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I further want to thank all the people I worked with at the University of Basel that

made my time working on this thesis as fun and inspiring as it was: Dr. Deb Sankar

De, Dr. Miglė Graužinytė, Dr. Behnam Parsaeifard, Dr. José A. Flores-Livas, Marco
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Abstract

In recent years, machine learned potentials (MLPs) have seen tremendous progress

and rapid adoption by the materials science community. Due to their high speed and

accuracy, MLPs are well suited for sampling complex potential energy surfaces (PESs)

with molecular dynamics and Monte Carlo (MC) simulations. Nonetheless, many

open challenges remain. Despite the outstanding performance of MLPs, it has become

clear, that the builtin assumption of locality limits their applicability for systems

where long-ranged effects due to charge transfer are present. But even for systems,

for which local MLPs provide an adequate description, complete sampling of the PES

can still be hindered by high energy barriers and advanced algorithms are needed to

take full advantage of the MLPs capabilities.

In this thesis, both above-mentioned challenges are addressed. In the first part,

the fourth generation high-dimensional neural network potential (4G-HDNNP) is

introduced. While previous generations of MLPs rely on atomic energies and charges,

that only depend on the local atomic environment, the 4G-HDNNP is also able

to describe long-ranged interactions caused by charge transfer effects. A charge

equilibration scheme based on environment dependent electronegativities allows for

the prediction of accurate atomic charges, that depend on the global state of a

system, including the total charge. These charges are then not only used to compute

electrostatic energies and forces, but also fed into the neural networks describing the

short ranged interactions. This allows for an accurate description of changes in local

bond-lengths and reactivity due to far-away changes in the electronic structure. The

method’s performance is demonstrated on multiple test systems which are incorrectly

described by previous methods.

The second part of the thesis, focuses on the Funnel Hopping Monte Carlo (FHMC)

method. FHMC introduces a new, global, MC move to directly circumvent high

energy barriers that prevent complete sampling of the configuration space during

MC simulations. Gaussian mixtures, fit to the Boltzmann distribution of low energy

regions, are used to propose the FHMC moves without violating the detailed balance

condition. FHMC therefore allows for direct sampling of the complete Boltzmann
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Abstract

distribution without resorting to any approximate expansion of the potential energy.

Anharmonic effects are therefore fully included. The method is first tested on

two prototypical multi-funnel systems, namely the 38 and 75 atom Lennard-Jones

clusters. We then used FHMC to study a material called methylammonium lead iodide

(MaPbI3), for which we constructed a highly accurate MLP. In a recent structure

search study, two non-perovskite phases of MaPbI3 were discovered, that, despite

being lower in energy than the known perovskite phases, are absent in experiments.

Our FHMC simulations, for which we extended the original algorithm to periodic

boundary conditions, show, that above 200 K, the experimentally observed phases

are thermodynamically preferred. This explains, the absence of the non-perovskite

phases in experiments, since at room temperature the perovskite phases are readily

obtained. The high energetic barriers then lead to kinetic trapping of the perovskite

phases upon cooling.
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1 Introduction

Ancient periods of human history, such as the stone, bronze or the iron age, are com-

monly named after the most dominant materials that were driving the technological

progress at the time. While this is certainly an oversimplification and ignores many

social, economic and cultural achievements, it is true that the materials that are

available inspire and shape the inventions, developments and constructions achieved

by humans.

While the technological progress of previous periods of human history was driven

by the discovery of a few specific material, it is much harder to decide, after which

material the current period should be named. A walk through a city might inspire

someone to call it the concrete or glass age. A walk through nature or a dive in the

ocean might lead someone to the conclusion that plastics are the most dominating

material on the earth today. While these materials are abundant and in plain

sight, the technological progress is driven by a huge variety of other novel materials.

Superconductors are used in MRI machines, planes are build from special metal

alloys and organic LEDs make up the displays of our phones, to name only a few.

Our current age might therefore as well simply be called the age of materials.

Unlike the materials used by prehistoric humans, modern materials are synthesized

artificially, and in many cases have been developed to fit very specific needs and

purposes. This ability to design new materials by targeting desired properties is

enabled by our understanding of the physics that describe the interactions of the

atoms that make up any material.

While humans have been synthesizing chemical substances and materials for a long

time, like extracting metals from ores, rendering fat into soap or making alloys such

as bronze, these feats were the results of accidental discovery and experimentation

followed by a careful improvement of the observed reactions. Only in the recent

history from the 17th to the 19th century, more deliberate control over chemical

reactions was gained by the development of the theories of atoms and molecules, which

form the basis of modern chemistry [1]. However, the understanding of the chemical
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1 Introduction

bond and the microscopic structure of matter was rudimentary and chemistry was

based on empirical rules, derived from experimental observations.

This changed with the discovery of the elementary particles and the development of

quantum mechanics, about a century ago. With the Schrödinger equation at its heart,

the theory of quantum mechanics describes the interactions between the electrons and

nuclei that make up the atoms. Despite the fact, that quantum mechanics provides

an almost complete description of the mechanics involved in chemical bonding, it

could only be used to provide a qualitative understanding and description of chemical

processes in the beginning. The problem lies in the high complexity of the Schrödinger

equation, for which analytical solutions can only be found in the most simple cases,

such as the hydrogen atom.

Multiple parallel developments allowed scientists to overcome this limitation and

obtain quantitative predictions from quantum mechanics, leading to what we to-

day know as materials sciences. The first development are approximations to the

Schrödinger equation, that reduce the mathematical complexity of the problem.

Similarly influential were the developments of appropriate computational methods

and algorithms that enabled the application of computers with their ever-increasing

compute power to solve the problem. The importance of these developments is

highlighted by the Nobel Prize in chemistry which was awarded to Walter Kohn and

John A. Pople in 1998 for the development of density functional theory (DFT) and

its implementation in the GAUSSIAN computer program respectively.

In addition to quantum mechanical methods, which usually only describe an

instantaneous state of an atomistic system, atomistic simulation methods were needed,

that allow to extract the macroscopic properties of materials from the underlying

microscopic interactions. Nowadays, a plethora of simulation methods are available,

that enable the prediction of various properties based on the interactions arising

from quantum mechanical principles. These include the geometric ground state,

electronic properties such as absorption spectra, mechanical properties, and thermal

properties such as thermal expansion coefficients, heat capacities or phase transition

temperatures. The ability to directly predict such properties in simulations without

the need for costly synthesis and experimentation allows us to develop materials

with targeted properties by screening large numbers of candidates. Additionally,

simulation of known materials can shed light on the microscopic dynamics responsible

for certain properties and helps us to understand effects that cannot be probed by

experiments.

2



In the beginning, atomistic simulations were not based on quantum mechanics, but

instead artificial systems, such as hard spheres, were simulated to study emergent

properties of the atomistic dynamics, such as phase transitions. In this context,

two fundamental simulation methods, namely Monte Carlo (MC) sampling [2] and

molecular dynamics (MD) [3] were introduced in the 1950s. In MC simulations,

statistical properties are evaluated by sampling random configurations from a target

distribution such as the Boltzmann distribution of systems at a constant temperature.

In MD simulations, Newton’s equations of motion are integrated to obtain the

physical trajectories of the atoms. An introduction to MC, MD and a few other

simulation methods, which are relevant in the context of this thesis, is given in

Section 2.2. Later on, simulations for more realistic model systems, such as liquid

argon [4] or water [5] started to emerge. In these simulations, the atomic interaction

are modeled using what is nowadays known as classical force fields. These consist of

rather simple mathematical expressions, that are derived from physical intuition and

have only few free parameters that are fit to experimental values.

In parallel to the development of atomistic simulations, the computer was rapidly

adopted as a tool to tackle the solutions to the electronic Schrödinger equation.

However, the high computational cost of these quantum mechanics based (ab-initio)

methods prevented their adaption in MD and MC simulations. This was changed by

Car and Parrinello [7], who, in 1985, published a scheme to integrate DFT with MD.

By overcoming the limitations of classical force fields, this method massively increased

the predictive power of atomistic simulations. Since then, ab-initio methods, such as

DFT are the basis for many simulations. A brief introduction into the most relevant

quantum mechanical methods, including DFT, is given in Section 2.1. Although

quantum mechanics based methods allowed for a more faithful description of atomistic

systems, they did not render classical force fields obsolete. Due to their much lower

computational complexity, force fields are still in wide use today, to study systems of

large size and time scales that are inaccessible with ab-initio methods.

More recently, machine learning based methods have been emerging that bridge

the gap between the highly efficient classical force fields and the computationally

expensive but much more accurate ab-initio methods. The basic concept behind

these machine learning based methods is that instead of a physics inspired function

with few free parameters, a very general, highly parametrized, functional form is used

to model the inter atomic potential. These general, flexible functions are then fit to

An in depth overview of the historical developments of atomistic simulations can be found in
Reference [6].
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1 Introduction

large data sets of ab-initio reference data. In the first attempts to employ machine

learning methods to construct data driven potentials, Blank et al. [8] relied on position

coordinates and rotation angles as inputs to an artificial neural network (ANN).

While a highly accurate fit of the potential energy could be achieved, this approach

has the disadvantage that the trained potential is highly system specific and does not

allow for applications to larger and more complex systems. Furthermore, important

symmetries, such as the invariance of the energy under rotation, translation or the

permutation of equivalent atoms are not preserved.

This problem was overcome by the introduction of the high dimensional neural

network potential (HDNNP) by Behler and Parrinello [9] in 2007. Instead of directly

using atomic positions as inputs to the ANNs, the total energy of the system is

expressed as a sum of atomic energies, each of which depends on a set of atomic

environment descriptors called symmetry functions [10], that encode the local atomic

environment in a way that preserves all important symmetries. Since only the

local environment is considered, HDNNPs can be trained on reference data from

smaller systems and then applied to systems of arbitrary size, with a linear scaling

computational cost. Since then, many other methods relying on local environment

descriptors have been proposed and many successful applications have been reported.

These potentials, which can be considered the second generation of machine learned

potentials (MLPs), are still in wide use today. Nevertheless, it has been realized,

that in some cases, relying on local environments is insufficient, since long range

interactions, such as electrostatic interactions, are necessarily neglected. This real-

ization lead to the development of a third generation of MLPs that include explicit

electrostatics based on environment dependent atomic charges [11]. Only recently, it

has become clear, that these third-generation potentials are still unable to describe

many important effects. Since the atomic charges depend on the local environment

only, long ranged charge transfer and resulting changes in reactivity and geometry

cannot be described. An in-depth overview over these previous generations of MLPs

and the problems that lead to the development of subsequent methods can be found

in Chapter 3.

The qualitative shortcomings of previous generations of MLPs inspired us to develop

the fourth generation high-dimensional neural network potential (4G-HDNNP), which

is presented in Chapter 4. Through a charge equilibration scheme based on local

environment dependent electronegativities accurate atomic charges are predicted,

that depend on the global structure of the system. In addition to the calculation

of electrostatic interactions, the atomic charges are also fed into to the ANNs that

4



predict the short ranged atomic interactions. This way, information about the global

system state is introduced into the description of the local interactions and effects

caused by long range charge transfer can be accurately described. The methods

capability is demonstrated on several test systems, for which second and third

generation methods fail to provide a qualitatively accurate description.

Due to their low computational cost, MLPs are well suited for applications in MD

and MC simulations where many energy and force calculations are needed. They

can provide an accuracy comparable to ab-initio methods for simulations that were

previously restricted to less accurate classical force fields due to the required size or

timescale of the simulation. This massively increased the predictive power of MD

and MC simulations and the scale of the systems to which they could be applied.

Unfortunately, standard MD and MC methods are not sufficient for the simulation

of many important systems as many effects take place on vastly different time scales

than the underlying atomistic dynamics. In these systems, high energetic barriers

need to be crossed to transition between long-lived states. Such rare events pose

a major bottleneck in many MC and MD simulations and in many cases prevent

direct simulation approaches completely. While simulations of such systems pose a

formidable challenge they are in many cases also particularly important since the

accurate simulation of phase transitions allows us to make predictions about the

stability and synthesizability of a given material.

The problem of high energy barriers has long been realized, and many approaches

to overcome it have been proposed in the past. The most simple approaches are based

on the harmonic approximation (HA). In the HA a second order Taylor expansion

is used to construct an approximation to the potential energy that can be treated

with analytical methods. Unfortunately, such approximations are usually only valid

at lower temperatures and fail for systems where the potential energy around local

minima behaves anharmonically. In these cases, extensions to the MC method are

needed that overcome the problem of high barriers. Many methods rely on a bias to

artificially lower the energetic barriers. In one of the first methods, called umbrella

sampling [12–14], a static bias is added and the samples obtained from the simulation

are then reweighted after the simulation to remove the effect of the bias. Later

methods, such as metadynamics [15], multicanonical sampling [16, 17], Wang-Landau

sampling [18, 19] or nested sampling [20–23] use dynamically adjusted biasing during

the simulation.

During MC simulations, trial moves are proposed which are then either accepted

or rejected. Conventionally, trial moves are generated by slightly displacing one

5
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or multiple atoms. Only rather small displacements can be used, since larger

displacements would most likely result in high energy structures with a too small

chance of being accepted. Smart darting MC [24] or simulations based on the

harmonic superposition approximations [25] introduce a new, carefully constructed,

type of move, which is non-local and directly circumvents high energetic barriers. In

Chapter 6, the Funnel Hopping Monte Carlo (FHMC) method is presented, which,

inspired by smart darting MC, also introduces a new, non-local MC move. Unlike

smart darting, the method properly takes care of the rotational and permutational

invariance present in atomic systems and a high acceptance rate of the trial moves

is obtained by using Gaussian mixtures fit to the Boltzmann distribution of local

minima to generate the trial moves. In Chapter 7, the method is then applied to a

material called methylammonium lead iodide (MaPbI3). For this material, a new

ground state phase was predicted by a recent structure search study [26]. Despite

being lower in energy than the experimentally observed perovskite phases, this new

ground state phase is absent from experiments. The large structural difference and

high energy barrier between the perovskite phases and the newly discovered ground

state phase prevent a direct simulation of the phase transition with classical MC

and MD methods. We therefore extended our FHMC method to periodic systems

and developed a highly accurate HDNNP to drive the simulation. Our simulations

show, that the newly discovered ground state phase is only thermodynamically

preferred up to a temperature of 200 K. This low transition temperature explains

the absence of the ground state phase from experiments, since at room temperature,

the experimentally observed perovskite phases are readily obtained. The transition

to the lower energy ground state phase is then prevented by kinetic trapping, due to

the low available kinetic energy at the transition temperature.

6



2 Theoretical Background

The Funnel Hopping Monte Carlo (FHMC) method presented in this thesis, is based

on a model of chemical systems and materials, where the atoms are treated as point

like objects, held together by forces arising from chemical bonds. Similarly, the fourth

generation high-dimensional neural network potential (4G-HDNNP) tries to model

exactly these forces. The concept of chemical bonding has been around in chemistry

for a long time, but only with more recent advances in methodology and computing

hardware, has a quantitative description of atomistic interactions become possible.

In this chapter, a brief overview over the electronic structure methods, that allow

us to compute the potential energy, forces and many other quantities of interacting

atoms, is given. Later on, a few of the most important simulation methods, that

make use of the energies and forces obtained from electronic structure methods, are

also introduced.

2.1 From Quantum Mechanics to Density Functional

Theory

2.1.1 The Schrödinger Equation

All solid matter surrounding us, is made up of electrons and nuclei. The interaction

of these particles can be described by quantum mechanics, which was developed

about a century ago. In quantum mechanics, such a system of nuclei and electrons

is described by a many-body wave function Ψ({RI , ri}), with RI representing the

positions of the nuclei and ri representing the positions of the electrons.

The ground state energy E of this system is then given by the time independent

Schrödinger equation.

HΨ({RI}, {ri}) = EΨ({RI}, {ri}) (2.1)

The above equation is an eigenvalue problem, where the smallest eigenvalue corre-

sponds to the ground state energy and the respective eigenvector to the ground state

7



2 Theoretical Background

wave function. Here H is the time independent Hamiltonian, containing the kinetic

energy terms for the nuclei TN and the electrons Te and electrostatic energy terms for

the interactions between the electrons Vee, the protons VNN and between electrons

and protons VNe.

H = −
∑
I

1

2mI
∇2

RI  
TN

−
∑
i

1

2
∇2

ri  
Te

+
∑
I<J

ZIZJ

|RI −RJ |  
VNN

+
∑
i<j

1

|ri − rj |  
Vee

−
∑
I,i

ZI

|RI − ri|  
VNe

(2.2)

The mI are the masses of the nuclei, ZI the nuclear charges and ∇x the nabla operator

with respect to the spatial coordinate x (∇x =
(

∂
∂xx

, ∂
∂xy

, ∂
∂xz

)
). The electronic

masses and charges do not appear in the above equation because it is given in atomic

units. Atomic units are defined such that the reduced Planck constant ℏ = h
2π ,

the elementary charge e, the electron mass me and the Bohr radius a0 = 4πϵ0ℏ2
mee2

are all equal to 1. Distances are hence measured in Bohr (1 Bohr = 0.5292 Å) and

energies in Hartree (1 Ha = 27.211 eV). These units are often very useful since they

simplify many of the equations we will need. Furthermore, many of the results that

we compute, such as energies or forces will be close to one in magnitude if atomic

units are used. This does not only help with readability, but also avoids under- and

overflow issues that computers face, when dealing with extremely small and large

numbers. Therefore, if not stated otherwise, all equations in this thesis will be given

in atomic units.

2.1.2 The Born-Oppenheimer Approximation

Even the hydrogen nuclei, which is the lightest of all nuclei, is roughly about two

thousand times heavier than the electron. This large difference in mass results

in a great disparity between the timescales on which electrons and atomic nuclei

move. It is therefore a reasonable approximation to think of the heavy nuclei as

almost stationary, while the light electrons adapt instantaneously to any change

in the nuclear positions. This approximation is known as the Born-Oppenheimer

or adiabatic approximation [27]. Since it decouples the electronic from the ionic

motion, it allows us to write the total wave function of the system as a product of

the electronic (ψ({ri})) and ionic (ϕ({RI})) wave function.

Ψ({RI , ri}) = ψ({ri})ϕ({RI}) (2.3)
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2.1 From Quantum Mechanics to Density Functional Theory

The electronic wave function depends only indirectly on the ionic positions, through

the electrostatic potential generated by them, and we assume that at each point in

time, the electrons reach their ground state configuration instantly and adiabatically

follow any change in the nuclear positions. The Hamiltonian used in the Born-

Oppenheimer approximation is therefore

H = Te + Vee + VNe (2.4)

According to the Heisenberg uncertainty principle, the heavy nuclei are much more

localized in space than the electrons. This allows us to treat them as classical point

particles, that react to the potential created by the surrounding electrons. In a

molecular dynamics simulation for example, we will take the initial ionic positions and

solve the Schrödinger equation (or a simplified version thereof, as we will see later)

to obtain the electronic ground state wave function. The total energy of the system

is then obtained by adding the electrostatic interaction of the ions and their kinetic

energy to the electronic energy that we obtained by solving the Schrödinger equation.

The resulting forces can be calculated using the Hellman-Feynam theorem [28]. We

can then follow the time evolution of the ionic positions by integrating the forces

according to Newtons law and recalculating the electronic ground state for the ionic

positions at each time step.

The Born-Oppenheimer approximation was used in all calculations presented in

this thesis. It should be noted however, that in some cases, such as superconductors,

electron phonon couplings beyond the adiabatic approximation can be important.

Since we assume that the electrons adapt instantaneously to the ionic positions,

the total potential energy of a system is only a function of the nuclear positions.

E = E({RI}) (2.5)

This function E({RI}) is know as the potential energy surface (PES) and is often

the main subject of study in this thesis, since many properties, such as the geometric

ground state, reaction pathways or thermodynamic quantities can be derived from it

(see Section 2.2).

2.1.3 Hartree-Fock Theory

The electronic wave function is a function that depends on all N electronic positions.

If we now imagine any computational treatment of such a function, meaning that

9



2 Theoretical Background

we would represent it by expanding it in any basis set, it is clear that the storage

requirements would grow exponentially with the number of electrons in the system.

Any such endeavour is therefore destined to fail, even on modern compute hardware

for anything that contains more than a handful of electrons. We are therefore forced

to simplify the electronic wave function. The most straightforward ansatz would be

to write the wave function as a product of N single electron wave functions. This is

known as the Hartree product.

Φ({ri}) = ϕ1(r1)ϕ2(r2) . . . ϕN−1(rN−1)ϕN (rN ) (2.6)

This ansatz fails to capture two important properties of interacting electrons,

namely correlation and exchange interactions. Correlation interaction comes from

the fact that electrons react to the instantaneous position of each other, meaning that

due to their electrostatic repulsion, it should be very unlikely to find two electrons

at the same position or very close together. This is clearly not the case for the above

wave function, since the positions of the electrons are completely independent of

each other. Exchange interaction is a result of the Pauli exclusion principle. Since

electrons are fermions, their wave function is required to change sign upon exchange

of two electronic coordinates.

ϕ1(r1) . . . ϕi(ri) . . . ϕj(rj) . . . ϕN (rN ) = −ϕ1(r1) . . . ϕi(rj) . . . ϕj(ri) . . . ϕN (rN )

(2.7)

This property is also clearly not enforced by the wave function given in Equation 2.6.

To enforce this antisymmetry upon the wave function, Slater proposed to write

the total electron wave function as a determinant of single electron wave functions.

Ψ({ri}]) =
1√
N !

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
ϕ1(r1) ϕ2(r1) · · · ϕN (r1)

ϕ1(r2) ϕ2(r2) · · · ϕN (r2)
...

...
. . .

...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
(2.8)

The total energy of such a wave function can then be computed as:

EHF =

N∑
i=1

∫
ϕ∗i (ri)hiϕi(ri)dri +

1

2

N∑
i=1

N∑
j=1

([ij|ij] − [ij|ji]) (2.9)

hi(ri) =
−∇2

ri

2
−
∑
I

ZI

|RI − ri|
(2.10)

10



2.1 From Quantum Mechanics to Density Functional Theory

[ij|kl] =

∫
ϕ∗i (r1)ϕ

∗
j (r2)

1

|r1 − r2|
ϕk(r1)ϕl(r2)dr1dr2 (2.11)

The term [ij|ji] is a result of the Slater determinant ansatz enforcing the an-

tisymmetry of the wave function and is called the exchange term. As seen from

Equation 2.11, [ij|ij] is the electrostatic energy of the electron.

By minimizing this energy under the constraint, that the orbitals ϕi are orthonor-

mal, it can be found, that the solution is given by taking the N lowest eigenfunctions

of the so called Fock operator F̂ . Below, the restricted Fock operator (F̂R[{ϕj}](ϕi))

for a closed shell and non spin-polarized system is given. Note that only the N/2

lowest orbitals are used, since each orbital is occupied twice, with one spin-up and

one spin-down electron.

F̂R[{ϕj}]ϕi(r) = hiϕi(r) +

N/2∑
j=1

(
2Ĵjϕi(r) − K̂jϕi(r)

)
(2.12)

The Coulomb operator Ĵ and exchange operator K̂ are given by

Ĵjϕi(r) =

∫
ϕ∗j (r

′)ϕj(r
′)

|r− r′|
dr′ϕi(r) (2.13)

and

K̂jϕi(r) =

∫
ϕ∗j (r

′)ϕi(r
′)

|r− r′|
dr′ϕj(r) . (2.14)

The Hartree-Fock equations can also be solved for non-spin-restricted systems,

which is only slightly more involved.

The numerical solution to these equations are obtained by expanding the wave

functions ϕi(r) in a basis set χµ(r).

ϕi(r) =
∑
µ

Cµi χµ(r) (2.15)

From which we can obtain the Roothaan-Hall equation, which is a generalized

eigenvalue problem for the coefficient matrix C.

FC = SCϵ (2.16)

Here F is the Fock operator expanded in the basis set χµ(r), S is the overlap matrix

(Sij =
∫
χi(r)χj(r)dr ) and ϵ are the orbital energies. Since the Fock operator F

itself depends on the molecular orbital coefficients C, the Roothan-Hall equation has
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2 Theoretical Background

to be solved iteratively until a self-consistent solution is found. For this, an initial

guess is taken for C, for which F is constructed. The improved orbital coefficients

are then obtained by solving Equation 2.16. This process is then repeated until a

self-consistent solution for C is found.

This solution does not only allow us to access the PES in terms of energy and

forces, but also other observables, such as the electron density ρ(r) can be computed.

ρ(r) = 2

N/2∑
i

|ϕi(r)|2 (2.17)

As we will see later, ρ is the central quantity in density functional theory (DFT) and

it can also be used to compute atomic charges, as described in Section 2.1.6. These

atomic charges will later play an important role in the 4G-HDNNP that is presented

in Chapter 4.

Many flavours of basis sets exist, each with their own advantages and disadvantages.

For example plane wave basis sets [29] are generally well suited for periodic systems

and have the advantage that they form an orthonormal basis that can be systemati-

cally improved and that kinetic and Coulomb energies can be efficiently computed by

taking advantage of the fast Fourier transform (FFT). However, to correctly describe

the rapidly oscillating core electrons close to the nuclei, a large number of plane

waves is needed. This problem can be avoided by the use of pseudopotentials, which

take advantage of the fact that the core electrons do not participate in chemical

bonding, by replacing them with artificial potentials. Wavelets [30] share many of

the advantages of plane waves, in that they also form a systematic orthogonal basis

set. In addition, they are also well suited for systems with free boundary conditions

and allow for a varying resolution, such that more basis functions can be placed in

regions where the wave function changes rapidly. The traditionally most popular

basis sets are probably linear combinations of atomic orbitals (LCAO), which are

constructed by placing a set of basis functions on each atom. Each such atomic basis

function consists of a radial part, usually defined as a linear combination of Gaussian

functions [31], but also other choices such as numerically defined functions [32] exist,

and an angular part described by spherical harmonics. These basis sets have the

advantage that the number of basis functions required is generally lower than in

other methods. If Gaussians are used, the required integrals, such as overlap or

Coulomb integrals can be computed analytically. However, systematic convergence
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2.1 From Quantum Mechanics to Density Functional Theory

with respect to the basis set can not be obtained, making it difficult to estimate the

basis-set error in computations using LCAOs.

The main limitation of the Hartree Fock method is, that the wave function is

approximated by a single Slater determinant. Even if we would use a complete

basis set, this is not sufficient to describe the exact wave function, since electronic

correlation cannot be described. Because of this, the method is unable to describe

dispersion interactions, will predict bonds that are too short and bond breaking

energies that are too high.

Despite that, the method can still give reasonable values for energy differences

in many cases. Further, the method is size-consistent, i.e. the energy of a system

of two infinitely seperated subsystems is equal to the energy of the sum of the two

individual systems. The method is also variational which means the calculated

energy forms an upper bound for the energy of the exact wave function solution. A

naive implementation of the Hartree-Fock (HF) method scales as O(n4) with n being

the number of basis functions used, which is usually proportional to the number of

electrons in the system. With more involved implementations, the computational

complexity can be reduced significantly to around O(n2) [33].

2.1.4 Post Hartree-Fock Wave Function Methods

Many methods have been developed to overcome the limitations of the single Slater

determinant ansatz used by the Hartee-Fock method. Although no such methods

have been used in this thesis a brief overview will be given in this chapter.

From the molecular orbitals obtained from HF, additional, excited Slater deter-

minants can be constructed, by replacing one or more of the occupied orbitals with

unoccupied orbitals. In the limit of all possible Slater determinants, a complete

basis set for the wave function can be obtained. By optimizing the weights of the

individual Slater determinants, an exact solution to the time independent Schrödinger

equation in the Born-Oppenheimer approximation can be obtained. The accuracy of

this method, called full configuration interaction (CI), is therefore in principle

only limited by the accuracy of the basis set from which the molecular orbitals are

constructed. However, due to the exponential scaling of the method, it is only appli-

cable to the smallest of systems and the number of Slater determinants that are used

has to be truncated. These truncated approaches are known as CI-(S/SD/SDT/. . .)

depending on the amount of Slater determinants included. This truncation causes

the method to not be size-consistent anymore, but still variational.
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In Møller-Plesset perturbation theory, perturbation theory is used to calcu-

late second (MP2) or higher order corrections to the ground state energy of the Fock

operator. The series of higher order corrections (MP3, MP4, . . .) does not converge

to the full CI solution. The method is size consistent but not variational.

Coupled cluster (CC) theory uses an exponential ansatz for the wave function.

|ΨCC⟩ = eT |ΨHF⟩ (2.18)

Where ΨHF is the HF wave function and T the excitation operator containing all

possible excitation of the HF orbitals (T = T1 + T2 + T3 + . . .), where each excited

wave function is weighted with a coefficient that has to be optimized. This ansatz is

able to describe the exact full CI wave function in the limit, where all excitations are

included. However, in practice only some excitations are included. CCSD for example

includes single and double excitations. In CCSD(T), which can be considered to be

the gold-standard of electronic structure calculations nowadays, single and double

excitations are fully included while triple excitations are included in a perturbative

manner. Due to the exponential operator, higher order excitations are included

implicitly, reusing the coefficients of the lower order excitations. The method is size

consistent but not variational. Computationally the method is very demanding and

CC-SD(T) scales as O(n7).

2.1.5 Density Functional Theory

An alternative way to approach the solution of Schrödinger’s equation can be found

in density functional theory (DFT). The theory has its origins in the seminal work

of Hohenberg and Kohn [34], where it is shown, that the electronic ground state

density ρ(r) uniquely determines the external potential of the nuclei v(r) up to an

additive constant. In other words, no two potentials that differ by more than an

additive constant can give rise to the same electronic density. Combined with the

fact, that the total energy E is a functional of the electronic wave function, which is

uniquely determined by the external potential, it can be concluded, that ρ(r) must

be sufficient to uniquely determine E.

While the energy of any quantum state is in general a functional of its 3N

dimensional wave function, this result shows that the ground state energy, which

in many cases is the energy we are most interested in, is only a functional of the

three-dimensional density ρ(r).
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2.1 From Quantum Mechanics to Density Functional Theory

Therefore, a universal functional F [ρ(r)] of the electron density ρ(r) must exist,

for which the energy expression in Equation 2.19 is minimized by the correct ground

state density that would be obtained by solving the Schrödinger equation for the

external potential v(r).

E =

∫
v(r)ρ(r)dr + F [ρ(r)] (2.19)

This is remarkable, since it indicates, that in order to find the ground state

energy only the density ρ(r) needs to be considered, which would save us many

of the troubles associated with handling the very high dimensional wave function.

Unfortunately, the theorem only proofs the existence of such a functional, but it

does not tell us anything about how such a functional would look like. Nevertheless,

many functionals have been proposed that have been very successful in predicting

various properties of many-body quantum-mechanical systems, making DFT one

of the most widely used tools in material sciences and chemistry [35]. Despite

its extraordinary success, on should keep in mind, that DFT only addresses the

electronic ground state, but is not designed for describing electronic excitations

and non-equilibrium properties. It is therefore rather accurate in describing some

properties, such as equilibrium geometries, phonon spectra, binding energies or band

structures of metals and semiconductors, while it fails to reliably predict electronic

band gaps of semiconductors and insulators or bonding in systems, where dispersion

interactions are of importance [36].

By comparing Equation 2.19 with the Hamiltonian given in Equation 2.4, we can

rewrite the functional F [ρ(r)] as follows.

E =

∫
v(r)ρ(r)dr + F [ρ(r)] =

∫
v(r)ρ(r)dr + ⟨Ψ[ρ(r)]|Te + Vee|Ψ[ρ(r)]⟩ (2.20)

Here the electron-nuclei interaction VNe only depends on the electron density

and is therefore included in v(r). The kinetic and Coulomb terms of the electrons,

however, only depend implicitly on the density ρ(r). Therefore, Kohn and Sham

proposed to expand the electron density using independent electrons ϕi.

ρ(r) =
N∑
i

|ϕi(r)|2 (2.21)

The Kohn-Sham wave function is then a single Slater determinant, like in HF theory.

The total energy can then be expressed by the kinetic and Coulomb energy of the
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electrons plus an extra term, called the exchange-correlation energy, Exc[ρ] accounting

for the difference [37].

E =

∫
v(r)ρ(r)dr + F [ρ(r)]

=

∫
v(r)ρ(r)dr +

N∑
i

∫
ϕ∗i (r)

−∇2

2
ϕi(r)dr +

1

2

x ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[n]

(2.22)

A Hamiltonian can then be constructed by defining an exchange-correlation potential

Vxc[ρ](r), which is the functional derivative of Exc[ρ] with respect to the density

ρ. The electronic orbitals are then the minimum energy solution to the following

expression, with an additional orthonormality constraint.(
−∇2

2
+ v(r) +

∫
ρ(r′)

|r− r′|
dr′ + Vxc[ρ](r)

)
ϕi(r) = ϵiϕi(r) (2.23)

Due to the dependence of the left side of the above equation on the charge density ρ

itself, a self-consistent approach must be used, similarly to the HF method.

The accuracy of DFT crucially depends on the quality of the exchange-correlation

functional that groups together all the many body interactions that account for the

exchange, correlation, self-interaction and the kinetic energy correction. Finding

such a functional is a formidable task and many forms have been proposed, while

research is still ongoing.

One of the simplest form of the exchange-correlation functional is the local density

approximation (LDA), which, as the name implies, only depends on the local electronic

density.

ELDA
xc =

∫
εLDA
xc (ρ(r))ρ(r)dr (2.24)

The most successful LDA functionals are based on the homogeneous electron

gas (HEG) model, for which the exchange energy is known analytically. This

expression is then applied to the local density at each point.

εLDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ(r)4/3dr (2.25)
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Analytic expression for the correlation energy of the HEG are only known for the

limits of infinitely high and low densities but intermediate values have been computed

using the quantum Monte Carlo method [38].

While LDA functionals can provide fairly accurate geometries, they tend to

overestimate binding energies. But given that LDA functionals reproduce the exact

results for homogeneous densities, they form the basis for many other functionals.

In systems with a rapidly varying density, such as atomic systems and molecules,

a better approximation of the exchange-correlation energy can be achieved by also

including a dependence on the derivative of the density ∇ρ(r).

EGGA
xc =

∫
εGGA
xc (ρ(r),∇ρ(r))ρ(r)dr (2.26)

These functionals are known as generalized gradient approximations (GGAs). One

of the most popular GGAs is the functional proposed by Perdew Burke and Ernzer-

hof (PBE) [39]. While some GGA functionals are parameterized using experimental

data, PBE is derived without empirical data and therefore applicable to a wide range

of systems.

Functionals that also include the single particle kinetic energy density τ s(r) are

known as meta-GGAs.

Emeta-GGA
xc =

∫
εmeta-GGA
xc (ρ(r),∇ρ(r), τ s(r))ρ(r)dr (2.27)

The strongly constrained and appropriately normed (SCAN) functional [40] is

a recently proposed meta-GGA, that obeys all 17 known exact constraints, that a

meta-GGA can. It was shown to be remarkably accurate for many test systems.

Functionals that incorporate a fraction of exact exchange from HF theory, are

known as hybrid functionals. Examples of such functionals are PBE0 [41], which

replaces one quarter of the PBE exchange with exact exchange and B3LYP [42],

which is an early meta-GGA that is still widely used in the chemistry community.

DFT calculations usually scale with O(n3), with respect to the number of electrons

due to the matrix diagonalization involved. Linear scaling methods [43], that take

advantage of decay properties of the density matrix and employ sparse matrix linear

algebra, have also been implemented [44]. However, since these methods only perform

better for fairly large systems, they were not used for this thesis.
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2.1.6 Atomic Charges

We saw in the previous sections, that the charge density ρ is a central property in

electronic structure calculations. Due to its long range, the Coulomb potential created

by ρ is essential for many reactions and interactions. It is therefore not surprising,

that many force fields (see Section 2.2.5) include explicit Coulomb terms in addition

to the short-ranged bonding interactions. As we will see in Chapter 4, redistribution

of charge is also an important effect that leads to long-ranged interactions. Inside

electronic structure codes, ρ is represented by a complicated basis expansion with

many terms. This representation, which often differs between electronic structure

codes, can be difficult and expensive to work with and simplified representations of

ρ may be needed. One possibility is the concept of atomic charges (or higher order

multipoles), which discretize the charge density by assigning it to the atoms. The

atomic charges can then be used to calculate pairwise Coulomb interactions.

Since no unique decomposition of the continuous charge density into atomic charges

exists various methods have been proposed. Mulliken [45] and Löwdin [46] population

analysis use the occupation of atomic basis functions to assign electronic charge

to atoms. The exact result is therefore dependent on the basis set used. Bader

charges [47] do not depend on the basis set but instead partition the space around

the atoms using a so-called zero flux surface, where the charge density reaches a

minimum perpendicular to the surface. These surfaces can be difficult to compute

and often require the representation of the charge density on a three-dimensional

grid.

Other methods, such as Hirshfeld [48] and Becke [49] charges are computed with a

smooth partitioning based on weighting functions wi(r).

