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Model development, data, and public health: A combined approach against malaria

by Theresa REIKER

The health burden of infectious diseases remains substantial. Within ever-changing public
health landscapes, characterised by complex disease biologies and limited operational
resources, appropriate control strategies are often difficult to identify. In recent years, there
has been an explosive increase in the popularity of mathematical modelling to bridge evidence
gaps and support (policy) decision-making. To ensure accurate predictions, e.g. on the public
health impact of new interventions, models must be grounded in plausible assumptions and
calibrated to diverse data on multiple epidemiological and biological relationships.

Through a comprehensive investigation of the modelling process from development to
application, my research aims to prompt discussions about the role of infectious disease
modelling in decision-making and about opportunities for modernisation. With application
to malaria modelling, I present methodological advancements, structural analyses and
discussions, and application case studies. This includes the development of a novel, machine
learning-based calibration approach that outperforms previous methods. A generalisable
framework for incorporating calibration data while accounting for contextual covariates is
developed and applied to a database of Pf PR-incidence records. I subsequently discuss the link
between model calibration decisions and the model’s later uses in simulating epidemiological
relationships. Taking the leap from model development to application, I assess the use of
surveillance-response interventions for malaria elimination, addressing the various technical
challenges of quantifying elimination itself. Finally, I shift perspective towards the potentials
and pitfalls of using modelling to support decision-making.

The research presented in this thesis contributes to keeping malaria modelling up-to-date with
computational methods and global health developments. Many of the principles presented
here encompass general discussions of infectious disease modelling, and aim to encourage
conversations about the place of modelling at the public health decision-making table.
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1 Introduction

1.1 The role of mathematical modelling in guiding public health
decision-making

Despite global efforts, infectious diseases still pose a great burden on health worldwide (1).
The as of 2021 still ongoing Covid-19 pandemic has made evident that even the most privi-
leged societies are not immune to the threat posed by infectious diseases. Nor are they well
enough prepared to combat them. The various, ever-changing control strategies employed
by different countries in the early times of the pandemic illustrate the challenges of public
health decision-making: With lives at stake, the public pressure on decision-makers is high,
opportunities and implementation strategies are manifold, and a clear methodology for the
translation of scientific evidence into actionable policy is often lacking. Public health decisions
are expected to consider a variety of factors, to optimise the total public health impact, but also
to account for economic, societal, and political consequences.

This pandemic has reminded many industrial countries of the havoc caused by infectious
diseases. Yet, many infectious diseases, like HIV, tuberculosis, and malaria, pose a vast burden
to many societies at all times. The last decades have shown that the successful implementation
of health interventions for prevention and treatment can greatly reduce global morbidity and
mortality. To ensure that limited resources available for control and elimination are appro-
priately invested, decision-making in health should be objective, transparent, and built on a
foundation of scientific evidence. However, direct evidence from (expensive, time-consuming)
randomised control trials (RCTs) and observational studies commonly summarises effect
estimates of individual interventions in specific study populations (2). The resulting sparse,
contextual data often provides insufficient evidence for policy decisions in a complex disease
and public health landscape. This creates a gap between urgent public health needs and
evidence-based policy decision-making. To weigh intervention strategies against each other,
and to make informed decisions at population level, additional quantitative evidence is
required.

Mathematical modelling can support bridging this knowledge and evidence gap. Detailed
mathematical models of disease transmission dynamics can explicitly capture, account for, and
extrapolate from setting- and time-specific contexts and explore a wide range of intervention
combinations. Over the last century, mathematical models have become an invaluable tool in
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understanding and analysing disease and intervention dynamics for many infectious diseases,
such as for malaria (3–5), tuberculosis (6), influenza (7), dengue (8), and many others (9, 10).
Going beyond the data or statistical summaries, mechanistic mathematical models translate
the biological and epidemiological processes, that characterise a disease, into mathematical
functions. The parameters describing and linking these functions are calibrated by pooling
available data and knowledge, covering an array of biological and epidemiological rela-
tionships, such as age-dependent prevalence or incidence patterns, or within-host pathogen
dynamics. The joint calibration to diverse data under an explicit framework of how these data
are (mathematically) linked aims to yield an approximation of the systems observed in the real
world. Simulation experiments using well-calibrated models can generate predictions that
provide additional evidence in answering biological and epidemiological questions.

Applications for well-developed infectious disease models are manifold (2). They include
general investigations of disease dynamics, as well as responses to acute policy needs.
Modelling can provide quantitative estimates on the long-term effectiveness and cost-
effectiveness of an intervention (2), like estimating the impact and cost-effectiveness of the
RTS,S/AS01 vaccine against malaria (11), or provide estimates on the comparative effective-
ness of different existing or planned interventions (2). Such estimates can be used to draft
national disease control strategies, such as for malaria in Tanzania (12), or develop target
product profiles for new interventions against existing ones, such as defining requirements
for antimalarial long-acting injectables versus existing seasonal chemoprevention (Burgert et
al. 2021: in preparation, see Chapter 7). Modelling can further provide rapid early guidance
for outbreak-response, such as assessing the epidemic potential of an outbreak, or aiding the
development of emergency guidelines. Recent examples include assessing the benefit of travel
restrictions during the Ebola outbreak 2014–2016 (13) and investigations surrounding the 2020
Covid-19 pandemic (14–17). The latter in particular illustrates the acute impact of modelling in
guiding and shaping public health responses in multiple countries (17): The strategy devised
by the United Kingdom had originally strived for herd immunity (early March 2020) (18).
However, this was reversed after modelling work by Ferguson et al. showed the dramatic
health consequences and rapid speed at which hospital capacities would be reached if the
disease spread in an uncontrolled manner (17, 19).

Modelling for public health impact is an ambitious endeavour. The development of models
requires understanding a vast array of scientific disciplines, spanning biology, epidemiology,
sociology, mathematics, and computer science. From the scientific biological and epidemio-
logical principles that define a model’s assumptions and must be translated into mathematical
expressions, to diverse calibration data, to the development of calibration algorithms, and
ultimately to conducting simulation experiments for public health impact, a holistic approach
is needed. This requires collaboration between many stakeholders invested in the improve-
ment of public health, including but not limited to: researchers from different disciplines,
industry and product developers, general guideline developers, such as the World Health
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1.1. The role of mathematical modelling in guiding public health decision-making

Evidence-based
policy decision-makingPublic health need

urgency

contextual data

complex systems

stakeholders
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FIGURE 1.1: Mechanistic mathematical modelling can bridge the (knowledge) gap from
public health needs towards evidence-based decision-making.

Mathematical models can support bridging evidence gaps in decision-making by
mechanistically approximating the real world. They can address the urgency required in
a public health context, extrapolate from contextual data, and capture complex systems
and dependencies between different disease aspects. Mechanistic models build on a
holistic scientific understanding of disease-related processes, which are translated into
mathematical functions and provide a general framework. The associated parameters
require calibration to diverse available data, such that the resulting model accurately
captures the complex processes that characterise the disease. In continued exchange
and collaboration between external stakeholders (e.g. funding bodies, regulators, and
international and national policy organisations) and the research community, simulation
experiments can generate supporting evidence for decision-making in health.

Organization (WHO) that decide whether and how modelling results should be incorporated
in the guidelines on the use of new interventions for infectious diseases (2), funding bodies
(such as research councils and foundations), national and international organisations, and
governments on the implementation side. The basic principles of modelling for public health
impact are summarised in Figure 1.1.

With application to malaria, this thesis takes a holistic approach to mathematical modelling
for infectious diseases, spanning the data and algorithmic foundations of model calibration
through to its public health applications. For malaria in particular, mathematical modelling
has a long history of being a cornerstone for shaping policy, including (at times) for example
the implementation of the Global Technical Strategy at global and national level (20). The
parasite’s complex life cycle involving multiple hosts, each with their own associated biologies,
behaviours, and ecologies, yields a vast array of situations and possible intervention strategies
that are impossible to evaluate through field experiments alone (20). In this chapter, section 1.2
provides an overview of the disease, its biology and epidemiology, while section 1.3 provides

3
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context for the long-standing use of modelling in the field of malaria. This is followed by an
introduction into the worlds of mathematical modelling and machine learning in sections 1.3
and 1.4, before combining these to set a joint stage for the research presented in this thesis in
section 1.5.

1.2 A brief introduction to malaria epidemiology and control

Malaria remains one of the greatest challenges in global health to date with nearly half of the
world’s population at risk (21) and 228 million cases and 405 000 deaths reported in 2019 (22).
The most vulnerable to severe outcomes are children under five years, accounting for 67% of
global malaria-associated deaths [WHO World malaria report 2019]. Malaria is caused by the
apicomplexan Plasmodium (P.) parasite and transmitted through the bites of infected Anopheles
mosquitoes. In humans, approximately 80% of cases and 90% of all deaths are attributable to
P. falciparum, with the other human-relevant species being P. malariae, P. knowlensi, P. ovale or P.
vivax (23). As the most important human Plasmodium parasite for human malaria-attributable
morbidity and mortality, this thesis is in reference to P. falciparum malaria, unless stated
otherwise.

1.2.1 Plasmodium falciparum life cycle in the human and mosquito

As is characteristic of the majority of Apicomplexa, Plasmodium parasites have a complex life
cycle involving both asexual and sexual reproduction in the human and the mosquito. Figure
1.2 briefly outlines the life cycle of Plasmodium falciparum malaria.

1.2.2 Pathenogenesis and human immunity

Presentations of P. falciparum malaria in humans range from asymptomatic carriage to severe
systemic disease and death (25). The majority of infections result in uncomplicated malaria,
especially when the infection is diagnosed and treated promptly (28). Symptoms of uncompli-
cated malaria include periodic fevers and chills coinciding with parasite release into the blood
stream during the erythrocytic phase of infection, and non-specific, fever-associated symp-
toms, such as headache and fatigue (25). Severe malaria on the other hand is characterised by
systemic inflammatory responses and can lead to coma or death (29). This is most common
in children under five years and often takes the form of cerebral malaria or severe anaemia (29).

The presence and severity of symptoms depend on the infected individual’s immune status.
Individuals living in highly endemic or holoendemic regions face constant re-infection (30),
resulting in a gradual build-up of natural acquired immunity over time. Consequently, most
adults living in such regions experience little to no clinical symptoms upon infection, while
children under five years (with little to no immunity) carry the majority of severe disease
burden. Importantly, this immunity confers protection from clinical disease but not from
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FIGURE 1.2: A schematic of the P. life cycle with estimated parasite
numbers at each stage

More than 30 species of Anopheles (An.) mosquitoes serve as vectors to P. falciparum, in
Africa most prominently An. gambiae s.s., An. arabiensis, and An. funestus. Following the
bite of an infected mosquito and injection into the human bloodstream (1), sporozoites
enter hepatocytes (exo-erythrocytic or liver-stage, 2). Here, they undergo approximately
5-7 days of asexual division and growth (24), resulting in tens of thousands of first-
generation merozoites. The resulting liver-schizonts rupture and merozoites are released
into the bloodstream. The parasite subsequently penetrates red blood cells (erythrocytes)
using their apical complex (a defining characteristic of the phylum), initiating the
intraerythrocytic cycle (3). Merozoites divide asexually inside erythrocytes. At intervals
of approximately 48 hours, the schizonts rupture, again releasing large numbers of
merozoites. In symptomatic infections, this causes periodic waves of chills and fever in
the infected human host, which are a defining clinical characteristic P. falciparum infection.
If left untreated, the rate of multiplication in this stage is about a 10-fold increase every 2
days (25). The released next-generation merozoites infect more erythrocytes, continuing
a cycle of infection, replication and release. After erythrocyte invasion, a certain number
of merozoites may mature into gametocytes (4), awaiting ingestion by a mosquito during a
blood meal (5). Upon fertilisation inside the mosquito gut (6), a zygote (ookinete) is formed,
which subsequently infects mosquito midgut. Here, it transforms into a sporozoite-
producing oocyst, which travels to the mosquito’s salivary glands to again infect humans
during the next blood meal, closing the cycle (1). (26, 27).

infection. This poses challenges to disease control as it discourages care seeking, especially
when access to treatment is poor. In the absence of curative treatment, infected individuals
may still contribute to onwards transmission, threatening control and elimination efforts (25,
30, 31).
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1.2.3 Malaria prevention, control and elimination

Malaria is both preventable and curable. In fact, most severe disease in children is a conse-
quence of a lack of prevention or treatment or of treatment failure and thus avoidable (25).
Nonetheless, malaria remains a major contributor to global mortality and morbidity and the
road to control and elimination has been rocky.

In 1955, the Global Malaria Eradication Program (GMEP) was introduced by the World Health
Organization (WHO) (32). Following early successes of the insecticide dichlorodiphenyl-
trichloroethane (DDT) and the discovery of chloroquine as an effective antimalarial drug,
the GMEP envisioned global eradication within 10 years. However, 14 years later, the
emergence of resistance against the first-line treatment, chloroquine, operational constraints,
resurgence of transmission in previously eliminated regions, and financial constraints (32) led
to a shift in strategic focus to sustained control before elimination. While today, the GMEP
is largely viewed as a failure concerning its initial objectives and planned timeline, it did
geographically limit the disease by eliminating malaria from most of Europe, North America,
the Caribbean, and parts of Asia and Venezuela (32). However, by the beginning of the 1990s,
the malaria-related global health situation had deteriorated due to a lack of financial support,
widespread chloroquine resistance and repeated epidemic outbreaks (32). At this time, the
world experienced an estimated 300-500 million reported cases and 1.5-2.7 million deaths
annually, with 90% of cases occurring in Sub-Saharan Africa (32).

Following urges by the WHO and endorsement by World Health Assembly (WHA) for
increased malaria control, the turn of the 21st century saw substantial and important improve-
ments in malaria control efforts. A new, highly effective intervention was introduced:
insecticide treated bednets (ITNs). In 2001, the WHO issued an official recommendation for the
use of artemisinin combination therapies (ACTs) where resistance to standard antimalarials
was present (32). ITNs, their successor long-lasting insecticide treated nets (LLINs), and the
widespread use of ACTs as first-line treatment have since proven to be some of the most
valuable tools against malaria (33). The scale up of interventions was facilitated by the
foundation of The Global Fund for AIDS, tuberculosis and malaria and the U.S. President’s
Malaria Initiative, and their continued investments. As a result, total donor funding increased
from less than 200 million US dollars per year in the early 2000s to over 1.8 billion by 2010 (32).
In 2007, Bill and Melinda Gates put out a global call for malaria eradication, appealing for the
start of a new era (20, 32).

Overall, substantial progress in the global battle against malaria has been made since 2000. By
2010, a reduction in incidence by 17% and in mortality rates by 24% had been achieved and
as of 2019, 17 of the 108 countries where malaria had been endemic in 2000 were no longer
endemic. However, this progress has since stalled. With over 90% of cases, Sub-Saharan
Africa carries the majority of the remaining disease burden (22). To reach malaria elimination,
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the WHO puts particular emphasis on the importance of administering appropriate and
sustainable interventions in low-transmission and recently eliminated settings, i.e. controlling
residual transmission to avoid the past mistakes that led to resurgence (34).

However, adapting strategies from control towards elimination poses great practical chal-
lenges. Control relies predominantly on reducing morbidity and mortality through vector
control and the effective treatment of clinical cases that are passively detected by the health
care system (35). Elimination campaigns on the other hand, seek to interrupt transmission
and prevent resurgence (35). This is achieved in two phases, the first consisting of the
aggressive scale up and strict implementation of control interventions (35). Once very low
transmission (a prevalence of around 1% or less) is achieved, additional tools are required
(35). With decreasing transmission, increasing heterogeneity in incidence and transmission
and spatiotemporal case clustering make blanket interventions cost-inefficient, increasingly
ineffective and unsustainable (35). However, for elimination, residual transmission pockets
must be detected and interrupted. This includes not only clinical cases but also asymptomatic
infections that could, if left untreated, perpetuate transmission (35). In response, the WHO
elimination guide (36, 37) endorses a shift to highly targeted, locally adapted measures in
the elimination phase. This includes the early detection of all cases, prevention of onward
transmission from cases, management of malaria foci, and management of importation of
malaria parasites.

To detect all cases, surveillance-response strategies, such as reactive case detection (RCD),
are widely implemented (35, 38–41). Assuming that cases are geographically clustered,
surveillance-response strategies allow for targeted interventions on symptomatic cases who do
not seek care as well as asymptomatic cases: When an index case of clinical malaria presents
to a health facility, this triggers follow-up activities around the index case. Follow-up activities
may include various parasite- or vector-focused responses including focal indoor residual
spraying (IRS), bednet distribution, larval source management, presumptive treatment
through mass drug administration (MDA), or screening and treatment (FSAT) (42). Although
reactive strategies intuitively have high approval rates and have been implemented in many
settings, clear guidelines on implementation and definitions of the terminology are lacking
(35, 38–41) and their effectiveness remains to be investigated. The quest for effective strategies
for reaching elimination thereby presents a current public health need, where evidence from
modelling would be valuable.

1.3 Mathematical models of infectious diseases

Especially in the field of malaria, mathematical modelling has become a popular and prominent
tool in providing additional evidence for public health decision-making. Potential solutions to
controlling transmission or elimination are so manifold that strategic scientific investigation
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of all options by means of expensive, time-consuming clinical trials becomes impossible. The
malaria parasite life cycle is complex, as are host immune responses to the parasite and the
consequent pathogenesis (20), resulting in a vast array of interventions targeting different
stages of the transmission cycle. Additionally, the suitability of (a combination of) interventions
depends on the interplay of biological, ecological, epidemiological, demographic and systemic
characteristics of a target setting. These include intensity, seasonal patterns and heterogeneity
in transmission, vector ecology, resistance levels to antimalarial drugs and insecticides, the
health care system, and the desired health goals. Mathematical modelling offers a solution
to strategically evaluate and compare interventions and deployment strategies in a multitude
of settings. An overview of the general structure of the modelling process from the model
calibration to predictions is provided in Figure 1.3.

Core 
parameters

Setting-specific 
simulation options

Individual-
based model

Diverse data Fitting algorithm

Calibration Predictions

Setting-specific

EIR

Pf
PR

2-
10

in
ci
de

nc
e

time
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FIGURE 1.3: Overview of mathematical models: development,
calibration, and application

Mathematical models are used to make predictions on disease trajectories. They possess
two types of input parameters, a set of core parameters (e.g. about the natural history)
and setting-specific, situational simulation options. The former determine the intrinsic
behaviour of the model, i.e. the way the model captures the disease, akin to a tuned engine.
The core parameters are generally fixed for all simulations of a specific disease using that
model. The simulation options are determined depending on desired experiment. An
optimal set of core parameters is yielded by calibration to diverse data with the aim to
yield a model that best replicates some data on pre-determined relationships (objectives) of
interest. Predictions from the calibrated model can be broadly grouped in two categories:
Firstly, accurately capturing the natural history of the disease allows for proof-of-principle
analyses and the disentanglement of general relationships. Secondly, the use of calibration
data from different, explicitly describes settings enables setting-specific predictions (i.e.
what happens if a specific intervention is implemented in a specific setting). With the ability
to generate both generic and specific predictions, mathematical models can bridge gaps
between partners and stakeholders with specific questions, e.g. on intervention strategies
and evidence-based decision-making in health by extrapolating from sparse data. Pf PR2-10
= P. falciparum parasite rate, EIR = entomological inoculation rate.
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1.3.1 History of malaria modelling

The first series of mathematical models of malaria were developed in the late 19th century
by Sir Ronald Ross, with the aim to understand and explain the relationship between
components of the mosquito life cycle and malaria incidence in humans (43, 44). In the
case of malaria, the simplest compartmental models, such as the one developed by Ross,
divide the population into susceptible and infected categories, where infected individuals (I)
return to the susceptible (S) category on recovery. This results in the standard notation for
such malaria models of S-I-S. The changes in the relative contribution of each category to the
overall population are tracked using a system of linked differential equations. Ross’ model was
subsequently extended by MacDonald to explicitly include an S-I model for mosquitoes (45–
48). These form the basis of compartmental population models and can be extended to include
additional categories depending on the desired level of detail and the research question. This
enables, for example, the capturing of additional stages of disease progression, geographic and
demographic heterogeneity, different age groups, or (limited amounts of) stochasticity. The
models developed by Ross and MacDonald mark an important milestone in the history of
mathematical modelling for all infectious diseases as compartmental models are still widely
used to date with increasing heterogeneity and complexity (49, 50). However, at their core
remains the fundamental concept of a population level, top-down approach to modelling,
which can be insufficient to provide nuanced answers to policy questions.

1.3.2 Individual-based models

Advances in high-performance computing have enabled mathematical models of increasing
sophistication and individual-based models (IBMs) that simulate individuals within
populations as autonomous agents with heterogeneous characteristics and behaviours. Going
beyond simpler (compartmental) models to capture stochasticity and heterogeneity in
populations, disease progression, and transmission, IBMs can account for contact networks,
individual care seeking behaviour, immunity effects, or within-human dynamics (10, 51, 52).
This bottom-up approach to capturing population dynamics enables detailed predictions on
population epidemic trajectories as well as the impact of interventions such as vaccines or
new drugs (10, 51). As such, IBMs provide opportunities for experimentation under relatively
natural conditions without expensive clinical or population studies. Within the field of malaria,
several IBMs have been developed over the last 15 years to support understanding of disease
and mosquito dynamics (53–55), predict the public health impact or carry out economic
analyses of (new) interventions (11, 33, 56, 57), and investigate drug resistance (58). Many have
had wide-reaching impact, influencing WHO policy recommendations (59–62) or strategies of
national malaria control programs (12).

OpenMalaria

In 2006, Smith et al. published a series of papers on the development of OpenMalaria, a compre-
hensive IBM of malaria epidemiology and control (63). OpenMalaria features within-host para-
site dynamics, the progression of clinical disease, development of immunity, individual care
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seeking behaviour, vector dynamics and pharmaceutical and non-pharmaceutical antimalarial
interventions at vector and human level (github.com/SwissTPH/openmalaria.wiki.git)
(52, 63, 64). Details of OpenMalaria are provided Appendix A and in Chapters 2 and 4. In
short, OpenMalaria captures different clinical presentations of malaria in human individuals,
mosquito ecology across a range of species, and P. falciparum dynamics in both humans and
mosquitoes. The tracking of blood stage parasite densities further enables case management
actions depending on individual patient parasite densities and resulting simulated (clinical)
events. Fourteen model variants for OpenMalaria exist (64) with differing assumptions on
infection of humans, blood-stage parasite densities, infectiousness of humans to mosquitoes,
incidence of morbidity, and mortality.

The calibration to diverse data, covering various epidemiological and biological relationships
from a multitude of settings, is particularly challenging for IBMs. The tracking of individuals
and inclusion of stochasticity often come at the cost of long simulation times and potentially
large numbers of input parameters, making their calibration a challenge that requires elaborate
algorithms. The following section outlines some of the caveats of calibration, addressing both
data and algorithmic challenges.

1.3.3 Calibration data

The calibration data for IBMs often cover various epidemiological and biological relationships
from a multitude of settings. OpenMalaria is calibrated to eleven epidemiological and biological
relationships, including the age-specific prevalence and incidence patterns, mortality rates
and hospitalisation rates. These relationships represent the natural history of malaria, which
should be well captured in a model used for prediction of malaria transmission and interven-
tion impact. A complete summary of the data used to calibrate OpenMalaria is provided in
Appendix A

When calibrating to data, setting-specific simulations must be prepared. These must represent
the studies that yielded the data in terms of transmission intensity, seasonal patterns, vector
species, intervention history, case management, diagnostics, and data collection methods.
The mirroring of field study characteristics in the simulation options aims to ensure that any
deviation between simulation outputs and data can be attributed to calibrated parameters.
This can prove challenging as calibration data commonly consist of historical data. In the
absence of standing collaborations with researchers involved in the data collection and given
the temporal distance to modern research, replicating the context of data collection can be
difficult. Large amounts of data for the calibration of malaria models were supplied by
the Garki project conducted by the WHO in 1969-1976 (65). This marked a major scientific
endeavour to study the epidemiology and control of malaria in Nigeria and the first with the
aim to systematically collate data to support the development of mathematical models. The
main aims of this project were to quantify the impact of interventions on malaria transmission
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1.3. Mathematical models of infectious diseases

(in particular MDA and IRS) and to collect enough data to develop and fit a mathematical
model that could realistically simulate the transmission of malaria (65). Like the data collected
during the Garki project, most data used for the calibration of OpenMalaria predates systematic
(and successful) control efforts. As a result, most data was collected in medium to high
transmission settings (with EIRs ranging from approximately 10 to nearly 600), while lower
transmission and prevalence settings are underrepresented.

1.3.4 The calibration of individual-based models and the curse of dimensionality

FIGURE 1.4: Chimpanzee at a typewriter
The random hitting of keys on a typewriter for an infinite amount of time will almost surely
result in the complete texts of William Shakespeare. Image by the New York Zoological
Society.

"To be or not to be, that is the question."

-William Shakespeare, Hamlet

The so-called infinite monkey theorem is a thought experiment that states that if a monkey
were to randomly type at a typewriter for an infinite amount of time it would almost certainly
at some point, by pure chance, type out any text, such as the complete works of William
Shakespeare (Figure 1.4). This simple analogy illustrates the core challenge with the calibration
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of IBMs (and other high-dimensional optimisation problems): Sequential testing of random
combinations of letters (or here: numbers) by brute force would eventually yield the optimal
or "true" solution. However, the larger the number of parameters that need to be (jointly)
optimised, the larger the space, and the (exponentially) more evaluations are required. IBMs
are often defined by dozens of parameters (23 for the OpenMalaria base model variant) and
the required number of simulator evaluations to the true optimum would be near infinite.
Additionally, IBMs often need to be calibrated with regards to multiple objectives (11 for
OpenMalaria), which should ideally be evaluated in parallel for every parameter set to not
introduce an artificial ranking of these objectives. This substantially increases the number
of required evaluations (9). Therefore, many purely sampling-based calibration approaches
that require sequential function evaluations, can be too slow for high-dimensional problems in
irregular spaces, where only a limited number of function evaluations are possible.

1.4 Surrogate modelling and machine learning

Commonly faced questions in health research require sensitivity analyses (e.g. understanding
the relative contribution of individual interventions to health outcomes), optimisation (e.g.
finding the optimal intervention strategy for a specific setting or optimising drug properties),
and risk or uncertainty quantification (to calculate e.g. the risk of elimination). As with the
calibration of disease transmission models, all of these require a large number of simulations.
However, each simulation using complex mechanistic (especially individual-based) models is
a costly investment of computational demands and time. Therefore, conducting such analyses
by simulation alone is highly resource intensive, time consuming, and often infeasible (66, 67).

An innovative solution is offered by coupling expensive computer experiments to meta-models
or emulators in a surrogate modelling framework (66). Surrogate models can roughly be divided
into three categories (68):

1. Data-driven surrogates that approximate the input-output relationship by training on
data generated by the simulator

2. Projection-based surrogates that reduce a problem’s dimensionality by orthonormal
vector projection (e.g. principal component analysis (PCA) or singular value
decomposition (SVD))

3. Hierarchical (multifidelity) approaches that simplify the representation of the system e.g.
by ignoring certain processes

In this thesis, I mainly focus on the first class of data-driven surrogates as they are
directly linkable to simulation modelling and their potential in disease modelling remains
largely unexplored. An emulator is a statistical or machine learning model that provides a
computationally light secondary layer in the modelling process and allows for fast exploration
of potential solutions. In brief, the surrogate is trained on samples of the simulator’s input-
output relationship to capture and generate fast empirical approximations of this relationship
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without considering its inner workings. Examples of emulators differ in complexity and
include polynomials (69), Gaussian processes (GPs) (70, 71), support vector machines (SVMs)
(72), and neural networks (NNs) (73). The trained emulator is generally much faster than
the underlying model and can make rapid approximate predictions on likely simulation
outcomes. For OpenMalaria, the comparison in computation speed can be within seconds
for the emulator compared to 20 minutes or more for a single simulation (depending on the
emulator and experimental setup). This makes expensive analyses affordable. By providing
a faster way of assessing large areas of parameter space, joint simulation and emulation can
be used to tackle research problems of higher complexity than traditional modelling in a time-
efficient manner while retaining accuracy. For example, while optimisation using traditional
modelling relies on either choosing the best of a fixed set of simulated options that can only
be expanded by running additional time-consuming simulations, emulation can be used to
augment sparse simulation results and to interpolate between them. Additionally, machine
learning-augmented simulation modelling can be used for data mining and to provide deep
insights into (non-linear) relationships between variables, for instance through (conditional)
sensitivity analyses (66).

For additional context, the text in Box 1 provides a brief overview of the surrogate modelling
process and common emulator functions.
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BOX 1: Machine learning algorithms and Gaussian processes

The basic principle of surrogate modelling is to generate a supervised machine learning
problem in which an emulator is trained to understand the relationship between input
variables and simulation outputs. The costly simulator is originally evaluated for a range
of experimental set-ups (usually in a space filling manner, e.g. using Latin hypercube
sampling). The outputs (simulator observations) are stored, generating a training set consisting
of experimental covariates and the simulation outputs. The emulator is subsequently trained
to capture the input-output relationship and used to make out-of-sample predictions. As
the input-output relationship is often not equally complex throughout parameter space
and predictive uncertainties can be identified, the training set is usually enriched through
adaptively sampling additional points at which simulations are required (66). Gaussian
processes (GPs) surrogates (also called Kriging) are a particularly popular emulator that
provides high flexibility as well as uncertainty quantification. In addition to reporting
predictive uncertainty, if provided with replicate data points, GPs are also able to quantify the
input uncertainty, the so-called nugget effect. Other emulator functions include random forests,
support vector machines (SVMs), or neural nets (NNs). Random forests (RFs) consist of an
ensemble of independent decision trees (generated through bagging and feature randomness),
where each tree in the forest yields a class prediction which are combined into a joint random
forest prediction (e.g. by majority rules), such that the joint prediction will be more accurate
than that of any (errorsome) individual tree (74). Initially developed for classification problems,
Support vector machines rely on transforming of the space such that classes of the response
variables are (with some error) linearly separable by a hyperplane (75). The method has
since been extended to regression problems (76, 77) and is known for good generalisation
and ability to handle nonlinearities (76). However, while powerful, SVMs scale poorly with
increasing problem sizes as they require complex and memory intense matrix operations on
the input space during construction (78–80), which can be very time consuming depending on
the size of the problem and the programming they are implemented in. Neural nets rely on
the (layered) dense interconnection of simple computational elements or nodes (for example,
in its simplest form, the non-linearly transformed weighted sum of N inputs) (81). Due to
their speed, NNs are often employed where many hypotheses are investigated in parallel
and high computing rates are required despite drawbacks in interpretability (81–83). The
appropriateness of employing different algorithms will depend on the problem at hand and
needs to be assessed independently and on an individual basis for every problem.
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1.5 Model development, data, and public health: A combined
approach against malaria

Modelling the transmission and control of infectious diseases requires a comprehensive
approach to maximise the value of predictions in supporting decision-making. From the
collation of calibration data to the development of novel algorithms and the prediction of
intervention success, this thesis addresses opportunities to advance current methodologies in
infectious disease modelling with application to P. falciparum malaria.

More specifically, the objectives of this thesis are to

1. Develop new, improved algorithms for solving high-dimensional optimisation
problems. In light of the complexity of disease simulators such as OpenMalaria, novel
calibration methods are required to ensure an accurate representation of disease biology
and epidemiology.

2. Provide a formal framework for translating observational into in silico studies. Diverse
data form the backbone of model calibration. Model predictions are highly dependent on
a careful collation and incorporation of this data that account for the context of collection.

3. Collate data on an additional epidemiological relationship to incorporate into the
calibration of OpenMalaria. The complexity of the age-specific prevalence (Pf PR)-
incidence relationship is currently not explicitly incorporated during the calibration of
malaria transmission models. Preparing the records from a recently published database
of age-matched Pf PR-incidence for incorporation into calibration paves the way to
improving predictive model performance.

4. Implement novel surveillance-response intervention options in OpenMalaria. The
development of RCD marks the first implementation of a surveillance-response
intervention in OpenMalaria. This represents a much needed addition to OpenMalaria
that enables the evaluation of new interventions required for malaria elimination.

5. Discuss options on modelling disease elimination using experimental design
strategies and machine learning emulators. An analysis of the feasibility of reaching
elimination in different transmission settings using only RCD provides insight to its
isolated potential for reaching elimination. Further, it investigates different resource
prioritisation, as many variations of intervention deployment strategies are implemented
globally.

Chapters 2-4 focus on the calibration process from the development of improved calibration
algorithms to data curation and a discussion of the implications of calibration decisions on
predictions:

In Chapter 2, I present novel, machine learning-based approaches for model calibration. Using
a Bayesian optimisation framework with different machine learning emulator functions I
calibrate OpenMalaria simultaneously to multiple epidemiological relationships. This sets the
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stage for fast and powerful solutions to high-dimensional optimisation problems, including,
but not limited to the calibration of individual-based disease transmission models.

In Chapter 3, I provide a framework for the incorporation of new calibration data that accounts
for potentially confounding contextual covariates. This framework is applied to studies on the
age-specific prevalence-incidence relationship of P. falciparum malaria in Africa for input into
OpenMalaria. I provide the database of records and contextual information required for the
inclusion of this epidemiological relationship into the calibration of OpenMalaria.

Chapter 4 provides a link between a model’s development and its later uses. Building on
insights and supplementary analyses from Chapters 2 and 3, I discuss the assumptions and
choices made during the calibration of OpenMalaria and analyse their joint implications for
prediction.

In Chapter 5, I develop surveillance-response interventions in form of RCD for OpenMalaria
and provide a first assessment of its uses in achieving elimination. Chapter 5 further marks
a (chronologically) first application of emulation to malaria modelling. Here, I use machine
learning models to infer a continuous probability of malaria elimination from sparse simula-
tion results, showcasing the value of machine learning-augmented simulation modelling.

Lastly, in Chapter 6, I deepen the discussion around the work presented in this thesis. I
first provide a technical outlook that showcases data requirements and the value of coupling
machine learning to simulation modelling. I conclude by providing a discourse of modelling
reality, outlining persisting challenges, and discussing the value of modelling in public health
decision-making.
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Chapter 2. Emulator-based Bayesian optimisation for efficient multi-objective calibration of
an individual-based model of malaria

2.1 Abstract

Individual-based models have become important tools in the global battle against infectious
diseases, yet model complexity can make calibration to biological and epidemiological data
challenging. We propose using a Bayesian optimisation framework employing Gaussian
process or machine learning emulator functions to calibrate a complex malaria transmis-
sion simulator. We demonstrate our approach by optimizing over a high-dimensional
parameter space with respect to a portfolio of multiple fitting objectives built from datasets
capturing the natural history of malaria transmission and disease progression. Our approach
quickly outperforms previous calibrations, yielding an improved final goodness of fit.
Per-objective parameter importance and sensitivity diagnostics provided by our approach
offer epidemiological insights and enhance trust in predictions through greater interpretability.

2.2 Introduction

Over the last century, mathematical modeling has become an important tool to analyse
and understand disease-dynamics and intervention-dynamics for many infectious diseases.
Individual-based models (IBMs), where each person is simulated as an autonomous agent,
are now widely used. These mathematical models capture heterogeneous characteristics
and behaviors of individuals, and are often stochastic in nature. This bottom-up approach
of simulating individuals and transmission events enables detailed, robust, and realistic
predictions on population epidemic trajectories as well as the impact of interventions such
as vaccines or new drugs (10, 51). Going beyond simpler (compartmental) models to capture
stochasticity and heterogeneity in populations, disease progression, and transmission, IBMs
can additionally account for contact networks, individual care seeking behavior, immunity
effects, or within-human dynamics (10, 51, 52). As such, well-developed IBMs provide
opportunities for experimentation under relatively naturalistic conditions without expensive
clinical or population studies. Prominent recent examples of the use of IBMs include assessing
the benefit of travel restrictions during the Ebola outbreak 2014–2016 (13) and guiding the
public health response to the Covid-19 pandemic in multiple countries (17). IBMs have also
been applied to tuberculosis (6), influenza (7), dengue (84), and many other infectious diseases
(10). Within the field of malaria, several IBMs have been developed over the last 15 years and
have been used to support understanding disease and mosquito dynamics (53–55), predict the
public health impact or carry out economic analyses of (new) interventions (11, 33, 56, 57);
and investigate drug resistance (58). Many have had wide-reaching impact, influencing WHO
policy recommendations (11, 59, 60, 62) or strategies of national malaria control programs (12).

For model predictions to be meaningful, modellers need to ensure their models accurately
capture abstractions of the real world. The potential complexity and realism of IBMs often
come at the cost of long simulation times and potentially large numbers of input parameters,
whose exact values are often unknown. Parameters may be unknown because they represent
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derived mathematical quantities that cannot be directly measured or require elaborate, costly
experiments (for example shape parameters in decay functions (64)), because the data required
to derive them in isolation is incomplete or accompanied by inherent biases, or because they
interact with other parameters.

Calibrating IBMs poses a complex high-dimensional optimisation problem and thus algorithm-
based calibration is required to find a parameter set that ensures realistic model behaviour,
capturing the biological and epidemiological relationships of interest. Local optima may
exist in the potentially highly irregular, high-dimensional goodness-of-fit surface, making
iterative, purely sampling-based algorithms (e.g., Particle Swarm Optimisation or extensions
of Newton–Raphson) inefficient and, in light of finite runtimes and computational resources,
unlikely to find global optima. Additionally, the curse of dimensionality means the number
of evaluations of the model scales exponentially with the number of dimensions (85). As
an example, for the model discussed in this paper, a 23-dimensional parameter space at a
sampling resolution of one sample per 10 percentile cell in each dimension, would yield
10number of dimensions = 1023 cells. This is larger than number of stars in the observable Universe
(of order 1022 (86)). Furthermore, most calibrations are not towards one objective or dataset.
For multi-objective fitting, each parameter set requires the evaluation of multiple outputs and
thus multiple simulations to ensure that all outcomes of interest are captured (in the model
discussed here epidemiological outcomes such as prevalence, incidence, or mortality patterns).

