [36]. This suggests

that the conformational changes of the H11-H12 region in presence of antagonists were

responsible for the enlargement of the binding site. While the extension of the binding

pocket likely has no direct functional implications on coactivator association, it seems

to be a characteristic response to NR antagonists. Regardless, the increase of the active
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site might allosterically influence other parts of the receptor.

Figure 5 Active site volume and charge clamps. (A) The active site volume of TRα.
(B) The active site volume of TRβ. (C) The distance between the alpha carbons of the
charge clamp residues K234 and E403 in TRα. (D) The distance between the alpha
carbons of the charge clamp residues K288 and E457 in TRβ.

To get additional insight into the impaired binding of coactivators, we aimed on de-

tecting structural alterations of the AF-2 site. A pair of charged residues on the AF-2

site referred to as charge clamps are known to be essential for coactivator association

and are conserved in various NRs [13, 21, 23]. In TRα, the charge clamps constitute

of K234 and E403, while K288 and E457 are responsible in TRβ according to a struc-

tural alignment to the AR. A cocrystallized coactivator fragment is only available with

TRβ (PDB ID: 1BSX) and shows a bidentate hydrogen bond from E457 to the coac-

tivator, while K234 interacts with a neighboring protein carboxylate. Previous work

focused on the AR revealed alterations of the electrostatic potential surface at the AF-2

site [13]. As this readout has been performed visually and we aimed on analyzing the

relative position of the charge clamp residues over all trajectories, we determined the

distance between the residues in each TR isoform. Especially in TRα, there was a clear

tendency for a larger separation in antagonist complexes compared to T3 (Figure 5C),

while the changes were less pronounced in TRβ (Figure 5D). Since the lysine residue
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of the charge clamps is located at H3, this suggests that the conformational changes of

H3 are likely involved in the increase of this distance. Such changes might significantly

alter or even prevent the association of coactivator proteins.

Materials and Methods

Model building. To obtain the complexes for the MD simulations, we used homology

modeling for TRα and TRβ due to missing residues at both C-termini and the H2-H3

loop of TRβ. For this purpose, we employed the Modeller (v9.21-1) toolkit [37] with

two native structures of TRα (PDB ID: 2H79) and TRβ (PDB ID: 3GWS) bound to

T3 retrieved from the Protein Data Bank [38] as starting point. Sequences in FASTA

format were obtained from the UniProt database [39] according to entries B6ZGR6 and

P10828. The sequence similarity was computed after alignment using the ClustalW

algorithm within the UGENE (v1.32.0) toolkit [40]. The corresponding alignments

were visualized with Jalview (v2.10.5) [41]. The sequence identity to the templates was

95.4% for TRα and 94.6% for TRβ (Figure S22). Due to the missing loop in TRβ, five

models were generated and the selection was made according to its DOPE score [37].

Both selected structures were treated with the Protein Preparation Wizard [42] within

the Maestro Small-Molecule Drug Discovery Suite [43]. In detail, we added hydrogen

atoms, determined bond orders, and predicted protonation states at pH 7.4. Next, the

hydrogen bonding network was oriented using PROPKA at pH 7.4 and, finally, the

system was minimized with the OPLS3e force field to a convergence threshold of 0.3 Å

for protein heavy atoms.

We retrieved SMILES strings of the ligands from the PubChem database [44] and

treated them with the LigPrep protocol in Maestro. Their protonation states were pre-

dicted at pH 7.4 by Epik and low-energy conformers were generated with the OPLS3e

force field. In addition, favorable protonation states were determined in Marvin Sketch

provided by ChemAxon [45]. In the case of T3, the predicted protonation state pre-

sented a deprotonated carboxylic acid and a protonated amine (pKa of 8.4 [46] and state

occupancy of 10% at pH 7.4) function. However, while the visual inspection of the crys-

tal structure revealed an arginine to interact with the negative charge of T3, a backbone

nitrogen faced its amine (Figure S23). Therefore, in order to prevent this unfavorable

interaction, we neutralized the positive charge of T3 while retaining the charge on the
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carboxylic acid group. For cyfluthrin containing multiple stereocenters, we modeled

the form deposited in the PubChem database corresponding to (S)-cyano(4-fluoro-3-

phenoxyphenyl)methyl (1R,3S)-3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropane-1-

carboxylate.

Molecular docking. The start conformations of the ligands within the modeled re-

ceptors were determined by rigid molecular docking with the AutoDock Vina software

[47]. The centroid of the cubic search space with a side length of 22 Å was specified

according to the mass center of cocrystallized T3. To ensure proper sampling of the

search space, we configured an exhaustiveness of 16. Prior to the production runs, we

evaluated the pose prediction accuracy of the protocol by docking the native ligand T3,

as well as all available cocrystallized thyroid analogs to the selected models followed

by a determination of the RMSD between the docked pose and the cocrystallized lig-

and. To compute the RMSD, we used the superposition panel in Maestro. Based on the

sub-angstrom accuracy of the protocol for both isoforms in redocking T3 as well as the

high accuracy for the thyroid analogs (Figure S24 and Table S4), we retained the previ-

ous settings for the following production runs generating complexes according to Table

1. The best pose of each antagonist was taken as input for the MD simulations, except

for 1-850 in TRα, for which no favorable orientation withing the binding site could

be obtained. Thus, the binding mode of 1-850 in TRβ was superimposed on the TRα

structure while alleviating clashes by slight adaption of the side chain dihedral angles

of F215, I221, M259, and S277. The similarity between the cocrystallized ligands and

T3 was computed by determining the Tanimoto coefficients based on atom connectivity

fingerprints in the Similarity and Clustering panel within Maestro. As the obtained sim-

ilarity coefficients underlined (Table S4), several ligands are dissimilar to T3 proving

the capability of the protocol to predict the orientation of different chemotypes (Fig-

ure S24). Alternative poses obtained from AutoDock Vina were compared regarding

their RMSD to the best pose as well as their relative binding free energies (Figure S25).

Using the K-Means algorithm in the sklearn python toolkit, we computed clusters and

determined their average binding free energy. As alternative binding modes with sim-

ilar energies were either not available or within an RMSD of 2 Å to the selected pose,

this analysis confirmed the best pose to be superior to the alternatives. To obtain more
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insight into the correctness of the binding poses, we used the induced-fit docking (IFD)

protocol of Glide [48] as well as our in-house program DOLINA [49] and checked if

similar binding modes could be obtained. The latter was specifically designed to cope

with protein flexibility within NR binding sites. The analysis revealed a consensus of

at least one of the mentioned protocols to the results obtained from AutoDock Vina

providing additional confidence in the starting position for our MD simulations (Fig-

ure S26). Compounds, for which we obtained positive scores using AutoDock Vina,

presented favorable negative scores in the Glide IFD protocol (Figure S27).

MD simulations. We selected the Desmond (v2019-1) simulation engine [50] for all

MD simulations conducted in this study. The orthorhombic periodic boundary systems

were solvated with TIP3P water molecules and the charge of the system was neutral-

ized with counterions in the Desmond System Builder panel. The OPLS 2005 force

field was selected to conduct the simulations with the time-step of the RESPA integra-

tor set to 2 fs. After the default equilibration protocol, the production simulations with a

duration of 600 ns were conducted in an NPT ensemble at 310 K regulated by the Nose-

Hoover thermostat and atmospheric pressure maintained by the Martyna-Tobias-Klein

barostat. The u-series algorithm [51] was selected by default to treat long-range inter-

actions, while bonds to hydrogen atoms were treated with the M-SHAKE algorithm.

All simulations were conducted with 5 replicas by varying the random seed for initial

velocities, while atomic coordinates were recorded at an interval of 60 ps.

Evaluation of the MD trajectories. First off, the RMSD values of the simulations

were computed in the Simulation Interaction Diagram panel in Maestro. Next, rep-

resentative structures for the last 1000 frames of each trajectory were obtained using

the trj cluster.py routine that comes with Maestro and clusters the selected MD frames

based on an RMSD matrix. To analyze the position of H12 in respect to the AF-2 bind-

ing site, we used an in-house python routine based on the structalign utility.py script of

Maestro to superimpose a coactivator fragment (PDB ID: 1BSX) to the respective MD

frame. The distance between H12 and the coactivator was defined by their centroids

based on the atoms presented in Table S5. Similarly, close contacts at a threshold of

2.0 Å between the protein heavy atoms and a superimposed coactivator protein were de-

termined for all simulations. To estimate the helicity of H3 and H10, we exported 1000
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frames of the complete trajectories and processed them with the STRIDE (v29.01.96)

[52] program to assign a secondary structure to all residues. Using the output files, the

percentage of helicity (including 3-10 helices) of H3 and H10 was determined based on

the residues given in Table S6. For the correlation and network analyses, we used MD-

TASK (v1.0.1) [27]. The trajectories were treated with the trj extract subsystem.py

script and were centered on the protein with the trj align.py routine included in Mae-

stro. To ensure reliability, the trajectories were converted to the DCD file format using

VMD [53]. The DCCM analysis was performed for every second frame of the first

300 ns of the trajectories, while every fifth frame was supplied to the network analysis

to determine the BC. The BC values were averaged using the avg network.py routine in

MD-TASK. The pathways to the active site were analyzed with CAVER (v3.0) [33] by

exporting 500 frames at a timestep of 1.2 ns centered on the protein. Ligand pathways

were clustered at a threshold of 4.5 and visually assigned according to our previous

work [30]. The starting point for the tunnel computation was identified based on the

heavy atom centroid of T3 in the TRα crystal structure. To estimate the volume of the

active site cavity, we selected the POVME (v2.0) [54] tool and processed 1000 trajec-

tory frames of each simulation. The inclusion sphere was selected to have a radius of

12 Å (Figure S23) and a grid spacing of 0.5 Å. Similar to the tunnel computation, the

centroid of the inclusion sphere to calculate the binding site volume was defined as the

centroid of a cocrystallized ligand. The distance between the charge clamp residues

was computed by an in-house python routine processing MD frames at a time step of

600 ps. The SASA was computed with the POPS algorithm [55] at default settings,

while the distance between the arginine in H3 and the ligand was determined by an

in-house python routine taking all ligand atoms and the terminal carbon of arginine into

consideration. The hydrophobic energy between the leucine and isoleucine residues was

determined with a previously published in-house routine [56] computing the energy ac-

cording to the VSGB 2.0 energy model [57]. For visualization, we used PyMol (v2.1.1)

[58] and ChemDraw (v16.0.1.4) [59].

Conclusion

Even though it is known that impaired binding of coactivator proteins is the main princi-

ple behind TR antagonism, its exact molecular basis is still poorly understood. Here we
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applied microsecond MD simulations of protein-ligand complexes followed by their

detailed examination to elucidate the conformational changes and molecular mecha-

nisms involved in TR antagonism. While the conformational adaptations of H12, often

referred to as the main driver of impairing coactivator association, were subtle confirm-

ing previous experiments, H3 was distorted in complexes with multiple antagonists.

Since H3 is equally involved in forming the coactivator binding site AF-2, this sug-

gested alterations in H3 to be primarily responsible for antagonism. Aiming on de-

ducing the intramolecular mechanism for H3 distortion, we visualized MD trajectories

and, in a next step, analyzed the DCCM of the protein residues. The results pointed

to an allosteric pathway from the antagonist over H12 to H3. Further, we observed the

narrowing of a major ligand access pathway to the buried binding pocket of TRs and

an increase of the distance between charged coactivator recognition residues offering

additional insight into the function of antagonists. Even though a mechanistic under-

standing of these conformational adaptations triggered by TR antagonists is important

for the development of efficient novel therapeutics against hyperthyroidism, they were

not previously examined in atomistic detail.
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[56] André Fischer and Martin Smieško. Spontaneous Ligand Access Events to Membrane-

Bound Cytochrome P450 2D6 Sampled at Atomic Resolution. Scientific Reports, 9(1):

16411, 2019.

238



[57] Jianing Li, Robert Abel, Kai Zhu, Yixiang Cao, Suwen Zhao, and Richard A. Friesner. The

VSGB 2.0 model: A next generation energy model for high resolution protein structure

modeling. Proteins., 79(10):2794–2812, 2011.

[58] Schrodinger LLC. The PyMOL Molecular Graphics System, Version 2.1.1. 2018.

[59] PerkinElmer. ChemDraw 16.0.1.4. 2017.

239



7.1 Supporting Information

Supporting Results and Discussion

The position of H12 is modified by TR antagonists

Figure S 1 RMSD of (A) TRα and (B) TRβ systems.
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Figure S 2 Distance of H12 to superimposed coactivator fragment of (A) TRα and (B)
TRβ systems.

Figure S 3 Interference with coactivator binding. (A) Superposition of H12 in TRα
with T3 and dronedarone. H12 is presented in two different colors to illustrate its dis-
placement. (B) Close contacts between the protein and a superimposed coactivator frag-
ment in TRα. (C) Close contacts between the protein and a superimposed coactivator
fragment in TRβ.
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TR antagonists prevent coactivator binding by decreasing H3 helicity

Figure S 4 The propagation of H3 distortion. Per-residue helicity of H3 of (A) and (B)
TRα with dronedarone, (C) TRβ with celecoxib, and (D) TRβ with 1-850. The helicity
was determined for the first half of the trajectory and is shown from N-terminus (left)
to C-terminus (right) of H3.

Figure S 5 The allosteric mechanism of H3 distortion. (A) DCCM analysis of TRα
complexed with dronedarone. The correlation between H10 and H4-H5 is indicated by
a rectangle. (B) BC analysis of TRα complexed with dronedarone. The sections of H3
and H11/H12 are indicated. (C) DCCM analysis of TRβ complexed with celecoxib.
The correlation between H10 and H4-H5 is indicated by a rectangle. (D) BC analysis
of TRβ complexed with celecoxib. The sections of H3 and H11/H12 are indicated.
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Figure S 6 Metrics of the arginine in H3. (A) Shortest distance between R228 in TRα
or R282 in TRβ and the respective ligand over the whole trajectory. (B) The SASA of
R228 in TRα and R282 in TRβ over the first half of the respective trajectory.

Figure S 7 H3 helicity, shortest distance from R228 (TRα) or R282 (TRβ) to the ligand,
and hydrophobic energy between I226-L400 (TRα) or I280-L454 (TRβ). The floating
average was computed with a window of 20.
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Figure S 8 Helicity analysis of H10 in (A) TRα and (B) TRβ.

Figure S 9 Pathway II bottleneck radius analysis of (A) TRα and (B) TRβ.
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Supporting Materials and Methods

Model building

Figure S 10 (A) Missing interaction partner of the protonated amine of T3. (B) Re-
docking of T3 in TRα. (C) Redocking of T3 in TRβ. (D) Inclusion sphere of TRα and
amiodarone for active site calculation. (E) Inclusion sphere of TRβ and 1-850 for active
site calculation.