Qi = Zi −
∫

wi(r)∑N
j wj(r)

ρ(r) (2.28)

In the Hirshfeld scheme, the electron density of a radially symmetric atom in vacuum

is chosen for wi. Alternatively, Gaussian functions of width σ can be used to obtain

a smoothed Voronoi partitioning [50]. In the limit, where σ → 0, a true Voronoi

partitioning is obtained, that assigns each point in space to the nearest atom.

Methods that assign atomic charges by splitting up the charge density often fail

to reproduce the external electrostatic potential and different partitioning schemes

can lead to different numerical values for the charges [51]. Including atomic dipole
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moments or higher order multipoles, in addition to atomic monopoles, can help to

overcome this problem [52].

Other methods, such as Merz-Kollman charges [53] or CHELPG charges [54]

therefore do not use the charge density ρ but fit atomic charges that reproduce

other properties, in particular the electrostatic potential. Unfortunately these fit-

ting procedures are often ill-conditioned, and numerical instabilities can arise [55].

Furthermore, the atomic charges may not be continuous with respect to the atomic

positions, which is particularly important, when the atomic charges are used to train

machine learning methods.

Similarly, some machine learning methods, such as the Affordable Charge Assign-

ment (ACA) [51] or PhysNet [56] also determine atomic charges that reproduce

molecular dipole moments. However, unlike the above-mentioned methods, the

atomic charges are not fit to reproduce the potential of a single system, but instead,

an atomic charge predicting machine learning model is fit to obtain the best agree-

ment throughout a whole data set of structures. Similarly, the CENT2 [57] or the

kQEq [58] methods use a charge equilibration scheme based on machine learned

electronegativities to predict charges that reproduce a screened electrostatic potential

or molecular dipole moments respectively. The large datasets used and the inductive

bias introduced by the underlying machine learning models alleviate the conditioning

problems encountered by methods that are applied to single structures. This may

result in a larger error in the fitted quantities on a per-structure basis, but since

atomic charges are a rather crude approximation anyway, this is not critical in many

cases. Once trained, the models can then also be applied to new structures, without

the need for expensive electronic structure calculations.

Overall, it is clear, that the method used to determine the atomic charges should

be chosen depending on the intended use of the resulting charges.
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2.2 Simulation Methods for the Potential Energy

Landscape

In the last chapter, we saw several methods that can be used to find more or less

approximate solutions to the electronic ground states of the Schrödinger equation.

Many useful things can be derived from these solutions, such as x-ray diffraction

patterns, ionization and band gap energies, and many more. However, in the work

presented in this thesis, we mostly focus on the energy and forces acting on the

nuclei that are obtained from electronic structure calculations. An exception to this

is the electronic density, which we used in Chapter 4 to study long range electrostatic

effects.

In Section 2.1.2, we already saw that in the Born-Oppenheimer approximation,

the nuclei are treated as point like particles and that the function of the energy

E = E({RI}) for a specific set of atomic positions {RI} is known as the potential

energy surface (PES). The forces acting on each atom are the negative derivatives of

the potential energy function with respect to the atomic coordinates.

FIα = −dE({RI})

dRIα
| α = {x, y, z} (2.29)

Most electronic structure codes allow for the analytical calculation of these derivatives

and provide them as output. In addition to the forces, a wealth of information can

be extracted from the PES, such as ground state geometries, reaction dynamics,

thermodynamic properties, formation energies and many more. However, due to

its high dimensionality, the PES of a system containing Nat atoms is a function of

3Nat coordinates, and it is not uncommon for Nat to be in the hundreds of even

thousands. This makes the PES a highly complex function and due to the curse of

dimensionality its exploration is exceedingly difficult.

To overcome these difficulties, many simulation methods and algorithms have been

developed. In the next sections an overview over the most relevant methods will be

given.

2.2.1 Molecular Dynamics

Since we know the forces acting on all atoms, as well as their masses, we can apply

Newtons equation of motion to calculate the time evolution of the system. The

trajectories obtained from this process, called molecular dynamics (MD), can reveal

insights that can not be directly observed in experiments due to the short time-
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and length-scales involved. For instance, reaction pathways can be observed or

thermodynamic ensemble averages can be computed.

To obtain the time evolution of the atomic positions, we integrate Newtons equation

of motion.

mI
d2RI

dt2
= FI (2.30)

Here mI are the atomic masses.

To numerically integrate Newtons equation, we discretize it using a finite time

step ∆t. The most simple approach to propagate the atomic positions, starting from

the initial conditions R(t = 0) and V(t = 0) would be Euler method, where a simple

finite difference scheme is used.

RI(t+ ∆t) = RI(t) + VI(t)∆t (2.31)

VI(t+ ∆t) = VI(t) + FI(RI(t))
∆t

mI
(2.32)

It turns out however, that this scheme will result in a drift of the total energy, a

quantity which should at least in theory be preserved during a MD simulation.

A more stable algorithm is the Verlet algorithm [59]. The increased long term

stability is due to the fact that the Verlet algorithm is time reversible, meaning that,

when one would apply the algorithm with negative time steps, it would exactly trace

back the forward trajectory with positive time steps. Therefore, a time reversible

algorithm cannot introduce systemic energy drifts. Short term fluctuations will still

be observed, but they tend to oscillate around a mean value in the long term. The

velocity Verlet algorithm propagates the positions as follows.

RI(t+ ∆t) = RI(t) + VI(t)∆t+ FI(RI(t))
∆t2

2mI
(2.33)

VI(t+ ∆t) = VI(t) + (FI(RI(t+ ∆t)) + FI(RI(t)))
∆t

2mI
(2.34)

Since the total energy is conserved during MD simulations, it can be used to

sample the microcanonical ensemble of a system. If one is interested in the canonical

ensemble, where atomic configurations are visited according to their Boltzmann

probability at a given temperature, additional modifications to the MD algorithm,

so-called thermostats, have to be used. Popular methods include the Nosé-Hoover [60,

61], Langevin [62] and Andersen [63] thermostats.
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2 Theoretical Background

2.2.2 Monte Carlo Simulations

As we just saw, MD simulations can be used to sample the canonical ensemble of a

system. This allows us to evaluate thermodynamic integrals, such as expectation

values of a quantity X over the Boltzmann distribution, which can be written as

⟨X⟩T =
1

Z(T )

∫
exp

(
−E(R)

kBT

)
X(R)dR . (2.35)

Here kB is the Boltzmann constant, T the temperature and Z(T ) the partition

function, which normalizes the Boltzmann distribution.

Z(T ) =

∫
exp

(
−E(R)

kBT

)
dR (2.36)

Alternatively to MD simulations with a thermostat, Monte Carlo (MC) simulations

can also be used. MC methods, referring to the famous Monte Carlo casino in

Monaco, are computational methods which are based on random numbers. Due

to the inherent randomness, these methods are not deterministic and give only

approximate results with an error that depends on the number of iterations 1. In the

context of atomistic simulations, the term usually refers to methods based on the

Metropolis–Hastings algorithm [2, 64].

The MC method and in particular the Metropolis–Hastings algorithm have many

applications and are not limited to the Boltzmann distribution in particular but are

a very general method to numerically solve high dimensional integrals. The naive

approach to numerical integration would be to divide the function into many small

segments and then approximate the area under the curve as the sum of the area of

small rectangles that fit under it.

∫ b

a
f(x)dx ≈

N∑
i=0

f(a+ i(b− a)/N)(b− a)/N (2.37)

If the function f(x) depends on more than one variable, a nested summation has

to be used, such that the function is evaluated on a high dimensional grid over all

variables. If our function depends on many variables however, such as the PES

1 Even though, MD simulations should in principle be deterministic, this is in practice often not
the case. MD trajectories are highly chaotic, meaning that a tiny change in the initial conditions
can lead to a huge difference in the trajectory after only a small number of time steps. Altough
the algorithms used to compute the trajectory are often deterministic, numerical noise is often
introduced, for example, when the order of operations is not deterministic during parallelization.
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2.2 Simulation Methods for the Potential Energy Landscape

does, this approach becomes infeasible, since the number of grid points will increase

exponentially with the number of variables. For instance, if we would consider

a system with 5 atoms and would use N = 10, we would already end up with

1015 evaluations of the PES. Additionally, at most of these grid points, we would

probably end up with completely unphysical structures, where atoms are very close

together, resulting in a high energy and accordingly low Boltzmann probability.

These configurations would therefore not even contribute significantly to the integral

we are calculating.

This can be avoided using importance sampling. If we have a way of generating con-

figurations Ri that are already distributed according to the Boltzmann distribution,

the integral in Equation 2.35 can be approximated as follows.

⟨X⟩T ≈ 1

N

N∑
i=1

X(Ri) (2.38)

Such configurations can be generated using the Metropolis–Hastings algorithm [2,

64], which performs a random walk over configuration space using a Markov chain. To

sample a distribution P (R), the algorithm is initialized with a starting configuration

R0. Then, a new configuration is proposed, according to a proposal distribution

g(R′|Ri). Here g(R′|Ri) denotes the probability of proposing the new configuration

R′ give the current configuration Ri. The new configuration is then accepted with

the following probability.

α = min

(
1,
P (R′)g(Ri|R′)

P (Ri)g(R′|Ri)

)
(2.39)

For this a uniformly distributed random uniform number u between zero and one is

generated using a random number generator 2 and compared to α. If u < α, the new

configuration is accepted (Ri+1 = R′), it is added to the list of configurations and

the process is repeated. Otherwise, the previous configuration is accounted for again

(Ri+1 = Ri).

The initial configuration R0 has to be provided by the user. To prevent any biasing

due to the initialization of the algorithm, an equilibration phase can be used, where

the algorithm runs for a certain amount of iterations without collecting samples. The

2 Since computers are deterministic machines, obtaining true random numbers is only possible by
using special hardware. While such hardware is generally present in most computers, it is mostly
used for cryptographic purposes due to its slow speed. For MC simulations, pseudo-random
number generators are used, to produce a deterministic series of numbers that approximates a
true random sequence and fulfill the statistic requirements.
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2 Theoretical Background

second ingredient that has to be provided by the user is the proposal distribution

g(R′|Ri). Here g(R′|Ri) indicates the probability of proposing configuration R′

given the current configuration Ri. Usually, small local displacements of all or one

atom are used to propose a new configuration but in Chapter 6, we will see that

also global moves can be constructed. In cases, where the proposal distribution is

symmetric, i.e. g(R′|Ri) = g(Ri|R′), its contribution cancels out of the acceptance

probability. The magnitude of the random displacements has to be chosen carefully.

If the displacements are too large, the proposed configurations will be high in energy

and the acceptance rate low. Too small displacements result in a high acceptance

rate but also a higher correlation between subsequent samples and hence a larger

number of iterations is needed until the simulation converges. The magnitude of the

displacement should hence be chosen such that an acceptance rate of about 23.4%

is obtained [65]. Furthermore, it should be noted that since only the fraction of

the probabilities P (Ri) and P (R′) enters the acceptance rate, the distribution P

does not have to be normalized. This is especially convenient when the Boltzmann

distribution is sampled, since the partition function is usually not known.

2.2.3 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [66–68] is a variation of the Metropolis–Hastings

algorithm, where Hamiltonian (molecular) dynamics are used to propose the next

configuration. This allows to propose configurations that are less correlated to the

previous one compared to what can be achieved with random displacements. The

Hamiltonian dynamics can be interpreted as molecular dynamics when a Boltzmann

distribution is targeted.

Lets consider the Boltzmann distribution P (R), which we want to sample. It is

defined through the potential energy Epot(R) as follows.

P (R) =
1

Z
exp

(
−Epot(R)

kBT

)
(2.40)
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2.2 Simulation Methods for the Potential Energy Landscape

If we add a kinetic term Ekin(V) to the Hamiltonian, we get the following probability

distribution.

P (R,V) = exp

(
−(Epot(R) + Ekin(V))

kBT

)
= exp

(
−Epot(R)

kBT

)
exp

(
−Ekin(V)

kBT

)
= Ppot(R)Pkin(V)

(2.41)

Here V are the atomic velocities. Since the two probabilities Pkin(V) and Ppot(R)

are independent, Ppot(R) can be sampled by sampling the joint distribution and

simply ignoring the velocity components V

To propose a new configuration, we first sample Pkin(V). Since Pkin(V) is a normal

distribution, this can be done efficiently with the Box–Müller algorithm [69, 70].

We then perform MD using these initial velocities and take the final configuration

obtained after a fixed amount of iterations as our proposed configuration R′. The

MD simulation is completely deterministic and preserves phase space volume. The

probability of proposing the configuration R′ is therefore the probability of picking

the initial velocities V and hence equal to Pkin(V). The MD simulation is also

reversible, given that a proper integration algorithm, such as the Verlet algorithm

from Equation 2.33, is used. The probability of the inverse move, going from R′ to

R is hence the probability of picking the final velocities V′ from Pkin(V). If we plug

these probabilities into Equation 2.39, we get the following expression.

α(R′,V′|R,V) = min

(
1,
P (R′)g(R|R′)

P (R)g(R′|R)

)
= min

(
1,
Ppot(R

′)Pkin(V′)

Ppot(R)Pkin(V)

)
= min

(
1,
P (R′,V′)

P (R,V)

)
= 1

(2.42)

Since the total energy Epot(R) + Ekin(V) is conserved during the MD simulation,

the probabilities P (R′,V′) and P (R,V) are equal. In practice the energy is not

exactly preserved due to errors in the time integration and the acceptance step should

still be performed. This allows for a tradeoff between a larger step size of the time

integration algorithm, resulting in less correlated samples, at the cost of a slightly

reduced acceptance rate.
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2.2.4 Structure Search

To better understand the PES, it can be helpful to study it in terms of its local

minima. By assigning each point on the PES to the local minimum where a local

geometry optimization would end up, the PES can be partitioned into so-called

catchment basins. Neighboring catchment basins are connected via transition states.

Transition states are saddle points on the PES, i.e., structures with zero force but

one negative eigenvalue in their Hessian matrix. A geometry optimization after a

small perturbation along the two directions of the eigenvector corresponding to the

negative eigenvalue will lead to the two minima, that are connected by the saddle

point. By systematically exploring the PES and connecting local minima through

Figure 2.1: Illustration of the potential energy landscape of a two-funnel system. Local
minima are marked by pink dots. The global minimum is outlined in black.
Saddle points are marked by orange dots. The two funnels are indicated by the
light-blue and light-green background color.

transition states, a so called disconnectivity graph can be built, that represents the

structure of the PES [71]. These graphs reveal the structure of the PES and allow

for a classification into structure seeking, glassy or multi funnel systems [72]. In

structure seeking systems, local minima are arranged in a funnel like manner, that

allow for a gradual relaxation towards the global minimum through intermediate

minima that are energetically close and share a low barrier height 3. Such structure

seeking systems are characterized by relatively low downhill barriers compared to

the uphill barriers [74]. The uphill barriers are the energetic barriers which have to

be crossed to go from an energetically lower minimum to a higher lying one. The

3 One of the best examples for structure seeking systems are proteins. Levinthal argued, that even
if proteins would visit only a fraction possible minima during their folding process, until the
biologically active (free energy) ground state is found, more time than the age of the universe
would be required [73]. But since proteins actually fold on very short timescales, this argument
is known as Levinthal’s paradox. Due to the strong structure seeking behaviour of proteins, only
a small number of transition states is actually visited during the folding process.
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2.2 Simulation Methods for the Potential Energy Landscape

downhill barriers are the ones encountered when going in the opposite direction.

In multi funnel systems, several funnels exist which are separated by high barriers

compared to the energetic difference of the lowest minima of each funnel. Such a

system can therefore easily find its way to the lowest minimum of one funnel while

a transition towards the global ground state might be hindered. In glassy systems,

large numbers of local minima with similar energies and comparable up- and downhill

barriers are present and the structure of the PES does not form a driving force

towards the global minimum.

Since many systems in nature are structure seekers and can be found in their global

ground state, finding that structure through simulations is of high interest. This can

be done for example through simulated annealing [75], where the physical relaxation

process is directly simulated by an MD simulation during which the temperature is

gradually reduced.

Due to the limitations in the accessible time scales through MD simulations, the

relaxation process that takes place in nature can often not be simulated directly.

To overcome this problem, many global optimization algorithms, such as basin

hopping [76], evolutionary algorithms [77–79] or metadynamics [15, 80] have been

proposed that attempt to find the global minimum efficiently.

A particularly efficient global optimization method is minima hopping [81, 82].

Minima hopping systematically explores the PES by iteratively escaping the current

local minimum using a short MD trajectory followed by a local geometry optimization.

The MD trajectory is performed until a predefined number of minima along the

trajectory have been crossed. When the local geometry optimization falls back

to a previously visited local minimum, a new escape step is performed with an

increased initial kinetic energy. In case that a new local minimum is found which

has not been visited previously, it is either accepted or rejected according to a

simple energy thresholding. The threshold is dynamically adjusted during the

minima hopping run, such that half of the newly discovered minima are accepted.

By automatically adjusting the kinetic energy of the escape trajectories, minima

hopping takes advantage of the Bell–Evans–Polanyi principle [83], which states, that

highly exothermic reactions have a low activation energy. This principle therefore

suggests, that crossing low energy barriers leads to lower lying minima. Later

implementations of the minima hopping method also include further improvements,

such as a softening, which slightly adjusts the initial velocities of the escape trajectory

towards soft vibrational modes [82]. Other variants of the method also introduce a

biasing of the PES using fingerprint distances [84] or symmetry [85].
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2.2.5 Force Fields

As we saw in Chapter 2, many ab-initio methods exist that allow us to access the PES

by solving an approximate model of the underlying Schrödinger equation. We also

saw, that these methods require a substantial computational effort, that in most cases

scales unfavourably with the number of atoms involved. The application of these

methods is therefore limited to moderately sized systems and only few calculations

can be afforded. Many applications however, such as MD or MC or structure search

simulations require a large number of energy and force calculations to obtain reliable

results.

To enable long-time and large-scale simulations, many alternative methods to access

the PES have been proposed. Most of these methods can be classified as classical

force fields, where some mathematical functional form, in many cases based on

physical concepts, is chosen and then parametrized using experimental measurements

or ab-initio results. Already in their 1953 paper, Metropolis et al. [2] propose the

use of a potential based on pairwise interactions, for which the total energy can be

calculated by considering all pairs in the system.

E =
1

2

N∑
i ̸=j

V (rij) | rij = |ri − rj | (2.43)

The computational results in the paper are limited to a hard-sphere model, where the

energy of the system is infinite if any two spheres overlap and zero otherwise. One

of the most widely used pairwise potentials is presumable the Lennard-Jones (LJ)

potential [86, 87]. The potential consists of an attractive term of the form a/r6,

which models Van der Waals interaction and a repulsive term of the form b/rm. The

exponent m of the repulsive term ist often chosen to be 12 because it allows for

an efficient computation by simply squaring the attractive term. The LJ potential

is therefore well suited to model the interactions of noble gas atoms. The most

commonly used form of the LJ potential is hence the 12–6 potential.

VLJ(r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(2.44)

Due to their high computational efficiency, LJ systems have been widely studied.

The energy landscape of LJ clusters has been explored in detail [88] and due to their

double funnel structure, the 38 [89] and 75 atom clusters are popular test systems

for structure search [76, 81, 90] and MC methods [91–94].

28



2.2 Simulation Methods for the Potential Energy Landscape

In pairwise potentials, such as the LJ potential, the interaction between all pairs

of atoms enters the final energy. A naive implementation, where all such pairs are

considered results therefore in a computational cost that grows quadratically with

the number of atoms in the system. Luckily, the LJ potential as well as many others

that model local atomic interactions decay rapidly with increasing distance. The

contributions of atom pairs with a distance larger than a predefined cutoff radius

can therefore safely be ignored and only contributions from local neighbors have to

be considered. For such an implementation, lists of neighboring atoms, also known

as Verlet lists [59], are needed. These Verlet lists have to be constructed carefully,

since simply comparing all atom pairs to determine neighbors would again result in

a quadratic scaling. Instead, methods based on tree like data structures, such as k-D

trees or octrees, or methods that bin atoms into a three-dimensional grid need to be

used to obtain a scaling of O(Nat log(Nat)) or O(Nat) respectively.

Unfortunately, Verlet lists cannot be used to compute the electrostatic potential,

which is important in many types of systems, with a linear scaling computational

cost.

Velec(r) =
qiqj
r

(2.45)

Due to the slow 1/r decay, the contributions from far away atom cannot be ignored

and more sophisticated methods, such as the Barnes-Hut algorithm [95], fast multipole

methods [96] or wavelet based methods [97, 98] have to be used to obtain a scaling

of O(Nat log(Nat)) instead of O(N2
at). For periodic systems, the problem becomes

even more severe, as the sum for the energy does not converge when the number

of neighbouring unit cells that are included is increased. This problem is solved

by Ewald summation [99], which uses auxiliary Gaussian charges of opposite sign,

making the effective potential short ranged. The electrostatic energy of the Gaussian

charges can be efficiently calculated in reciprocal space resulting in an overall O(N
3/2
at )

scaling (see Section 4.2.1). Other methods rely on a similar approach, but use a grid

based representation of the auxiliary charge distribution [100], allowing them to take

advantage of the FFT to reduce the computational effort to O(Nat log(Nat)).

In many cases a pairwise potential alone is not sufficient to describe the complexity

of the PES. Therefore, other terms, such as angular three-body terms and four body-

terms describing dihedral angles have to be added. Nowadays, many implementations

of force fields are available [101–106] implementing a plethora of functional forms

from which the user can choose.
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Due to the simple functional form, force fields can be evaluated very efficiently and

the small number of free parameters allows for the use of few, high quality, ab-initio

reference data points or even experimental data for fitting. A clever choice of the

used functions also ensures reasonable behaviour of the potential in extreme cases,

that are not present in the training data. For example, high repulsive forces when

very short bond lengths are present. On the other hand, the fixed functional form

and small number of free parameters also limits the accuracy that can be obtained.

This limitation is tackled by machine learned potentials (MLPs), which have become

increasingly popular in recent years. Instead of a predefined set of functions, MLPs

use a machine learning engine, that can represent a large function space using many

free parameters. Using a large amount of reference data, these methods can then be

fit with a very high accuracy, such that in most cases, the accuracy of the method

used for generating the training data is the limiting factor. A thorough overview

over the history of MLPs and how we solved some limitations of current methods

will be given in the next chapter.
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3.1 Introduction

We already saw in the last section, how force fields can be used to construct an

approximation to the PES, that can be evaluated orders of magnitude faster, than

ab-initio methods and thus enables simulations of large size- and long time-scales.

Despite their success, classical force fields are inherently limited in the accuracy

that they can achieve, since the predefined functional forms of the interaction

potentials necessarily neglect some of the complexity present in real PESs. With

the recent increase of the available computational resources, the generation of large

ab-initio reference data sets has become possible. This, together with algorithmic

improvements, has lead to the development of machine learned potentials (MLPs).

Instead of a manually chosen functional form, with few free parameters, MLPs use

machine-learning methods to represent the atomic interactions. These machine

learning methods, such as artificial neural networks (ANNs), provide an extremely

flexible functional form with many free parameters, that can be fit to a large

number of reference data-points. MLPs are not constrained to a predefined set

of interaction potentials that can be represented and are therefore able to very

accurately reproduce energies and forces from reference data. The fitting error of

MLPs is therefore often lower than the error introduced by the level of theory of the

electronic structure method used to generate the training data. MLPs trained on

data obtained from highly accurate reference methods, such as coupled cluster, have

been constructed [110], but due to the high computational cost of these methods,

DFT remains the foundation of most current MLPs. This however, does not mean

that MLPs are free from any built in assumptions. As we will see later, many of

Parts of this chapter were adapted from T.W. Ko, J.A. Finkler, S. Goedecker, and J. Behler.
“A fourth-generation high-dimensional neural network potential with accurate electrostatics
including non-local charge transfer”. Nature communications 12:398, 2021 (CC BY 4.0 [108]).
Parts were also adapted with permission from T.W. Ko, J.A. Finkler, S. Goedecker, and J.
Behler. “General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer”.
Accounts of Chemical Research 54:4, 2021, pp. 808–817 (Copyright 2021 American Chemical
Society).
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the currently used MLPs assume, that chemical interactions are local and hence

ignore interactions beyond a certain cutoff radius. While this locality assumption

allows applications to very large systems, with linearly scaling computational cost, it

can be problematic for systems, where long-ranged electrostatic interactions play an

important role. This lead to the development of MLPs, that include explicit Coulomb

interactions through environment dependent atomic charges. In spite of countless

successful applications, in recent years it has been recognized that the accuracy of

MLPs relying on local atomic energies and charges is still insufficient for systems

with long-ranged dependencies in the electronic structure.

These can, for instance, result from nonlocal charge transfer or ionization and are

omnipresent in many important types of systems and chemical processes such as the

protonation and deprotonation of organic and biomolecules, redox reactions, and

defects and doping in materials. In all of these situations, small local modifications

can change the system globally, resulting in different equilibrium structures, charge

distributions, and reactivity. These phenomena are very common in chemistry,

molecular biology and materials science, and in Figure 3.1 two typical examples from

different fields are shown.

Figure 3.1a shows the Hirshfeld charges [48] of the aromatic organic molecule

2-hydroxy-anthracene obtained from DFT. If this molecule is deprotonated, the

atomic charges notably change throughout the whole molecule as can be seen for

instance for carbon atoms 6 and 7, whose partial charges change strongly, although

they are about 8.5 Å away from the deprotonated oxygen atom. Figure 3.1b shows

the optimized adsorption geometries of a gold atom on a periodic MgO(001) surface.

For the ideal surface the gold atom is adsorbed on top of an oxygen atom and its

Hirshfeld charge is very close to zero. If a Mg vacancy is introduced in the bottom

layer of the slab outside the local environment, the preferred adsorption site does

not change, but the gold atom becomes positively charged. If, on the other hand, an

oxygen atom in the bottom layer is replaced by a fluorine atom, the adsorbed Au

atom has a very large negative charge and the adsorption site changes to a Mg atom.

Such a control of the electronic structure by doping and defects is very important

for applications such as heterogeneous catalysis and in semiconductor devices. All

these examples have in common that modifications in one part of the system strongly

change the properties in other parts, with separations between these interacting parts

being larger than typical radii of local atomic environments considered in previous

generations of MLPs, which are thus unable to describe these effects. Consequently,

the inclusion of nonlocal phenomena has been identified as a next key step in the
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Figure 3.1: Examples for systems exhibiting long-range charge transfer. The structures
and the corresponding atomic charges are displayed on the left and right hand
side, respectively. Panel (a) shows the organic molecule 2-hydroxy-anthracene
together with its deprotonated form. Panel (b) shows a gold atom adsorbed on
the ideal MgO(001) surface, on a surface with a Mg vacancy, and on a surface
with substitutional doping by a fluorine atom. Oxygen, fluorine, magnesium
and gold atom are coloured in red, blue, green, and yellow, respectively. (Figure
reproduced with permission from Reference [109].)
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development of future MLPs and lead us to the development of the fourth generation

high-dimensional neural network potential (4G-HDNNP) presented Chapter 4.

Before we can dive into the methodical details of the 4G-HDNNP, we first need

to lay out some basics. This will be done in the following sections. In the next

section, we will first see, how ANNs are constructed. These form the basis for many

MLPs including the 4G-HDNNP. The last sections of this chapter will then outline

the historical development of MLPs and the challenges that were overcome by each

generation of methods.

3.1.1 Artificial Neural Networks

As we will see in more detail later, most modern MLPs consist of two major compo-

nents. First, atomic environments are encoded using atomic environment descrip-

tors (AEDs), that preserve important symmetries. Then a machine learning engine

is used to learn the functional relationship between the environment descriptors

and the energy of the system. Machine learning engines are highly parametrized

general functions whose parameters are determined during the training process.

Many types of MLPs have been proposed to date, like neural network potentials [8,

9, 56, 111, 112], Gaussian approximation potentials (GAPs) [113], moment tensor

potentials (MTPs) [114], spectral neighbor analysis potentials (SNAPs) [115], and

many others [116, 117]. Although the machine learning algorithms and the functional

form of these methods are different, the basic components and challenges, such as

the atomic environment description and long range interactions, remain the same.

For simplicity and because the methods developed in this thesis are based on ANNs,

MLPs based on ANNs will be the main focus of this thesis.

ANNs (also known as multi layer perceptrons in the machine learning community)

are loosely inspired by the network formed by neurons in the brain. They consist

of an input layer, several hidden layers and an output layer. Each layer contains a

certain amount of nodes, that are connected to the next and the previous layers. An

illustration of an ANN is shown in Figure 3.2. The shown ANN consists of three

input nodes, two, fully-connected, hidden layers with four nodes each, and an output

layer with a single node. The connections between the nodes are shown as black

lines. Each such connection is parametrized with a weight and each node with a

bias. To evaluate the ANN, input values are fed into the input nodes. The values

are then propagated through the connections to each node in the first hidden layer.

During the propagation, the values are multiplied with the weight of the respective

connection and then summed together in the node where the bias is also added.
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input output

Figure 3.2: Visualization of an artificial neural network. The input nodes are shown in green,
the hidden nodes in blue and the output node in red.

Before the values are propagated to the next layer, an activation function is applied.

This function is important, as it introduces non-linearity into the ANN. In our cases

we used the hyperbolic tangent function, however many other functions, such as

the rectified linear unit (relu), sigmoid or Gaussian function are often used. In the

output layer, a linear function is often used, to prevent the output from being limited

to a finite range as it would be the case with the hyperbolic-tangent.

The value of each node is hence computed as

vni = f

⎛⎝∑
j

wn
ijv

n−1
j + bni

⎞⎠ . (3.1)

Here vni is the ith node in the nth layer, the wn
ij are the weights, bni the bias and f

the activation function. The application of each layer can be conveniently written as

a matrix vector multiplication, allowing for a highly efficient evaluation of the ANN

on graphics processing units (GPUs). Nowadays, many other types of ANN layers,

such as convolutional layers [118], pooling layers or attention based mechanisms [119]

are used.

To train an ANN, its weights and biases are adjusted, such that the error between

the function fANN(x) represented by the ANN and the target function y(x) is

minimized. This error, that has to be minimized is quantified using a so-called loss

function L. The total loss L can then be computed as an integral over all possible

inputs x.

L =

∫
L(fANN(x) − y(x))dx (3.2)

Since this integral cannot be evaluated analytically, we have to approximate it using

a set of discrete points xi, the so-called training dataset. If we use the mean squared
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error as our loss function, we get the following expression for the total training loss

Ltrain.

Ltrain =

∑N
i (fANN(xi) − y(xi))

2

N
(3.3)

We can now use any local optimization algorithm to minimize the training loss. For

this, we need the partial derivatives of the loss with respect to the weights and biases

of the ANN. These can be efficiently calculated using the backpropagation algorithm

which takes advantage of the chain rule. During the forward pass (prediction) through

the ANN, the values of each node are stored. To obtain the gradients, a backward

pass through the ANN is performed during which the chain rule is applied to obtain

the gradients with respect to the inputs as well as the weights and biases. Note,

that in the case of MLPs the derivatives (forces) might also be included in the loss

function. This slightly complicates the calculation of the derivatives with respect to

the weights and biases. Fortunately, many modern machine learning libraries, such

as TensorFlow [120] and PyTorch [121] automatically keep track of the calculations

performed during the prediction of the ANN to enable automatic differentiation,

without the need for any manual implementation.

In many cases, it would be too expensive, to calculate the loss L over the whole

training data set for each update of the ANN parameters. Therefore, optimizers,

such as stochastic gradient descent or Adam [122] can be used, that rely on an

approximation of the loss gradient computed from only a few samples of the training

set in each iteration. Therefore, the loss during each step of the training is computed

for a singe sample or a batch of a few samples only. The resulting gradients do

not point in the exact same direction as if the whole dataset was used, but if many

updates are performed, these errors cancel out. It has been shown, that the use of

an approximate loss gradient computed using only few samples from the dataset

actually improves the generalization capability of ANNs [123]. This is because the

additional noise drives the optimizer away from sharp minima in the loss landscape,

with a high curvature and towards flat minima, which are hypothesized to provide

better generalization performance [124]. For training the ANNs presented in this

thesis, we used the extended Kalman filter method [125]. This method converges

very rapidly and only few epochs are often required to obtain a good fit. However,

the Kalman filter uses a covariance matrix of size n× n, with n being the number

of parameters that are to be optimized. The method therefore scales quadratically

in the required memory and computation cost, which makes it only suitable for the

comparably small ANNs used in MLPs.
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In many cases, the number of free parameters in the ANN is larger than the

number of data-points used for training. The optimization problem of minimizing the

loss is therefore ill-defined, since many possible functions exist, that go through all

training data-points. It is therefore important, that some data-points are excluded

from the training set and used as a test set. After each epoch of training, the loss

function is evaluated on the test set and the training should be stopped, once the test

error starts to increase, to prevent overfitting. If the training data is noisy, this is

particularly important. In that case a function that perfectly minimizes the training

loss is not desirable, as it would fit to the specific noise present in the training data

instead of finding the underlying function from which the training data was generated.

It might hence be of advantage to impose a smoothness constraint on the learnt

function. This is known as regularization. The simplest form of regularization is to

choose an ANN size small enough, to prevent overwriting. If this is not sufficient, a

regularization term can be added to the loss function in the form of α
∑

i p
2
i , with α

being a small number and the pi the parameters that are optimized (for example

the weights wn
ij and biases bni of Equation 3.1). The effect of such a regularization is

illustrated in Figure 3.3.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

reference
= 0.0
= 5 × 10 4

training data

Figure 3.3: ANN fit to a part of the sine function. Random Gaussian noise was added to the
training datapoints show in red. Without regularization, the ANN overfits and
fails to recreate the underlying function. A small regularization term in the loss
function improves the quality of the fit.

Nowadays, many other methods to prevent overfitting exist. These include a

learning-rate decay, that is adapted based on the test error of each epoch, batch

normalization [126], group normalization [127], or dropout layers [128]. It should
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also be noted, that the variance-bias tradeoff, that is considered in general regression

tasks, does not directly apply to machine learning [129]. In short, the variance-bias

tradeoff characterizes the general problem faced by many interpolation methods.

When a small number of free parameters is used, the accuracy of the interpolation

is necessarily limited by the small function space available, which introduces a bias

towards the functions that can be represented and therefore results in underfitting.

On the other hand, if the function is chosen too flexible, one can fit the training data

perfectly but risks overfitting to noise in the dataset, which reduces the generalization

capability. Therefore, a tradeoff has to be made between over and underfitting the

training data. One would expect, that huge models with billions of free parameters,

that are used nowadays, are extremely prone to overfitting. However, it turns

out that the generalization performance increases when far more parameters than

training samples are used [129]. It has been hypothesized, that this is due to implicit

regularization applied through the use of gradient descent optimizers, that favour

solutions close to the initial values of the parameters [130]. The large function space

available during training allows the ANN to find more optimal solutions which extract

relevant features from the input and therefore improve generalization.

3.2 Previous Generations of Machine Learned

Potentials

In this section, the historical and current development of MLPs will be outlined. The

key challenges that were overcome during this development lend themselves naturally

to classify MLPs into four generations [107, 109, 131, 132].

3.2.1 First Generation Machine Learned Potentials

Starting with the work of Blank et al. [8] in 1995, MLPs of the first generation

have been introduced. These first generation MLPs make use of ANNs and have in

common that they are applicable to low-dimensional systems, by explicitly depending

only on the degrees of freedom of a few atoms. For example, in their original work,

Blank et al. [8] directly used the coordinates and the rotation angle of a carbon

monoxide molecule as the input to an ANN. While ground-breaking contributions

were made in the early years MLPs remained a niche methodology for about a decade

because of the restrictions on the size of the systems. For applications to larger

systems, retraining of the model is unavoidable and with the increasing number of
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3.2 Previous Generations of Machine Learned Potentials

input parameters, the maximum system-size is limited by the size of the ANN that

can be trained. First generation MLPs also do not preserve important symmetries,

such as invariance of the energy under rotation, translation or the permutation of

equivalent atoms.

3.2.2 Second Generation Machine Learned Potentials

These problems were solved by Behler and Parrinello [9] in 2007 with the introduction

of their high dimensional neural network potential (HDNNP). The key concept of

the HDNNP is, that instead of using a single ANN to express the energy of the

system, the total energy is expressed as a sum of atomic energies. Each atomic

energy is predicted by an ANN with weights that are element specific. As input to

the ANNs, atomic environment descriptors (AEDs), called atom centered symmetry

functions (ACSFs) are used that express the local environment of each atom, inside

a certain cutoff radius, as a vector that is invariant under the symmetry operations

mentioned above. The atomic energies are hence assumed to depend on the local

environment only and interactions beyond the cutoff radius of the environment

descriptors are neglected. The total energy is therefore expressed as follows.

E =
N∑
i

EEl(i)({G
µ
i }) (3.4)

With EEl(i) being the ANN for the element El(i) of atom i and {Gµ
i } being the

set of ACSFs computed for the atom. The schematic structure of the HDNNP is

illustrated in Figure 3.4.

