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The ability to profile hundreds of thousands to millions of single cells using scRNA-
sequencing has revolutionized the fields of cell and developmental biology, providing
incredible insights into the diversity of forms and functions of cell types across
many species. These technologies hold the promise of developing detailed cell type
phylogenies which can describe the evolutionary and developmental relationships
between cell types across species. This will require sampling of many species and
taxa using single-cell transcriptomics, and methods to classify cell type homologies
and diversifications. Many tools currently exist for analyzing single cell data and
identifying cell types. However, cross-species comparisons are complicated by
many biological and technical factors. These factors include batch effects common
to deep-sequencing approaches, well known evolutionary relationships between
orthologous and paralogous genes, and less well-understood evolutionary forces
shaping transcriptome variation between species. In this review, I discuss recent
developments in computational methods for the comparison of single-cell-omic data
across species. These approaches have the potential to provide invaluable insight into
how evolutionary forces act at the level of the cell and will further our understanding of
the evolutionary origins of animal and cellular diversity.

Keywords: evolutionary cell biology, single-cell RNA sequencing, transcriptome evolution, species comparisons,
cell types

INTRODUCTION

Single-cell RNA sequencing has become a powerful and popular tool, yielding rich and informative
cell-type atlases of many tissues, and even whole organisms (Cao et al., 2017; Haber et al.,
2017; Achim et al., 2018; Zeisel et al., 2018; Sebé-Pedrós et al., 2018b). These experiments have
allowed the characterization of hundreds of poorly understood cell types, and identification of
previously unknown cellular diversity across multiple species (La Manno et al., 2016; Montoro
et al., 2018; Plasschaert et al., 2018). These datasets allow us to ask questions about the origins of
cellular diversity, and the evolutionary mechanisms which have shaped cellular form and function.
An ultimate goal of these experiments will be to generate cell type phylogenies, describing the
evolutionary relationships between cell types (Kin, 2015; Arendt et al., 2019). However, relating
information obtained from different sources and different model and non-model organisms is
confounded by many technical and biological factors that make comparisons of single-cell data
difficult (Marioni and Arendt, 2017; Stuart and Satija, 2019). These include poorly understood
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forces shaping transcriptome evolution, and complications
in assigning orthology and functional conservation between
genes across species.

Much of our understanding of cell biology originates
from characterizing cells by their functions, gene expression,
and lineage relationships (Zeng and Sanes, 2017). Molecular
distinctions between cell types, such as protein or gene
expression, have become the de facto method for categorizing
cells, because it is convenient, easily measured, and comparable
across models and systems. With recent advances in sequencing,
microfluidics, and nano technologies, it is also now possible
to profile the transcriptomes of thousands or even millions
of cells in a single experiment (Cao et al., 2017; Underwood
et al., 2017; Raj et al., 2018; Paolillo et al., 2019). Computational
tools have been developed to interrogate these datasets,
identifying clusters of cells with similar patterns of gene
expression (Andrews and Hemberg, 2018). These clusters
are interpreted as distinct cell types, and these methods
have done a remarkable job at matching classification
systems based on morphology and function (Marioni and
Arendt, 2017; Butler et al., 2018; Moussa and Mãndoiu, 2018;
Deng et al., 2019).

Though there is debate about whether these transcriptional
distinctions are reliable indicators of cellular types or diversity,
single cell sequencing technologies are nonetheless very powerful
and have the potential to be used to understand evolutionary
relationships between cell types across species. Indeed, these
technologies have recently been used to compare embryonic
brain development in mice and humans, and the evolution of
neuronal cell types in reptiles (Pollen et al., 2015, 2019; La Manno
et al., 2016; Tosches et al., 2018). Many datasets are also being
independently generated from diverse phyla (Achim et al., 2018;
Plass et al., 2018; Siebert et al., 2018; Sebé-Pedrós et al., 2018a,b;
Ryu et al., 2019).

These diverse datasets necessitate methodologies which can
reconcile the technical and biological batch effects inherent
in single-cell sequencing technologies. These tools will ideally
be able to identify both homologous and divergent cell
types between species, and the transcriptional mechanisms
involved in their evolution (Marioni and Arendt, 2017).
Here, I offer a perspective on the current state of the
field of evolutionary cellular transcriptomics, technologies and
platforms. This review will specifically focus on computational
tools and approaches for combining and comparing single-cell
datasets across species.

