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A B S T R A C T   

Widespread implementation of on-site water reuse systems is hindered by the limited ability to ensure the level of 
treatment and protection of human health during operation. In this study, we tested the ability of five 
commercially available online sensors (free chlorine (FC), oxidation-reduction potential (ORP), pH, turbidity, UV 
absorbance at 254 nm) to predict the microbial water quality in membrane bioreactors followed by chlorination 
using logistic regression-based and mechanism-based models. The microbial water quality was assessed in terms 
of removal of enteric bacteria from the wastewater, removal of enteric viruses, and regrowth of bacteria in the 
treated water. We found that FC and ORP alone could predict the microbial water quality well, with ORP-based 
models generally performing better. We further observed that prediction accuracy did not increase when data 
from multiple sensors were integrated. We propose a methodology to link online sensor measurements to risk- 
based water quality targets, providing operation setpoints protective of human health for specific combina
tions of wastewaters and reuse applications. For instance, we recommend a minimum ORP of 705 mV to ensure a 
virus log-removal of 5, and an ORP of 765 mV for a log-removal of 6. These setpoints were selected to ensure that 
the percentage of events where the water is predicted to meet the quality target but it does not remains below 
5%. Such a systematic approach to set sensor setpoints could be used in the development of water reuse 
guidelines and regulations that aim to cover a range of reuse applications with differential risks to human health.   

1. Introduction 

On-site water reuse systems can offer flexible solutions to provide 
water and protect freshwater resources in water-scarce areas. The 
challenge for such systems is that microbial safety must be ensured at all 
times. Today, membrane bioreactors (MBRs) are increasingly used as a 
barrier in on-site water reuse systems – especially in small-scale systems 
with fewer than 50 people equivalent – and are considered a best 
available technology (Branch et al., 2016; Lesjean et al., 2011). Disin
fection of the water is mostly achieved through chlorination, due to its 
broad-spectrum efficacy and low cost (Ikehata et al., 2018). 

The high quality of water treated with MBR-based systems has 

multiplied the applications of reclaimed water beyond traditional reuse 
in agriculture (Angelakis et al., 2018; Chen et al., 2013), with novel 
technologies that allow to reuse water for on-site residential uses such as 
toilet flushing (Bair et al., 2015), showering (Gassie and Engelhardt, 
2017), or hand washing (Reynaert et al., 2020). In parallel, the devel
opment of quantitative microbial risk assessment (QMRA) frameworks 
for water reuse has allowed to quantify the human health risk associated 
with water reuse and to propose systematic approaches to set microbial 
treatment targets that will keep the human health risk below a certain 
benchmark (Zhiteneva et al., 2020). Differential risks to human health 
make the definition of treatment targets for water reuse more complex 
than for drinking water applications, as the targets depend on the 
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composition of the wastewater, the assumed volume of water ingested 
for a certain reuse application, and the pathogen considered. For 
instance, treatment targets will be more stringent for reuse for show
ering (assumed high volume of water ingested) compared to reuse for 
toilet flushing (assumed low volume of water ingested). 

To regulate the quality of the reclaimed water, many countries have 
issued legal and regulatory frameworks for water reuse (water reuse 
frameworks, WRFs) such as guidelines, standards, regulations, and 
codes of practice (Reynaert et al., 2021). Many of these WRFs integrate a 
fit-for-purpose approach, defining different water quality classes 
depending on the reuse application, with different requirements in terms 
of treatment technology, permissible contaminant concentrations, and 
monitoring. To date, most WRFs require regular monitoring of fecal 
indicator bacteria to verify microbial water quality. As examples, the US 
EPA Guidelines for Water Reuse recommend daily monitoring of fecal 
coliforms and the Spanish Regulations for Water Reuse bi-weekly 
monitoring of E. coli (Ministry of the Presidency Spain, 2007; US EPA, 
2012). Frequent monitoring of (only) fecal indicator bacteria as sug
gested in WRFs is problematic for two reasons:  

1. In on-site systems, laboratory-based methods may no longer be 
suitable due to economic and organizational constraints and will 
results in delayed action due to low-frequency monitoring (Reynaert 
et al., 2021).  

2. Fecal indicator bacteria do not provide information on virus removal 
and regrowth of bacteria in the treated water (Baggi et al., 2001), 
especially for MBR treatment, where bacteria are retained by the 
membrane but viruses may pass. 

Finding adequate solutions for the monitoring of the microbial water 
quality would solve a major bottleneck for the widespread imple
mentation of on-site water reuse technologies (Zhang et al., 2020). 
Online sensors and remote monitoring offer an opportunity for the 
management of on-site water reuse technologies to ensure treatment 
performance and protect public health. However, most WRFs do not 
provide quality targets for parameters indicative of microbial water 
quality that can be measured online. In light of increasingly diverse 
reuse applications, there is a need for flexible approaches to link sensor 
target stringency directly with differential risks to human health. 

Online monitoring and control systems based on the oxidation- 
reduction potential (ORP) or free chlorine (FC) exist for various appli
cations, and have been implemented for wastewater effluent chlorina
tion (WERF, 2005) or swimming pool disinfection (Steininger, 1990) for 
decades. The current work expands this concept for online monitoring 
and control strategies for on-site water reuse systems using membrane 
bioreactor an chlorination treatment (MBR+chlorine). 

We investigated the relationships between five commercially avail
able and widely used online sensors – FC, ORP, pH, turbidity, and UV 
absorbance at 254 nm (UV254) – and the water quality using statistical 
and mechanism-based approaches. The microbial water quality is 
assessed in terms of (i) removal of enteric bacteria from the wastewater, 
(ii) removal of enteric viruses, and (iii) bacterial regrowth in the treated 
water. 

2. Materials and methods 

2.1. MBR+chlorine system 

The MBR+chlorine system used in this study is referred to as Water 
Wall (Reynaert et al., 2020, www.autarky.ch). The Water Wall consists 
of two main components: the core treatment takes place in a biologically 
activated membrane bioreactor (BAMBi, Künzle et al., 2015), after 
which the water is further treated and disinfected using granular acti
vated carbon (GAC) and chlorine in a clean water tank (CWT, Fig. 1). 