Several types of ACSFs were proposed, the naming of which can be a bit confusing,

since different numbers were chosen to differentiate them in Reference [9], Refer-

ence [10] and the input files for the software package RuNNer, in which the HDNNP

was first implemented. In this thesis all ACSFs will therefore be identified with the

indices used in Reference [10]. The proposed ACSFs include radial functions, which

are constructed as sum of two body terms and angular functions, which are sums of

three body terms. The three radial ACSFs are given as follows.

G1
i =

∑
j

fc(Rij) (3.5)

G2
i =

∑
j

e−η(Rij−Rs)2 · fc(Rij) (3.6)
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Figure 3.4: Schematic structure of a second generation high-dimensional neural network
potential (2G-HDNNP). The ACSFs are computed from the atomic environment
of each atom. One atoms environment is indicated by a dashed circle. The
atomic neural networks are element specific as indicated by the different colours.

G3
i =

∑
j

cos(κRij) · fc(Rij) (3.7)

The two angular ACSFs are the following.

G4
i = 21−ζ

∑
j,k ̸=i

(1 + λcosθijk)ζ · e−η(R2
ij+R2

ik+R2
jk) · fc(Rij) · fc(Rik) · fc(Rjk) (3.8)

G5
i = 21−ζ

∑
j,k ̸=i

(1 + λcosθijk)ζ · e−η(R2
ij+R2

ik) · fc(Rij) · fc(Rik) (3.9)

In these expressions the sum goes over the indices of all atoms that are inside

the environment cutoff Rc. The function fc is a cutoff function that goes to zero

smoothly at Rc to prevent any discontinuities when atoms enter or leave the atomic

environment. Rs, η, ζ, κ and λ are parameters that can either be chosen by hand or

automatically [133]. A common choice for fc is the following.

fc(r) =

⎧⎨⎩tanh(1 − r/Rc)
3 if r < Rc

0 otherwise
(3.10)

If multiple elements are present, separate sets of ACSFs are defined which only see

atoms of one element in the case of radial ACSFs. The angular ACSFs are defined

for each combination of elements, such that the sums of j and k each only include

atoms of one element. This leads to a somewhat problematic growth in the number
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of ACSFs with an increasing number of elements. HDNNPs have therefore only been

applied to systems with a small number of elements.

Since the introduction of the ACSFs, modified versions [112, 134] as well as many

alternative AEDs, like the smooth overlap of atomic positions (SOAP) [135] or

overlap matrix (OM) fingerprint [136] have been proposed. In message passing neural

networks (MPNNs), the AEDs are not specified manually, but instead they are learnt

automatically during the training process.

Recent research has shown, that the environment representation of ACSFs and

their derivatives is not complete and that certain atomic environments exist, which

they cannot differentiate [137, 138]. In that sense the OM fingerprint is superior, since

it is able to distinguish these pathological environments (see Chapter 5). However,

experience has shown that for training MLPs, this weakness of the ACSFs is not

problematic. Even if the environment of one atom is only described ambiguously, the

ACSFs of the neighbouring atoms are able to distinguish the problematic structures.

It is therefore expected, that no two different structures can result in the exact

same ACSF values on all atoms. This allows the machine learning algorithm to

compensate when global properties, such as the total energy, are trained. When local

quantities, such as atomic charges or electronegativities are learned, the inability of

the AEDs to distinguish structures can become problematic, since different values

would have to be predicted for structures with the exact same AEDs, forcing the

machine learning method to output an averaged value reducing the overall accuracy

that can be obtained. Since these problems have only recently been discovered, it is

still not clear how large their influence really is. Even if different environments can

result in the same AEDs, such structures do not necessarily need to be present in

the training data.

No matter what type of AED is used, they all share the same important properties,

namely their invariance under rotation, translation and permutation of equivalent

atoms. This and the fact that second generation MLPs can be trained on datasets

consisting of structures with a small number of atoms but then applied to arbitrarily

large systems, has lead to the success of modern MLPs. Because their ability to

bridge the gap between the accuracy of first-principle methods and the scalability

and speed of classical force fields second generation MLPs are widely used today

with many implementations existing [113–115, 139], and many successful applications

being reported [140–144].
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3.2.3 Third Generation Machine Learned Potentials

A major limitation of the second generation models, is the neglect of all interactions

beyond the cutoff radius of the AEDs. The rate at which atomic interactions decay

and hence the required cutoff radius needed to capture all relevant interactions is

highly dependent on the system under study. The error introduced by a certain

cutoff radius can be estimated by observing the force acting on a central atom, when

atoms outside the cutoff-sphere are displaced [145] or through a locality test based

on the Hessian matrix [146]. However, in many systems, long-ranged interactions are

present that would require infeasibly large cutoff radii. These are, most importantly,

electrostatic interactions, with their particularly slow decay of 1/r, but also dispersion

interactions are neglected. Initial attempts at including electrostatic interactions into

MLPs were made by using fixed charges for each element [113, 147]. This approach

however is quite limited, since the atomic charge of an atom depends on its oxidization

state and therefore its local environment. In classical force field this behaviour is

achieved by defining different atom types for the same element based on the direct

chemical environment [148]. This approach however has disadvantages. The atomic

types must either be selected in advance to the simulation, which is problematic in

case reactions are simulated that drastically change the near environment of some

atoms, or it must be selected dynamically during the simulation which would lead

to discontinuities in the atomic charge, and therefore energies and forces, whenever

atomic types change during the simulation. Third generation MLPs therefore directly

determine atomic charges based on the local environment of each atom. In the third

generation high-dimensional neural network potentials (3G-HDNNPs) the charges are

predicted by a second set of neural networks [11, 149]. The structure of a 3G-HDNNP

is illustrated in Figure 3.5. The total energy is then expressed as follows.

Etot = Eshort + Eelec =

N∑
i

EEl(i)({G
µ
i }) + Eelec(R, {Qi({Gµ

i })}) (3.11)

The method is trained by first fitting the charge neural networks to reference charges

obtained from DFT calculations. Since from DFT calculations only a charge density

is obtained, different partitioning methods, such as the Hirschfeld [48], Becke [49]

or other schemes based on smooth Voronoi partitioning [50] can be used to obtain

atomic partial charges (see Section 2.1.6). Once the ANNs for the atomic charges are

trained, electrostatic energies and forces are predicted for the whole dataset. The
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Figure 3.5: Schematic structure of a 3G-HDNNP. Symmetry functions are used to compute
atomic energies as well as atomic charges. The charges are then used to compute
an electrostatic energy contribution which is added to the sort range energy to
obtain the total energy.

short-range neural networks are then trained to the remaining energy and forces

obtained by subtracting the electrostatic contribution from the DFT reference.

Eshort = Eref − Eelec (3.12)

As the atomic charges do now depend on the atomic environment and therefore

the atomic coordinates, special care has to be taken, during the calculation of the

electrostatic forces to include the partial derivative of the atomic charges with respect

to the atomic positions of the neighbouring atoms.

Fiα = − dE

driα
= − ∂E

∂riα
−
∑
j

∂E

∂Qj

∂Qj

∂riα
| α = x, y or z (3.13)

For more details about the construction and properties of second- and third-generation

HDNNPs, the interested reader is referred to several reviews [150–152]. As a final note,

it should be mentioned, that recently it has been shown that long-range electrostatic

effects can be also captured by introducing a nonlocal long-distance equivariant
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(LODE) representation [153] which is dependent on a Coulomb-type atomic density

potential [154].
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4 Fourth Generation

High-Dimensional Neural

Network Potentials

4.1 Introduction

With their environment dependent charges, third-generation models are able to

account for Coulomb interactions beyond the atomic environment cutoff. The atomic

charges themselves however, depend on the local environment only and are therefore

unable to adjust to far away changes. The methods are therefore not able to account

for long-range charge transfer effects or a change in the total system charge. In

many systems this can result in a qualitatively incorrect description as illustrated

in Figure 4.1. The figure shows an XC7H7O molecule, where X represents different

functional groups. Protonation and deprotonation reactions, which are common

in organic chemistry are shown. On the right side of the figure, the atoms color

indicates the Hirshfeld atomic charge of each atom. It can be seen that the charge on

the oxygen atom changes significantly, depending on the functional group attached

to the left side of the molecule. A cutoff indicating the atomic environment that

would be used to calculate an atomic descriptor is indicated with a dashed circle.

Since the atomic environment does not include the functional group that is changed,

second- and third-generation MLPs are not able to describe the change in atomic

charge and the resulting change in reactivity on the right most atom.

This limitation of local atomistic potentials in the description of long-range charge

transfer and of systems in different charge states has been recognized already some

Parts of this chapter were adapted from T.W. Ko, J.A. Finkler, S. Goedecker, and J. Behler.
“A fourth-generation high-dimensional neural network potential with accurate electrostatics
including non-local charge transfer”. Nature communications 12:398, 2021 (CC BY 4.0 [108]).
Parts were also adapted with permission from T.W. Ko, J.A. Finkler, S. Goedecker, and J.
Behler. “General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer”.
Accounts of Chemical Research 54:4, 2021, pp. 808–817 (Copyright 2021 American Chemical
Society).
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Figure 4.1: Illustration of long-range charge transfer in a molecular system. In a the investi-
gated molecule XC7H7O with X representing different functional groups is shown.
In b it ca be seen that the protonation of NH2 group yields a positive ion and
result in different charges of the oxygen atom as can be seen in the plot of the
DFT atomic partial charges on the right side. In both cases, the local chemical
environments of the oxygen atoms are identical within the cutoff spheres shown as
dashed circles. In c the deprotonation of the OH group yields a negative ion and
both oxygen atoms become chemically equivalent with the nearly same negative
partial charge. Also in this case the chemical environment of the right oxygen
atom is identical to the neutral molecule although the charge distribution differs.
All these cases cannot be correctly described by local methods like second or third
generation MLPs. (Figure reproduced with permission from Reference [107].)

time ago, and for simple empirical force fields different solutions have been pro-

posed [101, 155–157]. In the context of MLPs the first method that has been

proposed to address this problem is the charge equilibration via neural network

technique (CENT) [158–160]. In this method, a charge equilibration [155] scheme is

applied, which allows for a global redistribution of the charge over the full system

to minimize a charge-dependent total energy expression. The charges are based on

atomic electronegativities, which are determined as a function of the local chemical

environment and expressed by atomic neural networks similar to the charges in

third generation MLPs. This method has enabled the inclusion of long-range charge

transfer in an MLP framework for the first time, but due to the employed energy
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expression this method is primarily applicable to ionic systems [161–163], and the

overall accuracy is still lower than in case of other state-of-the-art MLPs. Recently,

another promising method has been proposed by Xie, Persson, and Small [164] aiming

for a correct description of systems with different charge states. In this method,

atomic neural networks are used, which do not only depend on the local structure but

also on atomic populations, which are determined in a self-consistent process. The

training data for different populations has been generated using constrained DFT cal-

culations, and a first application for LinHn clusters has been reported. Furthermore,

an extension of the AIMNet method has been proposed [165], which can be used to

predict energies and atomic charges for systems with non-zero total charge. Here,

the interaction range between atoms is increased through iterative updates during

which information is passed between nearby atoms. Although the resulting charges

are not used to calculate explicit Coulomb interactions, many related quantities,

such as electronegativities, ionization potentials or condensed Fukui functions can be

derived.

We therefore developed a general solution for the limitations of current MLPs by

introducing a 4G-HDNNP, which is applicable to long-range charge transfer and mul-

tiple charge states. It consists of highly accurate short-range atomic energies similar

to those used in 2G-HDNNPs and charges determined from a charge equilibration

method relying on electronegativities in the spirit of the CENT approach. Both,

the short-range atomic energies and the electronegativities are expressed by atomic

neural networks as a function of the chemical environments. The capabilities of the

method are illustrated for a series of model systems showcasing typical scenarios in

chemistry and materials science that cannot be correctly described by conventional

MLPs. For all these systems we demonstrate that 4G-HDNNPs trained to DFT

data are able to provide reliable energies, forces and charges in excellent agreement

with electronic structure calculations. In the beginning of the following section the

methodology of 4G-HDNNPs is introduced and the relation to other generations of

HDNNPs and the CENT method is discussed. Subsequently, the results for a series

of periodic and non-periodic benchmark systems are presented, including a detailed

comparison to the performance of 2G- and 3G-HDNNPs. We show that previous

generations of HDNNPs, which are unable to take distant structural changes into

account, yield inaccurate energies and forces, and even distinct local minima of the

PES can be missed, which are correctly resolved by the 4G-HDNNP. These results

are general and equally apply to other types of previous generation MLPs.
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4.2 The 4G-HDNNP Model
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Figure 4.2: Schematic structure of the 4G-HDNNP. Atomic electronegativities are predicted
by a second set of neural networks. From these atomic charges are obtained
through a global charge equilibration process. In addition to the computation of
the electrostatic energy the atomic charges are used as inputs to the short range
neural networks.

The overall structure of the 4G-HDNNP is shown schematically in Figure 4.2. Like

in 2G-HDNNPs the total energy consists of a short-range part, which, as we will see

below, requires in addition non-local information, and an electrostatic long-range

part, which is not truncated.

Etotal(R,Q) = Eelec(R,Q) + Eshort(R,Q) (4.1)

The electrostatic part Eelec(R,Q) depends on a set of atomic charges Q = {Qi}, which

are trained to reference charges obtained in DFT calculations, and the positions of

the atoms R = {r⃗i}. An important difference to 3G-HDNNPs is, that these charges

are not directly expressed by atomic neural networks as a function of the local

atomic environments, but they are obtained indirectly from a charge equilibration

scheme based on atomic electronegativities {χi} that are adjusted to yield charges

in agreement with the DFT reference charges, which we choose to be Hirshfeld

charges [48], but many other choices are in principle possible.

Like in the CENT approach the atomic electronegativities are local properties

defined as a function of the atomic environments using atomic neural networks.

As in 2G- and 3G-HDNNPs there is one type of atomic neural network with a

fixed architecture per element in the system, making all atoms of the same type

chemically equivalent. While the specific values of the electronegativities depend

on the positions of all neighboring atoms inside a cutoff sphere of radius Rc. The
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positions of the neighboring atoms inside this sphere are specified by a vector Gi of

atom-centered symmetry functions [10], which ensures the translational, rotational

and permutational invariance of the electronegativities.

To predict the atomic charges, which are represented by Gaussian charge densities

of width σi taken from the covalent radii of the respective elements, a charge

equilibration scheme [155] is used. In this scheme, the charge is distributed among

the atoms in an optimal way to minimize the energy expression below.

EQeq = Eelec +

Nat∑
i=1

(χiQi +
1

2
JiQ

2
i ) (4.2)

Here Eelec is the electrostatic energy of the Gaussian charges and Ji the element-

specific hardness. The Ji do not depend on the chemical environment and are

constant for each element. While they are manually chosen in the CENT method,

we optimize them during training. They are hence treated as free parameters like

the weights and biases of the neural networks. For the electrostatic energy we then

obtain the following.

Eelec =

Nat∑
i=1

Nat∑
j<i

erf
(

rij√
2γij

)
rij

QiQj +

Nat∑
i=1

Q2
i

2σi
√
π

(4.3)

γij =
√
σ2i + σ2j (4.4)

To solve this minimization problem the derivatives of EQeq with respect to the charges

Qi are calculated and set to zero.

∂EQeq

∂Qi
= 0, ∀i = 1, .., Nat =⇒

Nat∑
j=1

AijQj + χi = 0 (4.5)

The elements of the matrix A are given by the following expression.

[A]ij =

⎧⎪⎨⎪⎩
Ji + 1

σi
√
π
, if i = j

erf

(
rij√
2γij

)
rij

, otherwise

(4.6)
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Considering the constraint that the sum of all charges must be equal to the total

charge Qtot of the system, the following set of linear equations is solved by including

this constraint via the Lagrange multiplier λ.⎛⎜⎜⎜⎜⎝ A
1
...

1

1 . . . 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

Q1

...

QNat

λ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
−χ1

...

−χNat

Qtot

⎞⎟⎟⎟⎟⎠ (4.7)

Highly optimized algorithms are available for systems of linear equations, which

can be efficiently solved for small and medium-sized systems containing up to about

ten thousand atoms in a few seconds on modern hardware. For larger systems the

cubic scaling of the standard algorithms can pose a bottleneck. In that case one could

resort to using iterative solvers for which the most expensive part of each iteration

is a matrix vector multiplication involving the matrix A. This corresponds to the

evaluation of the electrostatic potential at each atoms position for which numerous

low-complexity algorithms, such as fast multipole [96] or particle-particle-mesh

methods [100], are known. In this way it is possible to reduce the effort from cubic

to nearly linear scaling, providing access to very large systems. An implementation

of such an iterative solver is currently under development in the n2p2 [139] code.

Overall, this process is like in the CENT, but the main difference is in the training

process. In CENT only the error with respect to the DFT energies is minimized and

the atomic charges obtained during the charge equilibration process serve merely

as intermediate quantities, which do not have a strict physical meaning. In the

4G-HDNNP, the charges are trained directly to reproduce reference charges from

DFT, which therefore are qualitatively meaningful although one should be aware

that atomic partial charges are not physical observables and different partitioning

schemes can yield different numerical values [51].

Once the atomic electronegativities have been learned, a functional relation between

the atomic structure and the atomic partial charges is available. The intermediate

global charge equilibration step ensures that these charges depend on the atomic

positions, chemical composition and total charge of the entire system, and thus in

contrast to 3G-HDNNPs non-local charge transfer is naturally included.
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In a second step, the local atomic energy contributions yielding the short-range

energy according to the following equation have to be determined.

Eshort =

Nat∑
i=1

EEl(i)({G
µ
i }, Qi) (4.8)

Like in 2G-HDNNPs the short range atomic energies are provided by individual

atomic neural networks based on information about the chemical environments. An

important difference to 2G-HDNNPs is that the atomic energies in addition depend on

non-local information that is provided to the short-range atomic neural networks by

using not only the atom-centered symmetry function values describing the positions

of the neighboring atoms inside the cutoff spheres, but also the atomic partial charges

determined in the first step (see Figure 4.2). This information is required to take into

account changes in the local electronic structure resulting from possible long-range

charge transfer, which has an immediate effect on the local many-body interactions.

The short-range atomic neural networks are then trained to express the remaining

part of the total energy Eref according to the equation below, where the electrostatic

energy Eelec is determined based on the partial charges resulting from the fitted

atomic electronegativities.

Eshort = Eref − Eelec =

Nat∑
i=1

Ei({Gi}, Qi) (4.9)

Thus, by construction the goal of the short-range part is to represent all energy con-

tributions that are not covered by the electrostatic energy such that double counting

is avoided. In addition to the energies, also the forces are used for determining the

parameters of the short range atomic neural networks. We note that since the short

range energy depends on the atomic charges, which in turn are functions of all atomic

coordinates, the derivatives ∂Eshort/∂Qi as well as ∂Qi/∂R have to be considered in

the computation of the forces.

In summary, in contrast to the CENT method, the short range interactions are

not described through the charges resulting from the charge equilibration process

but are described by separate short-range neural networks, which enables a more

accurate description of the total energy.
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4.2.1 Mathematical Details of the 4G-HDNNP Implementation

As only linear and quadratic terms in Qi appear in Eelec and EQeq, they can be

expressed using matrix notation

[E]ij =

⎧⎪⎨⎪⎩
1

σi
√
π
, if i = j

erf

(
rij√
2γij

)
rij

, otherwise

(4.10)

Eelec =
1

2
Q⊤EQ (4.11)

and

EQeq =
1

2
Q⊤AQ + Q⊤χ , (4.12)

with Q being a column vector containing the atomic charges Qi, χ being a column

vector of the electronegativities and A being the matrix described in Equation 4.6.

From Equation 4.11, it can be seen, that the vector obtained from the product EQ

corresponds to the electrostatic potential arising from the charge distribution.

It has to be noted that because the total energy of a continuous charge distribution

is always positive, the matrix A is positive definite, if the Ji > 0.

The Qi are now chosen, such that they minimize the energy EQeq under the

additional constraint of total charge conservation.

Nat∑
i=1

Qi = Qtot (4.13)

To solve this minimization problem, we set the derivatives with respect to the charges

to zero,
dEQeq

dQi
= 0 . (4.14)

Including the constraint of total charge conservation using a Lagrange multiplier λ

we end up with a system of linear equations as shown in Equation 4.7, which we can

rewrite for simplicity as

A′Q′ = χ′ , (4.15)

where A′ and Q′ represent the (Nat + 1 ×Nat + 1) matrix and column vector in the

left hand side respectively, while χ′ is the column vector on the right hand side. The

electronegativities χi are predicted by neural networks, for each atom individually,

depending on the local chemical environments. The hardness values of Ji are constant
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for a given element, and they are also optimized during the training of the neural

networks. To ensure their positiveness during optimization, the Ji are represented

through intermediate parameters J̃i, such that Ji = J̃2
i .

During training and for the calculation of the forces, several derivatives are needed,

the calculation of which will be explained in the text below. The force components

Frα are given by the negative derivative of the energy with respect to the atomic

coordinates rα.

Frα = −dEtotal(R,Q(R))

drα
= −∂Etotal

∂rα
−
∑
i

∂Etotal

∂Qi

∂Qi

∂rα
(4.16)

In this equation, the partial derivative of the atomic charges with respect to the

atomic positions appear. As we will see later, the calculation of these derivatives is

rather expensive but explicit calculation can be avoided using a neat trick. During

training however, the explicit derivatives of the charges with respect to the positions

as well as the electronegativities and the hardnesses are used. This is not a problem,

since the structures used for training are small compared to what could be expected

during the prediction.

Calculation of ∂Qi

∂rα

To calculate the ∂Qi

∂rα
we take the derivative with respect to the spatial coordinate rα

of the charge equilibration Equation 4.15. Reordering the terms yields

A′∂Q
′

∂rα
=

−∂χ′

∂rα
− ∂A′

∂rα
Q′ . (4.17)

which includes a Lagrange multiplier that ensures
∑

i
∂Qi

∂rα
= 0. The derivatives ∂Q

∂rα

are now obtained by solving the above system of linear equations for ∂Qi

∂rα
. To obtain

all the 3 × Nat required derivatives we will have to solve 3 × Nat linear equation

systems of size Nat + 1. Using a neat trick, presented in Section 4.2.1, the forces can

be determined without direct calculation of the ∂Q
∂rα

, such that only a single linear

equation system needs to be solved. Only during training, the explicit derivatives

are used.
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Calculation of dQ
dχi

and dQ
dJi

With a similar procedure we can calculate the equation systems for the derivatives

with respect to the electronegativity and hardness and obtain the following two

equation.

A′dQ
′

dχi
= −δi (4.18)

A′dQ
′

dJi
= −Q′ (4.19)

δi is a vector filled with zeros except entry i, which is one. As before, a Lagrange

multiplier will be necessary, to ensure that the sum of the derivatives adds up to zero.

The derivatives dQ
dχi

and dQ
dJi

are not needed for the prediction of the 4G-HDNNP

energy and forces but are used during training, where a backpropagation through the

charge equilibration step is performed to optimize the electronegativitiy predicting

ANNs and hardness values.

Efficient calculation of the forces

As mentioned before, the calculation of the forces using the explicit values of ∂Qi

∂rα

is expensive, since 3 ×Nat linear equation systems need to be solved. This can be

avoided by exploiting a method [166] that allows the calculation of the forces by

solving only one linear equation system instead. The same method can be used for

the calculation of the stress tensor, i.e., the derivatives of the energy with respect to

the lattice vectors. In that case the partial derivatives
∂A′

ij

∂lkα
and ∂bi

∂lkα
are used in the

below equations, with lkα being the α-th component of the k-th lattice vector.

The total energy of the 4G-HDNNP is a function of the atomic coordinates (R)

and the charges (Q), which also depend on the atomic coordinates,

Etotal = Etotal(R,Q(R)) . (4.20)

We now define an auxiliary function L with

L = Etotal +

Nat+1∑
i=1

λi

⎛⎝Nat+1∑
j=1

A′
ijQ

′
j − χ′

i

⎞⎠ . (4.21)

Here
∑Nat+1

j=1 A′
ijQ

′
j −χ′

i are the differences of the left hand side minus the right hand

sides of Equation 4.15, which were solved to determine the charges Qi. These terms
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are therefore always zero, making L equal to Etotal. We now choose λ such that the

partial derivatives ∂L
∂Q′

i
are zero,

∂L

∂Q′
i

=
∂Etotal

∂Q′
i

+

Nat+1∑
j=1

A′
ijλj = 0 . (4.22)

For this we solve the linear equation system

Nat+1∑
j=1

A′
ijλj =

−∂Etotal

∂Q′
i

. (4.23)

Note that A′ is a symmetric matrix. We now turn to the derivative dL
drα

, which is

equal to dEtotal
drα

.

dEtotal

drα
=

dL

drα

=
∂Etotal

∂rα
+

Nat+1∑
i=1

∂Etotal

∂Q′
i

∂Q′
i

∂rα

+

Nat+1∑
i=1

λi

⎛⎝Nat+1∑
j=1

∂A′
ij

∂rα
Q′

j +

Nat+1∑
j=1

A′
ij

∂Q′
j

∂rα
− ∂χ′

i

∂rα

⎞⎠
(4.24)

Rearranging the equation yields the following.

dEtotal

drα
=

dL

drα

=
∂Etotal

∂rα
+

Nat+1∑
i=1

⎛⎝∂Etotal

∂Q′
i

+

Nat+1∑
j=1

A′
ijλj

⎞⎠∂Q′
i

∂rα

+

Nat+1∑
i=1

λi

⎛⎝Nat+1∑
j=1

∂A′
ij

∂rα
Q′

j −
∂χ′

i

∂rα

⎞⎠
(4.25)

The term ∂Etotal
∂Q′

i
+
∑

j A
′
ijλj is zero by definition of λ according to Equation 4.23

and can therefore be omitted, which leads to the expression below.

dEtotal

drα
=
∂Etotal

∂rα
+

Nat+1∑
i=1

λi

⎛⎝Nat+1∑
j=1

∂A′
ij

∂rα
Q′

j −
∂bi
∂rα

⎞⎠ (4.26)
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To compute the forces dEtotal
drα

we hence first compute ∂Etotal
∂Qi

, which is the derivative

of the short range ANNs with respect to the input neurons containing the atomic

charges together with the partial derivative of the electrostatic energy with respect

to the atomic charges. We then solve Equation 4.23 to obtain the λi. The final

forces are then computed according to Equation 4.26. There ∂Etotal
∂rα

includes the

electrostatic Coulomb forces and the partial derivatives of the short range energy

with respect to the atomic positions.

Only the sum over the derivatives
∂A′

ij

∂rα
with the charges Q′

j are needed in Equa-

tion 4.26. Therefore, explicit storage of the Nat×Nat×3×Nat individual derivatives

can be avoided and only the Nat × 3 × Nat terms of the sum have to be stored.

Furthermore, it should be noted, that this sum corresponds to the derivative of the

electrostatic potential with respect to the atomic positions. This quantity could

therefore also be efficiently computed using standard Poisson solvers. Since it has to

be computed for the force trick anyways, it can also be used for the computation of

the electrostatic forces.

∂Eelec

∂rα
=

1

2

Nat∑
ij

Qi
∂Aij

∂rα
Qj (4.27)

Charge equilibration for periodic systems

The charge equilibration equations for periodic boundary conditions are essentially

identical to the corresponding equations for free boundary conditions, and the main

difference is the calculation of the matrix A. Because of the periodic boundary

conditions we have to resort to an Ewald summation [99] to calculate the electrostatic

interaction energy.

The basic idea of Ewald summation is, that by placing Gaussian charges of the

opposite sign on each of the point charges, the remaining electrostatic interaction

becomes short-ranged. This short-ranged energy can then be calculated in real

space (Ereal). We then subtract the interaction energy of the auxiliary Gaussian

charges again to obtain the desired total energy of the point charges. This interaction

energy of the Gaussians can be efficiently calculated in reciprocal space, resulting in

the energies Erecip and Eself . The electrostatic energy of Nat point charges can be

calculated as

Eelec = Ereal + Erecip + Eself . (4.28)
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The real space part is given by

Epc
real =

1

2

Nat∑
i=1

Nneig∑
j ̸=i

QiQj

erfc
(

rij√
2η

)
rij

(4.29)

Here, Nneig indicates, that the sum goes over all neighbouring atoms withing the

real space cutoff radius rcut and rij is the distance between atoms i and j and η the

width of the auxiliary charges.

The reciprocal space part is

Epc
recip =

2π

V

∑
k ̸=0

exp
(
−η2|k|2

2

)
|k|2

|S(k)|2 (4.30)

with

S(k) =

Nat∑
i=1

Qi exp(ik · ri) (4.31)

V being the volume of the unit cell and the sum going over all reciprocal lattice points

inside reciprocal space cutoff radius rrecipcut . Finally, the self-interaction correction is

Epc
self = −

Nat∑
i=1

Q2
i√

2πη
. (4.32)

Since we use Gaussian charge distributions for the charge equilibration process,

the following terms have to be added that account for the different interaction in the

short-range part as well as for the self interaction of the Gaussian charges [167–169].

EGauss
elec = Epc

elec −
1

2

Nat∑
i=1

Nneig∑
j ̸=i

QiQj

erfc
(

rij√
2γij

)
rij

+

Nat∑
i=1

Q2
i

2
√
πσi

(4.33)

Since these terms are short ranged, they can be efficiently computed in real-space.

Here Epc
elec is the electrostatic energy of the point charges as given above.

The important observation is that the total energy expression of the Ewald

summation contains only terms of the form 1
2eijQiQj . By calculating the individual

coefficients eij we can therefore construct the matrix E, such that

Eelec =
1

2
Q⊤EQ . (4.34)
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Including the terms for the hardness and adding the electronegativity results in a

formalism equivalent to that of the charge equilibration method for free boundary

conditions.

The matrix elements epcij for point charges can be computed by combining contri-

butions from the real space terms of Equation 4.29, the reciprocal space terms of

Equation 4.30 and the self interaction terms of Equation 4.32.

eij = erealij + erecipij + eselfij (4.35)

The real space terms are given as

erealij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

L ̸=0

erfc

(
|ri−rj+L|

√
2η

)
|ri−rj+L| , if i = j

∑
L

erfc

(
|ri−rj+L|

√
2η

)
|ri−rj+L| , otherwise,

(4.36)

where L is a vector that points to neighboring unit cells, i.e., a linear combination of

the three lattice vectors with integer coefficients such that periodic replica of atoms

are included. The sum over L is truncated such that only contributions inside the

reals space cutoff rcut are included. The reciprocal space contributions are

erecipij =
4π

V

∑
k ̸=0

exp
(
−η2|k|2

2

)
|k|2

cos(k · (ri − rj)) . (4.37)

Finally, the self interaction terms can be computed as

eselfij =

⎧⎨⎩
−2√
2πη

, if i = j

0, otherwise.
(4.38)

To compute the correct matrix elements eGauss
ij for Gaussian shaped charges, a short

ranged correction which can be computed in real space has to be added according to

Equation 4.33.

eGauss
ij = epcij −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝∑
L ̸=0

erfc

(
|ri−rj+L|

√
2γij

)
|ri−rj+L| − 1√

πσi

⎞⎠, if i = j

∑
L

erfc

(
|ri−rj+L|
√
2γij)

)
|ri−rj+L| , otherwise

(4.39)
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Here σi is the standard deviation of the Gaussian charge on atom i and γij is

computed according to Equation 4.4. Although, the matrix elements eij depend on

the parameter η, this dependence is cancelled out, when the product EQ is computed,

because the sum of the charges Qi is zero.

A good choice of the parameter η is critical for the performance of the Ewald

summation. A large value of η increases the range of the electrostatic potential

that has to be calculated in real space, while also reducing the number of terms

that have to be included in the reciprocal space calculations. The different scaling

behaviour of the number of reciprocal and real space terms that have to be included

results in an optimal choice of η, that, dependent on the system size, results in the

optimal performance. Following the derivation of Jackson and Catlow [170], we use

the following cutoff radii for the real and reciprocal space sums, such that terms up

to a magnitude of α are included.

rrealcut =
√
−2 ln(α) η (4.40)

rrecipcut =
√
−2 ln(α) η−1 (4.41)

We can see from Equation 4.29, that the number of terms per atom in the real space

energy scales quadratically with the number of atoms inside the cutoff radius and

hence to the power of 6 with respect to rrealcut . From Equation 4.30 follows, that the

number of terms per atom in the reciprocal sum scales linearly with the number of

reciprocal lattice points inside the cutoff and hence cubically with respect to rrecipcut .

Assuming equal computational effort for each real and reciprocal space term, Jackson

and Catlow [170] proposed the following choice of η, which results in an O(N
3/2
at )

scaling of the total energy calculation.

η =
1√
2π

(
V 2

Nat

)1/6

(4.42)

Unfortunately, the same efficiency cannot be obtained during the calculation of E.

For the calculation of the energy, the structure factor S is computed once for each

term by a sum over all atoms, as described in Equation 4.31 and then squared. To

obtain the individual matrix elements of E however, the cross terms arising through

the squaring of S have to be calculated individually, necessitating two nested loops
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over all atoms, which results in a quadratic instead of a linear scaling. We therefore

use a different Gaussian width ηE, when calculating E.

ηE =
1√
2π
V 1/3 (4.43)

An implementation of the Ewald summation as well as the calculation of the

matrix E and its derivatives can be found in a public github repository [171] and in

the open source software RuNNer [172].

4.3 Test Systems Showing the 4G-HDNNPs

Capability

In the following sections we demonstrate the limitations of MLPs based on local

properties only and show how they can be overcome by the 4G-HDNNP. For this

purpose we use a set of non-periodic and periodic systems, which cover a wide range

of typical situations in chemistry and materials science. The non-periodic systems

consist of a covalent organic molecule, a small metal cluster and a cluster of an

ionic material covering very different types of atomic interactions. These examples

demonstrate the simultaneous applicability of a single 4G-HDNNP to systems of

different total charges and the correct description of long-range charge transfer

and the associated electrostatic energy. As a periodic system we have chosen a

small gold cluster adsorbed on a MgO(001) slab, which is a prototypical example

for heterogeneous catalysis. We show that in contrast to established MLPs, the

4G-HDNNP is able to reproduce the change in adsorption geometry of the cluster if

dopant atoms are introduced in the slab far away from the cluster. In all cases, the

4G-HDNNP PES is very close to the results obtained from DFT.

While in these examples we do not explicitly investigate the transferability of the

potentials to different systems, we expect that the 4G-HDNNP in general provides

an improved transferability compared to second and third generation MLPs, due to

the underlying physical description of the global charge distribution and the resulting

electrostatic energy. This expectation is supported by the fact that even traditional

charge equilibration schemes with constant electronegativities are known to work well

across different systems [173]. Furthermore, for the related CENT approach a broad

transferability has already been demonstrated for different atomic environments [159].
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Figure 4.3: Charge redistribution in organic molecules. a DFT-optimized structures of C10H2

(left) and C10H+
3 (right) with atom IDs. Carbon and hydrogen atoms are colored

in grey and white, respectively. The dashed circle shows the cutoff radius of
the left carbon atom defining its chemical environment. Panel b shows the
atomic partial charges obtained from DFT. The unscaled and scaled 3G-HDNNP
charges are displayed in c, while the 4G-HDNNP charges are shown in d. (Figure
reproduced with permission from Reference [107].)

4.3.1 A Benchmark for Organic Molecules

The first model system we study is a linear organic molecule consisting of a chain

of ten sp-hybridized carbon atoms terminated by two hydrogen atoms as shown in

Figure 4.3a. Molecules of this type have been studied before in electronic structure

calculations [174–176]. For this molecule we will now demonstrate the applicability

of 4G-HDNNPs to systems with long-range charge transfer induced by protonation,

which changes the total charge and the local structure in a part of the system.

Since the majority of existing machine learning potentials rely on local structural

information only without explicit information about the global charge distribution

and total charge, they are not simultaneously applicable to both neutral and charged

systems.

This is different for 4G-HDNNPs, which naturally include the correct long-range

electrostatic energy for any global charge present in the training set. Because of the
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protonation of the terminal carbon atom, its hybridization state changes to sp2 and

the electronic structure of the resulting C10H
+
3 cation is modified even at very large

distances along the whole molecule. This is reflected in the differences of the DFT

charges of the molecules in Figure 4.3b, which have been structurally optimized by

DFT.

Using a data set containing both molecules, we have constructed 2G-, 3G- and 4G-

HDNNPs using a cutoff radius Rc = 4.23Å as illustrated by the circle in Figure 4.3a

for the example of the left carbon atom. In Figure 4.3c we show the atomic partial

charges obtained with the 3G-HDNNP in two forms: first as unscaled charges directly

obtained from the atomic neural network fits without any constraint for the correct

total charge of the system, and second rescaled to ensure total charges of zero or one,

respectively. It can be seen that the scaling process does not significantly improve

the 3G-HDNNP charges.

The atoms in the left half of the molecule are far from the added proton such that

their atomic environments differ only slightly due to the DFT geometry optimization.