Molecular docking

Table S 1 RMSD values obtained from redocking T3.

Receptor Reference PDB RMSD (Å)
TRα 1NAV 1.94

2H79a 0.59
3HZF 1.04

TRβ 1N46 1.50
1NAX 0.67
1Q4X 2.02
1R6G 2.47
2J4A 0.90
3GWSa 0.59
3IMY 0.97
6KKB 1.64

aStructures with T3 used in this study.
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Evaluation of the MD trajectories

Table S 2 Residues considered to be part of H12.

Receptor H12 residues
TRα P399, L400, F401, L402, E403, V404
TRβ P453, L454, F455, L456, E457, V458

Table S 3 Residues considered to be part of H3 and H10.

Receptor H3 residues H10 residues
TRα L212-K234 W364-E391
TRβ E267-K288 W418-V444
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CHAPTER 8

Allosteric Binding Sites On Nuclear Receptors: Focus On Drug
Efficacy and Selectivity

Similar to CYPs, NRs have allosteric binding sites that influence their signaling. This
chapter is focused on the systematic assessment of the efficacy and selectivity of com-
pounds designed to allosterically modulate the function of eight NRs responsible for
the action of steroid and thyroid hormones. Compounds binding to the AF-2 or BF-3
allosteric sites have been designed to treat hormone-dependent cancers. In this work,
several aspects of molecular recognition were addressed including ligand-protein inter-
actions and solvation.

Author contributions: Conceptualization, A.F.; formal analysis, A.F.; writing and original

draft preparation, A.F.; writing, review and editing, A.F., M.S.; visualization, A.F.; supervision,

M.S.

Based on the published research article:
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Abstract

Nuclear receptors (NRs) are highly relevant drug targets in major indications such as

oncologic, metabolic, reproductive and immunologic diseases. However, currently mar-

keted drugs designed towards the orthosteric binding site of NRs often suffer from resis-

tance mechanisms and poor selectivity. The identification of two superficial allosteric

sites activation function-2 (AF-2) and binding function-3 (BF-3) as novel drug targets

sparked the development of inhibitors, while selectivity concerns due to a high conser-

vation degree remained. To determine important pharmacophores and hydration sites

among AF-2 and BF-3 of eight hormonal NRs, we systematically analyzed over 10 µs

of molecular dynamics simulations including simulations in explicit water and solvent

mixtures. In addition, a library of over 300 allosteric inhibitors was evaluated by molec-

ular docking. Based on our results, we suggest the BF-3 site to offer a higher potential

for drug selectivity as opposed to the AF-2 site that is more conserved among the se-

lected receptors. Detected similarities among the AF-2 sites of various NRs urge for

a broader selectivity assessment in future studies. In combination with the supporting

materials, this work provides a foundation to improve both selectivity and potency of

allosteric inhibitors in a rational manner and increase the therapeutic applicability of

this promising compound class.

Introduction

Nuclear receptors (NRs) are ligand-inducible transcription factors that are attractive

drug targets due to their involvement in a multitude of physiological and pathologi-

cal processes. Currently marketed drugs designed to interact with the buried ligand

binding pocket (LBP) of the respective receptor are used in major indications such as

oncologic, metabolic, reproductive, and immunologic diseases [1, 2]. However, the

success of these therapeutics is often limited by poor selectivity and resistance mech-

anisms that, in the worst case, reverse the antagonistic effect of a drug and promote

disease [3, 4, 5]. Additionally, undesirable effects are promoted by the fact that both

inhibitors and natural substrates share the same binding pocket. In recent years, two

allosteric sites on the surface of several NRs, called activation function-2 (AF-2) and

binding function-3 (BF-3), have been identified and considered as alternative sites for
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drug binding (Figure 1A). The AF-2 site corresponds to a protein-protein interaction

surface for the binding of coactivator proteins essential for downstream signaling which

renders it an attractive target for potential inhibitors. While the BF-3 site has been ini-

tially shown to allosterically regulate binding of coactivators to the AF-2 site [2, 6, 7, 8],

it has been suggested as interaction surface for the engagement with chaperones that

associate NRs [2, 9, 10]. In recent years, several hundreds of compounds have been

identified to modulate NR activity through either of these allosteric sites at various re-

ceptors [11, 12, 13, 14, 15, 16, 17]. Selectivity testing in the mentioned projects was,

if conducted, in most cases limited to a single other NR [18, 19, 20]. Since especially

steroidal NRs such as androgen receptor (AR), estrogen receptors (ER), glucocorticoid

receptor (GR), progesterone receptor (PR), and minearlocorticoid receptor (MR) share

a common domain architecture as well as a similar fold regarding their ligand bind-

ing domain (LBD) , the selectivity concern for allosteric NR inhibitors remains (Figure

1B). For example, it has been reported that the AF-2 and BF-3 sites of AR and GR

have a sequence identity of approximately 50% [9, 21]. Further on, drug-like mimet-

ics of coactivator peptides at the AF-2 site have the potential to disrupt protein-protein

interactions for multiple NRs and ultimately promote off-target toxicity [19, 22].

While several structures with co-crystallized ligands have been determined for the AR,

targeting superficial binding sites such as AF-2 and BF-3 of other receptors remains a

challenge due to their comparably large size, shallowness, and high flexibility [23, 24].

Knowledge regarding binding hotspots and distinct pharmacophores among structurally

similar NRs is crucial for the design of effective and selective inhibitory compounds

[24, 25, 26, 27]. In this regard, cosolvent molecular dynamics (MD) simulations are a

suitable computational tool to determine hotspots and assess their druggability, as well

as to obtain detailed information on potentially useful pharmacophores to improve drug

potency and selectivity for the site of interest. In this simulation protocol, which was in-

spired by crystallographic observations of small fragments binding to protein surfaces,

organic solvent molecules mimicking drug fragments are added to the aqueous phase

to monitor and quantify their interaction with a protein. Compared to similar methods

for binding site detection, this protocol depends less on the input structure, allows for

conformational changes of the protein, and is generally more reliable due to the intrin-
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sic treatment of protein flexibility and explicit solvation [24, 25, 28, 29]. Even though

cosolvent simulations have been previously applied to study the allosteric sites of AR,

ERα, and ERβ the main objective of these studies was to proof the applicability of the

simulation protocol. In two studies that considered the AR, researchers were able to

detect both allosteric sites in the top hotspots and, based on an assessment regarding

the maximally achievable binding affinity, the AF-2 site was deemed more druggable

[24, 30, 31]. Another known drawback of solvent-exposed binding sites is the influ-

ence of water molecules on the recognition, efficacy and selectivity of ligands due to

their potential displacement or mediation of ligand-protein interactions. Whether a wa-

ter molecule can be favourably displaced depends on its environment in the respective

binding site [32, 33, 34, 35]. The desolvation free energy of a water molecule can be

estimated based on MD simulations followed by the quantitative assessment of the tra-

jectory snapshots and can ultimately guide the design of novel compounds or improve

scoring in virtual screening projects [34, 35, 36].

Here, we applied cosolvent MD simulations, hydration site prediction, and molecular

docking to a set of eight NRs including AR, ERα, ERβ, GR, MR, PR, and the thyroid

receptors α and β (TRα and TRβ). We assessed a large share of compounds reported

to modulate NR signaling through either AF-2 or BF-3 of the respective receptor.
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Figure 1 Structural overview, results from cosolvent simulations, and hydration site
prediction for the AF-2 site. (A) AF-2 and BF-3 sites of the androgen receptor (PDB
ID: 3L3X). (B) Structural alignment of AR, ERα, ERβ, GR, MR, PR, TRα, and TRα.
Secondary structure elements were assigned according to Tan and colleagues [37]. (C)
For each receptor, the results of cosolvent simulations (upper part) and hydration site
prediction (lower part) from WATSite for the AF-2 site are given. The color scheme for
the cosolvent densities is given below the figure. The densities are shown at an isovalue
of 12. Water molecules, that were found to be conserved based on the crystal struc-
ture analysis were colored in pine green and water molecules with a negative enthalpy
(∆H < -1.0 kcal/mol) were indicated with asterisks.

In contrast to previous works, our objective was the systematic determination of the

main pharmacophores and positions of structural waters in order to compare them

within our selection of human hormonal NRs to ultimately navigate the design of potent

and selective inhibitors for each particular receptor.

Results and Discussion

Sequence Similarity Among Hormonal NRs. The structures of LBD of AR, ERα,

ERβ, GR, MR, PR, TRα, and TRβ feature a similar conserved fold (Figure 1B). We

conducted a sequence-based analysis of residues in the 5 Å range around a cocrystal-

lized ligand and compared those residue regarding to their similarity among all recep-

tors (Figure 2). While the analysis revealed similarities between the isoforms of the

ERs and TRs that were expected, receptors with high identity in both sites included
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AR, GR, MR, and PR. We observed values up to 75% between MR and GR as well

as PR and AR in the AF-2, which raises serious concerns regarding off-target binding

for ligands targeting either of these receptors. In slight contrast to previously reported

conservation degree in the literature [2, 9], our comparably high percentages could be

explained by the different definitions of conservation and binding site residues. Com-

pared to the other receptors, the TRs offer a good potential for selective binding to

either site, but especially for BF-3. Overall, the results suggest the BF-3 site to offer a

higher potential for the design of selective inhibitors due to the generally lower values

in similarity among the receptors compared to the AF-2. The conservation of residues

from a three-dimensional perspective can be assessed in Figure S1 and S2.

Figure 2 Sequence identity analysis of residues in (A) the AF-2 and (B) the BF-3 sites.
The identity is given as percentage of the maximally achievable score based on the
considered residues.

Distinct Pharmacophores of the Allosteric Sites. To this date, the AR is the most

intensively studied NR regarding the development of allosteric inhibitors, due to its in-

volvement in the genesis and progression of prostate cancer, which is one of the leading

causes for cancer-related death in men. [2, 18]. Even though constitutively active splice

variants of the AR lacking the LBD regularly arise in late stages of the disease, the AR

LBD remains a drug target of high interest, especially in early stages of pharmacolog-

ical treatment [2]. Likewise, efforts were put into the design of inhibitors against ERα

since the majority of breast cancer cases depend on this receptor [14]. Unfortunately,

currently available therapeutics often suffer from resistance mechanisms, in some cases

only caused by as little as a single amino acid mutation in the LBP [4], which likely

contributed to the number of works that applied cosolvent simulations to the allosteric
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sites of the AR and the ERs. In these studies, the AF-2 site was detected in both AR

and ERs, while densities at the BF-3 site were only reviewed for the AR [24, 30, 31].

The aforementioned work inspired us to systematically apply this simulation protocol

to eight NRs which are known to suffer from poor drug selectivity [2, 14, 17]. Based

on the evaluation of our simulations, we were able to identify probe molecules binding

to the AF-2 and BF-3 sites of all receptors, with the exception of the BF-3 site in ERα

(Figures 1C and 3A). In accordance with the sequence analysis, the similarity among

the AF-2 sites regarding the probe densities of all receptors along with the diversity of

the individual BF-3 sites was one of the most apparent outcomes of our simulations.

The results do not only reflect the preference of multiple NRs for similar coactivator

sequences, a known concern for receptor selectivity [38], but also support the fact that a

higher degree of selectivity could be achieved when targeting the BF-3 site over both the

orthosteric pocket and the AF-2 site due to its uniqueness among the receptors. Clearly,

the selectivity concerns regarding inhibitors interacting with the AF-2 site were justi-

fied because especially simulations of GR, MR, PR, and the the TRs presented a highly

similar pattern of probe densities. However, despite the comparably high sequence sim-

ilarity of GR, MR, and PR regarding the AF-2 site, the GR resulted in a notably higher

density of acetonitrile which points towards a higher degree of amiphaticity that is fa-

vored there. Interestingly, the ERs not only displayed distinct differences to the other

receptors, but also between themselves based on two isolated densities of isopropanol

and pyrimidine that were interchanged between the two isoforms. Even though it is pos-

sible that compounds assume reversed binding modes in either receptor, such distinct

differences offer potential to improve isoform selectivity, especially if structure-based

design is employed. Less obviously, the density map of the ERα revealed a smaller

third hotspot in the vicinity of V368 unique to this receptor suggesting this to be the

reason for the selectivity differences regarding AR and ERα observed among partic-

ularly decorated inhibitors with a common pyrimidine core [10]. In consensus with

that, the AR displaced an isolated density of pyrimidine towards H4 and a generally

more pronounced aromatic density. The higher aromaticity of the AR AF-2 site com-

pared to the ERs likely reflects its preference for phenylalanine or tryptophan residues

as opposed to leucines in coactivator fragments [39]. Notably, simultaneous binding to
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multiple NRs can be desired in certain therapeutic scenarios as for the inhibition of the

AR in breast cancer treatment, since it might adopt roles of ERα when the function of

this receptor is absent due to pharmacological inhibition [40]. Therefore, compounds

binding to both AR and ERα such as several ones identified by Gunther et al. might be

beneficial depending on the therapeutic indication [2, 41]. While the literature suggests

differences in the hydrophobic relief of the AF-2 to be responsible for TR isoform se-

lectivity [16], our results only presented minor differences in any of the probe densities

between TRα and TRβ apart from a slightly oblonged density for pyrimidine in the

TRβ.

As mentioned before, the BF-3 site of the studied NRs displayed a higher degree of het-

erogeneity regarding the cosolvent densities (Figure 3A). While AR, GR, and to some

degree MR and PR showed a somehwat comparable pattern of probe densities, both ERs

and TRs presented a high degree of diversity among them despite being most closely

related based on their sequence. Most obviously, the BF-3 site of ERα was barely

mapped by the probe molecules at the selected isovalue (twelve times the density in

bulk solvent) and only presented a slight density of pyrimidine indicating a region for

an aromatic moiety. The same region in ERβ was mapped by isopropanol suggesting

the placement of an amphipathic as opposed to an aromatic functional group in this

isoform, to achieve selective ligand-protein interactions. The lack of probe density at

the ERα BF-3 site points towards poor druggability of the site [42], which is indirectly

supported by experimental results since inhibitors directed against the AR did not in-

hibit ERα [18]. The density maps of the BF-3 site of both TRs substantially differ from

the ones of other receptors, which reduces the odds for the cross-binding of compounds

harboring the proposed density-based pharmacophores. Even though the TRβ shared

densities for isopropanol and acetonitrile with the TRα, the latter displays additional

densities in distal regions of the site and a pronounced density of acetonitrile in the

center. Therefore, an amphipathic group, potentially containing a nitrogen atom, would

offer potential to increase compound selectivity between the two TRs. Moreover, the

density maps revealed a high identity between AR and GR, especially regarding the re-

gions mapped by isopropanol. In contrast, the MR and PR presented distinct differences

despite the comparable degree of conservation among all four receptors.
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A comparison of the AF-2 and BF-3 displayed density patterns that are shared among

the two sites depending on the receptor. For example, the densities for the ERα AF-2

and PR BF-3 site showed a similar arrangement consisting of an amphipathic group

coupled to an aromatic moiety. Furthermore, the BF-3 sites of both AR and GR showed

a distinct resemblance to the AF-2 sites of most other receptors. The consideration of

compounds designed for the AF-2 site to simultaneously interact with the BF-3 site and

vice versa is not only supported by our results, but is also based on crystallographic data.