In this study, we applied our approach to calibrate a well-established and used IBM of
malaria dynamics called OpenMalaria. Malaria IBMs in particular are often highly complex
(e.g., containing multiple sub-modules and many parameters), consider a two-host system
influenced by seasonal dynamics, and often account for multifaceted within-host dynamics.
OpenMalaria features within-host parasite dynamics, the progression of clinical disease,
development of immunity, individual care seeking behaviour, vector dynamics and phar-
maceutical and non-pharmaceutical antimalarial interventions at vector and human level
(github.com/SwissTPH/openmalaria.wiki.git) (52, 63, 64). Previously, the model was
calibrated using an asynchronous genetic algorithm (GA) to fit 23 parameters to 11 objectives
representing different epidemiological outcomes, including age-specific prevalence and
incidence patterns, age-specific mortality rates and hospitalisation rates (52, 63, 64) (see
Supplementary Notes A.1 and A.2 for details on the calibration objectives and data). However,
the sampling-based nature and sequential function evaluations of GAs can be too slow for
high-dimensional problems in irregular spaces where only a limited number of function
evaluations are possible and valleys of neutral or lower fitness may be difficult to cross (87,
88).

Other solutions to fit similarly detailed IBMs of malaria employ a combination of directly
extracting parameter values from the literature where information is available, and fitting the
remainder using multi-stage, modular Bayesian Markov Chain Monte Carlo (MCMC)-based
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methods (4, 5, 89–92). For these models, multiple fitting objectives are often not addressed
simultaneously. Rather, to our knowledge, most other malaria IBMs are divided into functional
modules (such as the human transmissibility model, within-host parasite dynamics model, and
the mosquito or vector model), which are assumed to be influenced by only a limited number
of parameters each. The modules are then fit independently and in a sequential manner (4, 5,
90–92). Modular approaches reduce the dimensionality of the problem, allowing for the use
of relatively straightforward MCMC algorithms. However, these approaches struggle with
efficiency in high dimensions as their Markovian nature requires many sequential function
evaluations (104˘107 even for simple models), driving up computing time and computational
requirements (93). Additionally, whilst allowing for the generation of posterior probability
distributions of the parameters (4), the modular nature makes sequential approaches generally
unable to account for interdependencies between parameters assigned to different modules
and how their co-variation may affect disease dynamics.

Progress in recent years on numerical methods for supervised, regularised learning of smooth
functions from discrete training data allows us to revisit calibration of detailed mathematical
models using Bayesian methods for global optimisation (94). Current state-of-the art calibra-
tion approaches for stochastic simulators are often based around Kennedy and O’Hagan’s
(KOH) approach (71), where a posterior distribution for the calibration parameters is derived
through a two-layer Bayesian approach involving cascade of surrogates (usually Gaussian
processes, GPs) (95). A first GP is used to model the systematic deviation between the simu-
lator and the real process it represents, while a second GP is used to emulate the simulator (96).
However, this approach is computationally intense when scaling to high-dimensional input
spaces and multi-objective optimisation. A fully Bayesian KOH approach is likely computa-
tionally heavy (96) for the efficient calibration of detailed malaria simulators like OpenMalaria.
Single-layer Bayesian optimisation with GPs on the other hand have gained popularity as an
efficient approach to tackle expensive optimisation problems, for example in hyperparameter
search problems in machine learning (97, 98). Assuming that the parameter-solution space
exhibits a modest degree of regularity, a prior distribution is defined over a computationally
expensive objective function by the means of a light-weight probabilistic emulator such as a
GP. The constructed emulator is sequentially refined by adaptively sampling the next training
points based on acquisition functions derived from the posterior distribution. The trained
emulator model is used to make predictions over the objective functions from the input space
with minimum evaluation of the expensive true (simulator) function. Purely sampling-based
iterative approaches (like genetic algorithms) are usually limited to drawing sparse random
samples from proposals located nearby existing samples in the parameter space. In contrast,
the use of predictive emulators permits exploration of the entire parameter space at higher
resolution. This increases the chances of finding the true global optimum of the complex
objective function in question and avoiding local optima.
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Here, we use a single-layer Bayesian optimisation approach to solve the multidimensional,
multi-objective calibration of OpenMalaria (Figure 2.1 1). Employing this single-layer Bayesian
approach further allows for the direct comparison to previous calibration attempts for
OpenMalaria as the objective functions are retained. We prove the strength and versatility of
our approach by optimizing OpenMalaria’s 23 input parameters using real-world data on 11
epidemiological outcomes in parallel. To emulate the solution space, we explore and compare
two prior distributions, namely a GP emulator and a superlearning algorithm in form of a GP
stacked generalisation (GPSG) emulator. We first use a GP emulator to emulate the solution
space. Whilst GP emulators provide flexibility whilst retaining relative simplicity (98) and
have been used previously as priors in Bayesian optimisation (97), stacked generalisation
algorithms have not. They provide a potentially attractive alternative as they have been
shown to outperform GPs and other machine learning algorithms in capturing complex spaces
(33, 99). The stacked generalisation algorithm (99) builds on the idea of creating ensemble
predictions from multiple learning algorithms (level 0 learners). The cross-validated predictions
of the level 0 learners are incorporated into a general learning system (level 1 meta-learner).
This allows for the combination of memory-efficient and probabilistic algorithms in order
to reduce computational time, whilst retaining probabilistic elements required for adaptive
sampling. Here, we showcase the efficiency and speed of the Bayesian optimisation calibration
scheme and propose a modus operandi to parameterize computationally intensive or complex
mathematical models that harvests recent computational developments and is scalable to high
dimensions in multi-objective calibration.

2.3 Results

2.3.1 Calibration workflow

The developed model calibration workflow approach is summarised in Figure 2.1a. In brief,
goodness of fit scores were first derived for randomly generated, initial parameter sets. The
goodness of fit scores were defined as a weighted sum of the loss functions for each of 11
fitting objectives. These span various epidemiological measures capturing the complexity
and heterogeneity of the malaria transmission dynamics, including the age–prevalence and
age–incidence relationships, and are informed by a multitude of observational studies (see the
“Methods” section and Supplementary Note A.2). Next, GP and GPSG emulators were trained
on the obtained set of scores and used to approximate the relationship between parameter sets
and goodness of fit for each objective. After initial investigation of different machine learning
algorithms, the GPSG was constructed using a bilayer neural net, multivariate adaptive
regression splines and random forest as level 0 learners and a heteroscedastic Gaussian process
as level 1 learner (Figure 2.1c, d, see the “Methods” section and supplement (Appendix A)).
Using a lower confidence bound acquisition function based on the emulators’ point and
uncertainty predictions for proposed new candidate parameter sets, the most promising sets
were chosen. These parameter sets were simulated and added to the database of simulations
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for the next iteration of the algorithm. At the next iteration, the emulators are re-trained on the
new simulation database and re-evaluated (Figure 2.1b). This iterative process of simulation,
training and emulation was repeated until a memory limit of 1024 GB was hit. Approximately
130, 000 simulations were completed up to this point.

22



2.3. Results

FIGURE 2.1: Overview of model calibration framework by Bayesian optimisation,
acquisition function, and Gaussian process and machine learning emulators.

a. General Framework. The input parameter space is initially sampled in a space-filling
manner, generating the initial core parameter sets (initialisation). For each candidate
set, simulations are performed with the model, mirroring the studies that yielded the
calibration data. The deviation between simulation results and data is assessed, yielding
goodness of fit scores for each parameter set. (caption continued on the next page)
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Figure 2.1 continued. An emulator (c or d) is trained to capture the relationship between
parameter sets and goodness of fit and used to generate out-of-sample predictions. Based
on these, the most promising additional parameter sets are chosen (adaptive sampling by
means of an acquisition function), evaluated, and added to the training set of simulations.
Training and adaptive sampling are repeated until the emulator converges and a decision
on the parameter set yielding the best fit is made. b. Acquisition Function. The
acquisition function (black line) is used to determine new parameter space locations, θ. θ is
a vector of input parameters (23-dimensional for the model described here) to be evaluated
during adaptive sampling (blue dot for previously evaluated locations, orange dot for
new locations to be evaluated in the current iteration). It incorporates both predictive
uncertainty (blue shading) of the emulator and proximity to the minimum. c. Gaussian
process (GP) emulator.A heteroscedastic Gaussian process is used to generate predictions
on the loss functions, f̂GP(θ),for each input parameter set θ. d. Gaussian process stacked
generalisation (GPSG) emulator. Three machine learning algorithms (level 0 learners:
bilayer neural net, multivariate adaptive regression splines and random forest) are used to
generate predictions on the individual objective loss functions f̂NN, f̂M, and f̂RF (collectively
f̂ML) at locations θ. These predictions are inputs to a heteroscedastic (level 1 learner) which
is used to generate the stacked learner predictions f̂GPSG and derive predictions on the
overall goodness of fit F̂GPSG.
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2.3.2 Emulator Performance

2.3.3 Algorithm performance (by iteration and time) and convergence

Both emulators adequately captured the input–output relationship of the calculated loss-
functions from the simulator, with better accuracy when close to minimal values of the
weighted sum of the loss functions, F (Figure 2.3b). This is sufficient as the aim of both emula-
tors within the Bayesian optimisation framework is to find minimal loss function values rather
than an overall optimal predictive performance for all outcome values. Examples of truth vs.
predicted estimates on a 10% holdout set are provided in Figure 2.2a (additional plots for all
objectives can be found in Supplementary Figures A.2-A.5). A satisfactory fit of the simulator
was previously defined by a loss function value of F = 73.2 (64). The previous best model fit
derived using the GA had a weighted sum of the loss functions of F=63.7 (64). Satisfactory fit
was achieved by our approach in the first iteration of the GPSG-based Bayesian optimisation
algorithm (GPSG-BO), and after six iterations for the GP-based algorithm (GP-BO) (Figure
2.2b). The current best fit was approximately retrieved after six iterations for the GPSG-BO
algorithm and after nine iterations for GP-BO, and was improved by both algorithms after 10
iterations (returning final values F = 58.3 for GP-BO and 59.6 for GPSG-BO). This shows that
the Bayesian optimisation approach with either of our emulators very quickly achieves a better
simulator fit than obtained with a classical GA approach that was previously employed to
calibrate OpenMalaria. Of the two emulators, the GP approach finds a parameter set associated
with a better overall accuracy and the GPSG reaches satisfactory values faster (both in terms of
iterations and time). A likely explanation for this is that the GPSG-BO is unable to propagate
its full predictive variance into the acquisition function. Only uncertainty stemming from the
level 1 probabilistic learner (GP) is therefore captured in the final prediction. This leads to
underestimation of the full predictive variance, and a bias towards exploitation in the early
stages of the GPSG-BO algorithm (as illustrated by early narrow sampling, see Supplementary
Figures A.6-A.7).

Figure 2.2c shows examples of the posterior estimates returned by the optimisation algorithms
in context of the log prior distributions for the parameters with the greatest effects on F (see
also Figure 2.3c). All algorithms return parameter values within the same range and (apart
from parameter 4), clearly distinct from the prior mean. The fact that highly similar parameter
values are identified by multiple algorithms strengthens confidence in the final parameter sets
yielded by the algorithms.

2.3.4 Optimal goodness of fit

The best fit parameter sets yielded by our approach are provided in Supplementary Table
A.1. Importantly, after ten iterations of the GPSG-BO algorithm (˜7 days), and 20 iterations for
the GP-BO algorithm (˜12 days), both approaches yielded similar values of the 11 objective
loss functions, along with similar weighted total loss function values, and qualitatively
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similar visual fits and predicted trends to the data (Figure 2.3a,b and Supplementary material
Appendix A). WWe found this to be an unexpectedly fast result of the two algorithms. Details
of the algorithm’s best fits to the disease and epidemiological data are shown in Supple-
mentary Figures A.8-A.18. Overall, several objectives had visual and reduced loss-function
improvements, for example to the objective on the multiplicity of infection (Figure 2.3a).
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FIGURE 2.2: Emulator performance including predictions, convergence, and prior
parameter distributions and posterior estimates.

a Example of emulator predictions vs true values on a 10% holdout set. Predictions are
shown for the final iteration of each optimisation (orange dots for predictions in iteration
30 for GP-BO and red dots for predictions in iteration 23 for GPSG-BO). Here, emulator
performances are shown for objective 4 (the age-dependent multiplicity of infection, f4) and
the weighted sum of loss functions over 11 objectives, F(θ). Plots for all other objectives are
provided in the supplement (Appendix A). BO Bayesian optimisation, GP Gaussian process
emulator, GPSG Gaussian process stacked generalisation emulator. b Convergence of the
weighted sum of loss functions over 11 objectives (F(θ) associated with the current best fit
parameter set by time in seconds. Satisfactory fit of OpenMalaria refers to a weighted sum
of loss functions value of 73.2 (64). The previous best fit for OpenMalaria was achieved by
the genetic algorithm and had a loss function value of 63.7. Our approach yields a fit F of
58.2 for GP-BO in iteration 21 within in 1.02e6s (˜12 days) and 59.6 for GPSG-BO in iteration
10 in 6.00e5 s (˜7 days). GP-BO Gaussian process emulator Bayesian optimisation, GPSG-BO
Gaussian process stacked generalisation emulator Bayesian optimisation. c Example log
prior parameter distributions (shown by the gray areas) and posterior estimates (vertical
lines). The most influential parameters on the weighted sum of the loss functions are
shown here in this figure (most influential parameters shown in Figure 2.3c). All other
plots can be found in the supplement (Appendix A). The posterior estimates for GP-BO
(orange line) and GPSG-BO (red line) are shown in relation to those previously derived
through optimisation using a genetic algorithm (GA-O, dashed black line) for parameters
θ4,9−11,13−15 (numbers in the panel labels)
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2.3.5 Impact/parameter sensitivity analysis and external validation

An additional benefit of using emulators is the ability to understand the outcome’s dependence
on and sensitivity to the input parameters. To identify the most influential parameters for
each of the 11 fitting objectives, we used the GP emulator trained on all available training
simulation results from the optimisation process (R2=0.53 [objective 7] - 0.92 [objective 3])
to conduct a global sensitivity analysis by variance decomposition (here via Sobol analysis
(100)). Figure 2.3c shows Sobol total effect indices quantifying the importance of individual
parameters and describing each parameter’s contributions to the outcome variance for each
objective. Our results indicate that most objectives are influenced by multiple parameters from
different groups, albeit to varying degrees, thus highlighting the importance of simultaneous
multi-objective fitting. Clusters of influential parameters can be observed for most objectives;
for example, parameters associated with incidence of acute disease influence clinical incidence
and pyrogenic threshold objectives. Some parameters have strong influence on multiple
objectives, such as parameter 4, the critical value of cumulative number of infections and influ-
ences immunity acquisition; and parameter 10, a factor required to determine the pyrogenic
threshold, which we find to be a key parameter determining infections progressing to clinical
illness.

2.3.6 Algorithm validation

To test if our algorithms can recover a known solution, the final parameter sets for both
approaches were used to generate synthetic field data sets, and our approaches were subse-
quently applied to recover the known parameter set. For the GP, 13 of the 23 parameters were
recovered (Supplementary FigureA.19a).Those not recovered largely represented parameters
to which the weighted loss function was found to be insensitive (Figure 2.3c). Thus, rather
than showing a shortcoming of the calibration algorithm, this suggests a potential for dimen-
sionality reduction of the simulator and re-evaluation of its structure.
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FIGURE 2.3: Exemplar plot of calibration and data for objective four “Multiplicity of
infection”, with exemplar epidemiological predictions of prevalence vs. EIR for the final

calibration, and sensitivity of fitting objectives to each parameter.
a Multiplicity of infection by age. Comparison of simulator goodness of fit for objective
4, the age-specific multiplicity of infection (number of genetically distinct parasite strains
concurrently present in one host). Simulations were carried out for the same random
seed for all parameterisations and for a population size of N = 5, 000. b. Simulated
epidemiological relationship between transmission intensity (entomological inoculation
rate, EIR) and P. falciparum prevalence rate (Pf PR2−10). Simulated epidemiological
relationship between the transmission intensity (EIR in number of infectious bites per
person per year) and infection prevalence in individuals aged 2–10 years (P f PR2−10)under
the parameterisations achieved by the different optimisation algorithms. Lines show the
mean across 100 random seed simulations for a simulated population size N = 10, 000
and the shaded area shows the minimum to maximum range. c. Parameter effects on the
objective variance. Using the GP emulator, a global sensitivity analysis (Sobol analysis)
was conducted. The tile shading shows the total effect indices for all objective functions
and parameters grouped by function. SEN Senegal, TZN Tanzania.
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2.3.7 Comparison of key epidemiological relationships and implications for
predictions

The new parameterisations for OpenMalaria were further explored to assess key epidemiolog-
ical relationships, in an approach similar to the four malaria model comparison in Penny et al.
2016 (11). We examined incidence and prevalence of disease, as well as incidence of mortality
for multiple archetypical settings, considering a range of perennial and seasonal transmission
intensity and patterns. The results are presented in Figure 2.3b and Supplementary Figures
A.20-A.30. The new parameterisations result in increased predicted incidence of severe
episodes and decreased prevalence for all transmission intensities (thus also slightly modi-
fying the prevalence–incidence relationship). While we found that the overall implications for
the other simulated epidemiological relationship were small, the differences in predictions for
severe disease may carry implications for public health decision-making and warrant further
investigations. We conclude that our new parameterisations do not fundamentally bring into
question previous research conducted using OpenMalaria, but we do suggest re-evaluation of
adverse downstream events such as severe disease and mortality.

2.4 Discussion

Calibrating IBMs can be challenging as many techniques struggle with high dimensionality,
or become infeasible with long model simulation times and multiple calibration objectives.
However, ensuring adequate model fit to key data is vital, as this impacts the weighting, we
should give model predictions in the public health decision-making process. The Bayesian
optimisation approaches presented here provide fast solutions to calibrating IBMs while
improving model accuracy, and by extension prediction accuracy.

Using a Bayesian optimisation approach, we calibrated a detailed simulator of malaria
transmission and epidemiology dynamics with 23 input parameters simultaneously to 11
epidemiological outcomes, including age-incidence and age-prevalence patterns. The use of
a probabilistic emulator to predict goodness-of-fit, rather than conducting sparse sampling,
allows for cheap evaluation of the simulator at many locations and increases our confidence
that the final parameter set represents a global optimum. Our approach provides a fast
calibration whilst also providing a better fit compared with the previous parameterisation. We
are further able to define formal endpoints to assess calibration alongside visual confirmation
of goodness of fit (5, 64), such as the emulator’s predictive variance approaching the observed
simulator variance. The emulator’s ability to quantify the input stochasticity of the simulator
also enables simulation at small population sizes, contributing to fast overall computation
times.

Despite the demonstrated strong performance of stacked generalisation in other contexts
such as geospatial mapping (33, 99, 101–104), we found that using a superlearning emulator
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for Bayesian optimisation was not superior to traditional GP-based methods. In our context
using GPSG sped up convergence of the algorithm, but both approaches, GP and GPSG, led
to equally good fits. Each approach does, however, have different properties with context-
dependent benefits: The dimensionality reduction provided by GPSG approaches may lead
to computational savings depending on the level 0 and level 1 learners. At the same time,
only level 1 learner uncertainty is propagated into the final objective function predictions,
which affects the efficacy of adaptive sampling and may lead to overly exploitative behaviour,
where sampling close to the point estimate of the predicted optimum is overemphasised,
rather than exploring the entire parameter space (see Supplementary Tables A.2 and A.3
on selected points). On the other hand, exploration/exploitation trade-offs for traditional
GP-BO algorithms have long been examined and no regret solutions have been developed (105).

The methodology presented here constitutes a highly flexible framework for individual based
model calibration and aligns with the recent literature on using emulation in combination with
stochastic computer simulation experiments of infectious diseases(106). Both algorithms can
be applied to other parameterisation and optimisation problems in disease modelling and also
in other modelling fields, such as physical or mobility and transport models. Furthermore,
in the GPSG approach, additional or alternative level 0 can be easily incorporated. Possible
extensions to our approach include combination with methods to adaptively reduce the
input space for constrained optimisation problems (107), or other emulators may be chosen
depending on the application. For example, homoscedastic GPs, which are faster than the
heteroscedastic approach presented here, may be sufficient for many applications (but not for
our IBM in which heteroscedastic was required due to the stochastic nature of the model).
Alternatively, the computational power required by neural net algorithms scales only linearly
(compared with a nominal cubic scaling for GPs) with the sample size, and we envisage wide
applications for neural net-based Bayesian optimisation in high dimensions. In our example,
the bilayer neural net algorithm completed training and prediction within seconds whilst
maintaining very high predictive performance. Unfortunately, estimating the uncertainty
required for good acquisition functions is difficult in neural networks, but solutions are being
developed (23, 108). These promising approaches should be explored as they become more
widely available in high-level programming languages. With the increased availability of code
libraries and algorithms, Bayesian optimisation with a range of emulators is also becoming
easier to implement.

The probabilistic, emulator-based calibration approach is accompanied by many benefits,
including relatively quick global sensitivity analysis. As explored in this work, GP-based
methods are easily coupled with sensitivity analyses, which provide detailed insights into
a model’s structural dependencies and the sensitivity of its goodness of fit to the input
parameters. To the best of our knowledge, no other individual-based model calibration study
has addressed this. In the case of malaria models, we have shown the interdependence of all
OpenMalaria model components and a relative lack of modularity. In particular, within-host
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immunity-related parameters were shown to influence all fitting objectives, including down-
stream events such as severe disease and mortality when an infection progresses to clinical
disease. Thus, calibrating within-host immunity in the absence of key epidemiology and
population outcomes can lead to suboptimal calibration and ultimate failure of the model to
adequately capture disease biology and epidemiology.

We have employed a different approach to calibrating OpenMalaria compared with previous
methods but reach broadly similar comparisons to the natural history of disease. We also
attainted a slightly improved but similar goodness of fit, the main benefit being improved
fitting times and the ability to measure parameter importance. Given the high number of
influential parameters for each epidemiological objective in our parameter importance inves-
tigations, and the overlap between parameter–objective associations, we argue that, where
possible, multi-objective fitting should be preferred over purely sequential approaches. Our
approach confirms that using a parallel approach to parameterisation rather than a modular,
sequential, one captures the joint effects of all parameters and ensures that all outcomes are
simultaneously accounted for. To the best of our knowledge, no model of malaria transmission
of comparable complexity and a comparable number of fitting objectives was simultaneously
calibrated to all its fitting objectives. Disregarding the joint influence of all parameters on the
simulated outcomes may negatively impact the accuracy of model predictions, in particular
on policy-relevant outcomes of severe disease and mortality.

Despite providing relatively fast calibration towards a better fitting parameter set, several
limitations remain in our work. We have not systematically tested that a global optimum has
been reached in our approach, but assume it is close to a global minimum for the current
loss-functions defined, as further iterations did not yield changes, and both the GP and
GPSG achieved similar weighted loss function and parameter sets. We aimed to improve
the algorithm to calibrate detailed IBM, but we did not incorporate new data, which will be
important moving forward as our parameter importance and validation analysis highlights
several key epidemiological outcomes on severe disease and mortality are sensitive to results.

The key limitations of Bayesian optimisation, particularly when using a GP emulator, are the
high computational requirements in terms of memory and parallel computing nodes due to
increasing runtimes and cubically scaling memory requirements of GPs. For this reason, we
opted to not employ fully Bayesian KOH methods, which would double the number of GPs
that would need to be run. Yet, memory limits may be reached before the predictive variance
approached its limit. Furthermore, we chose an acquisition function with high probability
to be no regret (105), but this likely overemphasizes exploration in the early stages of the
algorithm considering the dimensionality of the problem and finite runtime. We opted here
for pure exploitation every five iterations, but a more formal optimisation of the acquisition
function should be explored. The GPSG approach presented here can partially alleviate this
challenge, depending on the choice of learning algorithms, but the iterative nature and need
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for many simulations remain. Memory-saving and time-saving extensions are thus worth
exploring, such as incorporating graphics processing unit (GPU) computing or adaptively
constraining the prior parameter space, dimensionality reduction, or addressing alternative
acquisition functions. Additionally, as with all calibration methodologies, many choices are
left to the user, such as the size of the initial set of simulations, the number of points added per
iteration, or the number of replicates simulated at each location. There is no general solution
to this as the optimal choices are highly dependent on the problem at hand, and we did not
aim to optimize these. Performance might be optimised further through a formal analysis
of all these variables, however the methodology here is already fast, effective, and highly
generalizable to different types of simulation models and associated optimisation problems.
Improving the loss-functions or employing alternative Pareto front efficiency algorithms was
not the focus of our current study but would be a natural extension of our work, as would be
alternative approaches to the weighting of objectives, which remains a subjective component
of multi-objective optimisation problems (109).

A model’s calibration to known input data forms the backbone of its predictions. The
workflow presented here provides great advances in the calibration of detailed mathematical
models of infectious diseases such as IBMs. Provided sufficient calibration data to determine
goodness-of-fit, our approach is easily adaptable to any agent-based model and could become
the modus operandi for multi-objective, high-dimensional calibration of stochastic disease
simulators.

2.5 Methods

2.5.1 Preparation of calibration data and simulation experiments

Disease transmission models generally have two types of parameter inputs: core parameters,
inherent to the disease and determining how its natural history is captured, and simulation
options characterizing the specific setting and the interventions in place (Figure 2.1a). The
simulation options specify the simulation context such as population demographics, transmis-
sion intensity, seasonality patterns, and interventions, and typically vary depending on the
simulation experiment. In contrast, the core parameters determine how its epidemiology and
aetiopathogenesis are captured. These include parameters for the description of immunity
(e.g., decay of maternal protection), or for defining clinical severe episodes (e.g., parasitemia
threshold). To inform the estimation of core parameters, epidemiological data on the natural
history of malaria were extracted from published literature and collated in previous calibra-
tions of OpenMalaria (3, 52, 63), which were re-used in this calibration round and detailed in
the Supplementary material. These include demographic data such as age-stratified numbers
of host individuals which are used to derive a range of epidemiological outcomes such as
age-specific prevalence and incidence patterns, mortality rates, and hospitalisation rates.
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Site-specific OpenMalaria simulations were prepared, representing the studies that yielded
these epidemiological data in terms of transmission intensity, seasonal patterns, vector species,
intervention history, case management, and diagnostics (63). The mirroring of field study
characteristics in the simulation options ensured that any deviation between simulation
outputs and data could be attributed to the core parameters. Age-stratified simulation outputs
to match to the data include numbers of host individuals, patent infections, and administered
treatments. A summary of the data is provided in the Supplementary Note A.2 .

2.5.2 General Bayesian optimisation framework with emulators

In our proposed Bayesian optimisation framework (Figure 2.1) we evaluated the deviation
between simulation outputs and the epidemiological data by training probabilistic emulator
functions that approximate the relationship between core parameter sets and goodness of fit.
To test the optimisation approach in this study we considered the original goodness of fit
metrics for OpenMalaria detailed in reference (64) and in Supplementary Note A.2, which uses
either Residual Sum of Squares (RSS) or negative log-likelihood functions depending on the
epidemiological data for each objective (63, 64). The objective function to be optimised is a
weighted sum of the individual objectives’ loss functions.

We adopted a Bayesian optimisation framework where a probabilistic emulator function is
constructed to make predictions over the loss functions for each objective from the input space,
with a minimum amount of evaluations of the (computationally expensive) simulator.

We compared two emulation approaches. Firstly, a heteroskedastic GP emulator and secondly
a stacked generalisation emulator (99). For approach 1 (GP-BO), we fitted a heteroskedastic
Gaussian process with the input noise modelled as another GP (110) with a Matérn 5/2 kernel
to account for the high variability in the parameter space (Figure 2.1c) (97, 111). For approach
2 (GPSG-BO), we selected a two-layer neural network (112–114), multivariate adaptive regres-
sion splines (115), and a random forest algorithm (74, 116) as level 0 learners.

With each iteration of the algorithm, the training was extended using adaptive sampling
based on an acquisition function (lower confidence bound) that accounts for uncertainty and
predicted proximity to the optimum of proposed locations (Figure 2.1b). As the emulator
performance improves (as assessed by its predictive performance on the test set) we gain
confidence in the currently predicted optimum.

2.5.3 Malaria transmission and disease simulator

We applied our novel calibration approach to OpenMalaria github.com/SwissTPH/openmala

ria.wiki.git, an open source modelling platform of malaria epidemiology and control. It
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features several related individual-based stochastic models of P. falciparum malaria transmis-
sion and control. Overall, the OpenMalaria IBM consists of a model of malaria in humans linked
to a model of malaria in mosquitoes and accounts for individual level heterogeneity in humans
(in exposure, immunity, and clinical progression) as well as aspects of vector ecology (e.g.,
seasonality and the mosquito feeding cycle). Stochasticity is featured by including between-
and within-host stochastic variation in parasite densities with downstream effects on immu-
nity (63). OpenMalaria further includes aspects of the health system context (e.g. treatment
seeking behaviour and standard of care) (52, 63) with additional probabilistic elements such
as treatment seeking probabilities or the option for stochastic results of diagnostic tests. An
ensemble of OpenMalaria model alternative variants is available defined by different assump-
tions about immunity decay, within-host dynamics, heterogeneity of transmission, along with
more detailed sub-models that track parasite genetics, and pharmacokinetic and pharmaco-
dynamics. The models allow for the simulation of interventions, such as the distribution of
insecticide-treated nets (ITNs), vaccines, or reactive case detection (50, 117), in comparatively
realistic settings. Full details of the model and the history of calibration can be found in the
original publications (52, 63, 64) and are summarised in Supplementary Notes A.1 and A.2.
In our application, we use the term simulator to refer to the OpenMalaria base model variant (64).

2.5.4 Calibrating OpenMalaria: loss functions and general approach

Aim

Let f (θ) denote a vector of loss functions obtained by calculating the goodness of fit
between simulation outputs and the real data (full details of loss function can be found
in Supplementary Note A.2). In order to ensure a good fit of the model, we aim to find
the parameter set θ that achieves the minimum of the weighted sum of 11 loss functions
(corresponding to the 10 fitting objectives) F (θ) = ∑11

i=1 wi fi (θ) , where fi (θ) is the value
of objective function i at θ and wi is the weight assigned to objective function i :

argmin
θ

(
11

∑
i=1

wi fi (θ)

)
(2.1)

The weights are kept consistent with previous rounds of calibration and chosen such
that different epidemiological quantities contributed approximately equally to F (θ) (see
Supplementary Note A.2).

Step 1: Initialisation.

Let D = 23 denote the number of dimensions of the input parameter space Θ and W =

11 the number of objective functions fi (θ) , i = 1, . . . , 11 . Prior distributions consistent
with previous fitting runs (64) were placed on the input parameters. As each parameter
is measured in different units, we sampled from the D -dimensional unit cube Θ and
converted these to quantiles of the prior distributions (64) (Supplementary Note A.2 and Figure
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A.6). Previous research suggests that in high-dimensional spaces quasi-Monte Carlo (qMC)
sampling outperforms random or Latin Hypercube designs for most function types and leads
to faster rates of convergence (118, 119). We therefore used Sobol sequences to sample 1,000
initial locations from Θ. The GP can account for input stochasticity of the simulator. For each
sample, we simulated 2 random seeds at a population size of 10,000 individuals. Additionally,
100 simulations were run at the centroid location of the unit cube to gain information on the
simulator noise. Using small noisy simulations with small populations speeds up the fitting as
the noisy simulations are less computational expensive than larger population runs. Replicates
were used to detect signals in noisy settings and estimate the pure simulation variance (110).
Computational savings were later achieved through pre-averaging of replicates (110). The
2000 unique locations were randomly split into a training set (90% ) and a test set (10% ). All
simulator realisations at the centroid were added to the training set.

Step 2: Emulation

2.1: Emulator Training

Each emulator type for each objective function was trained in parallel to learn the relationships
between the normalized input space Θ, and the log-transform of the objective functions f (θ)
. In each dimension d ∈ D , the mean µd and standard deviation σd of the training set were
recorded, d = 1, . . . , 23 .

2.2 Posterior prediction

We randomly sampled 500,000 test locations in Θ from a multivariate normal distribution with
mean θopt and covariance matrix Σ , where θopt is the location of the current best location and Σ

is determined based on previously all sampled locations, and scaled each dimension to mean
µd and standard deviation σd . The trained emulators were used to make predictions F̂ (θ)

of the objective functions F (θ) at the test locations. Mean estimates, standard deviations, and
nugget terms were recorded. The full predictive variance at each location θ ∈ Θ corresponds
to the sum of the standard deviation and nugget terms. From this, we derived the weighted
sum F̂ (θ) = ∑11

i=1 wi fi (θ) , using weights w consistent with previous fitting runs (64) with
greater weighting for further downstream objectives. The predicted weighted loss function at
location θ was denoted F̂ (θ) with a predicted mean µ̂F (θ) and variance σ̂F (θ) . Every 15
iterations, we increase the test location sample size to 5 million to achieve denser predictions.

Step 3: Acquisition.

We chose the lower confidence bound (LCB) acquisition function to guide the search of
the global minimum (120). Lower acquisition corresponds to potentially low values of the
weighted objective function, either because of a low mean prediction value or large uncertainty
(121). From the prediction set at iteration t , we sample without replacement 250 new
locations θ = argminθ{µ̂F (θ, t) −√ντt σ̂t (θ, t)} , with the hyperparameter ν = 1 and
τt = 2log

(
TD/2+2

t π/3δ
)

, where Tt is the number of previous unique realisations of the
simulator at iteration t, and δ = 0.01 is a hyperparameter (105). We choose this method as with
high probability it is no regret (105, 121). With increasing iterations, confidence bound-based
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methods naturally transition from mainly exploration to exploitation of the current estimated
minimum. In addition to this, we force exploitation every 10 iterations by setting τt = 0 ).

Step 4: Simulate.

The simulator was evaluated at locations identified in step 3 and the realisations were added
to the training set. Steps 2-4 were run iteratively. The Euclidian distance between locations of
current best realisations was recorded.

Step 5: Convergence.

Convergence was defined as no improvement in the best realisation, argminF F .

2.5.5 Emulator definition

We compared two emulation approaches. Firstly, a heteroskedastic GP emulator and secondly
a stacked generalisation emulator (99) using a two-layer neural net, multivariate adaptive
regression splines (MARS) and a random forest as level 0 learners and a heteroskedastic GP
as level 1 learner:

Heteroskedastic Gaussian Process (hetGP).

We fitted a Gaussian process with the input noise modelled as another Gaussian process (110).
After initial exploration of different kernels, we chose a Matérn 5/2 kernel to account for the
high variability in the parameter space. A Matérn 3/2 correlation function was also tested
performed equally. Each time the model was built (for each objective at each iteration), its
likelihood was compared to that of a homoscedastic Gaussian process and the latter was chosen
if its likelihood was higher. This resulted in a highly flexible approach, choosing the best option
for the current task.

Gaussian Process Stacked Generalisation (GPSG).

Stacked generalisation was first proposed by Wolpert 1992 (99) and builds on the idea
of creating ensemble predictions from multiple learning algorithms (level 0 learners). In
superlearning, the cross-validated predictions of the level 0 learners are fed into a level 1
meta-learner. We compared the 10-fold cross-validated predictive performance of twelve
machine learning algorithms on the test set. All algorithms were accessed through the mlr
package in R version 2.17.0 (122). We compared two neural network algorithms (brnn (113)
for a two layer neural network and nnet for a single-hidden-layer neural network (123), five
regression algorithms (cvglmnet (115) for a generalised linear model with LASSO or Elasticnet
Regularisation and 10-fold cross validated lambda, glmboost (124) for a boosted generalised
linear model, glmnet (115) for a regular GLM with Lasso or Elasticnet Regularisation, mars
for multivariate adaptive regression splines, and cubist for rule-and instance-based regression
modelling), three random forest algorithms (randomForest (116), randomForestSRC (125) and
ranger (126)), and a tree-like node harvesting algorithm (nodeHarvest (127)). Extreme gradient
boosting and support vector regression were also tested but excluded from the comparison
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due to its long runtime. Their performance was compared with regards to runtimes, and
correlation coefficients between predictions on the test set and the true values. Based on these,
we selected the two-layer neural network (brnn) (114), multivariate adaptive regression spline
(mars) (128), and random forest (randomForest) (116) algorithms. This ensemble of machine
learning models constituted the level 0 learners and was fitted to the initialisation set. Out-
of-sample predictions from a 10-fold cross validation of each observation were used to fit the
level 1 heteroskedastic GP. As in approach 1, we opted for a Matérn 5/2 kernel and retained
the option of changing to a homoscedastic model where necessary.

2.5.6 Emulator performance

We ascertained that both emulators captured the input-output relationship of the simulator by
tracking the correlation between true values f and predicted values f̂ on the holdout set of
10% of initial simulations with each iteration (truth vs predicted R2 0.51-0.89 for GP vs 0.37-
0.77 for GPSG after initialisation, see Supplementary Figure A.1). Transition from exploration
to exploitation during adaptive sampling was tracked by recording the distribution of points
selected during adaptive sampling in each iteration (Figures A.2 and A.3).

2.5.7 Sensitivity analysis

A global sensitivity analysis was conducted on a heteroskedastic GP model with Matérn 5/2
kernel that was trained on all training simulation outputs (n=5,400) from the fitting process.
We used the Jansen method of Monte Carlo estimation of Sobol’ sensitivity indices for variance
decomposition (129, 130) with 20,000 sample points and 1000 bootstrap replicates. Sobol’
indices were calculated for all loss functions f as well as for their weighted sum F and
in all dimensions. Whilst keeping the number of sample points to as low as possible for
computational reasons, we ascertained that first-order indices summed to 1 and total effects
>1. We further ensured that the overall results of the Sobol’ analysis were consistent with the
results of other global sensitivity analyses, namely the relative parameter importance derived
from training a random forest (Figure A.32).

2.5.8 Synthetic data validation

Synthetic field data was generated by forward simulation using the final parameter sets
from each optimisation process. The two optimisation algorithms were run anew using the
respectively generated synthetic data to calculate the goodness of fit statistics. The parameter
sets retrieved by the validation were compared against the parameterisation yielded by the
optimisation process.

2.5.9 Epidemiological outcome comparison

We conducted a small experiment to compare key epidemiological outcomes from the new
parameterisations with the original model and that detail in a four malaria model comparison
in Penny et al. 2016 (11). We simulated malaria in archetypical transmission and seasonality
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settings using the different parameterisations. The experiments were set up in a full-
factorial fashion, considering the simulation options described in Table 2.1. Monitored
outcomes were the incidence of uncomplicated, severe disease, hospitalisations, and indirect
and direct malaria mortality over time and by age, prevalence over time and by age, the
prevalence–incidence relationship, and the EIR–prevalence relationship. Simulations were
conducted for a population of 10,000 individuals over 10 years.

TABLE 2.1: Full experimental design in setting archetypes

Experiments were run at 36% probability that an infected individual receives effective care within 14 days.