SINGLE-CELL SEQUENCING AND
SINGLE-CELL CLUSTERING
APPROACHES

Many solutions have been developed for separating, barcoding,
and individually labeling cells (Jaitin et al., 2014; Picelli
et al., 2014; Soumillon et al., 2014; Svensson et al., 2018).
Advances in microfluidic and microwell technologies have
offered an incredible increase in throughput, from hundreds
of cells to thousands or millions of cells. These technologies

involve either encapsulating cells in micro-fluidic droplets,
or placing cells individually in microwells, greatly increasing
our ability to observe heterogeneity and rare cell types
(Islam et al., 2014; Klein et al., 2015; Macosko et al., 2015;
Zheng et al., 2017). Techniques such as Sci-RNA-Seq further
increase the number of cells analyzed by combinatorically
barcoding cells during isolation (Cao et al., 2017). These
techniques increase cell breadth at the expense of sequencing
depth, which is thought to more reliably identify cellular
heterogeneity compared to high-depth sequencing of fewer
cells (due to sequencing costs), such as in Smart-seq2
(Picelli et al., 2014).

With the advent of single-cell sequencing experiments
numbering in the thousands to millions of cells, sophisticated
approaches were needed to deal with statistical challenges in
the analysis of the high dimensionality of such datasets. I
will briefly describe the main steps taken by the popular
single-cell genomics toolkit Seurat (Butler et al., 2018). Further
information on alternative methods are reviewed elsewhere
(Bacher and Kendziorski, 2016; Stuart and Satija, 2019).
Many of these packages produce analogous outputs (cluster
annotations) which can then be compared across species
using the techniques reviewed in the following sections.
Initially, the high dimensionality of the datasets are reduced
by both limiting the genes under consideration – to so
called “highly variable genes,” those which contribute strongly
to cell-to-cell variability – and through projection of the
data into lower dimensional space using PCA (steps 1–4,
Figure 1A; Butler et al., 2018; Yip et al., 2018). The most
recent clustering algorithms employ graph-based methods for
defining clusters after PCA based on modularity and density
of cells within k-nearest neighbor graphs, grouping cells which
are mutually close to each other in gene expression space
(step 5, Figure 1A; Bacher and Kendziorski, 2016). tSNE or
UMAP is used for visualization of clusters, which collapses
higher dimensional variability into either 2 or 3 dimensions
(step 6, Figure 1A; van der Maaten and Hinton, 2008;
Becht et al., 2019).

ACCOUNTING FOR EXPERIMENTAL
AND BIOLOGICAL BATCH EFFECTS

Comparing and contrasting single-cell datasets will allow for
testing the reproducibility of observed biological phenomena,
or identification of additional cell type heterogeneity by
combining multiple datasets into larger cell-type atlases
(Butler et al., 2018; Haghverdi et al., 2018). Comparisons of
pharmacological, genetic, and experimental manipulations
across different experiments can identify particular and
specific gene expression effects and perturbations of cellular
states like those observed for disease-associated microglia
(Haber et al., 2017; Keren-Shaul et al., 2017; Johnson et al.,
2018). Finally, cross-species comparisons of cell types
within specific tissues will allow translation of knowledge
between model and non-model systems and may suggest
evolutionary relationships between cells types both within and
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FIGURE 1 | Matching cell clusters in single-cell RNA-seq across species. (A) Overview of bioinformatic pipeline for single-cell sequencing analysis from the R toolkit
Seurat, including feature selection, dimensionality reduction, and graph-based clustering. Seurat takes a cell by gene expression matrix (steps 1, 2), and first
identifies features (genes) for dimensionality reduction (steps 3, 4). Using principal components, Seurat identifies clusters using graph-based methods, then
visualizes resulting clusters using tSNE or UMAP (steps 5, 6). (B) Equation for calculation of gene specificity, and example correlation of these values between turtle
and lizard cell types (colored dots) where Pearson correlation coefficient values in red indicate positive correlation and blue indicate negative correlation. (C) Random
forest machine learning algorithms for identifying cross-species cell type annotations involves first training an algorithm on cell types from one species (step 1), then
predicting which of those cell types each cell from a different species most resembles (step 2), which results in a confusion matrix (Readout). Animal silhouettes were
obtained from PhyloPic (www.phylopic.org). All silhouettes were used under the Public Domain Dedication 1.0 license, except the image of a turtle, which is
attributed to Scott Hartman.

between species for the generation of cell-type phylogenies
(Marioni and Arendt, 2017).