The BAMBi contained a standing sandwich membrane module 
(Microclear MCXL, Newterra, Langgöns, Germany) featuring a 150 kDa 

polyethersulfone ultrafiltration membrane (Microdyn-Nadir, Wiesba
den, Germany). Aeration was provided directly below the membrane 
module at a rate of 5 L/min. The BAMBi was operated in a gravity-driven 
membrane (GDM) configuration, where the transmembrane pressure is 
due to the water head (Peter-Varbanets et al., 2010). Water that passed 
through the membrane was collected in a permeate reservoir (10 cm 
polyvinyl chloride pipe connected to the membrane module permeate 
outlet, holding volume of 4 L), from where it was pumped through a 
GAC filter (Norit 830, ~1.5 mm grain diameter, Cabot, Boston, USA) to 
the CWT every 13 min. In the CWT, a concentrated NaOCl solution 
(1’750 mg Cl2/L) was pumped into the tank at regular intervals. The 
pumping intervals were varied during the experiments to achieve a 
range of free chlorine concentrations in the CWT (0-2 mg/L). Mixing in 
the CWT was ensured through a submersed pump that was turned on for 
30 s every 5 min. The tank volumes were 60 L water for the BAMBi and 
25 L for the CWT, with an average hydraulic residence time (HRT) of 5 h 
in the CWT. 

To study the effect of treating different types of water input, two 
Water Wall systems were operated in parallel in this testing: one with 
controlled feeding of handwashing greywater, and the other with toilet 
flush water (separated from the major part of urine and feces). The 
compositions of the 20x concentrated feed solutions are presented in SI 1 
(Supplementary Information). For each reactor, a total of 3.75 L/day of 
concentrated feed was pumped into the BAMBi in a series of 50 feedings, 
evenly distributed throughout the day. This daily feed represents the 
loading that would be introduced to a total of 75 L water of real hand 
washing or source-separated toilet flush water. The same amount of 
water was removed from the system to maintain a constant volume. 
Other than changes in the chlorination (pumping intervals of the chlo
rine dosing pump to achieve a range of microbial water qualities), both 
Water Walls were operated under stable conditions throughout the 
testing. 

2.2. Physicochemical water quality 

2.2.1. Online monitoring 
Water from the CWT was constantly recirculated through flow cells 

equipped with a range of online sensors (flow rate 0.5 L/min, flow cell 
volume 0.25 L, corresponding HRT 0.5 min). Flow cells were used to 
house the online sensors because of the limited space in the CWT and to 
improve access and control of sensors. Selection criteria for these sensors 

Fig. 1. Process schematic for the biologically activated membrane bioreactor 
(BAMBi) configured with granular activated carbon (GAC) and chlorination 
post-treatment with a concentrated NaOCl solution. The clean water tank 
(CWT) is positioned above the BAMBi, so that the overflow water from the CWT 
can flow into the BAMBi. Water from the CWT is constantly recirculated 
through a flow cell containing a range of commercially available online sensors. 
In this laboratory setup, concentrated feed (representing handwashing or 
source-separated toilet flush water) is added to the BAMBi, with the same 
amount of water being removed from the CWT (waste). 
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were (i) commercial availability, with (ii) appropriate costs and di
mensions for implementation in on-site applications, and (iii) expected 
mechanistic relationships between the sensor measurements and mi
crobial water quality. Based on these criteria, five sensors were selected: 
ORP, FC, pH, turbidity and UV254 (Table 1). The proposed approaches 
to set sensor target values are, however, generalizable to novel sensors 
that may be more widely available in the future (e.g., fluorescence 
sensors). 

2.2.2. Offline monitoring 
Samples for dissolved organic carbon (DOC), nitrite, nitrate and 

ammonium measurements were filtered at 0.45 μm (Nanocolor Chro
mafil membrane filter GF/PET 0.45 μm, Macherey Nagel, Düren, Ger
many) for sample conservation and stored at 4◦C before the chemical 
analysis. DOC was measured using a total organic carbon analyzer 
(Shimadzu TOC-L, Kyoto, Japan). Ammonium was measured by gas- 
diffusion flow injection (Foss, Hillerød, Demark). Nitrite and nitrate 
were measured by means of ion chromatography (Metrohm 881, Her
isau, Switzerland). 

Free and total chlorine were measured immediately after sampling 
using a portable spectrophotometer (DR 1900, Hach, Loveland, USA) 
with corresponding test kits (DPD, 0–2 mg/L free chlorine, Hach, 
Loveland, USA). 

2.3. Microbial water quality 

Microbial water quality samples were taken under stable reactor 
operation, with constant chlorine concentrations for at least three HRT 
(~15 h) in the CWT. 

E. coli was used as an indicator for the removal of enteric bacteria 
from the wastewater. Samples from the concentrated feed and from the 
CWT were analyzed following the US EPA method 1603 (E. coli in water 
by membrane filtration). E. coli was used as an indicator for the removal 
of enteric bacteria from the wastewater, consistent with the use of E. coli 
or other fecal bacteria indicators (fecal coliform, total coliform, 
enterococci) within WRFs (e.g., US EPA, 2012). In short, the water 
samples were filtered through a membrane (S-Pak-Filter, 0.45 µm, Mil
lipore Sigma, Burlington, USA) that was placed on m-TEC ChromoSelect 
agar (Millipore Sigma, Burlington, USA) and incubated at 44◦C for 24 
hours. The colony-forming units (CFU) on the plates were then 
enumerated. For the CWT, 100 mL of undiluted sample was analyzed, 
while the concentrated wastewater needed prior dilution (1:250’000 to 
1:2’500’000) before analysis. 

The bacteriophage MS2 was used as an indicator for the removal of 
enteric viruses from the wastewater. MS2 (ATCC 15597-B1) and its 
associated E. coli host (ATCC 700891) were purchased from the Amer
ican Type Culture Collection (ATCC). MS2 stock solution was prepared 
by amplifying the initial MS2 stock solution in 1 L of E. coli culture. The 
double agar layer assay was used to enumerate infectious bacterio
phages as plaque forming units (PFU) following the US EPA Method 

1602. Briefly, 100 µL of E. coli host were mixed in soft agar (0.7% agar) 
and poured onto a hard agar plate (1.5% agar). Different from the 
described protocol, the MS2 sample was spotted onto the agar plate 
rather than mixing it with the soft agar, allowing to process multiple 
dilutions easily. 

The overall log-removal value (LRV) of E. coli and MS2 was calcu
lated according to Eq. (1): 

LRVoverall = − log10
NCWT

Nfeed
/
fconc

(1)  

where NCWT and Nfeed are the microbial indicator concentrations in the 
CWT and concentrated feed, respectively, and fconc is the concentration 
factor of the feed (20). When no indicators were detected in the CWT, 
the detection limits (1 CFU/100mL for E. coli, 10 PFU/mL for MS2) were 
used to calculate the LRVs. In this case, the reported LRVoverall is reported 
as greater than the maximum detectable LRV. 