Number of
stochastic
realisation

Seasonality Transmission (EIR) Parameterisation

10 Perennial 0.25, 0.5, 0.75, 1, 1.1, 1.25, 1.35, 1.5,
1.75, 2, 2.5, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, 22, 25, 30, 35, 40, 45, 50, 64,
73, 80, 100, 128, 150, 200, 256, 512

GA

Seasonal (sinusoidal) GP-BO

GPSG-BO

2.5.10 Software

Consistent with previous calibration work, we used OpenMalaria vversion 35, an open-source
simulator written in C++ and further detailed in full in the supplement (Supplementary Text
A.1), as well as OpenMalaria wiki (https://github.com/SwissTPH/openmalaria/wiki) or
in the original publications (52, 63, 64). Calibration was performed using R 3.6.0. For the
machine learning processes, all algorithms were accessed through the mlr package version
2.17.0(122). The heteroskedastic GP utilised the hetGP package under version 1.1.2 (110).
The sensitivity analysis was conducted using the soboljansen function of the sensitivity
package version 1.21.0 in R (131). All algorithms were adapted to the operating system
(CentOS 7.5.1804) and computational resources available at the University of Basel Center
for Scientific Computing, SciCORE, which uses a Slurm queueing system. The full algorithm
code is available on GitHub and deposited in the zendo database under accession code
https://doi.org/10.5281/zenodo.5595100 and can be easily adapted to calibrate any
simulation model. The number of input parameters and objective functions are flexible.
Thus, to adapt the code to other simulators, code should be updated to run the respective
model simulator, and tailored to user’s operating system. Further requirements to adapt the
workflow are sufficient calibration data, and a per-objective goodness of fit metric.

2.6 Data availability

All calibration data are detailed in reference (63). The data used for model fitting
are available on GitHub and deposited in the zendo database under accession code
https://doi.org/10.5281/zenodo.5595100. The data generated in this study and
plotted in the main manuscript or supplement are publicly available and have been deposited
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in the zendo database under accession code https://doi.org/10.5281/zenodo.5552279.

2.7 Code availability

Code is publicly available on GitHub and deposited in the zendo database under accession
code https://doi.org/10.5281/zenodo.5595100.
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3.1 Summary

Health policy decisions consider a broad range of epidemiological, societal, and economic
factors and provide general guidelines as well as solutions tailored to specific questions and
settings. Decision-making in malaria is especially intricate because of the complex parasite life
cycle, the multitude of interventions and their varying suitability in different contexts. Math-
ematical modelling is an important tool in navigating this complex public health landscape
and its value for supporting evidence-based decision-making has been long recognised in the
field of malaria. Applications range from supporting development of general guidelines’ to
real-time support during acute investigations.

Calibration to diverse data covering a broad portfolio of biological and epidemiological rela-
tionship is the backbone of any model and determines the value and credibility of predictions
as evidence for informed decision-making. During calibration, the context of data collection
must explicitly be accounted as many epidemiological relationships are context-dependent.
This requires a comprehensive understanding of the data itself and the setting, and methods
under which the data were collected and assembled. Here, we provide a generalizable
framework for the integration of data into calibration.

This framework is applied to the P. falciparum prevalence -incidence relationship. Accurate
incidence measures are difficult to obtain and cartographic interference from more readily
available prevalence data often fails to account for the context dependence of the relation-
ship. Through their mechanistic explicitness, mathematical models of malaria transmission
can be used to more accurately capture the prevalence-incidence relationship and improve
predictions. By providing a library of data and surrounding contextual covariates, the work
presented here paves the way from implicit to explicit integration of this relationship into
mathematical models.

In light of the increasing relevance of mathematical modelling and integration into decision-
making and need for guidance on how data should be used, this manuscript provides a
discussion on integrating data for model calibration to ensure credible predictions.
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3.2 Background

3.2.1 The role of infectious disease modelling in public health decision-making

Health policy decisions consider a broad range of epidemiological, societal, and economic
factors and provide general guidelines as well as solutions tailored to specific settings.
Evidence-based decision-making in malaria is especially challenging as it has to address the
urgent public health needs in the light of stalling progress in combatting malaria.The parasite’s
complex two-host life cycle can be interrupted through a variety of interventions, targeting
different stages of the transmission cycle. These may be based on anti-parasitic drugs, vector
control, or human behavioural adaptation. Their effectiveness depends on an interplay of
biological, ecological, geographical, environmental, and socioeconomic factors.

Direct evidence from randomised control trials (RCTs) and other observational studies is
generally available only as summarised effect or population impact estimates for specific
preventive or therapeutic interventions in specific study populations. Potential interactions
between interventions and contextual covariates are often ignored (2). The resulting data
provides snapshots of the complex disease biology and intervention landscape necessary for
elimination or control. Additional quantitative evidence from mathematical modelling can
support decisions at population level by comparing and combining interventions.

Mathematical modelling has a long tradition in supporting public health decision-making
on the control of infectious diseases. Starting with Bernoulli’s 1760 analyses of smallpox
transmission (132), to the early works of Ross and MacDonald on malaria at the turn of the
20th century, to today’s breadth of complex disease transmission simulators for malaria (4,
5, 63), tuberculosis (6), dengue (8), and Covid-19 (17), the field has been experiencing an
explosive increase in both popularity. Given needs to make public health decisions to reduce
global mortality and morbidity, mathematical modelling has continued to provide evidence
for malaria policy for over a decade (56, 59, 60). By retaining explicit descriptions of biological
and epidemiological foundations, mechanistic mathematical models allow for approximations
of experiments in field-like settings without the same use of time and resources (60, 133). They
can therefore complement observational studies and generate insights and extrapolations
in ways that purely data-driven approaches cannot (106, 134). This enables models to e.g.
forward predict the long-term (comparative) effectiveness of interventions and guide funding
decisions (2). Exemplary use cases include control strategy investigations for endemic diseases
(10) or acute advice during outbreak investigations, such as real-time estimating the impact
of travel restrictions during the West African Ebola Outbreak (13) or of non-pharmaceutical
interventions during the COVID-19 pandemic in the United Kingdom (17).

A model suitable for providing evidence for decision making should synthesise available
(data) evidence and contextualise it through biological and epidemiological assumptions
(135). Models supporting decision-making must be adaptable and flexible, and be able to as
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realiably as possible capture both general biological and epidemiological relationships as well
as represent a multitude of specific geographical settings. The model must therefore capture
a diverse range of biological and epidemiological relationships and provide a comprehensive
summary of all aspects of the disease that carry implications for decision-making.

3.2.2 Calibration to diverse real-world data

Alongside valid structural assumptions, calibration to diverse high-quality data is a key
backbone of any predictive model. Without diligent calibration, the most elaborate model
cannot generate credible evidence for decision-making. To ensure applicability and adapt-
ability of the model to diverse decisions processes, the calibration data must cover the various
relationships of interest and be derived from a multitude of settings. In the case of malaria, this
includes for example the age-prevalence and age-incidence relationships and age-dependence
of the multiplicity of infection (3, 9, 52, 136). Much of the data used for the calibration of
infectious disease models of malaria stems from epidemiological studies carried out in the late
1980s to early 2000s. Advantages of this are that few interventions were in place at the time,
providing a unique opportunity for a relatively purist view of disease transmission in a natural
environment. However, this means that contextual information was often not systematically
collated or has been lost.

Capturing the context of data collection

During calibration, the deviation between model predictions and data is minimised. For this,
specific simulations must be created that realistically and comprehensively capture the settings
and context of data collection. This includes information on the demography, efficiency of
the local health care system, population care seeking behaviour, history of relevant disease
control interventions, seasonal transmission patterns, and (if applicable) vector ecology like
the abundance of different species or behaviours like biting patterns. By accounting for these
confounders, any deviation between data and predictions should be attributable to the model
parameters (136).

However, capturing specific settings is a challenge because the calibration data is often
of historic nature and information has been lost over time. Without expert knowledge of
the setting, relevant information on a range of topics must be collated from databases, the
published literature (which may include publications in highly specialised journals or in local
languages), epidemiological and demographic surveys reports, and other sources.

Here, we propose a generalisable framework for incorporating historical observational data
into the calibration of infectious disease models while accounting for contextual covariates.
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Specifically, we showcase the process of incorporating data on the age-specific prevalence-
incidence relationship of P. falciparum malaria (Pf PR-incidence relationship) in Africa into
OpenMalaria, an established individual-based stochastic simulation platform of malaria
transmission and control. The resulting database of contextual information for this epidemi-
ological relationship and experimental setups is publicly available. This sets the stage for
experimentation in specific settings with OpenMalaria as well as other malaria simulators and
lays the foundation for incorporating prevalence-incidence relationships into the calibration
process. This provides an important step forward in improving the accuracy with which
malaria simulators capture this relationship, which turn improves the quality and credibility
of model-based evidence in decision-making.

3.3 A comprehensive translational framework

Our comprehensive framework captures the study- and setting-specific contextual covariates
to be included in the modelling representation of each study. This framework is illustrated
in Figure 3.1. Following our framework, simulations incorporate and reflect the transmission
intensity and seasonality of malaria in the region as well as relevant vector ecology. Further,
information on health care provision within and outside the study is included. First-line
treatment and possible resistance to treatment are accounted for. Current and past control
interventions are replicated in simulations. This information can be obtained from extensive
searches of the primary and secondary literature and from public databases. Once all informa-
tion is carefully collated, it is incorporated into the modelling environment as model inputs.

Figure 3.1 provides an overview of the information required to replicate observational studies
on malaria. However, this information may be challenging to gather, or conflicting information
may exist. The following sections provide an overview of the collection process. Additional,
OpenMalaria-specific information is provided in Appendix B.

3.3.1 Transmission intensity and seasonality

With regards to gathering contextual information, data should be as unprocessed as possible to
maximise objectivity. Raw data should be preferred over aggregated data and over modelled
surfaces or statistical estimates. Using annual transmission intensity and seasonality as an
example, 3.2 provides a schematic overview of how this information can be obtained and
how different sources of information should be weighted. In our exemplar model, in Open-
Malaria, accurately representing transmission requires providing an estimate of the annual
transmission intensity (EIR) as well as the relative transmission each month. Firstly, any
direct information (here on annual and monthly EIRs) should be gathered from the primary
reference reporting the data. Then, the literature that was cited in the primary study should
be consulted, followed by additional studies relating to the same or comparable locations. If

45



Chapter 3. Grounding predictive models in real world data: Why context matters

study +  
setting

Interventions
Vector Control, SMC,
Preventative treatment

Transmission
Annual transmission intensity
Vector species
Indoor / outdoor biting 

Seasonality
Monthly EIR
Monthly rainfall/temperature

Relevant history
Field trials
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Health care system
Effective care
Treatment seeking behavior
Drug availability
Diagnostics
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Half-life
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Literature/ 
Databases Model

FIGURE 3.1: Translational framework.
For generating simulations that replicate the observational studies that generated the
calibration data, the literature and databases must be searched for sufficient information
to generate a holistic image of the context of data collection. These include information
on transmission intensity and seasonality, specifics around the antimalarial care available
to individuals, as well as interventions. Both the study and general, local context
must be reflected. EIR= Entomological Inoculation Rate; SMC = Seasonal Malaria
Chemoprevention.

information is insufficient, e.g. monthly EIR estimates are unavailable, the extended literature
can be searched for direct proxy measures from which seasonality patterns can be inferred
such as human biting rates. Lastly, indirect proxy measures that correlate with the measure
of interest can be used. In case of relative monthly transmission, this could be information on
rainfall or temperature data, which is available in public databases such as the World Bank
Climate Change Knowledge Portal (climateknowledgeportal.worldbank.org). In general,
information on EIR and seasonality should relate to locations as close to the study location
as possible. As countries are often heterogeneous in transmission (but also in relation to
other covariates), national averages should only be used if no other information is available.
Similarly, any additional data is preferred to be in temporal proximity to the study period.
This search process must be diligently repeated for all covariates of interest.

46

climateknowledgeportal.worldbank.org


3.3. A comprehensive translational framework

1° ref.

Direct monthly EIR estimates

Indirect monthly estimates (e.g. 
human biting rate)

coordinate-specific   rainfall/ 
temperature data

Study period > comparable period > general information

cited

same location

comparable location

same location

comparable location

General databases

E
I
R

S
e
a
s
o
n
a
l
i
t
y

FIGURE 3.2: Case study: Hierarchy of information with application to the example of
transmission intensity and seasonality.

A hierarchical framework ranking sources of information. This diagram shows a
hierarchical framework for information on annual transmission intensity (EIR) and
seasonality. Higher weighting should be attributed to estimates obtained from the primary
reference or the directly cited literature. If no direct estimates are available, the extended
literature should be screened for indirect (proxy) estimates from which seasonality can be
inferred, such as monthly human biting rates. Lastly general databases could be consulted
for more indirect proxy measures, e.g. for coordinate-specific monthly climate information.

3.3.2 Diagnostics and the care cascade

Care seeking behaviour, diagnostics and treatment carry important implications for morbidity,
durations of infections, transmission and therefore the simulated epidemiological relation-
ships. As OpenMalaria tracks parasite densities within the individual, diagnostic thresholds
can be defined in parasites per microliter with given specificity according to the diagnostic
tool (here: commonly thick blood smear microscopy).
While most models including OpenMalaria contain options for explicitly accounting for
individual components of the care cascade, care seeking behaviour is, in OpenMalaria, most
commonly defined through derivation from the effective care rate. This probability describes
the probability of an infected individual receiving an effective curative malaria treatment
within 14 days of infection and combines the probability that an infected individual seeks
official care, adherence, compliance, treatment efficacy and potential resistance (137). Here,
this value must account for active case detection (ACD) conducted during the study period,
the background health system, and preventative chemotherapy. For studies conducted prior
to the year 2000 (and thus prior to malaria awareness campaigns in the considered countries)
we assumed low care seeking probabilities for uncomplicated malaria in the formal health
sector unless indicated otherwise (63). For studies conducted after the year 2000, effective
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care estimates were triangulated from the literature (e.g. (137)), country-specific Demographic
Health Surveys or Malaria Indicator Surveys. In order to simulate the study conditions under
which incidence was recorded, ACD was added at given and 100% coverage or at a coverage
equivalent to the follow-up rate provided in the study. Additionally, efficacy estimates for
first-line treatment and potential resistance levels in the study setting were extracted from the
literature and factored into the final effective care estimates.

3.3.3 Interventions

For each setting, we consider its intervention history over the last ten years with regards
to insecticide-treated net (ITN), distribution, long-lasting insecticide treated net (LLIN) use,
indoor residual spraying (IRS), and intermittent preventive treatment in pregnancy (IPTp).
Prior to the year 2000 we assumed no interventions unless indicated otherwise.

3.3.4 Acceptable levels of inaccuracies

In practice, it is often difficult to obtain direct, reliable estimates for every covariate. The
researcher must therefore determine an acceptable level of indirectness or inaccuracy, which
will depend on the covariate’s likely influence on predictions. For example, monthly season-
ality indices inferred only from rainfall data are likely somewhat inaccurate. However, if
the annual transmission intensity is accurately captured in the simulations and the general
seasonal pattern somewhat appropriately (e.g. highly seasonal vs. perennial transmission),
the negative impact on predictions of the Pf PR-incidence relationship is likely low. This must
be carefully considered on a case-by-case basis. These decisions will define a data quality
threshold that must be met in order to retain a data record for calibration.

3.4 Case study: The malaria PfPR-incidence relationship

Clinical incidence is an essential indicator to track progress on malaria control and elimination.
However, accurate incidence measures are difficult to obtain, as explicitly measuring incidence
requires long-term longitudinal studies with resource intense active case detection (138). For
the case of clinical incidence, estimates often rely on routinely collected data (e.g. health facility
records) that is prone to biases from incomplete reporting and relies on statistical adjustments
(53, 138). The sparsity, inaccessibility and unreliability of incidence data impose limitations
on its value and usability in comparison to prevalence data. Prevalence (Pf PR) is more
frequently measured and data more readily available. Therefore, cartographic approaches
that estimate case incidence from densely available prevalence estimates and geospatial
interpolation between sparse but reliable, matched incidence and prevalence estimates, are
frequent (139). However, these methods rely on the ability to estimate incidence from Pf PR,
which requires a deep, mechanistic understanding of this relationship (53, 140–142). Purely
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data-driven (statistical) approaches are limited in their ability to capture the complexity of the
Pf PR-incidence relationship (53).

Detailed models of malaria transmission and control retain explicit mechanisms of the disease
transmission and feature a broad range of contextual covariates. It has been previously
shown that they can be calibrated specifically to capture the Pf PR-incidence relationship
and generate age-specific predictions of incidence from Pf PR data (53). However, while
outperforming purely data-driven approaches, substantial degrees of predictive uncertainty
remain despite adjustment for frequency of ACD and diagnostic case definition thresholds (53).

Fig 3.3A shows the age-matched Pf PR-incidence relationship of all records relating to P.
falciparum malaria in Africa included in (53). The raw relationship is highly valuable and
shows only a weak positive correlation. In contrast, Figure 3.3B shows an exemplary selection
of all data points relating to children aged <5 years and from studies conducted in Kenya, Mali,
Senegal, or Tanzania. We conclude that the underlying setting-specific contextual covariates
(such as transmission intensity, seasonality patterns or health system specifics) determine
the Pf PR-incidence relationship and are thus important to be incorporated for subsequent
analyses.

Two lessons can be drawn from these analyses: Firstly, it may prove valuable to integrate the
Pf PR-incidence relationship into the calibration of detailed malaria models from the outset.
Often, malaria transmission models incorporate the age-prevalence and age-incidence rela-
tionships separately (3, 4), which may lead to poor depiction of age-specific Pf PR-incidence
relationships. Secondly, age, care seeking probability, diagnostic thresholds and inferred
transmission intensity may be insufficient to explain the variation in this relationship. During
calibration, the deeper context of data collection should captured to account for the remaining
variability. Explicitly incorporating the age-dependence and contextual complexity of the
Pf PR-incidence relationship into disease simulators will improve their predictive accuracy and
enable improved incorporation into decision-making processes that rely on accurate incidence
quantification. In 2015, Battle et al. published a comprehensive database of age-matched
Pf PR-incidence records (140). Here, we demonstrate the process of preparing these data for
incorporation into the calibration of OpenMalaria.

3.4.1 Simulator of malaria transmission and control

OpenMalaria (https://github.com/SwissTPH/openmalaria.wiki.git) is an individual-based
stochastic modelling platform of malaria transmission and control. OpenMalaria features
within-host parasite dynamics, the progression to and of clinical disease, development of
immunity, individual care seeking behaviour, vector dynamics and pharmaceutical and non-
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FIGURE 3.3: The PfPR-incidence relationship in data records included
by Cameron et al. 2015 (53).

A. Case incidence (events per 1,000 person-years observed) in relation to age-matched
prevalence across all ages. The data from all selected records are jointly plotted here.
B. Case incidence (events per 1,000 person-years observed) in relation to age-matched
prevalence for children under 5 years old and obtained from studies conducted in Kenya,
Mali, Senegal or Tanzania. These countries were selected as sufficient data were available
for plotting.

pharmaceutical antimalarial interventions at vector and human level (3, 9, 52, 136). Previ-
ously, the model has been calibrated to 11 objectives representing different epidemiological
outcomes, including age-specific prevalence and incidence patterns, age-specific mortality
rates and hospitalization rates (3, 9, 52, 136).

3.4.2 Record Selection and Quality Control

Starting from the previously published database of age-matched prevalence-incidence records
(140), we selected records relating to P. falciparum malaria in Africa based on the inclusion
and exclusion criteria determined by Cameron et al. (53). Additionally, we required that
prevalence records be available as direct measurements from cross-sectional studies rather
than statistically estimated. Primary references reporting the prevalence and incidence records
had to be publically available in English or French and all contextual covariates of interest had
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to be retrievable. We selected 17 of the 32 records included by Cameron et al. (53), representing
10 separate studies. Exclusion reasons for the excluded studies are provided in the supplement.

We applied our translational framework and the scientific approaches for covariates in our
case study to the Pf PR-incidence relationship records included by Cameron et al. (53). We
discarded 15 out of the 32 original records for failing out our quality criteria. A list of the
excluded records and the reason for exclusion are provided in Table B.1. For the remaining 17
records, we referred to 35 primary and secondary references. Additionally, multiple general
databases and surveys including the Demographic Health Surveys and Malaria Indicator
Surveys were consulted for all seven countries in which the studies were conducted.

3.4.3 Case study database: PfPR-incidence records and contextual covariates

A summary of all records and our collated information is provided in Table 3.1. Further details
including the data extracted from Battle et al. (140) and seasonality profiles for all records are
provided in the supplement (Appendix B, see overview B.2).

3.5 Discussion

Calibrating disease transmission models to historical observational data is challenging as
it relies on holistically representing the context under which the data were collected in
a modelling framework. This involves building a complete picture of the time, location
and methodology of data collection - information that can be difficult to retrieve given the
historical nature of the data. Here, we present a generalizable framework for the incorporation
of epidemiological data into the calibration of disease transmission models. We showcase an
example of collating data on the Pf PR-incidence relationship and preparing it for incorporation
into the calibration of an infectious disease transmission simulator, OpenMalaria. The resulting
library provides sufficient information on contextual covariates to reproduce these source
studies in most models of malaria transmission. This includes information on transmission
intensity, seasonality patterns, health care system specifics and interventions. Our framework
provides guidance on comprehensively representing data collection settings and can be
modified or extended as required for other epidemiological relationships.

As case incidence informs the tracking of epidemiological trends and progress in control,
which in turn influence decisions on funding of interventions, it is crucial that the models
supporting the generation of evidence capture it well. We therefore encourage explicitly cali-
brating malaria models to the Pf PR-incidence relationship. Our work shows this relationship
is strongly influenced by a variety of covariates including the sample population and the
geographical, temporal, and methodological context of data collection. Therefore, this context
must be explicitly accounted for during calibration to avoid models that are (computationally
and mathematically) functional but potentially epidemiologically inadequate. Our case study
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provides both a flexible guiding framework for the incorporation of this data and the data
itself, paving the way to models that are able disentangle the heterogeneities observed in the
Pf PR-incidence relationship. By adapting a similar methodology, this framework can easily
be extended or modified for application to other epidemiological relationships and diseases.
Importantly, for malaria this includes severe disease and mortality relationships. Notably for
all-cause mortality these could for example include the malaria transmission intensity and
mortality burden across Africa (MTIMBA) datasets: (178–181).
More broadly, we illustrate the intricacies and complexities of calibrating disease transmission
simulators to historical data, which requires intense search efforts of the extended biological
and epidemiological literature and databases to piece together the needed information. This
process reveals the two core issues of calibration to historical data: Firstly, the trade-off
between data quality and availability and secondly, the time required to generate a deep
enough holistic understanding of the individual records to evaluate them. If this is glossed
over, models and their predictions are at danger of being inaccurate or biased. It is therefore
important to define and adhere to a strategy for addressing the calibration to historical data.
Our work here aims to provide such a strategy for future reference by other research groups.

In disciplines where calibration data is mostly generated in controlled laboratory experiments,
it has been argued that quality is more important than abundance (182). While data quality
must be assured, the trade-off between quality and abundance is more nuanced in the field of
disease modelling. The calibration of infectious disease transmission models relies largely on
real-world observational data. In observational studies, external influences are less control-
lable than in lab experiments. This must be accounted for when using these data to inform
models. In an ideal world, all data should be plentiful, accurate and unbiased. However,
considering the scarcity of epidemiological data and the extensive resources required to
conduct observational studies, we may be more lenient with quality criteria, so long as the
shortcomings are considered and communicated: Sometimes, incorporating some data is
better than none at all. For example, in three of the four big malaria simulators (EMOD DTL,
MORU and OpenMalaria) the duration of natural malaria infection and within-host dynamics
of P. falciparum malaria infection are calibrated to malariatherapy data (89, 183, 184). These
data include parasite densities over time in malaria-naive African American individuals who
were treated for neurosyphilis through infection with P. falciparum (185). This data exhibits
substantial inter-individual variation in parasite densities and temporal dynamics of infection,
dynamics observed in naive individuals may not be representative of the endemic settings
that are commonly modelled and the data is of ethically questionable origin (185). Yet, as
experimental infection without administering curative treatment is no longer possible, these
are and will be the only data of its kind. It would also be possible to calibrate using the data
from longitudinal studies of parasite genotypes (see e.g. (186)). This would, however, be an
additional challenge. The use of malariatherapy data for calibrating within-host models of
malaria illustrates the dilemma of sparse data in infectious diseases. Potential biases in single
datasets enhance the importance of incorporating diverse data from different sources and
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covering a multitude of relationships such that they jointly set a foundation for a reliable model.

Unfortunately, it is not always the case that publications are transparent on how well data was
incorporated during model calibration. While the records themselves are often provided in the
methodological explanations, how they were incorporated is often unclear. The presentation
of a new model usually emphasises its functionality, highlighting its distinguishing features,
elegant methodological advances and new possibilities provided by the model. In light of
this, it is easy to forget that a model is grounded in reality by its calibration to data. If these
foundations are fragile, the predictions are not necessarily credible. However, as we have
illustrated here, setting a solid (data) foundation cam be time-consuming and a generalised
approach does not exist. The lack of a generalized framework means that what is relevant
for inclusion is decided on a case-by-case basis by the researcher performing the calibra-
tion. This compromises comparability between findings generated by different models and
makes it difficult to discern whether differences in predictions are attributable to the model’s
assumptions, structural features, or calibration methods including how calibration data was
incorporated.

We therefore emphasise the need for shared databases of calibration data. The ultimate
goal of modelling in a public health context is to generate a sufficient evidence base for
decision-making to improve population health. Shared, public databases on methodologies
initiate dialogue and collaborations which improve research quality and ensure transparency
around the possibilities as well as the limitations of modelling for public health division
making. The resulting discussions on data and methodology must be openly communicated,
including discussions around data and model uncertainties. For example, for each of the
records presented here, we present point estimates of each of the contextual covariates rather
than confidence or credible ranges. While practical because it limits the time required to
research around each covariate, this is also crude. We hope that the large portfolio of records
included for this and other relationships will outweigh the potential biases introduced by each
individual record.

Overall, the results presented here carry important implications for model-based evidence
in public health decision-making: the usefulness and credibility of model predictions relies
on its calibration to data and on how well the contextual complexities of data collection
are represented. We present a new dataset for the calibration of malaria simulators to the
intricate Pf PR-incidence relationship. This data was collated under a clear methodological
framework, is filtered for quality and provides contextual covariates for all records. Not
capturing the context of collection results in an incomplete picture. This can be misleading
because the calibration problem is still mathematically solvable but will yield results that
may be biologically and epidemiologically inaccurate at best or at worst wrong predictions.
Diversity in data and context and their accurate representation ensure flexible models that
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can be adapted to both generalised and specific policy questions and meet the credibility
requirements imposed by the weight of public health responsibility.
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4 Data needs for calibration and
implications for predictions: Insights
for the future of OpenMalaria

In Chapters 2 and 3, I considered the two building blocks of model calibration: optimisation
algorithms and real-world data. Building on supplementary analyses in context of the
previous chapters, this chapter provides a link between a model’s foundations in calibration
and structure and its later uses in simulating epidemiological relationships and prediction.
This chapter is not being considered for submission to a journal, however it represents an
important basis of documentations and next steps for the future of OpenMalaria.

Section 4.1 provides background information on the development of OpenMalaria, from
its original purpose and structural assumptions to its uses today. Section 4.2 connects the
structural model assumptions to the choices made during calibration (on data and algorithms)
and to their joint implications for prediction. Section 4.3 of this chapter provides a discussion
of OpenMalaria’s power and limitations and more generally of the implications of the choices
made during development on a model’s predictive abilities. Finally, section 4.4 discusses
requirements for the future.

4.1 OpenMalaria

4.1.1 Purpose of the model

In context of its original publication in 2006, OpenMalaria was described as perhaps the most
ambitious attempt ever made to apply mathematical modelling to understanding malaria (Kevin Marsh,
in the preface to Am. J. Trop. Med. Hyg. 75 (Supp2), 2006 (187)). It was originally developed
for predicting the epidemiologic and economic effects of malaria vaccines at individual and
population level (63). From the outset, it therefore featured options for simulating generalised
pharmaceutical interventions at human level, including vaccines and chemotherapy. Since
then, the applications of OpenMalaria have been expanded substantially. Additional function-
alities allow for the simulation of dynamics of malaria in the mosquito vector and of vector
interventions. Alternative model structures represent varying assumptions about immune
decay, transmission heterogeneity, and treatment access (64). These stand to supplement the
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core of the model, the simulation of transmission, infection, and disease progression of the
human. Beyond investigations surrounding vaccine development, efficacy, effectiveness, and
deployment strategies (11, 64, 188–192), OpenMalaria has a wide range of application and
was used to model the impact of case management decisions and (non-vaccine) drug-based
interventions (59, 193, 194), vector control (195–200), integrated strategies and national
programs (201–207), and for transmission and burden of disease estimation (208–210) (see also:
github.com/SwissTPH/openmalaria/wiki/References).

OpenMalaria is now being used to investigate a large variety of questions from epidemiological
and biological basic research to informing public health policy (49, 60). Modelling decisions
around the core assumptions on biology and transmission of malaria influence downstream
morbidity and mortality estimates that public health decision-making hinges on. It is vital to
understand them.

4.1.2 Technical summary

To provide context for the rest of the chapter, this section gives a brief summary of the
simulation of morbidity, mortality, immunity, and interventions in OpenMalaria. A more
detailed, technical description is provided in Appendix A.

OpenMalaria features discrete individual-based stochastic simulations of malaria in humans
in 5-day time steps. Every infection and individual are characterised by a set of continuous
state variables, namely, parasite density, infection duration, and immune status. Key processes
and relationships influencing the simulated course of infection and onwards transmission
include the attenuation of inoculation, acquired pre-erythrocytic immunity, acquired blood-
stage immunity, morbidity (acute and severe) and mortality (malaria-specific and indirect),
anaemia, and the infection of vectors as a function of parasite densities in the human. Other
model components include a vector model and a case management system. All individual
components have previously been well documented (3, 64). A visual summary of the model
with references to further details on each component is provided in Figure 4.2.
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(neonatal)

Acute malaria 
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Indirect mortality 
(excluding neonatal) Malaria specific mortality

FIGURE 4.1: Visual summary of OpenMalaria with references to original publications
on the model components

Adapted from Smith et al. 2006, Fig.3 (63). References from top to bottom and left to right:
Attenuation of inoculations (183), Acquired pre-erythrocytic immunity (183), Infection of
vectors (211, 212), Acquired blood-stage immunity (31), Anemia (213), Indirect mortality
(neonatal) (214), Acute malaria morbidity (3), Severe malaria morbidity (215), Indirect
mortality excluding neonatal (215), Malaria specific mortality (215)

Infection of the human host

The course of infection in the human host in the absence of treatment is simulated in
OpenMalaria as summarised in Figure 4.2.

Infection in the human occurs through the bite of an infectious mosquito. The seasonal pattern
of entomological inoculation rate (EIR) determines the seasonal pattern of transmission. In the
base model, the expected number of entomological inoculations experienced by an individual
at any time is dependent on the annual transmission intensity and the individual’s availability
(determined by its age-dependent body surface area). The parasite densities in each individual
are modified by natural or acquired immunity and interventions (63).

Clinical incidence, acute (uncomplicated) and severe morbidity

The duration and log density of each infection are sampled from normal distributions param-
eterised against malariatherapy data (31, 185). Multiple concurrent infections in the same
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FIGURE 4.2: Simplified summary of the simulated course of infection
in OpenMalaria

An individual is infected through the bite of an infectious mosquito. The individual
may or may not develop symptoms of varying severity. The severity of disease depends
on the individual’s age and parasite densities. The parasite densities vary stochastically
but on average decrease over the course of an untreated infection. Notably, there is
no necessary progression from asymptomatic to symptomatic to severe. In fact, severe
disease is more likely to occur early on during an infection. Individuals may die from
malaria with probabilities dependent on age, severity and hospitalisation status. While
infectious, the individual may also infect susceptible mosquitoes. Every (re-)infection
leads to the build-up of (partial) immunity on recovery from an acute infection. Upon
recovery, individuals may be re-infected but an individual’s immune status influences its
susceptibility, parasite densities on re-infection, and therefore the severity of symptoms.
Already infected individuals may acquire additional infections with different strains of the
parasites if bitten and infected again (multiplicity of infection). Thus, all individuals are
susceptible, though some are more susceptible than others.

individual at the same time are possible. To simulate the clinical state of an individual at
time t , for each five-day time step, independent samples from the simulated parasite density
distribution are drawn for each concurrent infection and day. An episode of acute morbidity
occurs in individual i at time t with a probability Pm that depends on the pyrogenic threshold
(defined by multiple calibration target parameters) and the maximum density of the five daily
densities sampled during the five-day interval (3).

Two different classes of severe episodes are considered by the model, denoted B1 and B2: The
probability of progression to severe disease from an uncomplicated acute episode depends on
the individual’s clinical status as defined by its parasite density in one time step (episodes of
class B1) or the probability of a secondary insult occurring during an uncomplicated clinical
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episode (episodes of class B2). Both probabilities depend on multiple parameters that are
targets of the calibration process (215).

Mortality

The predicted malaria mortality is the sum of the hospital and community malaria deaths.
Malaria deaths in hospital are a random sample of admitted severe malaria cases, with the
age-dependent hospital case fatality rate, derived from the data of Reyburn et al. (2004) (215,
216) and the odds ratio for death in the community compared to death in in-patients is an
age-independent constant to be calibrated (215). The model considers both direct malaria-
attributable deaths and indirect (all-cause) mortality (215).

Immunity

OpenMalaria considers effects of innate and acquired immunity on parasite densities. In the
base model variant, the effects of innate immunity, antigenic variation, and variant indepen-
dent anti-merozoite immunity are implicitly captured by forcing average parasite densities
to vary over the course of an infection, using a statistical model fitted to malariatherapy
data. The resulting value of the expected (log) parasite density of infection j in individual
i at time t is further adjusted to account for the effects of acquired immunity. The acquired
immunity effects incorporate the cumulative density of asexual parasitaemia experienced
by individual i since birth and the cumulative number of prior infections. The base model
variant assumes no decay of acquired immunity (31). Infants are further protected through
maternal antibodies. This effect is independent of maternal exposure and decays over time (31).

Interventions

OpenMalaria provides options for simulating a multitude of existing and hypothetical
interventions targeting different stages of the parasite life cycle. These range from
pharmaceutical interventions, such as vaccines with different modes of action (pre-
erythrocytic, blood-stage, or transmission blocking), mass drug administration (MDA) or
seasonal malaria chemoprevention (SMC), to vector control interventions (like insecticide
treated nets (ITNs)/ long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS)).
Within a simulation, an intervention introduces a change in the state of the simulation from the
time of deployment and by a given magnitude (e.g. reduces transmission or changes the state
of (a group of) simulated hosts). The addition of any new intervention requires an estimate of
its effects different parts of the parasite life cycle. If available, calibration to real-world data is
preferable (e.g. for RCD see (50) and Chapter 5. In the absence of real-world data, as is the case
for interventions currently under development, intervention characteristics can be informed by
preliminary clinical data or expert opinion.
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4.2 The sensitivity of epidemiological predictions to calibration
decisions: algorithms and data

The data needed for calibration are contingent on the model’s intended uses. To guide
public health decision-making on malaria, morbidity and mortality must be adequately
captured. The choices made during the calibration of a complex disease transmission
simulator like OpenMalaria may carry wide-reaching consequences for model predictions. This
section provides a deeper analysis of OpenMalaria’s ability to capture disease biology and
epidemiology through calibration to real-world data. On the example of severe disease and
direct mortality, this section specifically investigates

1. the sensitivity of OpenMalaria’s goodness-of-fit and predicted epidemiological relation-
ships to the calibration algorithms,

2. potential structural limitations of the model itself,

3. the implications of unreliable points in the calibration data, and

4. the role of uncertainty in data for stochastic events.

4.2.1 Incidence of severe disease: Structural insights and sensitivity to algorithm
and data choices

Algorithm choice and structural insights.

Numerically, a similar overall goodness-of-fit was achieved by the different optimisation
algorithms (see Chapter 2). Yet, the choice of algorithm impacts epidemiological predictions.
Figure 4.3 shows OpenMalaria’s fit to Objective 8, the hospitalisation rate in relation to
prevalence in children aged 0-9 years. Both of the Bayesian optimisation (BO) algorithms (see
Chapter 2) converged towards similar predictions. However, the predicted severe disease
incidence under the BO-derived parameterisations is almost twice as high as those under the
previous parameterisation with GA-O (see Chatpter 2 and (64)). This is carried forward into
the epidemiological predictions on the relationship of severe disease incidence by age (Figure
4.4 and Appendix A).

The sensitivity of OpenMalaria’s severe disease predictions to the calibration algorithm raises
questions about how well its epidemiology is captured. The sensitivity analyses in Chapter
2 and varying final parameter estimates between optimisation algorithms reveal additional
insights into the differences between the parameterisations (see Appendix A). The objectives
relating to severe disease are highly sensitive to a parameter describing a critical value of
the cumulative number of infections, which is used in describing the effect of the number
of prior infections on parasite densities (denoted X∗h in previous model documentations
including Appendix A or θ4 for calibration in Chapter 2, see Equation A.12). This parameter
is approximately the same for all parameterisations and its value was recovered during
validation exercises, providing evidence of high identifiability (Figures A.19 and A.31). Other
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FIGURE 4.3: Objective 8: Hospitalisation rate in relation to
prevalence in children

Final simulator fit to objective 8: Hospitalisation rate in relation to prevalence in children
using the parameter sets from Gaussian process-based Bayesian optimisation (GP-BO)
and Gaussian process stacked generalisation-based Bayesian optimisation (GPSG-BO)
compared to the previous parameterisation (derived from optimisation with a genetic
algorithm, GA-O). The data on the relative incidence of severe malaria-related morbidity
and mortality in children <9 years old across different transmission intensities were
originally collated by Marsh and Snow (1999) ((217). Measurements per age group
were available as the relative risk of severe disease compared to a comparison age-
group and the proportion/prevalence of severe episodes. A total of 26 entries on the
relationship between severe malaria hospital admission rates and P. falciparum prevalence
were included. Linear interpolation between data points was performed to obtain a
continuous function relating hospital incidence rates to prevalence. To convert hospital
incidence rates to community severe malaria incidence, the hospital admission rates was
divided by the assumed proportion of severe episodes representing to hospital (48%). See
A for a detailed description of the data.

influential parameters include a parasite growth parameter (α or θ10, Equations A.25 and
A.27), the parasitaemia threshold for severe disease of class B1 (Y∗B1

or θ15, see Equation A.28),
and the critical age for comorbidity ( a∗F or θ17, see Equation A.36), but none of these exhibited
systematic differences between the BO and GA-O algorithms. Only for a parameter relating to
the variance in parasite densities (σ2

0 or θ9 for calibration, see Equation A.14), did both BO algo-
rithms yield higher values than GA-O. This, in combination with some observable differences
in the predicted parasite densities (objective 3) between the BO parametrisations and GA-O
may indicate that the differences severe disease estimates relate to differences in simulated
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FIGURE 4.4: Yearly incidence of total severe malaria (seasonal)
Annual incidence of total severe malaria cases in a seasonal transmission setting as a
function of age, displayed by transmission intensity (Pf PR2-10) and parameterisation.
Incidence is presented in terms of the yearly number of events per 1000 person-years. It is
assumed that 48% of severe malaria cases seek official care at a heath care facility (hospital).
The Pf PR2-10 categories include simulated prevalences of 2.5-3.5% , 9-10% , 28-32% , and 47-
53% labelled as 3% , 10% , 30% , and 50% , respectively.

parasite densities (see Appendix A, Figure A.10). However, the evidence is insufficient to
draw well-founded conclusions and it is ultimately impossible to tell which parameterisation
is most reflective of malaria biology. Within the calibration workflow, the parameter set with
the lowest loss function value, F is chosen. However, a purely numerical decision may be
biologically sub-optimal as the goodness-of-fit score is vulnerable to limitations in data quality.