In addition, in the training set a lot of basically identical environments but different

atomic charges are present for these atoms, which results in high fitting errors due to

the contradictory information. As a consequence the ANNs assign averaged charges

to these atoms, which differ qualitatively from the DFT reference charges of both

systems. For instance, the 3G-HDNNP partial charges on atom 2, i.e., the left carbon

atom, are almost identical in both molecules, although they are very different in

DFT. Note that the predicted charges of atoms 1–6 in C10H2 and C10H
+
3 would

be even exactly identical if the latter molecule would not have been relaxed after

protonation. The charges obtained with the 4G-HDNNP shown in Figure 4.3d, on

the other hand, match the DFT charges very accurately for both molecules, as they

can be distinguished in this method.

The inaccurate charges obtained with the 3G-HDNNP lead to a poor quality of

the PES, and the same is observed for the short-range only 2G-HDNNP. In Table 4.1

we compare the errors of the total energies as well as the mean errors of the atomic

charges and forces of all HDNNP generations for the DFT optimized structures. It

can be seen that the errors of all quantities obtained for the 4G-HDNNP are much

lower than for the 2G- and 3G-HDNNPs. Further, we note that in several cases the

energies obtained by the 3G-HDNNP are even worse than for the 2G-HDNNP, as the

unphysical charge distribution to some extent prevents the accurate representation

of the energy.
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Table 4.1: Energy and charge error obtained for the organic molecules. Energy error
(meV/atom) and mean errors of the atomic charges (10−3 e) and forces (eV/Å)
of C10H2 and C10H+

3 with respect to DFT obtained with the different HDNNP
generations for the DFT optimized structures. For the 3G-HDNNP the results
for scaled and unscaled charges are given.

energy charges forces

C10H2

2G-HDNNP 0.684 — 0.095
3G-HDNNP (unscaled) 1.255 19.72 0.430
3G-HDNNP (scaled) 2.193 10.76 0.138
4G-HDNNP 0.463 4.820 0.032

C10H
+
3

2G-HDNNP 0.922 — 0.127
3G-HDNNP (unscaled) 0.046 17.82 0.658
3G-HDNNP (scaled) 1.425 17.72 0.259
4G-HDNNP 0.176 5.048 0.042

To investigate the forces in more detail, we plot the individual atomic forces in

both molecules using the 2G-HDNNP and the 4G-HDNNP for the DFT optimized

structures as shown in Figure 4.4. For all atoms in both molecules the 4G-HDNNP

yields very low force errors, with an average error of only 0.037 eV/Å underlining the

quality of this PES. However, for the 2G-HDNNP the forces acting on the left half

of C10H
+
3 and on all atoms in C10H2 the force errors are significantly larger. The

reason is again, that the 2G-HDNNP cannot distinguish both molecules for these

atoms, and the force errors are only low close to the extra proton in C10H
+
3 , which

can be recognized as a distinct local structural feature in the atomic environments of

the right half of this molecule.

Interestingly, the relatively high errors of the 2G-HDNNP forces are not matched by

high energy errors, which instead are surprisingly low and smaller than 1 meV/atom

for both molecules. This suggests that the total energy predicted by 2G-HDNNPs

may benefit from error compensation in the atomic energies in that the atomic

energies in the right half of C10H+
3 are adjusted to compensate the deficiencies of the

atomic energies in the left half of the molecule.

4.3.2 Metal Clusters: Ag3

In this example we investigate a small metal cluster, Ag3, in two different charge

states. The PES of small clusters is strongly influenced by the ionization state of

the cluster and the ground state can differ as a function of the total charge of the
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a

b

Figure 4.4: Force errors of the HDNNPs for the organic molecules. 2G- and 4G-HDNNP
forces for the atoms in the DFT-optimized structures of C10H2 and C10H+

3

(indicated in a and b respectively). (Figure reproduced with permission from
Reference [107].)

cluster [177–180]. Due to the small system size there are no long-range effects, and

the full system is included in each atomic environment. Therefore, in principle,

2G-HDNNPs should be perfectly suited to describe the PES of Ag3, but this is only

true as long as the total charge of the system does not change, since for a combination

of data with different total charges, like Ag+3 and Ag−3 , in the training set the unique

relation between atomic positions and the energy is lost. The minimum-energy

structures of both cluster ions obtained from DFT are shown in Figure 4.5a along

with the atomic partial charges. After training a 2G-HDNNP and a 4G-HDNNP

to data containing both types of clusters, we have reoptimized the geometries by

the respective HDNNP generation. As expected, the minima obtained with the

2G-HDNNP (Figure 4.5b) are identical for both charge states, but do not agree with
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Figure 4.5: Optimized geometry and atomic charges of Ag clusters. Structures and atomic
partial charges of Ag+3 and Ag−3 optimized with DFT in a, the 2G-HDNNP in b
and the 4G-HDNNP in c. The numbers give the root mean squared displacement
(RMSD) in Å compared to the respective DFT minima. The partial charges in b
are shown for illustration purposes only and have been obtained from a scaled
3G-HDNNP. (Figure reproduced with permission from Reference [107].)

any of the DFT structures. The 4G-HDNNP on the other hand, which in addition to

the structural information also takes the total charge and the resulting partial charges

into account, is able to predict the minima and also the atomic partial charges of

both systems with very high accuracy (Figure 4.5c). In this case, the inability of the

2G-HDNNP to distinguish between clusters is also apparent from the energy errors

with respect to DFT. While the energy errors for Ag−3 and Ag+3 obtained from the

4G-HDNNP are only about 1.166 meV/atom and 0.320 meV/atom, respectively, the

errors of the 2G-HDNNP are 0.605 and 2.017 eV/atom and thus several orders of

magnitude larger. The 3G-HDNNP using scaled charges performs even worse and

errors of 0.713 and 5.721 eV/atom are obtained. This is due to the non-physical

electrostatic contribution calculated from the incorrectly predicted charges.
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Figure 4.6: Optimized structure of the Na9Cl+8 cluster. Sodium atoms are shown in purple,
blue and brown, chlorine atoms in grey. The arrow indicates the direction along
which the blue sodium atom is moved for the energy and force plots in Figs. 4.7a
and 4.7b. The position of this atom is defined by the Na-Na distance indicated
as dashed line. (Figure reproduced with permission from Reference [107].)

4.3.3 NaCl Cluster Ions

As the last non-periodic example, we select a system with mainly ionic bonding,

which is a positively charged Na9Cl+8 cluster, and we analyze the changes of the

PES, if a neutral sodium atom is removed. The initial structure of the cluster ion

has been obtained from a DFT geometry optimization and is shown in Figure 4.6.

The sodium atoms are shown in purple, blue, and brown, while the chlorine atoms

are displayed in grey. We then construct a second system by removing the brown

sodium atom from the cluster while keeping the positions of the remaining atoms

fixed. Since the overall positive charge of the cluster is maintained, the charge is

redistributed throughout the new Na8Cl+8 cluster ion.

To investigate the consequences of this change in the electronic structure on the

PES, we compute and compare the energies and forces when moving the blue sodium

atom along a one-dimensional path indicated by the arrow in Figure 4.6 for both

cluster ions. The distance to the closest neighboring sodium atom highlighted as

dashed line is used to define the structure.

Figure 4.7 shows the energies for both systems obtained with DFT and the 2G-, 3G-

and 4G-HDNNPs. All energies are given as relative energies to the minimum DFT

energy of the respective cluster ion and refer to the full systems. First, we note that

the positions of the DFT minima differ by more than 0.1 Å, i.e., depending on the

presence of the very distant brown atom the blue atom adopts different equilibrium

positions. The 2G-HDNNP, however, is unable to distinguish these minima and

instead the same local minimum Na-Na distance is found for both systems, which

is approximately the average value of the two DFT minima. We note that the

2G-HDNNP energy curves of the two systems are not identical but there is an energy

offset, as some atomic environments in the right part of the systems differ, yielding
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different atomic energies. Since these environments do not change when moving the

blue atom this offset is constant. For the 3G-HDNNP the same qualitative behavior

is observed, and two very similar but not identical minima are found for both systems.

Still, in case of the 3G-HDNNP the energy offset between both systems is not merely

a constant anymore, as the long-range electrostatic interactions between the blue

and the brown atom in Na9Cl+8 are position-dependent. We note that in spite of

these qualitative differences with respect to DFT, the 2G- and 3G-HDNNP curves

show only a deviation of about 1 meV per atom from the DFT curves. This is very

small and in the typical order of magnitude of state-of-the-art MLPs, and in the

present case this apparently high accuracy hides the qualitatively wrong minima.

Finally, the 4G-HDNNP energies for both systems are very accurate and the energy

curves match the corresponding DFT curves very closely. Both distinct local minima

are correctly identified and at the right positions.

Next, we turn to the forces shown in Figure 4.7b. The results are fully consistent

with our discussion of the energy curves. The DFT forces acting on the displaced

atom are different for both cluster ions and well reproduced by the 4G-HDNNP.

The 2G-HDNNP forces of both systems are exactly identical due to the constant

offset between both energy curves (Figure 4.7a), while the 3G-HDNNP forces of both

systems are slightly different due to the additionally included long-range electrostatics.

4.3.4 Au2 Cluster on MgO(001)

As example for a periodic system we choose a diatomic gold cluster supported on a

MgO(001) surface. Similar systems have attracted attention because of their catalytic

properties for reactions like carbon monoxide oxidation, epoxidation of propylene,

water-gas-shift reactions, and the hydrogenation of unsaturated hydrocarbons [181].

Theoretical [182, 183] as well as experimental studies [184] have shown that the

geometry of these clusters can be modified by the introduction of dopant atoms

into the oxide substrate. This ability to control the cluster morphology is of great

interest, as it can enhance the catalytic activity of the system [183]. 2G-HDNNPs

have been used before to study the properties of supported metal clusters [144, 185,

186], but systems as complex as doped substrates to date have remained inaccessible,

since long-range charge transfer between the dopant and the gold atoms is crucial to

achieve a physically correct description of these systems.

For Au2 at MgO(001) there are two main adsorption geometries, an upright

“non-wetting” orientation of the dimer attached to a surface oxygen and a “wetting”

configuration, parallel to the surface, in which the two Au atoms reside on two Mg
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a

b

Figure 4.7: Relative energies and forces of the NaCl clusters. a Relative energies of all
potentials with respect to the DFT minima of the Na8Cl+8 and the Na9Cl+8
clusters as a function of the Na-Na distance and b forces acting on the blue
sodium atom for the the path shown in Figure 4.6. For the 3G-HDNNP unscaled
charges have been used in this plot. (Figure reproduced with permission from
Reference [107].)

atoms. DFT optimizations of the positions of the gold atoms with fixed substrate for

the doped and undoped surfaces reveal that the presence of the dopant atoms changes

the relative stability of both structures. On the pure MgO support (Figure 4.8a) the

minimum energy structure is “non-wetting”, while a flat “wetting” geometry is more

stable if the MgO is doped by three aluminium atoms (Figure 4.8b) corresponding to

2.86% of the slab. The Al dopant atoms were introduced into the 5th layer, resulting

in a distance of more than 10 Å from the gold atoms. Despite this large separation,

we found that by doping the charge on the Au2 cluster is reduced (becomes more

negative) by about 0.2 e compared to the same geometry for the undoped surface.

68



4.3 Test Systems Showing the 4G-HDNNPs Capability

a b

Figure 4.8: Geometry of Au2 clusters on undoped and doped MgO(001) surface. Au2 cluster
in the non-wetting geometry on the undoped a and the wetting geometry on Al-
doped b MgO(001) surface represented by a periodic (3×3) supercell. Au atoms
are shown in yellow, O in red, Mg in green and Al in blue. The configuration
of the gold cluster has been optimized by DFT for a fixed substrate. (Figure
reproduced with permission from Reference [107].)

This change in the electronic structure does not only lead to a switching in the

energetic order of the geometries but also to a change of the bond-length between

the gold atoms and the substrate.

The energy difference (Ewetting−Enon-wetting) between the wetting and non-wetting

configurations calculated with different methods on a doped substrate are -2.7 meV

for DFT, 375 meV for the 2G-HDNNP and -41 meV for the 4G-HDNNP. On an

undoped substrate we obtained 929 meV for DFT, 375 meV for the 2G-HDNNP and

975 meV for the 4G-HDNNP. These numbers were obtained after the positions of

the gold atoms were optimized. In case of the 2G-HDNNP, both optimizations yield

the same structure. For the 2G-HDNNP the energy differences for the doped and

undoped systems are exactly the same as the dopant atoms are outside the local

chemical environments of the gold atoms. Thus the 2G-HDNNP cannot take the

change of the PES by doping into account. The DFT and 4G-HDNNP results agree

in that there is a slight preference for the wetting configuration for the doped surface,

while in the undoped case the non-wetting configuration is clearly more stable.

An analysis of the PES for the case of the non-wetting geometry for the doped and

undoped slabs is given in Figure 4.9, which shows the energies relative to the minimum
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DFT energies of the respective systems as a function of the distance between the

bottom Au atom and its neighboring oxygen atom for DFT, the 2G-HDNNP and the

4G-HDNNP. The energy curves of the 4G-HDNNP and DFT are very similar and can

resolve the different equilibrium bond lengths for the doped (4G-HDNNP: 2.342 Å;

DFT: 2.332 Å) and undoped (4G-HDNNP: 2.177 Å; DFT: 2.190 Å) substrates. The

2G-HDNNP yields the same adsorption geometry with a bond length of 2.256 Å in

both cases, while the energies substantially differ from the DFT values with the main

effect of the dopant being a constant energy shift between both substrates, similar

to what we have observed in the presence or absence of the additional sodium atom

in the NaCl cluster.

a

b

Figure 4.9: Energies and forces for the gold cluster. a Relative energy and b sum of forces
acting on the Au2 cluster for the cluster adsorbed at the MgO(001) substrate
for the non-wetting geometry for the Al-doped and undoped cases. The local
minima of the energy curves are marked with a dot. The Au-O bond length
refers to the distance between the Au closest to the surface and its neighboring
oxygen atom. (Figure reproduced with permission from Reference [107].)
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4.3.5 DFT Calculations

The DFT reference data for the examples shown above has been generated using

the all-electron code FHI-aims [32] employing the PBE [39] exchange-correlation

functional with light settings. The total energy, sum of eigenvalues and charge

density for all systems except Au2-MgO were converged to 10−5 eV, 10−2 eV and

10−4 e, respectively. For the Au2-MgO systems stricter settings have been applied by

multiplying each criterion by a factor 0.1 in combination with a 3 × 3 × 1 k-point

grid. Spin polarized calculations have been carried out for the Au2-MgO, NaCl and

Ag3 systems. Reference atomic charges were calculated using the Hirshfeld charge

decomposition method [48]. In principle any other charge partitioning scheme could

be used in the same way.

The dataset of the C10H2/C10H
+
3 molecules and the Ag3 clusters have been

constructed by performing MD simulations for each system at 300 K with 5000 steps

at a time step of 0.5 fs. A Nosé-Hoover thermostat [60] was applied to run simulations

in the canonical (NV T ) ensemble, and the effective mass was set to 1700 cm−1. In

addition, the trajectory path during the geometry relaxations up to a numerical

convergence of 0.001 eV/Å of the forces was also added to the data set to have

sufficient sampling close to equilibrium structures. The geometry optimization of the

Ag−3 system has been terminated when reaching forces below 0.0015 eV/Å.

In case of the NaCl cluster and the Au2 cluster at the MgO surface the reference

data set consists of two structurally different types of systems, and half of the data set

was dedicated to each of the two cases. We performed a random sampling along the

trajectories depicted in figures 4.7 and 4.9 and added further Gaussian distributed

displacements to ensure sufficient sampling of the PES in the vicinity of the structures

of interest. For the NaCl cluster we used Gaussian displacements with a standard

deviation of 0.05 Å. As in the Au2-MgO system we only investigated the change

in geometry of the Au2 cluster, while the MgO substrate remained fixed during all

geometry relaxations, we used a smaller magnitude of the Gaussian displacements

for the substrate than for the cluster. A standard deviation of 0.02 Å was used for

the substrate and 0.1 Å was used for the gold cluster. Half of the data set consists

of structures with an undoped substrate, while the other half includes a doped

substrate. Half of the samples of each substrate configuration were generated with

the Au2 cluster in its wetting configuration, and the other half with the cluster in

its non-wetting configuration. The total number of reference data points for the

NaCl cluster and Au2-MgO slab is 5000, while the the Ag3 clusters and the organic

molecule it is 10019 and 11013, respectively.
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The coordinates of the DFT optimized structures, lists of the symmetry functions

used for building the 2G-, 3G-, and 4G-HDNNPs and training and test root mean

squared errors (RMSEs) together with correlation plots the for the charges, energies,

and forces can be found in Appendix A.1.

4.4 Other Nonlocal MLPs

The development of fourth-generation MLPs is a very active field of research, and

an increasing number of methods have been published recently or are currently

under development. The defining property of fourth-generation MLPs is their

ability to describe long-range effects due to charge transfer as well as electrostatic

interactions without truncation using an explicit Coulomb term for very large systems.

Apart from CENT [158] and the 4G-HDNNP, the Becke population neural network

(BpopNN) [164] method is also based on directly including information about the

atomic charges, which after being redistributed over the entire system are used for

the calculation of the Coulomb energy. The BpopNN method is a generalization

of the energy minimization in CENT, which contains the electrostatic and local

atomic energy terms. This local atomic energy depends not only on the short-range

environment but also on the atomic population (i.e., the atomic charges). Unlike in

CENT, where a quadratic function is used, to model the functional dependence of

the atomic energy on the atomic charge, the BpopNN method uses an arbitrarily

complex function, in the form of ANNs to describe the dependence of the atomic

energies on the populations. The ANNs are trained on reference data obtained from

a set of constrained DFT calculations [187]. This complex relationship prohibits

the use of direct solver to find the populations that minimize the total energy and

a self-consistent cycle called SCF-q needs to be used. The method is similar to

4G-HDNNPs in that it contains an internal representation of the electronic structure

in the form of global atomic charges. Another closely related method is the charge

recursive neural network (QRNN) [188] which can be considered an extension of the

4G-HDNNP method. The QRNN introduces an additional AED, that also depends

on the atomic charges of the neighboring atoms. The method further uses a simplified

version of the charge equilibration scheme which can be solved with a linearly scaling

computational cost. This is achieved by absorbing the off diagonal terms of the linear

equation systems into the electronegativities which themselves depend on neighboring

atomic charges. This charge equilibration step is then applied in a recursive manner

which allows for the charge information to propagate through the system. Another
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class of MLPs, which has very recently gained a lot of attention are MPNNs [189].

In these methods, information is passed between neighboring atoms in multiple

steps, during each of which the received information is combined and updated with

information about the current local environment. Although MPNNs are still strictly

speaking second generation MLPs, the effective distance at which interactions can

be described can become very large through the use of many message passing steps.

Examples of MPNNs include the DTNN [190] and AIMNet [191]. In recent work [165],

AIMNet was extended to predict atomic charges and spins for systems with multiple

charge states. This allows for the calculation of several quantities such as atomic

electronegativity and hardness as well as condensed Fukui functions. MPNNs have

also been used to predict atomic charges in a method called electron-passing neural

networks (EPNN) [192]. Other related methods are the hierarchically interacting

particle neural network (HIP-NN) [193] or SchNet [111], where information is also

passed between nearby atoms.

More recently, MPNNs based on equivariant features have become popular. Ex-

amples include NequIP [194], SpookyNet [195], PaiNN [196] and Newtonnet [197].

These MLPs based on equivariant features have shown astonishing accuracy, sample-

efficiency and extrapolation capabilities. Traditional methods are based on features,

which are invariant, i.e., do not change, under rotation and inversion operations. In

contrast, equivariant methods use features, such as vectors or higher order tensors

that transform correspondingly, when the atomic geometry is transformed. To pre-

serve the equivariance of the internal features and therefore the invariance of the total

energy, the internal operations on the equivariant features have to be constructed

carefully.

Due to the iterative message passing in MPNNs, the effective cutoff can become

very large. This can be problematic for applications to very large systems, where

parallelization across multiple compute-nodes becomes necessary. Recently, a method

named Allegro [198] was proposed, that while using equivariant features, does not

rely on message passing iterations. The methods performance is comparable to

previously published equivariant MPNNs but can also be parallelized efficiently

enabling simulations with hundreds of millions of atoms.

4.5 Summary and Outlook

The development of atomistic potentials has seen rapid progress in recent years. In

particular, the introduction of machine learning potentials nowadays allows us to
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achieve a level of accuracy that is comparable to electronic structure calculations.

This drastically extends the possible time and length scales of computer simulations of

complex systems, for which reliable empirical potentials are not available. Most MLPs

currently in use, still rely on a local description in the form of atomic energies. Even

though long-range electrostatic interactions have been considered on the basis of fixed

or local environment-dependent charges, these approaches break down quantitatively

and qualitatively if the global electronic structure of a system is modified by distant

parts of the system outside the local environments or by changes in the total charge.

With our newly developed 4G-HDNNP, the inclusion of long-range effects due to

charge transfer has become possible. Several other methods have also been proposed

with very encouraging first examples illustrating their capabilities. These “non-local”

MLPs close an important gap in the applicability of MLPs for many interesting

systems in chemistry, biochemistry, and materials science and are expected to allow

the replacement of demanding electronic structure calculations by MLPs for more

and more applications in the future.

Nevertheless, development on the 4G-HDNNP is still ongoing. As already men-

tioned, the development of an iterative scheme to solve the charge equilibration

equations is currently under development. With this new approach, the cubic scaling

of the current implementation will be overcome, enabling simulation at very large

scales.

Another improvement, that has already been implemented and will be published

soon, is the electrostatically embedded fourth generation high-dimensional neural

network potential (ee4G-HDNNP) [199]. The ee4G-HDNNP is an extension of the

4G-HDNNP, that includes two additional modifications that further improve the

accuracy and transferability of the method. The first modification is the addition of

a new type of descriptor of the form

V j
i =

Nneig,j∑
k=1

erf
(

Rik√
2γik

)
Qk

Rik
fcut(Rik) . (4.44)

This new descriptor captures a short-ranged, electrostatic potential arising from all

Nneig,j neighboring atoms of element j. It therefore provides additional information

about the neighboring charge distribution to each atom. This additional information

is useful in cases, where similar atomic environments are present, for which the
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charge on the central atom is the same but the charge on neighboring atoms differs.

Additionally, a two-body energy of the form

E2b =

Nat∑
i>j

(
Aα

ije
Bα

ij(µ
α
ij−Rij) −

Cα
ij

R6
ij

−
Dα

ij

R8
ij

)
· fcut(Rij) (4.45)

is added to the potential. Like the electrostatic energy, this two-body energy is

subtracted from the training data before the short-range ANNs are trained to prevent

double-counting. Here, Aα
ij , B

α
ij , µ

α
ij , C

α
ij and Dα

ij are element-pair-specific parameters

that are fit to pairwise binding curves. The additional two body terms increase

the transferability of the model and improve the behaviour of the potential in the

extrapolative regime, by, for example, ensuring a repulsive force when two atoms

are close. The abilities of the ee4G-HDNNP were demonstrated on NaCl clusters

of multiple charge states and sizes. The results show an improved transferability

to charge states and cluster sizes, that were not present in the training data. The

improved potential can even be used to perform structure search using minima

hopping [81]. This is a particularly stringent test of the potential, since the minima

hopping does gradually increase the kinetic energy used during MD simulations and

will so explore parts of the configuration space well beyond what was sampled during

the generation of the training data. The ee4G-HDNNP was also found to be able to

recover the correct energetic ordering of the newly found local minima.

Future challenges in the development of the 4G-HDNNP include the improvement

of the electrostatic interaction. As mentioned in Section 2.1.6, there is no unique

partition of the electronic density into atomic charges, and therefore many partitioning

methods exist. The Hirshfeld charges, which were used for all the above-mentioned

examples, can be readily extracted from DFT charge densities, but it is known, that

they are not optimal for reproducing the electrostatic potential further away from

the atoms [51]. It might therefore be advantageous to adopt methods to learn the

atomic charges, that improve upon this deficiency. A particularly promising method

was recently described in the context of the CENT2 approach [57]. Instead of directly

learning atomic charges, extracted from the DFT densities, a screened long range

electrostatic potential is targeted. A modified greens functions is used to separate

the electrostatic potential arising from the DFT charge density into a short-range

and a screened long-range part. The electronegativity predicting ANNs are then

trained, such that the predicted atomic charges recover the screened long-range

potential. The remaining short-range part can then be captured by the short-range
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ANNs. A similar approach was adapted by the recently published kernel charge

equilibration (kQEq) method [58]. Instead of directly targeting reference atomic

charges, the model is trained to reproduce accurate molecular dipole moments. The

method is also based on environment dependent electronegativities but uses kernel

ridge regression instead of ANNs.

Furthermore, the 4G-HDNNP currently only uses atomic monopoles and all

interactions due to polarization, atomic dipole moments and higher order multipoles

are captured by the short-range ANN. We hope, that an inclusion of higher order

multipoles into the charge equilibration scheme of the 4G-HDNNP will further

improve the accuracy of the electrostatic interactions, that can be described.

Future challenges that have to be addressed by the community in general include

the description of long-ranged interactions caused by non-local effects in the electronic

structure which are not caused by charge transfer. One such example, presented in a

recent review [200], is a chain of carbon atoms that is terminated by two methylene

groups (CnH4). When the two methylene groups are rotated, they experience a

torsional force, due to the double bonds between the carbon atoms. The description

of this effect requires a large cutoff for conventional local MLPs. Recently, a method

based on a self-attention mechanism was proposed to describe such long-ranged

interactions [201]. Another challenge, that becomes apparent in the same example, is

that the assumption of smoothness, employed by almost all MLPs, may not always

hold. While the cusp seen in the torsional energy of the cumulene molecules (C2+nH4)

in Reference [200] is most likely an artefact of the underlying electronic structure

method [202], discontinuities in the first derivative of the PES are present at conical

intersections [203]. These discontinuities in the first derivatives make it challenging

for MLPs to accurately learn the potential energy in the surrounding areas [204]. In

cases, where the conical intersection is located at high symmetry points, an approach

similar to the one shown in Section 5 for the example of a H3 system might be

possible. But in general, it is not clear yet, how discontinuities in the first derivative

of the potential energy surface can be optimally handled by MLPs.

While many open challenges remain, it is clear, that the development of improved

MLPs is a very active and dynamic field of research and many exciting developments

can be expected in the near future.
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the Overlap Matrix Fingerprint

The introduction of appropriate atomic environment descriptors (AEDs), namely the

atom centered symmetry functions (ACSFs) [10], is one of the key developments, that

started the remarkable success of MLPs. By encoding the local atomic environment,

AEDs allow for MLPs that express the total energy as a sum of atomic energies and

can be applied to systems of arbitrary size. The most critical feature of the AEDs is,

that they should preserve the same symmetries, i.e., rotational, translational and

permutational invariance, that we naturally expect from chemical systems. In the

case of ACSFs, the translational and rotational invariance is achieved by only using

the distances to the central atom and angles between pairs of neighboring atoms.

Permutational invariance is then obtained by summing over all neighbors and pairs

of neighbors. Later on, several other types of AEDs [113, 135, 205, 206] were also

developed. These AEDs are based on different mathematical expressions, but it was

recently shown by Willatt, Musil, and Ceriotti [207], that most AEDs, including the

ACSFs, are somewhat equivalent, since they can be expressed as n-body correlations

of an atomic density.

In addition to their symmetry preserving property, AEDs should be unique. This

means, that no chemically different atomic environments result in the same set

of descriptors. Until recently, it was widely believed in the community [208–211],

that descriptors including up to three-body features would provide an overcom-

plete description of the atomic environment. This assumption was first challenged

by Parsaeifard and Goedecker [212], who found manifolds with almost constant AEDs.

Although the AEDs on these manifolds were not exactly degenerate, it was shown

that they prevent accurate machine learning of atomic properties. Then, in 2020,

Pozdnyakov et al. [138], presented a strikingly simple example of two sets of atomic

environments, that result in exactly the same three-body AEDs. Another counter

example, included in the same paper, shows, that even the inclusion of four-body

features is insufficient for a complete description. It should be noted here, that this

77



5 Learning a Smoothed Version of the Overlap Matrix Fingerprint

problem is generally not as severe as it may sound. When global properties, such as

the total energy, are learned, the AEDs of neighboring atoms will be different and

hence resolve the degeneracy. Furthermore, training sets constructed from chemical

environments mostly only include a subset of all possible atomic environments and

hence may not include any of the problematic situations. Nevertheless, relying on

compensation effects is certainly not an optimal solution and may not be possible,

when atomic properties, such as charges or electronegativities are learnt.

In contrast to descriptors, that are based on a truncated series of n-body terms,

the OM fingerprint [136] uses a different construction. First, Gaussian type orbitals

(in practice s and p orbitals are used) are placed on each atom and multiplied

with a cutoff function, that decays smoothly to zero at a previously chosen cutoff

distance from the central atom. The final fingerprint is then obtained by taking the

sorted eigenvalue spectrum of the resulting overlap matrix. Although only two-body

terms enter the overlap matrix, higher body order terms are introduced by the

diagonalization step [138]. While the completeness properties of the OM fingerprint

are not yet fully understood, numerical evidence [212] supports the superiority of the

OM fingerprint in distinguishing atomic environments in systems that contain a single

atomic species. The OM fingerprint can therefore be expected to not suffer from

the above-mentioned incompleteness problems in single species systems. In systems

with multiple species, however, examples of degenerate descriptors can be trivially

constructed, since the atomic species is encoded through the width of the Gaussian

type basis functions placed on the atoms. For an atomic neighborhood containing

one atom, an equal descriptor can be obtained for a neighborhood containing an

atom of a different element by simply adjusting the distance between the two atoms

such that the same overlap between the two Gaussian type orbitals is obtained. This

deficiency can in principle be overcome by including a few element-specific two body

ACSFs in the descriptor.

To ensure a coherent fingerprint, the eigenvalues of the OM matrix have to be sorted.

This is problematic when two eigenvalues cross since this can lead to discontinuities in

the first derivative of the descriptor with respect to the atomic positions. In general

such crossings are rare and usually not encountered during MD or MC simulations.

In some rare cases, where the crossings occur at high symmetry configurations that

coincide with conical intersections, this can actually be advantageous, as the kink in

the AED allows the ANN to accurately recover the kink in the PES at the conical

intersection, as shown in Figure 5.1.
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Figure 5.1: Cut through the PES of an H3 system. The hydrogen atom shown in blue is
moved along the x-axis, indicated by the dashed line in the left part of the figure.
The right side shows the reference energy together with two fits obtained using
ACSFs and the OM fingerprint. While the ACSFs can only learn a smooth
function, the discontinuity in the first derivative of the OM fingerprint coincides
with the conical intersection of the H3 PES, where the three hydrogen atoms
form an equilateral triangle, and allows for a much more accurate fit. The error
introduced by the smoothness of the ACSF fit is not restricted to the kink itself
but also leads to a slight offset of the local minimum in the PES.

In most cases however, the kinks are problematic, especially, in cases, where the

high symmetry configurations coincide with local minima in the PES. One example

for such a case is the OM fingerprint of the carbon atom in the ground state of a

methane molecule. In Figure 5.2, the DFT energy together with the energy predicted

by an ANN that uses the OM fingerprint of the carbon atom as inputs is shown. The

discontinuity of the first derivative of the OM fingerprint at the ground state causes

the same discontinuity in the energy and a global minimum of the learnt PES that is

not at the high symmetry position.

One might hope, that a different ordering of the eigenvalues, that swaps eigenvalues

at the crossing and therefore is continuous through them could help to resolve the

issue. Unfortunately, it can easily be shown that no such ordering can exist. In

Figure 5.3, OM eigenvalues are plotted along a circular path. At an angle of 0, the

path goes through the ground state of methane and some eigenvalues cross. If one

would now reorder the eigenvalues for the positive side of the plot, such that they

are continuous, it would take two revolutions along the path to arrive back at the

original descriptor for the same configuration. Furthermore, the configurations on

both, sides of the plot are equivalent up to a 180 degree rotation and should hence

result in the same descriptor.
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Figure 5.2: Potential energy of a methane molecule plotted on a trajectory through the
ground state. The line labeled “fit” shows the energy obtained from a ANN fit
that uses the OM fingerprint of the carbon atom as inputs. The discontinuity in
the first derivative of the OM fingerprint causes the kink in the fit at the ground
state geometry.
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Figure 5.3: Eigenvalues of the overlap matrix along a circular path.

The problem of kinks in the OM fingerprint has been previously recognized and

a post-processing scheme that transforms the eigenvalues ei to a new descriptor ẽi

without kinks was proposed [137].

ẽi =

∑
l el exp

(
−1

2( el−ei
a )2

)∑
l exp

(
−1

2( el−ei
a )2

) (5.1)
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When only two eigenvalues are present, this scheme is able to remove the discontinuity

in the derivative. Unfortunately, the method fails, when a third eigenvalues is close

in magnitude to the two crossing eigenvalues. A simple example of this failure is

shown in Figure 5.4.
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Figure 5.4: A simple example showing the failure of the smoothing scheme proposed in
Reference [137]. The method is able to almost remove the kinks at ±0.5, where
the third eigenvalue is different in magnitude compared to the crossing eigenvalues.
At 0, however, the smoothing method fails and a kink is still visible.

To get rid of the discontinuities introduced by eigenvalue crossings when an

arbitrary number of eigenvalues are nearby, a projection onto a set of smooth basis

functions fi can be used [213].

ti =
∑
j

fi(ej) (5.2)

Due to the summation, the transformed descriptors ti do not depend on the order of

the ei. Hence, this removes the difficulties that arise from the ordering, which was

artificially introduced by sorting. The eigenvalues are therefore treated as a set, i.e.,

a collection of items that do not have any intrinsic order.

This naturally raises the question, how we can do machine learning on sets. This

is not trivial, since in conventional approaches an order must always be imposed

to associate one of the set elements with one of the input neurons. Due to the

combinatorial explosion, summing over all permutations is also infeasible.
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5 Learning a Smoothed Version of the Overlap Matrix Fingerprint

Luckily, it was previously shown [214], that any function f that depends on a set

X with elements x, and is therefore invariant under permutation of the x can be

expressed as

f(X) = ρ

(∑
x∈X

ϕ(x)

)
, (5.3)

where ρ and ϕ are suitable functions.

We can now realize, that when the projected eigenvalues ti are used as inputs to

an ANN, that for example predicts an energy, an expression that is equivalent to the

one in Equation 5.3 is obtained. Then, the energy predicting ANN takes the role of ρ

and the fi represent the multivariate function ϕ. A MLP using such an appropriately

projected descriptor should therefore, in principle, be perfectly able to learn the

potential energy without suffering from any kinks introduced by the sorting of the

OM eigenvalues and no information from the eigenvalues ei should be lost during

the projection. The question remains however, what functions should be used for

the fi. In Reference [213], a series of sine and cosine functions was proposed. Other

possibilities include polynomial basis functions, such as Legendre or Tschebyschow

polynomials. Unfortunately, we found these choices of basis functions unsuitable

for machine learning applications. All the above-mentioned basis functions start

to oscillate heavily with increasing order. This leads to very large derivatives and

therefore a descriptor that changes very rapidly, even when only small displacements

are applied to the atomic environment. We therefore decided to use ANNs to represent

the fi and use machine learning to obtain a set of optimal basis functions. We first

attempted to train a model that includes the energy predicting ANN together with

the ANN representing the fi in one step. Unfortunately, we were not able to obtain

a converged fit with this method. We therefore resorted to a two-step approach in

which first the fi are fit and then the energy predicting ANN is trained in a second

step, just like with any other AED. In a first attempt, we trained the fi to reproduce

the eigenvalues ej . For this we used the following loss function LEV.

LEV =
∑
i

(ts(i) − ei)
2 (5.4)

Here s(i) represents the index of the i-th largest ti. We hence first sort the ti and

then simply use the squared error with respect to the eigenvalues ei. The resulting

ti for the circular path as shown in Figure 5.3 are shown in Figure 5.5. It can be

seen, that the ti manage to somewhat reproduce the original eigenvalues while being

perfectly smooth at the crossings at the middle of the plot.
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Figure 5.5: Eigenvalues of the overlap matrix along a circular path together with the trans-
formed eigenvalues. Unlike the eigenvalues, the transformed eigenvalues are
smooth.

As a second method to train the fi, we defined a loss function LD that aims to

reproduce the pairwise (euclidean) distances between pairs of structures. During the

training we do not iterate over all training structures but instead pick two random

structures a and b. The weights of the fi are then optimized using the following loss

function.

LD =

⎛⎝√∑
i

(tai − tbi)
2 −

√∑
i

(eai − ebi)
2

⎞⎠2

+ λ

(∑
i

(tai )2 + (tbi)
2

)
(5.5)

Here the superscripts on the ei and ti indicate the configuration. The last term,

including λ, serves as regularization. Since only the distances between fingerprints

are used for training, adding a constant offset to all ti would not change the loss

function. The regularization term therefore ensures, that the ti stay close to zero

in magnitude. For our tests we found a value of λ = 10−5 to be a good choice. A

histogram of all pairwise distances in the training data, together with a plot of the

learnt functions ti are shown in Figure 5.6.