The intact cell concentration (ICC) was used to indicate bacterial 
regrowth in the CWT. The ICC was determined with a flow cytometer 
(Cytoflex, Beckman Coulter, Brea, California, USA) using SYBR® Green I 
stain (ThermoFisher Scientific, Waltham, Massachusetts, USA) and 
propidium iodide (ThermoFisher Scientific, Waltham, Massachusetts, 
USA). Flow cytometry analysis was selected for bacterial quantification 
because of the simplicity and speed of processing large numbers of 
samples (relative to sequencing or qPCR techniques) and the ability to 
quantify bacteria that are not culturable using heterotrophic plate 
counts (Van Nevel et al., 2017). Flow cytometry has also been demon
strated to descriptively quantify changes in cell concentrations in system 
using chlorination or electrolysis as post-treatment (Ziemba et al., 
2019). The detection limit of flow cytometry in this study was 29 
cells/mL. 

2.4. Calculation of sensor target values 

Sensor target values were calculated for a range of log-removal tar
gets (LRTs) for E. coli and MS2 and of allowable concentrations for ICC 
(upper and lower limits determined through the detection limits of the 
methods and concentrations of indicators in the feed), using a statistical 
approach and a mechanism-based approach. 

2.4.1. Logistic regression model to determine sensor target values 
Logistic regression is a classification algorithm that predicts the 

probability p of a binary outcome (water quality meeting a certain target 
or not) based on one or more independent variables (sensor measure
ments). The binary outcome is the dependent variable, which is based on 
a binary classification of whether (1, safe) or not (0, unsafe) the 
acceptable microbial target is met for each observation within the 
dataset. The accuracy of prediction was calculated using leave-one-out 
cross validation. The leave-one-out cross validation procedure is 
appropriate for relatively small datasets, when an accurate estimate of 

Table 1 
Specifications and expected link to microbial water quality of the sensors installed in the MBR+chlorine systems. E+H: Endress+Hauser, Reinach, Switzerland.  

Measurement Sensor specification Measurement principle Expected link to microbial water quality 

Free chlorine (FC) Digital free chlorine sensor 
Memosens CCS51D, E+H 

Closed, membrane-covered measuring cell; 
reduction of free chlorine at the cathode 

Free chlorine is the most effective chlorine form in disinfection 
with sodium hypochlorite (Kim and Hensley, 1997) 

Oxidation-reduction 
potential (ORP) 

Ceragel CPS72D, E+H Ceramic diaphragm double chamber and double 
gel reference Platinum-ring 

Measurement of the oxidizing or reducing tendency of the water, 
for chlorinated systems: oxidative capacity of all chlorine species ( 
James et al., 2004) 

pH Orbisint CPS11D, E+H Gel compact electrode with PTFE ring- 
diaphragm 

Information on speciation of free chlorine (i.e., disinfection 
potential of the free chlorine) (Cherney et al., 2006) 

Turbidity Turbimax CUS52D, E+H Nephelometric turbidity sensor (90◦ scattering) 
according to ISO7027 

Turbidity can be linked to the chlorine demand of the water ( 
LeChevallier et al., 1981) and to bacteria concentrations (Hess 
et al., 2021) 

UV254 (only in system 
treating toilet flush 
water) 

spectro::lyser, s::can, 
Vienna, Austria 

UV absorbance at 254 nm (in principle: full UV- 
VIS spectra, but used as a proxy for a lower-cost 
sensor) 

UV absorbance at 254 nm is a proxy for organic matter in the water 
and can correlate with bacteria and virus concentrations(Van Den 
Broeke et al., 2006)  
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model performance is required (Wong, 2015). The accuracy obtained 
with single sensors was compared with the best-performing combination 
of sensor measurements (except UV254) computed with the R package 
MuMIn (1.43.17) (Barton, 2022). UV254 was excluded, as there were 
significantly fewer data points available for this sensor (implemented 
only in the MBR+chlorine system treating toilet flush water). The error 
matrix presented in Table 2 was used to evaluate the models. 

The false safe rate (FSR) and the false unsafe rate (FUR) were 
calculated as: 

FSR =
FS

FS+ TU
(2)  

FUR =
FU

FU + TS
(3) 

When computing logistic regression models based on only one sensor 
input (required for the calculation of sensor targets), the logistic 
regression equation has two parameters, α and β: 

p =
1

1 + e− (α+βx) (4) 

The goodness of fit was evaluated using McFadden’s Pseudo-R2 

(Smith and McKenna, 2013). Bootstrapping (R package boot version 
1.3-28, 100’000 iterations) was used to calculate the 90% confidence 
intervals. Sensor target values were set to meet a 95% percent proba
bility (lower confidence interval) that the water quality meets the mi
crobial targets, i.e., for p = 0.95, 

xtarget =
− ln

(
1

0.95 − 1
)
+ α

β
(5) 

This approach implies that the allowed FSR (sensor measurement 
predicts that the water quality meets a certain target when it does not) is 
5%. 

2.4.2. Mechanism-based sensor target values 
Relevant processes for the determination of mechanism-based sensor 

target values were: (a) retention/inactivation of bacteria and viruses in 
the MBR, (b) inactivation of bacteria and viruses during chlorination in 
the CWT, and (c) net regrowth of bacteria in the CWT.  

(a) The LRV for retention/inactivation in the MBR was calculated as 

LRVMBR = − log10

(
Npost− MBR

Nfeed
/
fconc

)

(6)   

where Npost− MBR refers to the microbial indicator concentration after 
passage through the MBR (theoretical concentration in CWT without 
disinfection and without regrowth), and Nfeed/fconc corresponds to the 
microbial indicator concentration in the diluted feed (see above).  

(b) The LRV for inactivation in the CWT was based on a Chick- 
Watson model for disinfection: 

− log10

(
N(t)

NCWT− steady,w/oCl2

)

= kCnt (7)   

where N(t) is the microbial indicator concentration after contact time t, 
NCWT− steady,w/oCl2 is the steady-state microbial indicator concentration in 
the CWT without chlorination, k is a reaction constant, C represents the 
disinfectant concentration/capacity, and n is the coefficient of dilution 
(a fitting parameter). 

Chick-Watson models have mainly been used with the chlorine 
concentration as a measure of disinfection capacity (Peleg, 2021). In this 
study, we also included the ORP as a measurement of disinfection ca
pacity. This needed an expansion of the Chick-Watson model for mea
sures of the disinfection capacity that are not zero without disinfection, 
accounting for a baseline measurement of disinfection capacity: 

− log10

(
N(t)

NCWT − steady,w/oCl2

)

= k(C − Cbaseline)
nt (8)  

where Cbaseline is the disinfectant capacity without chlorination. 
Chick-Watson models have been used to model the dynamics of 

disinfection over time. Testing in our MBR+chlorine systems showed 
that the concentrations of microbial indicators stabilize for long contact 
times (results in SI 2). This is also in accordance with a study from 
Cheswick et al. (2020), which shows that the ICC stabilizes at different 
values for different chlorine concentrations and from Hornstra et al. 
(2011), which shows strong tailing for MS2 disinfection at low con
centrations of chlorine dioxide. 