Very low and very high prevalence settings.

Regardless of the optimisation algorithm, OpenMalaria’s ability to capture the data’s relation-
ship between prevalence and severe disease is limited (Figure 4.3), especially compared to
its good fit for other objectives like the age-prevalence and age-incidence relationships (see
Appendix A). Although the simulations for calibration to this objective covered a large range
of EIRs (26 simulations with EIR= 1− 518), neither very low (<10%) nor very high (> 80%)
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prevalences could be generated in children 0-9 years old. Possible explanations include
structural limitations of the model itself, where the model assumptions and their mathematical
translation are insufficient to capture the true disease biology, or insufficient calibration data
for these settings or its incorporation.

In the quest for malaria elimination, mathematical models must be able to represent low-
transmission settings well to justify their continued use in supporting decision-making.
OpenMalaria’s fit to objective 8 on hospitalisation rates in relation to prevalence suggests that
the model may be unable to capture such settings. The calibration to all other objectives
relies mainly on data from medium to high transmission settings (see Appendix A. This
is problematic because it makes any predictions on low or unstable transmission settings
out-of-sample extrapolations of questionable accuracy. As increased malaria control efforts
lead to decreases in transmission in many regions, more data on low transmission settings will
become available that needs to be incorporated improve the robustness of predictions. The
inclusion of the new Pf PR-incidence data provided in Chapter 3 into the calibration workflow
could be a first step in this direction as it includes seven new record with an annual EIR of 20
or less.

4.2.2 Severe disease: Excluding unreliable data points

All parameterisations failed to reproduce the overall shape of the relationship between severe
disease and prevalence as none captured the sharp peak in incidence at approximately 20%.
This was already noted at the time of original publication (215). If the data point is truly
representative of this relationship, OpenMalaria may be limited in its ability to depict natural
infections. However, the data may not be a true representation of the actual relationship. It has
been argued that this data point itself is unsuitable for inclusion in calibration as it stems from
an area in Ethiopia where malaria is epidemic rather than endemic (218). Therefore, other
research groups who developed comparably detailed malaria models decided to discard this
point from calibration (218).

To assess the implications of including this data point for the calibration of OpenMalaria,
additional calibration runs were performed dropping the Ethiopian data point from the
calibration data. This recalibration was conducted using the GP-BO algorithm (GP-BOdrop), as
this was the best performing calibration algorithm in Chapter 2.

An overall better goodness-of-fit value was achieved (weighted sum of the loss functions,
F = 54.3 for GP-BOdrop compared to 58.3 for GP-BO, 59.6 for GPSG-BO, and 63.7 for
GA-O, Figure 4.5). This was to be expected as the goodness-of-fit statistic presents the
weighted sum of the deviation between data and model predictions and one data point
was dropped. For GP-BOdrop, a satisfactory fit was reached in iteration 3 after only 16
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FIGURE 4.5: Comparison of algorithm convergence (GP-BOdrop)
Weighted sum of loss functions over 11 objectives associated with the current best fit
parameter set by CPU time in seconds. Satisfactory fit of OpenMalaria refers to a weighted
sum of loss functions value of 73.2 (as defined by Smith 2012 (64)). The previous best
fit for OpenMalaria was achieved by the genetic algorithm had a loss function value of
63.7. GP-BOdrop reaches its best fit of 54.3 in iteration 20 in 6.3e5 CPU seconds (˜7 days)
compared to 58.2 for GP-BO in iteration 21 in 1.02e6 CPU seconds (˜12 days) and 59.6 for
GPSG-BO in iteration 10 in 6.00e5 CPU seconds (˜7 days). GP-BOdrop = Gaussian process
emulator Bayesian optimisation excluding contentious severe disease data point, GP-BO =
Gaussian process emulator Bayesian optimisation, GPSG-BO = Gaussian process stacked
optimisation emulator Bayesian optimisation.

hours, the GA-O fit was improved on within 2.5 days and the best fit was reached after
approximately 7 days. GP-BOdrop therefore reached lower values faster than GPSG-BO in
the previous run. It is unlikely that this can be fully explained by the dropping of just one
data point from the calculation. It is possible that the dropping of the contentious data
point yields a severe disease-prevalence relationship that is more aligned with the biological
assumptions made by OpenMalaria and that this speeds up convergence of calibration because
it prevents the algorithm from trying to reproduce an unachievable severe disease relationship.

The fit for objective 8, which contained the discarded data point, was largely unchanged for
GP-BOdrop compared to previous calibration using GP-BO and GPSG-BO 4.6. However, the
fit for some of the other objectives was affected. For example, the predicted relationship for
the age-dependent multiplicity of infection changed, higher parasite densities were predicted
for multiple of the calibration data sets, and direct mortality estimates were also increased.
All model plots relating to the model fit are presented in Appendix C. This should not
be a surprising result even though the dropped data point does not directly relate to the
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FIGURE 4.6: Hospitalisation rate in relation to prevalence in
children (GP-BOdrop).

Final simulator fit using the parameter sets from GP-BOdrop, GP-BO and GPSG-BO
compared to the previous parameterisation (derived from optimisation with a genetic
algorithm, GA-O). The data point discarded for GP-BOdrop is highlighted.

other affected relationships. There is strong interdependence of model parameters and the
interconnectedness of the different model submodules. This further argues for simultaneous
multi-objective calibration (as opposed to modular approaches) as implemented in the calibra-
tion of OpenMalaria (see Chapter 2, (3), and (52)).

It should be noted that the results presented here refer to only one realisation of the calibration
process with each algorithm. It is therefore possible that the observed differences in overall
loss function value, convergence time, and model fits are chance findings. Nonetheless the
investigation around the implications of dropping the contentious severe disease data point
from calibration may show either of two things: The currently used calibration data may
be insufficient to identify one best parameterisation. There may exist multiple numerically
similarly good fits and which one is achieved may be a matter of chance. Alternatively, the
parametrisation to multiple of the fitting objectives may hinge on the presence or absence of
just one contentious data point. Neither of these explanations are desirable and should prompt
further investigations.

4.2.3 Mortality: uncertainty and scarcity

Direct, malaria-attributable mortality is captured by objective 10. The fit to this objective is
shown in Figure 4.7. The data is characterised by great uncertainty and large confidence
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FIGURE 4.7: Objective 10: Direct mortality in children <5 years old
Final simulator fit to objective 10: Malaria specific mortality in children (<5 years old) in
relation to annual transmission intensity (EIR) using the parameter sets yielded using GP-
BO and GPSG-BO compared to the previous parameterisation (derived using optimisation
with a genetic algorithm, GA-O). The data presents a subset of the data collated by
Marsh and Snow (1999) (217), for which both malaria-specific mortality rates and seasonal
transmission patterns were available. Mortality data were derived from verbal autopsy
studies. There is one observation per study site and simulation scenario, and predicted
values are for one survey at the end of 2 years. See A for a detailed description of the data.

intervals for every data point. On visual examination of the data, there is little evidence of a
discernible relationship between EIR and malaria-related mortality in the data. While in the
correct order of magnitude, the predicted relationship between EIR and mortality is flat, over-
or underpredicting for some transmission intensities, yielding an overall poor model fit for
this objective.

Yet, it is computationally possible to generate epidemiological predictions relating to mortality
(Figure 4.8). Especially in seasonal low transmission settings (Pf PR2-10<3%), the predicted
relationship is highly variable between the different parameterisations and under the GA-O
parameterisation shows large uncertainty bounds (4.8). The dataset for this objective includes
9 data points representing the malaria-specific mortality rates in children less than 5 years
of age. From this scarce, uncertain calibration data, it is impossible to judge which (if any)
parameterisation adequately captures direct mortality. It is therefore also not possible to infer
which predicted epidemiological relationship is most representative of nature. In the absence
of additional quantitative inputs or reference points, it is impossible to adequately evaluate
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FIGURE 4.8: Yearly incidence of malaria-related deaths (seasonal)
Annual incidence of malaria-related deaths in a seasonal transmission setting as a function
of age, displayed by transmission intensity (Pf PR2-10) and parameterisation. Malaria
mortality incidence is presented in terms of the yearly number of deaths in a population
of 1000 individuals. The dashed estimates represent direct malaria deaths, and the solid
all malaria deaths (including those attributable to co-morbidities). The Pf PR2-10 categories
summarise simulated prevalences of 2.5-3.5%, 9-10%, 28-32%, and 47-53% labelled as 3%,
10%, 30%, and 50%, respectively.

the predictions.

4.3 Insights on data needs and shortcomings

The currently used data on severe disease and both indirect and direct mortality is limited by
scarcity and inherent uncertainties and overall insufficient. The data on the severe disease-
prevalence relationship contains 10 data points (of which one is contentious) and direct
mortality is calibrated to 11 data points with a large uncertainty for well-founded predictions.
It is only possible to ensure that estimates are roughly in the correct order of magnitude.
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When data is scarce, questionable, or unreliable, single data points can bias results and lead
to biologically inaccurate calibration. The observable downstream consequences of inclu-
sion decisions on the Ethiopian severe disease data point on the simulated epidemiological
relationships (see Figures C.3-C.5 and C.11) mandate caution in defining quality criteria for
calibration data. A guiding framework on possible decision points on inclusion and exclusion
of data is provided in Chapter 3, but ultimately, no general rules exist and decisions must be
made on a case-by-case basis influenced by abundance-quality trade-offs. The sensitivity of
severe disease predictions to choices on data and algorithm are problematic as it ultimately
limits the reliability and credibility of predictions. Further, all three datasets are limited to
children (0-9 years old for severe disease, <5 years old for direct mortality, and the data on
indirect mortality includes 1-11 month-old infants only). It is therefore questionable to what
extend mortality or severe disease predictions and especially extrapolations outside the data,
for example for other age groups, are justifiable.

The current calibration of OpenMalaria attributes higher weighting to the severe disease
objective to balance out the data scarcity. Additional, reliable calibration data on the epidemi-
ology of severe disease and direct and indirect mortality that has undergone careful quality
control would be highly desirable to improve the robustness of OpenMalaria’s severe disease
and mortality predictions. Notably for all-cause mortality, multiple additional candidate
calibration datasets have become available since the original collation of calibration data for
OpenMalaria. These include the malaria transmission intensity and mortality burden across
Africa (MTIMBA) datasets ((178–181)). However, as illustrated in Chapter 3. It would be a
challenging project to integrate these.

4.4 Requirements for the future

The development of a detailed disease transmission model that sufficiently and accurately
replicates nature to support decision-making is an intricate and ambitious task. It hinges on
the developers’ biological and epidemiological understanding, technical ability, dedication,
scientific diligence, and ability to filter out relevant information from a vast body of litera-
ture. In that sense, the development of OpenMalaria as a malaria model of unprecedented
complexity, was ground-breaking and it remains a powerful tool in guiding thinking around
malaria transmission and control. However, the previous three chapters have shown how the
decisions made during the development of any model carry implications for its fit to data and
ultimately its suitability and usefulness for predictions and supporting decision-making.

The potential shortcomings of a model can be mitigated through continued diligent model
development and open communication around its assumptions. Calibration data must be
handled with care. Chapter 3 has shown the dependence of the Pf PR-incidence relationship on
contextual covariates. The case of the Ethiopian severe disease data point and the implications
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of its inclusion or exclusion on model fit further illustrate the consequences data choices can
have on predictions. Within the quality-abundance trade-off (see Chapter 3), sufficient quality
and reliability of calibration data should be ensured and its incorporation should consider
all potentially confounding covariates. To solidify the model’s data foundations, it may be
beneficial if tasks are performed by multiple researchers or research groups and their results
compared. An additional step is external validation of a model and benchmarking against
other comparable models. Lastly, wherever possible, the addition of more data can help
increase model robustness. For OpenMalaria, this could in particular be achieved by including
data from low transmission settings (e.g. the Pf PR-incidence library in Chapter 3), on severe
disease (e.g. disaggregated or extended versions of the currently used data (216)) and on
mortality (e.g. the MTIMBA datasets (178–181)).

The possible applications of modelling are plentiful and it is tempting to use it in all instances
that are technically possible (i.e. yield numerical results). However, we must remind ourselves
that there is no omnipotent model. How robust is OpenMalaria or any malaria model and
how reliable its predictions? A general answer is difficult to provide. A model’s suitability
should evaluated on a case-by-case basis. For example, when calibrating to a specific setting
(e.g for forecasting), it should first be shown that the model can capture the relevant disease
epidemiology in the past before generating predictions for the future. Similarly, if a model is
used to predict the impact of interventions, it must be ensured that these are also adequately
captured through separate calibration of intervention properties to data, e.g. from clinical
studies or RCTs. Broadly, we expect OpenMalaria predictions to be relatively accurate for
comparative and relative analyses (such as relative prevalence or acute incidence reductions)
in medium to high transmission settings. Substantial uncertainty remains especially for low
transmission areas and around rare downstream outcomes. Predictions relating to severe
disease or mortality should be handled with caution, as should any attempts at predicting
absolute numbers (as these also strongly depend on the experimental set up). The analysis
presented here focuses on how OpenMalaria captures the biology and epidemiology of malaria
and does not address any intervention components of the model. Additional analyses should
be conducted to investigate the ability of OpenMalaria (and other malaria models) to reflect the
effects of intervention on transmission.

Perhaps we ought to ask ourselves if we even truly need to find the best model. Perhaps, the
quest for a perfect a model is futile and we should rather work on sensible, purpose-driven
development, on understanding the power but also the limitations of OpenMalaria (and other
models) and on communicating these clearly. OpenMalaria’s original purpose was to stimulate
thinking and lead to new insight and provoke new studies in both the field and the lab (187). Perhaps
we ought to return to this mindset and remind ourselves to be careful around attributing
additional abilities to a model. Especially when used in supporting decision-making due
diligence is required to ensure that the model adequately captures the changes to important
indicators of clinical cases, severe disease, and mortality induced by control interventions or
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health system changes. This needs to include both biological and epidemiological processes as
well as intervention properties

Ultimately, developing a detailed disease transmission model such as OpenMalaria falls outside
the best scientific practices that any one field of research preaches and in many regards is
somewhat of an art. The development of a model is a delicate process that requires careful
consideration at each step and synthesising as much information as possible. It is more than a
mere technical problem. It rather requires thought and a holistic understanding of biology,
epidemiology, mathematics, statistics and good programming practice. Every model has
structural limitations and predictive uncertainties are inherent to both the data and the model
itself. Nonetheless, models can help to navigate complex systems of biology, epidemiology,
health systems, and public health and to answer questions that are too multifaceted for
thought experiments. It also should be noted that the discussions around the assumptions
and limitations of OpenMalaria presented in this chapter could be carried out equally critically
for other malaria models, likely revealing some of the same shortcomings and dependencies.
OpenMalaria’s documentation is (particularly) transparent with publicly accessible, collated
calibration data and methodology and a list of publications relating to the development of
intervention plugins (github.com/SwissTPH/openmalaria/wiki/References), which
readily provides the information required for analyses such as this one. The excursions in
this chapter should therefore not distract from the scientific value of OpenMalaria and other
infectious disease models but ought to be a cautionary tale to work diligently and critically
and not attribute false accuracy to predictions outside the models designed purpose.
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5.1 Abstract

Background. As areas move closer to malaria elimination, a combination of limited resources
and increasing heterogeneity in case distribution and transmission favour a shift to targeted
reactive interventions. Reactive Case Detection (RCD), the following up of additional individ-
uals surrounding an index case, has the potential to target transmission pockets and identify
asymptomatic cases in them. Current RCD implementation strategies vary, and it is unclear
which are most effective in achieving elimination.

Methods. OpenMalaria, an established individual-based stochastic model, was used to simu-
late RCD in a Zambia-like setting. The capacity to follow up index cases, the search radius,
the initial transmission and the case management coverage were varied. Suitable settings
were identified and probabilities of elimination and time to elimination estimated. The value
of routinely collected prevalence and incidence data for predicting the success of RCD was
assessed.

Results. The results indicate that RCD with the aim of transmission interruption is only appro-
priate in settings where initial transmission is very low (annual entomological inoculation rate
(EIR) 1-2 or prevalence approx. < 7 − 19% depending on case management levels). Every
index case needs to be followed up, up to a maximum case-incidence threshold which defines
the suitability threshold of settings for elimination using RCD. Increasing the search radius
around index cases is always beneficial.

Conclusions. RCD is highly resource intensive, requiring testing and treating of 400-500
people every week for 5-10 years for a reasonable chance of elimination in a Zambia-like
setting.

5.2 Background

One of the great challenges of malaria control in the face of decreasing transmission is
onwards-transmission by asymptomatic infections (219), which are not detected by traditional
interventions. Furthermore, heterogeneity in incidence and transmission and spatial and
temporal clustering of cases (220) make mass interventions cost-inefficient, increasingly
ineffective and unsustainable in low-transmission settings. The World Health Organisation
(WHO) elimination guide (36, 37) addresses this need to adapt intervention strategies in
the elimination phase to highly targeted, locally adapted measures to track down foci of
transmission. Surveillance-based strategies, such as (re)active case detection (RCD) serve as
key tools in following these aims and optimizing resource allocation.
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In reactive strategies, when an index case of clinical malaria presents to a health facility, this
triggers follow-up activities around the index case. Assuming that cases are geographically
clustered and that presence or absence of symptoms is independent of surrounding cases,
reactive interventions may thus allow targeted detection or intervention on symptomatic cases
who do not seek care as well as asymptomatic cases. Although reactive strategies have high
approval rates and have been implemented in a range of settings, in practice, many variations
of strategies are employed globally. In low-prevalence urban areas of India, contacts of cases
are screened (221). In Southern Province, Zambia, all individuals within a 140m radius of the
index case are tested (222). RCD has also been implemented in 13 of 14 countries in the Asia
Pacific region including China (223). China successfully adapted the so-called “1-3-7” strategy
where malaria cases are reported within one day, their confirmation and investigation occurs
within 3 days and the appropriate follow-up intervention to prevent onwards transmission
occurs within 7 days. Follow-up interventions may include Indoor Residual Spraying (IRS)
or RCD within the household (223, 224). Little information on the detailed implementation
strategies is available for other programmes in the Asia Pacific region (225). Overall, the
range of possible surveillance-response combination strategies is too vast for systematically
assessing different strategies across a wide range of settings. A comparison of RCD efficacy
between the few existing field studies is difficult due to differences in contextual determinants
(such as health system infrastructure, geography, demographic structure or transmission
intensity), which may influence optimal strategies. In addition to this, none of the existing
field studies have assessed the effect of RCD on transmission (39) and the sites in question
are yet to reach elimination, making them unsuitable for deriving even case study estimates
of the potential of different RCD strategies in achieving elimination. Even with a simple
test-and-treat follow-up, the relative relevance of parameters, such as the numbers of index
cases and follow-up individuals, and optimum strategies thus remain to be determined.

Previous work using a deterministic susceptible-infected-susceptible (SIS) model highlights
the importance of prevalence at the beginning of the intervention and suggests that relative
values of the number of index cases followed, ι , and the number of neighbours in the search
radius, ν , affect equilibrium prevalence levels even when the total number of individuals
screened (the product of ι and ν ) is the same. The proportion of all infections found per
unit time appears to be the main determinant of reduction in prevalence (50). These models
highlight the main features of the dynamics of the system but cannot provide quantitative
predictions applicable to specific settings as they do not incorporate stochastic events, the
effects of seasonality, within host parasite dynamics, host immunity, dynamic numbers of
index cases or dynamic testing rates. In this study, test-and-treat-based reactive case detection
was implemented in OpenMalaria, a powerful, individual-based stochastic model that includes
the above factors. OpenMalaria was parameterised using a data set from Southern Zambia, to
provide a realistic setting for which the applicability of simpler models was evaluated. The
relevance of different parameters in determining the proportion of runs where transmission is
interrupted was assessed by carrying out simulations utilizing different RCD strategies across
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entomological and health care settings.

Two large simulation experiments are reported in this paper. The first experiment is used
to characterise settings where RCD alone can lead to interruption of transmission, assess
which strategies are most efficacious in the different settings, and determine the sensitivity
of success to programme specific parameters (follow-up capacity versus search radius). The
second experiment is used to assess the time to interruption of transmission and determine
whether success is predictable through routinely collected data. Because the simulations
are stochastic, the results were analyzed using conventional statistical models and machine
learning techniques, treating them as a large real-world experiment.

5.3 Methods

5.3.1 Transmission and disease model

The impact of RCD was simulated using OpenMalaria (https://github.com/SwissTPH/open
malaria.wiki.git), a modelling platform allowing for individual-based stochastic models
of malaria dynamics in humans (52), linked to a periodically-forced deterministic model of
malaria in mosquitoes (54). Further details about the model have been previously published
(63). In brief, OpenMalaria captures different clinical presentations of malaria in individual
humans as well as vector ecology across a range of species and Plasmodium falciparum dynamics
in both humans and mosquitoes, allowing for simulations of interventions in comparatively
realistic settings. Since blood stage parasite densities are tracked, the model allows for case
management based on simulated events dependent on individual patient parasite densities.
The simulated human population is updated every 5 days with multiple outcomes, including
clinical incidence, the total number of infections, and the infectiousness to mosquitoes, which
depends on the recent history of parasite densities. The original model required the fitting of
38 parameters of malaria epidemiology, either independently (13 parameters) for independent
model components, such as within-host parasite dynamics, or through a combined fitting
process (25 parameters). A total of 61 scenarios were constructed based on field data and
correspond to field sites where the pattern of transmission and one or more epidemiological
variables were known. Eleven1 different objective functions (likelihood or sum of squares)
were derived from these data sets, representing important epidemiological malaria relation-
ships, such as age pattern of incidence of clinical malaria. A number of alternative model
formulations exist.

1The publication relating to this Chapter refers to 10 objective functions (117). This is because the publication
predates the calibration work of Chapter 2 and the notion of 10 objective functions was derived from the
OpenMalaria literature. In reality, the overall goodness-of-fit score used during calibration is the weighted sum of
11 separately calculated loss function values. However, as Objectives 5 and 6 both describe age patterns of clinical
incidence (for Dielmo and Ndiop, Senegal, and for Idete, Tanzania, respecively. See Chapter 2 and Appendix A),
they are often summarised into one objective. For consistency with the technical information provided in Chapter
2, I refer to 11 objectives throughout this thesis.
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OpenMalaria was parameterised in accordance with Zambia 2010 Southern Province census
data with a simulated population size of N = 10, 000, approximately equal to the population
of a single health centre catchment. Seasonality was incorporated in the same pattern from
Southern Zambian data as in previous publications (e.g. (206)). A warm-up period of one
human life span was run to induce a stable level of immunity. During the warm-up period,
simulations were run with forced transmission rates. Simulations were run for nominal
calendar year t = 2010 until t = 2035 with introduction of RCD at t = 2020 for a period of 10
years. Monitoring was started with surveys in 5-day intervals from t = 2017.

5.3.2 Model of Reactive Case Detection

2010 2020 2030 2035 2017 

Start 
Monitoring 

start 
RCD Monitoring 

end 

A B 

FIGURE 5.1: Basic concepts used in the models
A. Reactive case detection setup. B. The targeting ratio, τ as a function of prevalence, p and
search radius ν .

RCD was modelled as a test-and-treat intervention added to and dependent on routine passive
case detection and treatment included in the simulations for a period of ten years (Figure
5.1A). Within each 5-day time step, for all ι passively detected index cases tested with a rapid
diagnostic test with a detection threshold 50 parasites per 1 µl and a specificity of 0.942 (226),
an additional ν individuals (neighbours) are tested, and treated if infected. All treatments are
simulated as leading to an immediate cure (but prophylactic effects were not considered).

OpenMalaria does not explicitly model the spatial pattern of infection. Instead, the effect of case
clustering is captured by simulating treatment of all infections in ντ individuals selected at
random, where the targeting ratio, τ , is the ratio of the prevalence amongst the ν individuals
closest to the case, to the population prevalence, p . Equivalently, τ is the ratio of the size
of a random sample that would be need to be tested (and treated if infected), to the number
actually tested and treated, in order to achieve the same number of effective treatments (50).
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The targeting ratio was estimated as a function of p and ν using Markov Chain Monte Carlo
(MCMC) methods from data of a cluster-randomised trial carried out in the Zambian study
area (50, 222) and is defined as:

τ
(

ν, p
)
= exp

((
−α1log(p) +

α2

ν
− α3

ν
log(p)

)
N − ν

N

)
|τp,ν ≥ 1

where N is the population of the health centre catchment. α1−3 are constants derived from
field data: α1 = 0.230 , α2 = −1.395 and α3 = 2.874 . It should be noted that this definition of
τ provides a better fit for low to medium values of τ and that high values are mathematically
possible at low ν and p . Since these have not been observed in the field, τ was constrained to
τ ≤ 10 (Figure 5.1B)

This yields an intervention coverage c of

c = min
(τp,vιν

N
, 1
)

,

where ι is the actual number of index cases investigated per 5 day period. ι is dependent on
the number of cases that present to a health facility and the maximum capacity of the RCD
programme to follow up index cases, imax . Treatment failure in the community (for whatever
reason) or diagnostic insensitivity are equivalent to a reduction in v. Coverage was calculated
for each 1% prevalence interval and for ι = 1 . . . ιmax . The number of passively detected
index cases that could be followed up per time interval, i.e. the capacity of the program, was
constrained by fixing ιmax .

Simulation Experiments

Simulation Experiment 1: a total of 83,200 simulations were run in a full factorial experiment,
considering 64 settings defined by different transmission intensities and case management
levels for different intensities of RCD with one random seed each (Table 5.1). The simu-
lated entomological inoculation rates (EIR) were all rather low. Entomological specifications
including seasonality were parameterised as in previous simulations of southern Zambia (206).
In accordance with the southern Zambian study site, a reference health care system was chosen
such that the probability of effective treatment of any clinical case within 14 days (E14) was
21.8% with a failure probability of 19.3% (206). This was converted to the health care system
input parameter in OpenMalaria describing the probability that a case with an uncomplicated
episode of malaria seeks care within 5 days as described previously (supplement to Penny
et al, 2015 (61)). Eight different case management coverages (E14 levels) were simulated. The
simulated importation rate was zero.
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In each of the 64 settings, 1,300 RCD strategies were considered (Table 5.1). The 50 simulations
per setting with ν =0 were control simulations where no RCD was performed. The simulated
total number of infections, number of confirmed clinical cases, and treatments aggregated
across all age groups and the simulated EIR, were tracked.

Simulation Experiment 2: a second simulation experiment was carried out to analyze time
to zero prevalence (including both patent infections and those below the detection threshold)
as a function of ιmax and ν , replicating each simulation five times with different random
seeds (Table 5.1), allowing us to analyse stochasticity in interruption of transmission. This
experiment considered only the reference case management level.

TABLE 5.1: Setup of Simulation experiments

Variable Description Levels Step
size

No. of levels in
experiment 1

No. of levels in
experiment 2

EIR Entomological Inocula-
tion Rate in infectious
bites per person per
annum

1, 1.25, 1.5, 1,75,
2.0, 3.0, 4,0, 5.0

- 8 8

E14 Probability (% ) of effec-
tive treatment of any case
within 14 days

13.9, 21.8, 26.0,
36.7, 46.1, 54.6,
62.1 68.9% .

- 8 1

ιmax Maximum number of
index cases followed up
in a 5 day period

1-50 1 50 50

ν Number of neighbours
tested, and treated if
infected, for each index
case.

0-50 2 26 26

Seeds Seeds for random number
sequence

- - 1 5

The reference value (in bold) for E14 is the only value simulated in Experiment 2, where E14 is the probability of
effective treatment of any clinical case within 14 days.

5.3.3 Analysis of simulation results

Because of the stochasticity featured in the model, the simulated dataset was analyzed as
though it were a real-world experiment. The initial assessment was of whether and where
RCD alone can lead to interruption of transmission as a proof of concept, considering also very
low transmission settings (EIR = 1, 1.25). As transmission in such settings can be unstable,
stochastic interruption of transmission may occur in control settings, so interruption of
transmission in RCD simulations is not necessarily due to the RCD.

Predictors of interrupting transmission: The proportion of simulations in Experiment 1
where transmission was interrupted was aggregated across all interventions with EIR as
an independent variable, stratified by case management level. The number of simulations
summarised per data point, n, was 1300 ( ιmax1−50 , ν0−50,2 ). First, the proportion of simulations
where RCD interrupted transmission (p = 0.0) by the end of the monitoring period (t = 2035)
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was calculated. Results were aggregated over all runs where RCD was implemented and
where the control ( ν = 0 , i.e. no RCD) did not reach interruption of transmission, regardless
of RCD strategy. Thus the effectiveness of RCD was defined as the proportion 1− e1n0

e0n1
, where

e is the number of scenarios where transmission was interrupted, n is the corresponding total
number of scenarios, and the subscripts indicate whether RCD was implemented (subscript 1)
or not (subscript 0).

Each of the 64 settings was further assigned to one of three categories depending on whether
transmission was interrupted in all, none, or only some simulations. This indicated in which
settings success was dependent on the RCD strategy. The proportions or probabilities of inter-
rupting transmission for a given setting and RCD strategy were estimated using a range of
classification algorithms (Random Forest, Gaussian Process, Naïve Bayes and Support Vector
Machines (SVM)). This provided smooth probability surfaces in the absence of replication, thus
avoiding the need for massive numbers of simulations. The performances of these algorithms
were compared using 10-fold cross validated mean area under the curve (AUC) and accuracy
estimates with a two-third training/test split.

A formal variable importance analysis of the determinants of interruption of transmission was
carried out by fitting a set of random forest classifiers to the simulation outcomes for settings
where these outcomes were strategy-dependent. Two different random forest classifiers
were used based on their inbuilt features, after finding their performance to be very similar
(accuracy= 83-84% ). The assessments considered the overall permutation importance of EIR,
case management, ιmax, ν, and the derived variable ιmax / max (INC), the follow up capacity
as a proportion of the maximum incidence across the simulation period. The permutation
importance of each of the above variables was derived, in each case adjusted for the other
variables.

A second approach measuring the overall incremental impact of RCD while adjusting for
interruption of transmission in control simulations was to estimate the population attributable
fraction, PAF. This is the proportion of simulations with interrupted transmission in Experi-
ment 1 where transmission was interrupted because of the RCD, calculated as described in the
supplementary information.

Median time to zero prevalence in years: this was computed for each scenario in Experiment
2 where transmission was interrupted in simulations for at least 3 out of 5 random seeds.

Prediction of RCD success: the simulations in Experiment 2 were also used to assess the
suitability of routinely collected incidence and prevalence data in predicting RCD success
(since EIR is not commonly measured in the field). Multiple single-variable logistic regressions
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was used to determine compare the following variables as predictors of RCD success: pre-
intervention EIR, incidence and the prevalence in the year before introduction of RCD, in the
first year of the intervention period, and the relative reductions of incidence and prevalence,
defined as p2020−p2019

p2019
and INC2020−INC2019

INC2019
, where p2019 , INC2019 , p2020 , and INC2020 are

prevalence and incidence in the last year before and the first year of RCD, respectively.

5.3.4 Software

The base model variant of OpenMalaria V36 (52) was used. The parameterisation process
and model variants are detailed by Smith et al (2008 and 2012) (52, 64). Scenarios
were generated and all analysis was performed in R 3.4.1.The classification analysis was
carried out using the mlr package in R. Classif.ranger was used to calculate the overall
variable permutation importance, whilst the adjusted permutation importance was calcu-
lated using the classif.RandomForest.SCR classifier from the randomForestSCR package
(https://kogalur.github.io/randomForestSRC/). Calculations were performed at sciCORE
(http://scicore.unibas.ch/) scientific computing core facility at University of Basel.

5.4 Results

TABLE 5.2: Contingency analysis for interruption of transmission with
RCD stratified by case management levels

Transmission interrupted Total
E14 (% ) RCD+ (e1) RCD- (e0) RCD+ (n1) RCD- (n0) Effectiveness PAF (% )∗ p-

value†
13.9 4421 87 10000 400 0.51 (0.41, 0.59) 49.8 (39.7, 58.2) <0.001
21.8 (REF) 5618 130 10000 400 0.42 (0.33, 0.50) 41.2 (32.4, 48.8) <0.001
26.0 6023 121 10000 400 0.50 (0.42, 0.57) 48.8 (40.7, 55.8) <0.001
36.7 6760 150 10000 400 0.44 (0.37, 0.51) 43.6 (36.1, 50.2) <0.001
46.1 7586 218 10000 400 0.28 (0.21, 0.34) 27.4 (20.7, 33.5) <0.001
54.6 7883 224 10000 400 0.29 (0.22, 0.35) 28.2 (21.8, 34.0) <0.001
62.1 8510 191 10000 400 0.44 (0.38, 0.49) 42.9 (36.9, 48.4) <0.001
68.9 8604 244 10000 400 0.29 (0.23, 0.35) 28.3 (22.6, 33.6) <0.001
Total 55405 1365 80000 3200 0.38 (0.36, 0.41) 37.5 (35.0, 39.9) <0.001
The total number of simulation runs at each case management level is 11400 with 11000 RCD+ and 400 RCD-. E14 is the
probability of effective treatment of any clinical case within 14 days. REF indicates the reference scenario.

Transmission was interrupted in 68.2% of simulations in Experiment 1, 69.3% of simulations
with RCD and 42.7% of control settings. The proportion of simulations with interruption of
transmission where this could be attributed to the RCD (PAF) was 37.5% overall (95% CI 35.0,
39.9). Results stratified by case management level are presented in Table 5.2. The effectiveness
of RCD ranges between 28% (21, 34) and 51% (41, 59) for different levels of case management.
PAF estimates range between 27.4 (20.7, 33.5) at E14 = 46.1% and 49.8 (39.7, 58.2) at E14 = 13.9%
. Overlapping confidence intervals and variability in PAF estimates yield no evidence of a
trend for different case management levels. These results demonstrate that RCD can increase
chances of interrupting transmission, but also highlight the stochasticity of this.
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FIGURE 5.2: Example of annual incidence throughout the
simulation period for different intervention strategies

The total screening capacity of RCD is kept constant at 100, but resources are differentially
allocated between maximum number of index cases that can be screened, ιmax , and the
individuals to be screened within the search radius, ν . Grey dashed lines denote the
beginning and end of the intervention period. Case management is at reference level (E14
= 21.8% , where E14 is the probability of effective treatment of any clinical case within 14
days).

Three example simulations of time series of malaria annual incidence per 10,000 person-years
throughout the simulation period are presented in Figure 5.2. The overall treatment capacity
of the intervention, the product of ιmax and ν , was kept constant at 100 individuals per 5 days
but resources were differentially allocated between the two parameters (50 and 2, 10 and 10,
or 2 and 50 for ιmax and ν respectively). The fourth simulation corresponds to treatment of
index cases only (zero follow up radius). Only the scenario with equal resource allocation
(ιmax = ν = 10) reaches interruption of transmission by the end of the monitoring period,
demonstrating the importance of appropriate resource allocation.

Figure 5.3A shows settings where transmission was not interrupted in controls categorised by
proportion of simulations where transmission is interrupted. Each tile represents simulations
of all RCD strategies for the given setting. Categories were assigned based on whether in all,
some, or none of the simulations transmission was interrupted. Pf PR0-99 values indicate mean
prevalence prior to RCD.

For all settings where interruption of transmission is dependent on RCD strategy, strategy-
dependent probabilities of interrupting transmission were predicted using Random Forest,
SVM, Gaussian Process and Naïve Bayes Classifiers. Mean 15-fold cross-validated AUC
was highest for Gaussian process classifier (range 0.70-0.98 across settings for 67% training),
but predicted patterns were similar across all classifiers. The results are presented in Figure
5.3B and demonstrate the narrow range of settings where RCD strategy determines RCD
success. The RCD strategy determined the probability of interrupting transmission only in
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FIGURE 5.3: Dependence of prevalence and of probability of
elimination on settings

A. Mean Pf PR0-99 before RCD for different combinations of transmission potential and
case management. Each pixel represents 250 different RCD strategies with the maximum
number of index cases that can be followed up, ιmax , and the search radius, ν , ranging
from 1 to 50 and 0 to 50 respectively. B. Predictions of probability of elimination for all
strategies and settings. Probabilities were generated using a Gaussian Process classifier
(c-classification, radial kernel) for each setting where it was previously identified that the
elimination outcome is RCD strategy dependent. At EIR = 5 too few simulations reached
elimination to generate contour plots. E14 is the probability of effective treatment of any
clinical case within 14 days.

simulations with an initial Pf PR0-99 of 7-20% , depending on case management levels (for the
dependency of initial Pf PR0-99 on EIR and case management is shown see Figure D.1 in the
supplement, Appendix D). Below this range, transmission was generally unstable, above this
range transmission was too high to be interrupted regardless of RCD intensity. Of the settings
where interruption of transmission using RCD was possible, settings with higher transmission
or lower management required more intense RCD. High case management alone can lead
to 100% interruption of transmission even when transmission is moderate (Pf PR0-99 = 28% ,
E14>63%.