However, technical batch effects can be introduced at
every experimental step, from the cell dissociation procedure,
isolation and barcoding, sequencing, and analysis (Bacher
and Kendziorski, 2016). In addition to species of origin,
biological batch effects caused by differences in genetic

background, age, and sex also need to be considered.
Several groups have generated computational tools to
deal with batch effects specific to single-cell data. These
approaches take lessons from the comparison of bulk RNA-
sequencing experiments, but have been improved to be
able to address the high-heterogeneity of single-cell data
(Haghverdi et al., 2018).
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COMPARING CELL TYPES ACROSS
SPECIES

Species-specific single-cell datasets can either be analyzed
and annotated separately or combined into a single
analysis/annotation step. Separate analysis requires cell types to
be cross-annotated (typically by hand) but preserves intra-dataset
heterogeneity (Figures 1B,C). Combined analyses increase the
number of cells used for clustering, allowing identification of
additional heterogeneity and rare cell populations. However, it is
more complex and computationally intensive, and may obscure
species-specific cell types (Figure 2). Combined analyses “batch-
correct” the underlying gene expression data, such that the
expression levels of genes within cells from each species resemble
each other (Haghverdi et al., 2018). In separate analyses, these
batch-effects can persist, affecting comparisons and annotations.

In one recent publication, a “gene-specificity index” was
used to calculate cross-species pairwise correlation between
cell clusters (Tosches et al., 2018). Using a specificity index
resolves platform- and species-specific differences in expression
quantification, and instead relies on whether a given gene is
specific to a cell cluster, or broadly expressed across all cell
types (Dunn et al., 2013; Molnar et al., 2013; Kryuchkova-
Mostacci and Robinson-Rechavi, 2016). For Tosches et al.
(2018) within a set of cell types (C), the specificity index
(sg,c) of a gene (g) for a cell type (c) is defined as the ratio
between the level of expression of g within c (gc) and the
mean expression of g across C (Figure 1B). The Pearson-
correlation of cell type gene specificity indices can then be
calculated, identifying correlated clusters across datasets (red
boxes, Figure 1B). The authors used this analysis to compare
the pallium, hippocampus, and cortical cell types between
turtles, lizards, and mammals. They discovered that mammalian
interneuron cell-types were ancestral to all amniotes, but that the
mammalian neocortex is largely composed of lineage specific cell
types (Tosches et al., 2018).

The previous approach requires cell types to be matched
between species by hand, before correlations are calculated.
Alternatively, random forest machine learning (RFML) can
unbiasedly assign cluster matches across datasets (Breiman, 2001;
Denisko and Hoffman, 2018). This has been used to assign
cell types across developmental timescales and platforms in the
zebrafish habenula, and mouse retina, allowing identification
of additional heterogeneity, and differences between larval and
adult cell types (Shekhar et al., 2016; Pandey et al., 2018). First,
an algorithm is trained to predict the cell types of Species A
based on the gene expression matrix generated by single-cell
sequencing (step 1, Figure 1C). This produces a set of decision
trees, each of which assigns cells to cell types, and which are
used to generate a consensus prediction for each cell based on
its gene expression signature. This decision forest can then be
used to predict the Species A cell types that each of the cells
from Species B most resembles. The result of such a comparison
is a confusion matrix, which represents the percentage of cells
from each cluster in Species B that resemble each cluster from
Species A (Figure 1C).

COMPUTATIONAL INTEGRATION OF
SINGLE-CELL DATASETS

Even assuming clusters are correctly matched across datasets,
comparative analysis of cell transcriptomes remains a difficult
task due to batch effects (Stuart and Satija, 2019). Computational
integration of datasets allows for unified downstream analysis,
however, several factors must be taken into account when
removing species-specific batch effects. Most batch correction
methods are based on linear regression, which fit a linear model
describing the batch effect then impute a new expression matrix
without the modeled batch effect (Johnson et al., 2007; Risso et al.,
2014; Ritchie et al., 2015). This approach is problematic for single-
cell RNA-seq data because it assumes an identical population of
cell types within each dataset, and a uniform batch-effect across
all cell types (Haghverdi et al., 2018; Welch et al., 2019). Single-
cell RNA-seq integration methods must be able to delineate
between shared and cell type specific differences between species,
and account for differences due to sampling method (number of
cells/genes observed, or differences due to dissociation protocols
between species). In general, these techniques aim to embed cells
from both species into a shared lower-dimensional space, within
which clusters and cells can be compared.

The first of such integration methods published,
mnnCorrect/fastMNN, identifies Mutual Nearest Neighbors
(MNNs) in high-dimensional gene expression space to identify
cell type specific batch-correction vectors (Haghverdi et al.,
2018). MNNs are identified as cells which are mutually closest
to each other across datasets (Figure 2A). The difference
between the expression profiles for each pair of MNN cells is a
vector that represents the biological batch effect, and is used to
impute new batch-corrected matrices (dotted lines, Figure 2A;
Haghverdi et al., 2018).