To compare the transformed versions of the OM fingerprint against the ACSFs and

the untransformed OM fingerprint, we trained ANNs to predict the total energy of a

methane molecule using the AEDs of the central carbon atom as inputs. We devised

an energy decomposition scheme to decompose the total energy of the methane

molecule into n-body terms. Fitting ANNs with ACSFs or the OM fingerprint to
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Figure 5.6: In (a), a 2D histogram of pairwise OM fingerprint distances and pairwise distances
of the transformed fingerprint (t-OM) is shown. In (b), the learnt functions ti
are plotted.

each of the n-body energies individually allows us to determine whether the OM

fingerprint and its transformed version really improve upon the description of higher

body-order terms.

To decompose the energy of a methane molecule, we fit the energy using expressions

of increasing body-order, after subtracting all the lower order contributions. The

one-body energy is simply a constant energy offset. After subtracting the one-body

energy, the two-body energy is fit with the following expression.

E2B =
∑
i

f2B(ri) (5.6)

Here the sum goes over all four hydrogen atoms and ri is the distance between each

hydrogen atom and the carbon atom. The function f2B, as well as the functions for

the three- and four-body contributions are represented by an ANN consisting of two

layers with 8 nodes each. The three body energy was then fit using the expression

below.

E3B =
∑
i ̸=j

f3B(ri, rj , αij) (5.7)

Here αij is the angle between the hydrogen atoms i and j through the carbon atom.

In a last step, a four-body energy was fit to the remaining energy after subtracting

the lower body-order contributions using the following expression.

E4B =
∑

i ̸=j ̸=k

f4B(ri, rj , rk, αij , αik, αjk) (5.8)
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The RMSE of the fit including the energies up to each body-order is shown in

Table 5.1. One can see, that a clear convergence is obtained. The largest improvement

is obtained after the inclusion of the three-body term. This might, at first, seem a bit

surprising, since one would expect, that the energy is mostly dominated by the two

body terms. But since the many-body expansion is only performed for the central

carbon atom, two-body interactions between hydrogen atoms are only included with

the three-body term.

Table 5.1: RMSE (meV) of the many-body fit including terms up to a certain body-order.
The test RMSE is shown in parenthesis.

body-order 1 2 3 4

RMSD 498.6 (499.9) 376.5 (377.3) 59.01 (60.83) 9.47 (9.49)

We then benchmarked the different descriptors by fitting an ANN consisting of

two layers with 15 nodes each to the energies of each body-order. We used 11 radial

and 16 angular ACSFs. The OM fingerprint was constructed using three s and one

p orbital. The training and test dataset consist of 5000 structures each, that were

sampled from an MD trajectory at 2000 K. The results are shown in Table 5.2.

Table 5.2: RMSE (meV) ontained for energy fits using different descriptors. The test RMSE
is shown in parenthesis. The body-order of the reference data is shown in the top
row. The column marked with 1-4 contains results that were fit to energies from
all body-orders up to four. The row marked with σ shows the standard deviation
of the test and training data energies. The rows marked with ACSF and OM show
results for fits that use ACSFs and the OM fingerprint as descriptors respectively.
The results marked with SF+OM used the concatenated OM and SF descriptors.
Results marked with OMEV and OMD are based on a transformed OM fingerprint
that were trained using the LEV and LD loss functions respectively.

body-order 2 3 4 1-4

σ 326.0 (318.4) 374.3 (371.6) 59.67 (58.48) 499.2 (497.2)
ACSF 0.326 (0.991) 9.634 (15.49) 43.42 (48.09) 51.07 (61.31)
OM 24.61 (36.03) 8.340 (13.80) 4.808 (8.291) 18.05 (29.07)
ACSF+OM 0.550 (3.071) 1.904 (10.99) 2.533 (6.152) 5.568 (14.02)
OMEV 105.5 (123.9) 28.51 (33.27) 17.56 (23.09) 88.77 (96.72)
OMD 74.94 (85.37) 30.70 (36.62) 24.40 (28.86) 58.30 (67.79)
ACSF+OMD 0.359 (1.778) 5.995 (15.61) 7.745 (11.70) 10.97 (22.22)
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5 Learning a Smoothed Version of the Overlap Matrix Fingerprint

As expected, the fit based on ACSFs performs very poorly for the four-body energy

with the RMSE being almost as large as the standard deviation of the energies in

the training data. The OM fingerprint on the other hand is well able to capture the

four-body interactions. Both the OM fingerprint and the ACSFs perform similarly

for the three-body interactions, but surprisingly, the ACSFs outperform the OM

fingerprint for the two-body energies. We think, that this is due to the fact, that

the ACSFs, by being sums of two body functions, provide a more direct description

of the interatomic distances while in the OM fingerprint the two-body relationships

are blended together with all higher-order terms by the diagonalization step. The

relationship between the descriptor and the energy that has to be captured by the

ANN is therefore much simpler and easier to learn when ACSFs are used. This is

supported by the fact, that a simple linear ridge regression on the ACSFs already

results in a training and test error of 1.99 meV and 1.80 meV respectively. A linear

fit based on the OM fingerprint results in much higher training and test errors of

94.9 meV and 91.2 meV. The best fit was obtained using a descriptor that was formed

by concatenating the OM fingerprint with the ACSFs. This way, the good description

of two-body terms by the ACSFs and the superior description of higher body-order

terms by the OM fingerprint can be combined.

The results also show, that the transformed OM fingerprint, that was trained

using the loss function based on pairwise distances outperforms the one trained to

reproduce the original eigenvalues. Unfortunately, the transformed versions of the

OM fingerprint were not able to improve upon the original version of the fingerprint,

in terms of the RMSE, even though the unphysical kink at the ground state geometry

is removed. However, in combination with the ACSFs, the high accuracy for the

two-body terms can be recovered. While the training error is very similar to the

ACSFs alone, the test error is slightly increased, indicating slight overfitting. The

RMSE of the transformed OM fingerprint combined with the ACSFs is only slightly

higher than the RMSE obtained from a fit where the original OM fingerprint is

combined with the ACSFs. In most cases, ensuring a smooth fit of the PES is well

worth the small decrease in fitting accuracy. The results are therefore quite promising,

but further research is needed to determine, how the description of two-body terms

can be improved in the OM fingerprint and its transformed variants.

Future studies will also need to include test systems beyond the simple methane

molecule presented in this chapter. The methane molecule proved to be a good test

system, to decompose the total energy into n-body contributions, which allowed us

to identify the weakness of the OM fingerprint in describing two-body interactions.
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In more realistic applications however, the smoothed OM fingerprint would be used

in the context of a HDNNP where the AEDs of all atoms and not only the central

one would be used. In such a scenario compensation effects might occur, where the

deficiencies of one AED can be accounted for in the AEDs of neighboring atoms.

Future tests will therefore need to include larger test systems, where the transformed

OM fingerprint is used as input to a HDNNP.
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6 Funnel Hopping Monte Carlo

6.1 Broken Ergodicity

In the previous Section 2.2.2 we saw how MC (or MD) simulations can be used to

sample the Boltzmann distribution. Unfortunately, we often run into severe problems

when we want to apply these methods. The difficulty is, that the PES can contain

many local minima that are close in energy but can be seperated by high energy

barriers. At low enough temperatures the Boltzmann distribution of such a PES will

then have sharp peaks at the energy minima while being very small at the transition

states in between. Since the magnitude of the MC moves we can include in our

simulation is limited, multiple subsequent MC steps across the barriers are required

to pass from one minimum to another. These moves across the high energy regions

are very unlikely due to the low Boltzmann probability. Hence, very long simulation

times can be required until all local minima are sampled according to their correct

probability. In many cases convergence cannot be achieved within the available

computation time.

The situation is illustrated in the one dimensional potential energy function shown

in Figure 6.1a. The potential energy function shown in the figure features two local

minima seperated by a barrier. The left minimum is slightly lower in energy, making

it the preferred configuration at low temperatures. At higher temperatures the right

minima is preferred due to it being wider and thus having a higher entropy.

When we run a MC simulation on this example energy, we would expect the

individual samples to be distributed according to the Boltzmann distribution shown

in Figure 6.1b. The histogram of such a simulation over 106 iterations at T = 0.25 is

shown in Figure 6.2a. It can be seen that despite the large number of MC iterations,

the simulation failed to predict the correct probabilities for each of the two local

minima. From Figure 6.2b, it is clear that only few transitions between the two local

minima happened.

Parts of this chapter were adapted from J.A. Finkler and S. Goedecker. “Funnel hopping Monte
Carlo: An efficient method to overcome broken ergodicity”. The Journal of chemical physics
152:16, 2020, p. 164106, with the permission of AIP Publishing.
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Figure 6.1: Example potential energy function (a), featuring two local minima separated by
a barrier. The Boltzmann distribution is shown in (b) for different temperatures.
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Figure 6.2: Histogram of a MC simulation of the example potential at T = 0.25 (a) and the
position of the MC walker during each iteration (b).

Due to the higher dimensionality and the higher number of local minima which

was suggested to increase exponentially with respect to the number of atoms in the

system [88, 215] the problem is even more severe in real atomic systems.

The problem of energy barriers preventing complete sampling of the PES is known

as broken ergodicity. In theory MC sampling is ergodic, meaning that every region

on the PES will be visited according to its probability given a long enough simulation.

Since the Boltzmann probability is always strictly greater than zero, even high

barriers should be passed eventually. In practice however, the amount of iterations

for which we can run our MC simulation is limited by the speed and capability of

our computers. Therefore, if high barriers are present in the system, it can seem as

if our MC simulations were not ergodic.
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6.1 Broken Ergodicity

6.1.1 The Harmonic Superposition Approximation

One way to completely avoid broken ergodicity and also the need for a MC simulation

is the harmonic superposition approximation (HSA) [216, 217]. In this section the

method will be explained using the previously introduced one-dimensional example

potential energy function. The generalization of the method to higher dimensional

systems is straightforward and can be done by using multivariate Gaussian functions

instead of the one dimensional ones used here.

To apply the HSA to our example system, we approximate the energy around each

local minimum using a Taylor expansion.

Eh.a.(x) = E(x0) +
1

2
(x− x0)

2E′′(x0)

⏐⏐⏐⏐ E′′(x0) =
d2E(x)

dx2

⏐⏐⏐⏐
x0

(6.1)

A plot of the two approximated energies is shown in Figure 6.3 (a).
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Figure 6.3: Energy derived from the harmonic approximation for both minima (a) and the
corresponding Boltzmann distribution computed in the harmonic superposition
approximation (b).

We can now calculate the Boltzmann probabilities for such an energy function.

PBh.a.(x, T ) =
1

Zh.a.(T )
exp

(
−Eh.a.(x)

kBT

)
=

1

Zh.a.(T )
exp

(
−E(x0)

kBT

)
exp

(
−(x− x0)

2E′′(x0)

2kBT

) (6.2)

The partition function Zh.a.(T ) is given as follows.

Zh.a.(T ) = exp

(
−E(x0)

kBT

)√
2πkBT

E′′(x0)
(6.3)
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We can now approximate the global Boltzmann probability PB
global
h.a. by weighting the

PBh.a. of each minimum by their partition function.

PB
global
h.a. (x, T ) =

1∑
j Z

j
h.a.(T )

∑
i

Zi
h.a.(T )PB

i
h.a.(x, T ) (6.4)

To obtain a good approximation, all minima that contribute significantly to PB
global
h.a.

(i.e., Zi
h.a.(T )/

∑
j Z

j
h.a.(T ) ≫ 0) have to be included in the sum in Equation 6.4. This

can be challenging for systems that have many local minima with a low energy, such

as atomic clusters. The global Boltzmann probability calculated in the HSA is shown

in Figure 6.3 (b). It can clearly be seen, that at lower temperatures the HSA holds

quite well but fails at higher temperature, since it cannot take the anharmonicity of

the potential wells into account.
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Figure 6.4: Probability of finding the example system on the left (x < 0) or right side (x > 0)
of the barrier. Exact results (p(l) and p(r)) as well as results obtained from
the HSA (Ph.a.(l) and Ph.a.(r)) are shown. The HSA fails to predict the slight
preference for the right side at higher temperatures.

In Figure 6.4 the probability of finding the example system on the left side (x < 0)

and right side (x > 0) of the barrier are shown. Again, at low temperatures the HSA

is very close to the exact result. However, it is not able to correctly predict that

the right side is preferred at higher temperatures. The HSA should therefore only

be used at low temperatures. Up to which temperatures depends on the degree of

anharmonicity of the local minima in the system. An application of the HSA to LJ

clusters can be found in Reference [25]
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6.2 Advanced Monte Carlo Techniques

Since high energy barriers can be found in many systems, many approaches and

methods have been developed that aim to overcome the problem of broken ergodicity

in MC based simulations. Some methods, such as umbrella sampling [12–14] or

metadynamics [15] use biasing potentials to overcome energy barriers. While in

umbrella sampling, the potential is added in advance to the simulation, metadynamics

adds biasing potentials dynamically during the simulation to avoid revisiting regions

that are already well explored by the MC simulation. Both methods use collective

variables to define the biasing potentials. Collective variables are parameters, derived

from the atomic coordinates, that can be used to characterize the transition between

the local minima that are considered in the simulation. Such collective variables, for

example order parameters, describing a phase transition, have to be chosen manually

and are very system specific. Finding a suitable collective variable can therefore be a

challenge on its own.

Other approaches try to sample the inverse density of states to obtain a flat

energy histogramm. One such method is multicanonical sampling [16, 17], for

which the density of states has to be known a priori. Wang–Landau sampling [18,

19] overcomes this problem by computing the density of states on the fly during

the simulation. Despite its elegance and broad applicability, the Wang–Landau

method can be difficult to apply to systems with continuous degrees of freedom and

requires knowledge about the range of accessible energies. If multiple funnels with

high barriers are present, the Wang–Landau method can fail to achieve adequate

transition rates between the funnels as only local moves are used. In particular,

the method was not able to converge to the correct result when applied to the 31

and 38 atom LJ clusters and satisfactory results were achieved only after an order

parameter was used to construct a two-dimensional density of states [218]. In nested

sampling [20–23], a random uniform sample from the full configuration space is

generated in the first step. The sampled configuration space volume is then gradually

reduced by replacing the highest energy sample with a new sample that is constrained

to the sub-volume of configuration space which is lower in energy than the previous

maximum energy. The difficulty of the method lies in the proposal of new, lower

energy configurations. Due to the rapidly decreasing acceptable configuration space

volume, rejection sampling becomes infeasible and more sophisticated methods have

to be used [23]. In Boltzmann generators [219], invertible ANNs are trained to

learn a coordinate transformation between a systems configuration and a latent
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space, such that the Boltzmann distribution in the configuration space maps to a

Gaussian distribution in the latent space. Once trained, the Boltzmann generator

can then be used to generate one-shot samples from the Boltzmann distribution by

applying the learnt transformation to Gaussian distributed samples in the latent

space. Thermodynamic quantities can then be computed by reweighting the one-shot

samples appropriately to account for errors in the learnt transformation.

Thermodynamic integration is a related technique, which does not aim to sample

the whole PES in one simulation but instead allows for the computation of free

energy differences, i.e., the ratio between partition functions for different parts of the

PES. In thermodynamic integration, a parametrized path between two regions of

interest has to be found along which the derivative of the free energy is numerically

integrated to obtain the total free energy difference. Such a path can often be

difficult to find. Therefore, paths to systems for which the free energy is known

analytically, such as Einstein crystals or an ideal gas, can be used to obtain absolute

free energies [220]. Since the free energy difference, is then an often relatively small

difference between two large absolute free energies, special attention has to be paid

to errors introduced during the integration. Furthermore, the method can still

suffer from broken ergodicity when, for example, the free energy of a whole funnel

is computed since the simulation still needs to cross the barriers between minima

within the same funnel [221].

6.2.1 Replica Exchange Monte Carlo

Another very popular approach are replica exchange (RX) [222] methods. In RX

simulations, configurations between parallel MC simulations that sample different

distributions are exchanged. One might for example couple a MC simulation to

another simulation on a PES, where barrier heights are artificially lowered. Another

possibility is, to couple several simulations at different temperatures. This method,

also called parallel tempering (PT) [223, 224], takes advantage of the fact that

MC simulations at higher temperatures are able to cross barriers by exchanging

configurations between simulations at different temperatures. If we consider an

ensemble of N MC simulations at different temperatures Ti and potential energy

functions Ei, as one global simulation, the probability of a state {Ri} is given by

the product of the individual probabilities.

Pglobal({Ri}) =

N∏
i=1

P (Ri) =

N∏
i=1

exp

(
−Ei(Ri)

kBTi

)
(6.5)
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We can now propose a MC move that exchanges the configuration between two replicas

j and k. We then accept or reject the move according to the Metropolis–Hastings

criterion.

α(R1, ...,Rk, ...,Rj , ...,RN |R1, ...,Rj , ...,Rk, ...,RN )

= min

⎛⎝1,
exp
(
−E1(R1)
kBT1

)
. . . exp

(
−Ej(Rk)

kBTj

)
. . . exp

(
−Ek(Rj)
kBTk

)
. . . exp

(
−EN (RN )

kBTN

)
exp
(
−E1(R1)
kBT1

)
. . . exp

(
−Ej(Rj)
kBTj

)
. . . exp

(
−Ek(Rk)

kBTk

)
. . . exp

(
−EN (RN )

kBTN

)
⎞⎠

= min

(
1, exp

(
Ej(Rj) − Ej(Rk)

kBTj
− Ek(Rj) − Ek(Rk)

kBTk

))
(6.6)

Since the move is performed according to the Metropolis–Hastings criterion, detailed

balance is preserved and the method is exact. The temperatures at which the individ-

ual simulations are performed have to be chosen carefully. The lowest temperature is

the lowest one for which simulation results are needed. The highest temperature in

the ensemble has to be chosen such that the simulation is able to cross the highest

barriers in the system. This barrier height is not easy to obtain and a good intuition

or knowledge of the studied system is required.

Unfortunately it is in most cases not sufficient to only perform simulations at two

temperatures. If the temperature difference between two simulations that exchange

configurations is too high, the respective Boltzmann distributions have very little

overlap and exchange moves are only very rarely accepted. Configurations taken

from a high temperature simulation will have a very small Boltzmann probability

at low temperatures. Therefore, usually a series of temperatures is simulated and

exchanges are performed between neighboring temperatures. Using too many parallel

simulations can also be disadvantageous. Not only does the computational cost of

the simulations increase, but also the convergence of the simulation is impaired. The

exchange of configurations between temperatures is similar to a diffusion process. If

the temperatures are chosen too densely, the transfer of configurations from the higher

temperatures, where barriers are crossed, to the lower temperatures is slowed down.

The optimal temperature allocation is related to the entropy difference between

temperatures but this quantity is typically not known before the simulation. A

reasonable starting point can be obtained by assuming a system with constant heat

capacity for which the optimal temperature allocation is a geometric series [225]. For

real systems, where the heat capacity is not constant, a slightly different allocation

might be better and algorithms that dynamically adapt the temperatures during
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the simulation such that an optimal acceptance rate of 20 % is obtained, have been

proposed [226]. In our simulations we found that a fixed allocation of temperatures

in a geometric series performed reasonably well.

In many cases, the improved convergence of the PT simulation makes up for the

additional cost of the extra simulations and often results for more than a single

temperature are needed anyway. For example, in our studies we found, that even after

1010 iterations a standard MC simulation of the 38 atom Lennard-Jones cluster (LJ38

cluster) was very far from convergence, while a PT simulation would converge after a

tenth of the above-mentioned number of iterations. However, for many systems, PT

still fails to converge. When very high barriers are present, PT can still fail to cross

them efficiently, since configurations have to be passed between a larger number of

simulations. Furthermore, the accessible configuration space becomes very large at

high temperatures, making barrier crossings a very rare event. While PT is able to

converge after 109 iterations for the LJ38 cluster, we would not be able to afford this

many energy and force evaluations for a system where DFT calculations need to be

used.

6.2.2 Smart Darting Monte Carlo

We therefore developed a method called Funnel Hopping Monte Carlo (FHMC) [94],

to overcome high energy barriers in MC simulations more efficiently. Our method

was inspired by smart darting Monte Carlo [24], a method that introduces a new

MC move, that is not local, but goes directly from one low energy region to another,

bypassing the barrier in between entirely.

In advance to a smart darting simulation, local minima {Mi} are identified and

so-called darting vectors are defined as the difference between two local minima.

Dij = Mi −Mj (6.7)

Also a parameter ϵ has to be chosen, to define spherical darting regions around each

local minimum. The parameter ϵ should be chosen small enough, that no two darting

regions overlap. During the simulation, darting moves will be used in addition to

standard MC moves with a certain probability. If a darting move is attempted, it

is first determined, if the current MC walker is inside one of the darting regions,

i.e., if ∥R−Mi∥ < ϵ for any i. If this is the case, a darting move is attempted by

first picking a random darting vector Dij starting from the current darting region i
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and going to region j. The proposed configuration is then generated by adding the

darting vector to the current position of the walker.

R′ = R + Dij (6.8)

The move is then accepted or rejected according to the Metropolis–Hastings criterion.

Despite its elegance, the method has several disadvantages. Since atomic systems

are independent under rigid transformations, such as translation and rotation, the

darting vectors are ill-defined and a rotation of the system during the simulation will

prevent all later darting moves from ending up close to the desired local minimum. A

similar problem occurs when two atoms of the same element exchange positions. We

also found that local minima are in most cases not spherical like the darting regions

but have very different hard and soft modes and should rather be considered very

eccentric ellipsoids. Simply darting by addition of a darting vector as in Equation 6.8

will therefore only lead to very little overlap of the low energy regions and hence a

low acceptance rate of darting moves. The problem is illustrated in Figure 6.5.

Dij

Figure 6.5: The two low energy regions shown in orange are connected by the darting vector
Dij . Every point from the left region is darted to the blue region on the right.
Due to the eccentric shape of the region, the overlap, where darting moves would
be accepted, is minimal. The problem is even more severe in higher dimensions.

Lattice switch MC [227–229] also uses a global move constructed according to

Equation 6.8. In this method applicable to systems with periodic boundary conditions

an artificial bias is added to the simulation to drive the MC walker towards the

regions where the darting moves are more likely to be accepted.

6.3 The Funnel Hopping Monte Carlo Algorithm

The above-mentioned challenges of a missing invariance under important symmetries

and the low acceptance rate of global moves are overcome by FHMC with two

important ingredients. Firstly, we developed a way to identify atomic configurations

that is invariant under rotation, translation, as well as permutations of equivalent
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atoms. The second ingredient is the use of Gaussian mixtures (GMs) instead of

darting vectors to efficiently propose new configurations. This way high quality

moves with a high chance of being accepted can be proposed and no artificial biasing

is needed which would lead to unnecessary sampling.

6.3.1 Identifying Equivalent Configurations Using Eckart Space

and the RMSD

As already mentioned, atomic systems with free boundary conditions are invariant

under rotation, translation and the permutation of equivalent atoms. To remove

this ambiguity from a given configuration, we used the root mean squared devia-

tion (RMSD). The RMSD is defined as follows.

RMSD(R,Rref) =

√∑Nat
i=1 ∥R⃗i − R⃗ref

i ∥2
Nat

(6.9)

Given a reference configuration Rref , we can fix the translation, rotation and permu-

tation of the atoms, by finding the optimal translation rotation and permutation,

that minimize RMSD(R,Rref). The optimal translation can always be found by

superimposing the centers of mass of the two configurations. We will therefore always

assume, without loss of generality, that the centers of mass are set to the coordinate

origin. It can be shown, that if the RMSD between two configurations is minimal,

the to so-called Eckart conditions [230] are met [231].

The Eckart conditions are the following.

N∑
i=1

R⃗i − R⃗ref
i = 0⃗ (6.10)

N∑
i=1

R⃗i × R⃗ref
i = 0⃗ (6.11)

We now define the displacement d as the difference between the aligned structure

and the reference.

d⃗i = R⃗i − R⃗ref
i (6.12)

With these we can now write the Eckart conditions as follows.

N∑
i=1

d⃗i = 0⃗ (6.13)
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N∑
i=1

d⃗i × R⃗i = 0⃗ (6.14)

From these six linear equations it follows that all displacement vectors d, obtained

from a minimal RMSD alignment, are orthogonal to the following six vectors.

V1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

0

1
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

1

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

1

0

0

1

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

V4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

R⃗ref
1,z

−R⃗ref
1,y

0

R⃗ref
2,z

−R⃗ref
2,y

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V5 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−R⃗ref
1,z

0

R⃗ref
1,x

−R⃗ref
2,z

0

R⃗ref
2,x

R⃗ref
3,z
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
V6 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R⃗ref
1,y

−R⃗ref
1,x

0

R⃗ref
2,y

−R⃗ref
2,x

0

R⃗ref
3,y
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.15)

Here the vectors V1, V2 and V3 are obtained from Equation 6.13 and V4, V5 and

V6 are obtained from Equation 6.14.

We now construct 3N − 6 basis vectors Bi which are orthogonal to each other as

well as to the vectors Vj .

∥Bi∥ = 1 (6.16)

Bi ·Bj = 0 ∀ i ̸= j (6.17)

Bi ·Vj = 0 (6.18)

The Bi can be obtained using an orthogonalization algorithm such as for example

the stabilized Gram-Schmidt process.

Using the Bi as a basis we can remove 6 coordinates from our displacement vectors

d. These six coordinates become redundant because we fixed the rotation and
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translation of the configuration. This allows us to assign a unique set of 3N − 6

coordinates to every configuration.

The 3N dimensional vector d is transformed to the 3N − 6 dimensional vector d′,

using the basis spanned by the Bi, as follows.

d′i = d ·Bi | i = 1 . . . 3N − 6 (6.19)

Here d′i denotes the ith component of vector d′.

To obtain the original configuration R, d′ is simply transformed back to the 3N

dimensional space and added to the reference configuration Rref .

R = Rref + d = Rref +

3N−6∑
i=1

d′i B
i (6.20)

The Eckart conditions were also previously used in a modified version of the smart

darting algorithm [232]. Since the transformations to the Eckart space used Euler

angles, the transformation was non-linear and a Jacobian matrix had to be computed.

Results were only reported for the 7 atom LJ cluster.

Minimization of the RMSD

In systems of distinguishable atoms, the RMSD can be considered a function of

the rotation of the system as the optimal translation can be found trivially by

superimposing the mean atom positions of the two systems. In systems consisting

of indistinguishable atoms however we are confronted with some kind of chicken

and egg problem, as the optimal rotation depends on one hand on the permutation

indicating which atoms from each system we pair together while on the other hand

the optimal permutation depends on the rotation. Each problem by itself can be

solved by known algorithms. To find the optimal rotation to a given permutation

we can use an algorithm based on quaternions [233–235]. To determine the optimal

permutation for a given rotation we can use the Hungarian algorithm [236] or the

shortest augmenting path algorithm [237]. In our implementation we used the

algorithm outlined in Section 4 of Reference [238], which we adapted to accept

floating point numbers in the cost matrix. To solve the combined problems we use

both algorithms in alternation until a converged solution is found. As each of the two

algorithms will only decrease the RMSD, repeated application of them will lead to a

local optimum of the RMSD. To find the globally optimal RMSD we initialized the

local optimization with different initial rotations. These rotations were represented
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by unit quaternions. Because quaternions with opposite sign represent the same

rotation each rotation has to be represented by a pair of points on opposite sides of

a four dimensional unit hypersphere. To distribute these rotations as uniformly as

possible over the hypersphere of all rotations, we put a charge on each point and

minimized the Coulomb energy using a simple gradient descent algorithm with the

additional constraints that the points be on the unit sphere. An illustration of the

results of this method, when applied to points on a 3D sphere is shown in Figure 6.6.

These uniformly distributed rotations increase the chances of finding the globally

minimal RMSD within a limited number of steps significantly.

(a) (b)

Figure 6.6: Two sets of 500 points, distributed on a 3D sphere are shown. It can be seen that
a random distribution (a) leaves wide gaps, that are not covered by points while
also putting some points very close together, resulting in redundant computation.
These problems are avoided by using an even distribution of points as shown in
(b).

To test our algorithm we generated random configurations with an RMSD of 0.1 to

the local minimum of the 38 atom LJ cluster with the third-lowest energy. We chose

this configuration because it is the lowest local minimum, that has no rotational

symmetry. The RMSD of 0.1 was chosen because it is large enough such that the

alignment is not trivial, but small enough to ensure no other permutation than the

original one can result in a smaller RMSD. In our experiments we found that by using

400 evenly spread initial rotations the globally minimal RMSD solution was found in

100% of the 10000 test alignments performed. If we used random initial rotations

instead, only 85% of the alignments succeeded. Even when using 600 random initial

rotations, the minimal RMSD solution was only found in 95% of the attempts.
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The code used for finding the minimal RMSD between two structures has been

published online [239].

6.3.2 Using Gaussian Mixtures to Propose Monte Carlo Moves

Using the methods described in the previous section, we are able to uniquely map

structures into a 3N − 6 dimensional coordinate space. This capability is the

foundation of our FHMC algorithm, as it allows us to generate Monte Carlo moves

that directly target regions of low energy.

By using some metric, which may be the RMSD or fingerprints [240], we assign

each point in configuration space to its nearest minimum. Thus, each minimum is

assigned a part of the configuration space. In our implementation we used fingerprints

because they are computationally cheaper. For each minimum Ri we will then define

a probability distribution qi(r) which will live in the 3N − 6 dimensional fixed

frame coordinate space, and sample the low energy region around this minimum.

These qi should cover the high probability regions as exhaustively as possible. This

can be done for example by using the harmonic approximation which would result

in an algorithm similar to the one proposed in Reference [241] or by a Gaussian

mixture as we will propose in the following section. It is important to note here that

these distributions do not carry any physical meaning. How well these resemble the

Boltzmann distribution does not influence the accuracy of the final algorithm as

detailed balance is always satisfied. The qi(r)s just allow the FHMC algorithm to

propose better moves that are more likely to be accepted which results in a more

efficient sampling.

To propose a FHMC move, we first determine the minimum Ri that is closest to

the current configuration. We then randomly choose one of the other minima and

draw a configuration from the corresponding qj . The choice of the target minimum

can be done completely random or one can include a transition matrix T with Tij

being the probability to choose minimum j when the current configuration is closest

to minimum i. Such a transition matrix can be used for example to avoid proposing

moves to minima that are too different in energy. The proposed move is then accepted

with probability α according to the Metropolis criterion.

α(r → r′) = min

(
1, exp

(
−E(r′) − E(r)

kBT

)
qi(r)

qj(r′)

Tji
Tij

hαi
hαj

)
(6.21)

Here hαi is the point group order, i.e., the number of symmetry operations that

leave the geometry unchanged, of the ith minimum. If a minimum has a rotational
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symmetry, hαi alignments with the same RMSD exist. All these alignments will result

in different coordinates if transformed to the basis vectors Bi while they describe

exactly the same configuration. It is therefore hαi as likely to pick a configuration as

qi(r) indicates, because hαi points exist that correspond to that configuration and

are equally likely.

The distributions qi play two important roles. First we can see from the above

equation that the acceptance probability is proportional to qi(r) which means that

the better the qi cover the high probability regions the higher is the expected

acceptance rate. The other role of the qi is that they are used to generate the

proposed configurations. Again one can see that if the qi cover the high probability

regions well we will propose configurations with a low energy which will result in a

high acceptance probability.

Although the Gaussian mixtures are usually quite localized they do in principle

have infinite support. This means that it is possible that the proposed configuration

r′ lies outside the part of configuration space that is assigned to the minimum j. This

would result in a move where detailed balance is not satisfied, as the inverse move is

not possible. Rejecting moves to configurations outside the region of configuration

space assigned to minimum j ensures that the detailed balance condition is met and

no errors are introduced.

Gaussian Mixtures

A rather straight forward approach to define the qi is to use the harmonic approxi-

mation of the energy. As the harmonic approximation is a quadratic function, the

Boltzmann distribution of this energy will be a Gaussian distribution of the following

form.

qh.a.i (r) =
1√

(2πkBT )3N−6Det(H−1)
exp

[
−r⊤Hr

2kBT

]
(6.22)

In this equation H represents the Hessian matrix of the energy, transformed to the

basis spanned by the Bi. It should be noted that at every local minimum of the

energy the Hessian matrix will have 6 eigenvalues that are zero. These corresponding

eigenvectors coincide with the Vi defined in Equation 6.16. The Hessian matrix is

therefore not singular in the basis spanned by the Bi.

Although this approximation becomes exact in the limit of the temperature going

to zero we found that at finite temperatures acceptance rates of our algorithm

were very low using the harmonic approximation. For the 38 and 75 atom LJ
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clusters the acceptances rates were around 0.2 % and 0.04 % respectively. Similar

behaviour was also observed in the context of the auxiliary harmonic superposition

system [25]. Using the harmonic approximation in FHMC results in an algorithm

which is very similar to the auxiliary harmonic superposition system. We therefore

include calculations using the harmonic approximation in the following sections for

comparison.

To overcome the deficiencies of the harmonic approximation, we propose a different

approach to find suitable qi by using a mixture of Gaussians which is defined as

qg.m.
i (r) =

m∑
k=1

akiN k
i (r)

m∑
k=1

aki = 1 and aki ≥ 0 ∀k . (6.23)

Here the N k
i represent normalized Gaussians defined by means µk

i and covariance

matrices Σk
i . Once the aki and N k

i are determined we can generate samples from the

Gaussian mixture by picking a random k with probability aki and then drawing a

random sample from N k
i . To generate samples from N k

i we first generate a set of

random numbers drawn from a standard-normal distribution using the Box-Müller

algorithm. We then use the Cholesky decomposition of Σk
i as well as µk

i to transform

the random numbers to the desired distribution [242].

The parameters aki , µk
i and Σk

i are determined by fitting the Gaussian mix-

ture to samples drawn from the Boltzmann distribution using the Expectation-

Maximization (EM) algorithm [243–245]. Our implementation of the EM algorithm

has been published online [246]. The implementation was written in Fortran and is

highly efficient due to its extensive use of the BLAS library [247].

Such a fit for the example energy function, consisting of three Gaussians, is shown

in Figure 6.7.

For each of the local minima that are included, samples are generated and the

Gaussian mixtures are fit individually. The samples are collected from a standard

Monte Carlo run initialized at the local minimum Ri after a short equilibration

phase. During the Monte Carlo run we repeatedly check if the current configuration

is still inside the region assigned to the local minimum Ri. If the region was left

the simulation is reinitialized at Ri and some equilibration steps are performed.

This ensures that the samples are all drawn from a single peak in the Boltzmann

distribution that belongs to the corresponding minimum.

If only a single Gaussian is fit, the resulting method is equivalent to the principle

mode analysis method [248]. Alternatively the self-consistent phonon method [249,

250] could also be used to fit a single Gaussian distribution [251]. As in our method
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Figure 6.7: Boltzman probabilities for the example energy function shown in Figure 6.1a
at T = 0.25, obtained from Gaussian mixtures of three Gaussian fit to 10′000
samples from each local minimum (a) and the harmonic approximation (b) are
shown. The fitted Boltzmann probabilities are scaled according to the partition
function of each side, such that they match the exact Boltzmann probability
shown in black. Usually, these partition functions are no known and the scaling
in this figure is only down to show the good agreement between the Gaussian
mixture fit and the real Boltzmann distribution. It can be seen that the Gaussian
mixture fit improves the overlap with the real Boltzmann distribution compared
to the harmonic approximation.

the required number of energy and force evaluations was dominated by the Monte

Carlo sampling and not by the construction of the Gaussian mixtures, an improved

efficiency in this part would not be of great advantage. What matters is the improved

acceptance rates that can be achieved with fits that use multiple Gaussians.

We also developed a modified version of the EM algorithm which takes advantage

of the high symmetry present in many low energy configurations. By constraining

the Gaussian mixture to have the same symmetry as the local minima the number of

free parameters can be reduced which leads to a better quality of the fit. An outline

of the modified algorithm is given in Section 6.3.2.

For our LJ clusters, we used a local geometry optimization to check if the Monte

Carlo walker has left the catchment basin of the local minimum. In our experiments

this required approximately 100 energy and force evaluations per sample that we

collected. For the LJ clusters these energy and force evaluations are extremely cheap.

If a more expensive method, such as for instance DFT, would be used one would

have to resort to fingerprints or RMSD calculations to check if the catchment basin

has been left. We therefore decided not to include these energy and force evaluations

into the final results given in Section 6.4.
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Fitting Symmetric Gaussian Mixtures

Low energy configurations of clusters often exhibit a high degree of symmetry. This

is especially the case for the 38 atom LJ cluster where the ground state has 24

rotational symmetries as well as an point reflection symmetry resulting in a total of

48 symmetries.