To further assess the differential effects of setting specific parameters, an individual sensitivity
analyses for EIR was carried out, stratified by case management level. Figure 5.4 shows results
for different initial EIR, different case management levels, and for the corresponding initial
(all age) prevalence. There is a strong inverse relationship between EIR and RCD success.
At the reference case management level, 50% of simulations with initial prevalence 10% led
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FIGURE 5.4: Proportion of runs where transmission is interrupted
The proportion of runs where transmission was interrupted only when RCD was
implemented but not in the control setting, where the search radius is 0 ( ν = 0 ).
A. Interruption of transmission by EIR. Proportion of simulations where p = 0 at t=
2035 (points) across all maximum follow-up capacities, ιmax and ν . B. Interruption of
transmission by initial prevalence. Combinations of EIR and case management were
converted to mean initial prevalence from simulations. E14 is the probability of effective
treatment of any clinical case within 14 days.

to interruption of transmission. Increasing case management can make elimination possible
at somewhat higher transmission intensities. RCD with the aim of transmission interruption
is thus only appropriate in settings where transmission is very low. Further analyses used
machine learning approaches and estimates of the excess probability of transmission interrup-
tion that allowed for stochastic interruption of transmission in the absence of RCD.

Figure 5.5 shows the results of an importance analysis of the effects of ιmax and ν on the
probability of elimination. The results were obtained by fitting a random forest classifier to
the simulated data and using an inbuilt function for variable importance. Setting specific
parameters, case management and EIR, are the most important variables for elimination
(panel A). Panels B-F show the covariate-adjusted variable importance on the probability of
elimination. Any increase in search radius is associated with an increase in the proportion of
eliminated simulations. Increasing the capacity to treat and follow up index cases (ιmax) is of
great benefit initially, but quickly reaches an optimum and saturates at a threshold. Increasing
case management shifts the saturation threshold to higher values of ιmax but does not change
the overall pattern observed with increases of the other parameters.

Further analyses to determine characteristics of the ιmax threshold, were carried out. RCD
success in each setting was analyzed in relation to the ratio of ιmax to different quantiles
of the distribution of 5-day incidence over the entire simulation period from 2020 to 2035.
ιmax as a proportion of the all-time maximum incidence, ιmax

max(INC) , showed the strongest
relationship with RCD success, suggesting that the ability to cope with maximum incidence
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FIGURE 5.5: Permutation feature importance in settings with stable
transmission (without elimination in controls)

A. Permutation variable importance. B-F. Covariate-adjusted variable importance . All
plots were generated using a random forest classifier. “Probability 1” describes the
probability of elimination. E14 is the probability of effective treatment of any clinical
case within 14 days, ιmax and ν describe the maximum number of index cases that can
be followed up and the search radius respectively, and max(INC) describes the maximum
5-day case incidence throughout the simulation period.

during transmission peaks is the most important factor in choosing ιmax . It is important
to note that the maximum incidence of the simulation period need not be reached prior
to RCD implementation as stochastic fluctuations in incidence may lead to an increase in
case incidence during the intervention period when case management is low. The adjusted
importance analysis of this metric confirms that ιmax should be set such that all index cases can
be followed up (Figure 5.5F).

The contributions of case management and case follow up to interrupting transmission were
assessed. Figure 5.6 shows the proportion of simulations where transmission is interrupted ( e

n

) and the proportion where this is attributable to RCD ( PAF e
n ) as a function of ιmax

max(INC) . When
stratifying by case management level, the PAF was found to decrease at high case manage-
ment and high ιmax

max(INC) , although the total proportion of simulations that reach elimination
increases. High ιmax

max(INC) can be a result of both small RCD effort and low transmission. These
results thus indicate that at low transmission, the relative contribution of case management
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FIGURE 5.6: Proportion of eliminated simulations by relative follow
up capacity

Blue represents the proportion of eliminated simulations where elimination is attributable
to RCD (PAF), relative to the total proportion of eliminated simulations (red). Simulations
were aggregated by relative follow up capacity in 10% intervals, thus each data point
presents varying numbers of simulations with generally fewer simulations for ratios above
1. Mean PAFs (dots) and 95% CI (gray area) were calculated and a LOESS smoothing
function with 0.75 span was fitted through the data (blue line). E14 is the probability of
effective treatment of any clinical case within 14 days, ιmax is the maximum number of
individuals that can be followed up per five days, and max(INC) is the maximum 5-day
incidence throughout the simulation period.

to elimination is higher than that of RCD (although RCD may provide some additional benefit).

These results demonstrate that ιmax is optimally chosen such that all index cases can be
followed up, even during high transmission seasons. The relative contribution of RCD to
interrupting transmission decreases when regular case management alone is strong (at high
case management and low transmission). Still, RCD can provide small additional benefit.

Figure 5.7 summarises the time to interruption of transmission in years at reference case
management level across intervention strategies and transmission levels. Points show the
median years to interruption of transmission across five seeds at reference case management
level. Presenting the median ensures that >50% of seeds over all simulations reach interrup-
tion and that this is not due to stochasticity. The line and shaded area show the conditional
mean and confidence interval of the median, using a LOESS smoother. For EIR = 4 in panel
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𝝂 𝜾𝒎𝒂𝒙 

FIGURE 5.7: Median time to interruption of transmission
Results are disaggregated by the maximum number of individuals that can be followed
up, ιmax, and the search radius, ν . The median time to elimination was calculated across
all simulations (all values of ν and ιmax , respectively) of the given parameter value.
Point estimates were plotted and a LOESS smoothing function was fitted. Median values
could not be calculated for EIR>2 since not enough simulations reached interruption of
transmission.

A, confidence intervals were too wide to be displayed. This suggests that transmission is
interrupted towards the end of the intervention period, except for at very low transmission.
A possible carry over effect beyond cessation of the programme was observed, as at higher
EIRs elimination may be reached after the 10-year mark. The intervention strategy makes little
difference except for increasing the search radius at EIR 1.5 – 2, approximately equivalent to
an initial prevalence of 7% . Increasing ιmax has little effect in determining time to interruption
of transmission. Overall, there was a high degree of stochasticity.

Since EIR is difficult to measure in the field, a range of possible predictors of routinely collected
data was chosen to assess their predictive ability. The predictive powers of mean incidence
and mean annual prevalence the year before onset of the intervention period and in the first
year of the intervention period were tested. The predictive ability of the relative reduction
in incidence and prevalence in the first year of RCD was also assessed. Prevalence values
were log transformed for the purpose of this analysis. The results presented in Figure 5.8
suggest that routine data such as incidence and prevalence are equally good in assessing
the suitability of a site for RCD as EIR. 83.3% (both) and 86.1% and 84.8% of scenarios were
correctly classified using incidence and log prevalence in the year before onset of RCD and
the first year of RCD, respectively as covariates in a single variable logistic regression (Table
5.3). The cut off points for >50% probability of interrupting transmission with any strategy at
reference case management in the fitted model were 711 per 10,000 person-years, equivalent to
a mean of 10 cases per 5 days.
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FIGURE 5.8: Correlation analysis of predictions of RCD success
Pearson correlation coefficients.

TABLE 5.3: Single-variable logistic regression results and % correctly
classified runs when using the given model

Estimated
odds

95% CI p-value correctly clas-
sified (% )

EIR 0.082 (0.079, 0.088) <0.0001 83.9
Incidence before 0.996 (0.996, 0.996) <0.0001 83.3
log(prevalence before)∗ 0.090 (0.086, 0.094) <0.0001 83.3
Incidence year 1 0.990 (0.989, 0.990) <0.0001 86.1
log(prevalence year 1)∗ 0.038 (0.035, 0.040) <0.0001 84.8
reduction in incidence 0.403 (0.367, 0.443) <0.0001 63.4
reduction in prevalence 1.308 (1.164, 1.470) <0.0001 62.8
∗ Per 1% increase

5.5 Discussion

A framework for implementing spatially targeted reactive interventions in OpenMalaria was
developed by approximating a targeting ratio which captures spatial heterogeneity. Reactive
case detection only leads to local interruption of malaria transmission in settings with low
transmission potential, measured by either EIR or prevalence (initial EIR approx. 1-3 or preva-
lence approximately <7-19% for 50% probability of success, depending on case management
levels). RCD was effective in 38% (95% CI 36, 41) of scenarios simulated, with a small trend
towards greater effectiveness at lower case management. Large and overlapping confidence
intervals highlight the stochasticity of interrupting transmission. Whilst the simulations use
transmission intensity in terms of EIR and 5-day case management levels as inputs, they
show that qualifying settings are also identifiable using routinely collected prevalence and

88



5.5. Discussion

incidence data. It follows that settings can be classified into suitable or non-suitable for
RCD, and predictions can be made such that RCD is not initiated where it is very unlikely
to be successful. This is roughly consistent with another modelling study based on the same
Zambian data, which suggests a prevalence threshold for RCD of approximately 10% (227).
The relative success of RCD (in terms of reduction in incidence or prevalence) in the first year
of implementation is not a good predictor of ultimate success.

A primary objective of this study was to determine which operational characteristics of RCD
most influence the effectiveness. Considering the joint and individual influences of increasing
capacity to follow up index cases and the search radius, a larger search radius is always
beneficial. In contrast, increasing ιmax only increases the probability of success up to a certain
threshold, ι∗max , with no additional value in increasing it beyond this. This threshold is related
to the maximum number of cases presenting to be treated, and defines a cut-off point in case
incidence beyond which the setting is not suitable for elimination via RCD altogether. For
settings with low to intermediate case management levels, all index cases should be followed
up. A natural approach for programme managers to use when considering introducing RCD,
is to initiate it when the number of cases reporting has fallen to the level where the capacity
exists to follow them all up. The simulations endorse this instinct, in contrast to previous
modelling of RCD that used a deterministic compartmental susceptible-infected-susceptible
(SIS) model with the same function for the targeting ratio (50). The SIS-models attributed
greater importance to following up more index cases, even at the cost of a smaller ν across the
entire parameter space, as the targeting ratio is much higher at small ν . In that analysis the
upper bound of the possible number of index cases was set by the standing crop of infections;
it was assumed that any pre-defined number of index cases less than this can be found.

This paper takes a slightly different, programme planning focused approach by assessing the
importance of the follow-up capacity rather than the actual number of followed up index
cases. Cases that do not seek official care or are asymptomatic limit the potential number of
index cases. When the case management level is increased, more index cases become available
making it useful to adjust ιmax upwards. Thus it would seem that case management limits the
settings where elimination is possible because it imposes the threshold effect on ιmax

Despite providing a proof of concept that RCD can lead to local elimination, the results also
suggest that successful RCD is highly resource intense and likely to be very costly (though no
formal economic evaluation is presented). In most suitable settings RCD would have to be
conducted for more than 5 years with a relatively aggressive strategy to yield a probability
of interruption of transmission of >50%. In the area of the trial in Zambia, for example, the
weighted mean EIR is estimated to be approximately 2.9 (61) and the case management (E14)
at the time where the RCD trial was conducted was about 21.8% (206). In such a setting,
elimination with RCD is not feasible. Today, Zambia’s case management (E14) is estimated to
be 34.7%. Such a setting would require a follow-up capacity of approximately 10 index cases
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and search radius of > 35-40 individuals, i.e. a total screening capacity of 350-400 individuals
per 5-day period would be necessary in order to reach interruption of transmission within
10 years with a probability of success of only 50%. On the contrary, if case management was
further increased to E14 = 46% (137), following up 5 index cases with a 25-person radius,
i.e. 125 individuals in total, would suffice for a 50% probability of interrupting transmission.
If case management was to be increased to 62% this alone would lead to interruption of
transmission (in all simulations). Strengthening access to care would also have further positive
implications on population health and likely lower the burden of disease not just of malaria,
but overall. Previous modelling studies having assessed RCD come to similar conclusions. An
independent modelling study (42) suggests that in low prevalence settings, improving case
management may be more impactful than RCD, although RCD may bring qualitative benefits
to a setting. For example, RCD may improve visibility of community health workers and raise
awareness of the disease in general.

The results indicate that policy decisions should prioritise improving access to care followed
by appropriate treatment and follow up of all index cases. This can be explained through a
greater importance of following up as many as possible definite cases that present to the health
facility. All index cases are definitely cases (definite cases) whereas individuals in the search
radius may or may not be cases at probability pτ

(
p, ν
)

. Targeting is stronger and τ is larger at
small ν. The per-person probability of being a case in the radius around an index case is thus
greater the smaller the radius. Increasing the number of index cases through improving access
to care and treating and following up these index cases is therefore always more targeted than
treating individuals in the search radius. RCD is thus only worthwhile where the number
of cases detected through RCD

(
min(ι, ιmax)νpτ

)
and in the limit, as ιmax → ι, the number

of cases detected per index case is greater than 1
(

1 < νpτ
(

p, ν
))

. This condition describes

the threshold at which more hidden cases are found through RCD than index cases present
to the health facility. If the aim is local elimination, the second condition for implementing
RCD must of course be that interrupting transmission in the setting is itself feasible. As it
is a highly stochastic event, this condition is more difficult to predict. Together, these two
conditions define the narrow range of settings in which interrupting transmission through
RCD alone is feasible. Where it is possible, it will thus generally be more effective to increase
case management rather than implementing RCD. Based on these results, the following
prioritisation is proposed: case management to increase number of index cases � following
up all index cases � increasing the search radius. The effect of increasing the search radius
also likely flattens off at some point, but not within the parameter space considered.

The results are based on Zambian parameterisation and thus the transferability of results across
settings with different population densities remains to be confirmed. However by defining the
search radius in terms of number of individuals rather than a physical distance, the findings
presented here should be more translatable across settings at different population densities,
assuming that vector movement and thus disease spread is dependent on host availability
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more so than physical distance. Future research comparing RCD in different settings should
explore this hypothesis. The study did not consider case importation. Simulations of Zambian
settings with low coverage of case management (50) conclude that this is an important
determinant of whether elimination is achieved, but simulations with OpenMalaria suggest
that this is not the case if case management coverage is high (Smith et al. pers .com.). Whilst
OpenMalaria does consider heterogeneous populations, including in their health seeking, the
reactive intervention is applied to random individuals in the population.

The targeting ratio approach presented here provides a framework for implementing generic
spatially targeted reactive interventions in OpenMalaria. Future work should adapt the
framework to different settings by fitting the targeting ratio to data from different settings.
However, as long as infections are acquired within the community similar patterns to those
presented here can be anticipated, since the search radius is specified in terms of number of
individuals, thereby making it independent of the population density. Future investigations
may further include incorporating importation of cases as well as varying the timing of
RCD and implementing RCD in combination with other (mass) interventions. If RCD is only
successful at low transmission it would be well worth investigating adding a mass intervention
at the beginning of RCD intervention course as well as employing RCD in scenarios where
mass interventions have brought EIR down to < 3 infectious bites per person per year. Further,
one may investigate employing RCD seasonally in the dry season when incidence is low. This
may lead to stochastic elimination and save resources. This framework can also be adapted
and used for wide ranges of spatially targeting interventions, such as RCD in different settings
and reactive vector control.

5.6 Conclusions

Overall, the study demonstrates that RCD can increase the chances of stochastic elimination,
but that it is a very resource intense, such that other interventions are likely more appropriate
in most settings. In its final stages RCD leads to a sustained reduction in overall burden
of malaria through strengthening the health care system so that imported infections are
controlled. This stabilises the disease-free state (50), in contrast to one-off higher impact
interventions, such as MDA that have strong immediate effects over a limited period but do
not provide a sustained reduction in transmission. With MDA, even in the most favourable
circumstances, persistence is highly stochastic depending on the size of the residual reservoir
of infectious people exposed to mosquitoes. However, despite its potential impact RCD is a
highly resource intense, long-term intervention that is inappropriate in many settings where
resources are limited. In such settings, investments may be better made in improving the
routine health care system.
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6 Discussion

Mathematical modelling has a long tradition in providing additional evidence to support
public health decision-making against the spread of infectious diseases. The field has been
experiencing a steady increase in both popularity and relevance, starting from Bernoulli’s
1760 analyses of smallpox transmission and control (132), to the early works of Ross and
MacDonald on malaria at the turn of the 20th century (43, 45–48), to the modern breadth of
complex disease transmission simulators for malaria (3–5), tuberculosis (6), dengue (8), and
Covid-19 (17). While data science tools, including traditional statistical analyses and more
recent machine learning approaches, are vital for detecting patterns hidden in large amounts
of (observational) data, their explanatory power is oftentimes limited to the respective dataset.
Much needed extrapolation to other settings to inform decision-making outside the original
dataset’s context therefore presents challenges. By enforcing strict mechanistic consistency
under explicit biological and epidemiological assumptions, mathematical models can generate
insights beyond the data in ways that purely data-driven approaches cannot (106, 134).1 The
ability to forward predict long-term effectiveness or comparative effectiveness of interventions
is of particular value in the evaluation of public health programs (2). In the interest of
incorporating all available evidence, guideline developers such as the WHO should routinely
consider modelling insights into their recommendations (see also section 6.6 of this Chapter).

However, the added layer of complexity (i.e. forcing explicit biological and epidemiological
relationships) makes simulation modelling predictions especially sensitive to the assumptions
and decisions made by developers and users. From the careful calibration to diverse and
reliable data, to thoroughly planned and analysed simulation experiments, any decisions
throughout the modelling process should be well thought through and transparently commu-
nicated. Through a comprehensive investigation of the modelling process from its foundations
in calibration to its applications, this thesis provides methodological advancements and
prompts discussions about the role of infectious disease modelling in public health. With
application to malaria, this is achieved through:

1. The development of new machine learning-based approaches for model calibration.
Specifically, I show that machine learning-based Bayesian optimisation algorithms
offer a fast solution for solving high-dimensional optimisation problems and that they

1It should be noted that these assumptions need not be representative of nature – this depends on the developers’
biological understanding. Nonetheless, predictions will adhere to the model’s mechanistic framework. Therefore,
assumptions should be carefully evaluated in their ability and appropriateness to depict nature.
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outperform traditional, sampling-based calibration approaches (Chapter 2, Objective 1).
For transparent sharing across disease modelling communities, these algorithms have
been made publicly available.

2. The epidemiological assessment of observational data and its conceptualisation for
integration into the calibration process using a generalisable framework. A framework
for translating observational studies to in silico and for preparing data for calibration is
provided in Chapter 3 (Objective 2). In an application case study, this framework is used
to collate data on an epidemiological relationship not previously incorporated in the
calibration of OpenMalaria (Chapter 3, Objective 3).

3. An assessment of the implications of development decisions for predictions and
possible applications. To provide a link between model development and applications,
I discuss the ability of OpenMalaria to reproduce epidemiological relationships and the
dependence of (malaria) models and their predictions on the available calibration data
(Chapter 4).

4. An application case study involving the development of new surveillance-response
interventions, and the machine learning-assisted initial assessment of their potential
for elimination. Chapter 5 shows the addition of RCD to OpenMalaria (Objective 4) and
an assessment of its role on the road to elimination. Addressing experimental design
and analysis strategies, structural model limitations, and data availability, the discussion
around predicting elimination is furthered in section 6.4 (Objective 5).

The subsequent sections of this discussion provide broader context to the findings of this
thesis. I discuss dependencies on data and assumptions, the value of joining simulation
modelling and machine learning, the implications of decisions made by model developers and
users for public health decision-making, and the limitations of modelling.

6.1 A model is only as good as the data it was calibrated to

Calibration to diverse high-quality data is the foundation of any model that aims to be useful
for guiding decision-making in health. In the absence of data, the most elaborate calibration
algorithm cannot identify the parameter values required for a biologically and epidemiologi-
cally sensible model and model predictions lose their value as evidence. Diligent calibration
to diverse data, whose context is understood and explicitly captured, enables setting-specific
predictions and extrapolations of generic disease dynamics (see Chapters 2, 3 and 4). Among
other applications, a well-informed model can aid in the development of new tools, e.g. in
guiding the formulation of target product profiles (TPPs) (228, 229) or in evaluating use cases
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for interventions (230), as well as provide guidance on national malaria control strategies (231).

Throughout this thesis, discussions have emerged around the sensible incorporation of data
into modes, data scarcity, and the resulting uncertainty of model predictions. Chapter 2 illus-
trates the pivotal role of data at the core of model calibration. Without comprehensive data,
there is no basis for assessing the ability of a model to depict the biology and epidemiology
of the disease. Further, without data, calibration becomes impossible. Chapter 3 revealed the
intricacies of incorporating data for calibration: The context of data collection must be holis-
tically accounted for to avoid oversimplifying epidemiological relationships and potentially
biasing predictions. Chapter 4 focused on the sensitivity of OpenMalaria predictions to the
data quality standards set during calibration and the implications of scarcity and uncertainty.
Chapter 5 illustrates the development of a new intervention plug-in for OpenMalaria based on
data from a RCT (see also (50)). This chapter also highlights the uncertainties and limitation
of predicting elimination that result from a lack of calibration data from settings with low or
unstable transmission (see also Section 6.4 of this Chapter). Without strong data foundations,
the robustness of model predictions and the potential of modelling-informed decision-making
are compromised.

In Chapter 4, I highlight the effects of data scarcity on model predictions. Data scarcity
increases the influence of individual data points, making model predictions more vulnerable
to potential biases (see Chapter 4). Due to the interconnectedness of model components and
interdependence of parameters, the decisions made regarding the calibration data of one
objective can trigger a domino effect, leading to changed predictions on multiple epidemi-
ological relationships. These changes may not be immediately noticeable and may require
extensive, deeper analyses to be unveiled. For example, dropping the Ethiopian severe disease
data points had no apparent effect on the relationship between prevalence and severe disease
but carried implications for predictions on parasite densities and direct mortality estimates
(Chapter 4). Large uncertainty bounds, such as those observed in the direct mortality data,
can make the associated governing parameters unidentifiable and reduce the predicted
epidemiological relationships to (somewhat informed) guesswork (Figure 4.7).

Generally speaking, the incorporation of additional data can decrease the influence of indi-
vidual data points and balance out potential biases. Additional data for calibration and
validation is clearly needed, particularly on severe disease, mortality and on low transmission
settings. However, the continuous manual surveillance of a rapidly growing body of literature
in the hope of finding relevant data is often infeasible. Modern, ML-based methodologies
could help alleviate the operational challenges of continued development alongside applica-
tion that arise from limited human and financial resources. For example, natural language
processing can automatise the efficient mining of scientific databases for relevant newly
published data (232, 233). Automated translation can extend the search to publications in
multiple languages or national reporting databases. Through the addition of automated

95



Chapter 6. Discussion

filters (whose accuracy would of course have to be validated), standing alert systems could
be realised to varying or flexible degrees of elaboration. They could for example be tuned to
only extract data from specific types of observational studies or exceeding a threshold sample
size. Such alert systems could accompany model development during the application phase
and ensure that the most recent data is continuously incorporated. This would further enable
the real-time capturing of changes in epidemiology and would likely address the pressing
need for additional data from low-transmission settings and both simplify and speed up the
incorporation of new data.

However, blindly incorporating data on the grounds of availability is dangerous as it can
compromise the quality of model predictions. Here lie the limits of automatisation. Ultimately,
manual qualitative assessment by researchers will be required (as illustrated in Chapters 3 and
4). Decisions around data quality standards and the incorporation of contextual covariates
require a comprehensive understanding of underlying assumptions and possible limitations.
No objectively right or wrong methodology exists to address issues around scarcity, biases
and uncertainties in calibration data. While standard approaches like sensitivity or parameter
identifiability analyses can be viable tools to assess the value of added data sets for calibration,
the interpretation of results within a broader epidemiological context is the responsibility of
the researcher. Adjusting for contextual covariates in data collection further requires a deep
understanding of the time, setting, and methodology. Underestimating the complexity of
epidemiological relationships and their dependence on real settings that are characterised by
a multitude of covariates can cause great inaccuracies in the model. In Chapter 3, I present a
translational framework as well as a library of quality controlled data on the Pf PR-incidence
relationship including contextual covariates for every record. These data are ready for
incorporation into OpenMalaria, providing a timely contribution to addressing the nuances of
this relationship. The framework and surrounding discussion can serve as a starting point for
establishing generalised guidelines for the handling of calibration data for infectious disease.
Alternatively to explicitly reflecting all contextual covariates in the simulations, researchers
may choose to conduct additional pre-processing. For example, Griffin et al. introduced a
scaling factor for differences in health care systems before incorporating severe disease data
into their model of malaria transmission (218). However, statistical adjustments often rely on
assumptions about the relationship between contextual covariates and outcomes e.g. linearity.
Without a systemic mechanistic framework, such relationships may be unidentifiable or its
complexity and multifacettedness may be underestimated. Capturing potentially confounding
covariates in simulations allows for a more systemic approach where the joint influence of
all covariates can be accounted for without additional assumptions about the shape of the
relationship (outside the mechanistic assumptions of the model).

Overall, calibration data is a key determinant of the possible applications of a model - which
questions can be answered, and within what parameter space the model yields accurate
predictions. Ideally, any data used for calibration should be made publicly available along
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with a description of decisions made during its incorporation. A ML-based standing alert
system for new data, integrated into day-to-day modelling practice could address abundance
issues by alleviating some of the challenges of detecting and exploiting new data. Nonetheless,
a core problem of calibration is that as long as the algorithm is functional, it will yield
some numerical solution, even if the data is incorrectly incorporated. The consequences for
epidemiological simulations may be substantial and they may remain dangerously unrecog-
nised if data integration methods are not granted sufficient focus in the communication and
interpretation of predictions. It takes integrity to be able to fully recognise and stand by the
limitations of one’s model, especially after long-term continued development, often over the
span of years. The explicit mechanistic assumptions allow for some extrapolation outside the
calibration data, but the further we move away from the data, the more careful we ought to
be. It is a developer’s responsibility to be aware of and communicate the potentially wide-
reaching consequences of decisions made during data integration. The discussions throughout
this thesis provide an unparalleled deep dive into the inner workings of any one malaria
transmission model (outside its original development). The epidemiological assessments
of calibration data (Chapter 3) and functional analysis of its consequences for relationships
simulated in OpenMalaria (Chapter 4), aim to provide the transparency required from models
supporting decision-making. Together with OpenMalaria’s (particularly) open documentation
(with publicly accessible, collated calibration data and methodology, and information on
development of interventions), this degree of transparency should be a leading example for
all models of infectious diseases. Only if a model’s potentials, limitations and pitfalls are
well understood, can the reliability and value of its predictions as evidence be evaluated.
This includes the domain of plausible simulations, which is outlined by the calibration data,
because even the most technically elegant model are merely speculative in the absence of
sufficient data foundations.

6.2 Machine learning-augmented simulation modelling

Detailed individual-based simulation models, such as OpenMalaria can accommodate for
the complexity of an infectious disease. However, long runtimes and the curse of dimen-
sionality hinder a routine integration into public health decision-making (68). This can be
alleviated through the coupling of simulation modelling to (machine learning) surrogates.
At its core, machine learning-augmented simulation modelling enables faster predictions
of model outputs and allows for derivative-free optimisation and (constrained) feasibility
analyses. By speeding up runtimes and enabling more complex experiments, large arrays
of intervention strategies can be quickly evaluated, making machine learning-augmented
simulation modelling highly attractive for real time decision-support. While this has long
been recognised in the engineering and physical sciences (68), it is somewhat surprising that
it has not yet found wider application in infectious disease modelling. In fact, no well-known
examples of combining of machine learning and simulation modelling of infectious diseases
exist, outside the research conducted by disease modellers at Swiss TPH (concurrently to this
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thesis) (234). This may be because the perceived complexity of an infectious disease simulator
appears negligible in comparison to those employed in physics or engineering where a single
simulation can take days or weeks (66). Further, adding another (black box) layer of complexity
to already detailed and sometimes intransparent simulators makes the joint workings of simu-
lator and emulator hard to interpret. As public health decision-making should be transparent,
any additional complication requires thorough justification. However, the complexities of
model calibration and public health decision-making (especially for complex diseases like
malaria) require large, multidimensional experiments that warrant the use of surrogates.

The research presented in this thesis (Chapters 2 and 5) provides exemplary use cases of
machine learning-augmented simulation modelling for calibration and public health applica-
tion. Firstly, machine learning methods for calibration are shown to be faster than previous,
purely sampling based approaches and yield an overall improved goodness-of-fit (Chapter
2). Secondly, sensitivity analyses reveal additional insights into input-output relationships.
During the application case study of RCD in Chapter 5, sensitivity analyses provide insights
into implementation strategies of RCD and the optimal allocation of limited resources. Lastly,
by training machine learning emulators on simulation results, rare-event probabilities, like the
probability of elimination can easily be estimated from sparse simulation results (Chapter 5).
In all of these cases, the use of machine learning in combination with traditional simulation
made large experiments possible and provided additional functionalities.

The problem of long runtimes could also be solved through computational changes such as
improving model structure, its compilation, or incorporating GPU computing methods. For
example, computational improvements made recent versions of OpenMalaria substantially
faster. However, the applications of machine learning-augmented simulation modelling go
beyond this. The generation of a smooth objective function surface, which can be coupled with
gradient based non-linear optimisation methods (68), enables formal optimisation rather than
choosing the best of a set of (sparse) samples (see Chapter 2). Jointly with the ability to draw
constraints and requirements around the properties required of an intervention, this is highly
valuable for supporting the development of new tools (234) as well as suggested policies on
their deployment (see Chapter 5). Another application of (machine learning) surrogate models
is their ability to serve as didactic tools to reveal opportunities for model simplification (68).
For example, the sensitivity analyses shown in Chapter 2 identify parameters that may be
irrelevant to the epidemiological predictions of OpenMalaria, or at least to those relationships
captured during calibration.2 The coupling of simulation modelling and machine learning
may therefore aid in structural model development itself or initiate dialogue with scientists

2For example, the Sobol’ analysis in Chapter 2 suggested that no objectives were sensitive to parameters αm (θ7),
F0 (θ16), φ1 (θ18), or ν0 (θ21) (see Figure 2.3C). The comparison between parameter estimates between optimisation
algorithms further suggests only weak identifiability of these parameters, in particular for parameters αm (θ7) and
ν0 (θ21) (see Figure A.31).
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conducting fundamental research to discuss causal relationships between biological parame-
ters and processes.

Throughout this thesis, I have highlighted the potential benefits of coupling simulation
modelling and machine learning (specifically in Chapters 2 and 5). Nonetheless, the additional
layer of complexity and uncertainty introduced by an emulator requires clear communication
on methodology and assumptions and their implications on predictions (both positive and
negative). For guiding policy, it is absolutely necessary to characterise, quantify and propagate
uncertainty, recognising both qualitative and quantitative components of both modelling layers
(235). A proposed general framework for good practice on the combined use of machine
learning and simulation modelling should therefore include experimental design, emulator
evaluation, and use-cases:

Model choice and benchmarking. On a technical level, it has been demonstrated that no one
emulation method performs best universally (80). Therefore, emulator performance must be
formally addressed on a task-by-task basis. Quantitative performance metrics include the area
under the curve (AUC) or accuracy for classification problems, or the mean squared error
(MSE) for regression problems (236). The most suitable performance measure and machine
learning model will depend on the application and on size and quality of the training set (74).

Sampling and experimental design. Emulators do not retain the forced logic and mechanistic
assumptions of the simulator and can therefore not extrapolate but only interpolate (68). As
a consequence, surrogates are not expected to perform well away from the design site and
the sampled space may have to be increased to ensure good surrogate performance around
the edges of the space of interest. Further, the over-sampling of rare events or in irregular
areas of the space may be desirable. This logically prompts a discussion on stationary versus
adaptive sampling strategies. Adaptive sampling based on the iterative acquisition of samples
in areas where they are predicted to lead to improvement of the emulator’s performance
will be appropriate for most applications. Applied to predicting elimination this could
involve adaptively oversampling the boundary region between certain elimination and certain
endemicity. While a certain degree of adaptivity should be beneficial for most applications,
this also increases the complexity and runtime of the overall experiment by forcing sequential
iterations of simulation and emulation. The (computational) costs and benefits of an adaptive
design should therefore be carefully evaluated.

Contextualisation. It is noteworthy that for applications like Bayesian optimisation, emulators
are neither required to nor trained to be greatly accurate globally. Rather, they are trained
to accurately identify areas of interest such as optimal regions for calibration and boundary
regions for the prediction of elimination. Therefore, the trained emulator should only be
applied to the problem it was trained for and not be used to extrapolate outside this.

Generally speaking, a governing principle of emulation should be to strive for simplicity
wherever possible. This decreases the chance of coding errors and ensures transparency (237).
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Traditional statistical methods should be used wherever they are sufficient to answer a research
question to ensure interpretability and increase confidence in resulting public health decisions.
Where machine learning surrogates can provide additional value, justification for the need
and choice of emulation should be explicitly provided. Criteria to assess and demonstrate the
usefulness of a surrogate should include the demonstrated increase in computational efficiency
(in terms of average runtime) of a single emulation as well as the runtime for a combined
(iterative) simulation-emulation approach compared to using simulation alone. The emulator
should further provide demonstrated usefulness like enabling more thorough analyses or
revealing extended conclusions to the research question. Lastly, the uncertainty introduced by
the surrogate needs to be openly and clearly communicated and the surrogate itself validated.
If these codes of conduct are followed, machine learning can provide a valuable complement
to simulation modelling and decision-making.

6.3 Re-imagining the calibration of disease simulators

The calibration of detailed disease simulators, such as OpenMalaria is a challenging optimisa-
tion problem. It can only be solved using elaborate computational algorithms. It is noteworthy
that even using the most complex algorithms, such problems will likely never be truly solved
if by solving we mean finding a proven global optimum. That is because the complexity
and multi-modality of the high-dimensional solution space is characterised by many local
optima, making a global optimum difficult to find and even harder to prove, especially as
simulation times are long. Computational resources and the time allocated to calibration
are usually insufficient to fully explore the space. However, improving the computational
methods of calibration itself by thinking outside the box of traditional sampling-based
optimisation algorithms, such as Genetic algorithms or Markov-Chain Monte Carlo methods,
can aid in progressing towards the true optimum. Advances in high performance computing
and the increased availability and accessibility of machine learning algorithms in high level
programming languages carry a great potential that should be exploited. Ideas can again be
borrowed from disciplines that have long addressed complex optimisation problems, such as
engineering, physics and computer science (e.g. for the tuning of hyperparameters of machine
learning algorithms (238)).

In general, the use of probabilistic emulators to predict goodness-of-fit, rather than explicitly
simulating every sparse sample, allows for quick approximations of the solution space and
cheap evaluation of the simulator (or its likely performance) in many more locations. This
increases the confidence that the final parameter set approximates the global optimum. In
Chapter 2, I propose a novel approach to calibrate disease transmission models via a Bayesian
optimisation framework employing machine learning emulator functions to guide a global

100



6.3. Re-imagining the calibration of disease simulators

search over a multi-objective landscape. The new approaches (GP-BO and GPSG-BO3)
outperformed previous calibrations using a sampling-based asynchronous genetic algorithm
(64) both in terms of computing time and final goodness-of-fit. Comparing the performance
of fast, exploitative GPSG-BO to that of traditional (no regret) GP-BO and that of the genetic
algorithm suggests that the main crux of calibrating detailed simulators lies in the complexity
and sparse possible sampling density of the solution space. For GPSG-BO, the efficacy of
adaptive sampling is compromised by an underestimated full predictive uncertainty. This
leads to overly exploitative behaviour early in optimisation, where sampling close to the
point estimate of the predicted optimum is overemphasised, rather than exploring the entire
parameter space. GPSG-BO so to say presents a quick-and-dirty approach compared to a
thorough exploration of GP-BO (given the appropriate acquisition function). By extension,
the possibility for denser sampling is why emulator-based Bayesian optimisation approaches
outperform the sampling-based algorithms.

Possible extensions to the research presented in Chapter 2 fall into two categories: improving
the calibration algorithm, and revisiting the calibration task itself.4 The former promises
multiple opportunities for extensions and improvements on speed. Even the emulation
approach presented here only sparsely samples the space at five million samples in 23 dimen-
sions. This is equivalent to a sampling resolution of only two samples in each dimension. It
is therefore likely that the true final goodness-of-fit could be further improved. A possible
solution would be to add an optimisation algorithm (e.g. stochastic gradient descent) to the
emulator. However, the emulator is not optimised for performance at all output values, but
to locate optima. It is therefore unclear to what extent adding an optimisation algorithm to
the emulator would improve the method. Further, if the emulator optimisation was added at
every iteration (in place of an acquisition function) this would drastically increase the required
computation time and make the methodology inefficient and time-consuming. An alternative
extension would be to employ an emulator where the computational requirements scale more
favourably for large samples. Neural nets, for examples, scale linearly with the number of
data points (98) (compared to the cubic scaling of Gaussian processes). While the uncertainty
quantification required for acquisition is technically challenging for neural nets, pre-coded
libraries in high-level languages exist. In fact, multiple implementations for efficient Bayesian
optimisation using neural nets (98) written in Python are currently publically available through
GitHub (such as nn-bayesian-optimization by the user RuiShu, pybnn by automl, or BayesOpt
by bpiyush). Implementation in Python rather than R would further improve efficiency in
parallelisation5 and options for using GPU computing could further improve computing
speed. Applying this to the calibration of disease simulators such as OpenMalaria would

3GP-BO = Bayesian optimisation using a heteroscedastic GP emulator; GPSG-BO = Bayesian optimisation using
a GP stacked generalisation emulator, with NN, RF and MARS level 0 learners and a heteroscedastic GP level 1
learner. See 2

4The calibration task includes decisions around the number of calibration parameters or the weighting assigned
to epidemiological objectives.

5Expert opinions gathered from discussions surrounding the research of this thesis suggests that in most
implementations of parallelisation in R, the global environment (or at least the required objects) is copied into
each parallel threads. This slows down computation itself and leads to vast increases in memory requirements. In
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allow predictions at a much higher resolution, multiplying the number of possible prediction
location compared to the current methodology.

Apart from algorithm improvements, future work should consider the fitting task itself and
this should likely be prioritised. Currently, the only available solution to break the curse of
dimensionality is to circumvent it by explicitly reducing the complexity of the problem itself
(66). This can be achieved by either (progressively) limiting the ranges of parameter values,
such that the space is sufficiently simple to be approximated by the emulator even when data
is sparse, or by reducing the dimensionality itself by freezing variables (66). At first sight,
this is, of course, undesirable as it might compromise the thoroughness with which we seek
for the true optimum. However, the sensitivity analyses conducted in Chapter 2 reveal the
non-identifiability and a lack of sensitivity of the overall goodness-of-fit to some OpenMalaria
parameters. For example, no single objective (nor their weighted sum) was sensitive to the
Garki bias parameter, a parameter relating to differences in data collection methodologies
between settings. Revisiting the model structure itself and investigating the potential for
fixing or removing parameters may be a laboursome task but would be highly desirable to
simplify the optimisation problem itself. Further, the multi-objectivity and the weighting of
these objectives should be further explored. The sensitivity analysis in Chapter 2 shows that a
multi-objective parallel approach (as opposed to modular calibration) is required to account
for the covariation of and interdependencies between parameters and model components.
However, the weighting is currently manually forced. Implementing a dynamic approach
such as Pareto fronts with a multi-objective Expected improvement acquisition function could
provide a more objective, scientific framework to approaching this multi-objective calibration
problem.