Most interestingly, a crystal structure of the AR (PDB ID: 2YLP) [43] revealed two

ligands concurrently bound to both allosteric sites. Therefore, a complete selectivity

assessment should consider binding to the other allosteric site as well. In addition to

the allosteric sites, we measured comparably high probe densities in several orthosteric

sites, regions that were suggested to be involved in the access to the buried binding

pocket of NRs, and other zones of the receptors [44]. For detailed review and to assist

the development of novel compounds [45], we supply the complete density maps for

every receptor in our supporting material. The root mean square deviation (RMSD) of

the cosolvent simulations was assessed (Tables S1-S8) and presented deviations ranging

from 0.81 to 2.57 Å confirming good conformational stability of the protein backbone

throughout the simulations.

Conformational Changes of the Allosteric Sites. Even though it was suggested that

the association of allosteric inhibitors is dependent on the presence of an agonist in

the orthosteric site [46], we did not observe significant differences regarding the cosol-

vent densities between our apo and holo simulations (Figure S3 and S4). Potentially, a

protocol with prolonged individual simulations or the application of biasing potentials

might induce more pronounced changes, since conformational adaptations affecting the

surface of the receptor have to occur over a long distance and naturally require substan-

tial simulation efforts [29]. For example, association of inhibitors to the LBP has been

shown to structurally modulate the AF-2 and its capability to interact with coactivator

proteins, mainly by conformational change of helix-12 (H12) [10]. Combination ther-

apy with multiple drugs is regularly applied in cancer pharmacotherapy [47, 48] and

therefore potential synergistic effects of allosteric and orthosteric inhibitors will have

to be considered in future studies. Likewise, the simultaneous treatment with AF-2 and
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BF-3 inhibitors might produce mixed results, since binding of inhibitors to the BF-3

site is known to reduce the affinity of coactivator peptides in an allosteric mechanism

and might affect a potential drug-drug synergy. In general, the AF-2 site of NRs is

known to be capable of significant conformational changes as the example of the AR

nicely underlines, since this receptor accepts a diverse set of coactivator fragments and

has to structurally adapt in order to do so [39, 11]. Our examination of available AR

crystal structures (Figure S5) revealed certain residues in both AF-2 and BF-3 capable

of structural adaptation to ligand molecules. In particular, the residues K720, R726, and

M734 in the AF-2 displayed various rotamers depending on the interaction partner. In

the BF-3 site, Q670, F826, N727, E829, K836, and R840 appeared flexible, suggesting

this site to exhibits a higher degree of flexibility.

To quantify the conformational change induced by different probe molecules in either

allosteric site, we compared representative structures of our simulations in pure water to

ones obtained from cosolvent simulations (Figure S6). In accordance with the above-

mentioned flexibility in crystal structures, this analysis uncovered a higher degree of

structural adaptation of the BF-3 as opposed to the AF-2. In this context, it is worth not-

ing that several residues of the BF-3 site are located in close vicinity to the N-terminus,

which would likely be more rigid due to its direct linkage to the DNA-binding do-

main that was not considered here. Probe molecules in cosolvent simulations have been

shown to induce cryptic binding pockets, which can significantly contribute to drug

selectivity and therefore knowledge on such pharmacophores can be instrumental for

rational drug design. It is known that individual cosolvent molecules can cause distinct

conformational adaptations of the respective protein [29, 49]. Indeed, our RMSD based

analysis presented the highest degree of structural change with isopropanol as probe

molecule suggesting the associated pharmacophores as promising to exploit the intrin-

sic flexibility of both allosteric pockets. Interestingly, we observed a different extent of

adaptation from receptor to receptor with the ERα showing the most distinct changes.

In the literature, residues with a high degree of flexibility have been reported for the AR

and include K720, M734, N727, F826, E829, and F837 [50, 43]. Although our analysis

detected several of these residues to be involved in a comparably large structural adap-

tation, we observed conformational changes of additional residues that have not been
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reported before. Most notably, the residue L685 in the GR (corresponding to F826 in

the AR) located in the BF-3 site displayed a particularly high RMSD. A large share of

allosteric NR inhibitors have been developed based on the interplay of computational

screening and experimental characterization. Importantly, our results could support fu-

ture virtual screening studies by recommending flexible residues in the binding site for

molecular docking calculations. One limitation we experienced during this analysis

was the truncation of termini in several crystal structures preventing a quantification of

the RMSD for these regions and adjacent structural elements. The backbone RMSD

analysis (Figure S7) of all triplicates simulations in pure water revealed excellent (AR,

ERαa, GR, PR, TRβ) to sufficient (ERβ, MR, TRα) convergence.

Displacement of Water Molecules from the Allosteric Sites. Besides their often lim-

ited selectivity, the major drawback for the clinical application of allosteric inhibitors

is their comparably low potency which is a typical characteristic of superficial protein-

protein interaction inhibitors [51, 52]. Regarding the ERα it was proposed that the

modest efficacy of small molecules designed to bind to the AF-2 surface is also as-

sociated with the lower amount of water molecules that are displaced by the inhibitor

in contrast to the physiologic interaction partner [13]. As mentioned in the introduc-

tion, the importance of considering water molecules is well known in structure-based

drug design because, in almost any case, waters are displaced during ligand associa-

tion. Displacing a tightly bound water molecule generally results in a favorable gain of

entropy and is a commonly used strategy exploited by medicinal chemists to improve

compound efficacy and selectivity [32, 33, 53]. However, if such a displacement is

favorable depends on enthalpic and entropic contributions that are determined by the

environment of the water molecule. Ultimately, the desolvation free energy of a water

molecule can be estimated based on these contributions and give valuable input for lig-

and design [35]. Especially for solvent-exposed binding sites, as they often are when

protein-protein interactions are considered, contributions of water molecules can gain

even higher importance [13].
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Figure 3 Results from cosolvent simulations, hydration site prediction for the BF-3 site,
and molecular docking.(A) For each receptor, the results of cosolvent simulations (up-
per part) and hydration site prediction (lower part) from WATsite for the AF-2 site are
given. The color scheme for the cosolvent densities is given below the figure. The den-
sities are shown at an isovalue of 12. Water molecules, that were found to be conserved
based on a crystal structure analysis were colored in pine green and water molecules
with a negative enthalpy (∆H < -1.0 kcal/mol) were indicated with asterisks. (B) Den-
sity of pyrimidine at the AF-2 overlapping with cocrystallized ligand (PDB ID: 2PIP)
(C) Cluster of water molecules at the BF-3 of the AR. A cocrystallized ligand molecule
is shown as comparison (PDB ID: 4HLW). Polar contacts were visualized in PyMol.
(D) Distribution of docking scores of AR AF-2 inhibitors. Confirmed actives are shown
in red, while the remaining compounds of the library colored pine green. (E) Distribu-
tion of docking scores of AR BF-3 inhibitors.

We evaluated the hydration sites for the selected set of NRs by two different approaches.

The WATsite program allows to set up a restrained MD simulation in explicit water,

which is post-processed using machine learning techniques to estimate the thermody-

namic contributions of a water molecule to be displaced. Following this analysis, we

retrieved available crystal structures for every receptor and determined conserved hy-

dration sites among them (Figure S8) to ultimately combine both predictions and find a

consensus. Although a large share of the water positions we determined were unique to

each NR, there were sites shared by multiple receptors (Figure 1C, 3A, and S8). For ex-

ample, we identified a conserved water molecule at the AF-2 site of both isoforms of the

ER that could be favorably displaced based on its desolvation enthalpy (Figure S9C).
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Another interesting example was a water molecule with a negative enthalpic contribu-

tion and conservation within crystal structures close to H12 that was predicted to occur

in only one isoform of the TR (Figure 1C). Therefore, displacing this water molecule

with a TRβ AF-2 inhibitor might increase the selectivity towards TRα. In a similar

fashion, displacing a conserved water molecule that occurs in AR, ERβ, GR, and MR

from a favorable environment might decrease binding of a compound to any of these

receptors (Figure S9A). Remarkably, no water molecules with a negative enthalpic con-

tribution were identified for the AF-2 site of the PR. At the BF-3, we observed a higher

diversity of hydration sites compared to the AF-2 site following the previous trends

regarding our conservation analysis and the cosolvent densities. However, we noticed

a reoccurring network of water molecules in vicinity of the H9 N-terminus that, de-

pending on the compound, might form a favorable first-shell hydration layer based on

enthalpic contributions (Figure 3C) [36]. The simulations showed small backbone fluc-

tuations values, which was to be expected due to the applied restraints on the protein

atoms (Figure S10). Analogous to our cosolvent simulations, structure files resulting

from both procedures used for hydration prediction together with a complete list of en-

thalpic and entropic contributions for each water molecule (Table S9-S16) are provided

in the supporting material. These contributions can be used to estimate the gain in free

energy of a particular ligand molecule by considering the water molecules it displaces

in the bound state.

Selectivity of Allosteric Inhibitors Explored by Molecular Docking. The design of

numerous allosteric inhibitors considered in this study was itself assisted by computa-

tional chemistry methods such as virtual screening [14, 18, 43, 54]. Molecular docking

is an accepted technique with high throughput to explore off-target binding of potential

drug compounds, preferably in an early stage of their development [55, 56]. Here, we

retrieved more than 300 confirmed allosteric inhibitors from the literature and cross-

docked them to investigate their potential to interact with the AF-2 and BF-3 of other

NRs in our selection. Independent of the site towards the inhibitors were designed, they

were docked to both allosteric sites, because most studies experimentally excluded a

LBP-based mechanism, but did not distinguish between them [4, 14, 15]. As a common

practice, we assessed the accuracy in pose prediction by redocking cocrystallized lig-
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ands to the respective site (Figure S11-14). The determined heavy-atom RMSD values

between the poses reached from 1.25 to 7.46 Å for the standard precision (SP) docking

protocol and from 0.84 to 8.22 Å for the extra precision (XP) protocol in Glide (Table

S17) [57, 58]. A visual inspection of the obtained poses revealed a reversed orientation

for multiple ligands at the BF-3 site, which might be explained by the symmetry of

several compounds regarding their aromatic moieties as well as the increased confor-

mational freedom at such solvent-exposed binding sites. In addition, the probe densities

from our cosolvent simulations (Figure 1C and 3A) justify a reversed orientation of the

main pharmacophores in certain cases. Another complication, potentially causing in-

accuracies in pose prediction, is the presence of crystal mates in close vicinity to the

cocrystallized ligand [59], which we determined in various crystal structures as exem-

plarily shown in Figure S15. Despite a more sophisticated scoring function and the

considerably higher computational cost of the XP protocol, it did not offer any obvious

improvement regarding pose prediction in the selected cases. Additionally, the Glide

SP protocol was successfully used for the determination of inhibitors towards the AF-2

and BF-3 sites of the AR [50, 54, 13, 12] and we therefore selected it to evaluate our

library of ligands. To further validate the performance of the chosen docking proto-

col, we generated a decoy ligand set of and determined the area under the curve of the

Receiver Operator Characteristic (ROC AUC) for each compound group. Based on a

poor score in this metric (Table S18), compounds designed towards the AF-2 site of

TRα and TRβ were excluded from further investigation. An analysis of the score distri-

bution was conducted for the remaining compounds series with more than ten entries,

meaning ligands designed towards the AF-2 sites of AR and ERα, as well as the BF-3

of the AR were docked into their target site to compare their scores to the ones of all

other compounds in our ligand set. Between the allosteric sites of the AR, a distinct

difference regarding the score distribution could be observed (Figure 3D and E). While

the distribution of docking scores of the AF-2 compound series showed a high overlap,

the curves displayed an astounding degree of separation for the BF-3 site. The largest

share of compounds designed to interact with the BF-3 site of the AR showed an av-

erage improvement in binding free energy of approximately 1.0 kcal/mol with a high

number of the remaining compounds scored below -3.0 kcal/mol. Again, these results
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suggest targeting the BF-3 site to offer a higher degree of selectivity compared to the

AF-2 site, especially since the distribution of the ERα AF-2 compound series presented

a similar pattern as the AR AF-2 series (Figure S16). The score distribution obtained

from the XP docking protocol (Figure S17) confirmed the results obtained from the SP

protocol.

Even though the majority of studies neglected off-target binding of their compounds,

one study extensively evaluated their inhibitors against other NRs overlapping with our

selection [14]. Although their ERα ligand showed reasonable selectivity against AR

and PR, two receptors presenting a high degree of similarity throughout our work, it

was shown to interact with the GR to a reasonable extent. Inspired by these results,

we reviewed the docking poses of the compound and discovered a halogen bonding

interaction [33] between a lysine residue, which is part of a so-called charge clamp, and

the chlorine atom of the inhibitor shared by both GR and ERα (Figure S18). The charge

clamps, flanking the hydrophobic subpockets of the AF-2 sites in various NRs, were

often proposed as a selectivity factor [10]. The described interaction did not appear in

neither AR or PR and we therefore suggest this specific interaction as a determinant for

the selectivity of this compound.

Materials and Methods

Sequence Alignment and Analysis. After a sequence alignment in the UGENE v1.32.0

[60] suite using the ClustalW algorithm [61] (Figure S19), we determined residues of

either site based on a spherical zone around a co-crystallized ligand (PDB ID: 2YLP)

that can bind both AF-2 and BF-3 in the AR. We then used an in-house python routine to

determine the conservation of the selected residues as follows: identical residues were

valued at 1.0, while the same residue group was scored at 0.5 (Table S19). The scores

were summed up for 20 AF-2 residues and 23 BF-3 residues respectively to ultimately

calculate a percentage value for the conservation.

Ligand Preparation. All ligands were retrieved from various publications that evalu-

ated their compounds and provided evidence for binding to either of the allosteric sites

(Table S20). Compounds were included if a reasonable biological activity (IC50 or Ki

below 100 µM) was measured. Three-dimensional conformers were generated in the

LigPrep panel [62] within the Maestro Small-Molecule Drug Discovery Suite 2019-3
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[63] using the OPLS3e force field. The protonation states of the ligands were predicted

using Epik [64] at physiological pH (pH = 7.4). The highest scored ligand confor-

mations were selected, potential tautomerization was accounted for, and in the case of

unspecified chiral centers both stereoisomers were considered.