These symmetries will also be present in the Boltzmann distribution which we

approximate using the Gaussian mixtures. By constraining the Gaussian mixtures

to have the same symmetries as the local minima, the number of free parameters

can be reduced, which results in an increased quality of fit with the same number

of training samples used. We therefore developed the following variant of the EM

algorithm.

In a first step we determine all rotation and point reflection symmetries of the

configuration. For that the configuration is first rotated randomly, then the alignment

algorithm described in Section 6.3.1 is used to align the rotated structure to the

original configuration. All distinct assignments with an RMSD of zero correspond to

a symmetry operation. The procedure is then repeated after a point reflection was

applied to the structure such that all symmetries that include a point reflection can

be found. Alternatively the symmetries can also be detected using a more efficient

code, such as for example libmsym [252].

We then define a symmetric Gaussian mixture by replicating a normal Gaussian

mixture for each of the symmetry operations.

qsym(r) =

Nsym∑
j=1

m∑
k=1

akN k
j (r) (6.24)

Here Nsym is the number of symmetries, m is the number of Gaussians per symmetry

and N k
j is the kth Gaussian under the jth symmetry transformation. Similar to the

non symmetric Gaussian mixture the aks are weights for the individual Gaussians.

Because each Gaussian is replicated Nsym times the ak have to sum up to 1/Nsym.

Each symmetry operation consists of a rotation represented by a rotation matrix

R, a permutation represented by a permutation matrix P , and optionally a point

reflection. To apply a symmetry transformation to the 3N−6 dimensional vectors we

first have to transform them back to the 3N dimensional space. Then the rotation,
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permutation and point reflection are applied before transforming back to the 3N − 6

dimensional coordinates. Combining all of these operations yields the matrix M .

M = B⊤PQIB (6.25)

With B being a 3N × 3N − 6 matrix with its columns consisting of the 3N − 6 basis

vectors Bi, Q being a block diagonal matrix with the rotation matrix R repeated N

times along its diagonal and I being the identity matrix 1, or −1 if a point reflection

is applied. The Gaussian N k
j is hence defined by the mean µk

j = Mjµ
k and the

covariance Σk
j = MjΣ

kM⊤
j . The symmetric Gaussian mixture model is therefore

parametrized by m weights ak, m mean vectors, and m covariance matrices.

To fit this symmetric Gaussian mixture we modified the original EM algorithm in

the following way. During the expectation part of each iteration we first construct the

full symmetric Gaussian mixture as it is given by Equation 6.24. We then calculate

the weights yjki for each sample xi in the same way as in the original algorithm.

yjki =
akN k

j (xi)∑Nsym

j=1

∑m
k=1 a

kN k
j (xi)

(6.26)

For the parameter estimation in the maximization step of the algorithm we apply

the inverse symmetry transformations M⊤ to the samples. The weight calculated for

sample i with Gaussian k transformed with symmetry j is now used on the sample

transformed with M⊤
j to estimate the parameters µk and Σk

µk =

∑Nsym

j=1

∑N
i=1 y

jk
i M

⊤
j xi∑

ij y
jk
i

(6.27)

Σk =
1∑
ij y

jk
i

Nsym∑
j=1

N∑
i=1

yjki (M⊤
j xi − µk)(M⊤

j xi − µk)⊤ (6.28)

As in the original version of the algorithm the expectation and maximization steps

are repeated alternately until convergence is achieved.

With this modified version of the EM algorithm we were able to achieve significantly

better fits and hence a higher performance in our FHMC simulations, whenever

symmetries were present in any of the local minima used.
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6.4 Results

We tested our newly developed algorithm on clusters consisting of 38 and 75 atoms

interacting with the pairwise LJ potential, as described in Equation 2.44.

To avoid evaporation events, where a single atom detaches from the cluster, we

used a confining potential as proposed by Nigra, Freeman, and Doll [232], which is

defined as follows:

V (r) =
N∑
i=1

ϵ

(
∥r⃗i − r⃗cm∥

rc

)20

(6.29)

With r⃗cm being the center of mass and rc the radius of the confining potential. We

experimentally found rc = 3.5σ to be a good choice for the LJ38 cluster and rc = 4σ

for the 75 atom Lennard-Jones cluster (LJ75 cluster). The confining radii have to be

chosen such that atoms are prevented from escaping without influencing the energy

of the clusters too much. A soft potential was used because the derivatives/forces

were needed for the Hamiltonian dynamics.

During each step of the simulation, Funnel Hopping moves were performed with

a 10 % probability. All other moves were performed using Hamiltonian Monte

Carlo (HMC) as described in Section 2.2.3 using 25 time steps.

The individual temperatures were selected using a geometric series, as proposed

by Kofke [225]. This produced an acceptance rate of PT moves of 16 − 19 % for

the LJ38 cluster and 13 − 17 % for the LJ75 cluster which is close to the optimal

acceptance rate of 20 % as suggested by Rathore, Chopra, and Pablo [226]. Parallel

tempering swaps were performed in an alternating manner between pairs of subsequent

temperatures, e.g., after the first ten steps swaps were attempted between pairs 1–2,

3–4, 5–6, . . . and then after ten more steps pairs 2–3, 4–5, 6–7, etc., were used.

The heat capacity was calculated using the following equation.

CV(T ) =
3

2
+

1

NT 2

(
⟨E2⟩T − ⟨E⟩2T

)
(6.30)

With ⟨·⟩T representing expectation values over the Boltzmann distribution at tem-

perature T .

To obtain smooth plots of the heat capacity we used the re-weighting scheme

proposed by Sharapov and Mandelshtam [25] to interpolate between the different

temperatures.

108



6.4 Results

6.4.1 38 atom Lennard-Jones cluster

The most studied LJ cluster is presumably the LJ38 cluster, which is known for its

two funnel energy landscape that almost completely prevents ergodic sampling by

conventional MC methods.

One funnel ends in the global minimum, which is a face-centered-cubic truncated

octahedral structure. The other funnel ends in the second-lowest minimum, which is

an incomplete Mackay icosahedron. These two funnels are separated by a high energy

barrier with a transition state energy of 4.219 ϵ above the ground state energy [89]

which is almost impossible to overcome at low temperatures.

Gaussian mixtures were fit to the ten lowest local minima (stereoisomers were

counted as one) using 2 × 105 samples. The acceptance rates of the FHMC moves

achieved are shown in Figure 6.8. As one can see, increasing the number of Gaussians
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Figure 6.8: Acceptance rate of funnel hopping moves in LJ38 cluster plotted against temper-
ature. The numbers represent the number of Gaussians used in the Gaussian
Mixtures. For the line labelled h.a. the harmonic approximation was used and
for the line labelled sym-4 an extended version of the EM algorithm was used
to fit a symmetric Gaussian Mixture with 4 Gaussians per symmetry. (Figure
reproduced with permission from Reference [94].)

from 5 to 10 did not increase the acceptance rate. We suspect that this is due to the

number of samples not being sufficient for the high numbers of parameters that have

to be fitted. In this case we have 5995 free parameters per Gaussian. n(n+ 1)/2 from

the covariance matrix, n from the mean and one aki with n being the dimensionality

of the Gaussian which is 3×38−6 in this case. The use of the adapted EM algorithm

presented in Section 6.3.2, that takes the symmetry of the local minima into account,
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allows us to further increase the quality of the fit, and hence the acceptance rate,

without using more samples. The acceptance rate for the Monte Carlo run using a

symmetric Gaussian Mixture is labeled sym-4 in Figure 6.8. The Gaussian Mixture

for this fit consists of 4 Gaussians per symmetry of the local minima.

This fit was then used to calculate the heat capacity of the LJ38 cluster using FHMC

in combination with PT. The result is shown in Figure 6.9 where it is compared to

a reference calculation using PT with 109 steps. The curve using both methods in

combination was obtained after 107 steps. While this result is in agreement with

the reference, the result obtained with PT alone using the same number of steps is

clearly not converged.

0.05 0.10 0.15 0.20 0.25

TkB/

3.0

3.5

4.0

4.5

5.0

5.5

6.0

C
V
/(
k
B
N
)

Figure 6.9: Heat capacity of LJ38 calculated with our method compared to the result obtained
using PT after different numbers of steps. (Figure reproduced with permission
from Reference [94].)

To assess the convergence properties of our method we repeated the calculation of

the heat capacity ten times with both methods individually and combined using 107

steps. We then calculated the RMSE with respect to the reference obtained with 109

PT steps. The resulting RMSEs are shown in Figure 6.10.

The results show that our method alone, outperforms PT at the lower temperature

range up to T = 0.11 ϵ/kB. In this range the number of accessible minima is low,

such that they are well included into the FHMC. In this special case FHMC can be

used to perform ergodic sampling with only one simulation at a single temperature,

reducing the computational effort by several orders of magnitude compared to PT

simulations where a whole range of temperatures has to be simulated. We found

that if we included only the lowest minimum in each funnel the FHMC calculation
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Figure 6.10: Root mean squared error of the heat capacity of the LJ38 cluster calculated with
Hamiltonian Monte Carlo (HMC), parallel tempering (PT), Funnel Hopping
Monte Carlo (FHMC), PT and FHMC in combination with a regular or with
a lower maximum temperature (lc). (Figure reproduced with permission from
Reference [94].)

did not converge within 107 steps. If combined with PT however, the convergence

was only slightly slower than with 10 minima.

At higher temperatures additional minima become relevant that are not included

into the FHMC scheme and have to be reached by standard Monte Carlo moves

which can slow down convergence.

One major drawback of PT is that a large range of temperatures has to be simu-

lated with the maximum temperature being high enough such that the highest energy

barriers can be crossed by the Monte Carlo simulation. In our experiments we chose

a maximum temperature of 0.4 ϵ/kB for PT while the maximum temperature for the

FHMC simulations can be chosen arbitrarily because each simulation is performed

independently of the others. For our FHMC simulations we chose a maximum temper-

ature of 0.18 ϵ/kB. Parallel tempering simulations with this maximum temperature

did not converge to the correct result. When we combined PT with our method

however, convergence could be achieved. In this case the FHMC moves allow the

simulation to cross the highest barriers while PT enables the crossing of the lower

barriers between basins within a funnel that are not included into the FHMC scheme.

Using both methods in combination allows therefore to use a significantly lower

cutoff temperature than with standalone PT. It combines the best of both methods

by using PT to skip barriers inside funnels and FHMC to move between different
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funnels, leading to improved sampling capabilities across the whole temperature

range which can also be seen in Figure 6.10.

6.4.2 75 atom Lennard-Jones cluster

As a final test we applied FHMC to an even more challenging system, namely the LJ75

cluster. Similar to the LJ38 cluster, its energy landscape also consists of two major

funnels, one ending in the global minimum which has a decahedral structure and

the other one ending in the second-lowest local minimum which has an icosahedral

structure. These two minima are separated by a barrier that lies 8.69 ϵ above the

ground state energy. This barrier is over 3 ϵ higher than any other barrier between

the 250 lowest minima [88]. Unlike in the case of the LJ38 cluster the peak in the

heat capacity caused by the solid-solid transition is well separated from the melting

peak.

The very high barrier between the two funnels makes ergodic sampling of this

system particularly difficult. It seems that PT alone is not enough to obtain converged

results for the LJ75 cluster [25, 232]. Our own calculation using PT with HMC

did not converge after 5 × 108 steps per temperature (5 × 1011 energy and force

evaluations in total). Because of the high energy barrier between the two funnels

transitions are limited to the very high temperature range of the PT simulation. At

these temperatures the accessible configuration space is extremely large causing the

transition between the funnels to be particularly rare.

By combining PT with FHMC, transitions between the two funnels become possible

already at low temperature.

We used FHMC in combination with PT to calculate the heat capacity of the LJ75

cluster. The two lowest minima were included into the FHMC scheme to facilitate

the crossing of the high inter funnel barrier. We used our version of the EM algorithm

to fit Gaussian mixtures of three Gaussians per symmetry using 2 × 105 samples per

local minimum.

FHMC moves were included with a probability of 10 % up to a temperature of

0.119 ϵ/kB above which the acceptance rate of the moves decays to almost zero. A

total of 40 PT replicas were used, which were run in parallel each on one CPU

core. The lower 20 of the replicas included FHMC moves. Because we included two

local minima into the FHMC scheme, 40 Gaussian mixtures were fit. The resulting

acceptance rates are shown in Figure 6.11. The fitted Gaussian mixtures outperform

the harmonic approximation in terms of the acceptance rate of the proposed moves

by about a factor of 20.
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PT swaps were again included after every 10 steps. Samples were collected after

an equilibration period of 105 steps.
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Figure 6.11: Acceptance rate of funnel hopping moves in the LJ75 cluster plotted against
temperature. The result obtained using the Gaussian mixtures consisting of
3 Gaussians per symmetry, are labeled with sym-3 while the result obtained
using the harmonic approximation are labeled h.a.. (Figure reproduced with
permission from Reference [94].)

The obtained heat capacity after 1.4 × 107 steps is shown in Figure 6.12. We

identified the peak of the heat capacity corresponding to the solid-solid transition

at a temperature of 0.085 ϵ/kB. This is slightly higher than the result of 0.083 ϵ/kB

reported by Sharapov and Mandelshtam [25]. To explain this minor discrepancy

we ran several simulation, initialized with the second lowest instead of the lowest

minimum, with a larger confining radius as well as with a longer equilibration period.

However, the results of all these calculations gave the same numerical value for the

peak.

In Figure 6.13 the peak corresponding to the low temperature solid-solid transition

is shown again and compared to the results obtained with our method and with a

run where the harmonic approximation was used instead of fitted Gaussians, both

after 105 and 106 steps. After 106 steps the FHMC calculation is converged to the

final result after 1.4 × 107 steps up to a very high precision while the result from the

harmonic approximation is still significantly shifted towards the right. Even after

only 105 steps the FHMC calculation is already converged to a result where the heat

capacity peak is in good qualitative agreement with the converged result. These

results clearly indicate that the rate at which the simulation jumps between the two

funnels is the limiting factor for the convergence of the Monte Carlo simulation.
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Hence, using FHMC we were able to obtain a converged result after only 106 steps

(3.25×107 energy and force evaluations per temperature or 1.3×109 in total, including

sample generation for the Gaussian mixtures as well as the equilibration part).

This is almost 100 times less than the 3 × 109 energy evaluations per temperature

reported by Sharapov, Meluzzi, and Mandelshtam [241] where an auxiliary harmonic

superposition systems was used and more than 100 times less than the 4×1011 energy

evaluations in total reported by Martiniani et al. [253] where the approximate SENS

method was employed. The basin-sampling method [254] used 0.27 × 109 energy

evaluations per replica resulting in a total of 8.64 × 109 energy evaluations for all 32

replicas combined not including the energy evaluations required for the minimizations

in the final phase. This is significantly more than in the FHMC method.
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Figure 6.12: Heat capacity of LJ75 calculated with FHMC. (Figure reproduced with permis-
sion from Reference [94].)

6.5 Summary

With FHMC, we developed a new tool to overcome broken ergodicity by introducing

knowledge about the energy landscape in the form of local minima into the Monte

Carlo simulation. Our method generates an accurate approximation to the Boltzmann

distribution even for anharmonic systems. This allows us to propose good moves

between different funnels that have a high chance of being accepted by the Monte

Carlo algorithm. Using Gaussian mixtures allows for a systematic improvement of

the proposed moves by increasing the number of samples used for fitting and the

number of Gaussians in the Gaussian mixture. With our newly developed variant of
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Figure 6.13: Low temperature heat capacity peak of the LJ75 cluster calculated with our
method using a Gaussian mixture and the harmonic approximation. The number
given in the legend indicates the number of HMC steps during which samples
were collected (1 step = 25 energy and force evaluations per temperature).
(Figure reproduced with permission from Reference [94].)

the EM algorithm we are able to take advantage of the high symmetry present in

many local minima which results in an even better fit of the Gaussian mixtures. With

our fits we were able to achieve acceptance rates about twenty times higher than

with the harmonic approximation. We observed that the convergence of the Monte

Carlo simulation is limited by the rate at which the simulation is able to transition

between the different funnels and therefore directly dependent on the acceptance

rate of the inter-funnel moves.

If the temperature of interest is low enough such that only a limited number of

basins are accessible and if it is possible to include all of them into the algorithm,

FHMC can be performed at a single temperature whereas PT requires many auxiliary

simulations at higher temperatures.

We also showed that the maximum simulation temperature of PT simulations, can

be significantly reduced by combining our method with PT. This allows to reduce the

number of parallel simulations that are needed resulting in a reduced computational

cost. Also, the convergence of the simulation is sped up massively as the FHMC

moves help the simulation to cross the highest barriers between different funnels very

efficiently.

Using FHMC we were able to obtain the heat capacity of the LJ75 cluster, a

notoriously difficult system, known to suffer from a particularly strong broken

ergodicity. Nevertheless, using a relatively small number of 1.3×109 energy and force
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evaluations in total we could obtain converged results. This number of evaluations is

significantly less than the number required by existing state-of-the-art methods. We

also observed that the results were already in good qualitative agreement after only

about 108 energy and force evaluations.
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7 Experimental Absence of the

Non-perovskite Ground State

Phases of MaPbI3 Explained by a

MLP Based FHMC Study

7.1 Introduction

In recent years, perovskites have gathered a lot of attention due to their exceptional

opto-electronic properties, which make them suitable for high performance devices,

such as solar cells, lasers, photodetectors or light emitting diodes [255, 256]. The

general structure of perovskites, given by the formula ABX3, consists of corner

sharing BX6 octahedra arranged in a cubic lattice, that form cuboctahedral cavities,

in which the A species are found. Due to many possible choices for the A, B, and X

components, perovskites form a large design space that can be explored to optimize

material properties [257, 258].

Many perovskite materials undergo so-called tilting phase transitions, that are

characterized by a cooperative tilting of the corner sharing octahedra that leaves the

internal connectivity of the B and X atoms intact [260, 261]. Some materials, such as

FaPbI3 and CsPbI3 can even undergo transitions to unwanted non-perovskite phases

and there is ongoing research on stabilizing the perovskite phases [262, 263]. Due

to the different properties of the phases, understanding and predicting the phase

transition behaviour in perovskite materials is of great interest.

The presumably most widely used tools to study free energetic orderings in

materials are the harmonic approximation (HA) [264] and quasi harmonic approx-

imation (QHA) [265, 266]. Unfortunately, the applicability of these methods to

perovskites is limited since the tilting motion of the octahedral structure was found

The content of this chapter was adapted from J.A. Finkler and S. Goedecker. “Experimental
Absence of the Non-Perovskite Ground State Phases of MaPbI3 Explained by a Funnel Hopping
Monte Carlo Study Based on a Neural Network Potential”. Materials Advances 4, 2023, pp. 184–
194.
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to be highly anharmonic [267–269]. Many systems, such as CsSnI3 [268], MaPbI3 [270],

or CsSnX3 and CsPbX3 [271] can also be found in a high symmetry cubic phase,

that is only stable at high temperatures. The geometries associated with these cubic

phases can be constructed in small unit cells but they are dynamically unstable

under collective rotations of the octahedral cages as an analysis of their imaginary

frequency phonon modes reveals [267, 272–274]. The existence of these phases can

therefore only be explained by entropic contributions to the free energy at higher

temperatures. Carignano et al. [269] found that the cubic symmetry of MaPbI3 is

almost always broken locally and that the cubic symmetry found in experiments can

be interpreted as averaging of distorted geometries. The HA and QHA are hence not

directly applicable to these phases.

An alternative way to study phase transitions is a direct simulation of the atomistic

dynamics through ab-initio molecular dynamics (MD). Unfortunately, due to the

high computational cost of ab-initio methods, the affordable time-scales are limited.

Classical force fields on the other hand would provide the required performance but

their accuracy is limited by the simple functional form of the interaction potentials.

Recently, his gap between performance and accuracy has been filled by MLPs. Once

trained on high accuracy ab-initio data, MLPs can predict energies and forces with

almost ab-initio accuracy at a fraction of the computational cost [275, 276].

We therefore developed a MLP to study phase transitions in methylammonium lead

iodide (MaPbI3), where the B and X sites are formed by lead and iodine atoms and

the A sites are occupied by the organic molecule methylammonium (CH3NH3) (Ma).

Depending on the temperature, MaPbI3 can be found in three different phases

in experiment. At low temperatures, MaPbI3 adapts an orthorhombic phase with

Pnma symmetry. Upon heating above 160 K, MaPbI3 undergoes a first order phase

transition to a tetragonal phase with I4/mcm symmetry. Under a further increase of

the temperature above 330 K, the material was observed to undergo a second order

phase transition to a cubic phase with Pm-3m symmetry [277]. A recent theoretical

structure search [26], based on the minima hopping method [81, 82], discovered two

additional non-perovskite polymorphs of MaPbI3, that, according to DFT calculations

based on the strongly constrained and appropriately normed (SCAN) [40] density

functional, appear to be significantly lower in energy than the experimentally observed

phases. The energetically lowest polymorph is the double-delta structure, which has

a unit cell containing 48 atoms and consists of edge-sharing octahedra forming pillars

that are surrounded by Ma molecules. The reported delta polymorph consists of a

unit cell containing 24 atoms, where face-sharing octahedra form pillars, arranged in

118



7.1 Introduction

(a) (b)

(c) (d)

(e)

Figure 7.1: Geometry of the double-delta (a), delta (b), orthorhombic (c), tetragonal (d)
and cubic (e) phases of MaPbI3.

a hexagonal pattern, that are uniformly surrounded my Ma molecules. The double-

delta phase resembles the δ phase observed in CsPbI3 [278], while the delta phase is

similar to the δ phase of FaPbI3 [262, 279]. The geometries of all MaPbI3 phases are

visualized in Figure 7.1. Results based on the random phase approximation (RPA)
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support, that the double-delta phase is lower in energy than the perovskite phases [280,

281].

The hexagonal delta phase has also previously been investigated by Thind et al.

[282]. In both CsPbI3 and FaPbI3, a transition to the non-perovskite δ phases can

be observed. The stability of the perovskite phases of MaPbI3 is therefore rather

surprising, given that the newly discovered delta phases should be energetically pre-

ferred. Understanding this unexpected behaviour using our MLP is unfortunately not

straight forward. The large structural difference between the delta and the perovskite

phases, suggests a complex reaction pathway, that would require unfeasibly long

simulation times to explore using MD. Similarities can be found in the structurally

similar phase transition between the hexagonal delta and cubic phases of FaPbI3.

This transformation shows a complex reaction pathway with high barriers, that result

in a large hysteresis of the transition with respect to temperature [283].

To circumvent the problem of high barriers, we extended our Funnel Hopping

Monte Carlo (FHMC) method [94], which was presented in Chapter 6, to periodic

systems and applied it to MaPbI3 using our newly developed MLP. Similarly to a

MD simulation, FHMC samples the Boltzmann distribution at a given temperature.

However, it is not limited to a physical trajectory and carefully designed FHMC

moves allow the MC walker to jump between different phases, that are separated by

high free energy barriers, without violating the detailed balance condition. Sampling

of the true PES allows us to obtain phase transition temperatures without using

any approximate expansion of the PES like in the HA and QHA. Additionally, the

FHMC method is particularly well suited for applications with MLPs. Due to the

global moves, the high energy transition states are not visited and do not need to be

included in the training data.

7.2 Modification of the FHMC Method for MaPbI3

The FHMC method was originally developed for systems with free boundary condi-

tions, such as atomic cluster. The methods performance was demonstrated on the

38 and 75 atom LJ clusters, which are known for their double funnel PES. The 75

atom LJ cluster is a particularly difficult system to treat with MC simulations, since

not even parallel tempering (PT) [222, 223] simulations converge [25, 232].

In this work, we set out to extend the FHMC method to periodic systems and

apply it to MaPbI3. This requires several adjustments of the FHMC algorithm that

will be explained in the following sections. Some changes were required because the
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initial method was proposed for atomic clusters with free boundary conditions and

hence the method needed to be adopted to periodic boundary conditions. Other

changes were necessary to adopt the method to MaPbI3 in specific.

7.2.1 Extension to Periodic Boundary Conditions

FHMC uses Gaussian mixtures (GMs) to approximate the Boltzmann distribution

around local minima. Since atomic systems with free boundary conditions are

invariant under rotation, translation and permutation of atoms of the same species,

the RMSD is used to align the current configuration of the MC walker with the

reference configuration. This alignment allows for a basis transformation of the

atomic displacements that projects out the 6 degrees of freedom associated with

translation and rotation.

In systems with periodic boundary conditions, only a finite number of symmetry

operations, that preserve the periodic lattice of the unit cell, have to be considered.

Since the maximum temperature of 400 K used in our FHMC simulations is below

the melting temperature, permutations of atoms do not occur. We therefore only

have to consider a fixed number of symmetry operation, that can be computed for

the reference configurations obtained from minima hopping using spglib [284]. For

each operation that we have to consider, we first apply it to the current configuration

of the MC walker. We then find the translation that minimizes the mass weighted

RMSD by superimposing the centers of mass of the current configuration r and the

reference R.
Nat∑
i

mir⃗i
mtot

=

Nat∑
i

miR⃗i

mtot
(7.1)

The atomic displacement vectors D = r − R, are then projected onto the basis

vectors Bj to obtain a vector representation V of the current configuration. Here, the

vectors r and R contain all 3Nat atomic coordinates of the current and the reference

configuration respectively (r = (r1x, r1y, r1z, r2x, . . . , rNatz)
⊤). The 3Nat − 3 basis
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vectors Bj are chosen such that they are orthogonal to the three vectors T1, T2 and

T3 which are given below.

T1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1/mtot

0

0

m2/mtot

0

0

m3/mtot

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

m1/mtot

0

0

m2/mtot

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
T3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

m1/mtot

0

0

m2/mtot

0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(7.2)

To obtain the Bj , which are also orthonormal to each other, the stabilized Gram-

Schmidt process is used. Since the translation of the configuration has been fixed, the

projection of the displacement vector D onto the Ti will always be zero because of

Equation 7.1. Our GMs, which are formed by a sum of Gaussian functions Ni, each

with their own mean and covariance matrix, weighted by factors ai, live in the space

spanned by the basis vectors Bj . The total probability of the current configuration

can then be evaluated as the mean over all Nsym applicable symmetry operations.

PGM(V) =
1

Nsym

Nsym∑
i

NGM∑
j

ajNj(Vi)γ (7.3)

Here Vi is the vector representation that is obtained after applying the ith symmetry

operation onto the atomic positions and γ is the degeneracy of the unit cell choice.

In our FHMC simulations, we only include one reference for each phase. However,

due to symmetry, some phases have a degeneracy related to the choice of the unit

cell. For example, when the cubic phase undergoes a transition to the tetragonal

phase, three equivalent possibilities exist in which the symmetry can be broken. We

therefore use the ratio between the numbers of symmetries of the highest symmetry

cubic lattice and the number of symmetries of each phase for γ.

To propose a FHMC move, the process outlined above is reversed. First a random

phase j is select and then a sample V′ is drawn from the respective GM. The sample

is then transformed into an atomic displacement by applying the transformation

from the coordinate system spanned by the basis vectors B to Cartesian coordinates.
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To obtain the new configuration, the displacement is added onto the reference

configuration. The new configuration r′ is then accepted with the probability αFHMC
r→r′ .

αFHMC
r→r′ = min

[
1, exp

(
E(r) − E(r′(V′))

kBT

)
Pi(V(r))

Pj(V′)

]
(7.4)

Here E(r) and E(r′) are the energies of the old and new configurations, T is the

temperature and kB the Boltzmann constant. Unlike in standard MC simulations,

where the trial distribution is symmetric, the probability Pj(V
′) of proposing the

new configuration and the probability Pi(V) of proposing the inverse move have to

be included into the acceptance/rejection step of Equation 7.4.

7.2.2 Changes in Volume

To allow for thermal expansion, we included the volume of the unit cell into the

vector representation. Changes in the shape of the unit cell were not included,

since FHMC moves between the different phases allow already for the simulation to

access differently shaped unit cells. When a structure is transformed to its vector

representation, it is first scaled to match the size of the reference unit cell, before

the displacement vector is computed. During the sampling of a new configuration,

the structure is first constructed, as described above, and then rescaled, to match

the volume that is sampled from the GM.

7.2.3 Special Treatment of the Methylammonium Molecules

Even at lower temperatures, where the MaPbI3 is in a crystalline phase, the Ma

cations can rotate almost freely within the cavities formed around them by the

lead-iodine lattice. This rotational motion would be extremely difficult to capture

even with a large number of Gaussians included in the GMs. We therefore decided

to only include the center of mass of each Ma molecule into the GM, like any other

atomic position. When a FHMC move is performed, the Ma molecule is cut out

from its original environment and placed to the position of the new center of mass

sampled from the GM. Since this process is reversible, detailed balance is preserved.

7.2.4 Replica Exchange

Even with the special treatment of the Ma molecules included into the method,

acceptance rates of the FHMC moves are vanishingly low and only few moves are

accepted during long simulations. This behaviour is due to the fact that the special
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treatment of the Ma molecules removes the ability of the GMs to capture any

correlation between the Ma orientation and its internal configuration as well as the

surrounding lead and iodine atoms positions. This results in a small overlap between

the true Boltzmann distribution and the approximation of the GMs.

We therefore decided to couple the method with Hamiltonian replica exchange (RX)

MC [285, 286]. We defined an artificial potential energy surface (APES) using

the GMs, such that our FHMC moves are trivially accepted on the APES. The

intermediate replicas will then allow for an exchange of configurations between the

well sampled APES and the PES.

The GMs approximate the Boltzmann distribution as

PB(r) =
1

Z
exp

(
−E(r)

kBT

)
≈ PGM(r) (7.5)

We can reverse this equation to obtain an approximation of the PES EGM from the

GM.

EGM(r) = − ln(PGM(V(r)))kBT (7.6)

As only the center of mass of the Ma molecules enters the GM, an additional internal

energy term EMa is added for each Ma molecule to obtain the total energy EAPES.

EAPES(r) = − ln(PGM(V(r)))kBT +

NMa∑
j

EMaj (r) . (7.7)

The energy EMa is obtained from a neural network potential (NNP) trained to

reproduce the energy of a single Ma molecule in vacuum. Forces can be obtained by

differentiating EAPES with respect to the atomic coordinates. It should be noted,

that partial derivatives from dV(r)
dr have to be included because the center of mass of

the structures is fixed. This results in invariance of EAPES under translation.

As we can see from Equation 7.4, FHMC moves will always be accepted on the

APES, since the Boltzmann probability of EAPES is identical to the trial probability

of the FHMC moves. The energy contributions EMaj (r) also cancel out in the FHMC

moves, since the internal geometry of the Ma molecules is left unchanged by the

FHMC moves and hence, the internal energy remains constant. Therefore, performing

an FHMC simulation on the APES will converge extremely fast, since with every

FHMC move, a new structure is generated which is, up to the internal geometry of

the Ma molecules, completely uncorrelated to the previous geometry.
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The MC simulation on the physical PES is then coupled to the APES using RX

MC. A series of intermediate PESs are defined using a parameter λ that varies from

0, at the physical PES, to 1 at the APES.

Eλ(r) = (1 − λ)E(r) + λEAPES(r) (7.8)

We also included replicas at different temperatures, that are arranged in a geometric

series. RX moves are therefore performed on a 2 dimensional grid in the final

simulations.

Configurations between neighboring simulations are then exchanged at regular

intervals according to the Metropolis–Hastings criterion. The acceptance probability

αRX for RX moves between two replicas a and b with configurations ra and rb and

energy expressions Ea and Eb at temperatures Ta and Tb are given as

αRX = min

[
1, exp

(
Ea(ra) − Ea(rb)

TakB
− Eb(ra) − Eb(rb)

TbkB

)]
. (7.9)

7.2.5 Other Simulation Details

We used Hamiltonian Monte Carlo (HMC) [68, 287] (see Section 2.2.3) with 20

MD time steps of 0.8 fs each for the local MC moves. To avoid large differences in

timescale between the vibrations of the light hydrogen and heavy lead atoms, we

set all masses to the mass of a hydrogen atom. MC moves changing the volume

were included with a probability of 20%. The GMs were fit to 105 samples using

our symmetry adapted version of the EM algorithm [94] (see Section 6.3.2) with 1

Gaussian per symmetry. FHMC moves were attempted with a probability of 10%.

We used a 2D grid of replicas with 24 different temperatures from Tmin = 40 K to

Tmax = 400 K arranged in a geometric series and 10 different values of λ, which

results in a total of 240 replicas. RX moves were performed between neighboring

replicas in an alternating fashion every 5 MC iterations. We collected samples from

our FHMC simulations during 200′000 iterations after an equilibration period that

lasted for 150′000 iterations. We used unit cells containing 8 functional units for

each phase. Details on the choice of unit cells can be found in Appendix B.2.1.

In Figure 7.2, acceptance rates plotted against temperature and the parameter λ

are shown. Since a 2D grid of replicas was used, the shown acceptance rates were

averaged over all replicas at the same temperature or λ values. The acceptance rate

of the HMC moves are almost independent of the temperature and λ. The acceptance
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Figure 7.2: Acceptance rate of the Hamiltonian MC Monte Carlo (HMC), funnel hopping
Monte Carlo (FHMC) and replica exchange moves between replicas with different
λ values (RX (λ)) and temperatures (RX (T)) plotted against temperature (a)
and λ (b). The values shown in (a) are averages over all replicas with the same
value of λ and the values shown in (b) are averages over all replicas with the
same temperature. (Figure adapted with permission from Reference [259].)

rate of the FHMC moves is, as expected, exactly 1 at λ = 1 and decays very rapidly

for decreasing λ.

7.3 Neural Network Potential

To obtain predictive power, a faithful representation of the PES is needed. It

was previously shown, that DFT using the SCAN density functional is in good

agreement with RPA [281] and experimental results [288] for MaPbI3. Unfortunately,

performing FHMC simulations on a SCAN-DFT PES is not feasible due to the high

computational cost and the large number of energy and force calculations that are

required. We therefore decided to train a HDNNP [9] using SCAN-DFT training

data. A 2G-HDNNP was used, since we found that a 4G-HDNNP only resulted in

a marginal improvement of the fitting errors, that would not justify the additional

computational cost. All DFT calculations were performed with the VASP [29, 289–

292] code using the SCAN functional meta-GGA [40]. A plane-wave basis set with

a cutoff energy of 800 eV was used within the projector augmented wave (PAW)

formalism. The basis set was constructed with Pb d-shell (14), I (7), N (5), C (4),

H (1) electrons as valence states in the PAW potentials. The reciprocal space was

sampled using Γ–centered k-grid meshes with spacings of 0.2 Å−1 and all calculations

were not spin polarized.
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Unlike previously published machine learned potentials for MaPbI3 [141, 293],

we also included the two non-perovskite phases in our training data. The HDNNP

was trained by the RuNNer software [150, 172] using energies and forces. For the

prediction of energies and forces, we employed our own code [294] in the FHMC

simulations and n2p2 [139] in the MD simulations. ACSFs [10] were employed as

atomic environment descriptors. A detailed list of the parameters of the ACSF can

be found in Appendix B.2.2. Neural networks consisting of two hidden layers with

10 nodes each were used for each element, resulting in 3545 free parameters that

were optimized during training. As activation function, the hyperbolic tangent and a

linear function were used for the hidden and output layers respectively.

To generate the training dataset, we took an active learning approach. We first

trained a set of HDNNPs on a small set of structures that were sampled from a MC

simulation driven by a classical force field [295] and then recomputed with DFT. We

then performed MC simulations for all 5 crystalline phases on the HDNNP-PES. The

standard deviation between the energies predicted by the different HDNNPs, trained

on the same data but with different initializations of the weights and biases, was

applied to estimate the accuracy of the HDNNP’s prediction for a given structure.

The structures with the lowest accuracy were then recomputed using DFT and added

to the dataset. This process was repeated until a satisfying accuracy was reached.

The final dataset consists of 34′400 structures. We randomly selected 10 % of the

structures as a test set and used the remaining structures to train the HDNNPs. The

resulting HDNNPs are highly accurate and can run stable MD simulations at up to

400 K. However, we found that in some rare cases, during our FHMC simulations,

structures were generated by the FHMC moves, that would be extremely high in

energy due to unphysically short bond lengths. As the training data for our HDNNPs

was sampled from the Boltzmann distribution, such high energy structures are not

present and the HDNNP prediction will be wrong. In some cases the HDNNPs would

severely underestimate the energy which would lead to the acceptance of a highly

unphysical configuration. To counteract this problem, we used the average over the

predictions of five HDNNPs that were trained with a different weight initialization.

A small positive energy bias was then added to configuration for which the prediction

accuracy was low.

E = Ē + ασ2 (7.10)

Here Ē is the mean of the five energy predictions and σ the standard deviation. The

parameter α was set to 2.0 Ha−1. This energy bias comes at little cost, since the
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computationally most expensive part of the HDNNP evaluation, the computation of

the ACSFs, has to be performed only once. During a typical FHMC simulation, the

average value of σ at the simulation on the true PES (λ = 0) is around 14.9 meV

(0.15 meV/atom). The maximum value was found at 63.3 meV (0.66 meV/atom),

which results in an energy bias of 0.29 meV (0.003 meV/atom). Only at replicas with

λ > 0 a significant influence of the energy biasing is present. The total energy and

force RMSD of our fit is 0.885 meV/atom and 118.4 meV/Å on the training set and

1.032 meV/atom and 120.0 meV/Å on the test set. Correlation plots for the energies

and forces are shown in Figure 7.3.