Overall, the research presented here and the use of machine learning for model calibration
present substantial advances for the mathematical modelling of infectious diseases. This
approach can also be used to address other complex optimisation problems outside cali-
bration, such as questions surrounding the optimal allocation of interventions. For now,
Bayesian optimisation-based algorithms are the present and immediate future of solving the
multi-objective calibration of complex disease simulators. However, the algorithms and fitting
approach itself can and should be continuously improved.

6.4 Predicting elimination

Despite stalling progress in malaria control, the global push for elimination remains. Malaria
modelling must co-evolve with the changing public health landscape to ensure its continued
usefulness for supporting decision-making. The analysis around achieving elimination

Python, implementations of parallelisation exist where each sub-thread can still access the global environment in
the parent thread.
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using RCD in Chapter 5 sets an important example of how machine learning-augmented
simulation modelling can assist in the strategic evaluation of novel or currently discussed
tools. Predicting the probability (or mathematical risk) of elimination is challenging for three
reasons. Firstly, technical challenges exist surrounding the prediction of a rare, stochastic,
binary output. Secondly, simulation models themselves may struggle structurally to capture
elimination. Thirdly, there is a lack of data to support and validate a model’s performance in
capturing elimination. To address these challenges, it is worthwhile to broaden our horizons
and consider solutions developed for conceptually similar problems in other disciplines with
(occasionally longer) traditions of mathematical modelling. Examples include the calculation
of failure risks in structural integrity analyses in engineering (58, 237, 239–243) or predicting
the probability of floods in weather forecasting (244). The approaches employed to tackle
these problems can serve as inspiration for developing new solutions to predicting elimination
probabilities in disease modelling.

Rare-event probabilities are technically challenging to quantify through modelling unless large
numbers of computationally expensive simulations are run. The experimental approach there-
fore plays a crucial role in quantifying elimination probabilities. Turning to the engineering
literature on quantifying failure probabilities, generally two main approaches are suggested:
Sampling-based Monte Carlo methods or approximation through surrogate modelling (237).
For direct Monte Carlo sampling, large numbers of samples and replicates are required to
calculate the proportion of simulations in the failure (or here: elimination) domain (241). The
number of required samples is proportional to the inverse of the failure probability and a
rule of thumb for reasonable accuracy in structural integrity analyses is to generate at least 10
failure samples (241). Applied to disease modelling, if the probability of elimination is 20%
in an area of parameter space, 50 replicates would be required to derive sufficiently accurate
estimates (241).6 While the definition of a sufficiently accurate prediction may not be translatable
between engineering and disease modelling, this illustrates the problem of deriving rare event
probabilities through sampling the simulation model alone: The computational cost is high.
The computational demands can be alleviated by employing mathematical extensions of
Monte Carlo methods (such as line sampling or subset simulation(237)), but the requirement
for exceedingly large numbers of simulator evaluations remains (76, 241).

The preferable option is to turn to machine learning-augmented simulation modelling to limit
the required number of expensive simulator evaluations (241) (see Chapter 5 and section
6.2). However, the usefulness of a surrogate-based solution depends on a combination of the
emulation task, experimental design choices and the right surrogate. In Chapter 5, I employ
RFs and SVMs trained on a static sample of OpenMalaria simulation outputs in a supervised
classification problem. Machine learning allows interpolation between sparse simulation
results and the generation of probability-of-elimination (class probability) heatmaps that would

6Explanation: If the probability of elimination is 20%, one in five simulations will reach elimination. If we define
sufficient accuracy as having at least 10 failure samples, this yields a total requirement of at least 50 samples
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otherwise have required many more simulations. At first glance the problem appears as
one of binary classification, requiring a classification algorithm (as implemented in Chapter
5). However, for the quantification of rare event probabilities in engineering using support
vectors, it has been shown that the problem ought to be treated as a regression rather than
a classification task as this enables the assigning of a value to the class probability (76).
Alternatively, GP algorithms should be assessed for their suitability because of their interpo-
lation ability, flexibility to approximate arbitrary functions with high level of accuracy, and
ability to simultaneously provide local uncertainty measures for model predictions (243, 245).
Additionally, straightforward GP-based sensitivity analyses can also reveal the importance
of each parameter to a class outcome, in our case, elimination (239). In Chapter 5, I employ
a stationary version of machine learning-augmented simulation modelling to simplify the
workflow, where I uniformly sampled the space, and this initial training set is not subsequently
extended. Performance could likely be improved through the over-sampling at the boundary
region and through adaptive sampling. Adaptivity (e.g. adaptive importance sampling)
would initially quickly establish the safe domain (non-elimination) and subsequently focus on
the failure (elimination) domain. (76, 242, 243). Specifically, adaptive GP regression surrogates
have been shown to perform well in the estimation of small failure probabilities (237) and
would likely be promising in the quantification of elimination probabilities.

However, even the most elegant analytical and statistical approaches are dependent on an
appropriate quantitative foundation. In the context of surrogate modelling for elimination, it
must be ensured that the underlying simulation model can adequately capture elimination.
This is contingent on the model structure and experimental covariates, as well as the data used
for calibration. Deterministic models of disease transmission can establish very low stable
endemicity and fail to capture stochastic extinction (20). These are therefore inappropriate
for modelling elimination. Stochasticity, such as captured by OpenMalaria, is a crucial model
feature for predicting elimination (20). Additionally, stochastic extinction depends on popula-
tion size, an attribute that is not sufficiently addressed by most simulation models of malaria
(20). Specifically, the ecological and population genetic consequences of small population sizes
in both the human host and the parasite are often not captured. Small parasite population
sizes, for example, mean that individuals face frequent exposure to the same genotypes,
which results in a decreased probability of infection (20, 246, 247) and an acceleration towards
elimination when transmission is very low. In Chapter 5, I circumvent OpenMalaria’s inability
to explicitly capture small foci of transmission by using a targeting ratio, but this cannot
account for population genetic fragmentation and associated biological and epidemiological
consequences. Additionally, even if models explicitly captured these mechanisms, little data is
available to support the calibration. By nature of the problem, elimination is rare. Few regions
have eliminated malaria in recent years and publicly available data on elimination progress
and interventions is extremely scarce. Countries that have successfully achieved elimination,
like China, often employed a whole array of interventions that accompanied systemic changes
including urbanisation, sociological, economical, and ecological changes. In light of so many
simultaneous changes, it becomes impossible to discern which interventions can be attributed
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with achieving elimination. These relationships and their respective roles in achieving the
elimination of an infectious disease could only be disentangled with more data - which is
not available. It is therefore unclear how well OpenMalaria or any other malaria transmission
model capture low-transmission settings and elimination itself.

This ultimately yields the question how modelling can guide public health decision-making
for elimination if current models struggle to predict elimination. For decision-making, it
is inappropriate to mathematically force precise predictions if the underlying model is not
equipped to answer the question. In this thesis, I propose an analytical framework on the
prediction of elimination using simulation modelling in combination with surrogate models.
This cannot solve the challenges associated with data scarcity surrounding elimination and
the resulting qualitative uncertainty of OpenMalaria predictions in the elimination domain.
However, the use of surrogates enables sensitivity analysis that can provide some insights
into implementation strategies and the relative importance of different tools on the path to
elimination, even if the probability of achieving it remains unknown.

6.5 Interventions for elimination: Modelling versus reality

Between 2000 and 2015, 19 previously malaria-endemic countries reached elimination and
global malaria deaths fell by 50% (248). Affirming discussions around elimination and eradi-
cation, the WHO established a strategic advisory group to analyse the feasibility and expected
cost of global eradication in 2016 (248). However, as of 2021, progress towards elimination has
stalled, with no substantial reductions in malaria incidence over the last five years (22, 248).
With current interventions, it is estimated that there will still be 11 million cases of malaria
in 2050. As the WHO continues to aim for eradication, the current strategy emphasises the
need for new interventions, locally adapted solutions to control and elimination, and the
strengthening of surveillance systems (248). Making the strengthening of surveillance systems
a central pillar of eradication from the get-go aims to account for the final stages of elimi-
nation, which rely on interrupting transmission in the hardest-to-reach places and residual
transmission pockets. In a successful surveillance-response system, it only takes one index
case to trigger a focal follow-up intervention that will ideally target a complete, previously
undetected transmission cluster. This explicit focus on interrupting residual transmission and
preventing re-introduction comes as result of the hard lessons learned from the GMEP that
saw resurgence after initial elimination in many places (248).

To provide strategic guidance around the risk of resurgence and elimination, mathematical
models must be able to incorporate adaptive surveillance-response interventions. OpenMalaria
can capture most antimalarial interventions currently in existence and offers a flexible frame-
work for incorporating new interventions (such as new vector control strategies, treatments,
chemoprevention methods or vaccines) in a tool agnostic manner. However, OpenMalaria
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does not capture spatial patterns of infection and therefore it was not possible to model the
focal (reactive) deployment of interventions. The unavailability of surveillance-response
interventions limited the ability of OpenMalaria to support decision-making around the final
stages of elimination. In Chapter 5, I present a methodology to circumvent the lack of spatiality
using a targeting ratio 5.1. The effect of case clustering is captured by simulating an intervention
(here: test-and-treat) on random individuals from the population, while assuming that these
individuals have a higher-than-population-average probability of being infected because of
their proximity to the index case. The targeting ratio framework is highly flexible. Provided
data on the estimated relative effectiveness of an intervention as a function of distance from the
surveillance-response trigger, this framework can be adapted to most other implementations of
surveillance-response interventions. These could, for example, include reactive vector control.
This research therefore presents a much needed addition to OpenMalaria that is essential
for simulating elimination strategies and opens opportunities for guiding decision-making
around suitable implementations of RCD.

Current implementation strategies of surveillance-response interventions vary greatly (35,
38–41). In Chapter 5, I present an initial analysis of the potential of reaching elimination with
different implementation strategies of test-and-treat-based RCD. I show that RCD leads to
a sustained reduction in the overall malaria burden. By extrapolation, it could thus aid in
controlling imported infections and stabilising the disease-free state. However, the results also
highlight that reaching predicted elimination exclusively with RCD is highly resource intense
and only feasible in few settings. Re-emphasising that the suitability of RCD is limited to
the final stages of elimination, Chapter 5 mandates caution regarding the implementation of
surveillance-response interventions in the interest of effectively investing valuable resources.
Specifically, I highlight the importance of adequate access to care and suggested that this
should be prioritised over increasing the surveillance response radius, which to some measure
is both logical and intuitive. In fact, in Chapter 5, I provide a mathematical derivation that is
founded in the decreasing probability of an individual being a case (and thus able to contribute
to onwards transmission) between passively detected cases, index cases, and follow-up cases.

However, the weighting of (re-)actively against passively tested and treated individuals fails to
take into account the complexity and operational reality of implementing either intervention.
The comparison between health system strengthening and implementing RCD is hardly
quantifiable. Simple increases of the modelling parameter care seeking probability in reality
translates to a highly complex systemic challenge. Establishing access to formal care in the
vicinity of every individual may require the stationing of community health workers or
treatment centres. The logistics of setting up such additional points of care would not be in the
hands of a single organisation or campaign focused on combatting a single disease (such as
malaria), but be shared between organisations and campaigns targeting different diseases and
the health authorities. As much of public health in this area is currently siloed by disease, the
required involvement of many different stakeholders is likely to slow progress. Additionally,
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it is not guaranteed that health system strengthening would reach asymptomatic or mildly
symptomatic individuals without further incentives to seek care. The mathematical trading-off
of parameters describing health system strengthening versus RCD is therefore short-sighted
because it fails to take into account the differences in operational complexity associated with
both interventions.

This analysis and the discussion around the results illustrate two things: Firstly, that on
the road to elimination, RCD can be a valuable complement to an existing strong health
care system and secondly, that it can be misleadingly easy to base public health suggestions
solely on modelling results. Modellers should bear in mind the practical implications of their
theoretical results and that what is modelled may be hard or impossible to translate into reality.
This further emphasises the need for constant dialogue between modellers and those involved
with policy development and implementation. The dialogue should address the technical
aspects of modelling such as the development of a standardised modelling framework, the
assessment of models (and their differences) and their suitability to answer to specific public
health questions, as well as practical considerations of local and systemic conditions like
operational feasibility.

6.6 Not all model evidence is created equal

Throughout this thesis, I illustrate and discuss different applications of mathematical
modelling from capturing disease transmission to investigating intervention success and
predicting elimination. I show that modelling has the potential to bridge evidence gaps
for public health decision-making created by sparse contextual data representing complex
systems. The ability of modelling to provide rapid answers addressing diverse and urgent
public health questions is being increasingly recognised by guideline developers. Between
2007 and 2015, 23% of guidelines approved by the Guidelines Review Committee referred to
modelling (2). However, the value of model predictions in a public health context is contingent
on its assumptions and the data used for calibration. One criticism of modelling evidence
is that the process of evidence generation is often perceived as overly complex black box
guesswork with intransparent assumptions and implications (2). Unlike methodologies for
observational studies, mathematical modelling is largely unregulated and the responsibility
of clear communication around the correct interpretation of results lies largely with the
modellers themselves (20). Models influencing policy are currently rarely formally assessed
for quality, and quality criteria are often lacking (2). This presents a major hurdle to the
incorporation of modelling evidence in decision-making. Its integration should therefore
follow a systematic and transparent framework that is able to identify and evaluate relevant
models on a case-by-case basis (2).
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To ensure credibility in model-generated evidence, any model and modelling study must
be openly assessed with regards to the experimental conceptualisation of the problem,
model structure, calibration data, different dimensions of model uncertainty, methodological
transparency and external validation efforts. Firstly, a model must be structurally suitable to
analyse a question of public health relevance. While some extrapolation outside the calibration
data is generally possible, the limitations of this must be recognised and openly communi-
cated. For example, as explored in Sections 6.1 and 6.4 of this chapter, the value attributed to
low-transmission and elimination predictions generated by malaria transmission simulators
should be carefully considered. Secondly, uncertainty must be addressed in the evaluation
of models. Uncertainty may be reducible or irreducible, the former referring to uncertainty
stemming from knowledge gaps or the calibration data, and the latter presenting the inherent
variability of the system (235). These classes of uncertainty can be difficult or impossible to
discern. As uncertainty around predictions directly influences the interpretation of modelling
evidence, clear communication surrounding the calibration data and its shortcomings are
required. Chapters 3 and 4 address these for OpenMalaria.

Doubts surrounding the value attributable to evidence generated using one fixed model can
be mitigated through ensemble modelling or multimodel approaches. No single omnipotent
model exists. Rather, (in the field of malaria) a whole suite of detailed simulation models have
been developed by different research groups in different contexts (4, 5, 89–91). These models
are not harmonised in structure and have (in part) been calibrated to different data and using
different methodologies. Differences in predictions between models reflect these modelling
choices and as well as uncertainty in calibration data (20). This diversity bears both opportu-
nities and challenges. Consensus modelling studies and ensemble approaches are both time
consuming and technically challenging (20), but highly valuable for the exploration of ranges
of possible outcomes. The models carry different characteristics and the shortcomings of one
model can be balanced out by the strengths of another in ensemble modelling approaches.
Ideally, consensus modelling will decrease the dependence of experimental outcomes on
model development choices and increase robustness and confidence in the predictions.
Examples of ensemble modelling efforts aiming to provide consensus answers to public health
questions in malaria include modelling of the impact of the RTS,S vaccine (11), defining the
age-specific malaria prevalence-incidence relationship (53), and development of an ensemble
of OpenMalaria model variants with differing biological and epidemiological assumptions (9).

Despite individual research efforts in ensemble modelling (e.g. (11)), the urge for a general,
systemic change towards harmonised multi-model approaches and methodological trans-
parency with clear guidelines is strong (2, 135). A recently proposed (but not widely enforced)
framework for formal model assessment addresses many of the aspects outlined above, such
as the need for models to be internally or externally validated or to explore variability in
assumptions (135). However, the choice of what constitutes a suitable model is left to the
researcher based on pre-defined inclusion and exclusion criteria (135). This is plausible, as the
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suitability of a model to answer a public health question will depend on the question itself.
However, while this framework provides guidance on the comparison of appropriate models
concerning a specific question, the fundamental problem of how a good model ought to be
defined remains largely unanswered. This has not been addressed in a holistic manner, despite
being a challenge for all mathematical models within the field of malaria and outside.

A potential explanation why a holistic approach has not been developed so far is that in many
instances, thorough model evaluation finds little space outside original model development in
the output-driven research reality. In the dissemination of modelling studies (be it at confer-
ences or in publications), the focus is usually on a model’s potentials or specific applications.
Publications provide technical details, but they are often hidden in supplementary material,
which is not exposed to the same degree of scrutiny during the peer-review process as the
main manuscript. As a result, many models are poorly documented.7 Thus, understanding
different modelling approaches and workflows and assessing and comparing underlying
assumptions is laboursome and time consuming.

The conclusions of these considerations on evaluating model evidence are twofold: Firstly,
research should urge for transparency and dialogue on model development and applied
modelling methodologies. This thesis aims to provide a step towards this goal. Specifically,
the works in Chapter 2 present a generalisable powerful calibration algorithm whose code
is publicly available (github.com/reikth/BayesOpt_Calibration). Additionally, I provide
a library of novel calibration data in Chapter 3, which contains sufficient information to be
incorporated into the calibration of most malaria simulators. Secondly, wherever possible,
consensus modelling should be preferable over single-model experiments to improve the
robustness of predictions. To bypass the need for time-consuming technical analyses of models
developed by other research groups, this should be achieved through collaborations. With
many stakeholders involved, projects may become more difficult to manage, but it would be a
worthwhile investment for the good of public health.

6.7 Conclusion: Setting the stage for a holistic future of
mathematical modelling

Throughout this thesis, I showcase the benefits, limitations, and pitfalls of using modelling
for public health decision-making. Altogether, the presented research constitutes powerful
and combinable advancements in disease modelling and contributes to keeping OpenMalaria
(and other malaria models) up-to-date with new computational methods and global health
developments. Overarching concepts that guided my research were to consider the bigger
picture of conducting research for a public health purpose, to question assumptions and

7OpenMalaria is a notable exception with a public Wiki that references all relevant papers relating to model
development and calibration.
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investigate their implications, to draw inspiration from other disciplines (e.g. 6.4), and to
integrate modern machine learning methodologies where appropriate.

In the reality of public health decision-making, model predictions are often met with
scepticism. An inherent criticism is their perceived black box nature, with heavy reliance
on (sometimes intransparent) assumptions, input data, and methodologies (2, 249). The
dichotomy between the conviction felt by researchers and the scepticism of decision makers
and the general public is a result of dysfunctional communication. All modelling is accom-
panied by inherent uncertainties and results can be sensitive assumptions made during
development and application. However, this should not distract from the value of modelling
as a support tool in decision-making where data is insufficient. There is thus a need for
clear and transparent communication around model development, simulation methods, and
the implications of results. This also requires researchers not to use previously developed
models blindly. Their functional properties and decisions around development should first be
diligently analysed. Based on this, a model’s suitability to answer specific scientific questions
should be assessed on a case-by-case basis before application.

Multiple challenges persist surrounding the role of mathematical modelling in supporting
decision-making on the path to achieving malaria eradication. These concern the technicalities
of mathematical modelling and communication around it, data scarcity, but also the broader
public health context. While the technical challenges of predicting elimination and the urge
for transparent communication and collaboration can be addressed, there are challenges
beyond those that can be solved by modelling. Data scarcity, particularly on low transmission
settings and elimination, limits the extent to which models can be parameterised to these. On
the implementation side, progress towards elimination is threatened by the need to sustain
national and international funding, political instability in high burden areas, the emergence
and spread of ACT resistance of the parasite and insecticide resistance of the vector (250).
Modelling is a valuable tool in supporting public health decisions required to address these
challenges, e.g. investigating areas of the parameter space for target product profiles of new
interventions and strategic deployment of interventions. Ultimately, however, computational
and methodological advances are only one building block of modelling-supported decision-
making in health. Modelling requires a breadth of diverse data, otherwise models remain but
theoretical constructs. These data ought to be shared, code libraries ought to be public, and
unified standards for best modelling practice and communication on uncertainties ought to
be established. This thesis explores infectious disease modelling from its data foundations to
algorithm development to applied modelling, and illustrates the requirement for multidisci-
plinary collaborations in the global fight against infectious diseases.
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disease models

A.1 Supplementary text 1: Malaria Transmission Model

A.1.1 Main features

We test our calibration algorithm on OpenMalaria, an individual-based model of malaria
dynamics. To provide context of the model’s structure and the role of the fitted parameters
(see supplementary text 1), we here briefly describe its main features and key equations. This
description is adapted from that provided in Smith et al. 2012 (64) and Smith et al. 2006 (3).
Full details of all model components can be found in The American Journal of Tropical Medicine
and Hygiene, Volume 75, Issue 2 Supplement (2006).

OpenMalaria features discrete individual-based stochastic simulations of malaria in humans
in 5-day time steps. Every infection and individual are characterised by a set of continuous
state variables, namely, parasite densities, infection durations, and immune status. Key
processes and relationships regarding the course of infection simulated by model include
the attenuation of inoculations, acquired pre-erythrocytic immunity, acquired blood-stage
immunity, morbidity (acute and severe) and mortality (malaria-specific and indirect), anemia,
and the infection of vectors as a function of parasite densities in the human. Other
model components include a vector model and a case management system. All individual
components have previously been well documented (3, 64). A visual summary of the model
with references to further details on each component is provided in Figure A.1.

In our current recalibration only the original (base) model variant is used to test our new
approach (64). Parameters estimated during the calibration process are highlighted and
summarised in Table A.1 at the end of this section. Other parameter values were drawn from
the literature or were calibrated to separated data: for example, the empirical parasite density
model of Maire et al. 2006 (31) was calibrated to malariatherapy (185) data and not recalibrated
at the population level.

A.1.2 Infection of the human host

The seasonal pattern of entomological inoculation rate (EIR) determines seasonal pattern of
transmission and thus the parasite densities in the individual, modified by natural or acquired
immunity and interventions (63).

Differential feeding by mosquitoes depending on body surface area

In the base model, the expected number of entomological inoculations experienced by
individual i of age a at time t is

Ea (i, t) =
Emax (t) A (a (i, t))

Amax
(A.1)
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Attenuation of 
inoculations

Acquired pre-
erythrocytic immunity

Infection of vectors Acquired blood-stage 
immunity Anemia

Indirect mortality 
(neonatal)

Acute malaria 
morbidity

Severe malaria 
morbidity

Indirect mortality 
(excluding neonatal) Malaria specific mortality

FIGURE A.1: Visual summary of OpenMalaria with references to original publications
on the model components

Adapted from Smith et al. 2006, Fig.3 (63). References from top to bottom and left to right:
Attenuation of inoculations (183), Acquired pre-erythrocytic immunity (183), Infection of
vectors (211, 212), Acquired blood-stage immunity (31), Anemia (213), Indirect mortality
(neonatal) (214), Acute malaria morbidity (3), Severe malaria morbidity (215), Indirect
mortality excluding neonatal (215), Malaria specific mortality (215)

where Emax (t) refers to the annual entomological inoculation rate (EIR) computed from human
bait collections on adults and A () , is the individual’s availability to mosquitoes, assumed to be
proportional to average body surface area, depending only on age . A (a (i, t)) increases with
age up to age 20 years where it reaches a value of Amax (the average body surface of people
≥ 20 years old in the same population).

The biting rate in relation to human weight is based on data from The Gambia published by
Port and others (251), where the proportion of mosquitoes that had fed on a host were analysed
in relation to the host’s contribution to the total biomass and surface area of people sleeping in
one mosquito net (183).

Control of pre-erythrocytic stages

The number of infective bites received per unit time for each individual i , adjusted by age,
is given by Equation A.1 above. A survival function S (i, t) defines the probability that the
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progeny of an inoculation survives to give rise to a patent blood stage infection, i.e. the
proportion of inoculations that result in infections or the susceptibility of individual i at time t
. The force of infection is modelled as

λ (i, t) = S (i, t) Ea (i, t) (A.2)

where Ea (i, t) is the expected number of entomological inoculations endured by individual i
at time t , adjusted for age and individual factors, and the number of infections h (i, t) acquired
by individual i in five-day time step t , follows a Poisson distribution:

h (i, t) ∼ Poisson (λ (i, t)) (A.3)

The susceptibility of individual i at time t , S (i, t) is defined as:

S (i, t) =

(
S∞ +

1− S∞

1 + Ea(i,t)
E∗

) Simm +
1− Simm

1 +
(

Xp(i,t)
X∗p

)γp

 (A.4)

where Simm, X∗p, E∗, γp and S∞ are constants representing the lower limit of success probability
of inoculations in immune individuals, critical value of cumulative number of entomologic
inoculations, critical value of Ea (i, t) , steepness of relationship between success of inoculation
and Xp (i, t) , and, the lower limit of success probability of inoculations at high where Ea (i, t) ,
respectively. Here

Xp (i, t) =
∫ t

t−a(i,t)
Ea (i, τ) dτ (A.5)

S∞ and E∗ are fixed to S∞ = 0.049 , and E∗ = 0.032 inoculations/person-night and are detailed
in (183).

Course of infection in the human host

The model for each individual infection j in host i comprises a time series of parasite densities.
The base model for infection within humans is described in Maire et al. 2006 (31). In brief, the
duration of each infection, τmax is sampled from

ln (τmax (i, j)) ∼ Normal (5.13, 0.80) (A.6)
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parameterised against malaria therapy data (246) and detailed in Maire et al. 2006 (31). In the
absence of previous exposure or concurrent infections, the log density of infection j in host i at
each time point, τ = 0, 1, . . . , τmax (i, j) is normally distributed with expectation

ln (y0 (i, j, τ)) = ln d (i) + ln yG (τ, τmax) (A.7)

where yG (τ, τmax) is taken from a statistical description of parasite densities in malariatherapy
patients and d (i) describes between-host variation with a log-normal distribution with
variance σ2

i .

We consider the possibility of multiple concurrent infections in the same individual at the same
time. Exposure to asexual blood stages is measured by

Xy (i, j, t) =
∫ t

t−a
Y (i, τ) dτ −

∫ t

t0,j

y (i, j, τ) dτ (A.8)

where Y (i, τ) is the total parasite density of individual i at time τ and y (i, j, τ) is the density of
infection j in individual i at time τ and

Xh (i, t) =
∫ t

t−a
h (i, τ) dτ − 1 (A.9)

In the presence of previous exposure and co-infection, the expected log density for each
concurrent infection is then:

E (ln (y (i, j, τ))) = Dy (i, t) Dh (i, t) Dm (i, t) ln (y0 (i, j, τ)) + ln
(

D
M (i, t)

+ 1− Dx

)
(A.10)

where M (i, t) is the total multiplicity of infection of in individual i at time t , and

Dy (i, t) =
1

1 + Xy(i,j,t)
X∗y

(A.11)

where Xy (i, j, t) = ∑t
t−a Y (i, t)− ∑t

t0,j
y (i, j, τ) (note that a continuous time approximation to

this is given in the original publications (31, 183) and hence measures the cumulative parasite
load. Furthermore

Dh (i, t) =
1

1 + Xh(i,t)
X∗h

(A.12)
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where, Xh (i, t) = ∑t
t−a h (i, τ)− 1 , the number of inoculations since birth, excluding the one

under consideration, which measures the diversity of inocula experienced by the host up to the
time point under consideration.

Dm (i, t) = 1− αmexp
(
−0.693a (i, t)

a∗m

)
(A.13)

which measures the effect of maternal immunity. X∗y , X∗h , Dx , a∗m , and αm are all constants
estimated in the fitting process. These constants are described in Table A.1, or further in Maire
et al. 2006 (31).

Variation within individuals described as σ2
y (i, j, τ) , where

σ2
y (i, j, τ) =

σ2
0

1 + Xh(i,t)
X∗v

(A.14)

and σ2
0 and X∗v are constants, described in Table A.1.

The simulated density of infection j in individual i at time τ is then drawn from a normal
distribution:

ln (y (i, j, τ)) ∼ Normal
(

E (ln (y (i, j, τ))) , σ2
y (i, j, τ)

)
(A.15)

The total density of all infections in individual i at time t is then the sum of the densities of
concurrent infections j

Y (i, t) = ∑
j

y (i, j, τ (i, j)) (A.16)

Infectivity of the human host

The model infectivity of the human host is described in Ross 2006 where infectivity of
individual i at time t is given by the distributed lag model:

Υ (i, t) = β1Y (i, t− 2) + β2Y (i, t− 3) + β3Y (i, t− 4) (A.17)

where t is in 5-day units and

ln
(
yg (i, t)

)
∼ Normal

(
ln (ρΥ (i, t)) , σ2

g

)
(A.18)

where β1, β2, β3, ρ, σ2
g are constants representing contributions of past infections to

gametocyte densities. We define
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Pr
(

yg (i, t) > y∗g
)
= Φ

 ln (ρΥ (i, t))− ln
(

y∗g
)

σg

 = Φ
[

ln (Υ (i, t))
σg

+ ρ∗
]

(A.19)

where Φ is the cumulative normal distribution, y∗g is the density of female gametocytes

necessary for infection of the mosquito, and ρ∗ =
ln(ρ)−ln(y∗g)

σg
is constant (depending on the

blood meal volume, gametocyte viability and system variability). Thus, the proportion of
mosquitoes infected by individual i at time t is defined as

Im (i, t) =
[
Pr
(

yg (i, t) > y∗g
)]2

(A.20)

and the probability of a mosquito becoming infected during any feed is

κu (t) = η
∑i A (a (i, t)) Im (i, t)

∑i A (a (i, t))
(A.21)

where η is a constant scale factor and to be calibrated.

We define κ
(0)
u (t) as the value of κu (t) in the simulation of an equilibrium scenario to which an

intervention has been applied. Let E(0)
max (t + lv) be the corresponding entomologic inoculation

rate. κ
(1)
u (t) and E(1)

max (t + lv) are the corresponding values for the intervention scenario. Then

E(1)
max (t + lv) =

E(0)
max (t + lv) κ

(1)
u (t)

κ
(0)
u (t)

(A.22)

where lv corresponds to the duration of the sporogenic cycle in the vector, which we

approximate with two time steps (10 days). E(0)
max(t+lv)κ

(1)
u (1)

κ
(0)
u (t)

is the total vectorial capacity)

A.1.3 Morbidity

In order to simulate the clinical state of individual i at time t , for each five-day time step
5 independent samples from the simulated parasite density distribution are drawn for each
concurrent infection j .

Acute morbidity (uncomplicated clinical cases)

The model for an episode of acute morbidity was originally described in (3) and occurs in
individual i at time t with probability

Pm (i, t) =
Ymax (i, t)

Y∗ (i, t) + Ymax (i, t)
(A.23)

where Y∗ is the pyrogenic threshold and Ymax is the maximum density of five daily densities
sampled during the five-day interval t .
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The pyrogenic threshold changes over time following

dY∗ (i, t)
dt

= f1 (Y (i, t)) f2 (Y∗ (i, t))−ωY∗ (i, y) (A.24)

where f1 (Y (i, t)) is a function describing the relationship between accrual of tolerance and the
parasite density Y (i, y) ; f2 (Y∗ (i, t)) describes the saturation of this accrual process at high
values of Y∗ and ωY∗ (i, t) determines the decay threshold with first-order kinetics, ensuring
that the parasite tolerance is short-lived (3).

Here f1 (Y (i, t)) is defined to ensure that the stimulus is not directly proportional to Y but
rather that it asymptotically reaches a maximum at high values of Y :

f1 (Y (i, t)) =
αY (i, t)

Y∗1 + Y (i, t)
(A.25)

At high values of Y∗ , a higher parasite load is required to achieve the same increase:

f2 (Y∗ (i, t)) =
1

Y∗2 + Y∗ (i, t)
(A.26)

Thus, the pyrogenic threshold Y∗ is defined to follow

dY∗ (i, t)
dt

=
αY (i, t)(

Y∗1 + Y (i, t)
)
(Y∗2 + Y∗ (i, t))

−ωY∗ (i, t) (A.27)

and the initial condition Y∗ (i, 0) = Y∗0 at the birth of the host, where α, ω Y0, Y∗1 andY∗2 are
targets of the calibration, and are defined in A.1.

Severe disease

The model for severe disease was described in Ross et al 2006 (215) and two different classes
of severe episodes are considered by the model, B1 and B2 . PB1 (i, t) is the probability that an
acute episode (A) is of class B1 and

PB1 (i, t) = Pr (H (i, t) ∈ B1|H (i, t) ∈ A) =
Ymax (i, t)

Y∗B1 + Ymax (i, t)
(A.28)

where Y∗B1 is a constant to be calibrated and H (i, t) is the clinical status of individual i at time
t .

Class B2 of severe malaria episodes occurs when an otherwise uncomplicated episode coincides
with some other insult, which occurs with risk

F (a (i, t)) =
F0

1 +
(

a(i,t)
a∗F

) (A.29)
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where F0 is the limiting value of F (a (i, t)) at birth and a∗F is the age at which it is halved and
both are to be calibrated.

The probability that individual i experiences an episode belonging to class B2 at time t ,
conditional on there being a clinical episode at that time is

PB2 (i, t) = Pr (H (i, t) ∈ B2 |H (i, t) ∈ A) = F (a (i, t)) (A.30)

The age and time specific risk of severe malaria morbidity conditional on a clinical episode is
then given by

PB (i, t) = PB1 (i, t) + PB3 (i, t)− PB1 (i, t) PB2 (i, t) (A.31)

Mortality

Malaria deaths in hospital are a random sample of admitted severe malaria cases, with age-
dependent sampling fraction Qh (a) , the hospital case fatality rate, derived from the data of
Reyburn et al (2004) (216). The original model was described in Ross et al. 2006 (215).

The severe malaria case fatality in the community for age group a , Qc (a) is estimated as

Qc (a) =
Qh (a) φ1

1−Qh (a) + Qh (a) φ1
(A.32)

where φ1 the estimated odds ratio for death in the community compared to death in in-patients
is an age-independent constant to be calibrated and Qh (a) is the hospital case fatality rate. The
total malaria mortality is the sum of the hospital and community malaria deaths.

The risk of neonatal mortality attributable to malaria (death in class D1 ) in first pregnancies is
set equal to 0.3µPG where

µPG = µmax

[
1− exp

(
− xPG

x∗PG

)]
(A.33)

where xPG is related to xMG , the prevalence in simulated individuals 20-24 years of age via

xPG = 1− 1

1 +
(

xMG
x∗MG

) (A.34)

and x∗MG and x∗PG are constants.

An indirect death in class D2 is provoked at time t , conditional on there being a clinical episode
at that time with probability PD2 (i, t) where

PD2 (i, t) = Pr (H (i, t) ∈ D2|H (i, t) ∈ A) (A.35)
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and

PD2 (i, t) =
QD

1 +
(

a(i,t)
a∗F

) (A.36)

where QD is limiting value of PD2 (i, t) at birth and a∗F is a constant to be calibrated. Deaths in
class D2 occur 30 days (six time steps) after the provoking episode.

TABLE A.1: Names and details of OpenMalaria core parameters

GA-O = Genetic algorithm optimisation, GP-BO = Gaussian process-based Bayesian optimisation, GPSG-BO = Gaussian process stacked generalisation-based Bayesian
optimisation.
No.∗ θ+ Parameter Meaning Unit/ dimension Prior GA-O estimate

(Smith et al.
2012, model
R0001)(64)

New estimate
GP-BO (Reiker
et al.2020)

New estimate
GPSG-BO
(Reiker et
al.2020)

1 – − ln (1− S∞) S∞ = Lower limit of
success probability of
inoculations at high
Ea (i, t)

Proportion – 0.051 0.051 0.051

2 – E∗ Critical value of
Ea (i, t)

Inoculations/
person-night

– 0.032 0.032 0.032

3 1a Simm Lower limit of
success probability
of inoculations in
immune individuals

Proportion exp (N (log (0.14) , 2)) 0.138 0. 196 0.036

4 3 X∗p Critical value of
cumulative number
of entomologic inoc-
ulations

Inoculations exp (N (log (1514) , 2)) 1,514.4 1,954.8 4,972.2

5 2 γp Steepness of relation-
ship between success
of inoculation and
Xp (i, t)

Dimensionless
constant

exp (N (log (1) , 1)) 2.037 1.291 1.871

6 23 σ2
i Variation between

hosts on parasite
densities (variance of
log-normal distribu-
tion)

exp (N (log (10.17) , 0.6)) 10.174 11.729 9.689

7 5 X∗y Critical value of
cumulative number
of parasite days

Parasite-days/ µL
x 10−7

exp
(

N
(

log
(

3.52x107
)

, 2
))

3.516 593.661 1.216

8 4 X∗h Critical value of
cumulative number
of infections

Infections exp (N (log (97.3) , 2)) 97.335 54.082 89.759

9 7 ln (1− αm) αm = Maternal
protection at birth

Dimensionless − log (1− Beta (8, 2)) 2.330 1.770 1.266

10 8 a∗m Decay of maternal
protection

Per year exp (N (log (1.8) , 0.5)) 2.531 1.279 1.551

11 9 σ2
0 Fixed variance

component for
densities

[ln (density)]2 exp (N (log (0.66) , 2)) 0.656 5.838 1.440

12 6 X∗v Critical value of
cumulative number
of infections for
variance in parasite
densities

Infections exp (N (log (5) , 1)) 0.916 3.959 7.226

13 14 Y∗2 Critical value of
Y∗ (i, t) in deter-
mining increase in
Y∗

Parasites/ µ L exp (N (log (5000) , 1)) 6,502.26 6,560.08 13,485.57

14 10 α Factor determining
increase in Y∗ (i, t)

Parasites2µL−2day−1 exp (N (log (142602) , 1)) 142,602 63,220.5 119,502

15 22 ν1 Density bias (non
Garki)

Dimensionless exp (N (log (0.177) , 0.6)) 0.177 0.123 0.159

16 – σ2 Mass action param-
eter

Dimensionless 1 1 1

17 18 log φ1 Case fatality for
severe episodes
in the community
compared to hospital

Log odds exp (N (log (2.09) , 0.3)) 0.736 0.340 0.285

continued on next page
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continued from previous page
18 20b QD Co-morbidity inter-

cept relevant to
indirect mortality

Proportion exp (N (log (0.019) , 1)) 0.019 0.019 0.023

19 19c Qn Non-malaria inter-
cept for infant
mortality

Deaths / 1000 live
births

exp (N (log (49.5) , 1)) 49.539 46.5095 40.163

20 21 ν0 Density bias (Garki) Dimensionless exp (N (log (4.79) , 0.2)) 4.796 3.739 5.618
21 15 Y∗B1

Parasitaemia
threshold for severe
episodes type B1

Parasites/ µ L exp (N (log (250000) , 0.8)) 784,456 849,046 484,122

22 – – Immune penalty – 1 1 1
23 – – Immune effector

decay
– 0 0 0

24 16d F0 Prevalence of co-
morbidity/susceptibility
at birth relevant to
severe episodes ( B2 )

proportion exp (N (log (0.092) , 0.5)) 0.097 0.078 0.094

25 11 log 2
ω Y∗ (pyrogenic

threshold) half-life
Years log (2) / exp (N (log (2.52) , 1)) 0.275 0.468 0.516

26 13 Y∗1 Critical value of para-
site density in deter-
mining increase in Y∗

Parasites/ µ L exp (N (log (6) , 2)) 0. 597 1.665 0.477

27 – – Asexual immunity
decay

– 0 0 0

28 12 Y∗0 Pyrogenic threshold
at birth

Parasites/ µ L exp (N (log (296.3) , 1)) 296.302 90.938 201.671

29 – – Idete multiplier Dimensionless – 2.798 2.799 2.799
30 17 a∗F Critical age for co-

morbidity
Years exp (N (log (0.225) , 0.8)) 0.117 0.138 0.087

∗ Parameter number assigned for simulations in OpenMalaria scenarios, some parameters here are used in model variants and not in the base model. Listed for completeness;
+Parameter number θi assigned for the optimisation problem. θ is drawn from the unit cube and determines the quantiles of the prior for the parameter value. a quantile =
θ ∗ 0.8372102 . b quantile = θ ∗ 0.9999991 . c quantile = θ ∗ 0.9986755 . d quantile = θ ∗ 0.999963 .