Protein Preparation. The protein structures used in this study were retrieved from the

Protein Data Bank (Table S21) and prepared using the Protein Preparation Wizard [65]

within Maestro. In the case of missing loops, they were added based on complete

template structures for ERα, ERβ, MR, and TRβ. The amino acid sequence of the

protein structures was compared to the sequence reported in the UniProt database [66]

and, in the case of engineered amino acids, the sequence was manually corrected to

represent the wild-type receptor sequence. For MD simulations, we aimed on selecting

structures with physiologic ligands bound to the LBP and a resolution below 2.5 Å.

In the case of less than five missing amino acids at the C-terminus to complete the

sequence, these residues were manually added to the structure. While the N-terminus

was modeled with an acetamide cap, since it would be further linked to the DNA-

binding domain, the C-terminus was modeled as free carboxylic acid group. Ions and

organic solvents were removed, before hydrogen atoms were added to the structures, the

protonation state predicted at pH 7.4, and the hydrogen bonding network was oriented.

As a last step, the structures were refined by the means of a restrained minimization

using the OPLS3e force field with a RMSD convergence threshold of 0.30 Å.

MD Simulations and Evaluation. The simulations in pure water were conducted us-

ing the Desmond simulation engine (v.2019-3) [67]. Using the System Builder, the

prepared protein structures were solvated with SPC water molecules in cubic periodic

boundary system with a buffer of 10 Å to the next protein atom. Ions were added to neu-

tralize the systems, before they were relaxed for 100 ps using the MD-based Desmond

Minimization protocol. The simulations were conducted using the OPLS 2005 force

field in an NPT ensemble combined with the Martyna-Tobias-Klein barostat with a re-

laxation time of 2.0 ps at 300 K and the Nose-Hoover thermostat with a relaxation time

of 1.0 ps. The u-series algorithm was used to treat long range interactions with a cut-

off of 9 Å for short range interactions [68]. By default, the M-SHAKE algorithm was

applied to constrain bonds to hydrogen atoms. We left the time step for the RESPA
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integrator at 2.0 fs and files with atomic coordinates were saved at an interval of 4.8 ps.

After the default relaxation protocol (Table S22), the simulations were carried out in

triplicates for a duration of 40 ns per receptor at a temperature of 300 K and, to ensure

a unique course of the individual trajectories, we generated random seeds for the initial

velocities. The backbone RMSD of the pure water MD simulations were determined in

the Simulation Interaction Diagram panel within Maestro.

For the cosolvent MD simulations, we used the Mixed Solvent MD workflow that comes

with the Desmond simulation engine [67]. As probe molecules, isopropanol, acetoni-

trile, and pyrimidine at a concentration of 5% (by volume) were selected since these

solvents are water-miscible, offer a low potential for aggregation, and therefore do not

require the application of repulsive forces [27, 69]. In addition to the recommended

simulation protocol with apo structures, we ran simulations with the cocrystallized lig-

and remaining in the orthosteric binding pocket. For the ERβ and GR, the water buffer

parameter was increased from the default value of 12.0 to 15.0 as described in the pro-

vided documentation. The default relaxation protocol for this workflow (Table S23)

was conducted, before the 5 ns production simulations were run at a temperature of

300 K in an NPT ensemble using the OPLS 2005 force field. For each probe molecule,

ten simulations were conducted resulting in a cumulative simulation time of 1.2 µs per

receptor. The remaining specifications were left on default. The backbone RMSD of the

cosolvent MD simulations were determined based on the output frame of the protocol

using an in-house python routine.

To quantify the conformational change of the AF-2 and BF-3 sites induced by the probe

molecules, we determined the heavy-atom RMSD between representative structures of

the cosolvent simulations and the pure water simulations of the individual residues lo-

cated in the allosteric sites. First, we determined the representative structure of the

cosolvent simulations by inputting the last frame of each simulation for each probe into

the MaxCluster algorithm and selecting the structure with the highest rank according

to the 3Djury score [70]. Similarly, we chose the last 30 frames of each pure water

simulation of each receptor as input for MaxCluster to determine representative struc-

tures. Before determining the heavy atom RMSD using an in-house python routine, we

superimposed the obtained structures.
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The simulations to determine the hydration sites were performed using the WATsite 3.0

protocol [34, 35] that comes as a PyMol plugin [71]. The prepared structures of the

eight receptors were used as input for the simulations and, since WATsite requires in-

formation about the location binding site, an AR ligand molecule known to bind both

AF-2 and BF-3 was derived from a crystal structure (PDB ID: 2YLP) and superim-

posed to be located in the allosteric sites of the respective receptor. For each binding

site, a separate simulation with an equilibration phase of 2 ns and a production stage of

20 ns at 298.15 K was run totaling to 352 ns of simulation time. We took the default

timestep of 2.0 fs and frames with atomic coordinates collected every 2.0 ps. Long

range interactions were treated with the Particle Mesh Ewald method, non-bonded in-

teractions were cut off at 10 Å, and heavy atoms were restrained with a spring constant

of 2.5 kcal/mol/Å2. In the post-processing stage, we selected the DBSCAN clustering

algorithm to determine the hydration sites and their occupancy. The backbone RMSD

of the simulations was assessed using an in-house python routine.

Crystal Structure Analysis. For each receptor, all crystal structures with a resolution

below 2.5 Å were retrieved from the Protein Data Bank and superimposed. Next, only

the water molecules were kept in the structures and merged into a single PDB file that

was used as input for an in-house python routine that determined the cluster centroids

along with their occupancy using the the DBSCAN algorithm with an epsilon value

of 0.9 and n set to 2.0, similar to other protocols [72]. Clusters fulfilling the selected

minimal occupancy criterion, depending on the number of input structures (Table S24),

were considered as conserved and further compared to the prediction from WATsite

using a distance threshold of 1.4 Å to establish a consensus between the two approaches.

Molecular Docking. We used the Glide protocol [57, 58] to dock the prepared ligands

into the AF-2 and BF-3 sites of the selected panel of NRs. In the Recepor Grid Genera-

tion panel within Maestro, we defined the cubic grid box to be located at either site with

an inner box size of 10 Å and an outer box size of 22.4 Å. In order to define the binding

site, we superimposed an AR ligand molecule on each receptor in the Protein Structure

Alignment panel [63]. All actives were grouped according to their target site and re-

ceptor before they were docked, using both SP and XP protocols of Glide, to all sites in

the set. Also, we redocked known cocrystallized ligands and calculated the RMSD to
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the native pose in the Superposition panel in Maestro. In order to assess the reliability

of the SP docking protocol, we further generated a decoy dataset for each compound

group using the DUD-E webserver based on SMILES codes [73]. The ROC AUC met-

ric, which characterizes if a randomly chosen known active molecule will rank higher

than a randomly chosen decoy, was measured in the Enrichment Calculator within Mae-

stro as described in detail in our previous work [63, 74]. Crystal mates were visually

inspected in Maestro.

Conclusions

Several allosteric inhibitors for the AR proved their efficacy in blocking AR signaling

through experiments with cells or xenograft in vivo studies [2, 8, 54]. Besides limita-

tions in potency, the clinical application of this interesting compound class is hampered

by off-target binding due to high sequence identity among hormonal NRs. From this

viewpoint, the BF-3 site displayed advantages over the AF-2 site as a drug target in our

analysis focused on sequence identity, pharmacophores, and hydration sites. Further,

we recommend intensive selectivity testing to a wider array of NRs, especially when

inhibitors targeting the AF-2 site based on our results. Differences in probe densities

reported in this study might be exploited to rationally design novel compounds and give

insight into important structure-activity relationships. In our supplementary material,

we provide the complete density maps obtained from the cosolvent simulations that can,

for example, be incorporated in a pharmacophore-based screening campaign. Impor-

tantly, certain therapeutic scenarios might benefit by the concurrent binding to multiple

NRs as we discussed regarding ERα inhibitors. In addition, future studies will have to

consider potential synergistic effects of the simultaneous administration of orthosteric

and allosteric inhibitors as well as combinations of inhibitors targeting the AF-2 and

BF-3 sites concurrently. In our hydration site analysis, we identified water molecules

that were conserved among multiple receptors including a reoccurring network of wa-

ter molecules that formed an enthalpically favorable first-shell hydration layer around

inhibitors at the BF-3 site. By the means of the provided supplementary files, the gain

in desolvation free energy for a particular ligand can be estimated by accounting for

the displaced waters in the bound state. By docking a large set of allosteric inhibitors,

we demonstrated a modest accuracy of the applied protocol and suggest the inclusion of
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water molecules and protein flexibility into future predictions. Additionally, we suggest

residues that could be considered in flexible docking calculations based on a quantifica-

tion of the per-residue conformational adaptation in the presence of different cosolvent

molecules. In conclusion, this work provides a foundation to refine both selectivity and

potency of allosteric inhibitors in a rational manner. Improving these properties will

likely increase the therapeutic applicability of this interesting compound class.
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Perpiñ. A conserved surface on the ligand binding domain of nuclear receptors for al-

losteric control. Molecular and Cellular Endocrinology, 348(2):394–402, 2012.

[10] Eric Biron and François Bédard. Recent progress in the development of protein-protein

interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer, 7

2016.

[11] Alice L Rodriguez, Anobel Tamrazi, Margaret L Collins, and John A Katzenellenbogen.

Design, Synthesis, and in Vitro Biological Evaluation of Small Molecule Inhibitors of

Estrogen Receptor α Coactivator Binding. Journal of Medicinal Chemistry, 47(3):600–

611, 1 2004.

[12] Kriti Singh, Ravi Shashi Nayana Munuganti, Eric Leblanc, Yu Lun Lin, Euphemia Leung,

Nada Lallous, Miriam Butler, Artem Cherkasov, and Paul S Rennie. In silico discovery

and validation of potent small-molecule inhibitors targeting the activation function 2 site

of human oestrogen receptor alpha. Breast cancer research : BCR, 17:27, 2 2015.

[13] Aiming Sun, Terry W Moore, Jillian R Gunther, Mi-Sun Kim, Eric Rhoden, Yuhong Du,

Haian Fu, James P Snyder, and John A Katzenellenbogen. Discovering small-molecule

estrogen receptor α/coactivator binding inhibitors: high-throughput screening, ligand de-

velopment, and models for enhanced potency. ChemMedChem, 6(4):654–666, 4 2011.

[14] Kriti Singh, Ravi S.N. Munuganti, Nada Lallous, Kush Dalal, Ji Soo Yoon, Aishwariya

Sharma, Takeshi Yamazaki, Artem Cherkasov, and Paul S. Rennie. Benzothiophenone

derivatives targeting mutant forms of estrogen receptor-α in hormone-resistant breast can-

cers. International Journal of Molecular Sciences, 19(2), 2018.

[15] Leggy A. Arnold, Eva Estebanez-Perpina, Marie Togashi, Natalia Jouravel, Anang Shelat,

Andrea C. McReynolds, Ellena Mar, Phuong Nguyen, John D. Baxter, Robert J. Fletterick,

Paul Webb, and R. Kiplin Guy. Discovery of small molecule inhibitors of the interaction

of the thyroid hormone receptor with transcriptional coregulators. Journal of Biological

Chemistry, 280(52):43048–43055, 2005.

[16] Yeon Hwang Jong, Leggy A. Arnold, Fangyi Zhu, Aaron Kosinski, Thomas J. Mangano,

Vincent Setola, Bryan L. Roth, and R. Kiplin Guy. Improvement of pharmacological prop-

erties of irreversible thyroid receptor coactivator binding inhibitors. Journal of Medicinal

Chemistry, 52(13):3892–3901, 2009.

[17] Jong Yeon Hwang, Wenwei Huang, Leggy A. Arnold, Ruili Huang, Ramy R. Attia,

Michele Connelly, Jennifer Wichterman, Fangyi Zhu, Indre Augustinaite, Christopher P.

267



Austin, James Inglese, Ronald L. Johnson, and R. Kiplin Guy. Methylsulfonylnitroben-

zoates, a new class of irreversible inhibitors of the interaction of the thyroid hormone re-

ceptor and its obligate coactivators that functionally antagonizes thyroid hormone. Journal

of Biological Chemistry, 286(14):11895–11908, 2011.

[18] Ravi Shashi Nayana Munuganti, Eric Leblanc, Peter Axerio-Cilies, Christophe Labriere,

Kate Frewin, Kriti Singh, Mohamed D H Hassona, Nathan A Lack, Huifang Li, Fuqiang

Ban, Emma Tomlinson Guns, Robert Young, Paul S Rennie, and Artem Cherkasov. Target-

ing the binding function 3 (BF3) site of the androgen receptor through virtual screening.

2. Development of 2-((2-phenoxyethyl) thio)-1H-benzimidazole derivatives. Journal of

Medicinal Chemistry, 56(3):1136–1148, 2013.

[19] Preethi Ravindranathan, Tae Kyung Lee, Lin Yang, Margaret M. Centenera, Lisa Butler,

Wayne D. Tilley, Jer Tsong Hsieh, Jung Mo Ahn, and Ganesh V. Raj. Peptidomimetic

targeting of critical androgen receptor-coregulator interactions in prostate cancer. Nature

Communications, 4(May), 2013.

[20] Alexander A Parent, Jillian R Gunther, and John A Katzenellenbogen. Blocking estrogen

signaling after the hormone: pyrimidine-core inhibitors of estrogen receptor-coactivator

binding. Journal of medicinal chemistry, 51(20):6512–6530, 10 2008.

[21] Nada Lallous, Kush Dalal, Artem Cherkasov, and Paul S. Rennie. Targeting alternative

sites on the androgen receptor to treat Castration-Resistant Prostate Cancer. International

Journal of Molecular Sciences, 14(6):12496–12519, 2013.

[22] Subhamoy Dasgupta, David M. Lonard, and Bert W. O’Malley. Nuclear Receptor Coacti-

vators: Master Regulators of Human Health and Disease. Annual Review of Medicine, 65

(1):279–292, 2014.

[23] Ratna Rajesh Thangudu, Stephen H Bryant, Anna R Panchenko, and Thomas Madej.

Modulating protein-protein interactions with small molecules: the importance of binding

hotspots. Journal of molecular biology, 415(2):443–453, 1 2012.

[24] Yaw Sing Tan, David R. Spring, Chris Abell, and Chandra S. Verma. The Application

of Ligand-Mapping Molecular Dynamics Simulations to the Rational Design of Peptidic

Modulators of Protein-Protein Interactions. Journal of Chemical Theory and Computation,

11(7):3199–3210, 2015.