The R toolkit Seurat has also incorporated several methods
for dataset integration (Butler et al., 2018). The original Seurat
alignment procedure involves identifying shared correlation
structure across the datasets or species using Canonical
Correlation Analysis (CCA) (Figure 2A). CCA identifies groups
of genes which have correlated differences in expression. These
differences are then used to batch correct each group of genes
differently using non-linear dynamic warping, resulting in a
shared low-dimensional space (Figure 2A; Berndt and Clifford,
1994). In Seurat v3.0, the authors have incorporated the use of
MNNs to aid integration. Following CCA and dynamic time
warping, MNNs are identified between datasets and used as
“anchors” to compute further correction vectors, similar to
mnnCorrect/fastMNN (Haghverdi et al., 2018; Stuart et al., 2019).

One big issue with these approaches is overfitting during
integration, resulting in the merging of cell types, or obscuring
dataset-specific gene expression differences. The use of MNNs by
both Seurat and mnnCorrect/fastMNN reduces this effect when
cell types are present in only a subset of the datasets, because
they will not have a mutual nearest neighbor in any other dataset.
The panoramic stitching algorithms of Scanorama use a more
generalized MNN technique, and aim to even further reduce
the amount of overfitting between datasets, using a process that
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FIGURE 2 | Continued
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FIGURE 2 | Approaches for integrating single-cell RNA-seq datasets across species. Cells typically cluster by dataset or species of origin, rather than cell types. In
order to integrate datasets for downstream analysis, batch correction algorithms can be applied. (A) Dataset integration can be accomplished by identifying batch
correction vectors using either differences between Mutual Nearest Neighbors (MNN), Canonical Correlation Analysis (CCA), or a combination of both. (B) Integrative
Non-Negative Matrix Factorization (iNMF) can be used to decompose cell × gene expression matrices into separate factor matrices which can represent species
specific factors affecting gene expression patterns. These factors can then be removed to allow clustering by cell types, while retaining information about which
genes contribute to species-specific differences. (C) Harmony iteratively imputes batch correction vectors based on cell type centroids in Principal Component (PC)
space. (D) Assigning orthology between genes across species (blue and red lines following speciation node) is complicated by gene duplication events (duplication
node). Additionally, sub-functionalization (pink dotted box), or neo-functionalization (green dotted box) of gene expression should be considered when assigning
orthology and gene function across species (orthology detection).

is similar to the creation of panoramas from individual images
(Hie et al., 2018).

A third method, LIGER, uses integrative non-negative matrix
factorization (iNMF) to learn shared and unique gene expression
signatures between datasets (Welch et al., 2019). iNMF
decomposes one matrix (such as a cell by gene expression matrix)
into multiple matrices of basis vectors (cell by factor matrix)
and coefficient vectors (factor by gene matrix). Factors represent
patterns of gene co-regulation, which typically correspond to
groups of genes representing specific cell types. For each dataset
LIGER also infers separate factors that correspond to species-
specific signals (Figure 2B). Accounting for species-specific
factors allows cell types to be identified across datasets, as well
as the characterization of genes which contribute to species-
specific differences in each cell type (Figure 2B). In addition to
species-specific batch effects, both Seurat and LIGER can also
integrate data across modalities (protein expression, chromatin
modifications, and spatial localization) (Stuart and Satija, 2019;
Welch et al., 2019).

Finally, several tools have been developed for computationally
efficient integration of either extremely large datasets, or an
extensive number of datasets. Harmony corrects analogous cell
types from different datasets toward a shared centroid in low-
dimensional PCA space, running iteratively until the datasets
converge (Figure 2C; Korsunsky et al., 2018). Conos uses a
unified graph representation to map cell types across extensive
collections of datasets. Spurious connections between datasets are
minimized – only cells mapping to each other across multiple
datasets are used to identify common subpopulations (Barkas
et al., 2018). It will be important in the near future for all of these
tools to be benchmarked for different kinds of data, and against
each other extensively. I foresee that many of these techniques
will be complementary, and that combining approaches will likely
be critical for achieving robust performance across many species.

INCORPORATING UNDERSTANDING OF
TRANSCRIPTOME EVOLUTION INTO
SINGLE-CELL COMPARISONS

Though the above approaches offer exciting possibilities for
comparing single-cell data across species, many caveats exist
for their implementation. All current approaches require that
only the orthologous genes between the species are used during
analysis. These genes are used during feature selection and PCA
(Figure 1A). Non-homologous genes expressed in only one
dataset contribute heavily to variation, and can drive cells to

cluster with their own species rather than the same cell type
across species (Figure 2C; Stuart and Satija, 2019). However,
species-specific information may be lost by excluding genes
without one-to-one matches, or with one-to-many matches.
Indeed, clade-specific genes are known to drive species-specific
cell type diversification (Santos et al., 2017; Florio et al., 2018),
and sub- or neo-functionalization in expression patterns of one
gene copy following gene duplication is common (Figure 2D;
Farrè and Albà, 2010).