A.2 Supplementary text 2: Calibration Approach and Data Summary

A comprehensive epidemiological calibration dataset was collated in order to parameterise
OpenMalaria, an individual-based model of malaria transmission dynamics. This calibration
dataset covers a total of 11 different epidemiological relationships (or objectives for fitting) that
span important aspects of the natural history of malaria. Data were collated from different
settings (see Table A.5 for summary) and were detailed in the original model descriptions
(3, 63) and a later parameterisation (64). A total of 61 simulation scenarios were setup to
parameterise OpenMalaria, constructed to simulate the study surveys and study sites that
yielded the calibration dataset. The study site observations were replicated in OpenMalaria by
reproducing the timing of the surveys and their endpoints (such as prevalence and incidence)
and matching simulation options to the setting with regards to transmission intensity and
seasonality, vector species, treatment seeking behaviour and anti-malarial interventions. The
objectives and data are further detailed below.
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The parameter estimation process is a multi-objective optimisation problem with each of the
epidemiological quantities in Table A.5 representing one objective. The aim of the optimisation
is to find a parameter set that maximises the goodness of fit by minimizing a loss statistic
computed as the weighted sum of the loss functions for each objective. Building a weighted
average reduces the multiple loss terms to a single overall loss statistic, defined as:

F (θ) = ∑
i

wi ∑
j

fij (θ) (A.37)

where fij (θ) is the loss function for parameter vector θ , epidemiological quantity i and dataset
j , and the weights wi were chosen so that different epidemiological quantities contribute
approximately equally to F (θ) .

For the current calibration, we utilised the loss functions from Smith et al. 2012 (64), the loss
function fi (θ) for each objective i use either (negative) log-likelihoods or Residual Sum of
Squares (RSS) with an unknown minimum. We did not updated these loss-functions in order
to compare to our previous approaches.

The likelihood functions are given by

L (θ|x1, . . . , xn) = g (x1, . . . , xn| θ) =
n

∏
i=1

g (xi|θ) (A.38)

where the observed values are x1, . . . , xn and the model parameters θ . In practice, it is easier
to work with the log likelihood, namely

log L (θ|x1, . . . , xn) =
n

∑
i=1

log g (xi|θ) (A.39)

The loss functions fi (θ) used for each objective are detailed in the following sections.

A.2.1 Objectives: Epidemiological data and loss functions

Below we described each fitting objective in terms of the data (setting, surveys, observations,
references) along with the associated loss function and original references. Table A.6 provides
an overview of the 61 simulation scenarios used for calibration, and which objective they
contribute to.

Age pattern of incidence after intervention

Data The data used for the calibration of objective 1 (Age pattern of incidence) consists of
eight cross-sectional surveys of infection rates by age and EIR in Matsari village, capturing
12 age groups each. Matsari village was monitored entomologically for four years (Nov
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1970 - Nov1973) during the Garki Project and multiple anti-malaria interventions were
administered (65). From October 1970 to March 1972 (the baseline/pre-intervention phase),
eight cross-sectional malariologic surveys of the whole village population and intensive
entomologic surveillance (human bait collection of mosquitoes and dissections of the mosquito
salivary glands for sporozoites) were carried out. The latter was used to estimate a baseline
transmission intensity of 67 inoculations per person per year (EIR) and to derive seasonal
transmission patterns. Mid-1972 marked the beginning of the intervention phase, during which
an additional eight surveys were carried out at 10-week intervals (surveys 9-16). During this
time, indoor residual spraying with Propoxur was carried out comprehensively in the village,
along with mass treatment of the population with Sulfadoxine-pyrimethamine at 10 week-
intervals immediately after assessment of individuals’ parasitologic status. The experimental
setup is summarised in Figure 3 of Smith et al 2006 (183). Incidence data (number of patent
infections and number of hosts by age) from surveys 9-16 was used for our calibration.

Sites and scenario numbers: Matsari, Nigeria (30)

Original reference detailing data and model fits: Smith TA, Maire N, Dietz K, Killeen GF, Vounatsou P
et al. Relationship between the entomological inoculation rate and the force of infection for Plasmodium
falciparum malaria. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (183)

Loss function: Binomial Log Likelihood We denote the Binomial log likelihood for this
objective to be

f1 (θ) = logL (θ) =
s

∑
j=1

a

∑
k=1

Pj,l log
(

p̂j, k
)
+
(

Hj,k − Pj,k
)

log
(
1− p̂j,k

)
(A.40)

where a is the number of age groups, s the number of surveys, pj,k the scenario data number of
parasite positive hosts and Hj,k the scenario data number of hosts for age group k and survey j
. Parameter p̂j,k is associated with the model predictions and is given by

p̂j,k = P̂j,k / Ĥj,k (A.41)

where P̂j,k are the predicted number of parasite positive hosts and Ĥj,k the predicted number
of hosts for age group k and survey j .

Age patterns of prevalence

Data The data used for the calibration of objective 2 (age-patterns of prevalence) consists
of six cross-sectional malariology surveys conducted in the Rafin Marke, Matsari, Sugungum
villages in Nigeria 1970-1972 (12 age groups each, part of the Garki Project during the pre-
intervention period) (65), Navrongo in Ghana 2000 (12 age groups) (252) and Namawala 1990-
1991 (253) and Idete in Tanzania (11 and 6 age groups, respectively) 1992-1993 (254). In all study
sites, annual transmission intensity (EIR) and seasonal patterns were assessed using light trap
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or human night bait collections and dissections of the salivary glands (see Figure 2 in Maire et
al. 2006 (31)). In all sites except Idete, the health system at the time of the surveys treated only
a small proportion of the clinical malaria episodes. In the Idete, the village dispensary was
assumed to treat approximately 64% of clinical malaria (based on the published literature).
During simulation, prevalence was defined by comparing each predicted parasite density with
the limit of detection used in the actual study.

Sites and scenario numbers: Sugungum, Nigeria (24); Rafin-Marke, Nigeria (28); Matsari,
Nigeria (29); Idete, Tanzania (31); Navrongo, Ghana (34); Namawala, Tanzania (35)

Original reference detailing data and model fits: Maire N, Smith TA, Ross A, Owusu-Agyei S, Dietz
K, et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in
endemic areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (31)

Loss function: Binomial Log Likelihood We denote the binomial log likelihood for each
scenario of this objective to be

f2 (θ) = logL (θ) =
s

∑
j=1

a

∑
k=1

Pj,k log
(

pj, k
)
+
(

Hj,k − Pj,k
)

log
(
1− pj,k

)
(A.42)

where a is the number of age groups, s the number of surveys, Pj,k the scenario data number of
parasite positive hosts and Hj,k the scenario data number of hosts for age group k and survey
j. Parameter pj,k is associated with the model predictions and is given by

pj,k = P̂j,k/ Ĥj,k (A.43)

where P̂j,k are the predicted number of parasite positive hosts and Ĥj,k the predicted number
of hosts for age group k and survey j .

Age patterns of parasite density

Data The same data sources as for objective 2 (age pattern of prevalence) were used for
calibration of objective 3 (age pattern of parasite density). Parasite densities in sites that were
part of the Garki project (Sugungum, Rafin-Make and Matsari, Nigeria) were recorded by
scanning a predetermined number of microscope fields on the thick blood film and recording
how many had one or more asexual parasites visible. These were converted to numbers of
parasites visible by assuming Poisson distribution for the number of parasites per field and a
blood volume of 0.5 mm3 per 200 fields. In the other studies (Idete and Namawala, Tanzania
and Navrongo, Ghana), parasites were counted against leukocytes and converted to nominal
parasites/microliter assuming the usual standard of 8,000 leukocytes/microliter. The biases in
density estimates resulting from these different techniques were accounted for by multiplying
the observed parasite densities with constant values estimated for Garki ( ν0 ) and non-Garki (
ν1 ) studies to rescale them to the values in malariatherapy patients (255).
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Sites and scenario numbers: Sugungum, Nigeria (pre-intervention, 24); Rafin-Marke, Nigeria
(pre-intervention, 28); Matsari, Nigeria (pre-intervention, 29); Idete, Tanzania (31); Navrongo,
Ghana (34); Namawala, Tanzania (35)

Original reference detailing data and model fits: Maire N, Smith TA, Ross A, Owusu-Agyei S,
Dietz K, et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria
in endemic areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (31)

Loss function: Log-normal log likelihood For objective 3 (age pattern of parasite densities)
we denote the log-Normal log likelihood for each scenario to be

f3 (θ) = log L (θ) = n (log (ρ)− log (σ))− 0.5RSS/σ2 (A.44)

where n is the number of observations in the data set, ρ = exp (−0.5 log (2π)) , a constant from
the log-normal likelihood, RSS is the residual sum of squares given by

RSS =
s

∑
j=1

a

∑
k=1

(
Ŷj,k

P̂j,k
− log (ν)−

Yj,k

Pj,l

)2

(A.45)

and σ is the standard deviation given by

σ =
√

RSS/ (n− 1) (A.46)

Here, ν is the appropriate density bias, which is a fitting parameter, a is the number of age
groups, s is the number of surveys, Pj,k the scenario number of parasite positive hosts, and
Yj,k the sum of the log densities, P̂j,k the predicted number of parasite positive hosts and Ŷj,k the
predicted sum of the log densities for age group k and survey j . The density bias are fitting
parameters ν0 and ν1 .

Age pattern of number of concurrent infections

Data For objective 4 (age pattern of number of concurrent infections), the dataset from
Navrongo, Ghana (also used in the calibration of objectives 2 and 3) is used to calibrate to the
total numbers of distinct parasite infections in one individual in each age group, and at each
survey. Distinct infections were detected by polymerase chain reaction-restriction fragment
length polymorphism in the sampled individuals.

Sites and scenario numbers: Navrongo, Ghana (34)

Original reference detailing data and model fits: Maire N, Smith TA, Ross A, Owusu-Agyei S, Dietz
K, et al. A model for natural immunity to asexual blood stages of Plasmodium falciparum malaria in
endemic areas. Am J Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (31)
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Loss function: Poisson Log Likelihood Assuming that both the data and the simulations
are Poisson distributed about the correct value and thereby also allowing for over-dispersion,
we denote the Poisson log likelihood for each scenario to be for the objective of age pattern of
number of concurrent infections to be

f4 (θ) = logL (θ) =
s

∑
j=1

a

∑
k=1
−Pnj,k log

(
Pnj,k / λj,k

)
+ Pnj,k − λj,k (A.47)

where a is the number of age groups, s the number of surveys, Pnj,k the scenario data total
patent infections for age group k and survey j . Parameter λj,k is associated with the model
predictions and is given by

λj,k =
P̂nj,k

Ĥj,k
Hj,k (A.48)

where P̂nj,k are the predicted total of patent infections and Ĥj,k the predicted number of hosts
for age group k and survey j and Hj,k is the scenario data number of hosts for age group k and
survey j .

Age pattern of incidence of clinical malaria

Data Two distinct datasets representing three study sites (Table A.2) were used for the
calibration of objective 5 and objective 6 (age pattern of incidence of clinical malaria). For
Objective 5, the dataset contains data on the age pattern of clinical episodes in the villages
of Ndiop and Dielmo in Senegal (256, 257). During the study period of July 1990 - June
1992, the village populations were visited daily to detect and treat any clinical malaria attacks
with quinine. Cases were detected by reporting of symptoms (fever) during daily active
case detection and subsequent thick blood smear microscopy. Only symptomatic individuals
(axillary temperature ≥ 38.0◦ C or rectal temperature ≥ 38.5◦ C). Due to the active case
detection and rapid treatment all symptomatic episodes are assumed to be effectively treated in
these villages during the study period. No effective treatment of clinical malaria was assumed
prior to the study period. The annual patterns of transmission were replicated as reported by
Charlwood et al (1998) (258). A proportion Pt =35.75% are assumed to be treated effectively in
Idete. As all individuals reporting to the village dispensary were treated presumptively with
chloroquine, this proportion corresponds to the proportion of episodes reported to the village
dispensary.

Sites and scenario numbers: Ndiop, Senegal (232), Dielmo, Senegal (233)

Original reference detailing data and model fits: Smith TA, Ross A, Maire N, Rogier C, Trape J-F
et al. An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J
Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (3)
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Loss function: RSS-biased We denote a loss function based on biased residual sum of
squares:

f5 (θ) =
s

∑
j=s1

a

∑
k=1

R2 (A.49)

where a is the number of age groups, s the number of surveys, s1 the initial survey number,
and R is the residual given by

R = Ii,j −
Ĉj,k(
Ĥj,k

) 1
µ

(A.50)

where Ij,k is the observed recorded incidence rate, Ĉj,k are the predicted total cases (severe and
uncomplicated), Ĥj,k the predicted number of hosts for age group k and survey j and µ is a bias
related to the scenario. For scenarios 232 and 233 (representing Ndiop and Dielmo, Senegal)
this bias is µ = 5 indicating the duration in years for which episodes are collected. For scenario
49 in Objective 6 (Idete, Tanzania) the bias is µ = 0.357459 and represents the proportion of
episodes reported to the village dispensary.

TABLE A.2: Summary of study data set for objective 5: Age pattern of
incidence of clinical malaria

Scenario No. Study site Age groups Observations
232 Ndiop, Senegal 22 One per age group
233 Dielmo,

Senegal
22 One per age group

49 Idete, Tanzania 4 One per age group

Age pattern of incidence of clinical malaria: infants

Data Objective 6 (age pattern of incidence of clinical malaria in infants) is informed by a
dataset on incidence that contains passive case detection data on the age-incidence in infants
recorded at the health centre in Idete, Tanzania from June 1993-October 1994 (254). The annual
patterns of transmission were replicated as reported by Charlwood et al (1998) (258).

Sites and scenario numbers: Idete, Tanzania (49))

Original reference: Smith TA, Ross A, Maire N, Rogier C, Trape J-F et al. An epidemiologic model of
the incidence of acute illness in Plasmodium falciparum malaria. Am J Trop Med Hyg. Volume 75, No.
2 Supplement. 2006 (3)

Loss function: RSS-biased The loss function for Objective 6 is the same as Objective 5. For
scenario 49 (Idete, Tanzania) the bias is µ = 0.357459 and represents the proportion of episodes
reported to the village dispensary.
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Age pattern of threshold parasite density for clinical attacks

Data Objective 7 (Age pattern of threshold parasite density for clinical attacks), uses the
dataset from Dielmo, Senegal (see objective 5) for calibration. The pyrogenic threshold
in the (OpenMalaria) predictions is output as the sum of the log threshold values across
age groups. The pyrogenic threshold per age group is given as the parasite:leucocyte
ratio for recorded incidence of disease. To adjust these densities to the same scale as
that used in fitting the simulation model to other datasets, the parasite:leukocyte ratios
were multiplied by a factor of 1,416 to give a notional density in parasites/microliter of
blood. This number was derived as follows: Parasites were counted against leukocytes and
converted to nominal parasites/microliter assuming the usual (though biased) standard of
8,000 leukocytes/microliter. The biases in density estimates resulting from these different
techniques was accounted for by multiplying the observed parasite densities with constant
values estimated for Garki ( ν0 ) and non-Garki ( ν1 ) studies to rescale them to the values in
malariatherapy patients (255). The value 1416 comes from

8000ν1 (A.51)

where the original ν1 ≈ 0.18 .

Sites and scenario numbers: Dielmo, Senegal (234)

Original reference detailing data and model fits: Smith TA, Ross A, Maire N, Rogier C, Trape J-F
et al. An epidemiologic model of the incidence of acute illness in Plasmodium falciparum malaria. Am J
Trop Med Hyg. Volume 75, No. 2 Supplement. 2006 (3)

Loss function: RSS-biased (log) For the objective 7 (Age pattern of threshold parasite density
for clinical attacks) we denote a residual sum of squares loss function given by (13) with

f7 (θ) = log
(

Y∗j,k
)
−

Ŷ∗j,k
Ĥj,k
− log (µ) (A.52)

where Y∗ is the observed pyrogenic threshold, Ŷ∗ are the predicted sum log pyrogenic
threshold, Ĥj,k the predicted number of hosts for age group k and survey j and is a bias
related to the scenario. Here, this bias is related to the log parasite/leucocyte ratio and thus
µ = 1/ (8000ν1) where ν1 is the non-Garki density bias.

Hospitalisation rate in relation to prevalence in children

Data Data on the relative incidence of severe malaria-related morbidity and mortality in
children <9 years old across different transmission intensities were originally collated by Marsh
and Snow (1999) (217) (Table A.6). Data measurements per age group were available as the
relative risk of severe disease compared to age group 1 and the proportion/prevalence of severe
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episodes. A total of 26 entries on the relationship between severe malaria hospital admission
rates and P. falciparum prevalence were used to calibrate objective 8 (Hospitalisation rate in
relation to prevalence in children), each represented in a separate simulation scenario, with
one observation per scenario. These are summarised in Table A.3. To obtain a continuous
function relating hospital incidence rates to prevalence, linear interpolation between data
points was performed. To convert hospital incidence rates to community severe malaria
incidence, the hospital admission rates was divided by the assumed proportion of severe
episodes representing to hospital (48% ). There was assumed to be no effective treatment of
uncomplicated malaria episodes or malaria mortality.

Sites and scenario numbers: Bo, Sierra Leone (501); Niakhar, Senegal (502), Farafenni, The
Gambia (503); Areas I-V, The Gambia (504-508); Gihanga, Burundi (509); Katumba, Burundi
(510); Karangasso, Burkina Faso (511); Kilifi North, Kenya (512); Manhica, Mozambique (514);
Namawala, Tanzania (515); Navrongo, Ghana (516); Saradidi, Kenya (517); Yombo, Tanzania
(518); Ziniare, Burkina Faso (519); Matsari, Nigeria (520); ITC control, Burkina Faso (521);
Mlomp, Senegal (522); Ganvie, Benin (523); Kilifi Town, Kenya (524); Chonyi, Kenya (525);
Bandafassi, Senegal (526); Kongodjan, Burkina Faso (527)

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop
Med Hyg. Volume 75, No. 2 Supplement. 2006 (215)

Loss function: squared deviation The loss function is denoted as the log of residual sum of
squares

f8 (θ) =

[
log

(
asR̂k=1

R∗k=1

)]2

(A.53)

where as is the access to treatment of severe cases (0.48, estimated in base model), R̂k=1 is the
scenario predicted rate of severe episodes per 1000 person year for age group k = 1 (0-9 years),
and parameter R∗k=1 is the interpolated observed rate of severe episodes per 1000 person year
given by

R∗k=1 =

(
P̂k=1 − Pl

)
(Pu − Pl)

(Ru − Rl) + Rt (A.54)

where P̂k=1 is the predicted prevalence summed over all surveys, Pu and Pl are the observed
prevalences above and below the predicted prevalence P̂k=1 , respectively and Ru and Rl are
the corresponding severe episode rates to the observed prevalences.

The predicted prevalence is given by

P̂k=1 =
P̂tk=1/24

Ĥk=1/24
(A.55)
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where P̂k=1 is the total number of parasite positive predicted and Ĥk=1 are the total number of
hosts (division by 24 to give mean values). The predicted rate of episodes per 1000 person year
is given by

R̂k=1 =
1000 ̂Sk=1/2̂Hk=1/24

(A.56)

where Ŝk=1 is the number of severe cases predicted and with division by 2 to convert to from
2 years to 1 year and the division by 24 to give mean number of hosts.

TABLE A.3: Settings used for calibrating the incidence of severe
malaria. (Adapted from Table 1 from Ross et al. 2006 (215))

Site EIR data
Year EIR

Burkina Faso
ITC Control 1994-1995 389
Karangasso 1985 244
Kongodjan 1984 133
Ziniare 1994-1995 70

Burundi
Gihanga 1983 205
Katumba 1982 13.6

Kenya
Chonyi 1992-1993 50
Kilifi North 1992-1003 10.5
Kilifi Town 1990-1991 2.8
Saradidi 1986-1987 239

Senegal
Bandafassi 1995-1996 363
Mlomp 1995 30
Niakhar 1995 11.6

Tanzania
Namawala 1990-1991 329
Yombo 1992 234

The Gambia
Area I-V 1991 +

Farafenni 1987 8.9
Others

Bo, Sierra Leone 1990-1991 34.7
Ganvie, Benin 1993-1995 11
Manhica, Mozambique 2001-2002 38
Matsari, Nigeria 1971 68
Navrongo, Ghana 2001-2002 418

∗ EIR = entomological inoculation rate, ITC = control group of
randomised trial of insecticide-treated curtains. +Five sites with
annual EIR between 1 and 10
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Age pattern of hospitalisation: severe malaria

Data For objective 9 (Age pattern of hospitalisation), a subset of the data collated by Marsh
and Snow (1999) (217) (see objective 8) is used. Detailed age-specific severe hospital admission
rates were available for 5 of the sites (Table A.4). The patterns of incidence by age were
summarised by age in 1-4 and 5-9 year-old children and compared with 1-11 year old infants
by calculating the relative risk. Of the five sites, four were selected for fitting objective 9 based
on the predicted prevalence. Baku, The Gambia was excluded as the very low (2% ) prevalence
here could not be matched.

Sites and scenario number(s): Area V, The Gambia (158); Saradidi, Kenya (167); Ganvie, Benin
(173); Bandafassi, Senegal (176)

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop
Med Hyg. Volume 75, No. 2 Supplement. 2006 (215)

TABLE A.4: Age-specific period prevalence rates∗ of severe malaria,
severe malaria, severe malaria anaemia and acute respiratory-tract
infections from five communities in The Gambia and Kenya. (Adapted

from Table 2 from Snow et al 1997 (259))

Estimate Sukuta, The
Gambia

Kilifi North,
Kenya

Kilifi South,
Kenya

Siaya, Kenya

Years of paediatric ward
surveillance

1992-95 1990-95 1992-96 1992,1994-96

Person-years exposure to risk of
children aged 0-9 yr

23468 52675 45967 40064

Rates
All-cause malaria, age 1-11 mo 23.3 (17.8–28.9)

[66/2830]
59.5
(53.2-65.9)
[318/5342]

79.9
(71.6-86.4)
[407/5152]

84.6
(76.4-92.8)
[374/4420]

All-cause malaria, age 1-4 yr 35.3 (32.2-39.4)
[372/10379]

41.7
(39.0-44.4)
[905/21714]

17.4
(15.5-19.3)
[321/18493]

18.8
(16.7-20.9)
[312/16567]

All-cause malaria, age 5-9 yr 16.3 (13.8-18.8)
[167/10259]

5.3 (4.4-6.2)
[135 / 25619]

1.7 (1.2-2.2)
[38/22322]

1.7 (1.1-2.3)
[33/19077]

All-cause malaria, age 0-9 yr 25.8 (23.8-27.8)
[605]

25.9
(24.5-27.2)
(1363) +

16.7
(15.5-17.9)
[766]

18.0
(16.7-19.3)
[719]

Cerebral malaria 0-9 yr 2.6 (1.8-3.3) [61] 1.5 (1.2-1.8)
[79]

0.8 (0.5-1.1)
[36]

0.1 (0.0-0.2) [5]

Severe malaria anaemia, 0-9 yr NA 5.0 (4.4-5.6)
[262]

4.2 (3.6-4.8)
[192]

3.7 (2.7-4.7)
[50/13416]

All-cause ARI age 0-9 yr 8.4 (7.3-9.6) [198] 9.3 (8.5-10.1)
[492]

8.3 (7.5-9.1)
[380]

8.7 (7.8-9.6)
[348]

∗ Period prevalence rather than incidence because precise matching of each community member to hospital
admission was not possible. Rates as admission per 1000 children per year (95% CI). +Precise dates of birth
unobtainable for five children. Defined as child admitted with primary diagnosis of malaria and Blantyre coma
score of 2 or less. Defined in child with primary diagnosis of malaria and haemoglobin of 5.0g/dL or less on
admission. Rates for Siaya derived from person-years exposure to risk and admissions for period Nov 1, 1994 to
Oct 31, 1995
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Loss function: Residual sums of squares for relative risk We denote a loss function based
on residual sum of squares:

f9 (θ) = ∑
k=2,3

[
log

R̂Rk

RRk

]2

(A.57)

where RRk is the relative risk of severe episode for age group k compared to age group 1 and
R̂Rk is the predictive relative risk for age group k compared to age group 1. The predicted
relative risk is given by

R̂Rk =
Ŝk

Ĥk
− Ŝ1

Ĥ1
(A.58)

where Ŝk is the number of severe cases predicted for age group k and Ĥk the total number of
hosts for age group k .

Malaria specific mortality in children (< 5 years old)

Data For objective 10 (Malaria specific mortality in children (<5 years old)), a subset of the
data collated by Marsh and Snow (1999) (217) (see objective 8) was used (260). Mortality data
were derived from verbal autopsy studies in sites with prospective demographic surveillance
and were adjusted for the effect of malaria transmission intensity on the sensitivity and
specificity of the cause of death determination. The odds ratio for death of a case in the
community relative to that in hospital was estimated by fitting to the malaria-specific mortality
rates in children less than five years of age assuming the published hospital case fatality rate.
Nine sites for which both malaria-specific mortality rates and seasonal transmission patterns
were available were included for calibration.

There is one observation per study site and simulation scenario, and predicted values are for
one survey at the end of 2 years.

Sites and scenario number(s): Bo, Sierra Leone (301); Niakhar, Senegal (302); Farafenni, The
Gambia (303); Kilifi North, Kenya (312); Navrongo, Ghana (316); Saradidi, Kenya (317); Yombo,
Tanzania (318); Bandafassi, Senegal (326); Kongodjan, Burkina Faso (327)

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop
Med Hyg. Volume 75, No. 2 Supplement. 2006 (215)

Loss function: Residual sums of squares For objective 10 on malaria-specific mortality in
children, the loss function minimises the log sum of squares
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f10 (θ) =

[
log

( ̂DMR1

DMR1

)]2

(A.59)

where DMR1 is the observed direct mortality rate for age group 1 (0-5 years) and ̂DMR1 is the
predicted direct mortality rate for age group 1. The predicted direct mortality rate is given by

̂DMR1 =
D̂D1

2Ĥ1
(A.60)

where D̂D1 is the number of direct malaria deaths cases predicted for age group 1 and Ĥ1 the
total number of predicted hosts for age group 1. The division by 2 is to convert to yearly rate
as the survey was conducted at the end of 2 years.

Indirect malaria infant mortality rate

Data For objective 11 (indirect malaria infant mortality rate), a subset of the data collated by
Marsh and Snow (1999) (217) (see objective 8) was used. These constitute a library of sites for
which entomologic data were collected at least monthly and all-cause infant mortality rates
(IMR) were available. There is one observation per scenario: all cause infant mortality rate
(returned as a single number over whole intervention period).

Sites and scenario number(s): Bo, Sierra Leone (401); Niakhar, Senegal (402); Area V, The
Gambia (408); Karangasso, Burkina Faso (411); Manhica, Mozambique (414); Namawala,
Tanzania (415); Navrongo, Ghana (416); Saradidi, Kanya (417); Yombo, Tanzania (418); Mlomp,
Senegal (422); Bandafassi, Senegal (426)

Original reference detailing data and model fits: Ross A, Maire N, Molineaux L and Smith TA. An
epidemiologic model of severe morbidity and mortality caused by Plasmodium falciparum. Am J Trop
Med Hyg. Volume 75, No. 2 Supplement. 2006 (215)

Loss function: Residual sums of squares The loss function minimises the log sum of squares:

f11 (θ) =

[
log

(
i ̂DMR1

iDMR1

)]2

(A.61)

where iDMR1 the observed indirect mortality rate for age group 1 and i ̂DMR1 is the predicted
indirect mortality rate for age group 1.

A.2.2 Tables A.5-A.6
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disease models

A.3 Emulator performance
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FIGURE A.2: GP emulator performance
Emulator predictions vs true values on a holdout set compromising 10% of initial samples
in iteration 1. w.sum is the weighted sum F , of the 11 objectives. Here, predictions are
generated as the weighted sum of individual objective predictions.
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FIGURE A.3: GP emulator performance
Emulator predictions vs true values on a holdout set compromising 10% of initial samples
in iteration 30 (final iteration). w.sum is the weighted sum F , of the 11 objectives. Here,
predictions are generated as the weighted sum of individual objective predictions.
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FIGURE A.4: GPSG emulator performance
Emulator predictions vs true values on a holdout set compromising 10% of initial samples
in iteration 1. w.sum is the weighted sum F , of the 11 objectives. Here, predictions are
generated as the weighted sum of individual objective predictions.
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FIGURE A.5: GPSG emulator performance
Emulator predictions vs true values on a holdout set compromising 10% of initial samples
in iteration 23 (final iteration). w.sum is the weighted sum F , of the 11 objectives. Here,
predictions are generated as the weighted sum of individual objective predictions.
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A.4 Adaptive sampling: selected points
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FIGURE A.6: GP-BO sampling behaviour
Values in each dimension of the points sampled during adaptive sampling of GP-BO
algorithm in iterations 1,10, 20, and 30.
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A.4.2 GPSG-BO
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FIGURE A.7: GPSG-BO sampling behaviour
Values in each dimension of the points sampled during adaptive sampling of GPSG-BO
algorithm in iterations 1,10, 20, and 23.
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A.5 OpenMalaria: Final simulator fit
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FIGURE A.8: Objective 1: Age pattern of prevalence in Matsari,
Nigeria during the intervention

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.9: Objective 2: Age pattern of prevalence
Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.10: Objective 3: Age pattern of parasite densities
(geometric mean)

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.11: Objective 4: Age pattern of number of concurrent
infections

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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A.5. OpenMalaria: Final simulator fit
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FIGURE A.12: Objective 5: Age pattern of incidence of clinical
malaria in Dielmo and Ndiop, Senegal

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.13: Objective 6: Age pattern of incidence of clinical
malaria in Idete, Tanzania

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.14: Objective 7: Age pattern of threshold parasite density
for clinical attacks

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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A.5. OpenMalaria: Final simulator fit
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FIGURE A.15: Objective 8: Hospitalisation rate in relation to
prevalence in children

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.16: Objective 9. Age pattern of hospitalisation
Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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FIGURE A.17: Objective 10: Direct mortality in children <5 years
old

Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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A.5. OpenMalaria: Final simulator fit
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FIGURE A.18: Objective 11: All-cause infant mortality rate
Final simulator fit using the parameter sets yielded using GP-BO and GPSG-BO compared
to the previous parameterisation (derived using optimisation with a genetic algorithm, GA-
O).
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A.6 Validation

A

B

FIGURE A.19: Data recovery validation of posterior estimates
Prior distributions of each parameter and parameter value identified by the optimisation algorithm. The
final parameter set was used to generate synthetic field data by simulating each of the 61 scenarios with the
respective core parameter sets. The simulation outputs were reformatted to match the original field data,
generating a synthetic field data set. The optimisation with both algorithms was repeated using this synthetic
field data. The plot shows the best parameter values in each dimension identified at the end of the validation
optimisation compared to the values identified in the original optimisation. The grey area shows the prior
distribution. A. GP-BO validation. B. GPSG-BO validation
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A.7. Epidemiological predictions

A.7 Epidemiological predictions

FIGURE A.20: Seasonal pattern assumed for subsequent analyses
The monthly transmission intensity is equivalent to the annual transmission intensity (EIR)
scaled by these values and forced to sum to the annual EIR.

FIGURE A.21: Relationship between EIR and PfPR2-10 under three
parameterisations

Solid lines show medians and shaded regions show 95% credible intervals. EIR denotes the
entomological inoculation rate.
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FIGURE A.22: Yearly incidence of clinical (uncomplicated) malaria
as a function of PfPR2-10 displayed by parameterisation and age

group
Clinical incidence is presented in terms of the yearly number of events per person. We
assume a probability of effective treatment within 14 days of uncomplicated malaria of
36%.
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A.7. Epidemiological predictions

FIGURE A.23: Yearly incidence of total severe malaria
Annual incidence of severe disease as a function of Pf PR2-10, displayed by parameterisation
and age group. Incidence is presented in terms of the yearly number of events in a
population of 1000 individuals. It is assumed that 48% of severe malaria cases seek official
care at a heath care facility (hospital). We assume a probability of effective treatment within
14 days of uncomplicated malaria of 36%.
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FIGURE A.24: Yearly number of malaria-related deaths
Annual malaria-related deaths as a function of Pf PR2-10, displayed by parameterisation
and age group. Malaria mortality incidence is presented in terms of the yearly number of
deaths in a population of 1000 individuals. For the OpenMalaria model both deaths directly
attributed to malaria (dotted curve) and all deaths associated with malaria (including both
deaths directly attributable to malaria and those associated with comorbidities) are shown
(full line).
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A.7. Epidemiological predictions

FIGURE A.25: Yearly incidence of clinical malaria (seasonal)
Annual incidence of clinical malaria in a seasonal transmission setting as a function of age,
displayed by transmission intensity (Pf PR2-10) and parameterisation. Clinical incidence is
presented in terms of the yearly number of events per person. The Pf PR2-10 categories
include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% , 30% , and
50%, respectively.
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FIGURE A.26: Yearly incidence of clinical malaria (perennial)
Annual incidence of clinical malaria in a perennial transmission setting as a function of age,
displayed by transmission intensity (Pf PR2-10) and parameterisation. Clinical incidence is
presented in terms of the yearly number of events per person. The Pf PR2-10 categories
include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% , 30% , and
50%, respectively.
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A.7. Epidemiological predictions

FIGURE A.27: Yearly incidence of total severe malaria (seasonal)
Annual incidence of total severe malaria in a seasonal transmission setting as a function
of age, displayed by transmission intensity (Pf PR2-10) and parameterisation. Incidence is
presented in terms of the yearly number of events per 1000 person-years. It is assumed that
48% of severe malaria cases seek official care at a heath care facility (hospital). The Pf PR2-10

categories include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% ,
30% , and 50%, respectively.
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FIGURE A.28: Yearly incidence of total severe malaria (perennial)
Annual incidence of total severe malaria in a perennial transmission setting as a function
of age, displayed by transmission intensity (Pf PR2-10) and parameterisation. Incidence is
presented in terms of the yearly number of events per 1000 person-years. It is assumed that
48% of severe malaria cases seek official care at a heath care facility (hospital). The Pf PR2-10

categories include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% ,
30% , and 50%, respectively.
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A.7. Epidemiological predictions

FIGURE A.29: Yearly incidence of malaria-related deaths (seasonal)
Annual incidence of malaria-related deaths in a seasonal transmission setting as a function
of age, displayed by transmission intensity (Pf PR2-10) and parameterisation. Malaria
mortality incidence is presented in terms of the yearly number of deaths in a population
of 1000 individuals. The dashed estimates represent direct malaria deaths, and the solid
all malaria deaths (including those attributable to co-morbidities). The Pf PR2-10 categories
include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% , 30% , and
50%, respectively.
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FIGURE A.30: Yearly incidence of malaria-related deaths (perennial)
Annual incidence of malaria-related deaths in a perennial transmission setting as a function
of age, displayed by transmission intensity (Pf PR2-10) and parameterisation. Malaria
mortality incidence is presented in terms of the yearly number of deaths in a population
of 1000 individuals. The dashed estimates represent direct malaria deaths, and the solid
all malaria deaths (including those attributable to co-morbidities). The Pf PR2-10 categories
include simulated prevalences of 2.5-3.5%, 28-32% , and 47-53% labeled as 3% , 30% , and
50%, respectively.
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A.8. Log prior distributions and posterior estimates

A.8 Log prior distributions and posterior estimates

FIGURE A.31: Log prior distributions and final posterior estimates
Prior distributions of each parameter and final parameter values identified by
each optimisation algorithm (GP-BO and GPSG-BO) and compared to the current
parameterisation (derived using a genetic algorithm, GA).
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A.9 Random forest: Ranger importance
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FIGURE A.32: Random forest importance
Estimated parameter importance indices for all parameters and objectives. The indices
were calculated using the ranger random forest package in R.
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B Supplement to: Calibrating infctious
disease models to real-world data:
Context matters

B.1 Contextual covariates

B.1.1 Population structure and monitoring

Since all incidence and prevalence data was given by age group, study population structures
were disregarded. Monitored age groups were set in accordance with age groups reported in
the main reference studies. Where incidence age bands did not match prevalence age bands,
we simulated monitoring at the smallest intervals, such that all required intervals could be
derived by summation.

B.1.2 Transmission intensity and seasonality.

Annual transmission for each site at the according time was extracted from the literature.
Seasonality patterns (relative monthly EIR) were derived from site- specific transmission data
using EIR values and the following hierarchy of information: 1) Primary reference; 2) Extended
literature for the same site; 3) Extended literature for the same region. Where monthly
EIR was not available, relative human biting rates or rainfall data with a one-month time
lag (github.com/SwissTPH/openmalaria/wiki/) were used to derive relative monthly
transmission. Where no information on rainfall or EIR seasonality was given in primary
or secondary references, historical rainfall data openly accessible through the World Bank
Group Climate Change Knowledge Portal (climateknowledgeportal.worldbank.org/) was
used. Assuming that even if the study year was dryer or wetter than average, rain patterns
and relative monthly rainfall should remain relatively constant between years, we extracted
average rainfall data for 1961-1990 or 1992-2015. Locations were matched by longitude and
latitude. Where data was available for more than one year, the mean monthly value was used
in the parameterisation.