[25] Wenbo Yu, Sirish Kaushik Lakkaraju, E. Prabhu Raman, Lei Fang, and Alexander D.

Mackerell. Pharmacophore modeling using site-identification by ligand competitive sat-

uration (SILCS) with multiple probe molecules. Journal of Chemical Information and

Modeling, 55(2):407–420, 2015.

[26] Sirish Kaushik Lakkaraju, Wenbo Yu, E Prabhu Raman, Alena V Hershfeld, Lei Fang,

Deepak A Deshpande, and Alexander D MacKerell. Mapping Functional Group Free

268



Energy Patterns at Protein Occluded Sites: Nuclear Receptors and G-Protein Coupled

Receptors. Journal of Chemical Information and Modeling, 55(3):700–708, 3 2015.

[27] Chao-Yie Yang and Shaomeng Wang. Hydrophobic Binding Hot Spots of Bcl-xL Protein-

Protein Interfaces by Cosolvent Molecular Dynamics Simulation. ACS medicinal chem-

istry letters, 2(4):280–284, 4 2011.

[28] Shota Uehara and Shigenori Tanaka. Cosolvent-Based Molecular Dynamics for Ensemble

Docking: Practical Method for Generating Druggable Protein Conformations. Journal of

chemical information and modeling, 57(4):742–756, 4 2017.

[29] Amr H. Mahmoud, Ying Yang, and Markus A. Lill. Improving Atom-Type Diversity and

Sampling in Cosolvent Simulations Using λ-Dynamics. Journal of Chemical Theory and

Computation, 15(5):3272–3287, 2019.

[30] Phani Ghanakota and Heather A. Carlson. Moving beyond Active-Site Detection: MixMD

Applied to Allosteric Systems. Journal of Physical Chemistry B, 120(33):8685–8695,

2016.

[31] Jesus Seco, F. Javier Luque, and Xavier Barril. Binding site detection and druggability

index from first principles. Journal of Medicinal Chemistry, 52(8):2363–2371, 2009.

[32] Sarah E. Graham, Richard D. Smith, and Heather A. Carlson. Predicting Displaceable

Water Sites Using Mixed-Solvent Molecular Dynamics. Journal of Chemical Information

and Modeling, 58(2):305–314, 2018.

[33] Caterina Bissantz, Bernd Kuhn, and Martin Stahl. A Medicinal Chemist’s Guide to Molec-

ular Interactions. J. Med. Chem., 53(16):6241–6241, 2010.

[34] Ying Yang, Bingjie Hu, and Markus A Lill. WATsite2.0 with PyMOL Plugin: Hydration

Site Prediction and Visualization BT - Protein Function Prediction: Methods and Proto-

cols. pages 123–134. Springer New York, New York, NY, 2017. ISBN 978-1-4939-7015-5.

[35] Bingjie Hu and Markus A. Lill. WATsite: Hydration site prediction program with PyMOL

interface. Journal of Computational Chemistry, 35(16):1255–1260, 2014.

[36] Markus Lill, Ying Yang, Amr Mahmoud, Matthew Masters, and Analytics Chem-

Rxiv Preprint. Elucidating the Multiple Roles of Hydration in Protein-Ligand Binding

via Layerwise Relevance Propagation and Big Data Analytics: Elucidating the Multiple

Roles of Hydration in Protein-Ligand Binding via Layerwise Relevance Propagation and

Big Data. pages 1–17, 2019.

[37] Mh Eileen Tan, Jun Li, H. Eric Xu, Karsten Melcher, and Eu Leong Yong. Androgen

receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacologica

Sinica, 36(1):3–23, 2015.

269
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8.1 Supporting Information

Supporting Results and Discussion
Sequence Similarity Among Hormonal NRs

Figure S 1 Residues and surface representation of AF-2 and BF-3 sites for AR, ERα,
ERβ, and GR. The AF-2 is shown in pine green, while the BF-3 site was colored red.
The surface was colored according to the type of residue (blue, positive charge; red,
negative charge; green, non-polar; yellow, cysteine; purple, glycine; light blue, histi-
dine).
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Figure S 2 Residues and surface representation of AF-2 and BF-3 sites for MR, PR,
TRα, and TRβ. The AF-2 is shown in pine green, while the BF-3 site was colored
red. The surface was colored according to the type of residue (blue, positive charge;
red, negative charge; green, non-polar; yellow, cysteine; purple, glycine; light blue,
histidine).
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Distinct Pharmacophores of the Allosteric Sites

Figure S 3 Comparison between cosolvent densities between apo and holo protein for
the AF-2 site. For each receptor, a comparison of the probe densities between holo
(upper part) and apo (lower part) structure is shown. The densities are shown at an
isovalue of 12. A legend to interpret the colors is given below the figure. The viewpoint
was held consistent.
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Figure S 4 Comparison between cosolvent densities between apo and holo protein for
the BF-3 site. For each receptor, a comparison of the probe densities between holo (up-
per part) and apo (lower part) structure is shown. The densities are shown at an isovalue
of 12. A legend to interpret the colors is given in below the figure. The viewpoint was
held consistent.
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Table S 1 Backbone RMSD of AR cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 1.30 1.20 1.59 1.14 1.27 1.10
2 1.24 1.33 1.46 1.13 1.07 1.24
3 1.51 1.37 1.66 1.08 1.29 1.23
4 1.44 1.34 1.44 1.16 1.26 1.36
5 1.33 1.50 1.67 1.06 1.40 1.22
6 1.47 1.12 1.56 1.15 1.22 1.27
7 1.55 1.39 1.80 1.08 1.07 1.10
8 1.45 1.14 1.07 1.23 1.25 1.19
9 1.40 1.42 1.37 0.97 1.31 1.13
10 1.46 1.33 1.36 1.49 1.25 1.29

The backbone RMSD (Å) was determined between the input structure of the simulations
and the last frame of the respective replica.

Table S 2 Backbone RMSD of ERα cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 2.19 1.61 1.88 1.36 1.48 1.48
2 1.60 1.59 1.29 1.24 1.35 1.67
3 1.90 1.54 1.74 1.81 1.27 1.59
4 1.55 1.74 1.68 1.59 1.28 1.48
5 1.75 1.87 2.01 1.39 1.55 1.45
6 1.88 1.36 1.99 1.45 1.22 1.28
7 1.45 1.79 1.56 1.27 1.81 1.48
8 1.74 1.54 1.43 1.44 1.65 1.40
9 1.44 1.67 1.87 1.64 1.22 1.42
10 1.88 1.51 1.89 1.40 1.19 1.74

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.
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Table S 3 Backbone RMSD of GR cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 1.30 1.43 1.14 1.30 1.40 1.29
2 1.33 1.36 1.14 1.04 1.28 1.35
3 1.29 1.38 1.07 1.17 1.42 1.36
4 1.27 1.16 1.10 1.22 1.18 1.14
5 1.38 1.29 1.39 1.15 1.26 1.20
6 1.26 1.42 1.21 1.23 1.16 1.19
7 1.24 1.14 1.24 1.15 1.24 1.07
8 1.24 1.51 1.39 1.23 1.08 1.36
9 1.27 1.41 1.35 1.25 1.23 1.25
10 1.36 1.22 1.14 1.33 1.08 1.29

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.

Table S 4 Backbone RMSD of MR cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 1.31 1.44 1.86 1.61 1.60 1.46
2 1.56 1.30 1.47 1.69 1.30 1.78
3 1.68 1.76 1.73 1.41 1.51 1.50
4 1.78 1.68 1.88 1.38 1.50 1.37
5 1.67 1.48 1.74 1.48 1.59 1.49
6 1.61 1.69 1.53 1.67 1.58 1.33
7 1.41 1.40 1.84 1.35 1.48 1.78
8 1.39 1.54 1.59 1.49 1.45 1.40
9 1.42 1.43 1.66 1.72 1.59 1.56
10 1.25 1.87 1.70 1.68 1.28 1.36

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.
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Table S 5 Backbone RMSD of PR cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 1.29 1.10 1.18 1.10 0.87 1.19
2 1.12 1.05 1.04 0.98 0.81 1.28
3 0.98 1.26 1.06 1.07 1.04 0.91
4 1.03 0.97 1.21 1.00 1.06 0.90
5 1.07 0.89 1.17 1.17 1.02 1.09
6 1.04 1.41 1.02 1.12 1.29 1.03
7 1.14 1.14 1.23 1.05 1.40 1.30
8 1.07 1.23 1.06 1.05 1.05 1.03
9 1.18 0.91 1.26 0.98 1.02 1.27
10 1.16 1.13 1.14 1.05 1.07 1.12

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.

Table S 6 Backbone RMSD of TRα cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 2.15 1.82 1.96 1.84 1.67 2.41
2 1.85 1.45 1.75 1.97 2.02 1.24
3 1.86 1.30 1.64 2.03 2.28 2.01
4 1.64 2.12 1.90 1.60 1.32 1.51
5 1.94 2.57 1.56 1.69 2.35 2.23
6 2.37 1.91 1.86 2.44 1.69 2.11
7 2.03 1.76 2.25 1.97 1.61 1.82
8 1.74 2.01 2.21 1.82 1.91 1.72
9 1.71 1.73 1.93 1.91 2.32 1.82
10 2.03 1.85 1.63 1.88 1.92 2.08

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.
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Table S 7 Backbone RMSD of TRβ cosolvent MD simulations.

Replica Acetonitrile Isopropanol Pyrimidine Acetonitrile Isopropanol Pyrimidine

apo apo apo holo holo holo

1 1.51 1.49 1.38 1.51 1.85 1.95
2 1.42 1.77 1.75 1.55 1.40 1.64
3 1.56 1.72 1.51 1.54 1.55 1.69
4 1.64 1.24 1.32 1.51 1.51 1.68
5 1.87 1.61 1.73 1.55 1.69 1.91
6 1.58 1.90 1.50 1.71 1.70 1.61
7 1.48 1.65 1.32 1.55 1.31 1.74
8 1.63 1.62 1.43 1.56 1.65 1.59
9 1.48 1.40 1.73 1.65 1.66 1.60
10 1.63 1.74 1.73 1.59 1.51 1.31

The RMSD (Å) was determined between the input structure of the simulations and the
last frame of the respective replica.

Conformational Change

Figure S 5 Conformational change at AF-2 and BF-3 crystal structures. Superposition
of holo crystal structures of the allosteric site (PDB IDs: 2PIP, 2PIV, 2YHD, 2YLO,
2YLP, 2PIT, 2PIU, 2PIO, 2PKL, 2YLQ, 2PIW, 4HLW).
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Figure S 6 Conformational change at AF-2 and BF-3 determined by RMSD. The
RMSD between the representative structures of cosolvent and pure water simulations is
shown for (A) AF-2 site in acetonitrile, (B) AF-2 in isopropanol, (B) AF-2 in pyrimi-
dine, (D) BF-3 in acetonitrile, (E) BF-3 in isopropanol, and (F) BF-3 in pyrimidine.
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Figure S 7 RMSD of simulations in pure water. The backbone RMSD of simulations
in pure water (performed in triplicates) is presented for each receptor.
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Hydration Sites of the Allosteric Sites

Figure S 8 Hydration sites determined from crystal structure analysis. The hydration
sites determined to be conserved in the hydration site analysis based on crystal struc-
tures. While (A) highlights the AF-2 site the (B) panel presents the BF-3 site.

Figure S 9 Hydration sites determined from crystal structure analysis. (A) Hydration
site conserved among AR, ERβ, GR and MR. (B) Hydration site conserved among
ERβ, GR, PR, TRβ. (C) Hydration site conserved among ERs. The nomenclature for
the shown residues was selected based on (A) AR, (B) GR, and (C) ERα.
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Figure S 10 RMSD analysis of WATsite simulations. The backbone RMSD of WATsite
simulations is presented for each receptor. Since a separate simulation was performed
for each site, different colors were used to indicate the respective simulation.

Tables S8-S16
Please refer to the original article for this table as it contains a large amount of raw data.

Molecular Docking

Figure S 11 Poses obtained from redocking known crystallographic ligands: Glide SP
for the AF-2 site.
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Figure S 12 Poses obtained from redocking known crystallographic ligands: Glide SP
for the BF-3 site.

Figure S 13 Poses obtained from redocking known crystallographic ligands: Glide XP
for the AF-2 site.
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Figure S 14 Poses obtained from redocking known crystallographic ligands: Glide XP
for the AF-2 site.

Table S 17 RMSD obtained from redocking known crystallographic ligands.

RMSD Site RMSD SPa (Å) RMSD XP b (Å)

2PIQ AF-2 2.11 1.19
2YHD AF-2 1.47 1.96
2PIW AF-2 4.90 7.92
2PIP AF-2 7.10 0.84
2YLP AF-2 4.67 7.24
2PIU AF-2 2.24 4.28
2PIO AF-2 1.67 0.92
2YLQ BF-3 6.76 n/ac

2PIX BF-3 7.46 5.06
2YLP BF-3 5.22 7.10
2PIP BF-3 5.15 4.75
4HLW BF-3 4.78 7.00
2PIO BF-3 1.25 3.56
2PIV BF-3 2.11 1.07
2YLO BF-3 3.83 8.22
2PIT BF-3 2.11 1.90
3ZQT BF-3 1.76 n/ac

2PIN AF-2 4.83 4.91

a Results obtained using SP docking protocol. b Results obtained using XP docking
protocol. c No pose was obtained by the applied protocol and specifications.
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Figure S 15 Crystal mates around the BF-3 site. Crystal mates in the 4 A radius of
cocrystallized ligands at the BF-3. Nearby mates were colored red.

Table S 18 RMSD obtained from redocking known crystallographic ligands.

AR AR (Å) ERα ERβ TRα TRβ GR

AF-2 BF-3 AF-2 AF-2 AF-2 AF-2 AF-2

Actives 44 87 65 3 28 99 8
Decoys 2650 4350 4957 200 1450 5350 450
ROC AUC 0.75 0.76 0.71 0.85 0.45 0.55 0.87

Figure S 16 Score distributions for the ERα.

Figure S 17 Score distributions determined by the Glide XP docking protocol.
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Figure S 18 VPC16606 in docked to various NRs.
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Supporting Materials and Methods

Sequence Similarity Among Hormonal NRs

Figure S 19 Sequence alignment of all NRs assessed in this study. Sequence alignment
of the NRs considered in this study. Residues of the allosteric sites were indicated with
gray boxes.
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Table S 19 RMSD obtained from redocking known crystallographic ligands.

Group Amino acids

1 A, I, L, M, F, W, V, C
2 N, Q, S, T
3 E, D
4 K, R
5 H, Y
6 P
7 G

The amino acids groups used to determine the degree of conservation according to the
ClustalW scheme are shown. The residues are given in single-letter code.