For closely related species, such as humans and mice, gene
symbols can be easily matched to identify orthologs. For more
distantly related organisms, databases such as ENSEMBL can
be used to identify one-to-one matches (Zerbino et al., 2018).
This works well for closely related species, but becomes more
difficult as the amount of evolutionary time between species
increases, and the relationship between genes becomes less
clear (Thornton and Desalle, 2000). Orthology identification
has been largely addressed by the field of phylogenomics –
to identify species-relationships and to functionally annotate
genomes. Many techniques exist for detection of orthology,
most of which are based on sequence-similarity and reciprocal
BLAST and other methods reviewed elsewhere (Sonnhammer
et al., 2014; Nichio et al., 2017). Incorporating measures of gene
orthology or sequence similarity into clustering algorithms will
be important to avoid reliance on one-to-one homology for
understanding gene function.

Recent work has also identified unique evolutionary forces
driving transcriptome variation between species (Liang et al.,
2018). Groups of genes with similar regulatory logic are thought
to evolve in a modular fashion, with transcriptional changes in
these genes linked by the transcription factors which control
their expression (Arendt et al., 2016). Some of the integration
approaches outlined above may already account for such
correlated evolutionarily differences in gene expression (LIGER,
Seurat). Alternatively, removing the most highly correlated genes
during clustering analysis may also be a prudent approach
(Liang et al., 2018).

FUTURE PERSPECTIVES

The construction of cellular phylogenies should also strive
to correctly identify the evolutionary relationships between
transcriptionally similar cell types both within and between
species. Similarities may result from shared ancestry (homology)
or result from convergence onto the same cellular identity
(homoplasy). The re-use, re-purposing, or co-option of
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homologous cellular modules and gene regulatory networks
is thought to underlie cell type convergence (Tschopp and
Tabin, 2017). Such deep homology not only results in similar
cellular functions, but potentially also in highly similar cellular
transcriptomes. It may therefore be difficult to disentangle
homoplasy from homology using single cell sequencing.
Sampling many tissues along larger phylogenies will be necessary
to identify where and when specific cell types appear in
evolutionary history (Hejnol and Lowe, 2015). From these
experiments parsimonious explanations can be developed,
providing evidence for homology or homoplasy, and identifying
the evolutionary history of specific cellular identities.

Finally, it will be necessary to incorporate phylogenetic
comparative methods when comparing differences between
species in regard to cell types and gene expression patterns.
Biological traits show dependence across species due to the
evolutionary history of those species – with more closely
related species sharing more similar traits. This should also
apply to cell type identities and gene expression patterns
(Dunn et al., 2013). Phylogenetic comparative methods
account for evolutionary history, modeling trait changes along
evolutionary trees, and explicitly take into account their
dependence during statistical comparisons (Felsenstein, 2002;
Garamszegi, 2014). These have been successfully adapted for
bulk transcriptomic data and should be extended to single-cell
transcriptomics, where independence of traits is often assumed
(Dunn et al., 2013).

CONCLUSION

Many techniques, tools, and technologies for single-cell
sequencing are already applicable for comparisons across species.
However, improvement and refinement of current approaches
based on evolutionary knowledge should be considered a priority
for the field of transcriptomics and evolutionary cell biology.
Understanding the evolutionary history and relationships
between cells will provide insight into definitions of cell types,

and the molecular mechanisms that govern their identities.
Using this evolutionary framework, examining the continuum
between developmental stage, cell states, and cell types may even
elucidate how cell types evolve (Griffith et al., 2018; Arendt et al.,
2019). A holistic identification of cell types and their evolutionary
origins will require the combination of multiple lines of evidence,
not only including molecular identification, but also functional
interrogation, and developmental lineage information. Recent
approaches have been developed to reconstruct developmental
lineage trajectories in silico or using CRISPR barcodes (Briggs
et al., 2018; Farrell et al., 2018; Plass et al., 2018; Raj et al.,
2018; Wagner et al., 2018; Packer et al., 2019). Incorporating
lineage information into evolutionary comparisons will be a
difficult, but important task going forward. Such a comprehensive
understanding of evolution and cell types will allow us to
build cell type phylogenies, and to use them to ask important
questions about how cellular changes affect organismal fitness
and selection, and how evolution acts on the biological
unit of the cell.
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