B.1.3 Health system

Care seeking behaviour in OpenMalaria simulations is defined through the probability that
an individual seeks official health care, pSeekOfficialCareUncomplicated (and receives curative
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treatment). In the simulations, this value must reflect the probability that an individual receives
curative treatment, which combines the probability of care in the health care system, as well
as from active case detection in the study. Health care system quality of care commonly
derived from effective care rate estimates (E14, the probability that an individual receives
effective treatment within 14 days of infection). None of the studies included provided
estimates of effective care rates. For studies conducted after 2000, we propose using country
level ACT coverage data as published by MAP (https://map.ox.ac.uk/) to approximate
case management levels. Downstream factors reducing effective coverage compared to ACT
coverage include adherence to drug regime and cure rate (adequate drug formulation, absence
of parasite drug resistance and parasite clearance). In the absence of information to the
contrary, we assume that these rates are low, but it is possible that effective care is truly slightly
lower (<5%) than in our parameterisation. For studies carried out prior to 2000, no data was
available in the MAP database. In order to estimate case management levels, we used the same
approach as in the original parameterisation of OpenMalaria as published by Tediosi et al.
(271). For studies conducted prior to 2000 (and thus prior to malaria awareness campaigns
in the considered countries) we assumed low care seeking probabilities for uncomplicated
malaria in the formal health sector (0.04), for self-treatment (0.01) and seeking outpatient care in
the case of treatment failure (0.04) unless indicated otherwise (63). These values originally were
derived by triangulating model predictions for clinical episodes with health systems data from
Manhica, Mozambique(63). In order to simulate the study conditions under which incidence
was recorded, active case detection was added at given and 100% coverage or at a coverage
equivalent to the follow-up rate provided in the study.

B.1.4 Diagnostics and treatment

Case detection was simulated as with thick blood smear testing and case definition thresholds.
Where no threshold was given, we used the sensitivity of the given measure as threshold,
100 parasites per µl for thick blood smears (272). For studies considering any patent
infection, in routine case management we set the test threshold to 0 because all suspected
cases that present will be treated. Rather than explicitly modelling different drugs and their
properties, we modelled generic drug treatment and accounted adjusted the effective care
value according to the drug (quinine (QN), chloroquine (CQ) sulfadoxine-pyrimethamine (SP),
artemetherlumefantrine (AL), amodaquinine (AQ) or artemisinin combination therapy (ACT)).
We assume negligible resistance to treatment unless otherwise specified in the literature.

B.1.5 Interventions

For each setting, we consider its history with regards to insecticide-treated net (ITN),
distribution, long-lasting insecticide treated net (LLIN) use, indoor residual spraying (IRS),
and intermittent preventive treatment in pregnancy (IPTp). We used the following hierarchy
of information: 1) Site-specific information from primary references; 2) Region-specific
information from LINK malaria profiles (www.linkmalaria.org/); 3) Country-specific survey-
based information (Demographic and Health Survey (DHS) or Malaria Indicator Survey (MIS));
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4) Country-specific imputed information provided by the Malaria Atlas Project (MAP; https:
//map.ox.ac.uk). Prior to 2000 we assumed no interventions unless indicated otherwise.

B.2 Excluded records

TABLE B.1: Excluded records

ID Study Location Country Year(s) Exclusion reason
x01 Bloland et al. (273) Asembo Bay Kenya 1992 PfPR statistically estimated (MAP)
x02 Bougouma et al. (274) Saponé Burkina Faso 2007 PfPR statistically estimated (MAP)
x03 Coulibaly et al. (275) Bandiagara Mali 1999 age-specific PfPR extrapolated for all but one age group
x04 Diallo et al. (276) Dakar (central) Senegal 1996-1997 PfPR statistically estimated (MAP)
x05 Diallo et al. (277) S. Dakar Senegal 1994 Unstable transmission? Imported infections
x06 Fillol et al. (278) Niakhar Senegal 2003 PfPR statistically estimated (MAP)
x07 Greenwood et al. (279) Farafenni The Gambia 1981-1982 PfPR statistically estimated (MAP)
x08 Guinovart et al. (280) Manhiça Mozambique 2003-2005 PfPR statistically estimated (MAP)
x09 Loha et al. (281) Chano Mille Ethiopia 2009-2011 PfPR statistically estimated (MAP)
x10 Molez et al. (282) Barkedji Senegal 1994-1995 PfPR statistically estimated (MAP)
x11 Nebie et al. (283) Baloghin Burkina Faso 2003 PfPR statistically estimated (MAP)
x12 Owusu-Agyei et al. (284) Kintampo Ghana 2004 PfPR statistically estimated (MAP)
x13 Rogier et al. (285) Dielmo Senegal 1990 PfPR statistically estimated (MAP)
x14 Trape et al. (286) Lizolo Republic of Congo 1983-1984 PfPR statistically estimated (MAP)
x15 Velema et al. (287) Pahou Benin 1989 PfPR statistically estimated (MAP)

B.3 Included records

TABLE B.2: Overview of references to data and seasonality tables for
included studies

sID Study Location Country Year(s) Data record Seasonality table
s01 Ba et al. (143) Ndiop Senegal 1993-1994 B.3 B.4
s02 Bonnet et al. (145) Koundou Cameroon 1997-1998 B.5 B.6
s03 Ebolakounou Cameroon 1997-1998 B.7 B.8
s04 Dicko et al. (148) Douneguebougou Mali 1999-2000 B.9 B.10
s05 Sotuba Mali 1999-2000 B.11 B.12
s06 Henry et al. (151) Katiola "R0" Côte d’Ivoire 1997-1998 B.13 B.14
s07 Korhogo "R1" Côte d’Ivoire 1997-1998 B.15 B.16
s08 Korhogo "R2" Côte d’Ivoire 1997-1998 B.17 B.18
s09 Lusingu et al. (155) Mgome Tanzania 2001 B.19 B.20
s10 Ubiri Tanzania 2001 B.21 B.22
s11 Magamba Tanzania 2001 B.23 B.24
s12 Mwangi et al. (159–161) Ngerenya Kenya 2001 B.25 B.26
s13 Chonyi Kenya 2001 B.27 B.28
s14 Saute et al. (167, 168) Manhiça Mozambique 1996-1999 B.29 B.30
s15 Schellenberg et al. (172) Ifakara Tanzania 2000-2001 B.31 B.32
s16 Thomposon et al. (175) Matola Mozambique 1992-1995 B.33 B.34
s17 Trape et al. (177) Dielmo Senegal 2007-2008 B.35 B.36
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B.3.1 Ba et al. (2000): Ndiop, Senegal

Data

TABLE B.3: PfPR-incidence records from Ba et al. (143)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Ba 2000 1993 0 1 26 1231 0.226
Ba 2000 1993 1 2 15 1867 0.155
Ba 2000 1993 2 4 40 2600 0.229
Ba 2000 1993 5 9 61 2574 0.287
Ba 2000 1993 10 14 34 1647 0.41
Ba 2000 1993 15 19 41 780 0.537
Ba 2000 1993 20 39 96 583 0.344
Ba 2000 1993 40 59 31 484 0.251
Ba 2000 1993 60 85 7 857 0.287

Seasonality

TABLE B.4: Seasonality profile for Ndiop, Senegal

Inferred from Fontenille et al. (144)
Month Monthly EIR Relative transmission

Jul 93 1.283 0.0203
Aug 93 9.626 0.152
Sep 93 38.289 0.605
Oct 93 14.118 0.223

Nov 93 0 0
Dec 93 0 0
Jan 94 0 0
Feb 94 0 0

Mar 94 0 0
Apr 94 0 0
May 94 0 0
Jun 94 0 0
Jul 94 0 0

Aug 94 7.273 0.425
Sep 94 8.342 0.488
Oct 94 1.497 0.088

Nov 94 0 0
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B.3.2 Bonnet et al. (2002): Koundou, Cameroon

Data

TABLE B.5: PfPR-incidence records from (145)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC INC 1000 PYO−1 PR parasitaemia PR carrier
Bonnet 2002 Koundou 1997 0 1 15 400 NA NA
Bonnet 2002 Koundou 1997 2 5 23 1000 NA NA
Bonnet 2002 Koundou 1997 0 5 NA NA 0.264 0.667
Bonnet 2002 Koundou 1997 6 10 29 610 0.202 0.61
Bonnet 2002 Koundou 1997 11 15 20 240 0.159 0.695
Bonnet 2002 Koundou 1997 16 85 110 160 0.067 0.395

Seasonality

TABLE B.6: Seasonality profile for Koundou, Cameroon

Inferred from Bonnet et al. (145)
Month Monthly EIR Relative transmission
Jun 97 22.15 0.295
Jul 97 33.72 0.449

Aug 97 12.78 0.170
Sep 97 0.37 0.005
Oct 97 0.1 0.001

Nov 97 5.34 0.071
Dec 97 0.65 0.009

Jan 98 0.1 0.001
Feb 98 0.37 0.003

Mar 98 11.12 0.103
Apr 98 0.37 0.003
May 98 96.27 0.889
Jun 98 0 0

B.3.3 Bonnet et al. (2002): Ebolakounou, Cameroon

Data

TABLE B.7: PfPR-incidence records from (145)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC INC 1000 PYO−1 PR parasitaemia PR carrier
Bonnet 2002 Ebolakounou 1997 0 1 38 182 NA NA
Bonnet 2002 Ebolakounou 1997 2 5 79 99 NA NA
Bonnet 2002 Ebolakounou 1997 0 5 NA NA 0.212 0.591
Bonnet 2002 Ebolakounou 1997 6 10 69 80 0.17 0.662
Bonnet 2002 Ebolakounou 1997 11 15 53 45 0.124 0.586
Bonnet 2002 Ebolakounou 1997 16 85 288 13 0.053 0.343
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Seasonality

TABLE B.8: Seasonality profile for Ebolakounou, Cameroon

Inferred from Bonnet et al. (145)
Month Monthly EIR Relative transmission
Jun 97 2.24 1
Jul 97 0 0
Aug 97 0 0
Sep 97 0 0
Oct 97 0 0
Nov 97 0 0
Dec 97 0 0

Jan 98 0 0
Feb 98 0 0
Mar 98 0 0
Apr 98 0 0
May 98 15.48 1
Jun 98 0 0

B.3.4 Dicko et al. (2007): Douneguebougou, Mali

Data

TABLE B.9: PfPR-incidence records from (148)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Dicko 2007 Doneguebougou 1999 0 5 53 2000 0.395
Dicko 2007 Doneguebougou 1999 6 10 48 1395.83 0.677
Dicko 2007 Doneguebougou 1999 11 15 52 1153.85 0.664
Dicko 2007 Doneguebougou 1999 16 20 43 674.42 0.461
Dicko 2007 Doneguebougou 2000 0.25 5 53 1962.26 0.383
Dicko 2007 Doneguebougou 2000 6 10 48 1634.62 0.608
Dicko 2007 Doneguebougou 2000 11 15 52 1000 0.524
Dicko 2007 Doneguebougou 2000 16 20 43 720.93 0.397
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Seasonality

TABLE B.10: Seasonality profile for Douneguebougou, Mali

Inferred from Dicko et al. (148)
Month Monthly EIR Relative transmission
Jun 99 0 0
Jul 99 4.34 0.026
Aug 99 25.32 0.151
Sep 99 53.81 0.322
Oct 99 58.89 0.352
Nov 99 20.83 0.125
Dec 99 4.05 0.024

Jun 00 0.08 0.001
Jul 00 0.54 0.004
Aug 00 22.07 0.161
Sep 00 58.4 0.425
Oct 00 42.56 0.310
Nov 00 11.41 0.083
Dec 00 2.26 0.016

B.3.5 Dicko et al. (2007): Sotuba, Mali

Data

TABLE B.11: PfPR-incidence records from (148)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Dicko 2007 Sotuba 1999 0 5 58 1637.93 0.145
Dicko 2007 Sotuba 1999 6 10 49 1979.59 0.171
Dicko 2007 Sotuba 1999 11 15 48 2104.17 0.166
Dicko 2007 Sotuba 1999 16 20 46 1869.57 0.120
Dicko 2007 Sotuba 2000 0.25 5 51 745.1 0.040
Dicko 2007 Sotuba 2000 6 10 53 1264.15 0.074
Dicko 2007 Sotuba 2000 11 15 49 918.37 0.048
Dicko 2007 Sotuba 2000 16 20 46 1021.74 0.081
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Seasonality

TABLE B.12: Seasonality profile for Sotuba, Mali

Inferred from Dicko et al. (148)
Month monthly EIR Relative transmission
Jun 99 0 0
Jul 99 1.7 0.139
Aug 99 1.23 0.100
Sep 99 1.67 0.136
Oct 99 5.54 0.452
Nov 99 2.12 0.173
Dec 99 0 0

Jun 00 0 0
Jul 00 0.09 0.025
Aug 00 1.41 0.387
Sep 00 1.91 0.525
Oct 00 0.23 0.063
Nov 00 0 0
Dec 00 0 0

B.3.6 Henry et al. (2003): Katiola R0, Côte d’Ivoire

Data

TABLE B.13: PfPR-incidence records from (151)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR INC diag threshold
Henry 2003 Katiola R0 1997 0 2 1116 4800 0.54506 2500
Henry 2003 Katiola R0 1997 2 5 1687 2300 0.9103 2500
Henry 2003 Katiola R0 1997 5 10 2870 500 0.87 1000
Henry 2003 Katiola R0 1997 10 20 2667 600 0.753773 500
Henry 2003 Katiola R0 1997 20 40 2968 300 0.572175 500
Henry 2003 Katiola R0 1997 40 85 2997 200 0.62 500
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Seasonality

TABLE B.14: Seasonality profile for Katiola ”R0”, Côte d’Ivoire

Inferred from Henry et al. (151)
Month Bites per 1000 man-nights Relative transmission
Dec 96 311.3208 0.073
Jan 97 NA NA
Feb 97 400.9434 0.095
Mar 97 28.30189 0.007
Apr 97 731.1321 0.172798
May 97 NA NA
Jun 97 608.4906 0.144
Jul 97 613.2075 0.145
Aug 97 311.3208 0.074
Sep 97 NA NA
Oct 97 613.2075 0.145
Nov 97 613.2075 0.145

B.3.7 Henry et al. (2003): Korhogo R1, Côte d’Ivoire

Data

TABLE B.15: PfPR-incidence records from (151)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR INC diag threshold
Henry 2003 Korhogo R1 1997 0 2 1065 3000 0.526264 2500
Henry 2003 Korhogo R1 1997 2 5 1356 1100 0.87891 2500
Henry 2003 Korhogo R1 1997 5 10 2516 800 0.84 1000
Henry 2003 Korhogo R1 1997 10 20 3479 200 0.802404 500
Henry 2003 Korhogo R1 1997 20 40 2868 100 0.609089 500
Henry 2003 Korhogo R1 1997 40 85 3257 100 0.66 500
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Seasonality

TABLE B.16: Seasonality profile for Korhogo ”R1”, Côte d’Ivoire

Inferred from Henry et al. (151)
Month Bites per 1000 man-nights Relative transmission
Dec 96 161.017 0.065
Jan 97 59.322 0.024
Feb 97 NA NA
Mar 97 NA NA
Apr 97 144.068 0.058
May 97 NA NA
Jun 97 609.208 0.246
Jul 97 899.377 0.363
Aug 97 302.691 0.122
Sep 97 NA NA
Oct 97 NA NA
Nov 97 298.605 0.121

B.3.8 Henry et al. (2003): Korhogo R2, Côte d’Ivoire

Data

TABLE B.17: PfPR-incidence records from (151)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR INC diag threshold
Henry 2003 Korhogo R2 1997 0 2 970 3000 0.494939196 2500
Henry 2003 Korhogo R2 1997 2 5 1132 3000 0.826593872 2500
Henry 2003 Korhogo R2 1997 5 10 2113 1200 0.79 1000
Henry 2003 Korhogo R2 1997 10 20 3026 300 0.717300301 500
Henry 2003 Korhogo R2 1997 20 40 2703 100 0.544488813 500
Henry 2003 Korhogo R2 1997 40 85 4028 100 0.59 500
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Seasonality

TABLE B.18: Seasonality profile for Korhogo ”R2”, Côte d’Ivoire

Inferred from Henry et al. (151)
Month Bites per 1000 man-nights Relative transmission
Dez 96 747.604 0.201
Jan 97 67.093 0.018
Feb 97 NA NA
Mär 97 57.508 0.015
Apr 97 31.949 0.009
Mai 97 NA NA
Jun 97 904.153 0.243
Jul 97 699.681 0.188
Aug 97 207.668 0.056
Sep 97 NA NA
Okt 97 405.751 0.109
Nov 97 603.834 0.162

B.3.9 Lusingu et al. (2004): Mgome, Tanzania

Data

TABLE B.19: PfPR-incidence records from (155)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Lusingu 2004 Mgome 2001 0 1 14 3858.46 0.594948
Lusingu 2004 Mgome 2001 1 2 13 3812.63 0.7959
Lusingu 2004 Mgome 2001 2 3 13 3143.58 0.8289
Lusingu 2004 Mgome 2001 3 4 13 632.38 0.9216
Lusingu 2004 Mgome 2001 4 5 13 1228.11 0.9688
Lusingu 2004 Mgome 2001 5 9 60 412.42 0.9135
Lusingu 2004 Mgome 2001 10 14 53 384.93 0.7299
Lusingu 2004 Mgome 2001 15 19 45 311.61 0.5588
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Seasonality

TABLE B.20: Seasonality profile for Mgome, Tanzania

Inferred from Bødker et al. (156). Relative rainfall plus one month lag.
Month Relative transmission
Oct 95 0.000
Nov 95 0.000
Dec 95 0.000

Jan 96 0.000
Feb 96 0.029
Mar 96 0.079
Apr 96 0.066
May 96 0.308
Jun 96 0.395
Jul 96 0.027
Aug 96 0.032
Sep 96 0.013
Oct 96 0.012
Nov 96 0.032
Dec 96 0.008

B.3.10 Lusingu et al. (2004): Ubiri, Tanzania

Data

TABLE B.21: PfPR-incidence records from (155)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Lusingu 2004 Ubiri 2001 0 1 14 0 0.0873
Lusingu 2004 Ubiri 2001 1 2 13 219.96 0.2942
Lusingu 2004 Ubiri 2001 2 3 13 714.87 0.4042
Lusingu 2004 Ubiri 2001 3 4 13 192.46 0.2302
Lusingu 2004 Ubiri 2001 4 5 13 568.23 0.2089
Lusingu 2004 Ubiri 2001 5 9 59 119.15 0.2399
Lusingu 2004 Ubiri 2001 10 14 52 0 0.2385
Lusingu 2004 Ubiri 2001 15 19 44 109.98 0.3745
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B.3. Included records

Seasonality

TABLE B.22: Seasonality profile for Ubiri, Tanzania

Inferred from Bødker et al. (156). Relative rainfall plus one month lag.
Month Relative transmission
Oct 95 0.008
Nov 95 0.002
Dec 95 0.000

Jan 96 0.014
Feb 96 0.021
Mar 96 0.048
Apr 96 0.100
May 96 0.281
Jun 96 0.311
Jul 96 0.042
Aug 96 0.026
Sep 96 0.013
Oct 96 0.008
Nov 96 0.050
Dec 96 0.076

B.3.11 Lusingu et al. (2004): Magamba, Tanzania

Data

TABLE B.23: PfPR-incidence records from (155)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Lusingu 2004 Magamba 2001 0 1 14 0 0.0885
Lusingu 2004 Magamba 2001 1 2 13 0 0.1055
Lusingu 2004 Magamba 2001 2 3 13 0 0.0366
Lusingu 2004 Magamba 2001 3 4 13 0 0.0259
Lusingu 2004 Magamba 2001 4 5 13 0 0.1153
Lusingu 2004 Magamba 2001 5 9 60 100.82 0.0858
Lusingu 2004 Magamba 2001 10 14 53 0 0.1144
Lusingu 2004 Magamba 2001 15 19 45 0 0.0277
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Appendix B. Supplement to: Calibrating infctious disease models to real-world data: Context
matters

Seasonality

TABLE B.24: Seasonality profile for Magamba, Tanzania

Inferred from Bødker et al. (156). Relative rainfall plus one month lag.
Month Relative transmission
Oct 95 0.000

Nov 95 0.000
Dec 95 0.000

Jan 96 0.000
Feb 96 0.000

Mar 96 0.152
Apr 96 0.184
May 96 0.374
Jun 96 0.201
Jul 96 0.000

Aug 96 0.000
Sep 96 0.000
Oct 96 0.000

Nov 96 0.000
Dec 96 0.089

B.3.12 Mwangi et al. (2003, 2005): Ngerenya, Kenya

Data

TABLE B.25: PfPR-incidence records from (159) and (161)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the incidence age range, INC 1000 PYO−1 = incidence
(number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR INC diag threshold sensitivity specificity
Mwangi 2005 Ngerenya 1999 0 1 NA 862 0.1023 1 1 0.95
Mwangi 2005 Ngerenya 1999 1 2 NA 1408 0.1616 2500 p ul-1 0.95 0.89
Mwangi 2005 Ngerenya 1999 2 3 NA 1574 0.3489 2500 p ul-1 0.95 0.89
Mwangi 2005 Ngerenya 1999 3 4 NA 1462 0.357 2500 p ul-1 0.95 0.89
Mwangi 2005 Ngerenya 1999 4 5 NA 1541 0.3653 2500 p ul-1 0.95 0.89
Mwangi 2005 Ngerenya 1999 5 6 NA 1513 0.3907 2500 p ul-1 0.95 0.89
Mwangi 2005 Ngerenya 1999 6 7 NA 1658 0.4118 2500 p ul-1 0.95 0.88
Mwangi 2005 Ngerenya 1999 7 8 NA 1073 0.4158 2500 p ul-1 0.95 0.88
Mwangi 2005 Ngerenya 1999 8 9 NA 924 0.3857 2500 p ul-1 0.95 0.88
Mwangi 2005 Ngerenya 1999 9 10 NA 765 0.3342 2500 p ul-1 0.95 0.88
Mwangi 2005 Ngerenya 1999 10 11 NA 501 0.3085 2500 p ul-1 0.9 0.93
Mwangi 2005 Ngerenya 1999 11 14 NA 425 0.224096 2500 p ul-1 0.9 0.93
Mwangi 2005 Ngerenya 1999 15 19 NA 377 0.231 1 1 0.87
Mwangi 2005 Ngerenya 1999 20 39 NA 106 0.216493 1 1 0.87
Mwangi 2005 Ngerenya 1999 40 59 NA 47 0.182502 1 1 0.87
Mwangi 2005 Ngerenya 1999 60 85 NA 48 0.0511 1 1 0.87
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B.3. Included records

Seasonality

TABLE B.26: Seasonality profile for Ngerenya, Kenya

Inferred from Mbogo et al. (162).
Month Relative transmission
Jan 0.286
Feb 0.000
Mar 0.000
Apr 0.000
May 0.000
Jun 0.000
Jul 0.508
Aug 0.206
Sep 0.000
Oct 0.000
Nov 0.000
Dec 0.000

B.3.13 Mwangi et al. (2003, 2005): Chonyi, Kenya

Data

TABLE B.27: PfPR-incidence records from (159) and (161)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the incidence age range, INC 1000 PYO−1 = incidence
(number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR INC diag threshold sensitivity specificity
Mwangi 2005 Chonyi 1999 0 1 NA 1340 0.1962 1 1 0.95
Mwangi 2005 Chonyi 1999 1 2 NA 1411 0.3878 2500 p ul-1 0.95 0.89
Mwangi 2005 Chonyi 1999 2 3 NA 1503 0.5837 2500 p ul-1 0.95 0.89
Mwangi 2005 Chonyi 1999 3 4 NA 1337 0.5704 2500 p ul-1 0.95 0.89
Mwangi 2005 Chonyi 1999 4 5 NA 982 0.5744 2500 p ul-1 0.95 0.89
Mwangi 2005 Chonyi 1999 5 6 NA 460 0.5913 2500 p ul-1 0.95 0.89
Mwangi 2005 Chonyi 1999 6 7 NA 510 0.6123 2500 p ul-1 0.95 0.88
Mwangi 2005 Chonyi 1999 7 8 NA 477 0.6292 2500 p ul-1 0.95 0.88
Mwangi 2005 Chonyi 1999 8 9 NA 372 0.629 2500 p ul-1 0.95 0.88
Mwangi 2005 Chonyi 1999 9 10 NA 304 0.6128 2500 p ul-1 0.95 0.88
Mwangi 2005 Chonyi 1999 10 11 NA 276 0.5859 2500 p ul-1 0.9 0.93
Mwangi 2005 Chonyi 1999 11 14 NA 279 0.4605 2500 p ul-1 0.9 0.93
Mwangi 2005 Chonyi 1999 15 19 NA 234 0.372 1 1 0.87
Mwangi 2005 Chonyi 1999 20 39 NA 99 0.196048 1 1 0.87
Mwangi 2005 Chonyi 1999 40 59 NA 29 0.182502 1 1 0.87
Mwangi 2005 Chonyi 1999 60 85 NA 48 0.2688 1 1 0.87
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Appendix B. Supplement to: Calibrating infctious disease models to real-world data: Context
matters

Seasonality

TABLE B.28: Seasonality profile for Chonyi, Kenya

Inferred from Mbogo et al. (162).
Month Relative transmission
Jan 0.286
Feb 0.000
Mar 0.000
Apr 0.000
May 0.000
Jun 0.000
Jul 0.508
Aug 0.206
Sep 0.000
Oct 0.000
Nov 0.000
Dec 0.000

B.3.14 Saute et al. (2003): Manhiça, Mozmbique

Data

TABLE B.29: PfPR-incidence records from (168) and (167)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Saute 2003 1999 0 1 235 505.53 0.1117
Saute 2004 1999 1 2 125 188.9 0.2216
Saute 2005 1999 2 3 125 322.06 0.242
Saute 2006 1999 3 4 125 257.03 0.3062
Saute 2007 1999 4 5 125 157.94 0.2302
Saute 2008 1999 5 10 245 203.82 0.259967
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B.3. Included records

Seasonality

TABLE B.30: Seasonality profile for Manhiça, Mozmbique

Inferred from Mendis et al. (176).
month EIR Relative transmisison
Nov 94 0 NA
Dec 94 0.75 NA
Jan 95 1.03 0.08
Feb 95 0.5 0.04
Mar 95 3.73 0.29
Apr 95 0 0.00
May 95 1.67 0.13
Jun 95 2.28 0.18
Jul 95 0 0.00
Aug 95 0.67 0.05
Sep 95 0 0.00
Oct 95 0.42 0.03
Nov 95 1.39 0.11
Dec 95 1.07 0.08
Jan 96 2.05 NA
Feb 96 4.3 NA
Mar 96 0 NA
Apr 96 0 NA

B.3.15 Schellenberg et al. (2003): Ifakara, Tanzania

Data

TABLE B.31: PfPR-incidence records from (172)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N INC 1000 PYO−1 PfPR
Schellenberg 2002 2000 0 1 191 129.32 0.043
Schellenberg 2003 2000 1 2 115 174.44 0.121
Schellenberg 2004 2000 2 3 158 102.06 0.218
Schellenberg 2005 2000 3 4 107 138.67 0.25
Schellenberg 2006 2000 4 5 47 212.56 0.176
Schellenberg 2007 2000 0 5 618 143.09 0.1655
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Appendix B. Supplement to: Calibrating infctious disease models to real-world data: Context
matters

Seasonality

TABLE B.32: Seasonality profile for Ifakara, Tanzania

Inferred from Drakeley et al. (173).
Month Relative transmission
Mar 0.319
Apr 0.311
May 0.016
Jun 0.047
Jul 0.004
Aug 0.047
Sep 0.008
Oct 0.000
Nov 0.023
Dec 0.140
Jan 0.031
Feb 0.054

B.3.16 Thompson et al. (1997): Matola, Mozmbique

Data

TABLE B.33: PfPR-incidence records from (175)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N PYO INC 1000 PYO−1 PfPR
Thompson 1997 1994 0 1 NA 70.5882 340 0.33
Thompson 1998 1994 2 4 NA 77.7778 630 0.378
Thompson 1999 1994 5 9 NA 111.5385 260 0.382
Thompson 2000 1994 10 14 NA 100 80 0.362
Thompson 2001 1994 15 19 NA 85.7143 70 0.307
Thompson 2002 1994 20 39 NA 250 40 0.3
Thompson 2003 1994 40 85 NA 100 40 0.154
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B.3. Included records

Seasonality

TABLE B.34: Seasonality profile for Matola, Mozambique

From Mendis et al. (176).
month EIR Relative transmisison
Nov 94 0 NA
Dec 94 0.75 NA
Jan 95 1.03 0.08
Feb 95 0.5 0.04
Mar 95 3.73 0.29
Apr 95 0 0.00
May 95 1.67 0.13
Jun 95 2.28 0.18
Jul 95 0 0.00
Aug 95 0.67 0.05
Sep 95 0 0.00
Oct 95 0.42 0.03
Nov 95 1.39 0.11
Dec 95 1.07 0.08
Jan 96 2.05 NA
Feb 96 4.3 NA
Mar 96 0 NA
Apr 96 0 NA

B.3.17 Trape et al. (2011): Dielmo, Senegal

Data

TABLE B.35: PfPR-incidence records from (177)

Data extracted from Battle et al. (140). LAR = Lower bound of the incidence age range, UAR = Upper bound of the
incidence age range, INC 1000 PYO−1 = incidence (number of events) per 1,000 person-years observed.

Study Year LAR UAR N PYO INC 1000 PYO−1 PfPR
Trape 2011 2007 0 4 NA 104.4493 1072.29 0.1
Trape 2011 2007 5 9 NA 93.5233 1390.03 0.16
Trape 2011 2007 10 14 NA 81.5589 662.1 0.39
Trape 2011 2007 15 29 NA 113.1233 291.72 0.31
Trape 2011 2007 30 44 NA 64.7534 324.31 0.09
Trape 2011 2007 45 85 NA 89.7616 89.12 0.11
Trape 2011 2008 0 4 NA 146.1041 20.53 0.02
Trape 2011 2008 5 9 NA 139.2411 107.73 0.04
Trape 2011 2008 10 14 NA 114.2575 87.52 0.14
Trape 2011 2008 15 29 NA 190.7726 41.93 0.1
Trape 2011 2008 30 44 NA 92.663 32.38 0.04
Trape 2011 2008 45 85 NA 136.9041 7.3 0
Trape 2011 2010 0 4 NA 20.4329 636.23 0
Trape 2011 2010 5 9 NA 18.0164 721.56 0.05
Trape 2011 2010 10 14 NA 16.1863 803.15 0.18
Trape 2011 2010 15 29 NA 26.4301 529.7 0.1
Trape 2011 2010 30 44 NA 16.7342 537.82 0.05
Trape 2011 2010 45 85 NA 22.4548 178.14 0.04
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Appendix B. Supplement to: Calibrating infctious disease models to real-world data: Context
matters

Seasonality

TABLE B.36: Seasonality profile for Dielmo, Senegal

Inferred from Trape et al. (177).
Month Relative transmission
Jan 07 0.064
Feb 07 0.075
Mar 07 0.039
Apr 07 0.059
May 07 0.270
Jun 07 0.057
Jul 07 0.139
Aug 07 0.129
Sep 07 0.081
Oct 07 0.030
Nov 07 0.020
Dec 07 0.037
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C Supplement to: Insights into data
needs for calibration and implications
for predictions

C.1 Convergence
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FIGURE C.1: Convergence plot
Weighted sum of loss functions over 11 objectives associated with the current best fit
parameter set by CPU time in seconds. Satisfactory fit of OpenMalaria refers to a weighted
sum of loss functions value of 73.2 (as defined by Smith 2012 (64)). The previous best
fit for OpenMalaria was achieved by the genetic algorithm had a loss function value of
63.7. GP-BOdrop reaches its best fit of 54.3 in iteration 20 in 6.3e5 CPU seconds (˜7 days)
compared to 58.2 for GP-BO in iteration 21 in 1.02e6 CPU seconds (˜12 days) and 59.6 for
GPSG-BO in iteration 10 in 6.00e5 CPU seconds (˜7 days). GP-BOdrop = Gaussian process
emulator Bayesian optimisation excluding contentious severe disease data point, GP-BO =
Gaussian process emulator Bayesian optimisation, GPSG-BO = Gaussian process stacked
optimisation emulator Bayesian optimisation.
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Appendix C. Supplement to: Insights into data needs for calibration and implications for
predictions

C.2 Final simulator (OpenMalaria) fit including GP-BOdrop

C.2.1 Objective 1: Age pattern of prevalence in Matsari, Nigeria during the
intervention
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FIGURE C.2: Objective 1: Age pattern of prevalence in Matsari,
Nigeria during the intervention

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameteriation (derived using optimization with a genetic
algorithm, GA-O).
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C.2. Final simulator (OpenMalaria) fit including GP-BOdrop

C.2.2 Objective 2: Age pattern of prevalence

Navrongo Rafin Marke Sugungum

Idete Matsari Namawala
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FIGURE C.3: Objective 2: Age pattern of prevalence
Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).

C.2.3 Objective 3: Age pattern of parasite densities

Navrongo Rafin Marke Sugungum

Idete Matsari Namawala

1 10 100 1 10 100 1 10 100

0.1 0.3 1.0 3.0 1 10 100 1 10 100
0

1000

2000

3000

4000

0

50

100

150

200

0

50

100

150

200

250

0

50

100

150

200

250

2000

4000

6000

0

1000

2000

3000

4000

5000

Age

D
en

si
ty

Parameterization GP−BO GP−BO (drop) GPSG−BO GA−O

Age patterns of parasite densities

FIGURE C.4: Objective 3: Age pattern of parasite densities
(geometric mean)

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).
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Appendix C. Supplement to: Insights into data needs for calibration and implications for
predictions

C.2.4 Objective 4: Age pattern of number of concurrent infections
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FIGURE C.5: Objective 4: Age pattern of number of concurrent
infections

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).

C.2.5 Objective 5: Age pattern of incidence of clinical malaria in Dielmo and
Ndiop, Senegal
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FIGURE C.6: Objective 5: Age pattern of incidence of clinical
malaria in Dielmo and Ndiop, Senegal

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).
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C.2. Final simulator (OpenMalaria) fit including GP-BOdrop

C.2.6 Objective 6: Age pattern of incidence of clinical malaria in Idete, Tanzania
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FIGURE C.7: Objective 6: Age pattern of incidence of clinical
malaria in Idete, Tanzania

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).

C.2.7 Objective 7: Age pattern of threshold parasite density for clinical attacks
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FIGURE C.8: Objective 7: Age pattern of threshold parasite density
for clinical attacks

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).
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Appendix C. Supplement to: Insights into data needs for calibration and implications for
predictions

C.2.8 Objective 8: Hospitalisation rate in relation to prevalence in children
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FIGURE C.9: Objective 8: Hospitalization rate in relation to
prevalence in children

Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).

C.2.9 Objective 9: Age pattern of hospitalisation
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FIGURE C.10: Objective 9: Age pattern of hospitalization
Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).
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C.2. Final simulator (OpenMalaria) fit including GP-BOdrop

C.2.10 Objective 10: Direct mortality in children <5 years old
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FIGURE C.11: Objective 10: Direct mortality in children <5 years old
Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).

C.2.11 Objective 11: All-cause infant mortality rate
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FIGURE C.12: Objective 11: All-cause infant mortality rate
Final simulator fit using the parameter sets yielded using GP-BOdrop, GP-BO and GPSG-
BO compared to the previous parameterization (derived using optimization with a genetic
algorithm, GA-O).
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D Supplement to: Modelling reactive
case detection strategies for
interrupting transmisson of
Plasmodium faciparum malaria

D.1 E14 to E5 conversion

E5 (OM input, in % ) E14, adjusted for treatment
failure

Reported E14, in
%

4.0 11.2 13.9
6.5 (REF) 17.6 21.8
8.0 21.1 26.0
12.0 29.7 36.7
16.0 37.3 46.1
20.0 44.1 54.6
24.0 50.2 62.1
28.0 55.7 68.9

Conversion from E5 OM input to E14 Effective care levels can be described by the following
equation, derived by fitting a 4th degree polynomial regression.

f (x) = −3.831e− 06x4 + 6.143e− 04x3 − 4.971e− 02x2 + 2.982x + 7.723e− 02

where x is the OpenMalaria input (pSeekOfficialCareUncomplicated). We found that a 4th

degree polynomial regression provided a sufficiently good fit (adjusted R2 = 0.9995) whilst
keeping the degree low compared to polynomial regressions of degrees 1 to 9. Note that
due to the maximum values of the data the regression was fitted to, it is only accurate up
to approximately 80% E14

197



Appendix D. Supplement to: Modelling reactive case detection strategies for interrupting
transmisson of Plasmodium faciparum malaria

D.2 Population attributable risk

As calculated in the EpiR package, reference: Statistics for Epidemiology by N. P. Jewell (288,
289).

Suppose the following 2 x 2 contingency table:

O+ O-

E+ a b (a+b)
E- c d (c+d)

(a+c) (b+d) n

where O is the outcome, (here: interruption of transmission) and E is the exposure (here: RCD).

The population attributable risk is given by

ÂR =
a+c

n −
c

c+d
a+c

n

=
ad− bc

(a + c) (c + d)
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D.3. EIR and case management to prevalence PfPR0-99 (mean)

D.3 EIR and case management to prevalence PfPR0-99 (mean)

FIGURE D.1: EIR and case management to prevalence PfPR0-99
(mean)

Mean all-age prevalence across five simulations with a given transmission intensity (EIR)
and case management level. Case management level is indicated as the probability that a
clinical case of malaria receives effective treatment within 14 days (E14).
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Appendix D. Supplement to: Modelling reactive case detection strategies for interrupting
transmisson of Plasmodium faciparum malaria

D.4 Prevalence

FIGURE D.2: Simulated all-age prevalence for different EIRs and
implementations of RCD

Each subplot shows the simulated all-age prevalence over time in one simulation with a
given implementation of RCD. The simulated period spans from 2017 to 2035 with RCD
being implemented between 2020 and 2030. ιmax and ν detail the implementation strategy
of RCD, where ν is the number of individuals in the search radius and ιmax is the maximum
number of index cases that can be followed up per 5-day time step. The different colours
denote different transmission intensities. Simulations were carried out at reference case
management level.
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