The Chick-Watson model was adapted to account for this time- 
independent disinfection, assuming that after a time tsteady << HRT, 
microbial indicator concentrations stabilize and we reach the maximum 
LRV due to disinfection. 

LRVdisinfection = − log10

(
NCWT − steady

NCWT − steady,w/oCl2

)

= k
′

(C − Cbaseline)
n (9)  

where NCWT− steady represents the microbial indicator after time tsteady (i. 
e., steady-state concentration in CWT) and k′

= ktsteady. 
The conditions for using Eq. (9) are that NCWT− steady > 0 and C >

Cbaseline (otherwise LRVdisinfection= 0).  

(c) The net regrowth at steady state can be calculated as (condition: 
Npost− MBR > 0): 

RGsteady = log10
(
NCWT − steady,w/oCl2

/
Npost− MBR

)
(10)   

where RGsteady is the (net) regrowth at steady-state. 
Combining the three mechanism-based model parts, the final equa

tions are: 

LRVoverall = LRVMBR + LRVdisinfection − RGsteady (11)  

NCWT − steady = NCWT − steady,w/oCl2 − NCWT− disinfected (12) 

NCWT− disinfected represents the concentrations of indicator organisms 
inactivated by disinfection, which we can rewrite as (using Eq. (9)): 

Table 2 
Error matrix.  
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NCWT − disinfected = NCWT − steady,w/oCl2 − NCWT − steady

= NCWT − steady,w/oCl2 − 10LRVdisinfection ⋅NCWT− steady,w/oCl2 (13) 

Inserting Eq. (13) into Eq. (12) and taking the logarithm, we can 
rewrite the steady-state concentration as: 

log10
(
NCWT − steady

)
= log10

(
NCWT− steady,w/oCl2

)
− LRVdisinfection (14) 

These equations can further be simplified for the specific microbial 
indicators: 

Removal of E. coli: 

Fig. 2. Log-removal values (LRV) for E. coli, LRV for MS2 and log10-value of ICC as a function of the oxidation-reduction potential (OPR), free chlorine, pH, turbidity 
and UV absorbance at 254 nm (UV254, with arbitrary units a.u.). p-value: significance of Spearman’s rank correlation (p ≤ 0.001 is considered significant and 
highlighted in green). For LRV E. coli, all values are maximum detectable LRVs (no E. coli detected post-membrane). 
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NCWT− steady and NCWT− steady,w/oCl2<1 CFU/100 mL, due to complete 
retention in the MBR (see Results section 3.2), so there is no regrowth 
and removal through disinfection in the CWT. 

LRVoverall,E.coli = LRVMBR = − log10

(
1

Nfeed
/
fconc

)

(15) 

Removal of MS2: 
Growth of MS2 is assumed to be nonexistent or negligible, given the 

absence of detectable E. coli (as the required MS2 host) in the CWT. We 
can thus replace Npost− MBR (not measured) with NCWT− steady,w/oCl2 

(measured): 

LRVoverall,MS2 = LRVMBR + LRVdisinfection

= − log10

(
NCWT − steady,w/oCl2

Nfeed
/
fconc

)

+ k
′

(C − Cbaseline)
n (16) 

Regrowth of ICC: 

log10
(
NCWT − steady

)
= log10

(
NCWT − steady,w/oCl2

)
− k′

(C − Cbaseline)
n (17) 

The parameters Cbaseline and NCWT− steady,w/oCl2were calculated as the 
average values of the respective measurements when the systems were 
operated without chlorination. The constants k′ and n were chosen such 
as to optimize the fit of (C − Cbaseline) vs LRVdisinfection using the function nls 
(nonlinear least squares) from the R package stats (version 4.1.0). 
Assuming a normal distribution of the errors, the 90% confidence in
tervals were calculated by multiplying the standard deviation of the fit 
with a z-score of 1.65. 

3. Results 

3.1. Reactor operation 

The operation of the MBR+chlorine system treating source- 
separated toilet flush water was stable over the four months of experi
ments, with DOC concentrations consistently below 3 mgC/L and 
ammonium mostly below the limit of detection of 0.02 mgN/L in the 
permeate (see SI 3). In contrast, DOC and ammonium concentrations in 
the MBR+chlorine system treating handwashing water were more var
iable, with increased concentrations (up to 13 mgC/L DOC and 27 mgN/L 
ammonium) during the first weeks of operation, and another peak to
wards the end of the experiments. During these periods, there was no FC 
in the treated water, however, there were varying concentrations of 

combined chlorine. The pH measurements ranged between 6.8 and 7.7 
for the system treating toilet flush water and between 7.0 and 7.7 for the 
handwashing water system, implying that the speciation of the hypo
chlorous acid (pKa = 7.5) varied during the experiments. The full dataset 
collected for this study can be found under doi.org/10.25678/0007NQ. 

3.2. Relationships between sensor measurements and microbial indicators 

Fig. 2 presents the fifteen relationships (five sensors vs. three mi
crobial indicators) that were investigated. As there were limited sys
tematic differences between the datasets (p-value of t-test > 0.05 for all 
parameters, except of pH, where p = 0.0038), the further data analysis 
was done on the combined dataset. Cross-correlation plots showing the 
relationship between all parameters are presented in SI 4. 

E. coli was not detected post-membrane. This means that the 
maximum detectable LRV was determined by the concentration of E. coli 
in the concentrated feed and the method’s limit of detection and was 
thus not related to any of the sensor measurements in the treated water. 
Sensor measurements that were significantly correlated with LRV MS2 
and log10ICC (Spearman’s rank correlation, p ≤ 0.001) included ORP 
and FC. In contrast, the pH value, turbidity and UV254 were not 
significantly correlated with any of the microbial indicators. 

3.3. Logistic regression-based sensor target values 

For a range of microbial water quality targets, the dataset was clas
sified into the binary categories 0 (water quality does not meet microbial 
target; unsafe) and 1 (water quality meets microbial target; safe). Lo
gistic regression equations were computed for each microbial target. For 
MS2, logistic regressions were computed for LRVs between 4 and 6.5. 
For ICC, logistic regressions were computed for log10-concentrations 
between 3.5 and 6 (see Table 3 for selection of relevant ranges). Table 3 
presents the accuracy of prediction (percentage of correct predictions 
out of all predictions) for these logistic regression models based on only 
ORP or FC (significantly correlated with microbial water quality) 
compared to the best-performing combination of sensors using leave- 
one-out cross-validation. With one exception (log10 ICC ≤ 3.5), the 
largest difference between the better-performing single-sensor model 
and the best-performing combination of sensors is 4%. However, it was 
not always the same sensor, ORP or FC, which had the higher accuracy. 
ORP and FC alone can thus predict the microbial water quality nearly as 
well as the combination of all sensors. 