(a) (b)

Figure 7.3: Correlation plot of the energy per atom (a) and force components (b) predicted
by the NNP versus the reference energies for the training and test datasets.
(Figure adapted with permission from Reference [259].)

Table 7.1: Energies (meV/f.u.) of the phases, computed with DFT and the HDNNP. Energies
are given relative to the DFT energy of the double-delta phase.

phase SCAN HDNNP HDNNP relaxed

double-delta 0.0 1.5 −2.2
delta 12.3 20.6 11.1
orthorhombic 26.3 28.7 26.1
tetragonal 46.4 59.2 49.6
cubic 130.2 138.3 124.7

Table 7.1 shows the energy of the local minimum configuration for all five phases.

Energies per functional unit are given for DFT optimized geometries, the energy

predicted by the HDNNP for the same geometry and the HDNNP energy after the

lattice and atom positions were further relaxed on the HDNNP PES. The values
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for the cubic phase were obtained using a small unit cell containing only a single

functional unit. When expanded to a 2 × 2 × 2 super cell, the cubic geometry is not

a minimum anymore, but a saddle point.

The lattice parameters of the orthorhombic phase predicted by the MLP are in

close agreement with the values obtained from DFT and experimental results [277]

at 10 K as shown in Table 7.2.

Table 7.2: Lattice parameters (a, b and c) (Å) and volume (Å3) of the orthorhombic phase
obtained from DFT, the NNP and experiment [277] at 10 K.

a b c volume

SCAN 8.99073 12.71980 8.62164 985.973
NNP 9.00764 12.69012 8.59005 981.912
experiment 8.81155(6) 12.58714(9) 8.55975(6) 949.38(1)

We used a radial cutoff of 12 Bohr for our ACSFs. This distance is roughly equal

to the distance between neighboring PbI octahedra in the perovskite phases. It is

important to note, that the HDNNP is able to describe interactions with a range of

up to twice the maximum cutoff distance of the ACSFs, as atoms that are present

in between the interacting atoms include both atoms inside their cutoff radius. To

confirm, that the interaction between neighbouring Ma cations is well described

by our HDNNPs, we placed two Ma molecules inside neighboring PbI cages. The

lead and iodine atoms were placed at their high symmetry positions from the cubic

phase. This way, the local environment of the PbI cage, as seen by the Ma cation, is

completely symmetric and invariant when a point symmetry operation is applied to

the Ma cation through the cage center. We then compared the energies of the two

cases, where both Ma cations were in parallel and antiparallel configurations with

DFT references. Due to the symmetry, the only difference in the environments of

the Ma molecules is the Ma molecule in the neighboring cage. This allows us to test

if the interaction between neighbouring Ma molecules is adequately described, by

eliminating the interaction between the Ma molecules and the surrounding cage. The

HDNNPs predict that on average, the parallel configuration is preferred by 61.3 meV

which agrees well with the DFT result of 71.6 meV.
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7.4 Results

7.4.1 FHMC Study of the Experimentally Known Phases

In a first step we ran FHMC simulation that only included the three experimentally

known phases of MaPbI3. We also performed MD simulations using lammps [296]

and the HDNNP code n2p2 [139] to validate our FHMC results. As we used

variable cell shape MD, the determination of the phase from the lattice parameters

is difficult. The variability of the lattice during the MD is close in magnitude to the

variability between the different phases. This problem is not present in the FHMC

simulations, since there the ratio between the lattice parameters is kept fixed to the

value of the optimized unit cell and only the volume is allowed to change. However,

an identification of a given phase using the lattice parameters is also not always

possible. We observed, that sometimes geometries in one lattice are present, that

show a tilting of the PbI octahedra that is typical for another phase. This effect

is especially pronounced for the tetragonal and cubic phases that have very similar

lattice constants. We therefore used an order parameter, to determine the phase

transition temperatures between the orthorhombic, tetragonal and cubic phases.

This order parameter is given by the mean absolute value of the normalized dot

product between vectors that span the three diagonals of neighboring PbI octahedra

pointing along the same axis. We hence obtain three order parameter values (one per

diagonal of the octahedra) for each configuration, that indicate the tilting between

neighboring PbI octahedra.

To compute our order parameter, we first identify all PbI octahedra that are

present. We then define three vectors v⃗iα for each octahedron i, that connect two

opposing iodine atoms (index α). We then compute three order parameter values

Oα by taking the mean of the absolute value of the dot product between nearest

neighbor v⃗iα pointing in the same direction α. Pairs of vectors pointing in two of the

three directions are shown in Figure 7.4.

Oα =
1

6N

∑
i

∑
j

|v⃗iα · v⃗jα|
∥v⃗iα∥∥v⃗jα∥

(7.11)

Here the sum over i includes all N octahedra, while the sum over j only includes the

nearest neighbor octahedra to i.

In Figure 7.5, histograms of the order parameter for different temperatures are

shown. The MD simulations were performed at temperatures ranging from 25 K to

400 K with a spacing of 25 K. The order parameters were computed for a duration of
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Figure 7.4: Pairs of vectors used for computing the order parameters. Two pairs, pointing
into the two directions parallel to the image plane are shown in green and orange.

25′000 ps after an equilibration period that lasted for the same duration. MD simula-

tions that were initialized with a tetragonal or cubic geometry would only extremely

rarely undergo a phase transition to the orthorhombic phase at temperatures close to

the phase transition temperature, while the reverse transition was readily observed.

We therefore initialized our simulation with the orthorhombic ground state geometry.

Our FHMC simulations however, converge to the same relative probability of the

different phases, independent of the phase that was used during initialization, since

the FHMC moves allow for direct transitions between phases and are not hindered

by energetic or dynamics barriers.

The phase transition from the orthorhombic to the tetragonal phase can clearly be

identified in both, the FHMC and the MD results, around 130 K by the disappearance

of order parameter values around 0.95. The transition between the tetragonal and

cubic phase is less clearly identifiable and occurs around 300 K in the MD simulation,

where the two peaks in the order parameter histogram merge into a single peak. The

FHMC results appear to show a slightly lower tetragonal cubic transition temperature.

This is because of the high sensitivity of the transition to the lattice parameters [288].

With increasing temperature, the ratio between the two lattice parameters of the

tetragonal phase will get closer to one. Since this ratio is kept fixed to the ratio of the

ground state geometry in our FHMC simulations, the tetragonal phase will necessarily
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Figure 7.5: Histogram of the order parameter versus temperature obtained from MD and
FHMC simulation. The orthorhombic phase can be identified by the presence of an
order parameter value around 0.95. In the tetragonal phase this order parameter
value disappears and values close to 1 are present. At higher temperatures
the two distinct peaks in the order parameter merge into a single peak which
marks the transition to the cubic phase. (Figure adapted with permission from
Reference [259].)

be slightly strained at higher temperatures. Using the average lattice parameters of

the tetragonal phase at 250 K obtained from variable cell shape MD in our FHMC

simulations, we obtain a higher transition temperature that agrees extremely well

with the MD results. The order parameter histogram of this simulation is shown

in Figure 7.6. To keep our simulations consistent and to not introduce any bias by

picking lattice parameters from different temperatures, we decided to use lattice

parameters from ground state geometries.
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Figure 7.6: Histogram of the order parameter versus temperature obtained from a FHMC
simulation where the tetragonal lattice was slightly adjusted. (Figure adapted
with permission from Reference [259].)

7.4.2 FHMC Study Including the Two Delta Phases

After confirming that FHMC is able to reproduce results obtained from MD simu-

lations for the three experimental perovskite phases, we continue our investigation

by performing FHMC simulations that include the two delta phases in addition to

the three perovskite phases. Phase transitions involving the delta phases cannot be

simulated using classical MD simulations. Both delta phases appear to be stable at

our maximum simulation temperature of 400 K. We would therefore need to go to

even higher temperatures or longer timescales to access the transition states, that

connect the delta phases with the perovskite phases. Due to the large structural

difference between the phases, complex transition states, that are not included in

the training data of our HDNNPs are expected, rendering our HDNNPs inaccurate.

Furthermore, we expect that the timescales needed for such transitions would be

prohibitively large. This is supported by the fact, that even transitions between the

structurally very similar orthorhombic and tetragonal phases are hard to observe in

our MD simulations. Chen et al. [283] experimentally investigated the structurally

similar transition between the delta and cubic phases of FaPbI3 and found a large

energetic barrier and reported complete kinetic trapping of the material in the higher

energy cubic phase after cooling the material from 400 K to 200 K within 80 minutes.

Clearly, such timescales are not accessible by any form of MD simulation. A large

hysteresis of the transition between heating and cooling further supports the high

free energy barrier and complex transition pathway.
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FHMC simulations can avoid this problem of high barriers and allow us to determine

phase transition temperatures involving the delta phases without the need to also

explore the large configuration space of transition states while still taking anharmonic

effects into account without any approximation.

Unlike for the experimental phases, no transition from a delta phase to any other

phase within the same lattice configuration was ever observed in our FHMC and MD

simulations. We can therefore directly use the lattice configuration as an indicator

of the delta phases. A plot showing the probability of finding the system in the
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Figure 7.7: Probability of finding the FHMC walker in of the delta phases or a perovskite
phase. (Figure reproduced with permission from Reference [259].)

double-delta phase, the delta phase, or a perovskite phase versus temperatures is

shown in Figure 7.7. At low temperatures, the double-delta phase is dominant.

The delta phase has only for a small temperature window a significantly non-zero

probability. At higher temperatures above 200 K, the system is most likely to be

found in a perovskite phase.

We also computed free energies using the HA and QHA for all phases, except

the cubic phase using the phonopy code [297] and our HDNNP. We excluded the

cubic phase, since it does not relate to a minimum on the PES. Both, the HA and

QHA free energies are in qualitative agreement, indicating that effects of thermal

expansion are not the main reason of the anharmonicity of the system. The relative

free energies as well as plots of the phonon density of state for all phases are included

in Appendix B.2.3.

We found, that even for the non-cubic phases, extremely tight settings, such as

tight geometry optimization thresholds and small displacements for the calculation
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of the force constants through finite differences were necessary to avoid imaginary

frequency modes. Similar finding were also reported by Marronnier et al. [298].

Compared to a DFT PES, where noise is present smaller displacements are not

problematic on our HDNNP PES, since it is an analytical function, that can be

evaluated with almost machine precision. Geometry optimizations were performed

using the vc-SQNM algorithm [299].
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Figure 7.8: Probability of finding the system in a given phase, computed using the quasi-
harmonic approximation.

We then used the free energies computed within the QHA to calculate probabilities

of finding the system in a given phase for the same unit cells that were used for the

FHMC and MD simulations. The results are shown in Figure 7.8.

At low temperatures, the double-delta phase is most stable. Above 180 K the

orthorhombic phase is predicted by the QHA to be thermodynamically more stable.

This is surprisingly close to our FHMC results, that predict that the double-delta

phase is only preferred up to a temperature of 200 K. However, the HA and QHA

further predict, that the orthorhombic phase is preferred over the tetragonal phase

up to a temperature of 380 K, which is inconsistent with experimental results as well

es our FHMC and MD results. The correct prediction of the disappearing of the

double delta phase above 200 K by the QHA, is therefore most likely an accidental

result caused by error cancellation.

We also devised an additional test to further investigate the anharmonicity of

the vibrational modes found by the HA. For this, we made an estimate ωfit of each

vibrational frequency, that is not based on the second derivative of the potential

energy at the local minimum but instead uses a quadratic fit of the potential energy
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through points placed further away from the minimum along the vibrational mode.

These points were chosen such that they represent a realistic displacement from the

local minimum as it could be observed during a finite temperature simulation. We first

used the harmonic approximation to estimate the magnitude of the displacements,

at which an energy of 1
2kBT above the local minimum energy should be expected.

This procedure was then repeated multiple times using the fitted curvature of the

potential energy instead of the HA, such that a consistent fit was obtained. The

converged fits were then used to estimate the vibrational frequencies ωfit. The ration

between the ωfit calculated for a temperature of 300 K and the harmonic frequencies

ωHA serves as a rough measure of the anharmonicity of each vibrational mode and

are shown in Figure 7.9. The results show the presence of anharmonic modes in all
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Figure 7.9: Ratio between the vibrational frequencies ωfit and ωHA. Unlike the HA, which is
based on the second derivatives of the potential energy at the local minimum,
the fitted frequencies are obtained from fitting a quadratic approximation of the
potential energy using larger displacements along vibrational modes. (Figure
adapted with permission from Reference [259].)

four phases. Interestingly, there seem to be fewer anharmonic modes in the double

delta and the orthorhombic phase than in the delta and tetragonal phase. This might

be an indication as to why the HA performs better for these two phases.

In general, however, it is not known, up to which temperatures the HA can be

trusted and how strong the influence of the anharmonicity is in the final results.
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For example, Thind et al. [282] also calculated free energies using the QHA for the

delta and cubic phases of MaPbI3 and found a transition temperature of 750 K. This

again is inconsistent with our FHMC results, which suggest a much lower transition

temperature. Furthermore, it was also reported that the HA and QHA fail to assign

the lowest free energy to the experimentally found tetragonal phase of the structurally

similar system of CsSnI3 [300].

These results underline the high anharmonicity of the PES of perovskite materials

and show, that methods beyond the HA and QHA are needed to obtain reliable

phase transition temperatures.

7.5 Summary

We developed a highly accurate and reliable MLP for MaPbI3, that is trained on

data including all three experimentally observed perovskite phases as well as the two

theoretically predicted non-perovskite polymorphs. We studied phase transitions in

MaPbI3 using MD, as well as FHMC, which we extended to periodic systems. The

complicated nature of the PES required further modifications of the method, such as

a special treatment of the Ma molecules and coupling FHMC with RX. The final

version of our FHMC method constructs an artificial potential energy surface (APES),

based on Gaussian mixtures, on which all FHMC moves are accepted. These global

MC moves, that directly jump from one phase to another, without violating detailed

balance, allow for an extremely efficient sampling of the APES. We then couple

a simulation on the proper machine learned PES to this APES through RX. The

efficiency of the method is further increased by including RX moves between different

temperatures. FHMC directly circumvents the high energy barriers. This makes it

particularly well suited for applications based on machine learned potentials, since

the complicated transition states do not need to be included in the training dataset.

We validated the method by simulating the phase transitions between the three

perovskite phases and comparing our results to long timescale MD simulations. An

order parameter, that measures the tilting between neighboring PbI3 octahedra

allows us to clearly identify the transition temperature between the orthorhombic

and tetragonal phase at 130 K.

FHMC simulations including the delta and double-delta phases, which have a

lower potential energy than the perovskite phases, reveal, that above 200 K, the

perovskite phases are thermodynamically favoured. This could explain the elusiveness

of the delta phases in experiments. At room temperature MaPbI3 will readily form
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the perovskite phases and the low transition temperature combined with the high

free energy barriers to the delta phases lead to kinetic trapping when the material

is cooled down. A synthesis of the delta phases can therefore be expected to be

very challenging and might only be possible under special conditions, such as high

pressures as suggested by Flores-Livas et al. [26] and very slow cooling rates.

A comparison with the QHA supports previous reports of the high anharmonicity

of perovskite materials. While the QHA’s prediction agrees with our FHMC results,

in that the delta phase is only favoured by the free energy at low temperatures, it fails

to give a reasonable prediction for the orthorhombic to tetragonal phase transition

temperature. This suggests, that the QHA’s prediction of the delta to orthorhombic

phase transition temperature is caused by accidental error cancellation. Furthermore,

the QHA cannot directly be applied to the cubic phase, which does not correspond

to a local minimum in the PES. An accurate prediction of transition temperatures,

therefore requires the use of methods beyond the harmonic approximation, such as

our FHMC method.

Due to the rotational degree of freedom of the Ma molecules, MaPbI3 turned out to

be a particularly challenging system for the application of FHMC. This rare feature

of MaPbI3 required an additional adaption of the FHMC method, which is a special

treatment of the Ma molecules during FHMC moves. For most materials, such a

special adaptation should not be necessary. We therefore expect that the method is

directly applicable to a large range of strongly anharmonic systems, such as other

perovskite materials, silicates [301] or superionic conductors [302].
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Due to the continuously increasing speed of computers and the development of

simulation techniques and algorithms computer simulations have become an important

cornerstone to physics, materials science and chemistry. More recently, methods

based on machine learning techniques have also been gaining a lot of attention and

have seen a rapid adoption by the community. While impressive progress has been

made in the last decade, it is clear, that many open questions remain and further

research is needed to take full advantage of machine learning techniques in materials

sciences simulations.

In this thesis, we tried to address two important issues, namely, how long range

interactions caused by charge transfer can be integrated into machine learned po-

tentials (MLPs) and how materials that suffer from broken ergodicity due to high

energetic barriers can be simulated efficiently.

To understand why the proper inclusion of charge transfer effects in MLPs is

important, we first need to take a step back and have a look at the history of MLPs.

For this we classified MLPs into four generations [109, 132]. The first generation of

MLPs directly used atomic coordinates as inputs to artificial neural networks (ANNs).

This allows for a complete description of the whole system, which also includes

effects due to charge transfer and electrostatics. However, these first generation

potentials have a major disadvantage in that they are very system specific and cannot

extrapolate to different system sizes. Additionally, important symmetries, such as

the invariance of the energy under rotation or translation of the whole system and

permutations of equivalent atoms are not preserved. These problems were overcome

by the introduction of the high dimensional neural network potential (HDNNP) by

Behler and Parrinello [9], which is the first example of a second generation MLP.

In the HDNNP, the total energy is expressed as a sum of atomic energies, each of

which depend on the local atomic environment, encoded by atom centered symmetry

functions (ACSFs) that ensure the preservation of the required symmetries. While

this enables simulations of large systems based on training data from smaller systems,

it also imposes a new limitation due to the assumption of local atomic interactions.
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Important long range interactions, such as electrostatics are therefore necessarily

truncated at the cutoff radius of the ACSFs. This was quickly realized and lead to

the development of third generation methods which include explicit electrostatics

through environment dependent atomic charges. However, more recently it became

clear, that effects due to charge transfer caused by remote structural changes, outside

the local atomic environment or changes in the total system charge, are still missing.

Such effects can be found in many important systems, including organic reactions

involving protonation or deprotonation of molecules, in the doping of semiconductor

materials or in cases, where the total charge of a system changes through ionization.

These findings inspired us to develop the fourth generation high-dimensional neural

network potential (4G-HDNNP) [107] presented in this thesis.

The 4G-HDNNP uses a charge equilibration scheme, based on environment de-

pendent electronegativities, to predict accurate atomic charges that depend on the

geometry of the full system. The charge equilibration scheme is similar to the one

employed in the charge equilibration via neural network technique (CENT) but uses

a different training procedure. Instead of optimizing the electronegativity predicting

ANNs, such that the total system energy is reproduced, reference atomic charges,

obtained from density functional theory (DFT) calculations are targeted. These

charges are then used to calculate the Coulomb interactions. In addition to the

ANNs predicting the electronegativities, a second set of ANNs is employed that,

just like in the HDNNP, predicts atomic energies to capture the remaining short

ranged interactions. However, there is one important difference. The atomic energy

predicting ANNs do not only depend on the local atomic environment through the

use of ACSFs but also the atomic charge obtained from the charge equilibration

process is used as input. This way, changes in local reactivity and bonding caused

by charge transfer due to far away configuration changes can be accounted for. This

capability was demonstrated on several test systems, taken from different fields to

demonstrate the 4G-HDNNP’s applicability for different scenarios.

While these results are extremely promising, research on improvements and ex-

tensions of the 4G-HDNNP is still ongoing. Currently, an implementation of the

4G-HDNNP is under development which employs an iterative solver to overcome the

currently cubic scaling of the computation cost with respect to system size.

Other extensions to the 4G-HDNNP, that do not address the computational

efficiency but instead aim to improve the transferability of the potential to structures

outside the training data set have been introduced in the electrostatically embedded

fourth generation high-dimensional neural network potential (ee4G-HDNNP) [199]. In
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the ee4G-HDNNP, additional pairwise potentials, fitted to binding curves, are added

to the potential. Due to their physical form, these additional two body contribution

ensure a reasonable behaviour of the potential in cases where training data is missing.

This way, so-called holes in the potential energy surface (PES), where unphysically

low energies are predicted, due to a lack of appropriate training data, can be avoided.

Additionally, a new type of environment descriptor, that also captures information

about the atomic charges of neighboring atoms, is introduced. This improves the

accuracy of the potential for cases where similar atomic environments are present

for which the charge on the central environment is the same, but the charge on

neighboring atoms differs.

We hope that the 4G-HDNNP will enable qualitatively and quantitatively accurate

simulations of large systems that include long ranged charge transfer effects. Such

systems might be large conjugated organic molecules, ionized clusters or clusters

deposited on doped substrates as already illustrated in the examples presented in

this thesis. We expect that the 4G-HDNNP will be particularly useful for modelling

chemistry in solution where charge transfer effects commonly occur due to protonation

reactions or changing oxidation states. Investigating such systems is the goal of a

current project in collaboration with the group of Jörg Behler where we will first

assess the accuracy of different reference methods including DFT for describing

charge transfer. Later on, we will investigate if the current version of the charge

equilibration process is sufficient for describing chemistry in solution or if additional

modifications will be needed to ,for example, prevent unphysical charge transfer

between different molecules.

A critical component to many MLPs, including our 4G-HDNNP, are atomic

environment descriptors (AEDs). We saw in this thesis, that many AEDs, including

the ACSF only provide an incomplete description of the atomic environment. Our

results based on an n-body decomposition of a methane molecule’s energy highlight

this problem by demonstrating that the ACSFs are not able to capture the four-body

interactions. While the overlap matrix (OM) fingerprint is able to capture the four-

body energy contribution, it suffers from discontinuities in its first derivative due to

the sorting of the eigenvalues of the OM matrix. Although this can be advantageous

in rare cases, where the discontinuities coincide with conical intersections, it is in

most cases undesirable, since it leads to discontinuous forces in the final MLP. We

presented a method that resolves this problem by projecting the OM eigenvalues onto

basis functions represented by ANNs. Different training procedures are proposed to

fit the basis functions, such that either pairwise fingerprint distances are targeted or
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the original OM fingerprint is reproduced as closely as possible. The final results

are promising and show that the smoothed version of the OM fingerprint is able to

capture the four-body interactions of the methane test system. Unfortunately, the

OM fingerprint seems to be suboptimal for the description of important two-body

energies. A combined descriptor, which is constructed by concatenating the OM

fingerprint with ACSFs helps to improve the description of two-body terms but

this is not a very elegant solution and leads to an increased length of the final

descriptor. Therefore, further research is still needed to improve the description of

two-body terms in the OM fingerprint. In the future we will also need to investigate

applications of a smoothed OM fingerprint, where it is used in a HDNNP, i.e., where

the AED of every atom is used instead of a single atom only as in our methane test

system.

Due to their high accuracy and the favourable scaling of the computational cost

with respect to system size, MLPs bridge the gap between fast but inaccurate

classical force fields and more accurate but computationally demanding ab-initio

methods. They enable simulations at unprecedented time and length scales and even

real-size simulations of microscopic devices are becoming possible [303]. However,

in many systems, high energy barriers are present which make transitions between

metastable states incredibly rare events. A simulation of such reactions by standard

molecular dynamics (MD) or Monte Carlo (MC) procedures would therefore require

prohibitively long simulation times that, even with the steady increase in computation

power, will not be possible in the near future.

The Funnel Hopping Monte Carlo (FHMC) method [94] presented in this thesis

solves this problem by introducing a global MC move that directly circumvents the

high energy barriers. In the FHMC method, a reference frame for each minimum is

constructed to capture the displacements of the atoms from the minimum geometry.

The root mean squared deviation (RMSD) is used to align the current configuration

to the reference frame, such that atom permutations, rotations and translations

can be accounted for. The Boltzmann distribution around each local minimum

is approximated by Gaussian mixtures fit to MC samples from preliminary MC

simulations which are constrained to the regions around the local minima. Global

MC moves can then be constructed by sampling trial geometries from the Gaussian

mixtures.

In a first test, we applied the FHMC method to the 38 and 75 atom Lennard-

Jones (LJ) clusters. These are particularly challenging test systems, due to their

double funnel PESs. Our results show, that FHMC is able achieve a converged
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sampling of the PES at lower temperatures requiring orders of magnitude less MC

samples than comparable methods. At higher temperatures, the performance of the

method deteriorates, since many more local minima, which are not included in the

FHMC scheme, become accessible. This problem can be solved by combining FHMC

with parallel tempering (PT). The PT helps the simulation to overcome the low

barriers to the additional, higher energy, local minima while the FHMC help the

simulation to overcome the high, inter-funnel barriers. The final results on the LJ

test systems show, that FHMC is much more efficient than comparable methods and

requires less energy and force computations until convergence.

Inspired by these positive results, we decided to apply the FHMC method to

study a real system, for which we found the perovskite material methylammonium

lead iodide (MaPbI3) to be a particularly interesting (although in hindsight also

particularly challenging) candidate. MaPbI3 is a widely studied material, due to its

special opto-electronic properties which make it a promising candidate for highly

efficient solar cells. In a recent structure search study [26], based on the minima

hopping method, two new non-perovskite polymorphs of MaPbI3 were discovered,

which are lower in energy than the experimentally known ground state. Furthermore,

the highly anharmonic nature of the material makes the use of methods beyond

the harmonic approximation (HA), such as our FHMC necessary. The fact that

the methylammonium (CH3NH3) (Ma) molecules can rotate almost freely in the

PbI cavities around them, made an application of FHMC particularly challenging

and required several extensions of the method, such as a special treatment of the

Ma molecules during FHMC moves and the introduction of Hamiltonian replica

exchange (RX). With these additional extensions, we were able to run FHMC

simulations that include the experimentally observed perovskite phases as well as

the theoretically predicted ground state phases. These simulations were based on a

HDNNP, which we trained to reference data obtained from DFT calculations using

the strongly constrained and appropriately normed (SCAN) exchange correlation

functional.

Our results show, that the newly found ground state phases are only thermodynam-

ically preferred up to a temperature of 200 K. This rather low transition temperature

may explain the elusiveness of the theoretically predicted non-perovskite phases

from experimental studies. During synthesis at room temperature, the perovskite

phases will readily form. When the material is cooled down below the transition

temperature, the low thermal energy is insufficient to cross the high barrier to the

non-perovskite phases and the material will remain in the meta-stable perovskite
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phase. A synthesis of the non-perovskite phases might therefore only be possible

under special conditions, such as high pressures as suggested by Flores-Livas et al.

[26] and very slow annealing rates.

Being able to successfully apply FHMC to the particularly challenging case of

MaPbI3 suggests that the method should be applicable to a wide range of materials.

In many materials, such as the perovskite material studied in this thesis or for

example alanites [304], polymorphs are found by theoretical studies which are absent

from experiments. This shows, that simple energetics are often not sufficient to

assess the synthesizability of a material. Since high anharmonicity is present in many

materials methods that go beyond simple energetics or the HA such as our FHMC

method are needed.

Examples of highly anharmonic materials include thermoelectric materials [305–

307] where so-called rattling atoms lead to a high anharmonicity that scatters phonons

that are responsible for heat transport [308]. Similarly to perovskites, borates [309]

also exhibit a high anharmonicity due to the presence rigid groups which rotate

as a unit relative to other groups [310]. High anharmonicity and a complex phase

diagram can also be found in silicates which make up large portions of the earths

mantle [311].

We therefore hope, that FHMC will be useful in the future to calculate phase tran-

sition temperatures with an accuracy beyond the HA and assess the synthesizability

of highly anharmonic materials without expensive experimentation.
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Acronyms

2G-HDNNP Second generation high-dimensional neural network potential

3G-HDNNP Third generation high-dimensional neural network potential

4G-HDNNP Fourth generation high-dimensional neural network potential

ACSF Atom centered symmetry function

AED Atomic environment descriptor

ANN Artificial neural network

APES Artificial potential energy surface

CENT Charge equilibration via neural network technique

CI Configuration interaction

DFT Density functional theory

ee4G-HDNNP Electrostatically embedded fourth generation high-

dimensional neural network potential

EM Expectation-maximization

FFT Fast Fourier transform

FHMC Funnel Hopping Monte Carlo

GGA Generalized gradient approximation

GM Gaussian mixture

GPU Graphics processing unit

HA Harmonic approximation

HDNNP High-dimensional neural network potential

HEG Homogeneous electron gas

HF Hartree-Fock

HMC Hamiltonian Monte Carlo

HSA Harmonic superposition approximation

LCAO Linear combination of atomic orbitals

LDA Local density approximation

LJ Lennard-Jones

LJ38 cluster 38 atom Lennard-Jones cluster

LJ75 cluster 75 atom Lennard-Jones cluster
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Acronyms

Ma Methylammonium (CH3NH3)

MC Monte Carlo

MD Molecular dynamics

MLP Machine learned potential

MPNN Message passing neural network

NNP Neural network potential

OM Overlap matrix

PBE Perdew Burke and Ernzerhof

PES Potential energy surface

PT Parallel tempering

QHA Quasi harmonic approximation

QM/MM Quantum mechanics / molecular mechanics

RMSD Root mean squared deviation

RMSE Root mean squared error

RPA Random phase approximation

RX Replica exchange

SCAN Strongly constrained and appropriately normed

SOAP Smooth overlap of atomic positions
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A.1 Details for the 4GHDNNP Test Systems

A.1.1 C10H2/C10H
+
3

Table A.1.1: Root mean squared error (RMSE) of charges (me), energies (meV/atom)
and forces (meV/Å) for the three different HDNNP generations for the
C10H2/C10H+

3 data set with 9035 and 984 structures for training and test-
ing points respectively.

charges energy forces

2G
train — 1.583 130.7
test — 1.619 129.5

3G (unscaled)
train 27.36 3.192 652.5
test 27.35 3.197 658.3

3G (scaled)
train 19.98 2.017 229.9
test 20.08 2.045 231.0

4G
train 5.783 1.148 77.65
test 6.577 1.194 78.00

Table A.1.2: Symmetry functions for C10H2/C10H+
3

no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 G2 H H 0.0 8.0 0.0

2 G2 H H 0.006 8.0 0.0

3 G2 H H 0.011 8.0 0.0

The content of this section was adapted from the supplementary information of T.W. Ko, J.A.
Finkler, S. Goedecker, and J. Behler. “A fourth-generation high-dimensional neural network
potential with accurate electrostatics including non-local charge transfer”. Nature communications
12:398, 2021 (CC BY 4.0 [108]).
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

4 G2 H H 0.018 8.0 0.0

5 G2 H H 0.026 8.0 0.0

6 G2 H H 0.035 8.0 0.0

7 G2 C H 0.0 8.0 0.0

8 G2 C H 0.013 8.0 0.0

9 G2 C H 0.029 8.0 0.0

10 G2 C H 0.054 8.0 0.0

11 G2 C H 0.093 8.0 0.0

12 G2 C H 0.161 8.0 0.0

13 G2 H C 0.0 8.0 0.0

14 G2 H C 0.013 8.0 0.0

15 G2 H C 0.029 8.0 0.0

16 G2 H C 0.054 8.0 0.0

17 G2 H C 0.093 8.0 0.0

18 G2 H C 0.161 8.0 0.0

19 G2 C C 0.0 8.0 0.0

20 G2 C C 0.01 8.0 0.0

21 G2 C C 0.023 8.0 0.0

22 G2 C C 0.041 8.0 0.0

23 G2 C C 0.065 8.0 0.0

24 G2 C C 0.103 8.0 0.0

25 G4 C C C 0.0 1.0 1.0 8.0

26 G4 C C C 0.0 1.0 2.0 8.0

27 G4 C C C 0.0 1.0 4.0 8.0

28 G4 C C C 0.0 1.0 8.0 8.0

29 G4 C C C 0.0 −1.0 1.0 8.0

30 G4 C C C 0.0 −1.0 2.0 8.0

31 G4 C C C 0.0 −1.0 4.0 8.0

32 G4 C C C 0.0 −1.0 8.0 8.0

33 G4 C H H 0.0 1.0 1.0 8.0

34 G4 C H H 0.0 1.0 2.0 8.0

35 G4 C H H 0.0 1.0 4.0 8.0

36 G4 C H H 0.0 1.0 8.0 8.0

37 G4 C H H 0.0 −1.0 1.0 8.0

38 G4 C H H 0.0 −1.0 2.0 8.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

39 G4 C H H 0.0 −1.0 4.0 8.0

40 G4 C H H 0.0 −1.0 8.0 8.0

41 G4 C C H 0.0 1.0 1.0 8.0

42 G4 C C H 0.0 1.0 2.0 8.0

43 G4 C C H 0.0 1.0 4.0 8.0

44 G4 C C H 0.0 1.0 8.0 8.0

45 G4 C C H 0.0 −1.0 1.0 8.0

46 G4 C C H 0.0 −1.0 2.0 8.0

47 G4 C C H 0.0 −1.0 4.0 8.0

48 G4 C C H 0.0 −1.0 8.0 8.0

49 G4 H C C 0.0 1.0 1.0 8.0

50 G4 H C C 0.0 1.0 2.0 8.0

51 G4 H C C 0.0 1.0 4.0 8.0

52 G4 H C C 0.0 1.0 8.0 8.0

53 G4 H C C 0.0 −1.0 1.0 8.0

54 G4 H C C 0.0 −1.0 2.0 8.0

55 G4 H H C 0.0 1.0 1.0 8.0

56 G4 H H C 0.0 1.0 2.0 8.0

57 G4 H H C 0.0 1.0 4.0 8.0

58 G4 H H C 0.0 1.0 8.0 8.0

59 G4 H H C 0.0 −1.0 1.0 8.0

60 G4 H H C 0.0 −1.0 2.0 8.0
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(a) (b)

(c) (d)

(e) (f)

Figure A.1.1: Correlation plots of energies obtained from a 2G-HDNNP (a) and a 4G-HDNNP
(b), forces from a 2G-HDNNP (c) and a 4G-HDNNP (d) and charges from a
scaled 3G-HDNNP (e) and a 4G-HDNNP (f) for C10H2/C10H+

3
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Table A.1.3: DFT-optimized structure of C10H2 in XYZ format (distance unit in Å)

12 atoms

C 0.621 587 11 0.000 000 00 0.000 000 00
C −0.621 587 10 0.000 000 00 0.000 000 00
C 1.952 478 40 0.000 000 00 0.000 000 00
C −1.952 478 47 0.000 000 00 0.000 000 00
C 3.192 145 71 0.000 000 00 0.000 000 00
C −3.192 145 71 0.000 000 00 0.000 000 00
C 4.535 930 62 0.000 000 00 0.000 000 00
C −4.535 930 61 0.000 000 00 0.000 000 00
C 5.761 179 51 0.000 000 00 0.000 000 00
C −5.761 179 49 0.000 000 00 0.000 000 00
H 6.831 800 63 0.000 000 00 0.000 000 00
H −6.831 800 59 0.000 000 00 0.000 000 00

Table A.1.4: DFT-optimized structure of C10H+
3 in XYZ format (distance unit in Å)

13 atoms

C 0.629 569 25 0.000 007 77 0.000 008 66
C −0.630 171 87 0.000 006 61 0.000 007 49
C 1.927 800 72 0.000 005 14 0.000 005 65
C −1.939 451 25 0.000 003 66 0.000 004 44
C 3.196 698 75 −0.000 004 40 −0.000 004 75
C −3.188 248 16 0.000 001 20 0.000 001 93
C 4.485 686 49 −0.000 026 21 −0.000 028 65
C −4.518 203 60 −0.000 000 93 −0.000 000 22
C 5.792 415 11 −0.000 049 55 −0.000 059 76
C −5.745 974 58 −0.000 002 54 −0.000 001 78
H 6.356 582 33 0.664 760 64 −0.662 349 90
H −6.821 318 48 −0.000 003 46 −0.000 002 64
H 6.356 596 39 −0.664 669 86 0.662 408 63
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A.1.2 Ag
+/−
3 clusters

(a) (b)

(c) (d)

(e) (f)

Figure A.1.2: Correlation plots of energies obtained from a 2G-HDNNP (a) and a 4G-HDNNP
(b) forces from a 2G-HDNNP (c) and a 4G-HDNNP (d) and charges from a

scaled 3G-HDNNP (e) and a 4G-HDNNP (f) for Ag
+/−
3
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Table A.1.5: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and

forces (meV/Å) for the three different HDNNP generations for the Ag
+/−
3 data

set with 9930 and 1083 structures for training and testing points respectively.