Ligand preparation

Table S 20 Structures prepared for molecular docking.

Please refer to the original article for this table as it contains a large amount of raw data.

Protein preparation

Table S 21 RMSD obtained from redocking known crystallographic ligands.

Receptor Structures MD Structures docking Template structures UniProt entry

AR 3L3X 2PIT n/a P10275
ERα 5WGD 3UUD 1X7R P03372
ERβ 4J24 2J7Y 3OLS Q92731
GR 5NFP 3K22 n/a P04150
MR 2AA2 2AA2 2A3I P08235
PR 1A28 1A28 n/a P06401
TRα 4LNW 4LNW n/a P10827
TRβ 1XZX 3GWS 2J4A P10828

The amino acids groups used to determine the degree of conservation according to the
ClustalW scheme are shown. The residues are given in single-letter code.
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Table S 22 Relaxation protocol prior to MD simulation.

Desmond stage Procedure
1 Task (reading files, initializing parameters)
2 Simulate, Brownian Dynamics, NVT, T = 10 K, small time steps,

and restraints on solute heavy atoms, 100 ps
3 Simulate, NVT, T = 10 K, small time steps, and restraints on

solute heavy atoms, 12 ps
4 Simulate, NPT, T = 10 K, and restraints on solute heavy atoms,

12 ps
5 Solvate pocket
6 Simulate, NPT and restraints on solute heavy atoms, 12 ps
7 Simulate, NPT and no restraints, 24 ps
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Table S 23 Mixed Solvent MD Desmond relaxation protocol.

Desmond stage Procedure
1 Brownian Dynamics, NVT, T = 10 K, 1 fs timestep,

and restraints on all solute atoms, 24 ps
2 Brownian Dynamics, NVT, T = 10 K, 1 fs timestep,

and restraints on solute heavy atoms, 24 ps
3 NVT, T = 10 K, 1 fs timestep, restraints on solute

heavy atoms, 12 ps
4 NPT, T = 10 K, 2 fs timestep, restraints on solute

heavy atoms, 12 ps
5 NPT, T= 300 K, 2 fs timestep, restraints on solute

heavy atoms, 24 ps
6 NPT, T = 300 K, 2 fs timestep, 15 ps

Table S 24 Number input structures and minimal amount for cluster to be considered
as conserved.

Receptor Number of input structures Minimal occupancy
AR 67 7
ERα 229 23
ERβ 32 3
GR 20 2
MR 27 3
PR 16 2
TRα 8 1
TRβ 9 1
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CHAPTER 9

Computational Assessment of Combination Therapy of AR
Targeting Compounds

Following their characterization in Chapter 8, the work presented here is focused on the
assessment of potential combination therapies to modulate androgen receptor signaling
with allosteric inhibitors. As classical antiandrogens induce conformational changes on
the protein surface, the recognition of compounds binding the superficial allosteric sites
AF-2 and BF-3 may be altered. By evaluating several microseconds of MD trajectories,
this study suggests combinations that should be avoided for the treatment of prostate
cancer.

Author contributions: Conceptualization, A.F.; formal analysis, A.F., F.H.; writing and orig-

inal draft preparation, A.F.; writing, review and editing, A.F., M.A., M.S.; visualization, A.F.;

supervision, M.A., M.S.

Based on the published research article:

Fischer, A.; Häuptli, F.; Lill, M. A.; Smieško, M. Computational Assessment of
Combination Therapy of Androgen Receptor-Targeting Compounds. J. Chem. Inf.
Model. 2021, 61, 2, 1001–1009.
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Abstract

The ligand binding domain of androgen receptor (AR) is a target for drugs against

prostate cancer and offers three distinct binding sites for small-molecules. Drugs acting

on the orthosteric hormone binding site suffer from resistance mechanisms that can,

in the worst case, reverse their therapeutic effect. While many allosteric ligands tar-

geting either the activation function-2 (AF-2) or the binding function-3 (BF-3) have

been reported, their potential for simultaneous administration with currently prescribed

antiandrogens was disregarded. Here, we report results of 40 µs molecular dynamics

simulations to investigate combinations of orthosteric and allosteric AR antagonists.

Our results suggest BF-3 inhibitors to be more suitable in combination with classical

antiandrogens as opposed to AF-2 inhibitors based on binding free energies and bind-

ing modes. As mechanistic explanation for these observations, we deduced a structural

adaptation of helix-12 involved in the formation of the AF-2 site by classical AR antag-

onists. Additionally, the changes were accompanied by an expansion of the orthosteric

binding site. Considering our predictions, the selective combination of AR-targeting

compounds may improve the treatment of prostate cancer.

Introduction

The androgen receptor (AR) is critically involved in the development and progression

of hormone-dependent prostate cancer (PC) rendering it a central target in its pharma-

cological treatment [1, 2]. Despite the initial success in treating the disease with the

currently available AR antagonists, they frequently fail in later stages due to alterations

of the receptor leading to drug resistance and a condition referred to as castrate-resistant

prostate cancer (CRPC). Since single amino acid mutations near the binding site can

lead to the conversion of classical AR antagonists to agonists and thus reverse their ther-

apeutic effect, there were great efforts to develop compounds targeting alternative sites

at the receptor to bypass these effects [3, 4, 5, 6]. At the ligand binding domain (LBD)

shown in Figure 1A, these compounds generally target either the activation function-

2 (AF-2) involved in coactivator binding essential for downstream signaling, or the

binding function-3 (BF-3) suspected to allosterically modulate the AF-2 and interact

with chaperones [4, 7, 8] (Figure 1B). In previous studies, it was suggested to com-

bine AF-2 inhibitors with classical antiandrogens to improve the therapeutic outcome
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[9]. However, as the association of coactivator proteins at the AF-2 site is prevented

by orthosteric AR antagonists, the affinity and residence of allosteric inhibitors tar-

geting this site might be altered in the case of concurrent therapy [10]. Similarly, it

remains unknown if ligands binding to the BF-3 could be affected in the same way.

Combination therapy with multiple drugs is a popular and often successful strategy

in the pharmacological interventions against malignant tumors including PC. To im-

prove PC treatment efficacy, combination of orthosteric and allosteric inhibitors offers

an attractive approach as such combinations can theoretically even restore the antian-

drogenic function of compounds suffering from resistance mechanisms by modifying

the intrinsic residue networks or shifting the structural ensemble toward more favor-

able conformational states and, thus, amplify the resulting pharmacological effect. As

the communication between the orthosteric site and AF-2 is thought to be bidirectional

[11], such effects would be feasible. The safety and benefit of combination therapies

needs to be carefully assessed regarding potential drug-drug interactions before they

reach the clinics [12, 13, 14, 15, 16].

As discussed in a recent review, it remains an open question on how we can design

synergistically optimized combinations of orthosteric and allosteric drugs [12]. In an

experimental setting, protein crystallography, siRNA screening, affinity determination,

or functional assays constitute methods to investigate drug combinations. Neverthe-

less, due to the high number of possible combinations, such experiments are costly,

especially when large libraries of compounds are considered in early stages of drug

discovery [17]. Further, resolving crystal structures of the AR bound to orthosteric

antagonists was, until now, not achieved without specific binding site mutations alter-

ing the molecular mechanism of these ligands [18]. Therefore, crystallography is not

feasible to explore their combination with allosteric ligands. Thus, there is a need for

cost-effective methods for the development of synergistically acting combinations. In

this regard, computational tools offer an inexpensive alternative to rationalize and sup-

port laboratory experiments. Several studies focused on various therapeutic targets have

conducted molecular dynamics (MD) simulations with drug combinations to study the

interplay of orthosteric and allosteric ligands [19, 20, 21, 22]. MD simulations en-

able the detailed investigation of time-evolved ligand-protein interactions by introduc-
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ing structural flexibility [23]. As large share of allosteric AR inhibitors were discovered

in virtual screening projects [7, 9, 24, 25], computational methods such as MD simu-

lations constitute a suitable instrument to investigate their combination with orthosteric

ligands.

In this study, we conducted microsecond MD simulations to examine combinations of

compounds targeting the LBD of the AR. In particular, we assessed the combination of

four allosteric inhibitors, two targeting the AF-2 and BF-3 respectively, with conven-

tional antagonists in the orthosteric site, as well as their concurrent binding (Figure 1C).

We examined their binding modes, binding free energies, and time-evolved interaction

with the allosteric sites to give recommendations for combination therapies targeting

the AR. Our results suggest that BF-3 inhibitors could be concurrently administered

with conventional antiandrogens such as bicalutamide offering a potentially synergis-

tic treatment effect against PC. In contrast, the AF-2 inhibitors suffered reduced shape

complementarity in combination with an orthosteric antagonist. Thus, it is possible that

such a combination therapy would not be beneficial. A mechanistic analysis highlighted

altered plasticity and topology of the AF-2 site in combination with bicalutamide to be

responsible for our observations.

Figure 1 Structural overview. (A) Helical architecture of the AR from two different
orientations. The location of the AF-2 and BF-3 is indicated by the same colors as in
subfigure B. (B) Location of the AF-2 and BF-3 allosteric sites. (C) Structures of the
ligands assessed in this work.

Results and Discussion

Binding modes and solvent accessibility As MD simulations provide a time-evolved

ensemble of the ligand-protein complex, the area of the ligand that is exposed to solvent,
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relevant for hydrophobic effects and desolvation, can be determined. In ligand-protein

binding, a decrease in solvent accessibility of the ligand is often associated with a gain

in hydrophobic interaction and shape complementarity improving ligand affinity. Thus,

its assessment can give important insights into the characteristics of a particular binding

mode [26, 27]. The AF-2 and BF-3 of the AR are shallow sites located on the surface of

the receptor. As the binding modes of several allosteric inhibitors are known [28], this

allows their computational evaluation in combination with orthosteric or other allosteric

ligands. Since we observed different degrees of ligand burying within their binding sites

in our simulations, we computed the solvent-accessible surface area (SASA) of the lig-

ands. As shown in Figure 2A, the two AF-2 inhibitors behaved differently regarding

this metric. While both compounds K10 and AV-6 showed a statistically significant

increase (Tables S1-S2) in SASA with bicalutamide the combination with a BF-3 in-

hibitor affected them differently. Compound K10 presented higher SASA values, but

AV-6 improved in this metric in combination with YLO. A visual inspection of repre-

sentative structures with AV-6 (Figure 2B) revealed alterations in the surface topology

of the AF-2 site between structures bound to the natural hormone dihydrotestosterone

(DHT) and bicalutamide. Therefore, the orthosteric antagonist decreased the capability

of K10 and AV-6 to induce favorable conformational changes promoting hydrophobic

contacts in the AF-2 site. As only one ligand was negatively affected when allosteric

inhibitors for AF-2 and BF-3 were combined, the alterations of the AF-2 might not

impact all compounds to the same degree bound to this site meaning that this effect is

ligand-specific. Compounds associating with the BF-3 generally displayed increased

or lower SASA values in the examined combinations compared to DHT. The values

indicated improved burying within the site for YLO. A visualization of representative

structures obtained from clustering based on an RMSD matrix (Figure 2C) confirmed

the formation of a deeper pocket if YLO was combined with bicalutamide as opposed

to DHT. Due to the induced conformational changes of the BF-3, the aromatic groups

of the ligand are deeply inserted into the site leading to decreased solvent exposure.

The SASA increase of 4HY amounted to 4.5 Å2, which was only marginally signifi-

cant and therefore, constituted a less drastic change as opposed to the decrease of up to

57.6 Å2 with YLO. Notably, this analysis was only performed for simulations present-
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ing a stable binding mode of the compounds without dissociation of the ligand, as it

was done for all ligand-dependent metrics. Therefore, based on average SASA values,

BF-3 inhibitors can be combined with both orthosteric antagonists and AF-2 inhibitors

and could even benefit from these types of polypharmacology.

Regarding the most prevalent ligand-protein interactions, we computed their similar-

ity across the assessed polypharmacology combinations based on binary fingerprints.

The analysis consistently revealed differences in the binding modes between allosteric

ligands in combination with DHT and bicalutamide (Figures 2D-F). In most cases, the

allosteric ligands presented a similar interaction pattern in combinations with other al-

losteric ligands. These results show that alternative binding modes, which do not have

to compromise the binding free energy or SASA, are present if the orthosteric site is oc-

cupied by bicalutamide. A comprehensive overview of ligand-protein contacts present

in any combination is presented in Tables S3-S6. Based on the differences in ligand-

protein interactions in a polypharmacology setting, future structure-based design efforts

could consider the changes and improve binding in either combination.

Figure 2 Solvent accessibility and ligand-protein interactions. (A) The SASA of the
respective allosteric ligand is shown in combination with orthosteric inhibitors (DHT
or bicalutamide) or other allosteric inhibitors (YLO bound to the BF-3 site for K10
and AV-6 as well as K10 and AV-6 bound to the AF-2 site for YLO). Global average
values of the DHT-control are indicated by a dashed line, while short lines indicate the
averages of the remaining systems. (B) AV-6 in the AF-2 site is shown with DHT or
bicalutamide. The average SASA of the respective simulation is indicated. (C) YLO
in the BF-3 site is shown with bicalutamide and DHT. (D) Comparison of interactions
of K10 systems. (E) Comparison of interactions of AV-6 systems. (F) Comparison of
interactions of YLO systems. (G) Comparison of interactions of 4HY systems.
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Residence and binding energies Besides thermodynamics, binding kinetics of ligands

is an important evaluate to determine and optimize their binding efficiency. The res-

idence of a molecule is defined as the period it resides in a particular binding site

[29, 30]. Using computational methods such as MD simulations, a high number of

binding events, usually obtained from several replica simulations, is required to quantify

residence of ligands in accordance with experiments. As the time scale of such events

is long in comparison to current simulation capabilities [30, 31], tremendous computa-

tional power would be necessary to investigate them in their full complexity. However,

even though we only performed five replica simulations for each system, we could ob-

serve several unbinding events of AF-2 inhibitors, while the BF-3 inhibitors remained

bound within their binding pocket (Figure 3A). As AF-2 ligand dissociation occurred

independent of the orthosteric ligand, we assumed the crystallographic binding modes

to be relatively unstable. Indeed, the incomplete ligand electron density of the crystal

structure bound to K10 (PDB ID: 2PIP) suggests a certain degree of instability. Since

the BF-3 inhibitors remained fairly stable throughout the microsecond MD simulations

in all assessed combinations, they seemed to be less affected by allosterically mediated

conformational changes within the receptor structure. Interestingly, one simulation in

combination with DHT displayed both dissociation and reassociation of AV-6. Before

and after this rare event, we could detect a highly similar binding mode with an RMSD

of 1.6 Å for the best matching pair (Figure S1). However, as in other simulations, the

ligands also presented alternative orientations before and after unbinding.
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Figure 3 Interactions of the ligands. (A) Residence of ligands within their binding
sites based on distance to the respective allosteric site for all replica simulations. (B)
Average ligand-protein binding free energies determined with the MM/GBSA protocol
for all replicas. The global average value of the DHT-control simulations are indicated
by a dashed line, while short lines indicate the averages of the remaining systems.