Table 3 
The accuracy of prediction (using leave-one-out cross-validation) of logistic regression models based on single sensors (ORP: oxidation reduction potential and FC: free 
chlorine) compared to the best-performing combination of sensors (without UV254). LRT: log-removal target. ICC: intact cell concentration. Cond: conductivity. Turb: 
turbidity.   

ORP FC Best model Sensors included in best model 

LRT MS2     
≥ 3.5 LRV MS2 can be up to 3.5 without disinfection 
≥ 4 100% 74% 100% ORP + pH 
≥ 4.5 100% 74% 100% ORP + pH 
≥ 5 82% 93% 93% FC 
≥ 5.5 74% 72% 74% ORP 
≥ 6 73% 65% 74% ORP + Cond + pH 
≥ 6.5 73% 67% 74% ORP + Cond + pH 
≥ 7 Sensor target value is above maximum measurements 
log10 ICC     
≤ 3 close to the limit of detection for ICC 
≤ 3.5 69% 61% 100% ORP + pH 
≤ 4 76% 74% 77% ORP + FC 
≤ 4.5 100% 76% 100% ORP + pH 
≤ 5 81% 75% 81% ORP 
≤ 5.5 63% 66% 70% FC + pH + Turb 
≤ 6 64% 64% 65% pH 
≤ 6.5 max log10ICC is 6.3  
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Fig. 3 presents the logistic regression models for the four combina
tions of sensor measurements and microbial indicators that are signifi
cantly correlated. The pseudo-R2 is above 0.4 for all but one microbial 
target (log10ICC = 6), indicating a very good fit according to Louviere 
et al. (2000). For some regressions, the sensor measurements could be 
divided into two perfectly separated clusters, resulting in a pseudo-R2 of 
1 (perfect fit). A perfect fit implies that the error on the model can no 
longer be directly calculated due to a lack of data in the transition range. 
Bootstrapping was thus used to calculate the 90% confidence intervals. 
As can be seen in Fig. 3, bootstrapping produces relatively narrow 
confidence intervals for perfect separation, due to the limited data res
olution in the transition range. 

For regressions with a good fit (Pseudo-R2 > 0.4), sensor target 
values for ORP and FC were set to meet a 95% percent probability that 
the water quality meets the microbial targets (using the lower bound of 
the confidence interval). The sensor target values for ORP and FC are 
presented in Table 4(A). The selected 95% probability reduces the FSR 
(i.e., model predicts safe water when it is not) to a maximum of 5% for 
the entire data set. However, this comes at the cost of an elevated FUR 
(up to 40%), indicating that in some cases, the microbial targets are met 

at lower sensor values than the set sensor target. While the recom
mended sensor targets are consistent for the LRT of MS2 (increasing for 
increasingly stringent quality targets), some targets could not be 
calculated for ICC (recommended target values exceeding maximum 
measurements; fit of regression too poor). One value stands out for ICC: 
the ORP target of 605 mV (range 600-620 mV) for a log10ICC ≤ 4.5 is 
lower than the recommendation for a log10ICC ≤ 5 (690 mV, 605-720 
mV), however, the ranges of ORP targets overlap. This inconsistency is 
due to the perfect separation of the data set for the log10ICC ≤ 4.5, where 
bootstrapping likely underestimates the 90% confidence interval. 

3.4. Mechanism-based sensor target values 

Fig. 4 presents the results for the mechanism-based disinfection 
models for MS2 and ICC. For E. coli, the model would predict a constant 
removal independent of the sensor measurements, as E. coli was 
consistently removed by the MBR. When using ORP as a predictor for the 
microbial indicators, the disinfection model predicts a constant LRV of 
1.7 for MS2, respectively a constant concentration of intact cells of 5.4- 
log up to the ORP baseline value of 450 mV. Above this baseline value, 

Fig. 3. Logistic regression models for LRV of MS2 and log10-value of ICC as a function of the oxidation-reduction potential (ORP) and free chlorine concentrations. 
LRT: log-removal target for MS2. 0 = microbial indicator does not meet the microbial water quality target, 1 = meets target. α and β are parameters for the logistic 
equation, while McFadden’s Pseudo-R2 evaluates the goodness of fit. The grey areas represent bootstrapped 90% confidence intervals. Blue filled circle: reactor 
treating handwashing water. Blue crossed circle: reactor treating source-separated toilet flush water. 
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Table 4 
Oxidation-reduction potential (ORP) and free chlorine sensor target values with 90% confidence interval for a range of microbial targets for LRV MS2 and log10-value of ICC, based on logistic regression models (A) or 
mechanism-based models (B). ORP: rounded to next 5 mV. FC: rounded to next 0.05 mg/L. ACC: overall accuracy of prediction. FSR: false safe rate (model predicts safe water when water is not safe). FSR was defined to be 
≤ 5% for the logistic regression model. FUR: false unsafe rate (model predicts unsafe water when water is safe). ACC, FSR and FUR all reported for the upper bound of the 90% confidence intervals. Bold: recommended 
sensor target values.    

A. Logistic regression model  B. Mechanism-based model   
ORP [mV] Free chlorine [mg/L]  ORP [mV] Free chlorine [mg/L]   
Target ACC FSR FUR Target ACC FSR FUR  Target ACC FSR FUR Target ACC FSR FUR 

LRT MS2                   
≥ 3.5  LRV MS2 can be up to 3.5 without disinfection  LRV MS2 can be up to 3.5 without disinfection 
≥ 4  605 

(600-620) 
100% 0% 0% 0.3 

(0.15-0.35) 
77% 0% 23%  580 

(510-645) 
100% 0% 0% 0.07 

(0.02-0.6) 
71% 0% 29% 

≥ 4.5  605 
(600-620) 

100% 0% 0% 0.3 
(0.15-0.35) 

77% 0% 23%  605 
(540-675) 

97% 0% 3% 0.11 
(0.03-0.81) 

69% 0% 31% 

≥ 5  680 
(610-695) 

94% 0% 6% 0.3 
(0.2-0.4) 

80% 0% 20%  635 
(565-705) 

94% 0% 6% 0.17 
(0.03-1.08) 

65% 0% 35% 

≥ 5.5  690 
(620-705) 

97% 0% 3% 0.5 
(0.2-0.85) 

71% 0% 29%  665 
(595-735) 

91% 0% 9% 0.26 
(0.03-1.4) 

66% 0% 34% 

≥ 6  745 
(685-765) 

85% 0% 15% 0.6 
(0.25-0.95) 