charges energy forces

2G
train — 355.0 1812
test — 352.0 1803

3G (unscaled)
train 75.50 345.0 1909
test 77.55 340.0 1963

3G (scaled)
train 26.24 321.1 1912
test 26.48 320.2 1913

4G
train 10.61 1.293 32.12
test 9.976 1.323 31.69

Table A.1.6: Symmetry functions for Ag+/− clusters

no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 G2 Ag Ag 0.0 10.0 0.0

2 G2 Ag Ag 0.007 10.0 0.0

3 G2 Ag Ag 0.014 10.0 0.0

4 G2 Ag Ag 0.025 10.0 0.0

5 G2 Ag Ag 0.04 10.0 0.0

6 G2 Ag Ag 0.062 10.0 0.0

7 G4 Ag Ag Ag 0.0 1.0 1.0 10.0

8 G4 Ag Ag Ag 0.0 1.0 2.0 10.0

9 G4 Ag Ag Ag 0.0 1.0 4.0 10.0

10 G4 Ag Ag Ag 0.0 1.0 8.0 10.0

11 G4 Ag Ag Ag 0.0 −1.0 1.0 10.0

12 G4 Ag Ag Ag 0.0 −1.0 2.0 10.0
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Table A.1.7: DFT-optimized structure of Ag+3 in XYZ format (distance unit in Å)

3 atoms

Ag 0.000 000 00 0.000 644 41 1.556 755 15
Ag 0.000 000 00 1.347 626 41 −0.779 404 15
Ag 0.000 000 00 −1.348 270 81 −0.777 351 99

Table A.1.8: DFT-optimized structure of Ag−3 in XYZ format (distance unit in Å)

3 atoms

Ag 0.000 000 00 −1.326 870 06 2.317 857 81
Ag 0.000 000 00 1.340 265 98 −2.309 774 04
Ag 0.000 000 00 −0.013 395 92 −0.008 084 77
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A.1.3 Na8/9Cl+8 clusters

(a) (b)

(c) (d)

(e) (f)

Figure A.1.3: Correlation plots of energies obtained from a 2G-HDNNP (a) and a 4G-HDNNP
(b) forces from a 2G-HDNNP (c) and a 4G-HDNNP (d) and charges from an
unscaled 3G-HDNNP (e) and a 4G-HDNNP (f) for Na8/9Cl+8
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Table A.1.9: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and
forces (meV/Å) for the three different HDNNP generations for the Na8/9Cl+8
data set with 4493 and 507 structures for training and testing points respectively.

charges energy forces

2G
train — 1.690 57.54
test — 1.692 57.39

3G (unscaled)
train 28.28 1.426 57.69
test 28.52 1.470 59.49

3G (scaled)
train 20.75 2.058 73.47
test 20.80 2.042 76.67

4G
train 15.87 0.474 32.45
test 15.83 0.481 32.78

Table A.1.10: Symmetry functions for Na8/9Cl+8 clusters

no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 G2 Na Na 0.0 10.0 0.0

2 G2 Na Na 0.001 10.0 0.0

3 G2 Na Na 0.002 10.0 0.0

4 G2 Na Na 0.003 10.0 0.0

5 G2 Na Na 0.004 10.0 0.0

6 G2 Na Na 0.005 10.0 0.0

7 G2 Na Cl 0.0 10.0 0.0

8 G2 Na Cl 0.003 10.0 0.0

9 G2 Na Cl 0.005 10.0 0.0

10 G2 Na Cl 0.007 10.0 0.0

11 G2 Na Cl 0.01 10.0 0.0

12 G2 Na Cl 0.013 10.0 0.0

13 G2 Cl Na 0.0 10.0 0.0

14 G2 Cl Na 0.003 10.0 0.0

15 G2 Cl Na 0.005 10.0 0.0

16 G2 Cl Na 0.007 10.0 0.0

17 G2 Cl Na 0.01 10.0 0.0

18 G2 Cl Na 0.013 10.0 0.0

19 G2 Cl Cl 0.0 10.0 0.0

20 G2 Cl Cl 0.001 10.0 0.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

21 G2 Cl Cl 0.002 10.0 0.0

22 G2 Cl Cl 0.003 10.0 0.0

23 G2 Cl Cl 0.004 10.0 0.0

24 G2 Cl Cl 0.005 10.0 0.0

25 G4 Na Na Cl 0.0 1.0 1.0 10.0

26 G4 Na Na Cl 0.0 1.0 2.0 10.0

27 G4 Na Na Cl 0.0 1.0 4.0 10.0

28 G4 Na Na Cl 0.0 1.0 8.0 10.0

29 G4 Na Na Cl 0.0 −1.0 1.0 10.0

30 G4 Na Na Cl 0.0 −1.0 2.0 10.0

31 G4 Na Cl Cl 0.0 1.0 1.0 10.0

32 G4 Na Cl Cl 0.0 1.0 2.0 10.0

33 G4 Na Cl Cl 0.0 −1.0 1.0 10.0

34 G4 Na Cl Cl 0.0 −1.0 2.0 10.0

35 G4 Na Cl Cl 0.0 −1.0 4.0 10.0

36 G4 Cl Cl Na 0.0 1.0 1.0 10.0

37 G4 Cl Cl Na 0.0 1.0 2.0 10.0

38 G4 Cl Cl Na 0.0 1.0 4.0 10.0

39 G4 Cl Cl Na 0.0 1.0 8.0 10.0

40 G4 Cl Cl Na 0.0 −1.0 1.0 10.0

41 G4 Cl Na Na 0.0 1.0 1.0 10.0

42 G4 Cl Na Na 0.0 1.0 2.0 10.0

43 G4 Cl Na Na 0.0 1.0 4.0 10.0

44 G4 Cl Na Na 0.0 −1.0 1.0 10.0

45 G4 Cl Na Na 0.0 −1.0 2.0 10.0

185



Appendix

Table A.1.11: DFT-optimized structure of Na9Cl+8 in XYZ format (distance unit in Å)

17 atoms

Na −4.672 483 91 1.744 323 61 0.066 917 32
Cl −4.674 131 38 −0.763 117 13 −0.005 394 92
Cl −2.156 850 54 2.353 451 40 0.126 851 59
Na −2.120 583 99 −0.453 759 70 0.037 785 66
Na 0.430 089 05 2.067 507 92 0.061 237 48
Cl 0.514 739 28 −0.620 487 80 0.003 580 16
Cl 3.054 771 88 2.435 379 02 0.005 454 56
Na 3.081 187 44 −0.275 178 18 −0.020 881 71
Na 5.635 084 96 2.195 983 30 −0.008 956 06
Cl 5.728 609 48 −0.495 161 62 −0.005 581 27
Cl 8.304 179 09 2.518 938 87 0.008 721 19
Na 15.163 008 08 4.522 166 97 −0.019 004 50
Na 10.847 244 50 2.274 841 80 −0.037 879 82
Cl 10.992 739 88 −0.383 182 02 −0.002 413 13
Cl 13.644 077 08 2.525 223 09 0.039 396 59
Na 13.502 039 57 −0.152 682 89 0.114 915 06
Na 8.284 823 01 −0.197 007 56 0.036 113 70
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A.1.4 Au2−MgO

(a) (b)

(c) (d)

(e) (f)

Figure A.1.4: Correlation plots of energies obtained from a 2G-HDNNP (a) and a 4G-HDNNP
(b) forces from a 2G-HDNNP (c) and a 4G-HDNNP (d) and charges from a
scaled 3G-HDNNP (e) and a 4G-HDNNP (f) for Au2-MgO
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Table A.1.12: Root mean square errors (RMSE) of charges (me), energies (meV/atom) and
forces (meV/Å) for the Au2-MgO data set with 4468 and 532 structures for
training and testing points respectively.

charges energy forces

2G
train — 2.299 155.4
test — 2.287 153.1

4G
train 5.663 0.209 81.05
test 5.698 0.219 66.00

Table A.1.13: Symmetry functions for Au2-MgO slabs

no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 G2 Mg Mg 0.0 8.0 0.0

2 G2 Mg Mg 0.001 8.0 0.0

3 G2 Mg Mg 0.002 8.0 0.0

4 G2 Mg Mg 0.003 8.0 0.0

5 G2 Mg Mg 0.004 8.0 0.0

6 G2 Mg Mg 0.005 8.0 0.0

7 G2 O Mg 0.0 8.0 0.0

8 G2 O Mg 0.004 8.0 0.0

9 G2 O Mg 0.007 8.0 0.0

10 G2 O Mg 0.01 8.0 0.0

11 G2 O Mg 0.014 8.0 0.0

12 G2 O Mg 0.018 8.0 0.0

13 G2 Mg O 0.0 8.0 0.0

14 G2 Mg O 0.004 8.0 0.0

15 G2 Mg O 0.007 8.0 0.0

16 G2 Mg O 0.01 8.0 0.0

17 G2 Mg O 0.014 8.0 0.0

18 G2 Mg O 0.018 8.0 0.0

19 G2 O O 0.0 8.0 0.0

20 G2 O O 0.001 8.0 0.0

21 G2 O O 0.002 8.0 0.0

22 G2 O O 0.003 8.0 0.0

23 G2 O O 0.004 8.0 0.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

24 G2 O O 0.005 8.0 0.0

25 G2 Mg Au 0.0 8.0 0.0

26 G2 Mg Au 0.001 8.0 0.0

27 G2 Mg Au 0.002 8.0 0.0

28 G2 Mg Au 0.003 8.0 0.0

29 G2 Mg Au 0.004 8.0 0.0

30 G2 Mg Au 0.005 8.0 0.0

31 G2 Au Mg 0.0 8.0 0.0

32 G2 Au Mg 0.001 8.0 0.0

33 G2 Au Mg 0.002 8.0 0.0

34 G2 Au Mg 0.003 8.0 0.0

35 G2 Au Mg 0.004 8.0 0.0

36 G2 Au Mg 0.005 8.0 0.0

37 G2 Au O 0.0 8.0 0.0

38 G2 Au O 0.004 8.0 0.0

39 G2 Au O 0.008 8.0 0.0

40 G2 Au O 0.013 8.0 0.0

41 G2 Au O 0.018 8.0 0.0

42 G2 Au O 0.024 8.0 0.0

43 G2 O Au 0.0 8.0 0.0

44 G2 O Au 0.004 8.0 0.0

45 G2 O Au 0.008 8.0 0.0

46 G2 O Au 0.013 8.0 0.0

47 G2 O Au 0.018 8.0 0.0

48 G2 O Au 0.024 8.0 0.0

49 G2 Au Au 0.0 8.0 0.0

50 G2 Au Au 0.004 8.0 0.0

51 G2 Au Au 0.008 8.0 0.0

52 G2 Au Au 0.012 8.0 0.0

53 G2 Au Au 0.017 8.0 0.0

54 G2 Au Au 0.022 8.0 0.0

55 G2 O Al 0.0 8.0 0.0

56 G2 O Al 0.003 8.0 0.0

57 G2 O Al 0.005 8.0 0.0

58 G2 O Al 0.008 8.0 0.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

59 G2 O Al 0.011 8.0 0.0

60 G2 O Al 0.014 8.0 0.0

61 G2 Al O 0.0 8.0 0.0

62 G2 Al O 0.003 8.0 0.0

63 G2 Al O 0.005 8.0 0.0

64 G2 Al O 0.008 8.0 0.0

65 G2 Al O 0.011 8.0 0.0

66 G2 Al O 0.014 8.0 0.0

67 G2 Al Mg 0.0 8.0 0.0

68 G2 Al Mg 0.001 8.0 0.0

69 G2 Al Mg 0.002 8.0 0.0

70 G2 Al Mg 0.003 8.0 0.0

71 G2 Al Mg 0.004 8.0 0.0

72 G2 Al Mg 0.005 8.0 0.0

73 G2 Mg Al 0.0 8.0 0.0

74 G2 Mg Al 0.001 8.0 0.0

75 G2 Mg Al 0.002 8.0 0.0

76 G2 Mg Al 0.003 8.0 0.0

77 G2 Mg Al 0.004 8.0 0.0

78 G2 Mg Al 0.005 8.0 0.0

79 G4 Mg Mg Mg 0.0 1.0 1.0 8.0

80 G4 Mg Mg Mg 0.0 1.0 2.0 8.0

81 G4 Mg Mg Mg 0.0 1.0 4.0 8.0

82 G4 Mg Mg Mg 0.0 −1.0 1.0 8.0

83 G4 Mg Mg O 0.0 1.0 1.0 8.0

84 G4 Mg Mg O 0.0 1.0 2.0 8.0

85 G4 Mg Mg O 0.0 1.0 4.0 8.0

86 G4 Mg Mg O 0.0 1.0 8.0 8.0

87 G4 Mg Mg O 0.0 −1.0 1.0 8.0

88 G4 Mg Mg O 0.0 −1.0 2.0 8.0

89 G4 Mg O O 0.0 1.0 1.0 8.0

90 G4 Mg O O 0.0 1.0 2.0 8.0

91 G4 Mg O O 0.0 1.0 4.0 8.0

92 G4 Mg O O 0.0 −1.0 1.0 8.0

93 G4 Mg O O 0.0 −1.0 2.0 8.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

94 G4 Mg O O 0.0 −1.0 4.0 8.0

95 G4 Mg O Al 0.0 1.0 1.0 8.0

96 G4 Mg O Al 0.0 1.0 2.0 8.0

97 G4 Mg O Al 0.0 1.0 4.0 8.0

98 G4 Mg O Al 0.0 1.0 8.0 8.0

99 G4 Mg O Al 0.0 −1.0 1.0 8.0

100 G4 Mg O Au 0.0 1.0 1.0 8.0

101 G4 Mg O Au 0.0 1.0 2.0 8.0

102 G4 Mg O Au 0.0 1.0 4.0 8.0

103 G4 Mg O Au 0.0 1.0 8.0 8.0

104 G4 Mg O Au 0.0 −1.0 1.0 8.0

105 G4 Mg O Au 0.0 −1.0 2.0 8.0

106 G4 O Mg Mg 0.0 1.0 1.0 8.0

107 G4 O Mg Mg 0.0 1.0 2.0 8.0

108 G4 O Mg Mg 0.0 1.0 4.0 8.0

109 G4 O Mg Mg 0.0 −1.0 1.0 8.0

110 G4 O Mg Mg 0.0 −1.0 2.0 8.0

111 G4 O Mg Mg 0.0 −1.0 4.0 8.0

112 G4 O Mg O 0.0 1.0 1.0 8.0

113 G4 O Mg O 0.0 1.0 2.0 8.0

114 G4 O Mg O 0.0 1.0 4.0 8.0

115 G4 O Mg O 0.0 1.0 8.0 8.0

116 G4 O Mg O 0.0 −1.0 1.0 8.0

117 G4 O Mg O 0.0 −1.0 2.0 8.0

118 G4 O Mg Al 0.0 1.0 1.0 8.0

119 G4 O Mg Al 0.0 1.0 2.0 8.0

120 G4 O Mg Al 0.0 1.0 4.0 8.0

121 G4 O Mg Al 0.0 −1.0 1.0 8.0

122 G4 O Mg Al 0.0 −1.0 2.0 8.0

123 G4 O Mg Al 0.0 −1.0 4.0 8.0

124 G4 O Mg Au 0.0 1.0 1.0 8.0

125 G4 O Mg Au 0.0 1.0 2.0 8.0

126 G4 O Mg Au 0.0 −1.0 1.0 8.0

127 G4 O Mg Au 0.0 −1.0 2.0 8.0

128 G4 O O O 0.0 1.0 1.0 8.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

129 G4 O O O 0.0 1.0 2.0 8.0

130 G4 O O O 0.0 −1.0 1.0 8.0

131 G4 O O Al 0.0 1.0 1.0 8.0

132 G4 O O Al 0.0 1.0 2.0 8.0

133 G4 O O Al 0.0 −1.0 1.0 8.0

134 G4 O O Al 0.0 −1.0 2.0 8.0

135 G4 Al Mg Mg 0.0 1.0 1.0 8.0

136 G4 Al Mg O 0.0 1.0 1.0 8.0

137 G4 Al Mg O 0.0 1.0 2.0 8.0

138 G4 Al Mg O 0.0 −1.0 1.0 8.0

139 G4 Al O O 0.0 1.0 1.0 8.0

140 G4 Al O O 0.0 1.0 2.0 8.0

141 G4 Al O O 0.0 −1.0 1.0 8.0

142 G4 Al O O 0.0 −1.0 2.0 8.0

143 G4 Au Mg Mg 0.0 1.0 1.0 8.0

144 G4 Au Mg Mg 0.0 1.0 2.0 8.0

145 G4 Au Mg O 0.0 1.0 1.0 8.0

146 G4 Au Mg O 0.0 1.0 2.0 8.0

147 G4 Au Mg O 0.0 −1.0 1.0 8.0

148 G4 Au Mg O 0.0 −1.0 2.0 8.0

149 G4 Au O O 0.0 1.0 1.0 8.0

150 G4 Au O Au 0.0 1.0 −1.0 8.0

151 G4 Au O Au 0.0 1.0 −2.0 8.0
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B.2 Details for the MaPbI3 FHMC Simulations

B.2.1 Supercells

We used the same supercells for all FHMC, MD and phonon calculations. Pictures

of the supercells for each phase are shown in the figures below.

Figure B.2.5: Geometry of the supercell used for the double delta phase.

The content of this section was adapted from J.A. Finkler and S. Goedecker. “Experimental
Absence of the Non-Perovskite Ground State Phases of MaPbI3 Explained by a Funnel Hopping
Monte Carlo Study Based on a Neural Network Potential”. Materials Advances 4, 2023, pp. 184–
194 and its supplemental information.
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Figure B.2.6: Geometry of the supercell used for the delta phase.
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Figure B.2.7: Geometry of the supercell used for the orthorhombic phase.
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Figure B.2.8: Geometry of the supercell used for the tetragonal phase.
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Figure B.2.9: Geometry of the supercell used for the cubic phase.
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B.2.2 Symmetry Functions Used for the MaPbI3 HDNNP

We used 2- (G2) and 3-body (G4) atom centered symmetry functions [10] as atomic

environment descriptors for our neural network potential.

G2
i =

∑
j

e−η(Rij−Rs)2 · fc(Rij) (1)

G4
i = 21−ζ

∑
j,k ̸=i

(1 + λ cos(θijk))ζ · e−η(R2
ij+R2

ik+R2
jk) · fc(Rij) · fc(Rik) · fc(Rjk) (2)

fc(r) = tanh(1 − r/Rc)
3 (3)

Table B.2.14: Symmetry functions used for the neural network potential

no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

1 G2 H H 0.004 12.0 0.0

2 G2 H H 0.028 12.0 0.0

3 G2 H H 0.139 12.0 0.0

4 G2 H H 0.556 12.0 0.0

5 G2 H H 1.000 12.0 0.0

6 G2 H C 0.004 12.0 0.0

7 G2 H C 0.028 12.0 0.0

8 G2 H C 0.139 12.0 0.0

9 G2 H C 0.556 12.0 0.0

10 G2 H C 1.000 12.0 0.0

11 G2 H N 0.004 12.0 0.0

12 G2 H N 0.028 12.0 0.0

13 G2 H N 0.139 12.0 0.0

14 G2 H N 0.556 12.0 0.0

15 G2 H N 1.000 12.0 0.0

16 G2 H I 0.004 12.0 0.0

17 G2 H I 0.028 12.0 0.0

18 G2 H I 0.139 12.0 0.0

19 G2 H Pb 0.004 12.0 0.0

20 G2 H Pb 0.028 12.0 0.0

21 G2 H Pb 0.139 12.0 0.0

22 G4 H H H 0.005 −1.0 1.0 12.0

23 G4 H H H 0.005 −1.0 4.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

24 G4 H H H 0.005 1.0 1.0 12.0

25 G4 H H H 0.005 1.0 4.0 12.0

26 G4 H H C 0.005 −1.0 1.0 12.0

27 G4 H H C 0.005 −1.0 4.0 12.0

28 G4 H H C 0.005 1.0 1.0 12.0

29 G4 H H C 0.005 1.0 4.0 12.0

30 G4 H H N 0.005 −1.0 1.0 12.0

31 G4 H H N 0.005 −1.0 4.0 12.0

32 G4 H H N 0.005 1.0 1.0 12.0

33 G4 H H N 0.005 1.0 4.0 12.0

34 G4 H H I 0.005 −1.0 1.0 12.0

35 G4 H H I 0.005 −1.0 4.0 12.0

36 G4 H H I 0.005 1.0 1.0 12.0

37 G4 H H I 0.005 1.0 4.0 12.0

38 G4 H H Pb 0.005 −1.0 1.0 12.0

39 G4 H H Pb 0.005 −1.0 4.0 12.0

40 G4 H H Pb 0.005 1.0 1.0 12.0

41 G4 H H Pb 0.005 1.0 4.0 12.0

42 G4 H C C 0.005 −1.0 1.0 12.0

43 G4 H C C 0.005 −1.0 4.0 12.0

44 G4 H C C 0.005 1.0 1.0 12.0

45 G4 H C C 0.005 1.0 4.0 12.0

46 G4 H C N 0.005 −1.0 1.0 12.0

47 G4 H C N 0.005 −1.0 4.0 12.0

48 G4 H C N 0.005 1.0 1.0 12.0

49 G4 H C N 0.005 1.0 4.0 12.0

50 G4 H C I 0.005 −1.0 1.0 12.0

51 G4 H C I 0.005 −1.0 4.0 12.0

52 G4 H C I 0.005 1.0 1.0 12.0

53 G4 H C I 0.005 1.0 4.0 12.0

54 G4 H C Pb 0.005 −1.0 1.0 12.0

55 G4 H C Pb 0.005 −1.0 4.0 12.0

56 G4 H C Pb 0.005 1.0 1.0 12.0

57 G4 H C Pb 0.005 1.0 4.0 12.0

58 G4 H N N 0.005 −1.0 1.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

59 G4 H N N 0.005 −1.0 4.0 12.0

60 G4 H N N 0.005 1.0 1.0 12.0

61 G4 H N I 0.005 −1.0 1.0 12.0

62 G4 H N I 0.005 −1.0 4.0 12.0

63 G4 H N I 0.005 1.0 1.0 12.0

64 G4 H N I 0.005 1.0 4.0 12.0

65 G4 H N Pb 0.005 −1.0 1.0 12.0

66 G4 H N Pb 0.005 −1.0 4.0 12.0

67 G4 H N Pb 0.005 1.0 1.0 12.0

68 G4 H I I 0.005 −1.0 1.0 12.0

69 G4 H I I 0.005 −1.0 4.0 12.0

70 G4 H I I 0.005 1.0 1.0 12.0

71 G4 H I I 0.005 1.0 4.0 12.0

72 G4 H I Pb 0.005 −1.0 1.0 12.0

73 G4 H I Pb 0.005 1.0 1.0 12.0

74 G4 H I Pb 0.005 1.0 4.0 12.0

75 G2 C H 0.004 12.0 0.0

76 G2 C H 0.028 12.0 0.0

77 G2 C H 0.139 12.0 0.0

78 G2 C H 0.556 12.0 0.0

79 G2 C H 1.000 12.0 0.0

80 G2 C C 0.004 12.0 0.0

81 G2 C C 0.028 12.0 0.0

82 G2 C C 0.139 12.0 0.0

83 G2 C N 0.004 12.0 0.0

84 G2 C N 0.028 12.0 0.0

85 G2 C N 0.139 12.0 0.0

86 G2 C N 0.556 12.0 0.0

87 G2 C N 1.000 12.0 0.0

88 G2 C I 0.004 12.0 0.0

89 G2 C I 0.028 12.0 0.0

90 G2 C I 0.139 12.0 0.0

91 G2 C Pb 0.004 12.0 0.0

92 G2 C Pb 0.028 12.0 0.0

93 G2 C Pb 0.139 12.0 0.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

94 G4 C H H 0.005 −1.0 1.0 12.0

95 G4 C H H 0.005 −1.0 4.0 12.0

96 G4 C H H 0.005 1.0 1.0 12.0

97 G4 C H H 0.005 1.0 4.0 12.0

98 G4 C H C 0.005 −1.0 1.0 12.0

99 G4 C H C 0.005 −1.0 4.0 12.0

100 G4 C H C 0.005 1.0 1.0 12.0

101 G4 C H C 0.005 1.0 4.0 12.0

102 G4 C H N 0.005 −1.0 1.0 12.0

103 G4 C H N 0.005 −1.0 4.0 12.0

104 G4 C H N 0.005 1.0 1.0 12.0

105 G4 C H N 0.005 1.0 4.0 12.0

106 G4 C H I 0.005 −1.0 1.0 12.0

107 G4 C H I 0.005 −1.0 4.0 12.0

108 G4 C H I 0.005 1.0 1.0 12.0

109 G4 C H I 0.005 1.0 4.0 12.0

110 G4 C H Pb 0.005 −1.0 1.0 12.0

111 G4 C H Pb 0.005 −1.0 4.0 12.0

112 G4 C H Pb 0.005 1.0 1.0 12.0

113 G4 C H Pb 0.005 1.0 4.0 12.0

114 G4 C C N 0.005 −1.0 1.0 12.0

115 G4 C C N 0.005 −1.0 4.0 12.0

116 G4 C C N 0.005 1.0 1.0 12.0

117 G4 C C N 0.005 1.0 4.0 12.0

118 G4 C C I 0.005 −1.0 1.0 12.0

119 G4 C C I 0.005 1.0 1.0 12.0

120 G4 C C I 0.005 1.0 4.0 12.0

121 G4 C N N 0.005 −1.0 1.0 12.0

122 G4 C N N 0.005 −1.0 4.0 12.0

123 G4 C N N 0.005 1.0 1.0 12.0

124 G4 C N I 0.005 −1.0 1.0 12.0

125 G4 C N I 0.005 −1.0 4.0 12.0

126 G4 C N I 0.005 1.0 1.0 12.0

127 G4 C N I 0.005 1.0 4.0 12.0

128 G4 C N Pb 0.005 −1.0 1.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

129 G4 C N Pb 0.005 −1.0 4.0 12.0

130 G4 C N Pb 0.005 1.0 1.0 12.0

131 G4 C I I 0.005 −1.0 1.0 12.0

132 G4 C I I 0.005 1.0 1.0 12.0

133 G4 C I I 0.005 1.0 4.0 12.0

134 G4 C I Pb 0.005 −1.0 1.0 12.0

135 G4 C I Pb 0.005 1.0 1.0 12.0

136 G4 C I Pb 0.005 1.0 4.0 12.0

137 G2 N H 0.004 12.0 0.0

138 G2 N H 0.028 12.0 0.0

139 G2 N H 0.139 12.0 0.0

140 G2 N H 0.556 12.0 0.0

141 G2 N H 1.000 12.0 0.0

142 G2 N C 0.004 12.0 0.0

143 G2 N C 0.028 12.0 0.0

144 G2 N C 0.139 12.0 0.0

145 G2 N C 0.556 12.0 0.0

146 G2 N C 1.000 12.0 0.0

147 G2 N N 0.004 12.0 0.0

148 G2 N N 0.028 12.0 0.0

149 G2 N I 0.004 12.0 0.0

150 G2 N I 0.028 12.0 0.0

151 G2 N I 0.139 12.0 0.0

152 G2 N Pb 0.004 12.0 0.0

153 G2 N Pb 0.028 12.0 0.0

154 G4 N H H 0.005 −1.0 1.0 12.0

155 G4 N H H 0.005 −1.0 4.0 12.0

156 G4 N H H 0.005 1.0 1.0 12.0

157 G4 N H H 0.005 1.0 4.0 12.0

158 G4 N H C 0.005 −1.0 1.0 12.0

159 G4 N H C 0.005 −1.0 4.0 12.0

160 G4 N H C 0.005 1.0 1.0 12.0

161 G4 N H C 0.005 1.0 4.0 12.0

162 G4 N H N 0.005 −1.0 1.0 12.0

163 G4 N H N 0.005 1.0 1.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

164 G4 N H N 0.005 1.0 4.0 12.0

165 G4 N H I 0.005 −1.0 1.0 12.0

166 G4 N H I 0.005 −1.0 4.0 12.0

167 G4 N H I 0.005 1.0 1.0 12.0

168 G4 N H I 0.005 1.0 4.0 12.0

169 G4 N H Pb 0.005 −1.0 1.0 12.0

170 G4 N H Pb 0.005 1.0 1.0 12.0

171 G4 N H Pb 0.005 1.0 4.0 12.0

172 G4 N C C 0.005 −1.0 1.0 12.0

173 G4 N C C 0.005 −1.0 4.0 12.0

174 G4 N C C 0.005 1.0 1.0 12.0

175 G4 N C C 0.005 1.0 4.0 12.0

176 G4 N C N 0.005 1.0 1.0 12.0

177 G4 N C N 0.005 1.0 4.0 12.0

178 G4 N C I 0.005 −1.0 1.0 12.0

179 G4 N C I 0.005 −1.0 4.0 12.0

180 G4 N C I 0.005 1.0 1.0 12.0

181 G4 N C I 0.005 1.0 4.0 12.0

182 G4 N C Pb 0.005 −1.0 1.0 12.0

183 G4 N C Pb 0.005 1.0 1.0 12.0

184 G4 N C Pb 0.005 1.0 4.0 12.0

185 G4 N N I 0.005 1.0 1.0 12.0

186 G4 N N I 0.005 1.0 4.0 12.0

187 G4 N I I 0.005 −1.0 1.0 12.0

188 G4 N I I 0.005 1.0 1.0 12.0

189 G4 N I I 0.005 1.0 4.0 12.0

190 G4 N I Pb 0.005 −1.0 1.0 12.0

191 G4 N I Pb 0.005 1.0 1.0 12.0

192 G4 N I Pb 0.005 1.0 4.0 12.0

193 G2 I H 0.004 12.0 0.0

194 G2 I H 0.028 12.0 0.0

195 G2 I H 0.139 12.0 0.0

196 G2 I C 0.004 12.0 0.0

197 G2 I C 0.028 12.0 0.0

198 G2 I C 0.139 12.0 0.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

199 G2 I N 0.004 12.0 0.0

200 G2 I N 0.028 12.0 0.0

201 G2 I N 0.139 12.0 0.0

202 G2 I I 0.004 12.0 0.0

203 G2 I I 0.028 12.0 0.0

204 G2 I Pb 0.004 12.0 0.0

205 G2 I Pb 0.028 12.0 0.0

206 G2 I Pb 0.139 12.0 0.0

207 G4 I H H 0.005 −1.0 1.0 12.0

208 G4 I H H 0.005 −1.0 4.0 12.0

209 G4 I H H 0.005 1.0 1.0 12.0

210 G4 I H H 0.005 1.0 4.0 12.0

211 G4 I H C 0.005 −1.0 1.0 12.0

212 G4 I H C 0.005 −1.0 4.0 12.0

213 G4 I H C 0.005 1.0 1.0 12.0

214 G4 I H C 0.005 1.0 4.0 12.0

215 G4 I H N 0.005 −1.0 1.0 12.0

216 G4 I H N 0.005 −1.0 4.0 12.0

217 G4 I H N 0.005 1.0 1.0 12.0

218 G4 I H N 0.005 1.0 4.0 12.0

219 G4 I H I 0.005 −1.0 1.0 12.0

220 G4 I H I 0.005 1.0 1.0 12.0

221 G4 I H I 0.005 1.0 4.0 12.0

222 G4 I H Pb 0.005 −1.0 1.0 12.0

223 G4 I H Pb 0.005 −1.0 4.0 12.0

224 G4 I H Pb 0.005 1.0 1.0 12.0

225 G4 I H Pb 0.005 1.0 4.0 12.0

226 G4 I C C 0.005 −1.0 1.0 12.0

227 G4 I C C 0.005 1.0 1.0 12.0

228 G4 I C C 0.005 1.0 4.0 12.0

229 G4 I C N 0.005 −1.0 1.0 12.0

230 G4 I C N 0.005 1.0 1.0 12.0

231 G4 I C N 0.005 1.0 4.0 12.0

232 G4 I C I 0.005 −1.0 1.0 12.0

233 G4 I C I 0.005 1.0 1.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

234 G4 I C I 0.005 1.0 4.0 12.0

235 G4 I C Pb 0.005 −1.0 1.0 12.0

236 G4 I C Pb 0.005 1.0 1.0 12.0

237 G4 I C Pb 0.005 1.0 4.0 12.0

238 G4 I N N 0.005 −1.0 1.0 12.0

239 G4 I N N 0.005 1.0 1.0 12.0

240 G4 I N I 0.005 −1.0 1.0 12.0

241 G4 I N I 0.005 1.0 1.0 12.0

242 G4 I N I 0.005 1.0 4.0 12.0

243 G4 I N Pb 0.005 −1.0 1.0 12.0

244 G4 I N Pb 0.005 1.0 1.0 12.0

245 G4 I I I 0.005 1.0 1.0 12.0

246 G4 I I Pb 0.005 −1.0 1.0 12.0

247 G4 I I Pb 0.005 1.0 1.0 12.0

248 G4 I I Pb 0.005 1.0 4.0 12.0

249 G4 I Pb Pb 0.005 −1.0 1.0 12.0

250 G4 I Pb Pb 0.005 1.0 1.0 12.0

251 G2 Pb H 0.004 12.0 0.0

252 G2 Pb H 0.028 12.0 0.0

253 G2 Pb H 0.139 12.0 0.0

254 G2 Pb C 0.004 12.0 0.0

255 G2 Pb C 0.028 12.0 0.0

256 G2 Pb C 0.139 12.0 0.0

257 G2 Pb N 0.004 12.0 0.0

258 G2 Pb N 0.028 12.0 0.0

259 G2 Pb I 0.004 12.0 0.0

260 G2 Pb I 0.028 12.0 0.0

261 G2 Pb I 0.139 12.0 0.0

262 G2 Pb Pb 0.004 12.0 0.0

263 G2 Pb Pb 0.028 12.0 0.0

264 G4 Pb H H 0.005 −1.0 1.0 12.0

265 G4 Pb H H 0.005 1.0 1.0 12.0

266 G4 Pb H H 0.005 1.0 4.0 12.0

267 G4 Pb H C 0.005 −1.0 1.0 12.0

268 G4 Pb H C 0.005 1.0 1.0 12.0
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no. type at. i at. j at. k η(1/Bohr2) λ ζ Rc(Bohr) Rs(Bohr)

269 G4 Pb H C 0.005 1.0 4.0 12.0

270 G4 Pb H N 0.005 1.0 1.0 12.0

271 G4 Pb H N 0.005 1.0 4.0 12.0

272 G4 Pb H I 0.005 −1.0 1.0 12.0

273 G4 Pb H I 0.005 1.0 1.0 12.0

274 G4 Pb H I 0.005 1.0 4.0 12.0

275 G4 Pb C N 0.005 1.0 1.0 12.0

276 G4 Pb C N 0.005 1.0 4.0 12.0

277 G4 Pb C I 0.005 −1.0 1.0 12.0

278 G4 Pb C I 0.005 1.0 1.0 12.0

279 G4 Pb C I 0.005 1.0 4.0 12.0

280 G4 Pb N I 0.005 −1.0 1.0 12.0

281 G4 Pb N I 0.005 1.0 1.0 12.0

282 G4 Pb N I 0.005 1.0 4.0 12.0

283 G4 Pb I I 0.005 −1.0 1.0 12.0

284 G4 Pb I I 0.005 −1.0 4.0 12.0

285 G4 Pb I I 0.005 1.0 1.0 12.0

286 G4 Pb I I 0.005 1.0 4.0 12.0

287 G4 Pb I Pb 0.005 −1.0 1.0 12.0

288 G4 Pb I Pb 0.005 1.0 1.0 12.0

289 G4 Pb I Pb 0.005 1.0 4.0 12.0

B.2.3 Quasi Harmonic Approximation

We used phonopy [297] to compute free energy of the different MaPbI3 phases in the

harmonic approximation (HA) and quasi harmonic approximation (QHA). The free

energies were calculated using the same HDNNP based PES that was also used for our

FHMC simulations. Due to the strong anharmonicity and large difference between

the softest and hardest modes, computing the HA and QHA was challenging. The

local minima were optimized using the vc-SQNM algorithm [299] to a maximum force

value of 10−8 Ha/Bohr. Force constants were computed through finite differences

with an extremely small displacements of 10−5 Å as larger displacements would result

in imaginary phonon frequencies. Such small displacements are only possible because

the NNP PES is a smooth function, that can be computed with almost machine

precision. On a DFT PES, larger displacements would have to be used. For all
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phases, super cells consisting of 8 formula units, as shown in Appendix B.2.1, were

used. The relative free energies are shown in Figure B.2.10 and the phonon densities

of state are shown in Figure B.2.11.

0 200 400 600 800 1000
Temperature [K]

0.05

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e 

fre
e 

en
er

gy
 [e

V/
f.u

.] d-delta
delta
orthorhombic
tetragonal

Figure B.2.10: Relative free energies computed with the HA (solid lines) and QHA (dashed
lines) with respect to the orthorhombic phase.
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Figure B.2.11: Phonon density of states computed using the HDNNP and phonopy for all
MaPbI3 phases except the cubic phase. A convolution with a Gaussian
function with a standard deviation of 10 cm−1 was used to obtain a smooth
density of states.
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