Except for the simulations studying the dissociation of the ligands, we determined abso-

lute binding free energies using the molecular mechanics-generalized Born surface area

(MM/GBSA) protocol of the last 100 ns of our simulations (Figure 3B). MM/GBSA

calculations have been previously applied to study the interaction of orthosteric and al-

losteric inhibitors against the main protease of SARS-CoV-2 and have recommended

potentially synergistic drug combinations [19]. Regarding AF-2 inhibitors, our results

indicated that the orthosteric AR antagonist bicalutamidedid not significantly affect the

binding free energy (Tables S1-S2) of both allosteric inhibitors (Figure 3B). However,

while K10 suffered from a statistically significant loss in binding affinity in combina-

tion with the BF-3 inhibitor, AV-6 displayed improved energies in combination with

YLO. Hence, AF-2 inhibitors could profit or suffer from a polypharmacology approach

with other allosteric ligands depending on the respective ligand. This is surprising, as

the rearrangement of H12 manipulates the topology of the AF-2 site as we elaborate

in the following sections. Interestingly, the BF-3 inhibitors either presented unchanged

or improved binding energies in either the combination with bicalutamide or AF-2 in-

hibitors. Especially YLO presented improved binding free energies with bicalutamide,

as opposed to all other ligands. While the average energy amounted to -54.7 kcal/mol

if DHT was bound concurrently, the average energies improved by -6.0 kcal/mol in

combination with bicalutamide, which is the most significant difference in binding free

302



energy we observed between different systems. The combination of YLO with AV-6

resulted in an average gain of -3.0 kcal/mol. The binding free energy of 4HY was not

significantly affected by the presence of bicalutamide, even though there was a slight

non-significant trend for improved energies. The number of ligand-protein hydrogen

bonds remained stable among the different combinations (Figure S2). In conclusion,

BF-3 inhibitors were clearly less affected by the combination with other allosteric or

orthosteric inhibitors based on binding free energies, solvent accessibility and residence

within their binding site (Table 1). On the other hand, combinations of AF-2 inhibitors

impacted the individual compounds to various degrees suggesting that some combina-

tions could potentially be without desirable benefit.

Table 1 Conclusions regarding drug combinations.

Ligand Combination Binding energya Binding modeb

K10 BIC unchanged worse
YLO worse worse

AV-6 BIC unchanged worse
YLO improved improved

YLO BIC improved improved
AV-6 improved improved
K10 unchanged improved

4HY BIC unchanged worse

Statistical significant differences of the systems compared to DHT-bound systems. aBinding

energy refers the binding free energies obtained from the MM/GBSA results bBinding mode

refers to the SASA data.
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Mechanistic insights In two recent studies, it was shown that classical antiandrogens

allosterically modulate the structure of the AR, in particular the AF-2 site involved in

coactivator association [11, 32]. An allosteric pathway involving helix-3 (H3), H4, and

H12 was proposed to induce changes of the AF-2. Another study, focused on the confor-

mational changes caused by bicalutamide, reported alterations in H10 and H12. Since

H3 and H12 are involved in the formation of this allosteric site, we studied them in more

detail to understand our previous findings mechanistically. In a first step, we determined

the present per-residue secondary structure of H3, H10, and H12 during all frames of

our simulations. While helices 3 and 10 did not show strong alterations with different

ligand combinations regarding their overall helicity (Figures S3-S5), we observed spe-

cific changes of H12 regarding its spatial location and helical architecture (Figure 4). A

visual comparison of H12 between the AR bound to DHT and bicalutamide combined

with an AF-2 allosteric inhibitor revealed a shift towards the AF-2 site and a stretching

around its center. We observed similar conformational changes in the control simula-

tions without allosteric inhibitors (Figures S6 and S7). A displacement of H12 as well

as a break in helicity in the presence of antagonists was previously reported [32, 33].

Even though we observed a high variability among the simulations, the overall helic-

ity was significantly decreased in all four simulations with bicalutamide bound to the

orthosteric site compared to DHT-bound systems including the controls (Table S2). As

we pre-equilibrated the bicalutamide systems before adding allosteric ligands, the sim-

ulations started in a low helicity state, which persisted in the subsequent period of time.

Additionally, the control simulations presented a similar picture (Figure S6). Conforma-

tional changes of H12 inherently influence the topology of the AF-2 site and thus likely

modulate the interaction of AF-2 inhibitors as we observed it. In the BF-3, residues

P723 and F826, which are known to be crucially involved in ligand-protein interactions

[34], displayed significant alterations in their mobility. Our interaction analysis con-

firmed the involvement of those two residues in ligand-protein contacts at the BF-3.

However, the BF-3 inhibitors seemed to be more tolerant to such differences in binding

pocket dynamics as indicated by their unchanged or improved predicted binding affinity

and shape complementarity. To obtain better insight into the allosteric communication

within the receptor, dynamic cross-correlation map (DCCM) analysis correlating col-
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lective motions among protein residues was applied in previous work [11], in which a

positive correlation between H10 and the H11-H12 region, as well as the H3-H4 and

H10 region was reported. Similarly, our DCCM analysis of four systems presenting

distinct alterations in the positioning of H12 revealed positive correlations between H3-

H4 and the terminal region of H10 (Figure S8). Additionally, we registered a positive

correlation regarding the collective motions of H3 and H12. The highest negative corre-

lation of distant sites of the protein was observed by H4-H5 and H12, which was more

pronounced in simulations with DHT compared to bicalutamide. Similarly, the corre-

lation between H3 and H10 was lower in simulations with bicalutamide. In addition to

the DCCM analysis, we computed the average betweenness centrality (BC) describing

the importance of a protein residue for intramolecular communication [35]. Compar-

ing the simulations with DHT and bicalutamide, we could observe a distinct pattern for

changes in BC (Figures S6 and S9). While the values for H3 were always higher in

the presence of DHT, a narrow peak corresponding to the residue L811 located in H8

was higher in simulations with bicalutamide. The increased BC values of H3 are in ac-

cordance with its higher collective motions with DHT as opposed to bicalutamide. The

residue L811 is located in H8 and in close spatial proximity to the C-terminus proceed-

ing H12 and displayed a positive correlation to H3 and H12 in systems with DHT, but a

negative correlation with H12 in systems with bicalutamide. In conclusion, our results

suggest orthosteric AR antagonists to influence the intramolecular communication in

agreement with results of a previous study [11]. Upon visual inspection of trajectories

with decreased H12 helicity, we noticed a distinct conformational adaptation of F891

due to the steric pressure from the fluorinated phenyl ring of bicalutamide (Figure S10).

Further, residues M895 and I899 presented differences in the respective simulations.

All of these residues have been previously reported to adapt due to the presence of

various antagonists and cause conformational rearrangements of H12 [10, 18, 32]. To

follow up and quantify this change, we determined the per-residue RMSD of F891 (Fig-

ure S11). In all simulations with bicalutamide, F891 presented a statistically significant

increase in RMSD as opposed to the remaining DHT-bound systems. The starting pose

of bicalutamide for MD simulations obtained from induced-fit docking did not present

an alternative rotamer of F891 compared to the DHT-bound crystal structure (Figure
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S12). After one microsecond of MD simulation used to equilibrate the structure, how-

ever, a bicalutamide-induced change of F891 along with a displacement of H12 could

be observed. The movement of F891 allowed a hydrophobic interaction with I899 to

take place stabilizing the altered conformation of H12 along with a hydrogen bond

between Q902 and E897. Thus, the altered conformation of H12 was stabilized by

the bicalutamide-induced change of F891. In presence of an allosteric antagonist, the

changes of F891 remained stable except one replica with AV-6. To further investigate

the role of F891, we conducted a single simulation with the F891A mutation. While the

helicity of H12 was intermediate between DHT-bound and bicalutamide-bound systems

(Tables S7-S8), there was no displacement of the helix toward the coactivator binding

site as opposed to the wild-type system (Figure S13). However, future studies will have

to study the effects of this mutation, as we only performed a single simulation without

any replicas.

Figure 4 Helicity of H12. (A) Representative structures show H12 in systems of K10
with DHT (pine green) and bicalutamide (red). On top, two structures with clear con-
formational change are shown, while the bottom part shows all representatives of the
respective simulations. (B) Representative structures show H12 in systems of AV-6
with DHT (pine green) and bicalutamide (red). On top, two structures with clear con-
formational change are shown, while the bottom part shows all representatives of the
respective simulations. (C) Helicity of H12 of all allosteric inhibitors with either DHT
or bicalutamide. Combinations of allosteric inhibitors are shown in Figure S5.

We registered a decrease in backbone flexibility induced by bicalutamide in both AF-2

and BF-3 based on root-mean square fluctuation (RMSF) values compared to DHT-

bound receptors (Figures 5A, 5B, and S14). Interestingly, these changes were more

pronounced for the BF-3 site that did not severely suffer regarding the metrics describ-

ing ligand interactions. This indicated that BF-3 inhibitors might profit from the rigid-
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ification of their binding site, while it potentially penalizes some AF-2 inhibitors. In

the AF-2, the most pronounced changes occurred for F725, R726, and V730. Interest-

ingly, the F725L mutation of the AR is associated with partial androgen insensitivity

syndrome and the R726L mutation was linked to PC [36]. Therefore, alterations in mo-

bility of these residues might be involved in modifying the association of ligands and

coactivator proteins at the AF-2 site as we observed it. The root-mean square deviation

(RMSD) of the simulations indicated acceptable convergence of the simulations (Figure

S15). In previous work on antagonist induced conformational changes of the AR, an

expansion of the LBP was reported [18, 10] and the increased volume was linked to the

displacement of H12 by orthosteric antagonists. In our analysis of the binding site vol-

ume, we observed a significantly higher volumes in all simulations with bicalutamide

including the controls without allosteric inhibitors (Figures 5C and S5). As we likewise

observed a displacement and adaptation of H12 with bicalutamide, which is bulkier

than DHT, this might explain our observations. If this increase is only a consequence of

the displacement due to the size and orientation of the antagonist molecule, or if it has

functional consequences on the protein remains to be answered.

Figure 5 Flexibility and binding site volumes. (A) Per-residue RMSF of the AF-2 site
in different combinations. (B) Per-residue RMSF of the BF-3 site in different combi-
nations. (C) Binding site volumes of the orthosteric site in simulations with different
ligand combinations.
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Materials and Methods

Model building The crystal structure of the AR bound to DHT was retrieved from the

Protein Data Bank [37] due to is excellent resolution of 1.55 Å (PDB ID: 3L3X). To

assure that the receptor was modeled according to its wild-type sequence, the FASTA

file of the AR was obtained from the UniProt database [38] (Uniprot ID: P10275) and

compared to the amino acids of the obtained crystal structure by sequence alignment

with ClustalW [39] in the UGENE (v1.32.0) toolkit [40]. Based on this assessment, we

introduced a S669C mutation to restore the wild-type sequence using the 3D Builder

panel within the Maestro Small-Molecule Drug Discovery Suite (v2019-3) [41]. Next,

the protein was treated with the Protein Preparation Wizard [42] within Maestro to add

hydrogen atoms, assign bond orders, and predict protonation states with Epik at pH 7.4.

We reoriented the hydrogen bonding network using PROPKA at pH 7.4 and subjected

the system to a restrained minimization using the OPLS 2005 force field with a con-

vergence threshold of 0.3 Å for protein heavy atoms. In a final step, the cocrystallized

coactivator fragment was removed from the AF-2 site.

Unfortunately, no wild-type structure of the AR cocrystallized with an antagonist is

available to date. Since induced-fit is generally required in order to accommodate an-

tagonists in the AR LBP [2], we obtained the starting conformation of bicalutamide

using the DOLINA induced-fit docking software [43]. The coordinates of bicalutamide

were obtained from the PubChem database (PubChem CID: 2375) [44] and treated with

the LigPrep routine in Maestro to predict its protonation state at pH 7.4 and to obtain

an energy-minimized conformer using the OPLS3e force field. As bicalutamide is pre-

scribed in the racemic form [45], we selected the energetically more favorable (Table

S9) (S)-isomer for our study. We validated the obtained best scored pose with crystal-

lographic data and obtained an RMSD value of 1.75 Å to our pose despite the W741L

mutation in the crystal structure (Figure S16). Further, the starting conformations of

AF-2 and BF-3 allosteric ligands were obtained from their crystal structures (Table

S10) by superposition to our model. We avoided steric clashes by manually adapting

side chain torsions of the protein and removing interfering water molecules. These

crystal structures were also treated with the Protein Preparation Wizard as described

above to obtain correct bond orders and protonation according to the crystallographic
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information.

MD simulations All MD simulations in this study were performed using the Desmond

(v2019-1) simulation engine [46]. The orthorhombic periodic boundary systems with

a buffer of 10 Å to the next protein atom were solvated with TIP3P solvent molecules.

After the default equilibration protocol of Desmond, all simulations were conducted in

an NPT ensemble at a temperature of 310 K maintained by the Nose-Hoover thermostat

and atmospheric pressure regulated by the Martyna-Tobias-Klein barostat. We selected

the OPLS 2005 force field and a time step of 2 fs for the RESPA integrator. Long-range

interactions were treated with the u-series algorithm [47] and bonds to hydrogen atoms

were restrained using the M-SHAKE algorithm. Short-range interactions were cut off

at 9 Å. Each system was simulated for 1 µs with five replica simulations by altering the

random seed for the initial velocities with atomic coordinates recorded at an interval of

1 ns. The complex with bicalutamide was pre-equilibrated for 1 µs and clustered using

the trj cluster.py script (highest occupied cluster) that comes with Maestro before the

complexes with allosteric inhibitors were built. In the clustering routine we limited the

number of output clusters to 15 and information on the cluster population and the total

number of clusters is given in Tables S11 and S12. Further, we ran five replicas for

the AR bound to DHT and bicalutamide without any allosteric ligand present resulting

in a total of 60 µs MD simulations (Table 2). In addition, we conducted a single mi-

crosecond simulation of the AR bound to bicalutamide with the F891A mutation. The

mutation was introduced in the 3D Builder panel in Maestro.
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Table 2 Simulations of polypharmacology combinations.