71% 0% 29%  695 
(625-765) 

85% 0% 15% 0.38 
(0.04-1.78) 

63% 0% 37% 

≥ 6.5  745 
(685-765) 

85% 0% 15% 0.6 
(0.25-0.95) 

71% 0% 29%  720 
(650-790) 

70% 0% 30% Sensor target values > max sensor measurements 

≥ 7  Sensor target value > max sensor measurements  Sensor target value is above maximum measurements 
log10 ICC                   
≤ 3  Close to the limit of detection for ICC  Close to the limit of detection for ICC 
≤ 3.5  Sensor target values > max sensor measurements  Sensor target values > max sensor measurements 
≤ 4  745 

(615-780) 
60% 0% 40% Pseudo-R2 < 0.4  685 

(585-775) 
69% 0% 31% 0.28 

(0.03-1.86) 
57% 0% 43% 

≤ 4.5  605 
(600-620) 

100% 0% 0% 0.26 
(0.13-0.32) 

83% 0% 17%  625 (500-715) 92% 0% 8% 0.08 
(0.02-0.91) 

66% 0% 34% 

≤ 5  690 
(605-720) 

85% 0% 15% 0.27 
(0.13-0.35) 

79% 0% 21%  545 
(450-655) 

96% 0% 4% 0.03 
(0.02-0.40) 

77% 0% 23% 

≤ 5.5  560 
(480-630) 

77% 0% 23% 0.07 
(0.03-0.13) 

79% 0% 21%  450 
(450-585) 

77% 0% 23% 0.02 
(0.02-0.12) 

77% 0% 23% 

≤ 6  Pseudo-R2 < 0.4  450 
(450-500) 

63% 2% 35% 0.02 
(0.02-0.04) 

72% 2% 26% 

≤ 6.5  Max log10ICC is 6.3  Max log10ICC is 6.3  
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there is an almost linear relationship between ORP and both microbial 
indicators, as the optimal dilution coefficient n in Eq. (9) is close to 1. 
When using FC as a predictor, the disinfection model predicts a constant 
LRV of 1.7 for MS2, respectively a constant concentration of intact cells 
of 5.4-log up to the FCbaseline value of 0.02 mg/L. Above this baseline 
value, the microbial indicators are related to (FC-FCbaseline)0.3, where 0.3 
is the optimal dilution coefficient. The mechanism-based sensor target 
values (with 90% confidence intervals) are presented in Table 4(B). 

Note: the disinfection model implicitly assumes that 

(ORP − ORPbaseline)
nORP = K(FC − FCbaseline)

nFC (18)  

where K = k′

ORP/k′

FC. This assumption is discussed in SI 5. 

3.5. Comparison of recommended sensor target values 

The sensor target values Table 4 were set in a way to minimize the 
FSR (situations where the sensor value would predict safe water when 
the water is not safe) to 5%. This comes at the cost of overall accuracy, as 
there are many events where the water is safe even at lower sensor 
values. 

Sensor targets for ORP predicting LRV MS2 are generally consistent 
between the logistic regression models and the mechanism-based model, 
with somewhat higher ORP targets for the mechanism-based models, 
which are thus recommended as target values (bold values in Table 4). In 
contrast, there are some differences between ORP targets predicting 
log10ICC. This is mainly due to the inconsistencies of the logistic 
regression models due to perfect separation of the dataset (see Section 
3.3). For this reason, the mechanism-based sensor target values are 
recommended. 

FC sensor target values using the mechanism-based models are 
almost twice as high as those from the logistic regression models (for 

both LRV MS2 and log10ICC). These higher targets for the mechanism- 
based model can be attributed to the high standard deviation of the 
FC measurements, leading to wide confidence intervals for the 
mechanism-based model. Here, the more conservative target values 
from the mechanism-based models are selected, too, as they better 
reflect the variation of FC measurements at low FC values. For the lo
gistic regression-based models, there is a loss of information on the 
variability of the microbial water quality due to the binary classification. 

4. Discussion 

4.1. Interpretation of E. coli (removal of enteric bacteria) vs. MS2 
(removal of enteric viruses) vs. ICC (regrowth) 

In the tested MBR+chlorine systems, E. coli was consistently 
removed by the MBR. The quantifiable LRV was thus limited by the 
concentration in the feed, and the reported LRV has to be interpreted as 
a maximum-detectable LRV. This result was expected, as the nominal 
membrane pore size (~0.04 µm) is more than one order of magnitude 
smaller than the size of E. coli (~1 µm). While E. coli (or other enteric 
bacteria indicators) can be used to verify membrane integrity, it cannot 
be used to evaluate the overall performance of a functioning 
MBR+chlorine system inclusive other microbial threats including virus. 
Therefore, E. coli is not useful as the sole indicator for the determination 
of sensor target values. 

Unlike E. coli, the enteric virus indicator MS2 concentrations in the 
CWT varied as a function of the operation of the MBR+chlorine systems. 
The calculated LRVs are thus meaningful and can be compared with 
LRTs determined through QMRA. For water reuse systems, such LRTs 
are usually calculated for specific combinations between a water source 
(e.g., greywater) and a reuse application (e.g., toilet flushing). The 
presented relationships between sensor measurements and LRVs can 

Fig. 4. Mechanism-based models for LRV of MS2 and log10-value of ICC as a function of ORP and free chlorine concentrations for the disinfection part. Blue line: 
model prediction. Blue filled circle: reactor treating handwashing water. Blue crossed circle: reactor treating source-separated toilet flush water. Grey area: 90% 
confidence interval. 
Note: the disinfection model implicitly assumes that. 
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then be used to select a sensor target value for specific combinations of 
wastewater sources treated in a MBR+chlorine system and aiming to 
produce water for a certain reuse application. 

In contrast, it is not possible to set concentration targets for ICC 
based on QMRA, as the ICC does not necessarily indicate presence or 
concentration of pathogens, and is thus not directly linked to microbial 
risk. However, several studies have suggested that ICC can be used to 
evaluate process performance (Cheswick et al., 2019; Van Nevel et al., 
2017). While the ICC may vary between water reuse systems, there 
should not be abnormal changes in ICC in the same system during 
normal operation. We can thus define sensor target values that will 
ensure that the typical ICC (for a specific system) is not surpassed. 

4.2. Best-performing sensors to predict the microbial water quality 

Our results show that ORP and FC are closely linked to the microbial 
water quality, while turbidity and UV254 are not. Combining informa
tion from multiple sensors did not generally improve the prediction 
accuracy of logistic regression models. 

4.2.1. ORP and FC are closely linked to the microbial water quality 
ORP and FC were the only two sensors that were significantly linked 

to the microbial water quality, with ORP-based models generally per
forming better (perfect separation of the data for many logistic regres
sion models, lower relative standard deviation for mechanism-based 
models). This closer relationship for ORP compared to FC is supported 
by three theoretical considerations:  

1. FC is the sum of hypochlorous acid (HOCl) and hypochlorite (OCl− ). 
The speciation between these two compounds is determined by the 
pKa (~7.5) and is thus pH-dependent. HOCl is the stronger disin
fectant of the two species, with a specific lethality for viruses and 
bacteria that is around 100x higher than for OCl− (Kim and Hensley, 
1997). This pH-dependence of the disinfection capacity of the FC is 
accounted for in the ORP measurements, as OCl− has a lower stan
dard oxidation potential than HOCl (Kim and Hensley, 1997).  

2. In the presence of ammonium, there is formation of chloramines, 
which also act as disinfectants, but are much less efficient than FC 
(Kim and Hensley, 1997). Measured free chlorine does not account 
for the disinfection by chloramines. In contrast, this increased 
disinfection capacity is accounted for in the ORP measurement, as 
the oxidation capacity of the chloramine is included in the overall 
ORP.  

3. The response of ORP to chlorine is logarithmic (Nernst equation), 
which allows for an accurate detection of low chlorine concentra
tions. This advantage of ORP compared to FC is also visible in Fig. 3, 
where a complete separation of the microbial water quality in
dicators based on ORP is possible, but not based on FC, leading to a 
higher accuracy of prediction for models using ORP as an input to 
predict the microbial water quality. 

The dataset used in this study captures the variability of the FC 
disinfection capacity due to changes in the pH and changes in chlora
mine concentrations, as the testing was done under variable pH con
centrations (above and below the pKa) and included occurrence of 
ammonium in the treated water (see SI 3). The superiority of ORP as a 
measure of disinfection capacity has also been observed and commented 
in other laboratory studies (Kim and Hensley, 1997; Victorin et al., 
1972). 

For the practical implementation of ORP and FC sensors, two addi
tional factors become important besides the strength of the link between 
sensor measurements and the microbial water quality: (1) most FC 
sensors cannot be implemented without an online measurement of the 
pH (to transform HOCl concentration into FC), which requires regular 
calibration, or are only applicable in a restricted pH range (e.g., 3-elec
trode sensors typically working for pH 6-9). (2) Non-chlorine based ORP 

may interfere with the ORP measurements. A study conducted by the 
Water Environment and Reuse Foundation sought to determine whether 
ORP or FC is better suited to control chlorine dosing in wastewater 
treatment plant effluents (WERF, 2005). The study concludes that for 
the chlorination of wastewater treatment plant effluents no technology 
was clearly superior for all criteria considered (provide information to 
meet effluent requirements; provide process control system reliability; 
minimize requirements; and minimize chemical use). However, ORP 
had a lower correlation with fecal coliforms in the chlorinated water. 
The main reason stated for the poorer performance of ORP were fluc
tuations of the ORP in the wastewater (between ~200 mV and 500 mV), 
as a result of the weather conditions (dry vs. wet) and of industrial 
discharge. We expect the influent composition of decentralized water 
reuse systems to be less variable (no dependency on the weather, no 
industrial input), however, this needs confirmation from field 
campaigns. 

4.2.2. Turbidity and UV254 are not linked to the microbial water quality 
Online monitoring of turbidity is recommended by several WRFs, 

and others have reported strong correlations between turbidity and the 
total cell concentration determined by flow cytometry (intact cells +
damaged cells) (Hess et al., 2021). We assume that the lack of correla
tion between turbidity and ICC is due to the low ICC concentrations in 
the tested MBR+chlorine systems compared to concentrations reported 
by Hess et al. (2021) (~1 order of magnitude higher) who studied an 
MBR system without chlorine disinfection. 

Similarly, online monitoring of UV254 can be used as a proxy for 
organic matter concentrations (Van Den Broeke et al., 2006). However, 
the organic carbon contained in the ICC represents only a tiny fraction of 
the total DOC (< 0.01%, assuming 107 cells = 1 µg DOC, Ziemba et al. 
(2020)). Natural variations of the DOC of the treated water thus by far 
exceeded changes in DOC caused by changes of the ICC. Direct corre
lations between pathogen contamination and UV-vis spectra have not 
been found to date (Carré et al., 2017). 

Although we demonstrate lack of correlation of turbidity and UV254 
with the microbial indicators in the tested MBR+chlorine system, these 
sensors can provide information on membrane integrity and may also 
hold promise for alternative treatment schemes (e.g., ozonation) (Katko 
and Højris, 2019). 

4.3. Comparison of logistic regression and a mechanism-based models to 
define sensor targets 

There is an ongoing debate whether data-driven or mechanistic 
models are better suited for the online-monitoring of critical process 
variables (Solle et al., 2017). The main advantages of logistic regression 
as a purely statistical approach lies in the low requirements of as
sumptions that need to be fulfilled and in the straightforward interpre
tation of results. Basic assumptions that must be met for logistic 
regression include only the independence of errors, linearity of inde
pendent variables and log odds, and the absence of multicollinearity 
(Stoltzfus, 2011). Key assumptions made for linear regression (linear 
relationship between dependent and independent variable, normal dis
tribution of residuals and homoscedasticity) are not required. For the 
setting of risk-based sensor target values, where we want to limit the 
FSR, logistic regression allows to transparently select corresponding 
sensor values. 

In this study, a major limitation of the logistic regression was the 
perfect separation of the water quality classes into two groups due to the 
small sample size and lack of data in the transition zones. Bootstrapping 
was used to estimate the confidence intervals. However, in the absence 
of prediction errors, these confidence intervals were relatively narrow. 
This led to an overconfident selection of sensor target values that may 
not capture the real variability in microbial water quality close to the 
recommended sensor target values. Bayesian analysis with non- 
informative prior assumption has been recommended for logistic 
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regression with perfect separation (Gelman et al., 2008). However, the 
resulting confidence intervals are very wide due to the relatively small 
size of the dataset (see SI 6). Furthermore, it was not possible to collect 
data in the transition zone for ORP, as the ORP increased to high values 
as soon as there were detectable concentrations of FC in the water. If the 
perfect separation also holds at larger sample sizes, this would make 
ORP an excellent indicator of the microbial water quality and delineate a 
clear threshold for sensor targets. 

The mechanism-based approach was a more adequate choice for the 
current dataset, as the dataset is relatively small, but we have knowledge 
about the main processes driving the microbial water quality (i.e., 
retention in the MBR, chlorine disinfection, regrowth in the stored 
water). While combining these processes follows a mechanistic 
approach, the modelling of the disinfection process itself (Chick-Wat
son) is phenomenological (data-derived). Such hybrid models, building 
on understanding of mechanisms in combination with data-driven 
methods, are increasingly used to model water reuse systems, as they 
combine the advantages of mechanistic (interpretability of results and 
extrapolation power) with those of data-driven models (e.g., learning 
unknown relationships) (Schneider et al., 2022). 