Orthosteric AF-2 BF-3 Replicas
DHT K10 none 5

AV-6 none 5
K10 YLO 5
AV-6 YLO 5
none 4HY 5
none YLO 5
none none 5

BIC K10 none 5
AV-6 none 5
none 4HY 5
none YLO 5
none none 5

BIC F891A none none 1

Evaluation of the MD trajectories The RMSD, RMSF, number of hydrogen bonds,

and ligand SASA values of the protein were obtained in the Simulation Interaction Di-

agram panel within Maestro. We computed the binding free energies for each allosteric

ligand using the thermal mmgbsa.py script provided with Maestro. This analysis was

conducted for the last 100 ns of the simulations. The residence of the ligands within

their binding site was calculated with an in-house python routine measuring the dis-

tance between the centroid of each ligand and the α-carbon of a protein residue located

at the respective site (M734 at AF-2 and F673 at BF-3). Based on a visual inspection of

the trajectories, the ligand was considered to be bound if the distance was below 14 Å

or 16 Å to for the AF-2 site and BF-3 site respectively since a comparably buried α-

carbon atom was selected. Ligand-protein interactions were evaluated based on the data

obtained from the Simulation Interaction Diagram panel in Maestro. The occurrence

of a specific interaction was summed up over all replicas (except the ones presenting

dissociation of the ligand) for the last 200 ns of each simulation. These counts were

normalized to the number of assessed frames and listed in a table if the obtained per-

centage amounted to at least 20%. Interactions that occurred at least 10% were included

in a binary fingerprint to compute the similarity index of contacts between different sys-
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tems. To quantify the helicity of H3, H10, and H12, we used the STRIDE (v29.01.96)

[48] program which assigns a particular secondary structure to each protein residue.

The analysis was performed on all MD frames and 3-10 helices were regarded as heli-

cal. Residues that were defined as boundaries for each helix to determine the relative

percentage of helical residues within a secondary structure element are listed in Table

S13. Mechanistic insights into the allosteric communication within the protein were ob-

tained using MD-TASK (v1.0.1) [35]. In particular, we determined the dynamic cross-

correlation map (DCCM) using the calc correlation.py script in MD-TASK for every

second frame of four trajectories selected from visual inspection. Similarly, we deter-

mined the BC for every trajectory frame using the calc network.py script in MD-TASK

followed by the avg network.py script averaging the data over the trajectories. The vol-

ume of the LBP was estimated using the POVME (v2.0) algorithm [49] and the starting

points for the inclusion spheres with a radius of 12 Å were determined according to the

centroid of the orthosteric ligands (DHT or bicalutamide). Further, a grid spacing of

0.5 Å and a distance cutoff of 0.8 Å were selected for volume calculations. Statistical

significance of the average values was performed using the ttest ind from stats routine

in the python-scipy module. For these calculations, the DHT-bound systems were taken

as a reference. For each state (e.g. K10 with bicalutamide), we summarized the indi-

vidual replica simulations (for the last 100 ns) to a single dataset and calculated average

and standard deviation as proposed by Knapp and colleagues [50]. Based on these met-

rics, we assessed the statistical significance with the total number of observations set to

the sum of measurements over five replicas. We selected a significance level of p=0.05.

Conclusion

PC remains a challenging disease regarding pharmacological intervention and displays

a high mortality due to resistance mechanisms. Alternative therapeutics targeting al-

losteric sites offer an attractive approach to treat the disease. Until today, however, the

potential combination of allosteric inhibitors with conventional antiandrogens or their

concurrent administration was not considered even though it was recommended with-

out further investigation and polypharmacology is abundant in cancer treatment. Based

on a detailed computational analysis using microsecond MD simulations, we provided

recommendations for the combination of these compounds and explored the mechanis-
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tic background. The structural adaptation and displacement of H12 is likely involved

in the negative effects of classical AR antagonists on the binding of AF-2 inhibitors

,even though the impact was lower than expected. In contrast, the BF-3 inhibitors did

not suffer in binding energy or solvent accessibility in the studied combinations. By

considering our recommendations, laboratory experiments could be rationalized to op-

timize the treatment of PC.
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9.1 Supporting Information

Supporting Results and Discussion

Table S 1 Mean and standard deviation values used for computation of statistical sig-
nificance of ligand-based metrics.

Ligand Combination ∆GMM/GBSA (kcal/mol) SASA (Å2)
K10 DHT -46.5 ± 6.0 (n=400) 143.4 ± 24.5 (n=400)

BIC -46.4 ± 4.0 (n=400) 148.4 ± 16.7 (n=400)
YLO -41.7 ± 4.6 (n=500) 157.1 ± 26.7 (n=500)

AV-6 DHT -40.2 ± 9.2 (n=300) 144.1 ± 51.8 (n=300)
BIC -39.5 ± 4.1 (n=400) 150.3 ± 18.6 (n=400)
YLO -43.7 ± 6.8 (n=400) 123.5 ± 38.7 (n=400)

YLO DHT -54.7 ± 12.6 (n=500) 241.7 ± 57.7 (n=500)
BIC -60.7 ± 11.7 (n=500) 184.1 ± 83.3 (n=500)
AV-6 -57.7 ± 9.7 (n=500) 223.7 ± 54.5 (n=500)
K10 -54.9 ± 12.8 (n=500) 205.3 ± 51.5 (n=500)

4HY DHT -37.8 ± 8.0 (n=500) 236.7 ± 37.4 (n=500)
BIC -37.7 ± 4.9 (n=500) 241.2 ± 27.3 (n=500)

n represents for the number of data points included in the statistical analysis.

Table S 2 Statistical significance of averages at p=0.05 level.

Comparison ∆GMM/GBSA SASA H12 Helicity Site volume F891 RMSD
K10 and BIC no yes yes yes yes
K10 and YLO yes yes no yes yes
AV-6 and BIC no yes yes yes yes
AV-6 and YLO yes yes no no no
YLO and BIC yes yes yes yes yes
YLO and AV-6 yes yes n/aa NaNa n/aa

YLO and K10 no yes n/aa n/aa NaNa

4HY and BIC no yes yes yes yes
aValue for this system reported above, as it is not ligand-dependent.
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Table S 3 Ligand-protein interactions of K10.

Combination Residue Type Prevalence (%)
DHT V716 Hydrophobic 41.8

V730 Hydrophobic 32.9
M734 Hydrophobic 26.0
Q733 Hydrogen bond 20.4

BIC Q733 Hydrogen bond 42.3
M894 Hydrophobic 32.0
V716 Hydrophobic 27.6
M734 Hydrophobic 24.6

YLO V716 Hydrophobic 36.5
M734 Hydrophobic 24.8

The most prevalent ligand-protein interactions (more than 20%) are displayed.
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Table S 4 Ligand-protein interactions of AV-6.

Combination Residue Type Prevalence (%)
DHT E709 Hydrogen bond 73.3

D731 Hydrogen bond 54.8
V716 Hydrophobic 34.7
V730 Hydrogen bond 33.7
L712 Hydrogen bond 29.0
M734 Hydrophobic 27.7
M894 Hydrophobic 25.2
I898 Hydrophobic 21.8

BIC V716 Hydrophobic 43.8
V730 Hydrogen bond 38.8
E897 Hydrogen bond 31.1
V730 Hydrophobic 30.3
M894 Hydrophobic 29.0
M734 Hydrophobic 22.6
E893 Hydrogen bond 22.5
D731 Hydrogen bond 21.6

YLO E709 Hydrogen bond 100.0
V716 Hydrophobic 52.8
V730 Hydrogen bond 44.1
L712 Hydrogen bond 29.6
M734 Hydrophobic 28.3
M894 Hydrogen bond 25.6
I898 Hydrophobic 21.6

The most prevalent ligand-protein interactions (more than 20%) are displayed.
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Table S 5 Ligand-protein interactions of 4HY.

Combination Residue Type Prevalence (%)
DHT R726 Hydrogen bond 100.0

N727 Hydrogen bond 57.4
G724 Hydrogen bond 44.8
E837 Hydrogen bond 43.4
R840 Hydrogen bond 36.3
P723 Hydrophobic 27.3

BIC R726 Hydrogen bond 100.0
N727 Hydrogen bond 43.2
F826 Hydrophobic 36.1
E829 Hydrogen bond 33.1
N833 Hydrogen bond 29.1

The most prevalent ligand-protein interactions (more than 20%) are displayed.

Table S 6 Ligand-protein interactions of YLO.

Combination Residue Type Prevalence (%)
DHT F826 Hydrophobic 49.9

Y834 Hydrophobic 43.7
F673 Hydrophobic 30.2

BIC Y834 Hydrophobic 50.9
P723 Hydrophobic 31.7
F826 Hydrophobic 24.9
L674 Hydrophobic 24.1
L722 Hydrophobic 23.5
F673 Hydrophobic 22.1

K10 Y834 Hydrophobic 97.4
F673 Hydrophobic 67.3
F826 Hydrophobic 29.4

AV-6 F673 Hydrophobic 32.1
Y834 Hydrophobic 24.0

The most prevalent ligand-protein interactions (more than 20%) are displayed.
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Figure S 1 Superposition of ligand-protein complexes before and after the dissociation-
reassociation event of AV-6.

Figure S 2 Number of ligand-protein hydrogen bonds in all simulations with allosteric
ligands.

Figure S 3 The helicity of H3 for all combination simulations.
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Figure S 4 The helicity of H10 for all combination simulations.

Figure S 5 The helicity H12 in simulations combining AF-2 and BF-3 inhibitors.
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Figure S 6 Data of the control simulations without allosteric ligands. (A) Helicity in
simulations with DHT. (B) Helicity in simulations with bicalutamide. (C) Binding site
volume in simulations with DHT. (D) Binding site volume in simulations with bicalu-
tamide. (E) RMSD of F891 in simulations with DHT. (F) RMSD of F891 in simulations
with bicalutamide. (G) Average BC analysis in simulations with DHT. (H) Average BC
analysis in simulations with bicalutamide.

Figure S 7 H12 in representative structures of control simulations with (A) DHT and
(B) bicalutamide.
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Figure S 8 DCCM analysis of (A) K10 and DHT, (B) K10 and bicalutamide, (C) AV-6
and DHT, and (D) AV-6 and bicalutamide. Region of interest are indicated as R1 (H3
to H12), R2 (H4-H5 to H10-H12), and R3 (H3 to H10).

Figure S 9 Average BC values of all simulations including the equilibration simulation
with bicalutamide (BIC) bound to the AR alone. Secondary structure elements are
marked in the top left subfigure.
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Figure S 10 Example for conformational changes of binding site residues in (A) DHT-
bound simulations (K10 with DHT, AV-6 with DHT) and (B) bicalutamide-bound sim-
ulations (K10 and bicalutamide, bicalutamide control.)

Figure S 11 RMSD of F891 compared to crystal structure in all simulations with al-
losteric ligands.
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Figure S 12 Conformational change of F891. (A) Position of F891 in native crystal
structure (PDB ID: 3L3X). (B) Positioning of bicalutamide and F891 after induced-fit
docking. (C) Positioning of bicalutamide and F891 after 1 µs MD simulation. (D)
Close contact after superposition of MD-obtained pose of bicalutamide and F891 in its
original position. (E) Concurrent movement of bicalutamide and F891 obtained from
multiple consecutive MD snapshots. (F) Per-residue RMSD comparison of first and last
frame of MD equilibration with bicalutamide bound. The individual residue numbers
are presented above the bins. (G) Interaction network before and after conformational
changes of H12.
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Table S 7 Data of F891A simulation: average values

Orthosteric ligand Sequence Average H12 helicity na

DHT wild-type 0.72 ± 0.11 1000
BIC wild-type 0.61 ± 0.14 200

F891A 0.67 ± 0.14 200

a n represent the number of data points considered for the average calculation and following

statistical assessment.

Table S 8 Data of F891A statistical significance and outcomes.

System 1 System 2 Significancea Outcome
DHT wild-type BIC F891A yes BIC F891A lower
BIC wild-type BIC F891A yes BIC F891A higher

aStatistical significance was evaluated at p=0.05.

Figure S 13 Data on the F891A mutation. (A) MD snapshots of H12 when bicalutamide
was combined with wild-type and F891A receptor. H12 was colored in red and pine
green respectively.

Figure S 14 Per-residue RMSF values in simulations combining AF-2 and BF-3 in-
hibitors for (A) DHT-bound systems and (B) bicalutamide-bound systems.
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Figure S 15 RMSD values of the simulations of different combinations.

Supporting Materials and Methods

Table S 9 Energy of bicalutamide isomers.

Stereoisomer LigPrep energy (kcal/mol)
(R)-bicalutamide 27.9
(S)-bicalutamide 26.1

Lower values of the ”r lp energy” parameter correspond to a more favorable energy.

Figure S 16 Binding mode of bicalutamide. (A) Superimposed crystal structures of
AR cocrystallized with bicalutamide. (B) Comparison of bicalutamide docking pose
obtained with DOLINA to corystallized structure.
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Table S 10 Origin of allosteric ligands.

Ligand PDB ID Pubchem CID
K10 2PIP 11522441
AV-6 2YHD 761631
4HY 2PIT 5803
YLO 2YLO 3114779

Table S 11 Population of clusters.

Allosteric Orthosteric Replica 1 Replica 2 Replica 3 Replica 4 Replica 5
K10 DHT 12 11 12 10 15
K10 BIC 18 12 14 21 12
K10 YLO 14 18 27 16 15
AV-6 DHT 17 28 14 19 15
AV-6 BIC 14 11 16 12 20
AV-6 YLO 14 17 18 14 17
YLO DHT 16 18 13 15 17
YLO BIC 14 18 15 16 13
4HY DHT 11 15 19 13 12
4HY BIC 11 17 11 18 28
none DHT 19 - - - -
none BIC 13 - - - -

The population of the highest cluster is given for all systems and the respective replica simula-

tions. A total of 101 structures were included in the clustering analysis.
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Table S 12 Number of clusters.

Allosteric Orthosteric Replica 1 Replica 2 Replica 3 Replica 4 Replica 5
K10 DHT 15 14 13 15 11
K10 BIC 11 13 14 8 12
K10 YLO 14 14 11 12 11
AV-6 DHT 15 11 9 8 12
AV-6 BIC 13 15 12 12 13
AV-6 YLO 13 13 12 14 13
YLO DHT 14 12 13 13 11
YLO BIC 13 13 12 12 13
4HY DHT 14 10 12 13 12
4HY BIC 15 12 15 10 6
none DHT 15 - - - -
none BIC 13 - - - -

The total number of clusters is given for all systems and the respective replica simulations.

Table S 13 Residues flanking H3, H10, and H12.

Helix Start Residue End Residue
H3 F697 K720
H10 S851 I882
H12 M894 I906

Residue boundaries used for the determination of helicity.
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