4.4. Comparison with sensor target values from water reuse frameworks 
(WRFs) 

An inspection of 19 WRFs (details presented in SI 7) shows that most 
WRFs define different water quality classes depending on the reuse 
application, setting stricter requirements for acceptable treatment 
technologies, permissible contaminant concentrations, and monitoring 
for higher-risk applications. Some WRFs explicitly link the reuse appli
cation to different LRTs, such as the Australian Guidelines for Water 
Recycling (NRMMC/EPHC/AHMC, 2006) and the Western Australian 
Code of Practice for the Reuse of Greywater (Department of Health 
Western Australia, 2010). However, the majority of WRFs set re
quirements in terms of final concentrations in the treated water, some
times combined with higher monitoring frequencies for higher-risk 
applications. 

In terms of chlorine concentration, the majority of WRFs set re
quirements for the total chlorine residual (sum of free and combined 
chlorine). Depending on the water composition (concentration of or
ganics and ammonia), the disinfection capacity of the total chlorine is 
significantly lower than the disinfection capacity of the same concen
tration of free chlorine (Kim and Hensley, 1997). Many WRFs set a 
requirement of 1 mg/L for total chlorine, usually in combination with a 
minimum contact time (e.g., 15 min or 30 min). Assuming all chlorine 
was present as free chlorine, this would correspond to an expected LRV 
MS2 of ~5 and log10ICC of ~4.5 for the MBR+chlorine system in the 
current study (Table 4), which is relatively low for many of the reuse 
applications intended (e.g., toilet flushing). Using the average sensor 
targets from Table 4 (as opposed to the recommended 95% upper con
fidence level), we would predict > 6 LRV MS2 and < 4.5 log10ICC. 
However, these predictions do not account for the variability in micro
bial indicator removal/concentrations and sensor measurements, and 
still assume that the 1 mg/L of chlorine is present as FC. Overall, it seems 
that WRF requirements for total chlorine may not be sufficient to ensure 
adequate virus removal in MBR+chlorine systems designed for 
high-quality applications. Only the Californian requirements (concen
tration-time (CT) value of 450 mg⋅min/L with a contact time of at least 
90 min, i.e., a chlorine concentration of around 5 mg/L), requiring a LRV 
MS2 of at least 5, are more conservative than the sensor target values 
proposed in this study (State Water Resources Control Board California, 
2018). However, Hirani et al. (2014) reported that lower CT-values of 30 
mg⋅min/L are sufficient to meet California’s Title 22 disinfection re
quirements in MBR effluents. 

Currently, no WRF sets requirements for the ORP of the treated 
water, but the Canadian Guidelines for Domestic Reclaimed Water for 
Use in Toilet and Urinal Flushing report ORP as a proxy to monitor the 

chlorine residual online (Health Canada, 2010). There are, however, 
various ORP requirements in guidelines for bathing waters. For instance, 
the WHO recommends an ORP of at least 720 mV, although it is sug
gested that appropriate values should be determined on a case by case 
basis, the German Environment Agency requires a minimum ORP of 
750-770 mV depending on the pH, and the New South Wales Health 
Protection (Australia) requires an ORP of 720 mV (German Environment 
Agency, 2006; New South Wales Health Protection, 2013; WHO, 2006). 
These requirements are more protective of human health (correspond
ing to LRV MS2 of ~5.5-6 and log10ICC of ~5-4.5 in the current study) 
compared to the typical 1 mg/L (total) chlorine requirement for 
reclaimed water. 

4.5. Applicability of sensor targets to other MBR+chlorine systems 

The testing was performed with MBR+chlorine systems that treated 
two different types of wastewaters with similar relationships between 
sensor measurements and microbial indicators. This is an indication that 
the same phenomena may apply to MBR+chlorine systems treating a 
range of wastewater compositions. However, measurements from other 
MBR+chlorine systems will be required to validate the presented models 
and suggested sensor target values, as this study does not report model 
performance on a separate test dataset. 

For MS2, the removal was due to retention in the MBR and inacti
vation through chlorine. For the retention of viruses in the MBR, a re
view on virus removal in full-scale submerged MBRs reports LRVs 
between 1.1 and 7.1 (O’Brien and Xagoraraki, 2020). The MS2 removal 
attributed to the MBR in this study (LRV of 1.7) is at the low end of the 
values reported in literature. For the disinfection, the two MBR+chlor
ine systems used in this testing achieved complete nitrification most of 
the time, with ammonia concentrations in the permeate below 0.2 
mgN/L, resulting in low concentrations of chloramines. Overall, the 
proposed sensor targets for LRV MS2 are thus conservative, as the actual 
removal of viruses may be higher in other MBR+chlorine systems, due to 
higher removal in the MBR and the presence of chloramines during 
disinfection. 

Regrowth can be due to growth of suspended organisms and to 
detachment of biofilm in the storage tank. The concentration of assim
ilable organic carbon (AOC), nutrients and the temperature have been 
shown to be important parameters determining regrowth of bacteria 
after ultrafiltration (Nguyen et al., 2017; Nocker et al., 2020). In this 
study, we used two different wastewaters, thus introducing some vari
ability in the treated water composition (AOC, nutrients). In contrast, 
the temperature was relatively constant throughout the testing. If 
detachment of biofilm is a major contributor, the inclusion of a bio
logical activated carbon filter and flow variability are additional rele
vant parameters that will determine the ICC in the treated water (Hess 
et al., 2021). We thus assume that it will be necessary to recalibrate the 
ICC models for MBR+chlorine systems that do not include an activated 
carbon filter. 

Depending on the validation results using other MBR+chlorine sys
tems, this study offers specific sensor target values for MBR+chlorine 
systems (likely for MS2) or approaches to set sensor target values for 
specific configurations of MBR+chlorine systems (likely for ICC). 

5. Conclusion  

• ORP and FC, which are both proxies for the efficacy of chlorination, 
are closely related to the microbial quality of reclaimed water treated 
with MBR+chlorine systems, while turbidity, pH and UV254 are not.  

• We propose a mechanism-based methodology to set sensor target 
values that are linked to the microbial water quality in a transparent 
way.  

• For ORP and FC, we recommend sensor target values for different 
microbial water quality targets (in terms of virus removal and 
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bacterial regrowth) that can be linked to different reuse applications 
for the reclaimed water.  

• Such a systematic approach to set sensor targets could be used in the 
development of WRFs that aim to cover a range of reuse applications 
with different risks to human health. 
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